]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/ath/ath_hal/ar5212/ar2317.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / ath / ath_hal / ar5212 / ar2317.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2317
31 #include "ar5212/ar5212.ini"
32
33 #define N(a)    (sizeof(a)/sizeof(a[0]))
34
35 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
37 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
38
39 struct ar2317State {
40         RF_HAL_FUNCS    base;           /* public state, must be first */
41         uint16_t        pcdacTable[PWR_TABLE_SIZE_2317];
42
43         uint32_t        Bank1Data[N(ar5212Bank1_2317)];
44         uint32_t        Bank2Data[N(ar5212Bank2_2317)];
45         uint32_t        Bank3Data[N(ar5212Bank3_2317)];
46         uint32_t        Bank6Data[N(ar5212Bank6_2317)];
47         uint32_t        Bank7Data[N(ar5212Bank7_2317)];
48
49         /*
50          * Private state for reduced stack usage.
51          */
52         /* filled out Vpd table for all pdGains (chanL) */
53         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54                             [MAX_PWR_RANGE_IN_HALF_DB];
55         /* filled out Vpd table for all pdGains (chanR) */
56         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57                             [MAX_PWR_RANGE_IN_HALF_DB];
58         /* filled out Vpd table for all pdGains (interpolated) */
59         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60                             [MAX_PWR_RANGE_IN_HALF_DB];
61 };
62 #define AR2317(ah)      ((struct ar2317State *) AH5212(ah)->ah_rfHal)
63
64 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65                 uint32_t numBits, uint32_t firstBit, uint32_t column);
66
67 static void
68 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69         int writes)
70 {
71         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
72         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
73         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
74 }
75
76 /*
77  * Take the MHz channel value and set the Channel value
78  *
79  * ASSUMES: Writes enabled to analog bus
80  */
81 static HAL_BOOL
82 ar2317SetChannel(struct ath_hal *ah,  const struct ieee80211_channel *chan)
83 {
84         uint16_t freq = ath_hal_gethwchannel(ah, chan);
85         uint32_t channelSel  = 0;
86         uint32_t bModeSynth  = 0;
87         uint32_t aModeRefSel = 0;
88         uint32_t reg32       = 0;
89
90         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
91
92         if (freq < 4800) {
93                 uint32_t txctl;
94                 channelSel = freq - 2272 ;
95                 channelSel = ath_hal_reverseBits(channelSel, 8);
96
97                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
98                 if (freq == 2484) {
99                         /* Enable channel spreading for channel 14 */
100                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
101                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
102                 } else {
103                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
104                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
105                 }
106         } else if ((freq % 20) == 0 && freq >= 5120) {
107                 channelSel = ath_hal_reverseBits(
108                         ((freq - 4800) / 20 << 2), 8);
109                 aModeRefSel = ath_hal_reverseBits(3, 2);
110         } else if ((freq % 10) == 0) {
111                 channelSel = ath_hal_reverseBits(
112                         ((freq - 4800) / 10 << 1), 8);
113                 aModeRefSel = ath_hal_reverseBits(2, 2);
114         } else if ((freq % 5) == 0) {
115                 channelSel = ath_hal_reverseBits(
116                         (freq - 4800) / 5, 8);
117                 aModeRefSel = ath_hal_reverseBits(1, 2);
118         } else {
119                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
120                     __func__, freq);
121                 return AH_FALSE;
122         }
123
124         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
125                         (1 << 12) | 0x1;
126         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
127
128         reg32 >>= 8;
129         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
130
131         AH_PRIVATE(ah)->ah_curchan = chan;
132         return AH_TRUE;
133 }
134
135 /*
136  * Reads EEPROM header info from device structure and programs
137  * all rf registers
138  *
139  * REQUIRES: Access to the analog rf device
140  */
141 static HAL_BOOL
142 ar2317SetRfRegs(struct ath_hal *ah,
143         const struct ieee80211_channel *chan,
144         uint16_t modesIndex, uint16_t *rfXpdGain)
145 {
146 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
147         int i;                                                              \
148         for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)                     \
149                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
150 } while (0)
151         struct ath_hal_5212 *ahp = AH5212(ah);
152         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
153         uint16_t ob2GHz = 0, db2GHz = 0;
154         struct ar2317State *priv = AR2317(ah);
155         int regWrites = 0;
156
157         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
158             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
159
160         HALASSERT(priv);
161
162         /* Setup rf parameters */
163         if (IEEE80211_IS_CHAN_B(chan)) {
164                 ob2GHz = ee->ee_obFor24;
165                 db2GHz = ee->ee_dbFor24;
166         } else {
167                 ob2GHz = ee->ee_obFor24g;
168                 db2GHz = ee->ee_dbFor24g;
169         }
170
171         /* Bank 1 Write */
172         RF_BANK_SETUP(priv, 1, 1);
173
174         /* Bank 2 Write */
175         RF_BANK_SETUP(priv, 2, modesIndex);
176
177         /* Bank 3 Write */
