]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/ath/ath_hal/ar5212/ar2413.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / ath / ath_hal / ar5212 / ar2413.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a)    (sizeof(a)/sizeof(a[0]))
34
35 struct ar2413State {
36         RF_HAL_FUNCS    base;           /* public state, must be first */
37         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
38
39         uint32_t        Bank1Data[N(ar5212Bank1_2413)];
40         uint32_t        Bank2Data[N(ar5212Bank2_2413)];
41         uint32_t        Bank3Data[N(ar5212Bank3_2413)];
42         uint32_t        Bank6Data[N(ar5212Bank6_2413)];
43         uint32_t        Bank7Data[N(ar5212Bank7_2413)];
44
45         /*
46          * Private state for reduced stack usage.
47          */
48         /* filled out Vpd table for all pdGains (chanL) */
49         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50                             [MAX_PWR_RANGE_IN_HALF_DB];
51         /* filled out Vpd table for all pdGains (chanR) */
52         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53                             [MAX_PWR_RANGE_IN_HALF_DB];
54         /* filled out Vpd table for all pdGains (interpolated) */
55         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56                             [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR2413(ah)      ((struct ar2413State *) AH5212(ah)->ah_rfHal)
59
60 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61                 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
64 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65         int writes)
66 {
67         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70 }
71
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80         uint16_t freq = ath_hal_gethwchannel(ah, chan);
81         uint32_t channelSel  = 0;
82         uint32_t bModeSynth  = 0;
83         uint32_t aModeRefSel = 0;
84         uint32_t reg32       = 0;
85
86         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88         if (freq < 4800) {
89                 uint32_t txctl;
90
91                 if (((freq - 2192) % 5) == 0) {
92                         channelSel = ((freq - 672) * 2 - 3040)/10;
93                         bModeSynth = 0;
94                 } else if (((freq - 2224) % 5) == 0) {
95                         channelSel = ((freq - 704) * 2 - 3040) / 10;
96                         bModeSynth = 1;
97                 } else {
98                         HALDEBUG(ah, HAL_DEBUG_ANY,
99                             "%s: invalid channel %u MHz\n",
100                             __func__, freq);
101                         return AH_FALSE;
102                 }
103
104                 channelSel = (channelSel << 2) & 0xff;
105                 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108                 if (freq == 2484) {
109                         /* Enable channel spreading for channel 14 */
110                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112                 } else {
113                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115                 }
116         } else if (((freq % 5) == 2) && (freq <= 5435)) {
117                 freq = freq - 2; /* Align to even 5MHz raster */
118                 channelSel = ath_hal_reverseBits(
119                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120                 aModeRefSel = ath_hal_reverseBits(0, 2);
121         } else if ((freq % 20) == 0 && freq >= 5120) {
122                 channelSel = ath_hal_reverseBits(
123                         ((freq - 4800) / 20 << 2), 8);
124                 aModeRefSel = ath_hal_reverseBits(3, 2);
125         } else if ((freq % 10) == 0) {
126                 channelSel = ath_hal_reverseBits(
127                         ((freq - 4800) / 10 << 1), 8);
128                 aModeRefSel = ath_hal_reverseBits(2, 2);
129         } else if ((freq % 5) == 0) {
130                 channelSel = ath_hal_reverseBits(
131                         (freq - 4800) / 5, 8);
132                 aModeRefSel = ath_hal_reverseBits(1, 2);
133         } else {
134                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135                     __func__, freq);
136                 return AH_FALSE;
137         }
138
139         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140                         (1 << 12) | 0x1;
141         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143         reg32 >>= 8;
144         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146         AH_PRIVATE(ah)->ah_curchan = chan;
147
148         return AH_TRUE;
149 }
150
151 /*
152  * Reads EEPROM header info from device structure and programs
153  * all rf registers
154  *
155  * REQUIRES: Access to the analog rf device
156  */
157 static HAL_BOOL
158 ar2413SetRfRegs(struct ath_hal *ah,
159         const struct ieee80211_channel *chan,
160         uint16_t modesIndex, uint16_t *rfXpdGain)
161 {
162 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
163         int i;                                                              \
164         for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)                     \
165                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
166 } while (0)
167         struct ath_hal_5212 *ahp = AH5212(ah);
168         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169         uint16_t ob2GHz = 0, db2GHz = 0;
170         struct ar2413State *priv = AR2413(ah);
171         int regWrites = 0;
172
173         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
174             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
175
176         HALASSERT(priv);
177
178         /* Setup rf parameters */
179         if (IEEE80211_IS_CHAN_B(chan)) {
180                 ob2GHz = ee->ee_obFor24;
181                 db2GHz = ee->ee_dbFor24;
182         } else {
183                 ob2GHz = ee->ee_obFor24g;
184                 db2GHz = ee->ee_dbFor24g;
