]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/age/if_age.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76
77 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
78
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93         uint16_t        age_vendorid;
94         uint16_t        age_deviceid;
95         const char      *age_name;
96 } age_devs[] = {
97         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98             "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int age_mediachange(struct ifnet *);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(struct ifnet *);
122 static void age_start_locked(struct ifnet *);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 #ifndef __NO_STRICT_ALIGNMENT
146 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
147 #endif
148 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149 static void age_rxvlan(struct age_softc *);
150 static void age_rxfilter(struct age_softc *);
151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155
156
157 static device_method_t age_methods[] = {
158         /* Device interface. */
159         DEVMETHOD(device_probe,         age_probe),
160         DEVMETHOD(device_attach,        age_attach),
161         DEVMETHOD(device_detach,        age_detach),
162         DEVMETHOD(device_shutdown,      age_shutdown),
163         DEVMETHOD(device_suspend,       age_suspend),
164         DEVMETHOD(device_resume,        age_resume),
165
166         /* MII interface. */
167         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
168         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
169         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
170
171         { NULL, NULL }
172 };
173
174 static driver_t age_driver = {
175         "age",
176         age_methods,
177         sizeof(struct age_softc)
178 };
179
180 static devclass_t age_devclass;
181
182 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
183 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
184
185 static struct resource_spec age_res_spec_mem[] = {
186         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
187         { -1,                   0,              0 }
188 };
189
190 static struct resource_spec age_irq_spec_legacy[] = {
191         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
192         { -1,                   0,              0 }
193 };
194
195 static struct resource_spec age_irq_spec_msi[] = {
196         { SYS_RES_IRQ,          1,              RF_ACTIVE },
197         { -1,                   0,              0 }
198 };
199
200 static struct resource_spec age_irq_spec_msix[] = {
201         { SYS_RES_IRQ,          1,              RF_ACTIVE },
202         { -1,                   0,              0 }
203 };
204
205 /*
206  *      Read a PHY register on the MII of the L1.
207  */
208 static int
209 age_miibus_readreg(device_t dev, int phy, int reg)
210 {
211         struct age_softc *sc;
212         uint32_t v;
213         int i;
214
215         sc = device_get_softc(dev);
216
217         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
218             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
219         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
220                 DELAY(1);
221                 v = CSR_READ_4(sc, AGE_MDIO);
222                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
223                         break;
224         }
225
226         if (i == 0) {
227                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
228                 return (0);
229         }
230
231         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232 }
233
234 /*
235  *      Write a PHY register on the MII of the L1.
236  */
237 static int
238 age_miibus_writereg(device_t dev, int phy, int reg, int val)
239 {
240         struct age_softc *sc;
241         uint32_t v;
242         int i;
243
244         sc = device_get_softc(dev);
245
246         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
247             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
248             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
250                 DELAY(1);
251                 v = CSR_READ_4(sc, AGE_MDIO);
252                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253                         break;
254         }
255
256         if (i == 0)
257                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
258
259         return (0);
260 }
261
262 /*
263  *      Callback from MII layer when media changes.
264  */
265 static void
266 age_miibus_statchg(device_t dev)
267 {
268         struct age_softc *sc;
269
270         sc = device_get_softc(dev);
271         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
272 }
273
274 /*
275  *      Get the current interface media status.
276  */
277 static void
278 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
279 {
280         struct age_softc *sc;
281         struct mii_data *mii;
282
283         sc = ifp->if_softc;
284         AGE_LOCK(sc);
285         mii = device_get_softc(sc->age_miibus);
286
287         mii_pollstat(mii);
288         ifmr->ifm_status = mii->mii_media_status;
289         ifmr->ifm_active = mii->mii_media_active;
290         AGE_UNLOCK(sc);
291 }
292
293 /*
294  *      Set hardware to newly-selected media.
295  */
296 static int
297 age_mediachange(struct ifnet *ifp)
298 {
299         struct age_softc *sc;
300         struct mii_data *mii;
301         struct mii_softc *miisc;
302         int error;
303
304         sc = ifp->if_softc;
305         AGE_LOCK(sc);
306         mii = device_get_softc(sc->age_miibus);
307         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
308                 PHY_RESET(miisc);
309         error = mii_mediachg(mii);
310         AGE_UNLOCK(sc);
311
312         return (error);
313 }
314
315 static int
316 age_probe(device_t dev)
317 {
318         struct age_dev *sp;
319         int i;
320         uint16_t vendor, devid;
321
322         vendor = pci_get_vendor(dev);
323         devid = pci_get_device(dev);
324         sp = age_devs;
325         for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
326             i++, sp++) {
327                 if (vendor == sp->age_vendorid &&
328                     devid == sp->age_deviceid) {
329                         device_set_desc(dev, sp->age_name);
330                         return (BUS_PROBE_DEFAULT);
331                 }
332         }
333
334         return (ENXIO);
335 }
336
337 static void
338 age_get_macaddr(struct age_softc *sc)
339 {
340         uint32_t ea[2], reg;
341         int i, vpdc;
342
343         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
344         if ((reg & SPI_VPD_ENB) != 0) {
345                 /* Get VPD stored in TWSI EEPROM. */
346                 reg &= ~SPI_VPD_ENB;
347                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
348         }
349
350         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
351                 /*
352                  * PCI VPD capability found, let TWSI reload EEPROM.
353                  * This will set ethernet address of controller.
354                  */
355                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
356                     TWSI_CTRL_SW_LD_START);
357                 for (i = 100; i > 0; i--) {
358                         DELAY(1000);
359                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
360                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
361                                 break;
362                 }
363                 if (i == 0)
364                         device_printf(sc->age_dev,
365                             "reloading EEPROM timeout!\n");
366         } else {
367                 if (bootverbose)
368                         device_printf(sc->age_dev,
369                             "PCI VPD capability not found!\n");
370         }
371
372         ea[0] = CSR_READ_4(sc, AGE_PAR0);
373         ea[1] = CSR_READ_4(sc, AGE_PAR1);
374         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
375         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
376         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
377         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
378         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
379         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
380 }
381
382 static void
383 age_phy_reset(struct age_softc *sc)
384 {
385         uint16_t reg, pn;
386         int i, linkup;
387
388         /* Reset PHY. */
389         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
390         DELAY(2000);
391         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
392         DELAY(2000);
393
394 #define ATPHY_DBG_ADDR          0x1D
395 #define ATPHY_DBG_DATA          0x1E
396 #define ATPHY_CDTC              0x16
397 #define PHY_CDTC_ENB            0x0001
398 #define PHY_CDTC_POFF           8
399 #define ATPHY_CDTS              0x1C
400 #define PHY_CDTS_STAT_OK        0x0000
401 #define PHY_CDTS_STAT_SHORT     0x0100
402 #define PHY_CDTS_STAT_OPEN      0x0200
403 #define PHY_CDTS_STAT_INVAL     0x0300
404 #define PHY_CDTS_STAT_MASK      0x0300
405
406         /* Check power saving mode. Magic from Linux. */
407         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
408         for (linkup = 0, pn = 0; pn < 4; pn++) {
409                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
410                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
411                 for (i = 200; i > 0; i--) {
412                         DELAY(1000);
413                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
414                             ATPHY_CDTC);
415                         if ((reg & PHY_CDTC_ENB) == 0)
416                                 break;
417                 }
418                 DELAY(1000);
419                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420                     ATPHY_CDTS);
421                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
422                         linkup++;
423                         break;
424                 }
425         }
426         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
427             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
428         if (linkup == 0) {
429                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
430                     ATPHY_DBG_ADDR, 0);
431                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432                     ATPHY_DBG_DATA, 0x124E);
433                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434                     ATPHY_DBG_ADDR, 1);
435                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
436                     ATPHY_DBG_DATA);
437                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438                     ATPHY_DBG_DATA, reg | 0x03);
439                 /* XXX */
440                 DELAY(1500 * 1000);
441                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442                     ATPHY_DBG_ADDR, 0);
443                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444                     ATPHY_DBG_DATA, 0x024E);
445     }
446
447 #undef  ATPHY_DBG_ADDR
448 #undef  ATPHY_DBG_DATA
449 #undef  ATPHY_CDTC
450 #undef  PHY_CDTC_ENB
451 #undef  PHY_CDTC_POFF
452 #undef  ATPHY_CDTS
453 #undef  PHY_CDTS_STAT_OK
454 #undef  PHY_CDTS_STAT_SHORT
455 #undef  PHY_CDTS_STAT_OPEN
456 #undef  PHY_CDTS_STAT_INVAL
457 #undef  PHY_CDTS_STAT_MASK
458 }
459
460 static int
461 age_attach(device_t dev)
462 {
463         struct age_softc *sc;
464         struct ifnet *ifp;
465         uint16_t burst;
466         int error, i, msic, msixc, pmc;
467
468         error = 0;
469         sc = device_get_softc(dev);
470         sc->age_dev = dev;
471
472         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
473             MTX_DEF);
474         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
475         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
476         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
477
478         /* Map the device. */
479         pci_enable_busmaster(dev);
480         sc->age_res_spec = age_res_spec_mem;
481         sc->age_irq_spec = age_irq_spec_legacy;
482         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
483         if (error != 0) {
484                 device_printf(dev, "cannot allocate memory resources.\n");
485                 goto fail;
486         }
487
488         /* Set PHY address. */
489         sc->age_phyaddr = AGE_PHY_ADDR;
490
491         /* Reset PHY. */
492         age_phy_reset(sc);
493
494         /* Reset the ethernet controller. */
495         age_reset(sc);
496
497         /* Get PCI and chip id/revision. */
498         sc->age_rev = pci_get_revid(dev);
499         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
500             MASTER_CHIP_REV_SHIFT;
501         if (bootverbose) {
502                 device_printf(dev, "PCI device revision : 0x%04x\n",
503                     sc->age_rev);
504                 device_printf(dev, "Chip id/revision : 0x%04x\n",
505                     sc->age_chip_rev);
506         }
507
508         /*
509          * XXX
510          * Unintialized hardware returns an invalid chip id/revision
511          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
512          * unplugged cable results in putting hardware into automatic
513          * power down mode which in turn returns invalld chip revision.
