]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/bce/if_bce.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *      David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53
54 #include "opt_bce.h"
55
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63         u32 bce_debug = BCE_WARN;
64
65         /*          0 = Never              */
66         /*          1 = 1 in 2,147,483,648 */
67         /*        256 = 1 in     8,388,608 */
68         /*       2048 = 1 in     1,048,576 */
69         /*      65536 = 1 in        32,768 */
70         /*    1048576 = 1 in         2,048 */
71         /*  268435456 = 1 in             8 */
72         /*  536870912 = 1 in             4 */
73         /* 1073741824 = 1 in             2 */
74
75         /* Controls how often the l2_fhdr frame error check will fail. */
76         int l2fhdr_error_sim_control = 0;
77
78         /* Controls how often the unexpected attention check will fail. */
79         int unexpected_attention_sim_control = 0;
80
81         /* Controls how often to simulate an mbuf allocation failure. */
82         int mbuf_alloc_failed_sim_control = 0;
83
84         /* Controls how often to simulate a DMA mapping failure. */
85         int dma_map_addr_failed_sim_control = 0;
86
87         /* Controls how often to simulate a bootcode failure. */
88         int bootcode_running_failure_sim_control = 0;
89 #endif
90
91 /****************************************************************************/
92 /* PCI Device ID Table                                                      */
93 /*                                                                          */
94 /* Used by bce_probe() to identify the devices supported by this driver.    */
95 /****************************************************************************/
96 #define BCE_DEVDESC_MAX         64
97
98 static const struct bce_type bce_devs[] = {
99         /* BCM5706C Controllers and OEM boards. */
100         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
101                 "HP NC370T Multifunction Gigabit Server Adapter" },
102         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
103                 "HP NC370i Multifunction Gigabit Server Adapter" },
104         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
105                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
106         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
107                 "HP NC371i Multifunction Gigabit Server Adapter" },
108         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
109                 "Broadcom NetXtreme II BCM5706 1000Base-T" },
110
111         /* BCM5706S controllers and OEM boards. */
112         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
113                 "HP NC370F Multifunction Gigabit Server Adapter" },
114         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
115                 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
116
117         /* BCM5708C controllers and OEM boards. */
118         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
119                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
120         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
121                 "HP NC373i Multifunction Gigabit Server Adapter" },
122         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
123                 "HP NC374m PCIe Multifunction Adapter" },
124         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
125                 "Broadcom NetXtreme II BCM5708 1000Base-T" },
126
127         /* BCM5708S controllers and OEM boards. */
128         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
129                 "HP NC373m Multifunction Gigabit Server Adapter" },
130         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
131                 "HP NC373i Multifunction Gigabit Server Adapter" },
132         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
133                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
134         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
135                 "Broadcom NetXtreme II BCM5708 1000Base-SX" },
136
137         /* BCM5709C controllers and OEM boards. */
138         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
139                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
140         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
141                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
142         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
143                 "Broadcom NetXtreme II BCM5709 1000Base-T" },
144
145         /* BCM5709S controllers and OEM boards. */
146         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
147                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
148         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
149                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
150         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
151                 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
152
153         /* BCM5716 controllers and OEM boards. */
154         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
155                 "Broadcom NetXtreme II BCM5716 1000Base-T" },
156
157         { 0, 0, 0, 0, NULL }
158 };
159
160
161 /****************************************************************************/
162 /* Supported Flash NVRAM device data.                                       */
163 /****************************************************************************/
164 static const struct flash_spec flash_table[] =
165 {
166 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
167 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
168
169         /* Slow EEPROM */
170         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
171          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
172          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
173          "EEPROM - slow"},
174         /* Expansion entry 0001 */
175         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
176          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178          "Entry 0001"},
179         /* Saifun SA25F010 (non-buffered flash) */
180         /* strap, cfg1, & write1 need updates */
181         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
182          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
184          "Non-buffered flash (128kB)"},
185         /* Saifun SA25F020 (non-buffered flash) */
186         /* strap, cfg1, & write1 need updates */
187         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
188          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
190          "Non-buffered flash (256kB)"},
191         /* Expansion entry 0100 */
192         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
193          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195          "Entry 0100"},
196         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
197         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
198          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
199          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
200          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
201         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
202         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
203          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
204          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
205          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
206         /* Saifun SA25F005 (non-buffered flash) */
207         /* strap, cfg1, & write1 need updates */
208         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
209          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
211          "Non-buffered flash (64kB)"},
212         /* Fast EEPROM */
213         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
214          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216          "EEPROM - fast"},
217         /* Expansion entry 1001 */
218         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
219          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221          "Entry 1001"},
222         /* Expansion entry 1010 */
223         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
224          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226          "Entry 1010"},
227         /* ATMEL AT45DB011B (buffered flash) */
228         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
229          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
231          "Buffered flash (128kB)"},
232         /* Expansion entry 1100 */
233         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
234          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236          "Entry 1100"},
237         /* Expansion entry 1101 */
238         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
239          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241          "Entry 1101"},
242         /* Ateml Expansion entry 1110 */
243         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
244          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
246          "Entry 1110 (Atmel)"},
247         /* ATMEL AT45DB021B (buffered flash) */
248         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
249          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
250          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
251          "Buffered flash (256kB)"},
252 };
253
254 /*
255  * The BCM5709 controllers transparently handle the
256  * differences between Atmel 264 byte pages and all
257  * flash devices which use 256 byte pages, so no
258  * logical-to-physical mapping is required in the
259  * driver.
260  */
261 static const struct flash_spec flash_5709 = {
262         .flags          = BCE_NV_BUFFERED,
263         .page_bits      = BCM5709_FLASH_PAGE_BITS,
264         .page_size      = BCM5709_FLASH_PAGE_SIZE,
265         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
266         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
267         .name           = "5709/5716 buffered flash (256kB)",
268 };
269
270
271 /****************************************************************************/
272 /* FreeBSD device entry points.                                             */
273 /****************************************************************************/
274 static int  bce_probe                   (device_t);
275 static int  bce_attach                  (device_t);
276 static int  bce_detach                  (device_t);
277 static int  bce_shutdown                (device_t);
278
279
280 /****************************************************************************/
281 /* BCE Debug Data Structure Dump Routines                                   */
282 /****************************************************************************/
283 #ifdef BCE_DEBUG
284 static u32  bce_reg_rd                          (struct bce_softc *, u32);
285 static void bce_reg_wr                          (struct bce_softc *, u32, u32);
286 static void bce_reg_wr16                        (struct bce_softc *, u32, u16);
287 static u32  bce_ctx_rd                          (struct bce_softc *, u32, u32);
288 static void bce_dump_enet                       (struct bce_softc *, struct mbuf *);
289 static void bce_dump_mbuf                       (struct bce_softc *, struct mbuf *);
290 static void bce_dump_tx_mbuf_chain      (struct bce_softc *, u16, int);
291 static void bce_dump_rx_mbuf_chain      (struct bce_softc *, u16, int);
292 static void bce_dump_pg_mbuf_chain      (struct bce_softc *, u16, int);
293 static void bce_dump_txbd                       (struct bce_softc *,
294     int, struct tx_bd *);
295 static void bce_dump_rxbd                       (struct bce_softc *,
296     int, struct rx_bd *);
297 static void bce_dump_pgbd                       (struct bce_softc *,
298     int, struct rx_bd *);
299 static void bce_dump_l2fhdr             (struct bce_softc *,
300     int, struct l2_fhdr *);
301 static void bce_dump_ctx                        (struct bce_softc *, u16);
302 static void bce_dump_ftqs                       (struct bce_softc *);
303 static void bce_dump_tx_chain           (struct bce_softc *, u16, int);
304 static void bce_dump_rx_bd_chain        (struct bce_softc *, u16, int);
305 static void bce_dump_pg_chain           (struct bce_softc *, u16, int);
306 static void bce_dump_status_block       (struct bce_softc *);
307 static void bce_dump_stats_block        (struct bce_softc *);
308 static void bce_dump_driver_state       (struct bce_softc *);
309 static void bce_dump_hw_state           (struct bce_softc *);
310 static void bce_dump_shmem_state        (struct bce_softc *);
311 static void bce_dump_mq_regs            (struct bce_softc *);
312 static void bce_dump_bc_state           (struct bce_softc *);
313 static void bce_dump_txp_state          (struct bce_softc *, int);
314 static void bce_dump_rxp_state          (struct bce_softc *, int);
315 static void bce_dump_tpat_state (struct bce_softc *, int);
316 static void bce_dump_cp_state           (struct bce_softc *, int);
317 static void bce_dump_com_state          (struct bce_softc *, int);
318 static void bce_dump_rv2p_state (struct bce_softc *);
319 static void bce_breakpoint                      (struct bce_softc *);
320 #endif /*BCE_DEBUG */
321
322
323 /****************************************************************************/
324 /* BCE Register/Memory Access Routines                                      */
325 /****************************************************************************/
326 static u32  bce_reg_rd_ind              (struct bce_softc *, u32);
327 static void bce_reg_wr_ind              (struct bce_softc *, u32, u32);
328 static void bce_shmem_wr                (struct bce_softc *, u32, u32);
329 static u32  bce_shmem_rd                (struct bce_softc *, u32);
330 static void bce_ctx_wr                  (struct bce_softc *, u32, u32, u32);
331 static int  bce_miibus_read_reg         (device_t, int, int);
332 static int  bce_miibus_write_reg        (device_t, int, int, int);
333 static void bce_miibus_statchg          (device_t);
334
335 #ifdef BCE_DEBUG
336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
337 #ifdef BCE_NVRAM_WRITE_SUPPORT
338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
339 #endif
340 #endif
341
342 /****************************************************************************/
343 /* BCE NVRAM Access Routines                                                */
344 /****************************************************************************/
345 static int  bce_acquire_nvram_lock      (struct bce_softc *);
346 static int  bce_release_nvram_lock      (struct bce_softc *);
347 static void bce_enable_nvram_access(struct bce_softc *);
348 static void bce_disable_nvram_access(struct bce_softc *);
349 static int  bce_nvram_read_dword        (struct bce_softc *, u32, u8 *, u32);
350 static int  bce_init_nvram                      (struct bce_softc *);
351 static int  bce_nvram_read                      (struct bce_softc *, u32, u8 *, int);
352 static int  bce_nvram_test                      (struct bce_softc *);
353 #ifdef BCE_NVRAM_WRITE_SUPPORT
354 static int  bce_enable_nvram_write      (struct bce_softc *);
355 static void bce_disable_nvram_write(struct bce_softc *);
356 static int  bce_nvram_erase_page        (struct bce_softc *, u32);
357 static int  bce_nvram_write_dword       (struct bce_softc *, u32, u8 *, u32);
358 static int  bce_nvram_write             (struct bce_softc *, u32, u8 *, int);
359 #endif
360
361 /****************************************************************************/
362 /*                                                                          */
363 /****************************************************************************/
364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
365 static void bce_get_media                       (struct bce_softc *);
366 static void bce_init_media                      (struct bce_softc *);
367 static u32 bce_get_rphy_link            (struct bce_softc *);
368 static void bce_dma_map_addr            (void *, bus_dma_segment_t *, int, int);
369 static int  bce_dma_alloc                       (device_t);
370 static void bce_dma_free                        (struct bce_softc *);
371 static void bce_release_resources       (struct bce_softc *);
372
373 /****************************************************************************/
374 /* BCE Firmware Synchronization and Load                                    */
375 /****************************************************************************/
376 static void bce_fw_cap_init                     (struct bce_softc *);
377 static int  bce_fw_sync                 (struct bce_softc *, u32);
378 static void bce_load_rv2p_fw            (struct bce_softc *, const u32 *, u32,
379     u32);
380 static void bce_load_cpu_fw             (struct bce_softc *,
381     struct cpu_reg *, struct fw_info *);
382 static void bce_start_cpu                       (struct bce_softc *, struct cpu_reg *);
383 static void bce_halt_cpu                        (struct bce_softc *, struct cpu_reg *);
384 static void bce_start_rxp_cpu           (struct bce_softc *);
385 static void bce_init_rxp_cpu            (struct bce_softc *);
386 static void bce_init_txp_cpu            (struct bce_softc *);
387 static void bce_init_tpat_cpu           (struct bce_softc *);
388 static void bce_init_cp_cpu             (struct bce_softc *);
389 static void bce_init_com_cpu            (struct bce_softc *);
390 static void bce_init_cpus                       (struct bce_softc *);
391
392 static void bce_print_adapter_info      (struct bce_softc *);
393 static void bce_probe_pci_caps          (device_t, struct bce_softc *);
394 static void bce_stop                            (struct bce_softc *);
395 static int  bce_reset                           (struct bce_softc *, u32);
396 static int  bce_chipinit                        (struct bce_softc *);
397 static int  bce_blockinit                       (struct bce_softc *);
398
399 static int  bce_init_tx_chain           (struct bce_softc *);
400 static void bce_free_tx_chain           (struct bce_softc *);
401
402 static int  bce_get_rx_buf              (struct bce_softc *, u16, u16, u32 *);
403 static int  bce_init_rx_chain           (struct bce_softc *);
404 static void bce_fill_rx_chain           (struct bce_softc *);
405 static void bce_free_rx_chain           (struct bce_softc *);
406
407 static int  bce_get_pg_buf              (struct bce_softc *, u16, u16);
408 static int  bce_init_pg_chain           (struct bce_softc *);
409 static void bce_fill_pg_chain           (struct bce_softc *);
410 static void bce_free_pg_chain           (struct bce_softc *);
411
412 static struct mbuf *bce_tso_setup       (struct bce_softc *,
413     struct mbuf **, u16 *);
414 static int  bce_tx_encap                        (struct bce_softc *, struct mbuf **);
415 static void bce_start_locked            (struct ifnet *);
416 static void bce_start                           (struct ifnet *);
417 static int  bce_ioctl                           (struct ifnet *, u_long, caddr_t);
418 static void bce_watchdog                        (struct bce_softc *);
419 static int  bce_ifmedia_upd             (struct ifnet *);
420 static int  bce_ifmedia_upd_locked      (struct ifnet *);
421 static void bce_ifmedia_sts             (struct ifnet *, struct ifmediareq *);
422 static void bce_ifmedia_sts_rphy        (struct bce_softc *, struct ifmediareq *);
423 static void bce_init_locked             (struct bce_softc *);
424 static void bce_init                            (void *);
425 static void bce_mgmt_init_locked        (struct bce_softc *sc);
426
427 static int  bce_init_ctx                        (struct bce_softc *);
428 static void bce_get_mac_addr            (struct bce_softc *);
429 static void bce_set_mac_addr            (struct bce_softc *);
430 static void bce_phy_intr                        (struct bce_softc *);
431 static inline u16 bce_get_hw_rx_cons    (struct bce_softc *);
432 static void bce_rx_intr                 (struct bce_softc *);
433 static void bce_tx_intr                 (struct bce_softc *);
434 static void bce_disable_intr            (struct bce_softc *);
435 static void bce_enable_intr             (struct bce_softc *, int);
436
437 static void bce_intr                            (void *);
438 static void bce_set_rx_mode             (struct bce_softc *);
439 static void bce_stats_update            (struct bce_softc *);
440 static void bce_tick                            (void *);
441 static void bce_pulse                           (void *);
442 static void bce_add_sysctls             (struct bce_softc *);
443
444
445 /****************************************************************************/
446 /* FreeBSD device dispatch table.                                           */
447 /****************************************************************************/
448 static device_method_t bce_methods[] = {
449         /* Device interface (device_if.h) */
450         DEVMETHOD(device_probe,         bce_probe),
451         DEVMETHOD(device_attach,        bce_attach),
452         DEVMETHOD(device_detach,        bce_detach),
453         DEVMETHOD(device_shutdown,      bce_shutdown),
454 /* Supported by device interface but not used here. */
455 /*      DEVMETHOD(device_identify,      bce_identify),      */
456 /*      DEVMETHOD(device_suspend,       bce_suspend),       */
457 /*      DEVMETHOD(device_resume,        bce_resume),        */
458 /*      DEVMETHOD(device_quiesce,       bce_quiesce),       */
459
460         /* MII interface (miibus_if.h) */
461         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
462         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
463         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
464 /* Supported by MII interface but not used here.       */
465 /*      DEVMETHOD(miibus_linkchg,       bce_miibus_linkchg),   */