185         }
186
187         /* Bank 1 Write */
188         RF_BANK_SETUP(priv, 1, 1);
189
190         /* Bank 2 Write */
191         RF_BANK_SETUP(priv, 2, modesIndex);
192
193         /* Bank 3 Write */
194         RF_BANK_SETUP(priv, 3, modesIndex);
195
196         /* Bank 6 Write */
197         RF_BANK_SETUP(priv, 6, modesIndex);
198
199         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
200         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
201
202         /* Bank 7 Setup */
203         RF_BANK_SETUP(priv, 7, modesIndex);
204
205         /* Write Analog registers */
206         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
207         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
208         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
209         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
210         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
211
212         /* Now that we have reprogrammed rfgain value, clear the flag. */
213         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214
215         return AH_TRUE;
216 #undef  RF_BANK_SETUP
217 }
218
219 /*
220  * Return a reference to the requested RF Bank.
221  */
222 static uint32_t *
223 ar2413GetRfBank(struct ath_hal *ah, int bank)
224 {
225         struct ar2413State *priv = AR2413(ah);
226
227         HALASSERT(priv != AH_NULL);
228         switch (bank) {
229         case 1: return priv->Bank1Data;
230         case 2: return priv->Bank2Data;
231         case 3: return priv->Bank3Data;
232         case 6: return priv->Bank6Data;
233         case 7: return priv->Bank7Data;
234         }
235         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
236             __func__, bank);
237         return AH_NULL;
238 }
239
240 /*
241  * Return indices surrounding the value in sorted integer lists.
242  *
243  * NB: the input list is assumed to be sorted in ascending order
244  */
245 static void
246 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
247                           uint32_t *vlo, uint32_t *vhi)
248 {
249         int16_t target = v;
250         const uint16_t *ep = lp+listSize;
251         const uint16_t *tp;
252
253         /*
254          * Check first and last elements for out-of-bounds conditions.
255          */
256         if (target < lp[0]) {
257                 *vlo = *vhi = 0;
258                 return;
259         }
260         if (target >= ep[-1]) {
261                 *vlo = *vhi = listSize - 1;
262                 return;
263         }
264
265         /* look for value being near or between 2 values in list */
266         for (tp = lp; tp < ep; tp++) {
267                 /*
268                  * If value is close to the current value of the list
269                  * then target is not between values, it is one of the values
270                  */
271                 if (*tp == target) {
272                         *vlo = *vhi = tp - (const uint16_t *) lp;
273                         return;
274                 }
275                 /*
276                  * Look for value being between current value and next value
277                  * if so return these 2 values
278                  */
279                 if (target < tp[1]) {
280                         *vlo = tp - (const uint16_t *) lp;
281                         *vhi = *vlo + 1;
282                         return;
283                 }
284         }
285 }
286
287 /*
288  * Fill the Vpdlist for indices Pmax-Pmin
289  */
290 static HAL_BOOL
291 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
292                    const int16_t *pwrList, const uint16_t *VpdList,
293                    uint16_t numIntercepts, uint16_t retVpdList[][64])
294 {
295         uint16_t ii, jj, kk;
296         int16_t currPwr = (int16_t)(2*Pmin);
297         /* since Pmin is pwr*2 and pwrList is 4*pwr */
298         uint32_t  idxL, idxR;
299
300         ii = 0;
301         jj = 0;
302
303         if (numIntercepts < 2)
304                 return AH_FALSE;
305
306         while (ii <= (uint16_t)(Pmax - Pmin)) {
307                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
308                                    numIntercepts, &(idxL), &(idxR));
309                 if (idxR < 1)
310                         idxR = 1;                       /* extrapolate below */
311                 if (idxL == (uint32_t)(numIntercepts - 1))
312                         idxL = numIntercepts - 2;       /* extrapolate above */
313                 if (pwrList[idxL] == pwrList[idxR])
314                         kk = VpdList[idxL];
315                 else
316                         kk = (uint16_t)
317                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
318                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
319                                  (pwrList[idxR] - pwrList[idxL]));
320                 retVpdList[pdGainIdx][ii] = kk;
321                 ii++;
322                 currPwr += 2;                           /* half dB steps */
323         }
324
325         return AH_TRUE;
326 }
327
328 /*
329  * Returns interpolated or the scaled up interpolated value
330  */
331 static int16_t
332 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
333         int16_t targetLeft, int16_t targetRight)
334 {
335         int16_t rv;
336
337         if (srcRight != srcLeft) {
338                 rv = ((target - srcLeft)*targetRight +
339                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
340         } else {
341                 rv = targetLeft;
342         }
343         return rv;
344 }
345
346 /*
347  * Uses the data points read from EEPROM to reconstruct the pdadc power table
348  * Called by ar2413SetPowerTable()
349  */
350 static int 
351 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
352                 const RAW_DATA_STRUCT_2413 *pRawDataset,
353                 uint16_t pdGainOverlap_t2, 
354                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