514          */
515         if (sc->age_chip_rev == 0xFFFF) {
516                 device_printf(dev,"invalid chip revision : 0x%04x -- "
517                     "not initialized?\n", sc->age_chip_rev);
518                 error = ENXIO;
519                 goto fail;
520         }
521
522         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
523             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
524             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
525
526         /* Allocate IRQ resources. */
527         msixc = pci_msix_count(dev);
528         msic = pci_msi_count(dev);
529         if (bootverbose) {
530                 device_printf(dev, "MSIX count : %d\n", msixc);
531                 device_printf(dev, "MSI count : %d\n", msic);
532         }
533
534         /* Prefer MSIX over MSI. */
535         if (msix_disable == 0 || msi_disable == 0) {
536                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
537                     pci_alloc_msix(dev, &msixc) == 0) {
538                         if (msic == AGE_MSIX_MESSAGES) {
539                                 device_printf(dev, "Using %d MSIX messages.\n",
540                                     msixc);
541                                 sc->age_flags |= AGE_FLAG_MSIX;
542                                 sc->age_irq_spec = age_irq_spec_msix;
543                         } else
544                                 pci_release_msi(dev);
545                 }
546                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
547                     msic == AGE_MSI_MESSAGES &&
548                     pci_alloc_msi(dev, &msic) == 0) {
549                         if (msic == AGE_MSI_MESSAGES) {
550                                 device_printf(dev, "Using %d MSI messages.\n",
551                                     msic);
552                                 sc->age_flags |= AGE_FLAG_MSI;
553                                 sc->age_irq_spec = age_irq_spec_msi;
554                         } else
555                                 pci_release_msi(dev);
556                 }
557         }
558
559         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
560         if (error != 0) {
561                 device_printf(dev, "cannot allocate IRQ resources.\n");
562                 goto fail;
563         }
564
565
566         /* Get DMA parameters from PCIe device control register. */
567         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
568                 sc->age_flags |= AGE_FLAG_PCIE;
569                 burst = pci_read_config(dev, i + 0x08, 2);
570                 /* Max read request size. */
571                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
572                     DMA_CFG_RD_BURST_SHIFT;
573                 /* Max payload size. */
574                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
575                     DMA_CFG_WR_BURST_SHIFT;
576                 if (bootverbose) {
577                         device_printf(dev, "Read request size : %d bytes.\n",
578                             128 << ((burst >> 12) & 0x07));
579                         device_printf(dev, "TLP payload size : %d bytes.\n",
580                             128 << ((burst >> 5) & 0x07));
581                 }
582         } else {
583                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
584                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
585         }
586
587         /* Create device sysctl node. */
588         age_sysctl_node(sc);
589
590         if ((error = age_dma_alloc(sc) != 0))
591                 goto fail;
592
593         /* Load station address. */
594         age_get_macaddr(sc);
595
596         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
597         if (ifp == NULL) {
598                 device_printf(dev, "cannot allocate ifnet structure.\n");
599                 error = ENXIO;
600                 goto fail;
601         }
602
603         ifp->if_softc = sc;
604         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
605         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606         ifp->if_ioctl = age_ioctl;
607         ifp->if_start = age_start;
608         ifp->if_init = age_init;
609         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
610         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
611         IFQ_SET_READY(&ifp->if_snd);
612         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
613         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
614         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
615                 sc->age_flags |= AGE_FLAG_PMCAP;
616                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
617         }
618         ifp->if_capenable = ifp->if_capabilities;
619
620         /* Set up MII bus. */
621         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
622             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
623             0);
624         if (error != 0) {
625                 device_printf(dev, "attaching PHYs failed\n");
626                 goto fail;
627         }
628
629         ether_ifattach(ifp, sc->age_eaddr);
630
631         /* VLAN capability setup. */
632         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
633             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
634         ifp->if_capenable = ifp->if_capabilities;
635
636         /* Tell the upper layer(s) we support long frames. */
637         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
638
639         /* Create local taskq. */
640         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
641             taskqueue_thread_enqueue, &sc->age_tq);
642         if (sc->age_tq == NULL) {
643                 device_printf(dev, "could not create taskqueue.\n");
644                 ether_ifdetach(ifp);
645                 error = ENXIO;
646                 goto fail;
647         }
648         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
649             device_get_nameunit(sc->age_dev));
650
651         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
652                 msic = AGE_MSIX_MESSAGES;
653         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
654                 msic = AGE_MSI_MESSAGES;
655         else
656                 msic = 1;
657         for (i = 0; i < msic; i++) {
658                 error = bus_setup_intr(dev, sc->age_irq[i],
659                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
660                     &sc->age_intrhand[i]);
661                 if (error != 0)
662                         break;
663         }
664         if (error != 0) {
665                 device_printf(dev, "could not set up interrupt handler.\n");
666                 taskqueue_free(sc->age_tq);
667                 sc->age_tq = NULL;
668                 ether_ifdetach(ifp);
669                 goto fail;
670         }
671
672 fail:
673         if (error != 0)
674                 age_detach(dev);
675
676         return (error);
677 }
678
679 static int
680 age_detach(device_t dev)
681 {
682         struct age_softc *sc;
683         struct ifnet *ifp;
684         int i, msic;
685
686         sc = device_get_softc(dev);
687
688         ifp = sc->age_ifp;
689         if (device_is_attached(dev)) {
690                 AGE_LOCK(sc);
691                 sc->age_flags |= AGE_FLAG_DETACH;
692                 age_stop(sc);
693                 AGE_UNLOCK(sc);
694                 callout_drain(&sc->age_tick_ch);
695                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
696                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
697                 ether_ifdetach(ifp);
698         }
699
700         if (sc->age_tq != NULL) {
701                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
702                 taskqueue_free(sc->age_tq);
703                 sc->age_tq = NULL;
704         }
705
706         if (sc->age_miibus != NULL) {
707                 device_delete_child(dev, sc->age_miibus);
708                 sc->age_miibus = NULL;
709         }
710         bus_generic_detach(dev);
711         age_dma_free(sc);
712
713         if (ifp != NULL) {
714                 if_free(ifp);
715                 sc->age_ifp = NULL;
716         }
717
718         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
719                 msic = AGE_MSIX_MESSAGES;
720         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
721                 msic = AGE_MSI_MESSAGES;
722         else
723                 msic = 1;
724         for (i = 0; i < msic; i++) {
725                 if (sc->age_intrhand[i] != NULL) {
726                         bus_teardown_intr(dev, sc->age_irq[i],
727                             sc->age_intrhand[i]);
728                         sc->age_intrhand[i] = NULL;
729                 }
730         }
731
732         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
733         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
734                 pci_release_msi(dev);
735         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
736         mtx_destroy(&sc->age_mtx);
737
738         return (0);
739 }
740
741 static void
742 age_sysctl_node(struct age_softc *sc)
743 {
744         int error;
745
746         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
747             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
748             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
749             "I", "Statistics");
750
751         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
752             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
753             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
754             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
755
756         /* Pull in device tunables. */
757         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
758         error = resource_int_value(device_get_name(sc->age_dev),
759             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
760         if (error == 0) {
761                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
762                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
763                         device_printf(sc->age_dev,
764                             "int_mod value out of range; using default: %d\n",
765                             AGE_IM_TIMER_DEFAULT);
766                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
767                 }
768         }
769
770         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
771             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
772             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
773             0, sysctl_hw_age_proc_limit, "I",
774             "max number of Rx events to process");
775
776         /* Pull in device tunables. */
777         sc->age_process_limit = AGE_PROC_DEFAULT;
778         error = resource_int_value(device_get_name(sc->age_dev),
779             device_get_unit(sc->age_dev), "process_limit",
780             &sc->age_process_limit);
781         if (error == 0) {
782                 if (sc->age_process_limit < AGE_PROC_MIN ||
783                     sc->age_process_limit > AGE_PROC_MAX) {
784                         device_printf(sc->age_dev,
785                             "process_limit value out of range; "
786                             "using default: %d\n", AGE_PROC_DEFAULT);
787                         sc->age_process_limit = AGE_PROC_DEFAULT;
788                 }
789         }
790 }
791
792 struct age_dmamap_arg {
793         bus_addr_t      age_busaddr;
794 };
795
796 static void
797 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
798 {
799         struct age_dmamap_arg *ctx;
800
801         if (error != 0)
802                 return;
803
804         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
805
806         ctx = (struct age_dmamap_arg *)arg;
807         ctx->age_busaddr = segs[0].ds_addr;
808 }
809
810 /*
811  * Attansic L1 controller have single register to specify high
812  * address part of DMA blocks. So all descriptor structures and
813  * DMA memory blocks should have the same high address of given
814  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
815  */
816 static int
817 age_check_boundary(struct age_softc *sc)
818 {
819         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
820         bus_addr_t cmb_block_end, smb_block_end;
821
822         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
823         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
824         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
825         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
826         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
827         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
828
829         if ((AGE_ADDR_HI(tx_ring_end) !=
830             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
831             (AGE_ADDR_HI(rx_ring_end) !=
832             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
833             (AGE_ADDR_HI(rr_ring_end) !=
834             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
835             (AGE_ADDR_HI(cmb_block_end) !=
836             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
837             (AGE_ADDR_HI(smb_block_end) !=
838             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
839                 return (EFBIG);
840
841         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
842             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
843             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
844             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
845                 return (EFBIG);
846
847         return (0);
848 }
849
850 static int
851 age_dma_alloc(struct age_softc *sc)
852 {
853         struct age_txdesc *txd;
854         struct age_rxdesc *rxd;
855         bus_addr_t lowaddr;
856         struct age_dmamap_arg ctx;
857         int error, i;
858
859         lowaddr = BUS_SPACE_MAXADDR;
860
861 again:
862         /* Create parent ring/DMA block tag. */
863         error = bus_dma_tag_create(
864             bus_get_dma_tag(sc->age_dev), /* parent */
865             1, 0,                       /* alignment, boundary */
866             lowaddr,                    /* lowaddr */
867             BUS_SPACE_MAXADDR,          /* highaddr */
868             NULL, NULL,                 /* filter, filterarg */
869             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
870             0,                          /* nsegments */
871             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
872             0,                          /* flags */
873             NULL, NULL,                 /* lockfunc, lockarg */
874             &sc->age_cdata.age_parent_tag);
875         if (error != 0) {
876                 device_printf(sc->age_dev,
877                     "could not create parent DMA tag.\n");
878                 goto fail;
879         }
880
881         /* Create tag for Tx ring. */
882         error = bus_dma_tag_create(
883             sc->age_cdata.age_parent_tag, /* parent */
884             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
885             BUS_SPACE_MAXADDR,          /* lowaddr */
886             BUS_SPACE_MAXADDR,          /* highaddr */
887             NULL, NULL,                 /* filter, filterarg */
888             AGE_TX_RING_SZ,             /* maxsize */
889             1,                          /* nsegments */
890             AGE_TX_RING_SZ,             /* maxsegsize */
891             0,                          /* flags */
892             NULL, NULL,                 /* lockfunc, lockarg */
893             &sc->age_cdata.age_tx_ring_tag);
894         if (error != 0) {
895                 device_printf(sc->age_dev,
896                     "could not create Tx ring DMA tag.\n");
897                 goto fail;
898         }
899
900         /* Create tag for Rx ring. */
901         error = bus_dma_tag_create(
902             sc->age_cdata.age_parent_tag, /* parent */
903             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
904             BUS_SPACE_MAXADDR,          /* lowaddr */
905             BUS_SPACE_MAXADDR,          /* highaddr */
906             NULL, NULL,                 /* filter, filterarg */
907             AGE_RX_RING_SZ,             /* maxsize */
908             1,                          /* nsegments */
909             AGE_RX_RING_SZ,             /* maxsegsize */
910             0,                          /* flags */
911             NULL, NULL,                 /* lockfunc, lockarg */
912             &sc->age_cdata.age_rx_ring_tag);
913         if (error != 0) {
914                 device_printf(sc->age_dev,
915                     "could not create Rx ring DMA tag.\n");
916                 goto fail;
917         }
918
919         /* Create tag for Rx return ring. */
920         error = bus_dma_tag_create(
921             sc->age_cdata.age_parent_tag, /* parent */
922             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
923             BUS_SPACE_MAXADDR,          /* lowaddr */
924             BUS_SPACE_MAXADDR,          /* highaddr */
925             NULL, NULL,                 /* filter, filterarg */
926             AGE_RR_RING_SZ,             /* maxsize */
927             1,                          /* nsegments */
928             AGE_RR_RING_SZ,             /* maxsegsize */
929             0,                          /* flags */
930             NULL, NULL,                 /* lockfunc, lockarg */
931             &sc->age_cdata.age_rr_ring_tag);
932         if (error != 0) {
933                 device_printf(sc->age_dev,
934                     "could not create Rx return ring DMA tag.\n");
935                 goto fail;
936         }
937
938         /* Create tag for coalesing message block. */
939         error = bus_dma_tag_create(
940             sc->age_cdata.age_parent_tag, /* parent */
941             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
942             BUS_SPACE_MAXADDR,          /* lowaddr */
943             BUS_SPACE_MAXADDR,          /* highaddr */
944             NULL, NULL,                 /* filter, filterarg */
945             AGE_CMB_BLOCK_SZ,           /* maxsize */
946             1,                          /* nsegments */
947             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
948             0,                          /* flags */
949             NULL, NULL,                 /* lockfunc, lockarg */
950             &sc->age_cdata.age_cmb_block_tag);
951         if (error != 0) {
952                 device_printf(sc->age_dev,
953                     "could not create CMB DMA tag.\n");
954                 goto fail;
955         }
956
957         /* Create tag for statistics message block. */
958         error = bus_dma_tag_create(
959             sc->age_cdata.age_parent_tag, /* parent */
960             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
961             BUS_SPACE_MAXADDR,          /* lowaddr */
962             BUS_SPACE_MAXADDR,          /* highaddr */
963             NULL, NULL,                 /* filter, filterarg */
964             AGE_SMB_BLOCK_SZ,           /* maxsize */
965             1,                          /* nsegments */
966             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
967             0,                          /* flags */
968             NULL, NULL,                 /* lockfunc, lockarg */
969             &sc->age_cdata.age_smb_block_tag);
970         if (error != 0) {
971                 device_printf(sc->age_dev,
972                     "could not create SMB DMA tag.\n");
973                 goto fail;
974         }
975
976         /* Allocate DMA'able memory and load the DMA map. */
977         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
978             (void **)&sc->age_rdata.age_tx_ring,
979             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
980             &sc->age_cdata.age_tx_ring_map);
981         if (error != 0) {
982                 device_printf(sc->age_dev,
983                     "could not allocate DMA'able memory for Tx ring.\n");
984                 goto fail;
985         }
986         ctx.age_busaddr = 0;
987         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
988             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
989             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
990         if (error != 0 || ctx.age_busaddr == 0) {
991                 device_printf(sc->age_dev,
992                     "could not load DMA'able memory for Tx ring.\n");
993                 goto fail;
994         }
995         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
996         /* Rx ring */
997         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
998             (void **)&sc->age_rdata.age_rx_ring,
999             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1000             &sc->age_cdata.age_rx_ring_map);
1001         if (error != 0) {
1002                 device_printf(sc->age_dev,
1003                     "could not allocate DMA'able memory for Rx ring.\n");
1004                 goto fail;
1005         }
1006         ctx.age_busaddr = 0;
1007         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1008             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1009             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1010         if (error != 0 || ctx.age_busaddr == 0) {
1011                 device_printf(sc->age_dev,
1012                     "could not load DMA'able memory for Rx ring.\n");
1013                 goto fail;
1014         }
1015         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1016         /* Rx return ring */
1017         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1018             (void **)&sc->age_rdata.age_rr_ring,
1019             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1020             &sc->age_cdata.age_rr_ring_map);
1021         if (error != 0) {
1022                 device_printf(sc->age_dev,
1023                     "could not allocate DMA'able memory for Rx return ring.\n");
1024                 goto fail;
1025         }
1026         ctx.age_busaddr = 0;
1027         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1028             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1029             AGE_RR_RING_SZ, age_dmamap_cb,
1030             &ctx, 0);
1031         if (error != 0 || ctx.age_busaddr == 0) {
1032                 device_printf(sc->age_dev,
1033                     "could not load DMA'able memory for Rx return ring.\n");
1034                 goto fail;
1035         }
1036         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1037         /* CMB block */
1038         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1039             (void **)&sc->age_rdata.age_cmb_block,
1040             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1041             &sc->age_cdata.age_cmb_block_map);
1042         if (error != 0) {
1043                 device_printf(sc->age_dev,
1044                     "could not allocate DMA'able memory for CMB block.\n");
1045                 goto fail;
1046         }
1047         ctx.age_busaddr = 0;
1048         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1049             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1050             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1051         if (error != 0 || ctx.age_busaddr == 0) {
1052                 device_printf(sc->age_dev,
1053                     "could not load DMA'able memory for CMB block.\n");
1054                 goto fail;
1055         }
1056         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1057         /* SMB block */
1058         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1059             (void **)&sc->age_rdata.age_smb_block,
1060             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1061             &sc->age_cdata.age_smb_block_map);
1062         if (error != 0) {
1063                 device_printf(sc->age_dev,
1064                     "could not allocate DMA'able memory for SMB block.\n");
1065                 goto fail;
1066         }
1067         ctx.age_busaddr = 0;
1068         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1069             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1070             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1071         if (error != 0 || ctx.age_busaddr == 0) {
1072                 device_printf(sc->age_dev,
1073                     "could not load DMA'able memory for SMB block.\n");
1074                 goto fail;
1075         }
1076         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1077
1078         /*
1079          * All ring buffer and DMA blocks should have the same
1080          * high address part of 64bit DMA address space.