466 /*      DEVMETHOD(miibus_mediainit,     bce_miibus_mediainit), */
467
468         DEVMETHOD_END
469 };
470
471 static driver_t bce_driver = {
472         "bce",
473         bce_methods,
474         sizeof(struct bce_softc)
475 };
476
477 static devclass_t bce_devclass;
478
479 MODULE_DEPEND(bce, pci, 1, 1, 1);
480 MODULE_DEPEND(bce, ether, 1, 1, 1);
481 MODULE_DEPEND(bce, miibus, 1, 1, 1);
482
483 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
484 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
485
486
487 /****************************************************************************/
488 /* Tunable device values                                                    */
489 /****************************************************************************/
490 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
491
492 /* Allowable values are TRUE or FALSE */
493 static int bce_verbose = TRUE;
494 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
495 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
496     "Verbose output enable/disable");
497
498 /* Allowable values are TRUE or FALSE */
499 static int bce_tso_enable = TRUE;
500 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
501 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
502     "TSO Enable/Disable");
503
504 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
505 /* ToDo: Add MSI-X support. */
506 static int bce_msi_enable = 1;
507 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
508 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
509     "MSI-X|MSI|INTx selector");
510
511 /* Allowable values are 1, 2, 4, 8. */
512 static int bce_rx_pages = DEFAULT_RX_PAGES;
513 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
514 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
515     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
516
517 /* Allowable values are 1, 2, 4, 8. */
518 static int bce_tx_pages = DEFAULT_TX_PAGES;
519 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
520 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
521     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
522
523 /* Allowable values are TRUE or FALSE. */
524 static int bce_hdr_split = TRUE;
525 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
526 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
527     "Frame header/payload splitting Enable/Disable");
528
529 /* Allowable values are TRUE or FALSE. */
530 static int bce_strict_rx_mtu = FALSE;
531 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
532 SYSCTL_UINT(_hw_bce, OID_AUTO, loose_rx_mtu, CTLFLAG_RDTUN,
533     &bce_strict_rx_mtu, 0,
534     "Enable/Disable strict RX frame size checking");
535
536 /* Allowable values are 0 ... 100 */
537 #ifdef BCE_DEBUG
538 /* Generate 1 interrupt for every transmit completion. */
539 static int bce_tx_quick_cons_trip_int = 1;
540 #else
541 /* Generate 1 interrupt for every 20 transmit completions. */
542 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
543 #endif
544 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
545 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
546     &bce_tx_quick_cons_trip_int, 0,
547     "Transmit BD trip point during interrupts");
548
549 /* Allowable values are 0 ... 100 */
550 /* Generate 1 interrupt for every transmit completion. */
551 #ifdef BCE_DEBUG
552 static int bce_tx_quick_cons_trip = 1;
553 #else
554 /* Generate 1 interrupt for every 20 transmit completions. */
555 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
556 #endif
557 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
558 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
559     &bce_tx_quick_cons_trip, 0,
560     "Transmit BD trip point");
561
562 /* Allowable values are 0 ... 100 */
563 #ifdef BCE_DEBUG
564 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
565 static int bce_tx_ticks_int = 0;
566 #else
567 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
568 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
569 #endif
570 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
571 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
572     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
573
574 /* Allowable values are 0 ... 100 */
575 #ifdef BCE_DEBUG
576 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
577 static int bce_tx_ticks = 0;
578 #else
579 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
580 static int bce_tx_ticks = DEFAULT_TX_TICKS;
581 #endif
582 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
583 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
584     &bce_tx_ticks, 0, "Transmit ticks count");
585
586 /* Allowable values are 1 ... 100 */
587 #ifdef BCE_DEBUG
588 /* Generate 1 interrupt for every received frame. */
589 static int bce_rx_quick_cons_trip_int = 1;
590 #else
591 /* Generate 1 interrupt for every 6 received frames. */
592 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
593 #endif
594 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
595 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
596     &bce_rx_quick_cons_trip_int, 0,
597     "Receive BD trip point duirng interrupts");
598
599 /* Allowable values are 1 ... 100 */
600 #ifdef BCE_DEBUG
601 /* Generate 1 interrupt for every received frame. */
602 static int bce_rx_quick_cons_trip = 1;
603 #else
604 /* Generate 1 interrupt for every 6 received frames. */
605 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
606 #endif
607 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
608 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
609     &bce_rx_quick_cons_trip, 0,
610     "Receive BD trip point");
611
612 /* Allowable values are 0 ... 100 */
613 #ifdef BCE_DEBUG
614 /* Generate an int. if 0us have elapsed since the last received frame. */
615 static int bce_rx_ticks_int = 0;
616 #else
617 /* Generate an int. if 18us have elapsed since the last received frame. */
618 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
619 #endif
620 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
621 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
622     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
623
624 /* Allowable values are 0 ... 100 */
625 #ifdef BCE_DEBUG
626 /* Generate an int. if 0us have elapsed since the last received frame. */
627 static int bce_rx_ticks = 0;
628 #else
629 /* Generate an int. if 18us have elapsed since the last received frame. */
630 static int bce_rx_ticks = DEFAULT_RX_TICKS;
631 #endif
632 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
633 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
634     &bce_rx_ticks, 0, "Receive ticks count");
635
636
637 /****************************************************************************/
638 /* Device probe function.                                                   */
639 /*                                                                          */
640 /* Compares the device to the driver's list of supported devices and        */
641 /* reports back to the OS whether this is the right driver for the device.  */
642 /*                                                                          */
643 /* Returns:                                                                 */
644 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
645 /****************************************************************************/
646 static int
647 bce_probe(device_t dev)
648 {
649         const struct bce_type *t;
650         struct bce_softc *sc;
651         char *descbuf;
652         u16 vid = 0, did = 0, svid = 0, sdid = 0;
653
654         t = bce_devs;
655
656         sc = device_get_softc(dev);
657         sc->bce_unit = device_get_unit(dev);
658         sc->bce_dev = dev;
659
660         /* Get the data for the device to be probed. */
661         vid  = pci_get_vendor(dev);
662         did  = pci_get_device(dev);
663         svid = pci_get_subvendor(dev);
664         sdid = pci_get_subdevice(dev);
665
666         DBPRINT(sc, BCE_EXTREME_LOAD,
667             "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
668             "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
669
670         /* Look through the list of known devices for a match. */
671         while(t->bce_name != NULL) {
672
673                 if ((vid == t->bce_vid) && (did == t->bce_did) &&
674                     ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
675                     ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
676
677                         descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
678
679                         if (descbuf == NULL)
680                                 return(ENOMEM);
681
682                         /* Print out the device identity. */
683                         snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
684                             t->bce_name, (((pci_read_config(dev,
685                             PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
686                             (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
687
688                         device_set_desc_copy(dev, descbuf);
689                         free(descbuf, M_TEMP);
690                         return(BUS_PROBE_DEFAULT);
691                 }
692                 t++;
693         }
694
695         return(ENXIO);
696 }
697
698
699 /****************************************************************************/
700 /* PCI Capabilities Probe Function.                                         */
701 /*                                                                          */
702 /* Walks the PCI capabiites list for the device to find what features are   */
703 /* supported.                                                               */
704 /*                                                                          */
705 /* Returns:                                                                 */
706 /*   None.                                                                  */
707 /****************************************************************************/
708 static void
709 bce_print_adapter_info(struct bce_softc *sc)
710 {
711         int i = 0;
712
713         DBENTER(BCE_VERBOSE_LOAD);
714
715         if (bce_verbose || bootverbose) {
716                 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
717                 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
718                     12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
719
720
721                 /* Bus info. */
722                 if (sc->bce_flags & BCE_PCIE_FLAG) {
723                         printf("Bus (PCIe x%d, ", sc->link_width);
724                         switch (sc->link_speed) {
725                         case 1: printf("2.5Gbps); "); break;
726                         case 2: printf("5Gbps); "); break;
727                         default: printf("Unknown link speed); ");
728                         }
729                 } else {
730                         printf("Bus (PCI%s, %s, %dMHz); ",
731                             ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
732                             ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
733                             "32-bit" : "64-bit"), sc->bus_speed_mhz);
734                 }
735
736                 /* Firmware version and device features. */
737                 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
738                     sc->bce_bc_ver,     sc->rx_pages, sc->tx_pages,
739                     (bce_hdr_split == TRUE ? sc->pg_pages: 0));
740
741                 if (bce_hdr_split == TRUE) {
742                         printf("SPLT");
743                         i++;
744                 }
745
746                 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
747                         if (i > 0) printf("|");
748                         printf("MSI"); i++;
749                 }
750
751                 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
752                         if (i > 0) printf("|");
753                         printf("MSI-X"); i++;
754                 }
755
756                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
757                         if (i > 0) printf("|");
758                         printf("2.5G"); i++;
759                 }
760
761                 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
762                         if (i > 0) printf("|");
763                         printf("Remote PHY(%s)",
764                             sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
765                             "FIBER" : "TP"); i++;
766                 }
767
768                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
769                         if (i > 0) printf("|");
770                         printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
771                 } else {
772                         printf(")\n");
773                 }
774
775                 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
776                     sc->bce_rx_quick_cons_trip_int,
777                     sc->bce_rx_quick_cons_trip,
778                     sc->bce_rx_ticks_int,
779                     sc->bce_rx_ticks,
780                     sc->bce_tx_quick_cons_trip_int,
781                     sc->bce_tx_quick_cons_trip,
782                     sc->bce_tx_ticks_int,
783                     sc->bce_tx_ticks);
784
785         }
786
787         DBEXIT(BCE_VERBOSE_LOAD);
788 }
789
790
791 /****************************************************************************/
792 /* PCI Capabilities Probe Function.                                         */
793 /*                                                                          */
794 /* Walks the PCI capabiites list for the device to find what features are   */
795 /* supported.                                                               */
796 /*                                                                          */
797 /* Returns:                                                                 */
798 /*   None.                                                                  */
799 /****************************************************************************/
800 static void
801 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
802 {
803         u32 reg;
804
805         DBENTER(BCE_VERBOSE_LOAD);
806
807         /* Check if PCI-X capability is enabled. */
808         if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
809                 if (reg != 0)
810                         sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
811         }
812
813         /* Check if PCIe capability is enabled. */
814         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
815                 if (reg != 0) {
816                         u16 link_status = pci_read_config(dev, reg + 0x12, 2);
817                         DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
818                             "0x%08X\n", link_status);
819                         sc->link_speed = link_status & 0xf;
820                         sc->link_width = (link_status >> 4) & 0x3f;
821                         sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
822                         sc->bce_flags |= BCE_PCIE_FLAG;
823                 }
824         }
825
826         /* Check if MSI capability is enabled. */
827         if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
828                 if (reg != 0)
829                         sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
830         }
831
832         /* Check if MSI-X capability is enabled. */
833         if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
834                 if (reg != 0)
835                         sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
836         }
837
838         DBEXIT(BCE_VERBOSE_LOAD);
839 }
840
841
842 /****************************************************************************/
843 /* Load and validate user tunable settings.                                 */
844 /*                                                                          */
845 /* Returns:                                                                 */
846 /*   Nothing.                                                               */
847 /****************************************************************************/
848 static void
849 bce_set_tunables(struct bce_softc *sc)
850 {
851         /* Set sysctl values for RX page count. */
852         switch (bce_rx_pages) {
853         case 1:
854                 /* fall-through */
855         case 2:
856                 /* fall-through */
857         case 4:
858                 /* fall-through */
859         case 8:
860                 sc->rx_pages = bce_rx_pages;
861                 break;
862         default:
863                 sc->rx_pages = DEFAULT_RX_PAGES;
864                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
865                     "hw.bce.rx_pages!  Setting default of %d.\n",
866                     __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
867         }
868
869         /* ToDo: Consider allowing user setting for pg_pages. */
870         sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
871
872         /* Set sysctl values for TX page count. */
873         switch (bce_tx_pages) {
874         case 1:
875                 /* fall-through */
876         case 2:
877                 /* fall-through */
878         case 4:
879                 /* fall-through */
880         case 8:
881                 sc->tx_pages = bce_tx_pages;
882                 break;
883         default:
884                 sc->tx_pages = DEFAULT_TX_PAGES;
885                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
886                     "hw.bce.tx_pages!  Setting default of %d.\n",
887                     __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
888         }
889
890         /*
891          * Validate the TX trip point (i.e. the number of
892          * TX completions before a status block update is
893          * generated and an interrupt is asserted.
894          */
895         if (bce_tx_quick_cons_trip_int <= 100) {
896                 sc->bce_tx_quick_cons_trip_int =
897                     bce_tx_quick_cons_trip_int;
898         } else {
899                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
900                     "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
901                     __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
902                     DEFAULT_TX_QUICK_CONS_TRIP_INT);
903                 sc->bce_tx_quick_cons_trip_int =
904                     DEFAULT_TX_QUICK_CONS_TRIP_INT;
905         }
906
907         if (bce_tx_quick_cons_trip <= 100) {
908                 sc->bce_tx_quick_cons_trip =
909                     bce_tx_quick_cons_trip;
910         } else {
911                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
912                     "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
913                     __FILE__, __LINE__, bce_tx_quick_cons_trip,
914                     DEFAULT_TX_QUICK_CONS_TRIP);
915                 sc->bce_tx_quick_cons_trip =
916                     DEFAULT_TX_QUICK_CONS_TRIP;
917         }
918
919         /*
920          * Validate the TX ticks count (i.e. the maximum amount
921          * of time to wait after the last TX completion has
922          * occurred before a status block update is generated
923          * and an interrupt is asserted.
924          */
925         if (bce_tx_ticks_int <= 100) {
926                 sc->bce_tx_ticks_int =
927                     bce_tx_ticks_int;
928         } else {
929                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
930                     "hw.bce.tx_ticks_int!  Setting default of %d.\n",
931                     __FILE__, __LINE__, bce_tx_ticks_int,
932                     DEFAULT_TX_TICKS_INT);
933                 sc->bce_tx_ticks_int =
934                     DEFAULT_TX_TICKS_INT;
935            }
936
937         if (bce_tx_ticks <= 100) {
938                 sc->bce_tx_ticks =
939                     bce_tx_ticks;
940         } else {
941                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
942                     "hw.bce.tx_ticks!  Setting default of %d.\n",
943                     __FILE__, __LINE__, bce_tx_ticks,
944                     DEFAULT_TX_TICKS);
945                 sc->bce_tx_ticks =
946                     DEFAULT_TX_TICKS;
947         }
948
949         /*
950          * Validate the RX trip point (i.e. the number of
951          * RX frames received before a status block update is
952          * generated and an interrupt is asserted.
953          */
954         if (bce_rx_quick_cons_trip_int <= 100) {
955                 sc->bce_rx_quick_cons_trip_int =
956                     bce_rx_quick_cons_trip_int;
957         } else {
958                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
959                     "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
960                     __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
961                     DEFAULT_RX_QUICK_CONS_TRIP_INT);
962                 sc->bce_rx_quick_cons_trip_int =
963                     DEFAULT_RX_QUICK_CONS_TRIP_INT;
964         }
965
966         if (bce_rx_quick_cons_trip <= 100) {
967                 sc->bce_rx_quick_cons_trip =
968                     bce_rx_quick_cons_trip;
969         } else {
970                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
971                     "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
972                     __FILE__, __LINE__, bce_rx_quick_cons_trip,
973                     DEFAULT_RX_QUICK_CONS_TRIP);
974                 sc->bce_rx_quick_cons_trip =
975                     DEFAULT_RX_QUICK_CONS_TRIP;
976         }
977
978         /*
979          * Validate the RX ticks count (i.e. the maximum amount
980          * of time to wait after the last RX frame has been
981          * received before a status block update is generated
982          * and an interrupt is asserted.