178         RF_BANK_SETUP(priv, 3, modesIndex);
179
180         /* Bank 6 Write */
181         RF_BANK_SETUP(priv, 6, modesIndex);
182
183         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
184         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
185
186         /* Bank 7 Setup */
187         RF_BANK_SETUP(priv, 7, modesIndex);
188
189         /* Write Analog registers */
190         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
191         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
192         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
193         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
194         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);   
195         /* Now that we have reprogrammed rfgain value, clear the flag. */
196         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
197
198         return AH_TRUE;
199 #undef  RF_BANK_SETUP
200 }
201
202 /*
203  * Return a reference to the requested RF Bank.
204  */
205 static uint32_t *
206 ar2317GetRfBank(struct ath_hal *ah, int bank)
207 {
208         struct ar2317State *priv = AR2317(ah);
209
210         HALASSERT(priv != AH_NULL);
211         switch (bank) {
212         case 1: return priv->Bank1Data;
213         case 2: return priv->Bank2Data;
214         case 3: return priv->Bank3Data;
215         case 6: return priv->Bank6Data;
216         case 7: return priv->Bank7Data;
217         }
218         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
219             __func__, bank);
220         return AH_NULL;
221 }
222
223 /*
224  * Return indices surrounding the value in sorted integer lists.
225  *
226  * NB: the input list is assumed to be sorted in ascending order
227  */
228 static void
229 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
230                           uint32_t *vlo, uint32_t *vhi)
231 {
232         int16_t target = v;
233         const int16_t *ep = lp+listSize;
234         const int16_t *tp;
235
236         /*
237          * Check first and last elements for out-of-bounds conditions.
238          */
239         if (target < lp[0]) {
240                 *vlo = *vhi = 0;
241                 return;
242         }
243         if (target >= ep[-1]) {
244                 *vlo = *vhi = listSize - 1;
245                 return;
246         }
247
248         /* look for value being near or between 2 values in list */
249         for (tp = lp; tp < ep; tp++) {
250                 /*
251                  * If value is close to the current value of the list
252                  * then target is not between values, it is one of the values
253                  */
254                 if (*tp == target) {
255                         *vlo = *vhi = tp - (const int16_t *) lp;
256                         return;
257                 }
258                 /*
259                  * Look for value being between current value and next value
260                  * if so return these 2 values
261                  */
262                 if (target < tp[1]) {
263                         *vlo = tp - (const int16_t *) lp;
264                         *vhi = *vlo + 1;
265                         return;
266                 }
267         }
268 }
269
270 /*
271  * Fill the Vpdlist for indices Pmax-Pmin
272  */
273 static HAL_BOOL
274 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
275                    const int16_t *pwrList, const int16_t *VpdList,
276                    uint16_t numIntercepts, uint16_t retVpdList[][64])
277 {
278         uint16_t ii, jj, kk;
279         int16_t currPwr = (int16_t)(2*Pmin);
280         /* since Pmin is pwr*2 and pwrList is 4*pwr */
281         uint32_t  idxL, idxR;
282
283         ii = 0;
284         jj = 0;
285
286         if (numIntercepts < 2)
287                 return AH_FALSE;
288
289         while (ii <= (uint16_t)(Pmax - Pmin)) {
290                 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 
291                                          &(idxL), &(idxR));
292                 if (idxR < 1)
293                         idxR = 1;                       /* extrapolate below */
294                 if (idxL == (uint32_t)(numIntercepts - 1))
295                         idxL = numIntercepts - 2;       /* extrapolate above */
296                 if (pwrList[idxL] == pwrList[idxR])
297                         kk = VpdList[idxL];
298                 else
299                         kk = (uint16_t)
300                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
301                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
302                                  (pwrList[idxR] - pwrList[idxL]));
303                 retVpdList[pdGainIdx][ii] = kk;
304                 ii++;
305                 currPwr += 2;                           /* half dB steps */
306         }
307
308         return AH_TRUE;
309 }
310
311 /*
312  * Returns interpolated or the scaled up interpolated value
313  */
314 static int16_t
315 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
316         int16_t targetLeft, int16_t targetRight)
317 {
318         int16_t rv;
319
320         if (srcRight != srcLeft) {
321                 rv = ((target - srcLeft)*targetRight +
322                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
323         } else {
324                 rv = targetLeft;
325         }
326         return rv;
327 }
328
329 /*
330  * Uses the data points read from EEPROM to reconstruct the pdadc power table
331  * Called by ar2317SetPowerTable()
332  */
333 static int 
334 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
335                 const RAW_DATA_STRUCT_2317 *pRawDataset,
336                 uint16_t pdGainOverlap_t2, 
337                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
338                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
339 {
340         struct ar2317State *priv = AR2317(ah);
341 #define VpdTable_L      priv->vpdTable_L
342 #define VpdTable_R      priv->vpdTable_R