1081          */
1082         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1083             (error = age_check_boundary(sc)) != 0) {
1084                 device_printf(sc->age_dev, "4GB boundary crossed, "
1085                     "switching to 32bit DMA addressing mode.\n");
1086                 age_dma_free(sc);
1087                 /* Limit DMA address space to 32bit and try again. */
1088                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1089                 goto again;
1090         }
1091
1092         /*
1093          * Create Tx/Rx buffer parent tag.
1094          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1095          * so it needs separate parent DMA tag.
1096          * XXX
1097          * It seems enabling 64bit DMA causes data corruption. Limit
1098          * DMA address space to 32bit.
1099          */
1100         error = bus_dma_tag_create(
1101             bus_get_dma_tag(sc->age_dev), /* parent */
1102             1, 0,                       /* alignment, boundary */
1103             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1104             BUS_SPACE_MAXADDR,          /* highaddr */
1105             NULL, NULL,                 /* filter, filterarg */
1106             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1107             0,                          /* nsegments */
1108             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1109             0,                          /* flags */
1110             NULL, NULL,                 /* lockfunc, lockarg */
1111             &sc->age_cdata.age_buffer_tag);
1112         if (error != 0) {
1113                 device_printf(sc->age_dev,
1114                     "could not create parent buffer DMA tag.\n");
1115                 goto fail;
1116         }
1117
1118         /* Create tag for Tx buffers. */
1119         error = bus_dma_tag_create(
1120             sc->age_cdata.age_buffer_tag, /* parent */
1121             1, 0,                       /* alignment, boundary */
1122             BUS_SPACE_MAXADDR,          /* lowaddr */
1123             BUS_SPACE_MAXADDR,          /* highaddr */
1124             NULL, NULL,                 /* filter, filterarg */
1125             AGE_TSO_MAXSIZE,            /* maxsize */
1126             AGE_MAXTXSEGS,              /* nsegments */
1127             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1128             0,                          /* flags */
1129             NULL, NULL,                 /* lockfunc, lockarg */
1130             &sc->age_cdata.age_tx_tag);
1131         if (error != 0) {
1132                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133                 goto fail;
1134         }
1135
1136         /* Create tag for Rx buffers. */
1137         error = bus_dma_tag_create(
1138             sc->age_cdata.age_buffer_tag, /* parent */
1139             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
1140             BUS_SPACE_MAXADDR,          /* lowaddr */
1141             BUS_SPACE_MAXADDR,          /* highaddr */
1142             NULL, NULL,                 /* filter, filterarg */
1143             MCLBYTES,                   /* maxsize */
1144             1,                          /* nsegments */
1145             MCLBYTES,                   /* maxsegsize */
1146             0,                          /* flags */
1147             NULL, NULL,                 /* lockfunc, lockarg */
1148             &sc->age_cdata.age_rx_tag);
1149         if (error != 0) {
1150                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151                 goto fail;
1152         }
1153
1154         /* Create DMA maps for Tx buffers. */
1155         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156                 txd = &sc->age_cdata.age_txdesc[i];
1157                 txd->tx_m = NULL;
1158                 txd->tx_dmamap = NULL;
1159                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160                     &txd->tx_dmamap);
1161                 if (error != 0) {
1162                         device_printf(sc->age_dev,
1163                             "could not create Tx dmamap.\n");
1164                         goto fail;
1165                 }
1166         }
1167         /* Create DMA maps for Rx buffers. */
1168         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169             &sc->age_cdata.age_rx_sparemap)) != 0) {
1170                 device_printf(sc->age_dev,
1171                     "could not create spare Rx dmamap.\n");
1172                 goto fail;
1173         }
1174         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175                 rxd = &sc->age_cdata.age_rxdesc[i];
1176                 rxd->rx_m = NULL;
1177                 rxd->rx_dmamap = NULL;
1178                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179                     &rxd->rx_dmamap);
1180                 if (error != 0) {
1181                         device_printf(sc->age_dev,
1182                             "could not create Rx dmamap.\n");
1183                         goto fail;
1184                 }
1185         }
1186
1187 fail:
1188         return (error);
1189 }
1190
1191 static void
1192 age_dma_free(struct age_softc *sc)
1193 {
1194         struct age_txdesc *txd;
1195         struct age_rxdesc *rxd;
1196         int i;
1197
1198         /* Tx buffers */
1199         if (sc->age_cdata.age_tx_tag != NULL) {
1200                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201                         txd = &sc->age_cdata.age_txdesc[i];
1202                         if (txd->tx_dmamap != NULL) {
1203                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204                                     txd->tx_dmamap);
1205                                 txd->tx_dmamap = NULL;
1206                         }
1207                 }
1208                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209                 sc->age_cdata.age_tx_tag = NULL;
1210         }
1211         /* Rx buffers */
1212         if (sc->age_cdata.age_rx_tag != NULL) {
1213                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214                         rxd = &sc->age_cdata.age_rxdesc[i];
1215                         if (rxd->rx_dmamap != NULL) {
1216                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217                                     rxd->rx_dmamap);
1218                                 rxd->rx_dmamap = NULL;
1219                         }
1220                 }
1221                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1222                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223                             sc->age_cdata.age_rx_sparemap);
1224                         sc->age_cdata.age_rx_sparemap = NULL;
1225                 }
1226                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227                 sc->age_cdata.age_rx_tag = NULL;
1228         }
1229         /* Tx ring. */
1230         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231                 if (sc->age_cdata.age_tx_ring_map != NULL)
1232                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233                             sc->age_cdata.age_tx_ring_map);
1234                 if (sc->age_cdata.age_tx_ring_map != NULL &&
1235                     sc->age_rdata.age_tx_ring != NULL)
1236                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237                             sc->age_rdata.age_tx_ring,
1238                             sc->age_cdata.age_tx_ring_map);
1239                 sc->age_rdata.age_tx_ring = NULL;
1240                 sc->age_cdata.age_tx_ring_map = NULL;
1241                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242                 sc->age_cdata.age_tx_ring_tag = NULL;
1243         }
1244         /* Rx ring. */
1245         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246                 if (sc->age_cdata.age_rx_ring_map != NULL)
1247                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248                             sc->age_cdata.age_rx_ring_map);
1249                 if (sc->age_cdata.age_rx_ring_map != NULL &&
1250                     sc->age_rdata.age_rx_ring != NULL)
1251                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252                             sc->age_rdata.age_rx_ring,
1253                             sc->age_cdata.age_rx_ring_map);
1254                 sc->age_rdata.age_rx_ring = NULL;
1255                 sc->age_cdata.age_rx_ring_map = NULL;
1256                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257                 sc->age_cdata.age_rx_ring_tag = NULL;
1258         }
1259         /* Rx return ring. */
1260         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261                 if (sc->age_cdata.age_rr_ring_map != NULL)
1262                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263                             sc->age_cdata.age_rr_ring_map);
1264                 if (sc->age_cdata.age_rr_ring_map != NULL &&
1265                     sc->age_rdata.age_rr_ring != NULL)
1266                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1267                             sc->age_rdata.age_rr_ring,
1268                             sc->age_cdata.age_rr_ring_map);
1269                 sc->age_rdata.age_rr_ring = NULL;
1270                 sc->age_cdata.age_rr_ring_map = NULL;
1271                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1272                 sc->age_cdata.age_rr_ring_tag = NULL;
1273         }
1274         /* CMB block */
1275         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1276                 if (sc->age_cdata.age_cmb_block_map != NULL)
1277                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1278                             sc->age_cdata.age_cmb_block_map);
1279                 if (sc->age_cdata.age_cmb_block_map != NULL &&
1280                     sc->age_rdata.age_cmb_block != NULL)
1281                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282                             sc->age_rdata.age_cmb_block,
1283                             sc->age_cdata.age_cmb_block_map);
1284                 sc->age_rdata.age_cmb_block = NULL;
1285                 sc->age_cdata.age_cmb_block_map = NULL;
1286                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287                 sc->age_cdata.age_cmb_block_tag = NULL;
1288         }
1289         /* SMB block */
1290         if (sc->age_cdata.age_smb_block_tag != NULL) {
1291                 if (sc->age_cdata.age_smb_block_map != NULL)
1292                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293                             sc->age_cdata.age_smb_block_map);
1294                 if (sc->age_cdata.age_smb_block_map != NULL &&
1295                     sc->age_rdata.age_smb_block != NULL)
1296                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297                             sc->age_rdata.age_smb_block,
1298                             sc->age_cdata.age_smb_block_map);
1299                 sc->age_rdata.age_smb_block = NULL;
1300                 sc->age_cdata.age_smb_block_map = NULL;
1301                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302                 sc->age_cdata.age_smb_block_tag = NULL;
1303         }
1304
1305         if (sc->age_cdata.age_buffer_tag != NULL) {
1306                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307                 sc->age_cdata.age_buffer_tag = NULL;
1308         }
1309         if (sc->age_cdata.age_parent_tag != NULL) {
1310                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311                 sc->age_cdata.age_parent_tag = NULL;
1312         }
1313 }
1314
1315 /*
1316  *      Make sure the interface is stopped at reboot time.