983          */
984         if (bce_rx_ticks_int <= 100) {
985                 sc->bce_rx_ticks_int = bce_rx_ticks_int;
986         } else {
987                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
988                     "hw.bce.rx_ticks_int!  Setting default of %d.\n",
989                     __FILE__, __LINE__, bce_rx_ticks_int,
990                     DEFAULT_RX_TICKS_INT);
991                 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
992         }
993
994         if (bce_rx_ticks <= 100) {
995                 sc->bce_rx_ticks = bce_rx_ticks;
996         } else {
997                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
998                     "hw.bce.rx_ticks!  Setting default of %d.\n",
999                     __FILE__, __LINE__, bce_rx_ticks,
1000                     DEFAULT_RX_TICKS);
1001                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1002         }
1003
1004         /* Disabling both RX ticks and RX trips will prevent interrupts. */
1005         if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1006                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1007                     "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1008                    __FILE__, __LINE__);
1009                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1010                 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1011         }
1012
1013         /* Disabling both TX ticks and TX trips will prevent interrupts. */
1014         if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1015                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1016                     "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1017                    __FILE__, __LINE__);
1018                 sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1019                 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1020         }
1021 }
1022
1023
1024 /****************************************************************************/
1025 /* Device attach function.                                                  */
1026 /*                                                                          */
1027 /* Allocates device resources, performs secondary chip identification,      */
1028 /* resets and initializes the hardware, and initializes driver instance     */
1029 /* variables.                                                               */
1030 /*                                                                          */
1031 /* Returns:                                                                 */
1032 /*   0 on success, positive value on failure.                               */
1033 /****************************************************************************/
1034 static int
1035 bce_attach(device_t dev)
1036 {
1037         struct bce_softc *sc;
1038         struct ifnet *ifp;
1039         u32 val;
1040         int count, error, rc = 0, rid;
1041
1042         sc = device_get_softc(dev);
1043         sc->bce_dev = dev;
1044
1045         DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1046
1047         sc->bce_unit = device_get_unit(dev);
1048
1049         /* Set initial device and PHY flags */
1050         sc->bce_flags = 0;
1051         sc->bce_phy_flags = 0;
1052
1053         bce_set_tunables(sc);
1054
1055         pci_enable_busmaster(dev);
1056
1057         /* Allocate PCI memory resources. */
1058         rid = PCIR_BAR(0);
1059         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1060                 &rid, RF_ACTIVE);
1061
1062         if (sc->bce_res_mem == NULL) {
1063                 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1064                     __FILE__, __LINE__);
1065                 rc = ENXIO;
1066                 goto bce_attach_fail;
1067         }
1068
1069         /* Get various resource handles. */
1070         sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1071         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1072         sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1073
1074         bce_probe_pci_caps(dev, sc);
1075
1076         rid = 1;
1077         count = 0;
1078 #if 0
1079         /* Try allocating MSI-X interrupts. */
1080         if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1081                 (bce_msi_enable >= 2) &&
1082                 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1083                 &rid, RF_ACTIVE)) != NULL)) {
1084
1085                 msi_needed = count = 1;
1086
1087                 if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1088                         (count != msi_needed)) {
1089                         BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1090                                 "Received = %d, error = %d\n", __FILE__, __LINE__,
1091                                 msi_needed, count, error);
1092                         count = 0;
1093                         pci_release_msi(dev);
1094                         bus_release_resource(dev, SYS_RES_MEMORY, rid,
1095                                 sc->bce_res_irq);
1096                         sc->bce_res_irq = NULL;
1097                 } else {
1098                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1099                                 __FUNCTION__);
1100                         sc->bce_flags |= BCE_USING_MSIX_FLAG;
1101                 }
1102         }
1103 #endif
1104
1105         /* Try allocating a MSI interrupt. */
1106         if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1107                 (bce_msi_enable >= 1) && (count == 0)) {
1108                 count = 1;
1109                 if ((error = pci_alloc_msi(dev, &count)) != 0) {
1110                         BCE_PRINTF("%s(%d): MSI allocation failed! "
1111                             "error = %d\n", __FILE__, __LINE__, error);
1112                         count = 0;
1113                         pci_release_msi(dev);
1114                 } else {
1115                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1116                             "interrupt.\n", __FUNCTION__);
1117                         sc->bce_flags |= BCE_USING_MSI_FLAG;
1118                         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1119                                 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1120                         rid = 1;
1121                 }
1122         }
1123
1124         /* Try allocating a legacy interrupt. */
1125         if (count == 0) {
1126                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1127                         __FUNCTION__);
1128                 rid = 0;
1129         }
1130
1131         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1132             &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1133
1134         /* Report any IRQ allocation errors. */
1135         if (sc->bce_res_irq == NULL) {
1136                 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1137                     __FILE__, __LINE__);
1138                 rc = ENXIO;
1139                 goto bce_attach_fail;
1140         }
1141
1142         /* Initialize mutex for the current device instance. */
1143         BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1144
1145         /*
1146          * Configure byte swap and enable indirect register access.
1147          * Rely on CPU to do target byte swapping on big endian systems.
1148          * Access to registers outside of PCI configurtion space are not
1149          * valid until this is done.
1150          */
1151         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1152             BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1153             BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1154
1155         /* Save ASIC revsion info. */
1156         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1157
1158         /* Weed out any non-production controller revisions. */
1159         switch(BCE_CHIP_ID(sc)) {
1160         case BCE_CHIP_ID_5706_A0:
1161         case BCE_CHIP_ID_5706_A1:
1162         case BCE_CHIP_ID_5708_A0:
1163         case BCE_CHIP_ID_5708_B0:
1164         case BCE_CHIP_ID_5709_A0:
1165         case BCE_CHIP_ID_5709_B0:
1166         case BCE_CHIP_ID_5709_B1:
1167         case BCE_CHIP_ID_5709_B2:
1168                 BCE_PRINTF("%s(%d): Unsupported controller "
1169                     "revision (%c%d)!\n", __FILE__, __LINE__,
1170                     (((pci_read_config(dev, PCIR_REVID, 4) &
1171                     0xf0) >> 4) + 'A'), (pci_read_config(dev,
1172                     PCIR_REVID, 4) & 0xf));
1173                 rc = ENODEV;
1174                 goto bce_attach_fail;
1175         }
1176
1177         /*
1178          * The embedded PCIe to PCI-X bridge (EPB)
1179          * in the 5708 cannot address memory above
1180          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1181          */
1182         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1183                 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1184         else
1185                 sc->max_bus_addr = BUS_SPACE_MAXADDR;
1186
1187         /*
1188          * Find the base address for shared memory access.
1189          * Newer versions of bootcode use a signature and offset
1190          * while older versions use a fixed address.
1191          */
1192         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1193         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1194                 /* Multi-port devices use different offsets in shared memory. */
1195                 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1196                     (pci_get_function(sc->bce_dev) << 2));
1197         else
1198                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1199
1200         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1201             __FUNCTION__, sc->bce_shmem_base);
1202
1203         /* Fetch the bootcode revision. */
1204         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1205         for (int i = 0, j = 0; i < 3; i++) {
1206                 u8 num;
1207
1208                 num = (u8) (val >> (24 - (i * 8)));
1209                 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1210                         if (num >= k || !skip0 || k == 1) {
1211                                 sc->bce_bc_ver[j++] = (num / k) + '0';
1212                                 skip0 = 0;
1213                         }
1214                 }
1215
1216                 if (i != 2)
1217                         sc->bce_bc_ver[j++] = '.';
1218         }
1219
1220         /* Check if any management firwmare is enabled. */
1221         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1222         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1223                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1224
1225                 /* Allow time for firmware to enter the running state. */
1226                 for (int i = 0; i < 30; i++) {
1227                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1228                         if (val & BCE_CONDITION_MFW_RUN_MASK)
1229                                 break;
1230                         DELAY(10000);
1231                 }
1232
1233                 /* Check if management firmware is running. */
1234                 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1235                 val &= BCE_CONDITION_MFW_RUN_MASK;
1236                 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1237                     (val != BCE_CONDITION_MFW_RUN_NONE)) {
1238                         u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1239                         int i = 0;
1240
1241                         /* Read the management firmware version string. */
1242                         for (int j = 0; j < 3; j++) {
1243                                 val = bce_reg_rd_ind(sc, addr + j * 4);
1244                                 val = bswap32(val);
1245                                 memcpy(&sc->bce_mfw_ver[i], &val, 4);
1246                                 i += 4;
1247                         }
1248                 } else {
1249                         /* May cause firmware synchronization timeouts. */
1250                         BCE_PRINTF("%s(%d): Management firmware enabled "
1251                             "but not running!\n", __FILE__, __LINE__);
1252                         strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1253
1254                         /* ToDo: Any action the driver should take? */
1255                 }
1256         }
1257
1258         /* Get PCI bus information (speed and type). */
1259         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1260         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1261                 u32 clkreg;
1262
1263                 sc->bce_flags |= BCE_PCIX_FLAG;
1264
1265                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1266
1267                 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1268                 switch (clkreg) {
1269                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1270                         sc->bus_speed_mhz = 133;
1271                         break;
1272
1273                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1274                         sc->bus_speed_mhz = 100;
1275                         break;
1276
1277                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1278                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1279                         sc->bus_speed_mhz = 66;
1280                         break;
1281
1282                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1283                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1284                         sc->bus_speed_mhz = 50;
1285                         break;
1286
1287                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1288                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1289                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1290                         sc->bus_speed_mhz = 33;
1291                         break;
1292                 }
1293         } else {
1294                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1295                         sc->bus_speed_mhz = 66;
1296                 else
1297                         sc->bus_speed_mhz = 33;
1298         }
1299
1300         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1301                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1302
1303         /* Find the media type for the adapter. */
1304         bce_get_media(sc);
1305
1306         /* Reset controller and announce to bootcode that driver is present. */
1307         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1308                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
1309                     __FILE__, __LINE__);
1310                 rc = ENXIO;
1311                 goto bce_attach_fail;
1312         }
1313
1314         /* Initialize the controller. */
1315         if (bce_chipinit(sc)) {
1316                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1317                     __FILE__, __LINE__);
1318                 rc = ENXIO;
1319                 goto bce_attach_fail;
1320         }
1321
1322         /* Perform NVRAM test. */
1323         if (bce_nvram_test(sc)) {
1324                 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1325                     __FILE__, __LINE__);
1326                 rc = ENXIO;
1327                 goto bce_attach_fail;
1328         }
1329
1330         /* Fetch the permanent Ethernet MAC address. */
1331         bce_get_mac_addr(sc);
1332
1333         /* Update statistics once every second. */
1334         sc->bce_stats_ticks = 1000000 & 0xffff00;
1335
1336         /* Store data needed by PHY driver for backplane applications */
1337         sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1338         sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1339
1340         /* Allocate DMA memory resources. */
1341         if (bce_dma_alloc(dev)) {
1342                 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1343                     __FILE__, __LINE__);
1344                 rc = ENXIO;
1345                 goto bce_attach_fail;
1346         }
1347
1348         /* Allocate an ifnet structure. */
1349         ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1350         if (ifp == NULL) {
1351                 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1352                     __FILE__, __LINE__);
1353                 rc = ENXIO;
1354                 goto bce_attach_fail;
1355         }
1356
1357         /* Initialize the ifnet interface. */
1358         ifp->if_softc   = sc;
1359         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1360         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1361         ifp->if_ioctl   = bce_ioctl;
1362         ifp->if_start   = bce_start;
1363         ifp->if_init    = bce_init;
1364         ifp->if_mtu     = ETHERMTU;
1365
1366         if (bce_tso_enable) {
1367                 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1368                 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1369                     IFCAP_VLAN_HWTSO;
1370         } else {
1371                 ifp->if_hwassist = BCE_IF_HWASSIST;
1372                 ifp->if_capabilities = BCE_IF_CAPABILITIES;
1373         }
1374
1375 #if __FreeBSD_version >= 800505
1376         /*
1377          * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1378          * so it's approximate value.
1379          */
1380         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1381                 ifp->if_capabilities |= IFCAP_LINKSTATE;
1382 #endif
1383
1384         ifp->if_capenable = ifp->if_capabilities;
1385
1386         /*
1387          * Assume standard mbuf sizes for buffer allocation.
1388          * This may change later if the MTU size is set to
1389          * something other than 1500.
1390          */
1391         bce_get_rx_buffer_sizes(sc,
1392             (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1393
1394         /* Recalculate our buffer allocation sizes. */
1395         ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1396         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1397         IFQ_SET_READY(&ifp->if_snd);
1398
1399         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1400                 ifp->if_baudrate = IF_Mbps(2500ULL);
1401         else
1402                 ifp->if_baudrate = IF_Mbps(1000);
1403
1404         /* Handle any special PHY initialization for SerDes PHYs. */
1405         bce_init_media(sc);
1406
1407         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1408                 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1409                     bce_ifmedia_sts);
1410                 /*
1411                  * We can't manually override remote PHY's link and assume
1412                  * PHY port configuration(Fiber or TP) is not changed after
1413                  * device attach.  This may not be correct though.
1414                  */
1415                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1416                         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1417                                 ifmedia_add(&sc->bce_ifmedia,
1418                                     IFM_ETHER | IFM_2500_SX, 0, NULL);
1419                                 ifmedia_add(&sc->bce_ifmedia,
1420                                     IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1421                         }
1422                         ifmedia_add(&sc->bce_ifmedia,
1423                             IFM_ETHER | IFM_1000_SX, 0, NULL);
1424                         ifmedia_add(&sc->bce_ifmedia,
1425                             IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1426                 } else {
1427                         ifmedia_add(&sc->bce_ifmedia,
1428                             IFM_ETHER | IFM_10_T, 0, NULL);
1429                         ifmedia_add(&sc->bce_ifmedia,
1430                             IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1431                         ifmedia_add(&sc->bce_ifmedia,
1432                             IFM_ETHER | IFM_100_TX, 0, NULL);
1433                         ifmedia_add(&sc->bce_ifmedia,
1434                             IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1435                         ifmedia_add(&sc->bce_ifmedia,
1436                             IFM_ETHER | IFM_1000_T, 0, NULL);
1437                         ifmedia_add(&sc->bce_ifmedia,
1438                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1439                 }
1440                 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1441                 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1442                 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1443         } else {
1444                 /* MII child bus by attaching the PHY. */
1445                 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1446                     bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1447                     MII_OFFSET_ANY, MIIF_DOPAUSE);
1448                 if (rc != 0) {
1449                         BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1450                             __LINE__);
1451                         goto bce_attach_fail;
1452                 }
1453         }
1454
1455         /* Attach to the Ethernet interface list. */
1456         ether_ifattach(ifp, sc->eaddr);
1457
1458 #if __FreeBSD_version < 500000
1459         callout_init(&sc->bce_tick_callout);
1460         callout_init(&sc->bce_pulse_callout);
1461 #else
1462         callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1463         callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1464 #endif
1465
1466         /* Hookup IRQ last. */
1467         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1468                 NULL, bce_intr, sc, &sc->bce_intrhand);
1469
1470         if (rc) {
1471                 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1472                     __FILE__, __LINE__);
1473                 bce_detach(dev);
1474                 goto bce_attach_exit;
1475         }
1476
1477         /*
1478          * At this point we've acquired all the resources
1479          * we need to run so there's no turning back, we're
1480          * cleared for launch.
1481          */
1482
1483         /* Print some important debugging info. */
1484         DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1485
1486         /* Add the supported sysctls to the kernel. */
1487         bce_add_sysctls(sc);
1488
1489         BCE_LOCK(sc);
1490
1491         /*
1492          * The chip reset earlier notified the bootcode that
1493          * a driver is present.  We now need to start our pulse
1494          * routine so that the bootcode is reminded that we're
1495          * still running.