355                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
356 {
357         struct ar2413State *priv = AR2413(ah);
358 #define VpdTable_L      priv->vpdTable_L
359 #define VpdTable_R      priv->vpdTable_R
360 #define VpdTable_I      priv->vpdTable_I
361         uint32_t ii, jj, kk;
362         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
363         uint32_t idxL, idxR;
364         uint32_t numPdGainsUsed = 0;
365         /* 
366          * If desired to support -ve power levels in future, just
367          * change pwr_I_0 to signed 5-bits.
368          */
369         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
370         /* to accomodate -ve power levels later on. */
371         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
372         /* to accomodate -ve power levels later on */
373         uint16_t numVpd = 0;
374         uint16_t Vpd_step;
375         int16_t tmpVal ; 
376         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
377
378         /* Get upper lower index */
379         GetLowerUpperIndex(channel, pRawDataset->pChannels,
380                                  pRawDataset->numChannels, &(idxL), &(idxR));
381
382         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
383                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
384                 /* work backwards 'cause highest pdGain for lowest power */
385                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
386                 if (numVpd > 0) {
387                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
388                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
389                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
390                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
391                         }
392                         Pmin_t2[numPdGainsUsed] = (int16_t)
393                                 (Pmin_t2[numPdGainsUsed] / 2);
394                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
395                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
396                                 Pmax_t2[numPdGainsUsed] = 
397                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
398                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
399                         ar2413FillVpdTable(
400                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
401                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
402                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
403                                            );
404                         ar2413FillVpdTable(
405                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
406                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
407                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
408                                            );
409                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
410                                 VpdTable_I[numPdGainsUsed][kk] = 
411                                         interpolate_signed(
412                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
413                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
414                         }
415                         /* fill VpdTable_I for this pdGain */
416                         numPdGainsUsed++;
417                 }
418                 /* if this pdGain is used */
419         }
420
421         *pMinCalPower = Pmin_t2[0];
422         kk = 0; /* index for the final table */
423         for (ii = 0; ii < numPdGainsUsed; ii++) {
424                 if (ii == (numPdGainsUsed - 1))
425                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
426                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
427                 else 
428                         pPdGainBoundaries[ii] = (uint16_t)
429                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
430                 if (pPdGainBoundaries[ii] > 63) {
431                         HALDEBUG(ah, HAL_DEBUG_ANY,
432                             "%s: clamp pPdGainBoundaries[%d] %d\n",
433                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
434                         pPdGainBoundaries[ii] = 63;
435                 }
436
437                 /* Find starting index for this pdGain */
438                 if (ii == 0) 
439                         ss = 0; /* for the first pdGain, start from index 0 */
440                 else 
441                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
442                                 pdGainOverlap_t2;
443                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
444                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
445                 /*
446                  *-ve ss indicates need to extrapolate data below for this pdGain
447                  */
448                 while (ss < 0) {
449                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
450                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
451                         ss++;
452                 }
453
454                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
455                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
456                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
457
458                 while (ss < (int16_t)maxIndex)
459                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
460
461                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
462                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
463                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
464                 /*
465                  * for last gain, pdGainBoundary == Pmax_t2, so will 
466                  * have to extrapolate
467                  */
468                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