1317  */
1318 static int
1319 age_shutdown(device_t dev)
1320 {
1321
1322         return (age_suspend(dev));
1323 }
1324
1325 static void
1326 age_setwol(struct age_softc *sc)
1327 {
1328         struct ifnet *ifp;
1329         struct mii_data *mii;
1330         uint32_t reg, pmcs;
1331         uint16_t pmstat;
1332         int aneg, i, pmc;
1333
1334         AGE_LOCK_ASSERT(sc);
1335
1336         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338                 /*
1339                  * No PME capability, PHY power down.
1340                  * XXX
1341                  * Due to an unknown reason powering down PHY resulted
1342                  * in unexpected results such as inaccessbility of
1343                  * hardware of freshly rebooted system. Disable
1344                  * powering down PHY until I got more information for
1345                  * Attansic/Atheros PHY hardwares.
1346                  */
1347 #ifdef notyet
1348                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349                     MII_BMCR, BMCR_PDOWN);
1350 #endif
1351                 return;
1352         }
1353
1354         ifp = sc->age_ifp;
1355         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356                 /*
1357                  * Note, this driver resets the link speed to 10/100Mbps with
1358                  * auto-negotiation but we don't know whether that operation
1359                  * would succeed or not as it have no control after powering
1360                  * off. If the renegotiation fail WOL may not work. Running
1361                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1362                  * specified in PCI specification and that would result in
1363                  * complete shutdowning power to ethernet controller.
1364                  *
1365                  * TODO
1366                  *  Save current negotiated media speed/duplex/flow-control
1367                  *  to softc and restore the same link again after resuming.
1368                  *  PHY handling such as power down/resetting to 100Mbps
1369                  *  may be better handled in suspend method in phy driver.
1370                  */
1371                 mii = device_get_softc(sc->age_miibus);
1372                 mii_pollstat(mii);
1373                 aneg = 0;
1374                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375                         switch IFM_SUBTYPE(mii->mii_media_active) {
1376                         case IFM_10_T:
1377                         case IFM_100_TX:
1378                                 goto got_link;
1379                         case IFM_1000_T:
1380                                 aneg++;
1381                         default:
1382                                 break;
1383                         }
1384                 }
1385                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386                     MII_100T2CR, 0);
1387                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389                     ANAR_10 | ANAR_CSMA);
1390                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392                 DELAY(1000);
1393                 if (aneg != 0) {
1394                         /* Poll link state until age(4) get a 10/100 link. */
1395                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396                                 mii_pollstat(mii);
1397                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398                                         switch (IFM_SUBTYPE(
1399                                             mii->mii_media_active)) {
1400                                         case IFM_10_T:
1401                                         case IFM_100_TX:
1402                                                 age_mac_config(sc);
1403                                                 goto got_link;
1404                                         default:
1405                                                 break;
1406                                         }
1407                                 }
1408                                 AGE_UNLOCK(sc);
1409                                 pause("agelnk", hz);
1410                                 AGE_LOCK(sc);
1411                         }
1412                         if (i == MII_ANEGTICKS_GIGE)
1413                                 device_printf(sc->age_dev,
1414                                     "establishing link failed, "
1415                                     "WOL may not work!");
1416                 }
1417                 /*
1418                  * No link, force MAC to have 100Mbps, full-duplex link.
1419                  * This is the last resort and may/may not work.
1420                  */
1421                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423                 age_mac_config(sc);
1424         }
1425
1426 got_link:
1427         pmcs = 0;
1428         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437                 reg |= MAC_CFG_RX_ENB;
1438                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439         }
1440
1441         /* Request PME. */
1442         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447 #ifdef notyet
1448         /* See above for powering down PHY issues. */
1449         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450                 /* No WOL, PHY power down. */
1451                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452                     MII_BMCR, BMCR_PDOWN);
1453         }
1454 #endif
1455 }
1456
1457 static int
1458 age_suspend(device_t dev)
1459 {
1460         struct age_softc *sc;
1461
1462         sc = device_get_softc(dev);
1463
1464         AGE_LOCK(sc);
1465         age_stop(sc);
1466         age_setwol(sc);
1467         AGE_UNLOCK(sc);
1468
1469         return (0);
1470 }
1471
1472 static int
1473 age_resume(device_t dev)
1474 {
1475         struct age_softc *sc;
1476         struct ifnet *ifp;
1477
1478         sc = device_get_softc(dev);
1479
1480         AGE_LOCK(sc);
1481         age_phy_reset(sc);
1482         ifp = sc->age_ifp;
1483         if ((ifp->if_flags & IFF_UP) != 0)
1484                 age_init_locked(sc);
1485
1486         AGE_UNLOCK(sc);
1487
1488         return (0);
1489 }
1490
1491 static int
1492 age_encap(struct age_softc *sc, struct mbuf **m_head)
1493 {
1494         struct age_txdesc *txd, *txd_last;
1495         struct tx_desc *desc;
1496         struct mbuf *m;
1497         struct ip *ip;
1498         struct tcphdr *tcp;
1499         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500         bus_dmamap_t map;
1501         uint32_t cflags, hdrlen, ip_off, poff, vtag;
1502         int error, i, nsegs, prod, si;
1503
1504         AGE_LOCK_ASSERT(sc);
1505
1506         M_ASSERTPKTHDR((*m_head));
1507
1508         m = *m_head;
1509         ip = NULL;
1510         tcp = NULL;
1511         cflags = vtag = 0;
1512         ip_off = poff = 0;
1513         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514                 /*
1515                  * L1 requires offset of TCP/UDP payload in its Tx
1516                  * descriptor to perform hardware Tx checksum offload.
1517                  * Additionally, TSO requires IP/TCP header size and
1518                  * modification of IP/TCP header in order to make TSO
1519                  * engine work. This kind of operation takes many CPU
1520                  * cycles on FreeBSD so fast host CPU is needed to get
1521                  * smooth TSO performance.
1522                  */
1523                 struct ether_header *eh;
1524
1525                 if (M_WRITABLE(m) == 0) {
1526                         /* Get a writable copy. */
1527                         m = m_dup(*m_head, M_NOWAIT);
1528                         /* Release original mbufs. */
1529                         m_freem(*m_head);
1530                         if (m == NULL) {
1531                                 *m_head = NULL;
1532                                 return (ENOBUFS);
1533                         }
1534                         *m_head = m;
1535                 }
1536                 ip_off = sizeof(struct ether_header);
1537                 m = m_pullup(m, ip_off);
1538                 if (m == NULL) {
1539                         *m_head = NULL;
1540                         return (ENOBUFS);
1541                 }
1542                 eh = mtod(m, struct ether_header *);
1543                 /*
1544                  * Check if hardware VLAN insertion is off.
1545                  * Additional check for LLC/SNAP frame?
1546                  */
1547                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548                         ip_off = sizeof(struct ether_vlan_header);
1549                         m = m_pullup(m, ip_off);
1550                         if (m == NULL) {
1551                                 *m_head = NULL;
1552                                 return (ENOBUFS);
1553                         }
1554                 }
1555                 m = m_pullup(m, ip_off + sizeof(struct ip));
1556                 if (m == NULL) {
1557                         *m_head = NULL;
1558                         return (ENOBUFS);
1559                 }
1560                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1561                 poff = ip_off + (ip->ip_hl << 2);
1562                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1564                         if (m == NULL) {
1565                                 *m_head = NULL;
1566                                 return (ENOBUFS);
1567                         }
1568                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569                         m = m_pullup(m, poff + (tcp->th_off << 2));
1570                         if (m == NULL) {
1571                                 *m_head = NULL;
1572                                 return (ENOBUFS);
1573                         }
1574                         /*
1575                          * L1 requires IP/TCP header size and offset as
1576                          * well as TCP pseudo checksum which complicates
1577                          * TSO configuration. I guess this comes from the
1578                          * adherence to Microsoft NDIS Large Send
1579                          * specification which requires insertion of
1580                          * pseudo checksum by upper stack. The pseudo
1581                          * checksum that NDIS refers to doesn't include
1582                          * TCP payload length so age(4) should recompute
1583                          * the pseudo checksum here. Hopefully this wouldn't
1584                          * be much burden on modern CPUs.
1585                          * Reset IP checksum and recompute TCP pseudo
1586                          * checksum as NDIS specification said.
1587                          */
1588                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1589                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1590                         ip->ip_sum = 0;
1591                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1592                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1593                 }
1594                 *m_head = m;
1595         }
1596
1597         si = prod = sc->age_cdata.age_tx_prod;
1598         txd = &sc->age_cdata.age_txdesc[prod];
1599         txd_last = txd;
1600         map = txd->tx_dmamap;
1601
1602         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1603             *m_head, txsegs, &nsegs, 0);
1604         if (error == EFBIG) {
1605                 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1606                 if (m == NULL) {
1607                         m_freem(*m_head);
1608                         *m_head = NULL;
1609                         return (ENOMEM);
1610                 }
1611                 *m_head = m;
1612                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1613                     *m_head, txsegs, &nsegs, 0);
1614                 if (error != 0) {
1615                         m_freem(*m_head);
1616                         *m_head = NULL;
1617                         return (error);
1618                 }
1619         } else if (error != 0)
1620                 return (error);
1621         if (nsegs == 0) {
1622                 m_freem(*m_head);
1623                 *m_head = NULL;
1624                 return (EIO);
1625         }
1626
1627         /* Check descriptor overrun. */
1628         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1629                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1630                 return (ENOBUFS);
1631         }
1632
1633         m = *m_head;
1634         /* Configure VLAN hardware tag insertion. */
1635         if ((m->m_flags & M_VLANTAG) != 0) {
1636                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1637                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1638                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1639         }
1640
1641         desc = NULL;
1642         i = 0;
1643         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1644                 /* Request TSO and set MSS. */
1645                 cflags |= AGE_TD_TSO_IPV4;
1646                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1647                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1648                     AGE_TD_TSO_MSS_SHIFT);
1649                 /* Set IP/TCP header size. */
1650                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1651                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1652                 /*
1653                  * L1 requires the first buffer should only hold IP/TCP
1654                  * header data. TCP payload should be handled in other
1655                  * descriptors.
1656                  */
1657                 hdrlen = poff + (tcp->th_off << 2);
1658                 desc = &sc->age_rdata.age_tx_ring[prod];
1659                 desc->addr = htole64(txsegs[0].ds_addr);
1660                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1661                 desc->flags = htole32(cflags);
1662                 sc->age_cdata.age_tx_cnt++;
1663                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1664                 if (m->m_len - hdrlen > 0) {
1665                         /* Handle remaining payload of the 1st fragment. */
1666                         desc = &sc->age_rdata.age_tx_ring[prod];
1667                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1668                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1669                             vtag);
1670                         desc->flags = htole32(cflags);
1671                         sc->age_cdata.age_tx_cnt++;
1672                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1673                 }
1674                 /* Handle remaining fragments. */
1675                 i = 1;
1676         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1677                 /* Configure Tx IP/TCP/UDP checksum offload. */
1678                 cflags |= AGE_TD_CSUM;
1679                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1680                         cflags |= AGE_TD_TCPCSUM;
1681                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1682                         cflags |= AGE_TD_UDPCSUM;
1683                 /* Set checksum start offset. */
1684                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1685                 /* Set checksum insertion position of TCP/UDP. */
1686                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1687                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1688         }
1689         for (; i < nsegs; i++) {
1690                 desc = &sc->age_rdata.age_tx_ring[prod];
1691                 desc->addr = htole64(txsegs[i].ds_addr);
1692                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1693                 desc->flags = htole32(cflags);
1694                 sc->age_cdata.age_tx_cnt++;
1695                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1696         }
1697         /* Update producer index. */
1698         sc->age_cdata.age_tx_prod = prod;
1699
1700         /* Set EOP on the last descriptor. */
1701         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1702         desc = &sc->age_rdata.age_tx_ring[prod];
1703         desc->flags |= htole32(AGE_TD_EOP);
1704
1705         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1706         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1707                 desc = &sc->age_rdata.age_tx_ring[si];
1708                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1709         }
1710
1711         /* Swap dmamap of the first and the last. */
1712         txd = &sc->age_cdata.age_txdesc[prod];
1713         map = txd_last->tx_dmamap;
1714         txd_last->tx_dmamap = txd->tx_dmamap;
1715         txd->tx_dmamap = map;
1716         txd->tx_m = m;
1717
1718         /* Sync descriptors. */
1719         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1720         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1721             sc->age_cdata.age_tx_ring_map,
1722             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1723
1724         return (0);
1725 }
1726
1727 static void
1728 age_start(struct ifnet *ifp)
1729 {
1730         struct age_softc *sc;
1731
1732         sc = ifp->if_softc;
1733         AGE_LOCK(sc);
1734         age_start_locked(ifp);
1735         AGE_UNLOCK(sc);
1736 }
1737
1738 static void
1739 age_start_locked(struct ifnet *ifp)
1740 {
1741         struct age_softc *sc;
1742         struct mbuf *m_head;
1743         int enq;
1744
1745         sc = ifp->if_softc;
1746
1747         AGE_LOCK_ASSERT(sc);
1748
1749         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1750             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1751                 return;
1752
1753         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1754                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1755                 if (m_head == NULL)
1756                         break;
1757                 /*
1758                  * Pack the data into the transmit ring. If we
1759                  * don't have room, set the OACTIVE flag and wait
1760                  * for the NIC to drain the ring.