1496          */
1497         bce_pulse(sc);
1498
1499         bce_mgmt_init_locked(sc);
1500         BCE_UNLOCK(sc);
1501
1502         /* Finally, print some useful adapter info */
1503         bce_print_adapter_info(sc);
1504         DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1505                 __FUNCTION__, sc);
1506
1507         goto bce_attach_exit;
1508
1509 bce_attach_fail:
1510         bce_release_resources(sc);
1511
1512 bce_attach_exit:
1513
1514         DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1515
1516         return(rc);
1517 }
1518
1519
1520 /****************************************************************************/
1521 /* Device detach function.                                                  */
1522 /*                                                                          */
1523 /* Stops the controller, resets the controller, and releases resources.     */
1524 /*                                                                          */
1525 /* Returns:                                                                 */
1526 /*   0 on success, positive value on failure.                               */
1527 /****************************************************************************/
1528 static int
1529 bce_detach(device_t dev)
1530 {
1531         struct bce_softc *sc = device_get_softc(dev);
1532         struct ifnet *ifp;
1533         u32 msg;
1534
1535         DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1536
1537         ifp = sc->bce_ifp;
1538
1539         /* Stop and reset the controller. */
1540         BCE_LOCK(sc);
1541
1542         /* Stop the pulse so the bootcode can go to driver absent state. */
1543         callout_stop(&sc->bce_pulse_callout);
1544
1545         bce_stop(sc);
1546         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1547                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1548         else
1549                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1550         bce_reset(sc, msg);
1551
1552         BCE_UNLOCK(sc);
1553
1554         ether_ifdetach(ifp);
1555
1556         /* If we have a child device on the MII bus remove it too. */
1557         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1558                 ifmedia_removeall(&sc->bce_ifmedia);
1559         else {
1560                 bus_generic_detach(dev);
1561                 device_delete_child(dev, sc->bce_miibus);
1562         }
1563
1564         /* Release all remaining resources. */
1565         bce_release_resources(sc);
1566
1567         DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1568
1569         return(0);
1570 }
1571
1572
1573 /****************************************************************************/
1574 /* Device shutdown function.                                                */
1575 /*                                                                          */
1576 /* Stops and resets the controller.                                         */
1577 /*                                                                          */
1578 /* Returns:                                                                 */
1579 /*   0 on success, positive value on failure.                               */
1580 /****************************************************************************/
1581 static int
1582 bce_shutdown(device_t dev)
1583 {
1584         struct bce_softc *sc = device_get_softc(dev);
1585         u32 msg;
1586
1587         DBENTER(BCE_VERBOSE);
1588
1589         BCE_LOCK(sc);
1590         bce_stop(sc);
1591         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1592                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1593         else
1594                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1595         bce_reset(sc, msg);
1596         BCE_UNLOCK(sc);
1597
1598         DBEXIT(BCE_VERBOSE);
1599
1600         return (0);
1601 }
1602
1603
1604 #ifdef BCE_DEBUG
1605 /****************************************************************************/
1606 /* Register read.                                                           */
1607 /*                                                                          */
1608 /* Returns:                                                                 */
1609 /*   The value of the register.                                             */
1610 /****************************************************************************/
1611 static u32
1612 bce_reg_rd(struct bce_softc *sc, u32 offset)
1613 {
1614         u32 val = REG_RD(sc, offset);
1615         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1616                 __FUNCTION__, offset, val);
1617         return val;
1618 }
1619
1620
1621 /****************************************************************************/
1622 /* Register write (16 bit).                                                 */
1623 /*                                                                          */
1624 /* Returns:                                                                 */
1625 /*   Nothing.                                                               */
1626 /****************************************************************************/
1627 static void
1628 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1629 {
1630         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1631                 __FUNCTION__, offset, val);
1632         REG_WR16(sc, offset, val);
1633 }
1634
1635
1636 /****************************************************************************/
1637 /* Register write.                                                          */
1638 /*                                                                          */
1639 /* Returns:                                                                 */
1640 /*   Nothing.                                                               */
1641 /****************************************************************************/
1642 static void
1643 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1644 {
1645         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1646                 __FUNCTION__, offset, val);
1647         REG_WR(sc, offset, val);
1648 }
1649 #endif
1650
1651 /****************************************************************************/
1652 /* Indirect register read.                                                  */
1653 /*                                                                          */
1654 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1655 /* configuration space.  Using this mechanism avoids issues with posted     */
1656 /* reads but is much slower than memory-mapped I/O.                         */
1657 /*                                                                          */
1658 /* Returns:                                                                 */
1659 /*   The value of the register.                                             */
1660 /****************************************************************************/
1661 static u32
1662 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1663 {
1664         device_t dev;
1665         dev = sc->bce_dev;
1666
1667         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1668 #ifdef BCE_DEBUG
1669         {
1670                 u32 val;
1671                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1672                 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1673                         __FUNCTION__, offset, val);
1674                 return val;
1675         }
1676 #else
1677         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1678 #endif
1679 }
1680
1681
1682 /****************************************************************************/
1683 /* Indirect register write.                                                 */
1684 /*                                                                          */
1685 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1686 /* configuration space.  Using this mechanism avoids issues with posted     */
1687 /* writes but is muchh slower than memory-mapped I/O.                       */
1688 /*                                                                          */
1689 /* Returns:                                                                 */
1690 /*   Nothing.                                                               */
1691 /****************************************************************************/
1692 static void
1693 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1694 {
1695         device_t dev;
1696         dev = sc->bce_dev;
1697
1698         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1699                 __FUNCTION__, offset, val);
1700
1701         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1702         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1703 }
1704
1705
1706 /****************************************************************************/
1707 /* Shared memory write.                                                     */
1708 /*                                                                          */
1709 /* Writes NetXtreme II shared memory region.                                */
1710 /*                                                                          */
1711 /* Returns:                                                                 */
1712 /*   Nothing.                                                               */
1713 /****************************************************************************/
1714 static void
1715 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1716 {
1717         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1718             "0x%08X\n", __FUNCTION__, val, offset);
1719
1720         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1721 }
1722
1723
1724 /****************************************************************************/
1725 /* Shared memory read.                                                      */
1726 /*                                                                          */
1727 /* Reads NetXtreme II shared memory region.                                 */
1728 /*                                                                          */
1729 /* Returns:                                                                 */
1730 /*   The 32 bit value read.                                                 */
1731 /****************************************************************************/
1732 static u32
1733 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1734 {
1735         u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1736
1737         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1738             "0x%08X\n", __FUNCTION__, val, offset);
1739
1740         return val;
1741 }
1742
1743
1744 #ifdef BCE_DEBUG
1745 /****************************************************************************/
1746 /* Context memory read.                                                     */
1747 /*                                                                          */
1748 /* The NetXtreme II controller uses context memory to track connection      */
1749 /* information for L2 and higher network protocols.                         */
1750 /*                                                                          */
1751 /* Returns:                                                                 */
1752 /*   The requested 32 bit value of context memory.                          */
1753 /****************************************************************************/
1754 static u32
1755 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1756 {
1757         u32 idx, offset, retry_cnt = 5, val;
1758
1759         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1760             cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1761             "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1762
1763         offset = ctx_offset + cid_addr;
1764
1765         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1766
1767                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1768
1769                 for (idx = 0; idx < retry_cnt; idx++) {
1770                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1771                         if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1772                                 break;
1773                         DELAY(5);
1774                 }
1775
1776                 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1777                         BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1778                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1779                             __FILE__, __LINE__, cid_addr, ctx_offset);
1780
1781                 val = REG_RD(sc, BCE_CTX_CTX_DATA);
1782         } else {
1783                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1784                 val = REG_RD(sc, BCE_CTX_DATA);
1785         }
1786
1787         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1788                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1789
1790         return(val);
1791 }
1792 #endif
1793
1794
1795 /****************************************************************************/
1796 /* Context memory write.                                                    */
1797 /*                                                                          */
1798 /* The NetXtreme II controller uses context memory to track connection      */
1799 /* information for L2 and higher network protocols.                         */
1800 /*                                                                          */
1801 /* Returns:                                                                 */
1802 /*   Nothing.                                                               */
1803 /****************************************************************************/
1804 static void
1805 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1806 {
1807         u32 idx, offset = ctx_offset + cid_addr;
1808         u32 val, retry_cnt = 5;
1809
1810         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1811                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1812
1813         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1814                 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1815                     __FUNCTION__, cid_addr));
1816
1817         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1818
1819                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1820                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1821
1822                 for (idx = 0; idx < retry_cnt; idx++) {
1823                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1824                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1825                                 break;
1826                         DELAY(5);
1827                 }
1828
1829                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1830                         BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1831                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1832                             __FILE__, __LINE__, cid_addr, ctx_offset);
1833
1834         } else {
1835                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1836                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1837         }
1838 }
1839
1840
1841 /****************************************************************************/
1842 /* PHY register read.                                                       */
1843 /*                                                                          */
1844 /* Implements register reads on the MII bus.                                */
1845 /*                                                                          */
1846 /* Returns:                                                                 */
1847 /*   The value of the register.                                             */
1848 /****************************************************************************/
1849 static int
1850 bce_miibus_read_reg(device_t dev, int phy, int reg)
1851 {
1852         struct bce_softc *sc;
1853         u32 val;
1854         int i;
1855
1856         sc = device_get_softc(dev);
1857
1858     /*
1859      * The 5709S PHY is an IEEE Clause 45 PHY
1860      * with special mappings to work with IEEE
1861      * Clause 22 register accesses.
1862      */
1863         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1864                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1865                         reg += 0x10;
1866         }
1867
1868     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1869                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1870                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1871
1872                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1873                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1874
1875                 DELAY(40);
1876         }
1877
1878
1879         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1880             BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1881             BCE_EMAC_MDIO_COMM_START_BUSY;
1882         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1883
1884         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1885                 DELAY(10);
1886
1887                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1888                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1889                         DELAY(5);
1890
1891                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1892                         val &= BCE_EMAC_MDIO_COMM_DATA;
1893
1894                         break;
1895                 }
1896         }
1897
1898         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1899                 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1900                     "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1901                 val = 0x0;
1902         } else {
1903                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1904         }
1905
1906
1907         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1908                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1909                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1910
1911                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1912                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1913
1914                 DELAY(40);
1915         }
1916
1917         DB_PRINT_PHY_REG(reg, val);
1918         return (val & 0xffff);
1919 }
1920
1921
1922 /****************************************************************************/
1923 /* PHY register write.                                                      */
1924 /*                                                                          */
1925 /* Implements register writes on the MII bus.                               */
1926 /*                                                                          */
1927 /* Returns:                                                                 */
1928 /*   The value of the register.                                             */
1929 /****************************************************************************/
1930 static int
1931 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1932 {
1933         struct bce_softc *sc;
1934         u32 val1;
1935         int i;
1936
1937         sc = device_get_softc(dev);
1938
1939         DB_PRINT_PHY_REG(reg, val);
1940
1941         /*
1942          * The 5709S PHY is an IEEE Clause 45 PHY
1943          * with special mappings to work with IEEE
1944          * Clause 22 register accesses.
1945          */
1946         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1947                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1948                         reg += 0x10;
1949         }
1950
1951         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1952                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1953                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1954
1955                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1956                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1957
1958                 DELAY(40);
1959         }
1960
1961         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1962             BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1963             BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1964         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1965
1966         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1967                 DELAY(10);
1968
1969                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1970                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1971                         DELAY(5);
1972                         break;
1973                 }
1974         }
1975
1976         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1977                 BCE_PRINTF("%s(%d): PHY write timeout!\n",
1978                     __FILE__, __LINE__);
1979
1980         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1981                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1982                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1983
1984                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1985                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1986
1987                 DELAY(40);
1988         }
1989
1990         return 0;
1991 }
1992
1993
1994 /****************************************************************************/
1995 /* MII bus status change.                                                   */
1996 /*                                                                          */
1997 /* Called by the MII bus driver when the PHY establishes link to set the    */
1998 /* MAC interface registers.                                                 */
1999 /*                                                                          */
2000 /* Returns:                                                                 */
2001 /*   Nothing.                                                               */
2002 /****************************************************************************/
2003 static void
2004 bce_miibus_statchg(device_t dev)
2005 {
2006         struct bce_softc *sc;
2007         struct mii_data *mii;
2008         struct ifmediareq ifmr;
2009         int media_active, media_status, val;
2010
2011         sc = device_get_softc(dev);
2012
2013         DBENTER(BCE_VERBOSE_PHY);
2014
2015         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2016                 bzero(&ifmr, sizeof(ifmr));
2017                 bce_ifmedia_sts_rphy(sc, &ifmr);
2018                 media_active = ifmr.ifm_active;
2019                 media_status = ifmr.ifm_status;
2020         } else {
2021                 mii = device_get_softc(sc->bce_miibus);
2022                 media_active = mii->mii_media_active;
2023                 media_status = mii->mii_media_status;
2024         }
2025
2026         /* Ignore invalid media status. */
2027         if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2028             (IFM_ACTIVE | IFM_AVALID))
2029                 goto bce_miibus_statchg_exit;
2030
2031         val = REG_RD(sc, BCE_EMAC_MODE);
2032         val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2033             BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2034             BCE_EMAC_MODE_25G);
2035
2036         /* Set MII or GMII interface based on the PHY speed. */
2037         switch (IFM_SUBTYPE(media_active)) {
2038         case IFM_10_T:
2039                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2040                         DBPRINT(sc, BCE_INFO_PHY,
2041                             "Enabling 10Mb interface.\n");
2042                         val |= BCE_EMAC_MODE_PORT_MII_10;
2043                         break;
2044                 }
2045                 /* fall-through */
2046         case IFM_100_TX:
2047                 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2048                 val |= BCE_EMAC_MODE_PORT_MII;
2049                 break;
2050         case IFM_2500_SX:
2051                 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2052                 val |= BCE_EMAC_MODE_25G;
2053                 /* fall-through */
2054         case IFM_1000_T:
2055         case IFM_1000_SX:
2056                 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2057                 val |= BCE_EMAC_MODE_PORT_GMII;
2058                 break;
2059         default:
2060                 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2061                     "default GMII interface.\n");
2062                 val |= BCE_EMAC_MODE_PORT_GMII;
2063         }
2064
2065         /* Set half or full duplex based on PHY settings. */
2066         if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2067                 DBPRINT(sc, BCE_INFO_PHY,
2068                     "Setting Half-Duplex interface.\n");
2069                 val |= BCE_EMAC_MODE_HALF_DUPLEX;
2070         } else
2071                 DBPRINT(sc, BCE_INFO_PHY,
2072                     "Setting Full-Duplex interface.\n");
2073
2074         REG_WR(sc, BCE_EMAC_MODE, val);
2075
2076         if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2077                 DBPRINT(sc, BCE_INFO_PHY,
2078                     "%s(): Enabling RX flow control.\n", __FUNCTION__);
2079                 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2080                 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2081         } else {
2082                 DBPRINT(sc, BCE_INFO_PHY,
2083                     "%s(): Disabling RX flow control.\n", __FUNCTION__);
2084                 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2085                 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2086         }
2087
2088         if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2089                 DBPRINT(sc, BCE_INFO_PHY,
2090                     "%s(): Enabling TX flow control.\n", __FUNCTION__);
2091                 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2092                 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2093         } else {
2094                 DBPRINT(sc, BCE_INFO_PHY,
2095                     "%s(): Disabling TX flow control.\n", __FUNCTION__);
2096                 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2097                 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2098         }
2099
2100         /* ToDo: Update watermarks in bce_init_rx_context(). */
2101
2102 bce_miibus_statchg_exit:
2103         DBEXIT(BCE_VERBOSE_PHY);
2104 }
2105
2106
2107 /****************************************************************************/
2108 /* Acquire NVRAM lock.                                                      */
2109 /*                                                                          */
2110 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2111 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2112 /* for use by the driver.                                                   */
2113 /*                                                                          */
2114 /* Returns:                                                                 */
2115 /*   0 on success, positive value on failure.                               */
2116 /****************************************************************************/
2117 static int
2118 bce_acquire_nvram_lock(struct bce_softc *sc)
2119 {
2120         u32 val;
2121         int j, rc = 0;
2122
2123         DBENTER(BCE_VERBOSE_NVRAM);
2124
2125         /* Request access to the flash interface. */
2126         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2127         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2128                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2129                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2130                         break;
2131
2132                 DELAY(5);
2133         }
2134
2135         if (j >= NVRAM_TIMEOUT_COUNT) {
2136                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2137                 rc = EBUSY;
2138         }
2139
2140         DBEXIT(BCE_VERBOSE_NVRAM);
2141         return (rc);
2142 }
2143
2144
2145 /****************************************************************************/
2146 /* Release NVRAM lock.                                                      */
2147 /*                                                                          */
2148 /* When the caller is finished accessing NVRAM the lock must be released.   */
2149 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2150 /* for use by the driver.                                                   */
2151 /*                                                                          */
2152 /* Returns:                                                                 */
2153 /*   0 on success, positive value on failure.                               */
2154 /****************************************************************************/
2155 static int
2156 bce_release_nvram_lock(struct bce_softc *sc)
2157 {
2158         u32 val;
2159         int j, rc = 0;
2160
2161         DBENTER(BCE_VERBOSE_NVRAM);
2162
2163         /*
2164          * Relinquish nvram interface.
2165          */
2166         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2167
2168         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2169                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2170                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2171                         break;
2172
2173                 DELAY(5);
2174         }
2175
2176         if (j >= NVRAM_TIMEOUT_COUNT) {
2177                 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2178                 rc = EBUSY;
2179         }
2180
2181         DBEXIT(BCE_VERBOSE_NVRAM);
2182         return (rc);
2183 }
2184
2185
2186 #ifdef BCE_NVRAM_WRITE_SUPPORT
2187 /****************************************************************************/
2188 /* Enable NVRAM write access.                                               */
2189 /*                                                                          */
2190 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2191 /*                                                                          */
2192 /* Returns:                                                                 */
2193 /*   0 on success, positive value on failure.                               */
2194 /****************************************************************************/
2195 static int
2196 bce_enable_nvram_write(struct bce_softc *sc)
2197 {
2198         u32 val;
2199         int rc = 0;
2200
2201         DBENTER(BCE_VERBOSE_NVRAM);
2202
2203         val = REG_RD(sc, BCE_MISC_CFG);
2204         REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2205
2206         if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2207                 int j;
2208
2209                 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2210                 REG_WR(sc, BCE_NVM_COMMAND,     BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2211
2212                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2213                         DELAY(5);
2214
2215                         val = REG_RD(sc, BCE_NVM_COMMAND);
2216                         if (val & BCE_NVM_COMMAND_DONE)
2217                                 break;
2218                 }
2219
2220                 if (j >= NVRAM_TIMEOUT_COUNT) {
2221                         DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2222                         rc = EBUSY;
2223                 }
2224         }
2225
2226         DBENTER(BCE_VERBOSE_NVRAM);
2227         return (rc);
2228 }
2229
2230
2231 /****************************************************************************/
2232 /* Disable NVRAM write access.                                              */
2233 /*                                                                          */
2234 /* When the caller is finished writing to NVRAM write access must be        */
2235 /* disabled.                                                                */
2236 /*                                                                          */
2237 /* Returns:                                                                 */
2238 /*   Nothing.                                                               */
2239 /****************************************************************************/
2240 static void
2241 bce_disable_nvram_write(struct bce_softc *sc)
2242 {
2243         u32 val;
2244
2245         DBENTER(BCE_VERBOSE_NVRAM);
2246
2247         val = REG_RD(sc, BCE_MISC_CFG);
2248         REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2249
2250         DBEXIT(BCE_VERBOSE_NVRAM);
2251
2252 }
2253 #endif
2254
2255
2256 /****************************************************************************/
2257 /* Enable NVRAM access.                                                     */
2258 /*                                                                          */
2259 /* Before accessing NVRAM for read or write operations the caller must      */
2260 /* enabled NVRAM access.                                                    */
2261 /*                                                                          */
2262 /* Returns:                                                                 */
2263 /*   Nothing.                                                               */
2264 /****************************************************************************/
2265 static void
2266 bce_enable_nvram_access(struct bce_softc *sc)
2267 {
2268         u32 val;
2269
2270         DBENTER(BCE_VERBOSE_NVRAM);
2271
2272         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2273         /* Enable both bits, even on read. */
2274         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2275             BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2276
2277         DBEXIT(BCE_VERBOSE_NVRAM);
2278 }
2279
2280
2281 /****************************************************************************/
2282 /* Disable NVRAM access.                                                    */
2283 /*                                                                          */
2284 /* When the caller is finished accessing NVRAM access must be disabled.     */
2285 /*                                                                          */
2286 /* Returns:                                                                 */
2287 /*   Nothing.                                                               */
2288 /****************************************************************************/
2289 static void
2290 bce_disable_nvram_access(struct bce_softc *sc)
2291 {
2292         u32 val;
2293
2294         DBENTER(BCE_VERBOSE_NVRAM);
2295
2296         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2297
2298         /* Disable both bits, even after read. */
2299         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2300             ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2301
2302         DBEXIT(BCE_VERBOSE_NVRAM);
2303 }
2304
2305
2306 #ifdef BCE_NVRAM_WRITE_SUPPORT
2307 /****************************************************************************/
2308 /* Erase NVRAM page before writing.                                         */
2309 /*                                                                          */
2310 /* Non-buffered flash parts require that a page be erased before it is      */
2311 /* written.                                                                 */
2312 /*                                                                          */
2313 /* Returns:                                                                 */
2314 /*   0 on success, positive value on failure.                               */
2315 /****************************************************************************/
2316 static int
2317 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2318 {
2319         u32 cmd;
2320         int j, rc = 0;
2321
2322         DBENTER(BCE_VERBOSE_NVRAM);
2323
2324         /* Buffered flash doesn't require an erase. */
2325         if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2326                 goto bce_nvram_erase_page_exit;
2327
2328         /* Build an erase command. */
2329         cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2330             BCE_NVM_COMMAND_DOIT;
2331
2332         /*
2333          * Clear the DONE bit separately, set the NVRAM adress to erase,
2334          * and issue the erase command.