469                         while(ss < (int16_t)tgtIndex) {
470                                 tmpVal = (uint16_t)
471                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
472                                          (ss-maxIndex)*Vpd_step);
473                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
474                                         127 : tmpVal;
475                                 ss++;
476                         }
477                 }                               /* extrapolated above */
478         }                                       /* for all pdGainUsed */
479
480         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
481                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
482                 ii++;
483         }
484         while (kk < 128) {
485                 pPDADCValues[kk] = pPDADCValues[kk-1];
486                 kk++;
487         }
488
489         return numPdGainsUsed;
490 #undef VpdTable_L
491 #undef VpdTable_R
492 #undef VpdTable_I
493 }
494
495 static HAL_BOOL
496 ar2413SetPowerTable(struct ath_hal *ah,
497         int16_t *minPower, int16_t *maxPower,
498         const struct ieee80211_channel *chan, 
499         uint16_t *rfXpdGain)
500 {
501         uint16_t freq = ath_hal_gethwchannel(ah, chan);
502         struct ath_hal_5212 *ahp = AH5212(ah);
503         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
504         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
505         uint16_t pdGainOverlap_t2;
506         int16_t minCalPower2413_t2;
507         uint16_t *pdadcValues = ahp->ah_pcdacTable;
508         uint16_t gainBoundaries[4];
509         uint32_t reg32, regoffset;
510         int i, numPdGainsUsed;
511 #ifndef AH_USE_INIPDGAIN
512         uint32_t tpcrg1;
513 #endif
514
515         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
516             __func__, freq, chan->ic_flags);
517
518         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
519                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
520         else if (IEEE80211_IS_CHAN_B(chan))
521                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
522         else {
523                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
524                 return AH_FALSE;
525         }
526
527         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
528                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
529     
530         numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
531                 freq, pRawDataset, pdGainOverlap_t2,
532                 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
533         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
534
535 #ifdef AH_USE_INIPDGAIN
536         /*
537          * Use pd_gains curve from eeprom; Atheros always uses
538          * the default curve from the ini file but some vendors
539          * (e.g. Zcomax) want to override this curve and not
540          * honoring their settings results in tx power 5dBm low.
541          */
542         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
543                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
544 #else
545         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
546         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
547                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
548         switch (numPdGainsUsed) {
549         case 3:
550                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
551                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
552                 /* fall thru... */
553         case 2:
554                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
555                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
556                 /* fall thru... */
557         case 1:
558                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
559                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
560                 break;
561         }
562 #ifdef AH_DEBUG
563         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
564                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
565                     "pd_gains (default 0x%x, calculated 0x%x)\n",
566                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
567 #endif
568         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
569 #endif
570
571         /*
572          * Note the pdadc table may not start at 0 dBm power, could be
573          * negative or greater than 0.  Need to offset the power
574          * values by the amount of minPower for griffin
575          */
576         if (minCalPower2413_t2 != 0)
577                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
578         else
579                 ahp->ah_txPowerIndexOffset = 0;
580
581         /* Finally, write the power values into the baseband power table */
582         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
583         for (i = 0; i < 32; i++) {
584                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
585                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
586                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
587                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
588                 OS_REG_WRITE(ah, regoffset, reg32);
589                 regoffset += 4;
590         }
591
592         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
593                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
594                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
595                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
596                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
597                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
598
599         return AH_TRUE;
600 }
601
602 static int16_t
603 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
604 {
605         uint32_t ii,jj;