1761                  */
1762                 if (age_encap(sc, &m_head)) {
1763                         if (m_head == NULL)
1764                                 break;
1765                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1766                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1767                         break;
1768                 }
1769
1770                 enq++;
1771                 /*
1772                  * If there's a BPF listener, bounce a copy of this frame
1773                  * to him.
1774                  */
1775                 ETHER_BPF_MTAP(ifp, m_head);
1776         }
1777
1778         if (enq > 0) {
1779                 /* Update mbox. */
1780                 AGE_COMMIT_MBOX(sc);
1781                 /* Set a timeout in case the chip goes out to lunch. */
1782                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1783         }
1784 }
1785
1786 static void
1787 age_watchdog(struct age_softc *sc)
1788 {
1789         struct ifnet *ifp;
1790
1791         AGE_LOCK_ASSERT(sc);
1792
1793         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1794                 return;
1795
1796         ifp = sc->age_ifp;
1797         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1798                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1799                 ifp->if_oerrors++;
1800                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1801                 age_init_locked(sc);
1802                 return;
1803         }
1804         if (sc->age_cdata.age_tx_cnt == 0) {
1805                 if_printf(sc->age_ifp,
1806                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1807                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1808                         age_start_locked(ifp);
1809                 return;
1810         }
1811         if_printf(sc->age_ifp, "watchdog timeout\n");
1812         ifp->if_oerrors++;
1813         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1814         age_init_locked(sc);
1815         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1816                 age_start_locked(ifp);
1817 }
1818
1819 static int
1820 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1821 {
1822         struct age_softc *sc;
1823         struct ifreq *ifr;
1824         struct mii_data *mii;
1825         uint32_t reg;
1826         int error, mask;
1827
1828         sc = ifp->if_softc;
1829         ifr = (struct ifreq *)data;
1830         error = 0;
1831         switch (cmd) {
1832         case SIOCSIFMTU:
1833                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1834                         error = EINVAL;
1835                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1836                         AGE_LOCK(sc);
1837                         ifp->if_mtu = ifr->ifr_mtu;
1838                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1839                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1840                                 age_init_locked(sc);
1841                         }
1842                         AGE_UNLOCK(sc);
1843                 }
1844                 break;
1845         case SIOCSIFFLAGS:
1846                 AGE_LOCK(sc);
1847                 if ((ifp->if_flags & IFF_UP) != 0) {
1848                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1849                                 if (((ifp->if_flags ^ sc->age_if_flags)
1850                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1851                                         age_rxfilter(sc);
1852                         } else {
1853                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1854                                         age_init_locked(sc);
1855                         }
1856                 } else {
1857                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1858                                 age_stop(sc);
1859                 }
1860                 sc->age_if_flags = ifp->if_flags;
1861                 AGE_UNLOCK(sc);
1862                 break;
1863         case SIOCADDMULTI:
1864         case SIOCDELMULTI:
1865                 AGE_LOCK(sc);
1866                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1867                         age_rxfilter(sc);
1868                 AGE_UNLOCK(sc);
1869                 break;
1870         case SIOCSIFMEDIA:
1871         case SIOCGIFMEDIA:
1872                 mii = device_get_softc(sc->age_miibus);
1873                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1874                 break;
1875         case SIOCSIFCAP:
1876                 AGE_LOCK(sc);
1877                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1878                 if ((mask & IFCAP_TXCSUM) != 0 &&
1879                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1880                         ifp->if_capenable ^= IFCAP_TXCSUM;
1881                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1882                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1883                         else
1884                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1885                 }
1886                 if ((mask & IFCAP_RXCSUM) != 0 &&
1887                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1888                         ifp->if_capenable ^= IFCAP_RXCSUM;
1889                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1890                         reg &= ~MAC_CFG_RXCSUM_ENB;
1891                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1892                                 reg |= MAC_CFG_RXCSUM_ENB;
1893                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1894                 }
1895                 if ((mask & IFCAP_TSO4) != 0 &&
1896                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1897                         ifp->if_capenable ^= IFCAP_TSO4;
1898                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1899                                 ifp->if_hwassist |= CSUM_TSO;
1900                         else
1901                                 ifp->if_hwassist &= ~CSUM_TSO;
1902                 }
1903
1904                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1905                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1906                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1907                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1908                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1909                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1910                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1911                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1912                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1913                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1914                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1915                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1916                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1917                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1918                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1919                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1920                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1921                         age_rxvlan(sc);
1922                 }
1923                 AGE_UNLOCK(sc);
1924                 VLAN_CAPABILITIES(ifp);
1925                 break;
1926         default:
1927                 error = ether_ioctl(ifp, cmd, data);
1928                 break;
1929         }
1930
1931         return (error);
1932 }
1933
1934 static void
1935 age_mac_config(struct age_softc *sc)
1936 {
1937         struct mii_data *mii;
1938         uint32_t reg;
1939
1940         AGE_LOCK_ASSERT(sc);
1941
1942         mii = device_get_softc(sc->age_miibus);
1943         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1944         reg &= ~MAC_CFG_FULL_DUPLEX;
1945         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1946         reg &= ~MAC_CFG_SPEED_MASK;
1947         /* Reprogram MAC with resolved speed/duplex. */
1948         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1949         case IFM_10_T:
1950         case IFM_100_TX:
1951                 reg |= MAC_CFG_SPEED_10_100;
1952                 break;
1953         case IFM_1000_T:
1954                 reg |= MAC_CFG_SPEED_1000;
1955                 break;
1956         }
1957         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1958                 reg |= MAC_CFG_FULL_DUPLEX;
1959 #ifdef notyet
1960                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1961                         reg |= MAC_CFG_TX_FC;
1962                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1963                         reg |= MAC_CFG_RX_FC;
1964 #endif
1965         }
1966
1967         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1968 }
1969
1970 static void
1971 age_link_task(void *arg, int pending)
1972 {
1973         struct age_softc *sc;
1974         struct mii_data *mii;
1975         struct ifnet *ifp;
1976         uint32_t reg;
1977
1978         sc = (struct age_softc *)arg;
1979
1980         AGE_LOCK(sc);
1981         mii = device_get_softc(sc->age_miibus);
1982         ifp = sc->age_ifp;
1983         if (mii == NULL || ifp == NULL ||
1984             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1985                 AGE_UNLOCK(sc);
1986                 return;
1987         }
1988
1989         sc->age_flags &= ~AGE_FLAG_LINK;
1990         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1991                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1992                 case IFM_10_T:
1993                 case IFM_100_TX:
1994                 case IFM_1000_T:
1995                         sc->age_flags |= AGE_FLAG_LINK;
1996                         break;
1997                 default:
1998                         break;
1999                 }
2000         }
2001
2002         /* Stop Rx/Tx MACs. */
2003         age_stop_rxmac(sc);
2004         age_stop_txmac(sc);
2005
2006         /* Program MACs with resolved speed/duplex/flow-control. */
2007         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2008                 age_mac_config(sc);
2009                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2010                 /* Restart DMA engine and Tx/Rx MAC. */
2011                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2012                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2013                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2014                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2015         }
2016
2017         AGE_UNLOCK(sc);
2018 }
2019
2020 static void
2021 age_stats_update(struct age_softc *sc)
2022 {
2023         struct age_stats *stat;
2024         struct smb *smb;
2025         struct ifnet *ifp;
2026
2027         AGE_LOCK_ASSERT(sc);
2028
2029         stat = &sc->age_stat;
2030
2031         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2032             sc->age_cdata.age_smb_block_map,
2033             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2034
2035         smb = sc->age_rdata.age_smb_block;
2036         if (smb->updated == 0)
2037                 return;
2038
2039         ifp = sc->age_ifp;
2040         /* Rx stats. */
2041         stat->rx_frames += smb->rx_frames;
2042         stat->rx_bcast_frames += smb->rx_bcast_frames;
2043         stat->rx_mcast_frames += smb->rx_mcast_frames;
2044         stat->rx_pause_frames += smb->rx_pause_frames;
2045         stat->rx_control_frames += smb->rx_control_frames;
2046         stat->rx_crcerrs += smb->rx_crcerrs;
2047         stat->rx_lenerrs += smb->rx_lenerrs;
2048         stat->rx_bytes += smb->rx_bytes;
2049         stat->rx_runts += smb->rx_runts;
2050         stat->rx_fragments += smb->rx_fragments;
2051         stat->rx_pkts_64 += smb->rx_pkts_64;
2052         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2053         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2054         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2055         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2056         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2057         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2058         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2059         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2060         stat->rx_desc_oflows += smb->rx_desc_oflows;
2061         stat->rx_alignerrs += smb->rx_alignerrs;
2062         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2063         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2064         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2065
2066         /* Tx stats. */
2067         stat->tx_frames += smb->tx_frames;
2068         stat->tx_bcast_frames += smb->tx_bcast_frames;
2069         stat->tx_mcast_frames += smb->tx_mcast_frames;
2070         stat->tx_pause_frames += smb->tx_pause_frames;
2071         stat->tx_excess_defer += smb->tx_excess_defer;
2072         stat->tx_control_frames += smb->tx_control_frames;
2073         stat->tx_deferred += smb->tx_deferred;
2074         stat->tx_bytes += smb->tx_bytes;
2075         stat->tx_pkts_64 += smb->tx_pkts_64;
2076         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2077         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2078         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2079         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2080         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2081         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2082         stat->tx_single_colls += smb->tx_single_colls;
2083         stat->tx_multi_colls += smb->tx_multi_colls;
2084         stat->tx_late_colls += smb->tx_late_colls;
2085         stat->tx_excess_colls += smb->tx_excess_colls;
2086         stat->tx_underrun += smb->tx_underrun;
2087         stat->tx_desc_underrun += smb->tx_desc_underrun;
2088         stat->tx_lenerrs += smb->tx_lenerrs;
2089         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2090         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2091         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2092
2093         /* Update counters in ifnet. */
2094         ifp->if_opackets += smb->tx_frames;
2095
2096         ifp->if_collisions += smb->tx_single_colls +
2097             smb->tx_multi_colls + smb->tx_late_colls +
2098             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2099
2100         ifp->if_oerrors += smb->tx_excess_colls +
2101             smb->tx_late_colls + smb->tx_underrun +
2102             smb->tx_pkts_truncated;
2103
2104         ifp->if_ipackets += smb->rx_frames;
2105
2106         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2107             smb->rx_runts + smb->rx_pkts_truncated +
2108             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2109             smb->rx_alignerrs;
2110
2111         /* Update done, clear. */
2112         smb->updated = 0;
2113
2114         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2115             sc->age_cdata.age_smb_block_map,
2116             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2117 }
2118
2119 static int
2120 age_intr(void *arg)
2121 {
2122         struct age_softc *sc;
2123         uint32_t status;
2124
2125         sc = (struct age_softc *)arg;
2126
2127         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2128         if (status == 0 || (status & AGE_INTRS) == 0)
2129                 return (FILTER_STRAY);
2130         /* Disable interrupts. */
2131         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2132         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2133
2134         return (FILTER_HANDLED);
2135 }
2136
2137 static void
2138 age_int_task(void *arg, int pending)
2139 {
2140         struct age_softc *sc;
2141         struct ifnet *ifp;
2142         struct cmb *cmb;
2143         uint32_t status;
2144
2145         sc = (struct age_softc *)arg;
2146
2147         AGE_LOCK(sc);
2148
2149         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2150             sc->age_cdata.age_cmb_block_map,
2151             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2152         cmb = sc->age_rdata.age_cmb_block;
2153         status = le32toh(cmb->intr_status);
2154         if (sc->age_morework != 0)
2155                 status |= INTR_CMB_RX;
2156         if ((status & AGE_INTRS) == 0)
2157                 goto done;
2158
2159         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2160             TPD_CONS_SHIFT;
2161         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2162             RRD_PROD_SHIFT;
2163         /* Let hardware know CMB was served. */
2164         cmb->intr_status = 0;
2165         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2166             sc->age_cdata.age_cmb_block_map,
2167             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2168
2169 #if 0
2170         printf("INTR: 0x%08x\n", status);
2171         status &= ~INTR_DIS_DMA;
2172         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2173 #endif
2174         ifp = sc->age_ifp;
2175         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2176                 if ((status & INTR_CMB_RX) != 0)
2177                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2178                             sc->age_process_limit);
2179                 if ((status & INTR_CMB_TX) != 0)
2180                         age_txintr(sc, sc->age_tpd_cons);
2181                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2182                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2183                                 device_printf(sc->age_dev,
2184                                     "DMA read error! -- resetting\n");
2185                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2186                                 device_printf(sc->age_dev,
2187                                     "DMA write error! -- resetting\n");
2188                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2189                         age_init_locked(sc);
2190                 }
2191                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2192                         age_start_locked(ifp);
2193                 if ((status & INTR_SMB) != 0)
2194                         age_stats_update(sc);
2195         }
2196
2197         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2198         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2199             sc->age_cdata.age_cmb_block_map,
2200             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2201         status = le32toh(cmb->intr_status);
2202         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2203                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2204                 AGE_UNLOCK(sc);
2205                 return;
2206         }
2207
2208 done:
2209         /* Re-enable interrupts. */
2210         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2211         AGE_UNLOCK(sc);
2212 }
2213
2214 static void
2215 age_txintr(struct age_softc *sc, int tpd_cons)
2216 {
2217         struct ifnet *ifp;
2218         struct age_txdesc *txd;
2219         int cons, prog;
2220
2221         AGE_LOCK_ASSERT(sc);
2222
2223         ifp = sc->age_ifp;
2224
2225         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2226             sc->age_cdata.age_tx_ring_map,
2227             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2228
2229         /*
2230          * Go through our Tx list and free mbufs for those
2231          * frames which have been transmitted.