2335          */
2336         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2337         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2338         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2339
2340         /* Wait for completion. */
2341         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2342                 u32 val;
2343
2344                 DELAY(5);
2345
2346                 val = REG_RD(sc, BCE_NVM_COMMAND);
2347                 if (val & BCE_NVM_COMMAND_DONE)
2348                         break;
2349         }
2350
2351         if (j >= NVRAM_TIMEOUT_COUNT) {
2352                 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2353                 rc = EBUSY;
2354         }
2355
2356 bce_nvram_erase_page_exit:
2357         DBEXIT(BCE_VERBOSE_NVRAM);
2358         return (rc);
2359 }
2360 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2361
2362
2363 /****************************************************************************/
2364 /* Read a dword (32 bits) from NVRAM.                                       */
2365 /*                                                                          */
2366 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2367 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2368 /*                                                                          */
2369 /* Returns:                                                                 */
2370 /*   0 on success and the 32 bit value read, positive value on failure.     */
2371 /****************************************************************************/
2372 static int
2373 bce_nvram_read_dword(struct bce_softc *sc,
2374     u32 offset, u8 *ret_val, u32 cmd_flags)
2375 {
2376         u32 cmd;
2377         int i, rc = 0;
2378
2379         DBENTER(BCE_EXTREME_NVRAM);
2380
2381         /* Build the command word. */
2382         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2383
2384         /* Calculate the offset for buffered flash if translation is used. */
2385         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2386                 offset = ((offset / sc->bce_flash_info->page_size) <<
2387                     sc->bce_flash_info->page_bits) +
2388                     (offset % sc->bce_flash_info->page_size);
2389         }
2390
2391         /*
2392          * Clear the DONE bit separately, set the address to read,
2393          * and issue the read.
2394          */
2395         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2396         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2397         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2398
2399         /* Wait for completion. */
2400         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2401                 u32 val;
2402
2403                 DELAY(5);
2404
2405                 val = REG_RD(sc, BCE_NVM_COMMAND);
2406                 if (val & BCE_NVM_COMMAND_DONE) {
2407                         val = REG_RD(sc, BCE_NVM_READ);
2408
2409                         val = bce_be32toh(val);
2410                         memcpy(ret_val, &val, 4);
2411                         break;
2412                 }
2413         }
2414
2415         /* Check for errors. */
2416         if (i >= NVRAM_TIMEOUT_COUNT) {
2417                 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2418                     "offset 0x%08X!\n", __FILE__, __LINE__, offset);
2419                 rc = EBUSY;
2420         }
2421
2422         DBEXIT(BCE_EXTREME_NVRAM);
2423         return(rc);
2424 }
2425
2426
2427 #ifdef BCE_NVRAM_WRITE_SUPPORT
2428 /****************************************************************************/
2429 /* Write a dword (32 bits) to NVRAM.                                        */
2430 /*                                                                          */
2431 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2432 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2433 /* enabled NVRAM write access.                                              */
2434 /*                                                                          */
2435 /* Returns:                                                                 */
2436 /*   0 on success, positive value on failure.                               */
2437 /****************************************************************************/
2438 static int
2439 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2440         u32 cmd_flags)
2441 {
2442         u32 cmd, val32;
2443         int j, rc = 0;
2444
2445         DBENTER(BCE_VERBOSE_NVRAM);
2446
2447         /* Build the command word. */
2448         cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2449
2450         /* Calculate the offset for buffered flash if translation is used. */
2451         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2452                 offset = ((offset / sc->bce_flash_info->page_size) <<
2453                     sc->bce_flash_info->page_bits) +
2454                     (offset % sc->bce_flash_info->page_size);
2455         }
2456
2457         /*
2458          * Clear the DONE bit separately, convert NVRAM data to big-endian,
2459          * set the NVRAM address to write, and issue the write command
2460          */
2461         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2462         memcpy(&val32, val, 4);
2463         val32 = htobe32(val32);
2464         REG_WR(sc, BCE_NVM_WRITE, val32);
2465         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2466         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2467
2468         /* Wait for completion. */
2469         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2470                 DELAY(5);
2471
2472                 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2473                         break;
2474         }
2475         if (j >= NVRAM_TIMEOUT_COUNT) {
2476                 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2477                     "offset 0x%08X\n", __FILE__, __LINE__, offset);
2478                 rc = EBUSY;
2479         }
2480
2481         DBEXIT(BCE_VERBOSE_NVRAM);
2482         return (rc);
2483 }
2484 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2485
2486
2487 /****************************************************************************/
2488 /* Initialize NVRAM access.                                                 */
2489 /*                                                                          */
2490 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2491 /* access that device.                                                      */
2492 /*                                                                          */
2493 /* Returns:                                                                 */
2494 /*   0 on success, positive value on failure.                               */
2495 /****************************************************************************/
2496 static int
2497 bce_init_nvram(struct bce_softc *sc)
2498 {
2499         u32 val;
2500         int j, entry_count, rc = 0;
2501         const struct flash_spec *flash;
2502
2503         DBENTER(BCE_VERBOSE_NVRAM);
2504
2505         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2506                 sc->bce_flash_info = &flash_5709;
2507                 goto bce_init_nvram_get_flash_size;
2508         }
2509
2510         /* Determine the selected interface. */
2511         val = REG_RD(sc, BCE_NVM_CFG1);
2512
2513         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2514
2515         /*
2516          * Flash reconfiguration is required to support additional
2517          * NVRAM devices not directly supported in hardware.
2518          * Check if the flash interface was reconfigured
2519          * by the bootcode.
2520          */
2521
2522         if (val & 0x40000000) {
2523                 /* Flash interface reconfigured by bootcode. */
2524
2525                 DBPRINT(sc,BCE_INFO_LOAD,
2526                         "bce_init_nvram(): Flash WAS reconfigured.\n");
2527
2528                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2529                      j++, flash++) {
2530                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
2531                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2532                                 sc->bce_flash_info = flash;
2533                                 break;
2534                         }
2535                 }
2536         } else {
2537                 /* Flash interface not yet reconfigured. */
2538                 u32 mask;
2539
2540                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2541                         __FUNCTION__);
2542
2543                 if (val & (1 << 23))
2544                         mask = FLASH_BACKUP_STRAP_MASK;
2545                 else
2546                         mask = FLASH_STRAP_MASK;
2547
2548                 /* Look for the matching NVRAM device configuration data. */
2549                 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2550
2551                         /* Check if the device matches any of the known devices. */
2552                         if ((val & mask) == (flash->strapping & mask)) {
2553                                 /* Found a device match. */
2554                                 sc->bce_flash_info = flash;
2555
2556                                 /* Request access to the flash interface. */
2557                                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2558                                         return rc;
2559
2560                                 /* Reconfigure the flash interface. */
2561                                 bce_enable_nvram_access(sc);
2562                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2563                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2564                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2565                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2566                                 bce_disable_nvram_access(sc);
2567                                 bce_release_nvram_lock(sc);
2568
2569                                 break;
2570                         }
2571                 }
2572         }
2573
2574         /* Check if a matching device was found. */
2575         if (j == entry_count) {
2576                 sc->bce_flash_info = NULL;
2577                 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2578                     __FILE__, __LINE__);
2579                 DBEXIT(BCE_VERBOSE_NVRAM);
2580                 return (ENODEV);
2581         }
2582
2583 bce_init_nvram_get_flash_size:
2584         /* Write the flash config data to the shared memory interface. */
2585         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2586         val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2587         if (val)
2588                 sc->bce_flash_size = val;
2589         else
2590                 sc->bce_flash_size = sc->bce_flash_info->total_size;
2591
2592         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2593             __FUNCTION__, sc->bce_flash_info->name,
2594             sc->bce_flash_info->total_size);
2595
2596         DBEXIT(BCE_VERBOSE_NVRAM);
2597         return rc;
2598 }
2599
2600
2601 /****************************************************************************/
2602 /* Read an arbitrary range of data from NVRAM.                              */
2603 /*                                                                          */
2604 /* Prepares the NVRAM interface for access and reads the requested data     */
2605 /* into the supplied buffer.                                                */
2606 /*                                                                          */
2607 /* Returns:                                                                 */
2608 /*   0 on success and the data read, positive value on failure.             */
2609 /****************************************************************************/
2610 static int
2611 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2612         int buf_size)
2613 {
2614         int rc = 0;
2615         u32 cmd_flags, offset32, len32, extra;
2616
2617         DBENTER(BCE_VERBOSE_NVRAM);
2618
2619         if (buf_size == 0)
2620                 goto bce_nvram_read_exit;
2621
2622         /* Request access to the flash interface. */
2623         if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2624                 goto bce_nvram_read_exit;
2625
2626         /* Enable access to flash interface */
2627         bce_enable_nvram_access(sc);
2628
2629         len32 = buf_size;
2630         offset32 = offset;
2631         extra = 0;
2632
2633         cmd_flags = 0;
2634
2635         if (offset32 & 3) {
2636                 u8 buf[4];
2637                 u32 pre_len;
2638
2639                 offset32 &= ~3;
2640                 pre_len = 4 - (offset & 3);
2641
2642                 if (pre_len >= len32) {
2643                         pre_len = len32;
2644                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2645                 }
2646                 else {
2647                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2648                 }
2649
2650                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2651
2652                 if (rc)
2653                         return rc;
2654
2655                 memcpy(ret_buf, buf + (offset & 3), pre_len);
2656
2657                 offset32 += 4;
2658                 ret_buf += pre_len;
2659                 len32 -= pre_len;
2660         }
2661
2662         if (len32 & 3) {
2663                 extra = 4 - (len32 & 3);
2664                 len32 = (len32 + 4) & ~3;
2665         }
2666
2667         if (len32 == 4) {
2668                 u8 buf[4];
2669
2670                 if (cmd_flags)
2671                         cmd_flags = BCE_NVM_COMMAND_LAST;
2672                 else
2673                         cmd_flags = BCE_NVM_COMMAND_FIRST |
2674                                     BCE_NVM_COMMAND_LAST;
2675
2676                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2677
2678                 memcpy(ret_buf, buf, 4 - extra);
2679         }
2680         else if (len32 > 0) {
2681                 u8 buf[4];
2682
2683                 /* Read the first word. */
2684                 if (cmd_flags)
2685                         cmd_flags = 0;
2686                 else
2687                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2688
2689                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2690
2691                 /* Advance to the next dword. */
2692                 offset32 += 4;
2693                 ret_buf += 4;
2694                 len32 -= 4;
2695
2696                 while (len32 > 4 && rc == 0) {
2697                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2698
2699                         /* Advance to the next dword. */
2700                         offset32 += 4;
2701                         ret_buf += 4;
2702                         len32 -= 4;
2703                 }
2704
2705                 if (rc)
2706                         goto bce_nvram_read_locked_exit;
2707
2708                 cmd_flags = BCE_NVM_COMMAND_LAST;
2709                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2710
2711                 memcpy(ret_buf, buf, 4 - extra);
2712         }
2713
2714 bce_nvram_read_locked_exit:
2715         /* Disable access to flash interface and release the lock. */
2716         bce_disable_nvram_access(sc);
2717         bce_release_nvram_lock(sc);
2718
2719 bce_nvram_read_exit:
2720         DBEXIT(BCE_VERBOSE_NVRAM);
2721         return rc;
2722 }
2723
2724
2725 #ifdef BCE_NVRAM_WRITE_SUPPORT
2726 /****************************************************************************/
2727 /* Write an arbitrary range of data from NVRAM.                             */
2728 /*                                                                          */
2729 /* Prepares the NVRAM interface for write access and writes the requested   */
2730 /* data from the supplied buffer.  The caller is responsible for            */
2731 /* calculating any appropriate CRCs.                                        */
2732 /*                                                                          */
2733 /* Returns:                                                                 */
2734 /*   0 on success, positive value on failure.                               */
2735 /****************************************************************************/
2736 static int
2737 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2738         int buf_size)
2739 {
2740         u32 written, offset32, len32;
2741         u8 *buf, start[4], end[4];
2742         int rc = 0;
2743         int align_start, align_end;
2744
2745         DBENTER(BCE_VERBOSE_NVRAM);
2746
2747         buf = data_buf;
2748         offset32 = offset;
2749         len32 = buf_size;
2750         align_start = align_end = 0;
2751
2752         if ((align_start = (offset32 & 3))) {
2753                 offset32 &= ~3;
2754                 len32 += align_start;
2755                 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2756                         goto bce_nvram_write_exit;
2757         }
2758
2759         if (len32 & 3) {
2760                 if ((len32 > 4) || !align_start) {
2761                         align_end = 4 - (len32 & 3);
2762                         len32 += align_end;
2763                         if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2764                                 end, 4))) {
2765                                 goto bce_nvram_write_exit;
2766                         }
2767                 }
2768         }
2769
2770         if (align_start || align_end) {
2771                 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2772                 if (buf == 0) {
2773                         rc = ENOMEM;
2774                         goto bce_nvram_write_exit;
2775                 }
2776
2777                 if (align_start) {
2778                         memcpy(buf, start, 4);
2779                 }
2780
2781                 if (align_end) {
2782                         memcpy(buf + len32 - 4, end, 4);
2783                 }
2784                 memcpy(buf + align_start, data_buf, buf_size);
2785         }
2786
2787         written = 0;
2788         while ((written < len32) && (rc == 0)) {
2789                 u32 page_start, page_end, data_start, data_end;
2790                 u32 addr, cmd_flags;
2791                 int i;
2792                 u8 flash_buffer[264];
2793
2794             /* Find the page_start addr */
2795                 page_start = offset32 + written;
2796                 page_start -= (page_start % sc->bce_flash_info->page_size);
2797                 /* Find the page_end addr */
2798                 page_end = page_start + sc->bce_flash_info->page_size;
2799                 /* Find the data_start addr */
2800                 data_start = (written == 0) ? offset32 : page_start;
2801                 /* Find the data_end addr */
2802                 data_end = (page_end > offset32 + len32) ?