606         uint16_t Pmin=0,numVpd;
607
608         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
609                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
610                 /* work backwards 'cause highest pdGain for lowest power */
611                 numVpd = data->pDataPerPDGain[jj].numVpd;
612                 if (numVpd > 0) {
613                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
614                         return(Pmin);
615                 }
616         }
617         return(Pmin);
618 }
619
620 static int16_t
621 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
622 {
623         uint32_t ii;
624         uint16_t Pmax=0,numVpd;
625         
626         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
627                 /* work forwards cuase lowest pdGain for highest power */
628                 numVpd = data->pDataPerPDGain[ii].numVpd;
629                 if (numVpd > 0) {
630                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
631                         return(Pmax);
632                 }
633         }
634         return(Pmax);
635 }
636
637 static HAL_BOOL
638 ar2413GetChannelMaxMinPower(struct ath_hal *ah,
639         const struct ieee80211_channel *chan,
640         int16_t *maxPow, int16_t *minPow)
641 {
642         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
643         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
644         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
645         const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
646         uint16_t numChannels;
647         int totalD,totalF, totalMin,last, i;
648
649         *maxPow = 0;
650
651         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
652                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
653         else if (IEEE80211_IS_CHAN_B(chan))
654                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
655         else
656                 return(AH_FALSE);
657
658         numChannels = pRawDataset->numChannels;
659         data = pRawDataset->pDataPerChannel;
660         
661         /* Make sure the channel is in the range of the TP values 
662          *  (freq piers)
663          */
664         if (numChannels < 1)
665                 return(AH_FALSE);
666
667         if ((freq < data[0].channelValue) ||
668             (freq > data[numChannels-1].channelValue)) {
669                 if (freq < data[0].channelValue) {
670                         *maxPow = ar2413GetMaxPower(ah, &data[0]);
671                         *minPow = ar2413GetMinPower(ah, &data[0]);
672                         return(AH_TRUE);
673                 } else {
674                         *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
675                         *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
676                         return(AH_TRUE);
677                 }
678         }
679
680         /* Linearly interpolate the power value now */
681         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
682              last = i++);
683         totalD = data[i].channelValue - data[last].channelValue;
684         if (totalD > 0) {
685                 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
686                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
687                                      ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
688                 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
689                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
690                                      ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
691                 return(AH_TRUE);
692         } else {
693                 if (freq == data[i].channelValue) {
694                         *maxPow = ar2413GetMaxPower(ah, &data[i]);
695                         *minPow = ar2413GetMinPower(ah, &data[i]);
696                         return(AH_TRUE);
697                 } else
698                         return(AH_FALSE);
699         }
700 }
701
702 /*
703  * Free memory for analog bank scratch buffers
704  */
705 static void
706 ar2413RfDetach(struct ath_hal *ah)
707 {
708         struct ath_hal_5212 *ahp = AH5212(ah);
709
710         HALASSERT(ahp->ah_rfHal != AH_NULL);
711         ath_hal_free(ahp->ah_rfHal);
712         ahp->ah_rfHal = AH_NULL;
713 }
714
715 /*
716  * Allocate memory for analog bank scratch buffers
717  * Scratch Buffer will be reinitialized every reset so no need to zero now
718  */
719 static HAL_BOOL
720 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
721 {
722         struct ath_hal_5212 *ahp = AH5212(ah);
723         struct ar2413State *priv;
724
725         HALASSERT(ah->ah_magic == AR5212_MAGIC);
726
727         HALASSERT(ahp->ah_rfHal == AH_NULL);
728         priv = ath_hal_malloc(sizeof(struct ar2413State));
729         if (priv == AH_NULL) {
730                 HALDEBUG(ah, HAL_DEBUG_ANY,
731                     "%s: cannot allocate private state\n", __func__);
732                 *status = HAL_ENOMEM;           /* XXX */
733                 return AH_FALSE;
734         }
735         priv->base.rfDetach             = ar2413RfDetach;
736         priv->base.writeRegs            = ar2413WriteRegs;
737         priv->base.getRfBank            = ar2413GetRfBank;
738         priv->base.setChannel           = ar2413SetChannel;
739         priv->base.setRfRegs            = ar2413SetRfRegs;
740         priv->base.setPowerTable        = ar2413SetPowerTable;
741         priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
742         priv->base.getNfAdjust          = ar5212GetNfAdjust;
743
744         ahp->ah_pcdacTable = priv->pcdacTable;
745         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
746         ahp->ah_rfHal = &priv->base;
747
748         return AH_TRUE;
749 }
750
751 static HAL_BOOL
752 ar2413Probe(struct ath_hal *ah)
753 {
754         return IS_2413(ah);
755 }
756 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);