2232          */
2233         cons = sc->age_cdata.age_tx_cons;
2234         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2235                 if (sc->age_cdata.age_tx_cnt <= 0)
2236                         break;
2237                 prog++;
2238                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2239                 sc->age_cdata.age_tx_cnt--;
2240                 txd = &sc->age_cdata.age_txdesc[cons];
2241                 /*
2242                  * Clear Tx descriptors, it's not required but would
2243                  * help debugging in case of Tx issues.
2244                  */
2245                 txd->tx_desc->addr = 0;
2246                 txd->tx_desc->len = 0;
2247                 txd->tx_desc->flags = 0;
2248
2249                 if (txd->tx_m == NULL)
2250                         continue;
2251                 /* Reclaim transmitted mbufs. */
2252                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2253                     BUS_DMASYNC_POSTWRITE);
2254                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2255                 m_freem(txd->tx_m);
2256                 txd->tx_m = NULL;
2257         }
2258
2259         if (prog > 0) {
2260                 sc->age_cdata.age_tx_cons = cons;
2261
2262                 /*
2263                  * Unarm watchdog timer only when there are no pending
2264                  * Tx descriptors in queue.
2265                  */
2266                 if (sc->age_cdata.age_tx_cnt == 0)
2267                         sc->age_watchdog_timer = 0;
2268                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2269                     sc->age_cdata.age_tx_ring_map,
2270                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2271         }
2272 }
2273
2274 #ifndef __NO_STRICT_ALIGNMENT
2275 static struct mbuf *
2276 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2277 {
2278         struct mbuf *n;
2279         int i;
2280         uint16_t *src, *dst;
2281
2282         src = mtod(m, uint16_t *);
2283         dst = src - 3;
2284
2285         if (m->m_next == NULL) {
2286                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2287                         *dst++ = *src++;
2288                 m->m_data -= 6;
2289                 return (m);
2290         }
2291         /*
2292          * Append a new mbuf to received mbuf chain and copy ethernet
2293          * header from the mbuf chain. This can save lots of CPU
2294          * cycles for jumbo frame.
2295          */
2296         MGETHDR(n, M_NOWAIT, MT_DATA);
2297         if (n == NULL) {
2298                 ifp->if_iqdrops++;
2299                 m_freem(m);
2300                 return (NULL);
2301         }
2302         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2303         m->m_data += ETHER_HDR_LEN;
2304         m->m_len -= ETHER_HDR_LEN;
2305         n->m_len = ETHER_HDR_LEN;
2306         M_MOVE_PKTHDR(n, m);
2307         n->m_next = m;
2308         return (n);
2309 }
2310 #endif
2311
2312 /* Receive a frame. */
2313 static void
2314 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2315 {
2316         struct age_rxdesc *rxd;
2317         struct ifnet *ifp;
2318         struct mbuf *mp, *m;
2319         uint32_t status, index, vtag;
2320         int count, nsegs;
2321         int rx_cons;
2322
2323         AGE_LOCK_ASSERT(sc);
2324
2325         ifp = sc->age_ifp;
2326         status = le32toh(rxrd->flags);
2327         index = le32toh(rxrd->index);
2328         rx_cons = AGE_RX_CONS(index);
2329         nsegs = AGE_RX_NSEGS(index);
2330
2331         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2332         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2333                 /*
2334                  * We want to pass the following frames to upper
2335                  * layer regardless of error status of Rx return
2336                  * ring.
2337                  *
2338                  *  o IP/TCP/UDP checksum is bad.
2339                  *  o frame length and protocol specific length
2340                  *     does not match.
2341                  */
2342                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2343                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2344                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2345                         return;
2346         }
2347
2348         for (count = 0; count < nsegs; count++,
2349             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2350                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2351                 mp = rxd->rx_m;
2352                 /* Add a new receive buffer to the ring. */
2353                 if (age_newbuf(sc, rxd) != 0) {
2354                         ifp->if_iqdrops++;
2355                         /* Reuse Rx buffers. */
2356                         if (sc->age_cdata.age_rxhead != NULL)
2357                                 m_freem(sc->age_cdata.age_rxhead);
2358                         break;
2359                 }
2360
2361                 /*
2362                  * Assume we've received a full sized frame.
2363                  * Actual size is fixed when we encounter the end of
2364                  * multi-segmented frame.
2365                  */
2366                 mp->m_len = AGE_RX_BUF_SIZE;
2367
2368                 /* Chain received mbufs. */
2369                 if (sc->age_cdata.age_rxhead == NULL) {
2370                         sc->age_cdata.age_rxhead = mp;
2371                         sc->age_cdata.age_rxtail = mp;
2372                 } else {
2373                         mp->m_flags &= ~M_PKTHDR;
2374                         sc->age_cdata.age_rxprev_tail =
2375                             sc->age_cdata.age_rxtail;
2376                         sc->age_cdata.age_rxtail->m_next = mp;
2377                         sc->age_cdata.age_rxtail = mp;
2378                 }
2379
2380                 if (count == nsegs - 1) {
2381                         /* Last desc. for this frame. */
2382                         m = sc->age_cdata.age_rxhead;
2383                         m->m_flags |= M_PKTHDR;
2384                         /*
2385                          * It seems that L1 controller has no way
2386                          * to tell hardware to strip CRC bytes.
2387                          */
2388                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2389                             ETHER_CRC_LEN;
2390                         if (nsegs > 1) {
2391                                 /* Set last mbuf size. */
2392                                 mp->m_len = sc->age_cdata.age_rxlen -
2393                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
2394                                 /* Remove the CRC bytes in chained mbufs. */
2395                                 if (mp->m_len <= ETHER_CRC_LEN) {
2396                                         sc->age_cdata.age_rxtail =
2397                                             sc->age_cdata.age_rxprev_tail;
2398                                         sc->age_cdata.age_rxtail->m_len -=
2399                                             (ETHER_CRC_LEN - mp->m_len);
2400                                         sc->age_cdata.age_rxtail->m_next = NULL;
2401                                         m_freem(mp);
2402                                 } else {
2403                                         mp->m_len -= ETHER_CRC_LEN;
2404                                 }
2405                         } else
2406                                 m->m_len = m->m_pkthdr.len;
2407                         m->m_pkthdr.rcvif = ifp;
2408                         /*
2409                          * Set checksum information.
2410                          * It seems that L1 controller can compute partial
2411                          * checksum. The partial checksum value can be used
2412                          * to accelerate checksum computation for fragmented
2413                          * TCP/UDP packets. Upper network stack already
2414                          * takes advantage of the partial checksum value in
2415                          * IP reassembly stage. But I'm not sure the
2416                          * correctness of the partial hardware checksum
2417                          * assistance due to lack of data sheet. If it is
2418                          * proven to work on L1 I'll enable it.
2419                          */
2420                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2421                             (status & AGE_RRD_IPV4) != 0) {
2422                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2423                                         m->m_pkthdr.csum_flags |=
2424                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
2425                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2426                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2427                                         m->m_pkthdr.csum_flags |=
2428                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2429                                         m->m_pkthdr.csum_data = 0xffff;
2430                                 }
2431                                 /*
2432                                  * Don't mark bad checksum for TCP/UDP frames
2433                                  * as fragmented frames may always have set
2434                                  * bad checksummed bit of descriptor status.
2435                                  */
2436                         }
2437
2438                         /* Check for VLAN tagged frames. */
2439                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2440                             (status & AGE_RRD_VLAN) != 0) {
2441                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2442                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2443                                 m->m_flags |= M_VLANTAG;
2444                         }
2445 #ifndef __NO_STRICT_ALIGNMENT
2446                         m = age_fixup_rx(ifp, m);
2447                         if (m != NULL)
2448 #endif
2449                         {
2450                         /* Pass it on. */
2451                         AGE_UNLOCK(sc);
2452                         (*ifp->if_input)(ifp, m);
2453                         AGE_LOCK(sc);
2454                         }
2455                 }
2456         }
2457
2458         /* Reset mbuf chains. */
2459         AGE_RXCHAIN_RESET(sc);
2460 }
2461
2462 static int
2463 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2464 {
2465         struct rx_rdesc *rxrd;
2466         int rr_cons, nsegs, pktlen, prog;
2467
2468         AGE_LOCK_ASSERT(sc);
2469
2470         rr_cons = sc->age_cdata.age_rr_cons;
2471         if (rr_cons == rr_prod)
2472                 return (0);
2473
2474         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2475             sc->age_cdata.age_rr_ring_map,
2476             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2477         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2478             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2479
2480         for (prog = 0; rr_cons != rr_prod; prog++) {
2481                 if (count-- <= 0)
2482                         break;
2483                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2484                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2485                 if (nsegs == 0)
2486                         break;
2487                 /*
2488                  * Check number of segments against received bytes.
2489                  * Non-matching value would indicate that hardware
2490                  * is still trying to update Rx return descriptors.
2491                  * I'm not sure whether this check is really needed.