343 #define VpdTable_I      priv->vpdTable_I
344         /* XXX excessive stack usage? */
345         uint32_t ii, jj, kk;
346         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
347         uint32_t idxL, idxR;
348         uint32_t numPdGainsUsed = 0;
349         /* 
350          * If desired to support -ve power levels in future, just
351          * change pwr_I_0 to signed 5-bits.
352          */
353         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
354         /* to accomodate -ve power levels later on. */
355         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
356         /* to accomodate -ve power levels later on */
357         uint16_t numVpd = 0;
358         uint16_t Vpd_step;
359         int16_t tmpVal ; 
360         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
361
362         /* Get upper lower index */
363         GetLowerUpperIndex(channel, pRawDataset->pChannels,
364                                  pRawDataset->numChannels, &(idxL), &(idxR));
365
366         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
367                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
368                 /* work backwards 'cause highest pdGain for lowest power */
369                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
370                 if (numVpd > 0) {
371                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
372                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
373                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
374                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
375                         }
376                         Pmin_t2[numPdGainsUsed] = (int16_t)
377                                 (Pmin_t2[numPdGainsUsed] / 2);
378                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
379                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
380                                 Pmax_t2[numPdGainsUsed] = 
381                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
382                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
383                         ar2317FillVpdTable(
384                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
385                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
386                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
387                                            );
388                         ar2317FillVpdTable(
389                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
390                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
391                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
392                                            );
393                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
394                                 VpdTable_I[numPdGainsUsed][kk] = 
395                                         interpolate_signed(
396                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
397                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
398                         }
399                         /* fill VpdTable_I for this pdGain */
400                         numPdGainsUsed++;
401                 }
402                 /* if this pdGain is used */
403         }
404
405         *pMinCalPower = Pmin_t2[0];
406         kk = 0; /* index for the final table */
407         for (ii = 0; ii < numPdGainsUsed; ii++) {
408                 if (ii == (numPdGainsUsed - 1))
409                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
410                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
411                 else 
412                         pPdGainBoundaries[ii] = (uint16_t)
413                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
414                 if (pPdGainBoundaries[ii] > 63) {
415                         HALDEBUG(ah, HAL_DEBUG_ANY,
416                             "%s: clamp pPdGainBoundaries[%d] %d\n",
417                            __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
418                         pPdGainBoundaries[ii] = 63;
419                 }
420
421                 /* Find starting index for this pdGain */
422                 if (ii == 0) 
423                         ss = 0; /* for the first pdGain, start from index 0 */
424                 else 
425                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
426                                 pdGainOverlap_t2;
427                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
428                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
429                 /*
430                  *-ve ss indicates need to extrapolate data below for this pdGain
431                  */
432                 while (ss < 0) {
433                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
434                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
435                         ss++;
436                 }
437
438                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
439                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
440                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
441
442                 while (ss < (int16_t)maxIndex)
443                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
444
445                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
446                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
447                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
448                 /*
449                  * for last gain, pdGainBoundary == Pmax_t2, so will 
450                  * have to extrapolate
451                  */
452                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
453                         while(ss < (int16_t)tgtIndex) {
454                                 tmpVal = (uint16_t)