2803                         (offset32 + len32) : page_end;
2804
2805                 /* Request access to the flash interface. */
2806                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2807                         goto bce_nvram_write_exit;
2808
2809                 /* Enable access to flash interface */
2810                 bce_enable_nvram_access(sc);
2811
2812                 cmd_flags = BCE_NVM_COMMAND_FIRST;
2813                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2814                         int j;
2815
2816                         /* Read the whole page into the buffer
2817                          * (non-buffer flash only) */
2818                         for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2819                                 if (j == (sc->bce_flash_info->page_size - 4)) {
2820                                         cmd_flags |= BCE_NVM_COMMAND_LAST;
2821                                 }
2822                                 rc = bce_nvram_read_dword(sc,
2823                                         page_start + j,
2824                                         &flash_buffer[j],
2825                                         cmd_flags);
2826
2827                                 if (rc)
2828                                         goto bce_nvram_write_locked_exit;
2829
2830                                 cmd_flags = 0;
2831                         }
2832                 }
2833
2834                 /* Enable writes to flash interface (unlock write-protect) */
2835                 if ((rc = bce_enable_nvram_write(sc)) != 0)
2836                         goto bce_nvram_write_locked_exit;
2837
2838                 /* Erase the page */
2839                 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2840                         goto bce_nvram_write_locked_exit;
2841
2842                 /* Re-enable the write again for the actual write */
2843                 bce_enable_nvram_write(sc);
2844
2845                 /* Loop to write back the buffer data from page_start to
2846                  * data_start */
2847                 i = 0;
2848                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2849                         for (addr = page_start; addr < data_start;
2850                                 addr += 4, i += 4) {
2851
2852                                 rc = bce_nvram_write_dword(sc, addr,
2853                                         &flash_buffer[i], cmd_flags);
2854
2855                                 if (rc != 0)
2856                                         goto bce_nvram_write_locked_exit;
2857
2858                                 cmd_flags = 0;
2859                         }
2860                 }
2861
2862                 /* Loop to write the new data from data_start to data_end */
2863                 for (addr = data_start; addr < data_end; addr += 4, i++) {
2864                         if ((addr == page_end - 4) ||
2865                                 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2866                                 (addr == data_end - 4))) {
2867
2868                                 cmd_flags |= BCE_NVM_COMMAND_LAST;
2869                         }
2870                         rc = bce_nvram_write_dword(sc, addr, buf,
2871                                 cmd_flags);
2872
2873                         if (rc != 0)
2874                                 goto bce_nvram_write_locked_exit;
2875
2876                         cmd_flags = 0;
2877                         buf += 4;
2878                 }
2879
2880                 /* Loop to write back the buffer data from data_end
2881                  * to page_end */
2882                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2883                         for (addr = data_end; addr < page_end;
2884                                 addr += 4, i += 4) {
2885
2886                                 if (addr == page_end-4) {
2887                                         cmd_flags = BCE_NVM_COMMAND_LAST;
2888                                 }
2889                                 rc = bce_nvram_write_dword(sc, addr,
2890                                         &flash_buffer[i], cmd_flags);
2891
2892                                 if (rc != 0)
2893                                         goto bce_nvram_write_locked_exit;
2894
2895                                 cmd_flags = 0;
2896                         }
2897                 }
2898
2899                 /* Disable writes to flash interface (lock write-protect) */
2900                 bce_disable_nvram_write(sc);
2901
2902                 /* Disable access to flash interface */
2903                 bce_disable_nvram_access(sc);
2904                 bce_release_nvram_lock(sc);
2905
2906                 /* Increment written */
2907                 written += data_end - data_start;
2908         }
2909
2910         goto bce_nvram_write_exit;
2911
2912 bce_nvram_write_locked_exit:
2913         bce_disable_nvram_write(sc);
2914         bce_disable_nvram_access(sc);
2915         bce_release_nvram_lock(sc);
2916
2917 bce_nvram_write_exit:
2918         if (align_start || align_end)
2919                 free(buf, M_DEVBUF);
2920
2921         DBEXIT(BCE_VERBOSE_NVRAM);
2922         return (rc);
2923 }
2924 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2925
2926
2927 /****************************************************************************/
2928 /* Verifies that NVRAM is accessible and contains valid data.               */
2929 /*                                                                          */
2930 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2931 /* correct.                                                                 */
2932 /*                                                                          */
2933 /* Returns:                                                                 */
2934 /*   0 on success, positive value on failure.                               */
2935 /****************************************************************************/
2936 static int
2937 bce_nvram_test(struct bce_softc *sc)
2938 {
2939         u32 buf[BCE_NVRAM_SIZE / 4];
2940         u8 *data = (u8 *) buf;
2941         int rc = 0;
2942         u32 magic, csum;
2943
2944         DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2945
2946         /*
2947          * Check that the device NVRAM is valid by reading
2948          * the magic value at offset 0.
2949          */
2950         if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2951                 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2952                     __FILE__, __LINE__);
2953                 goto bce_nvram_test_exit;
2954         }
2955
2956         /*
2957          * Verify that offset 0 of the NVRAM contains
2958          * a valid magic number.
2959          */
2960         magic = bce_be32toh(buf[0]);
2961         if (magic != BCE_NVRAM_MAGIC) {
2962                 rc = ENODEV;
2963                 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2964                     "Expected: 0x%08X, Found: 0x%08X\n",
2965                     __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2966                 goto bce_nvram_test_exit;
2967         }
2968
2969         /*
2970          * Verify that the device NVRAM includes valid
2971          * configuration data.
2972          */
2973         if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2974                 BCE_PRINTF("%s(%d): Unable to read manufacturing "
2975                     "Information from  NVRAM!\n", __FILE__, __LINE__);
2976                 goto bce_nvram_test_exit;
2977         }
2978
2979         csum = ether_crc32_le(data, 0x100);
2980         if (csum != BCE_CRC32_RESIDUAL) {
2981                 rc = ENODEV;
2982                 BCE_PRINTF("%s(%d): Invalid manufacturing information "
2983                     "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2984                     __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2985                 goto bce_nvram_test_exit;
2986         }
2987
2988         csum = ether_crc32_le(data + 0x100, 0x100);
2989         if (csum != BCE_CRC32_RESIDUAL) {
2990                 rc = ENODEV;
2991                 BCE_PRINTF("%s(%d): Invalid feature configuration "
2992                     "information NVRAM CRC! Expected: 0x%08X, "
2993                     "Found: 08%08X\n", __FILE__, __LINE__,
2994                     BCE_CRC32_RESIDUAL, csum);
2995         }
2996
2997 bce_nvram_test_exit:
2998         DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2999         return rc;
3000 }
3001
3002
3003 /****************************************************************************/
3004 /* Calculates the size of the buffers to allocate based on the MTU.         */
3005 /*                                                                          */
3006 /* Returns:                                                                 */
3007 /*   Nothing.                                                               */
3008 /****************************************************************************/
3009 static void
3010 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3011 {
3012         DBENTER(BCE_VERBOSE_LOAD);
3013
3014         /* Use a single allocation type when header splitting enabled. */
3015         if (bce_hdr_split == TRUE) {
3016                 sc->rx_bd_mbuf_alloc_size = MHLEN;
3017                 /* Make sure offset is 16 byte aligned for hardware. */
3018                 sc->rx_bd_mbuf_align_pad =
3019                         roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3020                 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3021                         sc->rx_bd_mbuf_align_pad;
3022         } else {
3023                 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3024                     ETHER_CRC_LEN) > MCLBYTES) {
3025                         /* Setup for jumbo RX buffer allocations. */
3026                         sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3027                         sc->rx_bd_mbuf_align_pad  =
3028                                 roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3029                         sc->rx_bd_mbuf_data_len =
3030                             sc->rx_bd_mbuf_alloc_size -
3031                             sc->rx_bd_mbuf_align_pad;
3032                 } else {
3033                         /* Setup for standard RX buffer allocations. */
3034                         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3035                         sc->rx_bd_mbuf_align_pad  =
3036                             roundup2(MCLBYTES, 16) - MCLBYTES;
3037                         sc->rx_bd_mbuf_data_len =
3038                             sc->rx_bd_mbuf_alloc_size -
3039                             sc->rx_bd_mbuf_align_pad;
3040                 }
3041         }
3042
3043 //      DBPRINT(sc, BCE_INFO_LOAD,
3044         DBPRINT(sc, BCE_WARN,
3045            "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3046            "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3047            sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3048            sc->rx_bd_mbuf_align_pad);
3049
3050         DBEXIT(BCE_VERBOSE_LOAD);
3051 }
3052
3053 /****************************************************************************/
3054 /* Identifies the current media type of the controller and sets the PHY     */
3055 /* address.                                                                 */
3056 /*                                                                          */
3057 /* Returns:                                                                 */
3058 /*   Nothing.                                                               */
3059 /****************************************************************************/
3060 static void
3061 bce_get_media(struct bce_softc *sc)
3062 {
3063         u32 val;
3064
3065         DBENTER(BCE_VERBOSE_PHY);
3066
3067         /* Assume PHY address for copper controllers. */
3068         sc->bce_phy_addr = 1;
3069
3070         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3071                 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3072                 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3073                 u32 strap;
3074
3075                 /*
3076                  * The BCM5709S is software configurable
3077                  * for Copper or SerDes operation.
3078                  */
3079                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3080                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3081                             "for copper.\n");
3082                         goto bce_get_media_exit;
3083                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3084                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3085                             "for dual media.\n");
3086                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3087                         goto bce_get_media_exit;
3088                 }
3089
3090                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3091                         strap = (val &
3092                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3093                 else
3094                         strap = (val &
3095                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3096
3097                 if (pci_get_function(sc->bce_dev) == 0) {
3098                         switch (strap) {
3099                         case 0x4:
3100                         case 0x5:
3101                         case 0x6:
3102                                 DBPRINT(sc, BCE_INFO_LOAD,
3103                                     "BCM5709 s/w configured for SerDes.\n");
3104                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3105                                 break;
3106                         default:
3107                                 DBPRINT(sc, BCE_INFO_LOAD,
3108                                     "BCM5709 s/w configured for Copper.\n");
3109                                 break;
3110                         }
3111                 } else {
3112                         switch (strap) {
3113                         case 0x1:
3114                         case 0x2:
3115                         case 0x4:
3116                                 DBPRINT(sc, BCE_INFO_LOAD,
3117                                     "BCM5709 s/w configured for SerDes.\n");
3118                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3119                                 break;
3120                         default:
3121                                 DBPRINT(sc, BCE_INFO_LOAD,
3122                                     "BCM5709 s/w configured for Copper.\n");
3123                                 break;
3124                         }
3125                 }
3126
3127         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3128                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3129
3130         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3131
3132                 sc->bce_flags |= BCE_NO_WOL_FLAG;
3133
3134                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3135                         sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3136
3137                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3138                         /* 5708S/09S/16S use a separate PHY for SerDes. */
3139                         sc->bce_phy_addr = 2;
3140
3141                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3142                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3143                                 sc->bce_phy_flags |=
3144                                     BCE_PHY_2_5G_CAPABLE_FLAG;
3145                                 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3146                                     "capable adapter\n");
3147                         }
3148                 }
3149         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3150             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3151                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3152
3153 bce_get_media_exit:
3154         DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3155                 "Using PHY address %d.\n", sc->bce_phy_addr);
3156
3157         DBEXIT(BCE_VERBOSE_PHY);
3158 }
3159
3160
3161 /****************************************************************************/
3162 /* Performs PHY initialization required before MII drivers access the       */
3163 /* device.                                                                  */
3164 /*                                                                          */
3165 /* Returns:                                                                 */
3166 /*   Nothing.                                                               */
3167 /****************************************************************************/
3168 static void
3169 bce_init_media(struct bce_softc *sc)
3170 {
3171         if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3172             BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3173                 /*
3174                  * Configure 5709S/5716S PHYs to use traditional IEEE
3175                  * Clause 22 method. Otherwise we have no way to attach
3176                  * the PHY in mii(4) layer. PHY specific configuration
3177                  * is done in mii layer.
3178                  */
3179
3180                 /* Select auto-negotiation MMD of the PHY. */
3181                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3182                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3183                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3184                     BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3185
3186                 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3187                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3188                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3189         }
3190 }
3191
3192
3193 /****************************************************************************/
3194 /* Free any DMA memory owned by the driver.                                 */
3195 /*                                                                          */
3196 /* Scans through each data structre that requires DMA memory and frees      */
3197 /* the memory if allocated.                                                 */
3198 /*                                                                          */
3199 /* Returns:                                                                 */
3200 /*   Nothing.                                                               */
3201 /****************************************************************************/
3202 static void
3203 bce_dma_free(struct bce_softc *sc)
3204 {
3205         int i;
3206
3207         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3208
3209         /* Free, unmap, and destroy the status block. */
3210         if (sc->status_block != NULL) {
3211                 bus_dmamem_free(
3212                    sc->status_tag,
3213                     sc->status_block,
3214                     sc->status_map);
3215                 sc->status_block = NULL;
3216         }
3217
3218         if (sc->status_map != NULL) {
3219                 bus_dmamap_unload(
3220                     sc->status_tag,
3221                     sc->status_map);
3222                 bus_dmamap_destroy(sc->status_tag,
3223                     sc->status_map);
3224                 sc->status_map = NULL;
3225         }
3226
3227         if (sc->status_tag != NULL) {
3228                 bus_dma_tag_destroy(sc->status_tag);
3229                 sc->status_tag = NULL;
3230         }
3231
3232
3233         /* Free, unmap, and destroy the statistics block. */
3234         if (sc->stats_block != NULL) {
3235                 bus_dmamem_free(
3236                     sc->stats_tag,
3237                     sc->stats_block,
3238                     sc->stats_map);
3239                 sc->stats_block = NULL;
3240         }
3241
3242         if (sc->stats_map != NULL) {
3243                 bus_dmamap_unload(
3244                     sc->stats_tag,
3245                     sc->stats_map);
3246                 bus_dmamap_destroy(sc->stats_tag,
3247                     sc->stats_map);
3248                 sc->stats_map = NULL;
3249         }
3250
3251         if (sc->stats_tag != NULL) {
3252                 bus_dma_tag_destroy(sc->stats_tag);
3253                 sc->stats_tag = NULL;
3254         }
3255
3256
3257         /* Free, unmap and destroy all context memory pages. */
3258         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3259                 for (i = 0; i < sc->ctx_pages; i++ ) {
3260                         if (sc->ctx_block[i] != NULL) {
3261                                 bus_dmamem_free(
3262                                     sc->ctx_tag,
3263                                     sc->ctx_block[i],
3264                                     sc->ctx_map[i]);
3265                                 sc->ctx_block[i] = NULL;
3266                         }
3267
3268                         if (sc->ctx_map[i] != NULL) {
3269                                 bus_dmamap_unload(
3270                                     sc->ctx_tag,
3271                                     sc->ctx_map[i]);
3272                                 bus_dmamap_destroy(
3273                                     sc->ctx_tag,
3274                                     sc->ctx_map[i]);
3275                                 sc->ctx_map[i] = NULL;
3276                         }
3277                 }
3278
3279                 /* Destroy the context memory tag. */
3280                 if (sc->ctx_tag != NULL) {
3281                         bus_dma_tag_destroy(sc->ctx_tag);
3282                         sc->ctx_tag = NULL;
3283                 }
3284         }
3285
3286
3287         /* Free, unmap and destroy all TX buffer descriptor chain pages. */
3288         for (i = 0; i < sc->tx_pages; i++ ) {
3289                 if (sc->tx_bd_chain[i] != NULL) {
3290                         bus_dmamem_free(
3291                             sc->tx_bd_chain_tag,
3292                             sc->tx_bd_chain[i],
3293                             sc->tx_bd_chain_map[i]);
3294                         sc->tx_bd_chain[i] = NULL;
3295                 }
3296
3297                 if (sc->tx_bd_chain_map[i] != NULL) {
3298                         bus_dmamap_unload(
3299                             sc->tx_bd_chain_tag,
3300                             sc->tx_bd_chain_map[i]);
3301                         bus_dmamap_destroy(
3302                             sc->tx_bd_chain_tag,
3303                             sc->tx_bd_chain_map[i]);
3304                         sc->tx_bd_chain_map[i] = NULL;
3305                 }
3306         }
3307
3308         /* Destroy the TX buffer descriptor tag. */
3309         if (sc->tx_bd_chain_tag != NULL) {
3310                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3311                 sc->tx_bd_chain_tag = NULL;
3312         }
3313
3314
3315         /* Free, unmap and destroy all RX buffer descriptor chain pages. */
3316         for (i = 0; i < sc->rx_pages; i++ ) {
3317                 if (sc->rx_bd_chain[i] != NULL) {
3318                         bus_dmamem_free(
3319                             sc->rx_bd_chain_tag,
3320                             sc->rx_bd_chain[i],
3321                             sc->rx_bd_chain_map[i]);
3322                         sc->rx_bd_chain[i] = NULL;
3323                 }
3324
3325                 if (sc->rx_bd_chain_map[i] != NULL) {
3326                         bus_dmamap_unload(
3327                             sc->rx_bd_chain_tag,
3328                             sc->rx_bd_chain_map[i]);
3329                         bus_dmamap_destroy(
3330                             sc->rx_bd_chain_tag,
3331                             sc->rx_bd_chain_map[i]);
3332                         sc->rx_bd_chain_map[i] = NULL;
3333                 }
3334         }
3335
3336         /* Destroy the RX buffer descriptor tag. */
3337         if (sc->rx_bd_chain_tag != NULL) {
3338                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3339                 sc->rx_bd_chain_tag = NULL;
3340         }
3341
3342
3343         /* Free, unmap and destroy all page buffer descriptor chain pages. */
3344         if (bce_hdr_split == TRUE) {