2492                  */
2493                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2494                 if (nsegs != (pktlen + (AGE_RX_BUF_SIZE - 1)) / AGE_RX_BUF_SIZE)
2495                         break;
2496
2497                 /* Received a frame. */
2498                 age_rxeof(sc, rxrd);
2499                 /* Clear return ring. */
2500                 rxrd->index = 0;
2501                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2502                 sc->age_cdata.age_rx_cons += nsegs;
2503                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2504         }
2505
2506         if (prog > 0) {
2507                 /* Update the consumer index. */
2508                 sc->age_cdata.age_rr_cons = rr_cons;
2509
2510                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2511                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2512                 /* Sync descriptors. */
2513                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2514                     sc->age_cdata.age_rr_ring_map,
2515                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2516
2517                 /* Notify hardware availability of new Rx buffers. */
2518                 AGE_COMMIT_MBOX(sc);
2519         }
2520
2521         return (count > 0 ? 0 : EAGAIN);
2522 }
2523
2524 static void
2525 age_tick(void *arg)
2526 {
2527         struct age_softc *sc;
2528         struct mii_data *mii;
2529
2530         sc = (struct age_softc *)arg;
2531
2532         AGE_LOCK_ASSERT(sc);
2533
2534         mii = device_get_softc(sc->age_miibus);
2535         mii_tick(mii);
2536         age_watchdog(sc);
2537         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2538 }
2539
2540 static void
2541 age_reset(struct age_softc *sc)
2542 {
2543         uint32_t reg;
2544         int i;
2545
2546         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2547         CSR_READ_4(sc, AGE_MASTER_CFG);
2548         DELAY(1000);
2549         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2550                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2551                         break;
2552                 DELAY(10);
2553         }
2554
2555         if (i == 0)
2556                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2557         /* Initialize PCIe module. From Linux. */
2558         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2559         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2560 }
2561
2562 static void
2563 age_init(void *xsc)
2564 {
2565         struct age_softc *sc;
2566
2567         sc = (struct age_softc *)xsc;
2568         AGE_LOCK(sc);
2569         age_init_locked(sc);
2570         AGE_UNLOCK(sc);
2571 }
2572
2573 static void
2574 age_init_locked(struct age_softc *sc)
2575 {
2576         struct ifnet *ifp;
2577         struct mii_data *mii;
2578         uint8_t eaddr[ETHER_ADDR_LEN];
2579         bus_addr_t paddr;
2580         uint32_t reg, fsize;
2581         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2582         int error;
2583
2584         AGE_LOCK_ASSERT(sc);
2585
2586         ifp = sc->age_ifp;
2587         mii = device_get_softc(sc->age_miibus);
2588
2589         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2590                 return;
2591
2592         /*
2593          * Cancel any pending I/O.
2594          */
2595         age_stop(sc);
2596
2597         /*
2598          * Reset the chip to a known state.
2599          */
2600         age_reset(sc);
2601
2602         /* Initialize descriptors. */
2603         error = age_init_rx_ring(sc);
2604         if (error != 0) {
2605                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2606                 age_stop(sc);
2607                 return;
2608         }
2609         age_init_rr_ring(sc);
2610         age_init_tx_ring(sc);
2611         age_init_cmb_block(sc);
2612         age_init_smb_block(sc);
2613
2614         /* Reprogram the station address. */
2615         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2616         CSR_WRITE_4(sc, AGE_PAR0,
2617             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2618         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2619
2620         /* Set descriptor base addresses. */
2621         paddr = sc->age_rdata.age_tx_ring_paddr;
2622         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2623         paddr = sc->age_rdata.age_rx_ring_paddr;
2624         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2625         paddr = sc->age_rdata.age_rr_ring_paddr;
2626         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2627         paddr = sc->age_rdata.age_tx_ring_paddr;
2628         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2629         paddr = sc->age_rdata.age_cmb_block_paddr;
2630         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2631         paddr = sc->age_rdata.age_smb_block_paddr;
2632         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2633         /* Set Rx/Rx return descriptor counter. */
2634         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2635             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2636             DESC_RRD_CNT_MASK) |
2637             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2638         /* Set Tx descriptor counter. */
2639         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2640             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2641
2642         /* Tell hardware that we're ready to load descriptors. */
2643         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2644
2645         /*
2646          * Initialize mailbox register.
2647          * Updated producer/consumer index information is exchanged
2648          * through this mailbox register. However Tx producer and
2649          * Rx return consumer/Rx producer are all shared such that
2650          * it's hard to separate code path between Tx and Rx without
2651          * locking. If L1 hardware have a separate mail box register
2652          * for Tx and Rx consumer/producer management we could have
2653          * indepent Tx/Rx handler which in turn Rx handler could have
2654          * been run without any locking.
2655          */
2656         AGE_COMMIT_MBOX(sc);
2657
2658         /* Configure IPG/IFG parameters. */
2659         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2660             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2661             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2662             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2663             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2664
2665         /* Set parameters for half-duplex media. */
2666         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2667             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2668             HDPX_CFG_LCOL_MASK) |
2669             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2670             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2671             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2672             HDPX_CFG_ABEBT_MASK) |
2673             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2674             HDPX_CFG_JAMIPG_MASK));
2675
2676         /* Configure interrupt moderation timer. */
2677         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2678         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2679         reg &= ~MASTER_MTIMER_ENB;
2680         if (AGE_USECS(sc->age_int_mod) == 0)
2681                 reg &= ~MASTER_ITIMER_ENB;
2682         else
2683                 reg |= MASTER_ITIMER_ENB;
2684         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2685         if (bootverbose)
2686                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2687                     sc->age_int_mod);
2688         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2689
2690         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2691         if (ifp->if_mtu < ETHERMTU)
2692                 sc->age_max_frame_size = ETHERMTU;
2693         else
2694                 sc->age_max_frame_size = ifp->if_mtu;
2695         sc->age_max_frame_size += ETHER_HDR_LEN +
2696             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2697         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2698         /* Configure jumbo frame. */
2699         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2700         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2701             (((fsize / sizeof(uint64_t)) <<
2702             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2703             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2704             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2705             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2706             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2707
2708         /* Configure flow-control parameters. From Linux. */
2709         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2710                 /*
2711                  * Magic workaround for old-L1.
2712                  * Don't know which hw revision requires this magic.
2713                  */
2714                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2715                 /*
2716                  * Another magic workaround for flow-control mode
2717                  * change. From Linux.
2718                  */
2719                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2720         }
2721         /*
2722          * TODO
2723          *  Should understand pause parameter relationships between FIFO
2724          *  size and number of Rx descriptors and Rx return descriptors.
2725          *
2726          *  Magic parameters came from Linux.
2727          */
2728         switch (sc->age_chip_rev) {
2729         case 0x8001:
2730         case 0x9001:
2731         case 0x9002:
2732         case 0x9003:
2733                 rxf_hi = AGE_RX_RING_CNT / 16;
2734                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2735                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2736                 rrd_lo = AGE_RR_RING_CNT / 16;
2737                 break;
2738         default:
2739                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2740                 rxf_lo = reg / 16;
2741                 if (rxf_lo < 192)
2742                         rxf_lo = 192;
2743                 rxf_hi = (reg * 7) / 8;
2744                 if (rxf_hi < rxf_lo)
2745                         rxf_hi = rxf_lo + 16;
2746                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2747                 rrd_lo = reg / 8;
2748                 rrd_hi = (reg * 7) / 8;
2749                 if (rrd_lo < 2)
2750                         rrd_lo = 2;
2751                 if (rrd_hi < rrd_lo)
2752                         rrd_hi = rrd_lo + 3;
2753                 break;
2754         }
2755         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2756             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2757             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2758             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2759             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2760         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2761             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2762             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2763             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2764             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2765
2766         /* Configure RxQ. */
2767         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2768             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2769             RXQ_CFG_RD_BURST_MASK) |
2770             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2771             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2772             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2773             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2774             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2775
2776         /* Configure TxQ. */
2777         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2778             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2779             TXQ_CFG_TPD_BURST_MASK) |
2780             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2781             TXQ_CFG_TX_FIFO_BURST_MASK) |
2782             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2783             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2784             TXQ_CFG_ENB);
2785
2786         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2787             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2788             TX_JUMBO_TPD_TH_MASK) |
2789             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2790             TX_JUMBO_TPD_IPG_MASK));
2791         /* Configure DMA parameters. */
2792         CSR_WRITE_4(sc, AGE_DMA_CFG,
2793             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2794             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2795             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2796
2797         /* Configure CMB DMA write threshold. */
2798         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2799             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2800             CMB_WR_THRESH_RRD_MASK) |
2801             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2802             CMB_WR_THRESH_TPD_MASK));
2803
2804         /* Set CMB/SMB timer and enable them. */
2805         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2806             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2807             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2808         /* Request SMB updates for every seconds. */
2809         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2810         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2811
2812         /*
2813          * Disable all WOL bits as WOL can interfere normal Rx
2814          * operation.
2815          */
2816         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2817
2818         /*
2819          * Configure Tx/Rx MACs.
2820          *  - Auto-padding for short frames.
2821          *  - Enable CRC generation.
2822          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2823          *  of MAC is followed after link establishment.
2824          */
2825         CSR_WRITE_4(sc, AGE_MAC_CFG,
2826             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2827             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2828             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2829             MAC_CFG_PREAMBLE_MASK));
2830         /* Set up the receive filter. */
2831         age_rxfilter(sc);
2832         age_rxvlan(sc);
2833
2834         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2835         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2836                 reg |= MAC_CFG_RXCSUM_ENB;
2837
2838         /* Ack all pending interrupts and clear it. */
2839         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2840         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2841
2842         /* Finally enable Tx/Rx MAC. */
2843         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2844
2845         sc->age_flags &= ~AGE_FLAG_LINK;
2846         /* Switch to the current media. */
2847         mii_mediachg(mii);
2848
2849         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2850
2851         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2852         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2853 }
2854
2855 static void
2856 age_stop(struct age_softc *sc)
2857 {
2858         struct ifnet *ifp;
2859         struct age_txdesc *txd;
2860         struct age_rxdesc *rxd;
2861         uint32_t reg;
2862         int i;
2863
2864         AGE_LOCK_ASSERT(sc);
2865         /*
2866          * Mark the interface down and cancel the watchdog timer.
2867          */
2868         ifp = sc->age_ifp;
2869         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2870         sc->age_flags &= ~AGE_FLAG_LINK;
2871         callout_stop(&sc->age_tick_ch);
2872         sc->age_watchdog_timer = 0;
2873
2874         /*
2875          * Disable interrupts.
2876          */
2877         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2878         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2879         /* Stop CMB/SMB updates. */
2880         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2881         /* Stop Rx/Tx MAC. */
2882         age_stop_rxmac(sc);
2883         age_stop_txmac(sc);
2884         /* Stop DMA. */
2885         CSR_WRITE_4(sc, AGE_DMA_CFG,
2886             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2887         /* Stop TxQ/RxQ. */
2888         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2889             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2890         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2891             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2892         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2893                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2894                         break;
2895                 DELAY(10);
2896         }
2897         if (i == 0)
2898                 device_printf(sc->age_dev,
2899                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2900
2901          /* Reclaim Rx buffers that have been processed. */
2902         if (sc->age_cdata.age_rxhead != NULL)
2903                 m_freem(sc->age_cdata.age_rxhead);
2904         AGE_RXCHAIN_RESET(sc);
2905         /*
2906          * Free RX and TX mbufs still in the queues.