455                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
456                                          (ss-maxIndex)*Vpd_step);
457                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
458                                         127 : tmpVal;
459                                 ss++;
460                         }
461                 }                               /* extrapolated above */
462         }                                       /* for all pdGainUsed */
463
464         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
465                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
466                 ii++;
467         }
468         while (kk < 128) {
469                 pPDADCValues[kk] = pPDADCValues[kk-1];
470                 kk++;
471         }
472
473         return numPdGainsUsed;
474 #undef VpdTable_L
475 #undef VpdTable_R
476 #undef VpdTable_I
477 }
478
479 static HAL_BOOL
480 ar2317SetPowerTable(struct ath_hal *ah,
481         int16_t *minPower, int16_t *maxPower,
482         const struct ieee80211_channel *chan, 
483         uint16_t *rfXpdGain)
484 {
485         struct ath_hal_5212 *ahp = AH5212(ah);
486         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
487         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
488         uint16_t pdGainOverlap_t2;
489         int16_t minCalPower2317_t2;
490         uint16_t *pdadcValues = ahp->ah_pcdacTable;
491         uint16_t gainBoundaries[4];
492         uint32_t reg32, regoffset;
493         int i, numPdGainsUsed;
494 #ifndef AH_USE_INIPDGAIN
495         uint32_t tpcrg1;
496 #endif
497
498         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
499             __func__, chan->ic_freq, chan->ic_flags);
500
501         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
502                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
503         else if (IEEE80211_IS_CHAN_B(chan))
504                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
505         else {
506                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
507                 return AH_FALSE;
508         }
509
510         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
511                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
512     
513         numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
514                 chan->channel, pRawDataset, pdGainOverlap_t2,
515                 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
516         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
517
518 #ifdef AH_USE_INIPDGAIN
519         /*
520          * Use pd_gains curve from eeprom; Atheros always uses
521          * the default curve from the ini file but some vendors
522          * (e.g. Zcomax) want to override this curve and not
523          * honoring their settings results in tx power 5dBm low.
524          */
525         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
526                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
527 #else
528         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
529         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
530                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
531         switch (numPdGainsUsed) {
532         case 3:
533                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
534                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
535                 /* fall thru... */
536         case 2:
537                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
538                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
539                 /* fall thru... */
540         case 1:
541                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
542                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
543                 break;
544         }
545 #ifdef AH_DEBUG
546         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
547                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
548                     "pd_gains (default 0x%x, calculated 0x%x)\n",
549                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
550 #endif
551         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
552 #endif
553
554         /*
555          * Note the pdadc table may not start at 0 dBm power, could be
556          * negative or greater than 0.  Need to offset the power
557          * values by the amount of minPower for griffin
558          */
559         if (minCalPower2317_t2 != 0)
560                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
561         else
562                 ahp->ah_txPowerIndexOffset = 0;
563
564         /* Finally, write the power values into the baseband power table */
565         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
566         for (i = 0; i < 32; i++) {
567                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
568                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
569                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
570                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
571                 OS_REG_WRITE(ah, regoffset, reg32);
572                 regoffset += 4;
573         }
574
575         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
576                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
577                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
578                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
579                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
580                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
581
582         return AH_TRUE;
583 }
584
585 static int16_t
586 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
587 {
588         uint32_t ii,jj;
589         uint16_t Pmin=0,numVpd;
590
591         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