3345                 for (i = 0; i < sc->pg_pages; i++ ) {
3346                         if (sc->pg_bd_chain[i] != NULL) {
3347                                 bus_dmamem_free(
3348                                     sc->pg_bd_chain_tag,
3349                                     sc->pg_bd_chain[i],
3350                                     sc->pg_bd_chain_map[i]);
3351                                 sc->pg_bd_chain[i] = NULL;
3352                         }
3353
3354                         if (sc->pg_bd_chain_map[i] != NULL) {
3355                                 bus_dmamap_unload(
3356                                     sc->pg_bd_chain_tag,
3357                                     sc->pg_bd_chain_map[i]);
3358                                 bus_dmamap_destroy(
3359                                     sc->pg_bd_chain_tag,
3360                                     sc->pg_bd_chain_map[i]);
3361                                 sc->pg_bd_chain_map[i] = NULL;
3362                         }
3363                 }
3364
3365                 /* Destroy the page buffer descriptor tag. */
3366                 if (sc->pg_bd_chain_tag != NULL) {
3367                         bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3368                         sc->pg_bd_chain_tag = NULL;
3369                 }
3370         }
3371
3372
3373         /* Unload and destroy the TX mbuf maps. */
3374         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3375                 if (sc->tx_mbuf_map[i] != NULL) {
3376                         bus_dmamap_unload(sc->tx_mbuf_tag,
3377                             sc->tx_mbuf_map[i]);
3378                         bus_dmamap_destroy(sc->tx_mbuf_tag,
3379                             sc->tx_mbuf_map[i]);
3380                         sc->tx_mbuf_map[i] = NULL;
3381                 }
3382         }
3383
3384         /* Destroy the TX mbuf tag. */
3385         if (sc->tx_mbuf_tag != NULL) {
3386                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
3387                 sc->tx_mbuf_tag = NULL;
3388         }
3389
3390         /* Unload and destroy the RX mbuf maps. */
3391         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3392                 if (sc->rx_mbuf_map[i] != NULL) {
3393                         bus_dmamap_unload(sc->rx_mbuf_tag,
3394                             sc->rx_mbuf_map[i]);
3395                         bus_dmamap_destroy(sc->rx_mbuf_tag,
3396                             sc->rx_mbuf_map[i]);
3397                         sc->rx_mbuf_map[i] = NULL;
3398                 }
3399         }
3400
3401         /* Destroy the RX mbuf tag. */
3402         if (sc->rx_mbuf_tag != NULL) {
3403                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
3404                 sc->rx_mbuf_tag = NULL;
3405         }
3406
3407         /* Unload and destroy the page mbuf maps. */
3408         if (bce_hdr_split == TRUE) {
3409                 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3410                         if (sc->pg_mbuf_map[i] != NULL) {
3411                                 bus_dmamap_unload(sc->pg_mbuf_tag,
3412                                     sc->pg_mbuf_map[i]);
3413                                 bus_dmamap_destroy(sc->pg_mbuf_tag,
3414                                     sc->pg_mbuf_map[i]);
3415                                 sc->pg_mbuf_map[i] = NULL;
3416                         }
3417                 }
3418
3419                 /* Destroy the page mbuf tag. */
3420                 if (sc->pg_mbuf_tag != NULL) {
3421                         bus_dma_tag_destroy(sc->pg_mbuf_tag);
3422                         sc->pg_mbuf_tag = NULL;
3423                 }
3424         }
3425
3426         /* Destroy the parent tag */
3427         if (sc->parent_tag != NULL) {
3428                 bus_dma_tag_destroy(sc->parent_tag);
3429                 sc->parent_tag = NULL;
3430         }
3431
3432         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3433 }
3434
3435
3436 /****************************************************************************/
3437 /* Get DMA memory from the OS.                                              */
3438 /*                                                                          */
3439 /* Validates that the OS has provided DMA buffers in response to a          */
3440 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3441 /* When the callback is used the OS will return 0 for the mapping function  */
3442 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3443 /* failures back to the caller.                                             */
3444 /*                                                                          */
3445 /* Returns:                                                                 */
3446 /*   Nothing.                                                               */
3447 /****************************************************************************/
3448 static void
3449 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3450 {
3451         bus_addr_t *busaddr = arg;
3452
3453         KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3454             __FUNCTION__, nseg));
3455         /* Simulate a mapping failure. */
3456         DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3457             error = ENOMEM);
3458
3459         /* ToDo: How to increment debug sim_count variable here? */
3460
3461         /* Check for an error and signal the caller that an error occurred. */
3462         if (error) {
3463                 *busaddr = 0;
3464         } else {
3465                 *busaddr = segs->ds_addr;
3466         }
3467 }
3468
3469
3470 /****************************************************************************/
3471 /* Allocate any DMA memory needed by the driver.                            */
3472 /*                                                                          */
3473 /* Allocates DMA memory needed for the various global structures needed by  */
3474 /* hardware.                                                                */
3475 /*                                                                          */
3476 /* Memory alignment requirements:                                           */
3477 /* +-----------------+----------+----------+----------+----------+          */
3478 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3479 /* +-----------------+----------+----------+----------+----------+          */
3480 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3481 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3482 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3483 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3484 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3485 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3486 /* |Context Memory   |          |          |          |          |          */
3487 /* +-----------------+----------+----------+----------+----------+          */
3488 /*                                                                          */
3489 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3490 /*                                                                          */
3491 /* Returns:                                                                 */
3492 /*   0 for success, positive value for failure.                             */
3493 /****************************************************************************/
3494 static int
3495 bce_dma_alloc(device_t dev)
3496 {
3497         struct bce_softc *sc;
3498         int i, error, rc = 0;
3499         bus_size_t max_size, max_seg_size;
3500         int max_segments;
3501
3502         sc = device_get_softc(dev);
3503
3504         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3505
3506         /*
3507          * Allocate the parent bus DMA tag appropriate for PCI.
3508          */
3509         if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3510             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3511             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3512             &sc->parent_tag)) {
3513                 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3514                     __FILE__, __LINE__);
3515                 rc = ENOMEM;
3516                 goto bce_dma_alloc_exit;
3517         }
3518
3519         /*
3520          * Create a DMA tag for the status block, allocate and clear the
3521          * memory, map the memory into DMA space, and fetch the physical
3522          * address of the block.
3523          */
3524         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3525             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3526             NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3527             0, NULL, NULL, &sc->status_tag)) {
3528                 BCE_PRINTF("%s(%d): Could not allocate status block "
3529                     "DMA tag!\n", __FILE__, __LINE__);
3530                 rc = ENOMEM;
3531                 goto bce_dma_alloc_exit;
3532         }
3533
3534         if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3535             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3536             &sc->status_map)) {
3537                 BCE_PRINTF("%s(%d): Could not allocate status block "
3538                     "DMA memory!\n", __FILE__, __LINE__);
3539                 rc = ENOMEM;
3540                 goto bce_dma_alloc_exit;
3541         }
3542
3543         error = bus_dmamap_load(sc->status_tag, sc->status_map,
3544             sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3545             &sc->status_block_paddr, BUS_DMA_NOWAIT);
3546
3547         if (error || sc->status_block_paddr == 0) {
3548                 BCE_PRINTF("%s(%d): Could not map status block "
3549                     "DMA memory!\n", __FILE__, __LINE__);
3550                 rc = ENOMEM;
3551                 goto bce_dma_alloc_exit;
3552         }
3553
3554         DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3555             __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3556
3557         /*
3558          * Create a DMA tag for the statistics block, allocate and clear the
3559          * memory, map the memory into DMA space, and fetch the physical
3560          * address of the block.
3561          */
3562         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3563             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3564             NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3565             0, NULL, NULL, &sc->stats_tag)) {
3566                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3567                     "DMA tag!\n", __FILE__, __LINE__);
3568                 rc = ENOMEM;
3569                 goto bce_dma_alloc_exit;
3570         }
3571
3572         if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3573             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3574                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3575                     "DMA memory!\n", __FILE__, __LINE__);
3576                 rc = ENOMEM;
3577                 goto bce_dma_alloc_exit;
3578         }
3579
3580         error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3581             sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3582             &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3583
3584         if (error || sc->stats_block_paddr == 0) {
3585                 BCE_PRINTF("%s(%d): Could not map statistics block "
3586                     "DMA memory!\n", __FILE__, __LINE__);
3587                 rc = ENOMEM;
3588                 goto bce_dma_alloc_exit;
3589         }
3590
3591         DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3592             __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3593
3594         /* BCM5709 uses host memory as cache for context memory. */
3595         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3596                 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3597                 if (sc->ctx_pages == 0)
3598                         sc->ctx_pages = 1;
3599
3600                 DBRUNIF((sc->ctx_pages > 512),
3601                     BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3602                     __FILE__, __LINE__, sc->ctx_pages));
3603
3604                 /*
3605                  * Create a DMA tag for the context pages,
3606                  * allocate and clear the memory, map the
3607                  * memory into DMA space, and fetch the
3608                  * physical address of the block.
3609                  */
3610                 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3611                     BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3612                     NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3613                     0, NULL, NULL, &sc->ctx_tag)) {
3614                         BCE_PRINTF("%s(%d): Could not allocate CTX "
3615                             "DMA tag!\n", __FILE__, __LINE__);
3616                         rc = ENOMEM;
3617                         goto bce_dma_alloc_exit;
3618                 }
3619
3620                 for (i = 0; i < sc->ctx_pages; i++) {
3621
3622                         if(bus_dmamem_alloc(sc->ctx_tag,
3623                             (void **)&sc->ctx_block[i],
3624                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3625                             &sc->ctx_map[i])) {
3626                                 BCE_PRINTF("%s(%d): Could not allocate CTX "
3627                                     "DMA memory!\n", __FILE__, __LINE__);
3628                                 rc = ENOMEM;
3629                                 goto bce_dma_alloc_exit;
3630                         }
3631
3632                         error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3633                             sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3634                             &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3635
3636                         if (error || sc->ctx_paddr[i] == 0) {
3637                                 BCE_PRINTF("%s(%d): Could not map CTX "
3638                                     "DMA memory!\n", __FILE__, __LINE__);
3639                                 rc = ENOMEM;
3640                                 goto bce_dma_alloc_exit;
3641                         }
3642
3643                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3644                             "= 0x%jX\n", __FUNCTION__, i,
3645                             (uintmax_t) sc->ctx_paddr[i]);
3646                 }
3647         }
3648
3649         /*
3650          * Create a DMA tag for the TX buffer descriptor chain,
3651          * allocate and clear the  memory, and fetch the
3652          * physical address of the block.
3653          */
3654         if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3655             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3656             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3657             NULL, NULL, &sc->tx_bd_chain_tag)) {
3658                 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3659                     "chain DMA tag!\n", __FILE__, __LINE__);
3660                 rc = ENOMEM;
3661                 goto bce_dma_alloc_exit;
3662         }
3663
3664         for (i = 0; i < sc->tx_pages; i++) {
3665
3666                 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3667                     (void **)&sc->tx_bd_chain[i],
3668                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3669                     &sc->tx_bd_chain_map[i])) {
3670                         BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3671                             "chain DMA memory!\n", __FILE__, __LINE__);
3672                         rc = ENOMEM;
3673                         goto bce_dma_alloc_exit;
3674                 }
3675
3676                 error = bus_dmamap_load(sc->tx_bd_chain_tag,
3677                     sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3678                     BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3679                     &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3680
3681                 if (error || sc->tx_bd_chain_paddr[i] == 0) {
3682                         BCE_PRINTF("%s(%d): Could not map TX descriptor "
3683                             "chain DMA memory!\n", __FILE__, __LINE__);
3684                         rc = ENOMEM;
3685                         goto bce_dma_alloc_exit;
3686                 }
3687
3688                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3689                     "0x%jX\n", __FUNCTION__, i,
3690                     (uintmax_t) sc->tx_bd_chain_paddr[i]);
3691         }
3692
3693         /* Check the required size before mapping to conserve resources. */
3694         if (bce_tso_enable) {
3695                 max_size     = BCE_TSO_MAX_SIZE;
3696                 max_segments = BCE_MAX_SEGMENTS;
3697                 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3698         } else {
3699                 max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3700                 max_segments = BCE_MAX_SEGMENTS;
3701                 max_seg_size = MCLBYTES;
3702         }
3703
3704         /* Create a DMA tag for TX mbufs. */
3705         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3706             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3707             max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
3708                 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3709                     __FILE__, __LINE__);
3710                 rc = ENOMEM;
3711                 goto bce_dma_alloc_exit;
3712         }
3713
3714         /* Create DMA maps for the TX mbufs clusters. */
3715         for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3716                 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3717                         &sc->tx_mbuf_map[i])) {
3718                         BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3719                             "map!\n", __FILE__, __LINE__);
3720                         rc = ENOMEM;
3721                         goto bce_dma_alloc_exit;
3722                 }
3723         }
3724
3725         /*
3726          * Create a DMA tag for the RX buffer descriptor chain,
3727          * allocate and clear the memory, and fetch the physical
3728          * address of the blocks.
3729          */
3730         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3731                         BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3732                         sc->max_bus_addr, NULL, NULL,
3733                         BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3734                         0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3735                 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3736                     "DMA tag!\n", __FILE__, __LINE__);
3737                 rc = ENOMEM;
3738                 goto bce_dma_alloc_exit;
3739         }
3740
3741         for (i = 0; i < sc->rx_pages; i++) {
3742
3743                 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3744                     (void **)&sc->rx_bd_chain[i],
3745                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3746                     &sc->rx_bd_chain_map[i])) {
3747                         BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3748                             "chain DMA memory!\n", __FILE__, __LINE__);
3749                         rc = ENOMEM;
3750                         goto bce_dma_alloc_exit;
3751                 }
3752
3753                 error = bus_dmamap_load(sc->rx_bd_chain_tag,
3754                     sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3755                     BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3756                     &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3757
3758                 if (error || sc->rx_bd_chain_paddr[i] == 0) {
3759                         BCE_PRINTF("%s(%d): Could not map RX descriptor "
3760                             "chain DMA memory!\n", __FILE__, __LINE__);
3761                         rc = ENOMEM;
3762                         goto bce_dma_alloc_exit;
3763                 }
3764
3765                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3766                     "0x%jX\n", __FUNCTION__, i,
3767                     (uintmax_t) sc->rx_bd_chain_paddr[i]);
3768         }
3769
3770         /*
3771          * Create a DMA tag for RX mbufs.
3772          */
3773         if (bce_hdr_split == TRUE)
3774                 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3775                     MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3776         else
3777                 max_size = MJUM9BYTES;
3778
3779         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3780             "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3781
3782         if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3783             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3784             max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3785                 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3786                     __FILE__, __LINE__);
3787                 rc = ENOMEM;
3788                 goto bce_dma_alloc_exit;
3789         }
3790
3791         /* Create DMA maps for the RX mbuf clusters. */
3792         for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3793                 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3794                     &sc->rx_mbuf_map[i])) {
3795                         BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3796                             "DMA map!\n", __FILE__, __LINE__);
3797                         rc = ENOMEM;
3798                         goto bce_dma_alloc_exit;
3799                 }
3800         }
3801
3802         if (bce_hdr_split == TRUE) {
3803                 /*
3804                  * Create a DMA tag for the page buffer descriptor chain,
3805                  * allocate and clear the memory, and fetch the physical
3806                  * address of the blocks.
3807                  */
3808                 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3809                             BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3810                             NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3811                             0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3812                         BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3813                             "chain DMA tag!\n", __FILE__, __LINE__);
3814                         rc = ENOMEM;
3815                         goto bce_dma_alloc_exit;
3816                 }
3817
3818                 for (i = 0; i < sc->pg_pages; i++) {
3819                         if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3820                             (void **)&sc->pg_bd_chain[i],
3821                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3822                             &sc->pg_bd_chain_map[i])) {
3823                                 BCE_PRINTF("%s(%d): Could not allocate page "
3824                                     "descriptor chain DMA memory!\n",
3825                                     __FILE__, __LINE__);
3826                                 rc = ENOMEM;
3827                                 goto bce_dma_alloc_exit;
3828                         }
3829
3830                         error = bus_dmamap_load(sc->pg_bd_chain_tag,
3831                             sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3832                             BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3833                             &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3834
3835                         if (error || sc->pg_bd_chain_paddr[i] == 0) {
3836                                 BCE_PRINTF("%s(%d): Could not map page descriptor "
3837                                         "chain DMA memory!\n", __FILE__, __LINE__);
3838                                 rc = ENOMEM;
3839                                 goto bce_dma_alloc_exit;
3840                         }
3841
3842                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3843                                 "0x%jX\n", __FUNCTION__, i,
3844                                 (uintmax_t) sc->pg_bd_chain_paddr[i]);
3845                 }
3846
3847                 /*
3848                  * Create a DMA tag for page mbufs.