2907          */
2908         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2909                 rxd = &sc->age_cdata.age_rxdesc[i];
2910                 if (rxd->rx_m != NULL) {
2911                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2912                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2913                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2914                             rxd->rx_dmamap);
2915                         m_freem(rxd->rx_m);
2916                         rxd->rx_m = NULL;
2917                 }
2918         }
2919         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2920                 txd = &sc->age_cdata.age_txdesc[i];
2921                 if (txd->tx_m != NULL) {
2922                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2923                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2924                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2925                             txd->tx_dmamap);
2926                         m_freem(txd->tx_m);
2927                         txd->tx_m = NULL;
2928                 }
2929         }
2930 }
2931
2932 static void
2933 age_stop_txmac(struct age_softc *sc)
2934 {
2935         uint32_t reg;
2936         int i;
2937
2938         AGE_LOCK_ASSERT(sc);
2939
2940         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2941         if ((reg & MAC_CFG_TX_ENB) != 0) {
2942                 reg &= ~MAC_CFG_TX_ENB;
2943                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2944         }
2945         /* Stop Tx DMA engine. */
2946         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2947         if ((reg & DMA_CFG_RD_ENB) != 0) {
2948                 reg &= ~DMA_CFG_RD_ENB;
2949                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2950         }
2951         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2952                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2953                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2954                         break;
2955                 DELAY(10);
2956         }
2957         if (i == 0)
2958                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2959 }
2960
2961 static void
2962 age_stop_rxmac(struct age_softc *sc)
2963 {
2964         uint32_t reg;
2965         int i;
2966
2967         AGE_LOCK_ASSERT(sc);
2968
2969         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2970         if ((reg & MAC_CFG_RX_ENB) != 0) {
2971                 reg &= ~MAC_CFG_RX_ENB;
2972                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2973         }
2974         /* Stop Rx DMA engine. */
2975         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2976         if ((reg & DMA_CFG_WR_ENB) != 0) {
2977                 reg &= ~DMA_CFG_WR_ENB;
2978                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2979         }
2980         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2981                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2982                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2983                         break;
2984                 DELAY(10);
2985         }
2986         if (i == 0)
2987                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2988 }
2989
2990 static void
2991 age_init_tx_ring(struct age_softc *sc)
2992 {
2993         struct age_ring_data *rd;
2994         struct age_txdesc *txd;
2995         int i;
2996
2997         AGE_LOCK_ASSERT(sc);
2998
2999         sc->age_cdata.age_tx_prod = 0;
3000         sc->age_cdata.age_tx_cons = 0;
3001         sc->age_cdata.age_tx_cnt = 0;
3002
3003         rd = &sc->age_rdata;
3004         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3005         for (i = 0; i < AGE_TX_RING_CNT; i++) {
3006                 txd = &sc->age_cdata.age_txdesc[i];
3007                 txd->tx_desc = &rd->age_tx_ring[i];
3008                 txd->tx_m = NULL;
3009         }
3010
3011         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3012             sc->age_cdata.age_tx_ring_map,
3013             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3014 }
3015
3016 static int
3017 age_init_rx_ring(struct age_softc *sc)
3018 {
3019         struct age_ring_data *rd;
3020         struct age_rxdesc *rxd;
3021         int i;
3022
3023         AGE_LOCK_ASSERT(sc);
3024
3025         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3026         sc->age_morework = 0;
3027         rd = &sc->age_rdata;
3028         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3029         for (i = 0; i < AGE_RX_RING_CNT; i++) {
3030                 rxd = &sc->age_cdata.age_rxdesc[i];
3031                 rxd->rx_m = NULL;
3032                 rxd->rx_desc = &rd->age_rx_ring[i];
3033                 if (age_newbuf(sc, rxd) != 0)
3034                         return (ENOBUFS);
3035         }
3036
3037         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3038             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3039
3040         return (0);
3041 }
3042
3043 static void
3044 age_init_rr_ring(struct age_softc *sc)
3045 {
3046         struct age_ring_data *rd;
3047
3048         AGE_LOCK_ASSERT(sc);
3049
3050         sc->age_cdata.age_rr_cons = 0;
3051         AGE_RXCHAIN_RESET(sc);
3052
3053         rd = &sc->age_rdata;
3054         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3055         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3056             sc->age_cdata.age_rr_ring_map,
3057             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3058 }
3059
3060 static void
3061 age_init_cmb_block(struct age_softc *sc)
3062 {
3063         struct age_ring_data *rd;
3064
3065         AGE_LOCK_ASSERT(sc);
3066
3067         rd = &sc->age_rdata;
3068         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3069         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3070             sc->age_cdata.age_cmb_block_map,
3071             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3072 }
3073
3074 static void
3075 age_init_smb_block(struct age_softc *sc)
3076 {
3077         struct age_ring_data *rd;
3078
3079         AGE_LOCK_ASSERT(sc);
3080
3081         rd = &sc->age_rdata;
3082         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3083         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3084             sc->age_cdata.age_smb_block_map,
3085             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3086 }
3087
3088 static int
3089 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3090 {
3091         struct rx_desc *desc;
3092         struct mbuf *m;
3093         bus_dma_segment_t segs[1];
3094         bus_dmamap_t map;
3095         int nsegs;
3096
3097         AGE_LOCK_ASSERT(sc);
3098
3099         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3100         if (m == NULL)
3101                 return (ENOBUFS);
3102         m->m_len = m->m_pkthdr.len = MCLBYTES;
3103 #ifndef __NO_STRICT_ALIGNMENT
3104         m_adj(m, AGE_RX_BUF_ALIGN);
3105 #endif
3106
3107         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3108             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3109                 m_freem(m);
3110                 return (ENOBUFS);
3111         }
3112         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3113
3114         if (rxd->rx_m != NULL) {
3115                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3116                     BUS_DMASYNC_POSTREAD);
3117                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3118         }
3119         map = rxd->rx_dmamap;
3120         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3121         sc->age_cdata.age_rx_sparemap = map;
3122         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3123             BUS_DMASYNC_PREREAD);
3124         rxd->rx_m = m;
3125
3126         desc = rxd->rx_desc;
3127         desc->addr = htole64(segs[0].ds_addr);
3128         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3129             AGE_RD_LEN_SHIFT);
3130         return (0);
3131 }
3132
3133 static void
3134 age_rxvlan(struct age_softc *sc)
3135 {
3136         struct ifnet *ifp;
3137         uint32_t reg;
3138
3139         AGE_LOCK_ASSERT(sc);
3140
3141         ifp = sc->age_ifp;
3142         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3143         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3144         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3145                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3146         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3147 }
3148
3149 static void
3150 age_rxfilter(struct age_softc *sc)
3151 {
3152         struct ifnet *ifp;
3153         struct ifmultiaddr *ifma;
3154         uint32_t crc;
3155         uint32_t mchash[2];
3156         uint32_t rxcfg;
3157
3158         AGE_LOCK_ASSERT(sc);
3159
3160         ifp = sc->age_ifp;
3161
3162         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3163         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3164         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3165                 rxcfg |= MAC_CFG_BCAST;
3166         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3167                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3168                         rxcfg |= MAC_CFG_PROMISC;
3169                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3170                         rxcfg |= MAC_CFG_ALLMULTI;
3171                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3172                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3173                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3174                 return;
3175         }
3176
3177         /* Program new filter. */
3178         bzero(mchash, sizeof(mchash));
3179
3180         if_maddr_rlock(ifp);
3181         TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3182                 if (ifma->ifma_addr->sa_family != AF_LINK)
3183                         continue;
3184                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3185                     ifma->ifma_addr), ETHER_ADDR_LEN);
3186                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3187         }
3188         if_maddr_runlock(ifp);
3189
3190         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3191         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3192         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3193 }
3194
3195 static int
3196 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3197 {
3198         struct age_softc *sc;
3199         struct age_stats *stats;
3200         int error, result;
3201
3202         result = -1;
3203         error = sysctl_handle_int(oidp, &result, 0, req);
3204
3205         if (error != 0 || req->newptr == NULL)
3206                 return (error);
3207
3208         if (result != 1)
3209                 return (error);
3210
3211         sc = (struct age_softc *)arg1;
3212         stats = &sc->age_stat;
3213         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3214         printf("Transmit good frames : %ju\n",
3215             (uintmax_t)stats->tx_frames);
3216         printf("Transmit good broadcast frames : %ju\n",
3217             (uintmax_t)stats->tx_bcast_frames);
3218         printf("Transmit good multicast frames : %ju\n",
3219             (uintmax_t)stats->tx_mcast_frames);
3220         printf("Transmit pause control frames : %u\n",
3221             stats->tx_pause_frames);
3222         printf("Transmit control frames : %u\n",
3223             stats->tx_control_frames);
3224         printf("Transmit frames with excessive deferrals : %u\n",
3225             stats->tx_excess_defer);
3226         printf("Transmit deferrals : %u\n",
3227             stats->tx_deferred);
3228         printf("Transmit good octets : %ju\n",
3229             (uintmax_t)stats->tx_bytes);
3230         printf("Transmit good broadcast octets : %ju\n",
3231             (uintmax_t)stats->tx_bcast_bytes);
3232         printf("Transmit good multicast octets : %ju\n",
3233             (uintmax_t)stats->tx_mcast_bytes);
3234         printf("Transmit frames 64 bytes : %ju\n",
3235             (uintmax_t)stats->tx_pkts_64);
3236         printf("Transmit frames 65 to 127 bytes : %ju\n",
3237             (uintmax_t)stats->tx_pkts_65_127);
3238         printf("Transmit frames 128 to 255 bytes : %ju\n",
3239             (uintmax_t)stats->tx_pkts_128_255);
3240         printf("Transmit frames 256 to 511 bytes : %ju\n",
3241             (uintmax_t)stats->tx_pkts_256_511);
3242         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3243             (uintmax_t)stats->tx_pkts_512_1023);
3244         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3245             (uintmax_t)stats->tx_pkts_1024_1518);
3246         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3247             (uintmax_t)stats->tx_pkts_1519_max);
3248         printf("Transmit single collisions : %u\n",
3249             stats->tx_single_colls);
3250         printf("Transmit multiple collisions : %u\n",
3251             stats->tx_multi_colls);
3252         printf("Transmit late collisions : %u\n",
3253             stats->tx_late_colls);
3254         printf("Transmit abort due to excessive collisions : %u\n",
3255             stats->tx_excess_colls);
3256         printf("Transmit underruns due to FIFO underruns : %u\n",
3257             stats->tx_underrun);
3258         printf("Transmit descriptor write-back errors : %u\n",
3259             stats->tx_desc_underrun);
3260         printf("Transmit frames with length mismatched frame size : %u\n",
3261             stats->tx_lenerrs);
3262         printf("Transmit frames with truncated due to MTU size : %u\n",
3263             stats->tx_lenerrs);
3264
3265         printf("Receive good frames : %ju\n",
3266             (uintmax_t)stats->rx_frames);
3267         printf("Receive good broadcast frames : %ju\n",
3268             (uintmax_t)stats->rx_bcast_frames);
3269         printf("Receive good multicast frames : %ju\n",
3270             (uintmax_t)stats->rx_mcast_frames);
3271         printf("Receive pause control frames : %u\n",
3272             stats->rx_pause_frames);
3273         printf("Receive control frames : %u\n",
3274             stats->rx_control_frames);
3275         printf("Receive CRC errors : %u\n",
3276             stats->rx_crcerrs);
3277         printf("Receive frames with length errors : %u\n",
3278             stats->rx_lenerrs);
3279         printf("Receive good octets : %ju\n",
3280             (uintmax_t)stats->rx_bytes);
3281         printf("Receive good broadcast octets : %ju\n",
3282             (uintmax_t)stats->rx_bcast_bytes);
3283         printf("Receive good multicast octets : %ju\n",
3284             (uintmax_t)stats->rx_mcast_bytes);
3285         printf("Receive frames too short : %u\n",
3286             stats->rx_runts);
3287         printf("Receive fragmented frames : %ju\n",
3288             (uintmax_t)stats->rx_fragments);
3289         printf("Receive frames 64 bytes : %ju\n",
3290             (uintmax_t)stats->rx_pkts_64);
3291         printf("Receive frames 65 to 127 bytes : %ju\n",
3292             (uintmax_t)stats->rx_pkts_65_127);
3293         printf("Receive frames 128 to 255 bytes : %ju\n",
3294             (uintmax_t)stats->rx_pkts_128_255);
3295         printf("Receive frames 256 to 511 bytes : %ju\n",
3296             (uintmax_t)stats->rx_pkts_256_511);
3297         printf("Receive frames 512 to 1024 bytes : %ju\n",
3298             (uintmax_t)stats->rx_pkts_512_1023);
3299         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3300             (uintmax_t)stats->rx_pkts_1024_1518);
3301         printf("Receive frames 1519 to MTU bytes : %ju\n",
3302             (uintmax_t)stats->rx_pkts_1519_max);
3303         printf("Receive frames too long : %ju\n",
3304             (uint64_t)stats->rx_pkts_truncated);
3305         printf("Receive frames with FIFO overflow : %u\n",
3306             stats->rx_fifo_oflows);
3307         printf("Receive frames with return descriptor overflow : %u\n",
3308             stats->rx_desc_oflows);
3309         printf("Receive frames with alignment errors : %u\n",
3310             stats->rx_alignerrs);
3311         printf("Receive frames dropped due to address filtering : %ju\n",
3312             (uint64_t)stats->rx_pkts_filtered);
3313
3314         return (error);
3315 }
3316
3317 static int
3318 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3319 {
3320         int error, value;
3321
3322         if (arg1 == NULL)
3323                 return (EINVAL);
3324         value = *(int *)arg1;
3325         error = sysctl_handle_int(oidp, &value, 0, req);
3326         if (error || req->newptr == NULL)
3327                 return (error);
3328         if (value < low || value > high)
3329                 return (EINVAL);
3330         *(int *)arg1 = value;
3331
3332         return (0);
3333 }
3334
3335 static int
3336 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3337 {
3338         return (sysctl_int_range(oidp, arg1, arg2, req,
3339             AGE_PROC_MIN, AGE_PROC_MAX));
3340 }
3341
3342 static int
3343 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3344 {
3345
3346         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3347             AGE_IM_TIMER_MAX));
3348 }