592                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
593                 /* work backwards 'cause highest pdGain for lowest power */
594                 numVpd = data->pDataPerPDGain[jj].numVpd;
595                 if (numVpd > 0) {
596                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
597                         return(Pmin);
598                 }
599         }
600         return(Pmin);
601 }
602
603 static int16_t
604 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
605 {
606         uint32_t ii;
607         uint16_t Pmax=0,numVpd;
608         uint16_t vpdmax;
609         
610         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
611                 /* work forwards cuase lowest pdGain for highest power */
612                 numVpd = data->pDataPerPDGain[ii].numVpd;
613                 if (numVpd > 0) {
614                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
615                         vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
616                         return(Pmax);
617                 }
618         }
619         return(Pmax);
620 }
621
622 static HAL_BOOL
623 ar2317GetChannelMaxMinPower(struct ath_hal *ah,
624         const struct ieee80211_channel *chan,
625         int16_t *maxPow, int16_t *minPow)
626 {
627         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
628         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
629         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
630         const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
631         uint16_t numChannels;
632         int totalD,totalF, totalMin,last, i;
633
634         *maxPow = 0;
635
636         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
637                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
638         else if (IEEE80211_IS_CHAN_B(chan))
639                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
640         else
641                 return(AH_FALSE);
642
643         numChannels = pRawDataset->numChannels;
644         data = pRawDataset->pDataPerChannel;
645         
646         /* Make sure the channel is in the range of the TP values 
647          *  (freq piers)
648          */
649         if (numChannels < 1)
650                 return(AH_FALSE);
651
652         if ((freq < data[0].channelValue) ||
653             (freq > data[numChannels-1].channelValue)) {
654                 if (freq < data[0].channelValue) {
655                         *maxPow = ar2317GetMaxPower(ah, &data[0]);
656                         *minPow = ar2317GetMinPower(ah, &data[0]);
657                         return(AH_TRUE);
658                 } else {
659                         *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
660                         *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
661                         return(AH_TRUE);
662                 }
663         }
664
665         /* Linearly interpolate the power value now */
666         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
667              last = i++);
668         totalD = data[i].channelValue - data[last].channelValue;
669         if (totalD > 0) {
670                 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
671                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
672                                      ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
673                 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
674                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
675                                      ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
676                 return(AH_TRUE);
677         } else {
678                 if (freq == data[i].channelValue) {
679                         *maxPow = ar2317GetMaxPower(ah, &data[i]);
680                         *minPow = ar2317GetMinPower(ah, &data[i]);
681                         return(AH_TRUE);
682                 } else
683                         return(AH_FALSE);
684         }
685 }
686
687 /*
688  * Free memory for analog bank scratch buffers
689  */
690 static void
691 ar2317RfDetach(struct ath_hal *ah)
692 {
693         struct ath_hal_5212 *ahp = AH5212(ah);
694
695         HALASSERT(ahp->ah_rfHal != AH_NULL);
696         ath_hal_free(ahp->ah_rfHal);
697         ahp->ah_rfHal = AH_NULL;
698 }
699
700 /*
701  * Allocate memory for analog bank scratch buffers
702  * Scratch Buffer will be reinitialized every reset so no need to zero now
703  */
704 static HAL_BOOL
705 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
706 {
707         struct ath_hal_5212 *ahp = AH5212(ah);
708         struct ar2317State *priv;
709
710         HALASSERT(ah->ah_magic == AR5212_MAGIC);
711
712         HALASSERT(ahp->ah_rfHal == AH_NULL);
713         priv = ath_hal_malloc(sizeof(struct ar2317State));
714         if (priv == AH_NULL) {
715                 HALDEBUG(ah, HAL_DEBUG_ANY,
716                     "%s: cannot allocate private state\n", __func__);
717                 *status = HAL_ENOMEM;           /* XXX */
718                 return AH_FALSE;
719         }
720         priv->base.rfDetach             = ar2317RfDetach;
721         priv->base.writeRegs            = ar2317WriteRegs;
722         priv->base.getRfBank            = ar2317GetRfBank;
723         priv->base.setChannel           = ar2317SetChannel;
724         priv->base.setRfRegs            = ar2317SetRfRegs;
725         priv->base.setPowerTable        = ar2317SetPowerTable;
726         priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
727         priv->base.getNfAdjust          = ar5212GetNfAdjust;
728
729         ahp->ah_pcdacTable = priv->pcdacTable;
730         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
731         ahp->ah_rfHal = &priv->base;
732
733         return AH_TRUE;
734 }
735
736 static HAL_BOOL
737 ar2317Probe(struct ath_hal *ah)
738 {
739         return IS_2317(ah);
740 }
741 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);