3849                  */
3850                 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3851                     sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3852                     1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3853                         BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3854                                 "DMA tag!\n", __FILE__, __LINE__);
3855                         rc = ENOMEM;
3856                         goto bce_dma_alloc_exit;
3857                 }
3858
3859                 /* Create DMA maps for the page mbuf clusters. */
3860                 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3861                         if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3862                                 &sc->pg_mbuf_map[i])) {
3863                                 BCE_PRINTF("%s(%d): Unable to create page mbuf "
3864                                         "DMA map!\n", __FILE__, __LINE__);
3865                                 rc = ENOMEM;
3866                                 goto bce_dma_alloc_exit;
3867                         }
3868                 }
3869         }
3870
3871 bce_dma_alloc_exit:
3872         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3873         return(rc);
3874 }
3875
3876
3877 /****************************************************************************/
3878 /* Release all resources used by the driver.                                */
3879 /*                                                                          */
3880 /* Releases all resources acquired by the driver including interrupts,      */
3881 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3882 /*                                                                          */
3883 /* Returns:                                                                 */
3884 /*   Nothing.                                                               */
3885 /****************************************************************************/
3886 static void
3887 bce_release_resources(struct bce_softc *sc)
3888 {
3889         device_t dev;
3890
3891         DBENTER(BCE_VERBOSE_RESET);
3892
3893         dev = sc->bce_dev;
3894
3895         bce_dma_free(sc);
3896
3897         if (sc->bce_intrhand != NULL) {
3898                 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3899                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3900         }
3901
3902         if (sc->bce_res_irq != NULL) {
3903                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3904                 bus_release_resource(dev, SYS_RES_IRQ,
3905                     rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3906         }
3907
3908         if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3909                 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3910                 pci_release_msi(dev);
3911         }
3912
3913         if (sc->bce_res_mem != NULL) {
3914                 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3915                     bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3916                     sc->bce_res_mem);
3917         }
3918
3919         if (sc->bce_ifp != NULL) {
3920                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3921                 if_free(sc->bce_ifp);
3922         }
3923
3924         if (mtx_initialized(&sc->bce_mtx))
3925                 BCE_LOCK_DESTROY(sc);
3926
3927         DBEXIT(BCE_VERBOSE_RESET);
3928 }
3929
3930
3931 /****************************************************************************/
3932 /* Firmware synchronization.                                                */
3933 /*                                                                          */
3934 /* Before performing certain events such as a chip reset, synchronize with  */
3935 /* the firmware first.                                                      */
3936 /*                                                                          */
3937 /* Returns:                                                                 */
3938 /*   0 for success, positive value for failure.                             */
3939 /****************************************************************************/
3940 static int
3941 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3942 {
3943         int i, rc = 0;
3944         u32 val;
3945
3946         DBENTER(BCE_VERBOSE_RESET);
3947
3948         /* Don't waste any time if we've timed out before. */
3949         if (sc->bce_fw_timed_out == TRUE) {
3950                 rc = EBUSY;
3951                 goto bce_fw_sync_exit;
3952         }
3953
3954         /* Increment the message sequence number. */
3955         sc->bce_fw_wr_seq++;
3956         msg_data |= sc->bce_fw_wr_seq;
3957
3958         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3959             "0x%08X\n", msg_data);
3960
3961         /* Send the message to the bootcode driver mailbox. */
3962         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3963
3964         /* Wait for the bootcode to acknowledge the message. */
3965         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3966                 /* Check for a response in the bootcode firmware mailbox. */
3967                 val = bce_shmem_rd(sc, BCE_FW_MB);
3968                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3969                         break;
3970                 DELAY(1000);
3971         }
3972
3973         /* If we've timed out, tell bootcode that we've stopped waiting. */
3974         if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3975             ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3976
3977                 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3978                     "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3979
3980                 msg_data &= ~BCE_DRV_MSG_CODE;
3981                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3982
3983                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3984
3985                 sc->bce_fw_timed_out = TRUE;
3986                 rc = EBUSY;
3987         }
3988
3989 bce_fw_sync_exit:
3990         DBEXIT(BCE_VERBOSE_RESET);
3991         return (rc);
3992 }
3993
3994
3995 /****************************************************************************/
3996 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3997 /*                                                                          */
3998 /* Returns:                                                                 */
3999 /*   Nothing.                                                               */
4000 /****************************************************************************/
4001 static void
4002 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4003         u32 rv2p_code_len, u32 rv2p_proc)
4004 {
4005         int i;
4006         u32 val;
4007
4008         DBENTER(BCE_VERBOSE_RESET);
4009
4010         /* Set the page size used by RV2P. */
4011         if (rv2p_proc == RV2P_PROC2) {
4012                 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4013         }
4014
4015         for (i = 0; i < rv2p_code_len; i += 8) {
4016                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4017                 rv2p_code++;
4018                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4019                 rv2p_code++;
4020
4021                 if (rv2p_proc == RV2P_PROC1) {
4022                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4023                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4024                 }
4025                 else {
4026                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4027                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4028                 }
4029         }
4030
4031         /* Reset the processor, un-stall is done later. */
4032         if (rv2p_proc == RV2P_PROC1) {
4033                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4034         }
4035         else {
4036                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4037         }
4038
4039         DBEXIT(BCE_VERBOSE_RESET);
4040 }
4041
4042
4043 /****************************************************************************/
4044 /* Load RISC processor firmware.                                            */
4045 /*                                                                          */
4046 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4047 /* associated with a particular processor.                                  */
4048 /*                                                                          */
4049 /* Returns:                                                                 */
4050 /*   Nothing.                                                               */
4051 /****************************************************************************/
4052 static void
4053 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4054         struct fw_info *fw)
4055 {
4056         u32 offset;
4057
4058         DBENTER(BCE_VERBOSE_RESET);
4059
4060     bce_halt_cpu(sc, cpu_reg);
4061
4062         /* Load the Text area. */
4063         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4064         if (fw->text) {
4065                 int j;
4066
4067                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4068                         REG_WR_IND(sc, offset, fw->text[j]);
4069                 }
4070         }
4071
4072         /* Load the Data area. */
4073         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4074         if (fw->data) {
4075                 int j;
4076
4077                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4078                         REG_WR_IND(sc, offset, fw->data[j]);
4079                 }
4080         }
4081
4082         /* Load the SBSS area. */
4083         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4084         if (fw->sbss) {
4085                 int j;
4086
4087                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4088                         REG_WR_IND(sc, offset, fw->sbss[j]);
4089                 }
4090         }
4091
4092         /* Load the BSS area. */
4093         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4094         if (fw->bss) {
4095                 int j;
4096
4097                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4098                         REG_WR_IND(sc, offset, fw->bss[j]);
4099                 }
4100         }
4101
4102         /* Load the Read-Only area. */
4103         offset = cpu_reg->spad_base +
4104                 (fw->rodata_addr - cpu_reg->mips_view_base);
4105         if (fw->rodata) {
4106                 int j;
4107
4108                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4109                         REG_WR_IND(sc, offset, fw->rodata[j]);
4110                 }
4111         }
4112
4113         /* Clear the pre-fetch instruction and set the FW start address. */
4114         REG_WR_IND(sc, cpu_reg->inst, 0);
4115         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4116
4117         DBEXIT(BCE_VERBOSE_RESET);
4118 }
4119
4120
4121 /****************************************************************************/
4122 /* Starts the RISC processor.                                               */
4123 /*                                                                          */
4124 /* Assumes the CPU starting address has already been set.                   */
4125 /*                                                                          */
4126 /* Returns:                                                                 */
4127 /*   Nothing.                                                               */
4128 /****************************************************************************/
4129 static void
4130 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4131 {
4132         u32 val;
4133
4134         DBENTER(BCE_VERBOSE_RESET);
4135
4136         /* Start the CPU. */
4137         val = REG_RD_IND(sc, cpu_reg->mode);
4138         val &= ~cpu_reg->mode_value_halt;
4139         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4140         REG_WR_IND(sc, cpu_reg->mode, val);
4141
4142         DBEXIT(BCE_VERBOSE_RESET);
4143 }
4144
4145
4146 /****************************************************************************/
4147 /* Halts the RISC processor.                                                */
4148 /*                                                                          */
4149 /* Returns:                                                                 */
4150 /*   Nothing.                                                               */
4151 /****************************************************************************/
4152 static void
4153 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4154 {
4155         u32 val;
4156
4157         DBENTER(BCE_VERBOSE_RESET);
4158
4159         /* Halt the CPU. */
4160         val = REG_RD_IND(sc, cpu_reg->mode);
4161         val |= cpu_reg->mode_value_halt;
4162         REG_WR_IND(sc, cpu_reg->mode, val);
4163         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4164
4165         DBEXIT(BCE_VERBOSE_RESET);
4166 }
4167
4168
4169 /****************************************************************************/
4170 /* Initialize the RX CPU.                                                   */
4171 /*                                                                          */
4172 /* Returns:                                                                 */
4173 /*   Nothing.                                                               */
4174 /****************************************************************************/
4175 static void
4176 bce_start_rxp_cpu(struct bce_softc *sc)
4177 {
4178         struct cpu_reg cpu_reg;
4179
4180         DBENTER(BCE_VERBOSE_RESET);
4181
4182         cpu_reg.mode = BCE_RXP_CPU_MODE;
4183         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4184         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4185         cpu_reg.state = BCE_RXP_CPU_STATE;
4186         cpu_reg.state_value_clear = 0xffffff;
4187         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4188         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4189         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4190         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4191         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4192         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4193         cpu_reg.mips_view_base = 0x8000000;
4194
4195         DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4196         bce_start_cpu(sc, &cpu_reg);
4197
4198         DBEXIT(BCE_VERBOSE_RESET);
4199 }
4200
4201
4202 /****************************************************************************/
4203 /* Initialize the RX CPU.                                                   */
4204 /*                                                                          */
4205 /* Returns:                                                                 */
4206 /*   Nothing.                                                               */
4207 /****************************************************************************/
4208 static void
4209 bce_init_rxp_cpu(struct bce_softc *sc)
4210 {
4211         struct cpu_reg cpu_reg;
4212         struct fw_info fw;
4213
4214         DBENTER(BCE_VERBOSE_RESET);
4215
4216         cpu_reg.mode = BCE_RXP_CPU_MODE;
4217         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4218         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4219         cpu_reg.state = BCE_RXP_CPU_STATE;
4220         cpu_reg.state_value_clear = 0xffffff;
4221         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4222         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4223         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4224         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4225         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4226         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4227         cpu_reg.mips_view_base = 0x8000000;
4228
4229         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4230                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
4231                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4232                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
4233                 fw.start_addr = bce_RXP_b09FwStartAddr;
4234
4235                 fw.text_addr = bce_RXP_b09FwTextAddr;
4236                 fw.text_len = bce_RXP_b09FwTextLen;
4237                 fw.text_index = 0;
4238                 fw.text = bce_RXP_b09FwText;
4239
4240                 fw.data_addr = bce_RXP_b09FwDataAddr;
4241                 fw.data_len = bce_RXP_b09FwDataLen;
4242                 fw.data_index = 0;
4243                 fw.data = bce_RXP_b09FwData;
4244
4245                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4246                 fw.sbss_len = bce_RXP_b09FwSbssLen;
4247                 fw.sbss_index = 0;
4248                 fw.sbss = bce_RXP_b09FwSbss;
4249
4250                 fw.bss_addr = bce_RXP_b09FwBssAddr;
4251                 fw.bss_len = bce_RXP_b09FwBssLen;
4252                 fw.bss_index = 0;
4253                 fw.bss = bce_RXP_b09FwBss;
4254
4255                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4256                 fw.rodata_len = bce_RXP_b09FwRodataLen;
4257                 fw.rodata_index = 0;
4258                 fw.rodata = bce_RXP_b09FwRodata;
4259         } else {
4260                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
4261                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4262                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
4263                 fw.start_addr = bce_RXP_b06FwStartAddr;
4264
4265                 fw.text_addr = bce_RXP_b06FwTextAddr;
4266                 fw.text_len = bce_RXP_b06FwTextLen;
4267                 fw.text_index = 0;
4268                 fw.text = bce_RXP_b06FwText;
4269
4270                 fw.data_addr = bce_RXP_b06FwDataAddr;
4271                 fw.data_len = bce_RXP_b06FwDataLen;
4272                 fw.data_index = 0;
4273                 fw.data = bce_RXP_b06FwData;
4274
4275                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4276                 fw.sbss_len = bce_RXP_b06FwSbssLen;
4277                 fw.sbss_index = 0;
4278                 fw.sbss = bce_RXP_b06FwSbss;
4279
4280                 fw.bss_addr = bce_RXP_b06FwBssAddr;
4281                 fw.bss_len = bce_RXP_b06FwBssLen;
4282                 fw.bss_index = 0;
4283                 fw.bss = bce_RXP_b06FwBss;
4284
4285                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4286                 fw.rodata_len = bce_RXP_b06FwRodataLen;
4287                 fw.rodata_index = 0;
4288                 fw.rodata = bce_RXP_b06FwRodata;
4289         }
4290
4291         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4292         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4293
4294     /* Delay RXP start until initialization is complete. */
4295
4296         DBEXIT(BCE_VERBOSE_RESET);
4297 }
4298
4299
4300 /****************************************************************************/
4301 /* Initialize the TX CPU.                                                   */
4302 /*                                                                          */
4303 /* Returns:                                                                 */
4304 /*   Nothing.                                                               */
4305 /****************************************************************************/
4306 static void
4307 bce_init_txp_cpu(struct bce_softc *sc)
4308 {
4309         struct cpu_reg cpu_reg;
4310         struct fw_info fw;
4311
4312         DBENTER(BCE_VERBOSE_RESET);
4313
4314         cpu_reg.mode = BCE_TXP_CPU_MODE;
4315         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4316         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4317         cpu_reg.state = BCE_TXP_CPU_STATE;
4318         cpu_reg.state_value_clear = 0xffffff;
4319         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4320         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4321         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4322         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4323         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4324         cpu_reg.spad_base = BCE_TXP_SCRATCH;
4325         cpu_reg.mips_view_base = 0x8000000;
4326
4327         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4328                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
4329                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4330                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
4331                 fw.start_addr = bce_TXP_b09FwStartAddr;
4332
4333                 fw.text_addr = bce_TXP_b09FwTextAddr;
4334                 fw.text_len = bce_TXP_b09FwTextLen;
4335                 fw.text_index = 0;
4336                 fw.text = bce_TXP_b09FwText;
4337
4338                 fw.data_addr = bce_TXP_b09FwDataAddr;
4339                 fw.data_len = bce_TXP_b09FwDataLen;
4340                 fw.data_index = 0;
4341                 fw.data = bce_TXP_b09FwData;
4342
4343                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4344                 fw.sbss_len = bce_TXP_b09FwSbssLen;
4345                 fw.sbss_index = 0;
4346                 fw.sbss = bce_TXP_b09FwSbss;
4347
4348                 fw.bss_addr = bce_TXP_b09FwBssAddr;
4349                 fw.bss_len = bce_TXP_b09FwBssLen;
4350                 fw.bss_index = 0;
4351                 fw.bss = bce_TXP_b09FwBss;
4352
4353                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4354                 fw.rodata_len = bce_TXP_b09FwRodataLen;
4355                 fw.rodata_index = 0;
4356                 fw.rodata = bce_TXP_b09FwRodata;
4357         } else {
4358                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
4359                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4360                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
4361                 fw.start_addr = bce_TXP_b06FwStartAddr;
4362
4363                 fw.text_addr = bce_TXP_b06FwTextAddr;
4364                 fw.text_len = bce_TXP_b06FwTextLen;
4365                 fw.text_index = 0;
4366                 fw.text = bce_TXP_b06FwText;
4367
4368                 fw.data_addr = bce_TXP_b06FwDataAddr;
4369                 fw.data_len = bce_TXP_b06FwDataLen;
4370                 fw.data_index = 0;
4371                 fw.data = bce_TXP_b06FwData;
4372
4373                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4374                 fw.sbss_len = bce_TXP_b06FwSbssLen;
4375                 fw.sbss_index = 0;
4376                 fw.sbss = bce_TXP_b06FwSbss;
4377
4378                 fw.bss_addr = bce_TXP_b06FwBssAddr;
4379                 fw.bss_len = bce_TXP_b06FwBssLen;
4380                 fw.bss_index = 0;
4381                 fw.bss = bce_TXP_b06FwBss;
4382
4383                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4384                 fw.rodata_len = bce_TXP_b06FwRodataLen;
4385                 fw.rodata_index = 0;
4386                 fw.rodata = bce_TXP_b06FwRodata;
4387         }
4388
4389         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4390         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4391     bce_start_cpu(sc, &cpu_reg);
4392
4393         DBEXIT(BCE_VERBOSE_RESET);
4394 }
4395
4396
4397 /****************************************************************************/
4398 /* Initialize the TPAT CPU.                                                 */
4399 /*                                                                          */
4400 /* Returns:                                                                 */
4401 /*   Nothing.                                                               */
4402 /****************************************************************************/
4403 static void
4404 bce_init_tpat_cpu(struct bce_softc *sc)
4405 {
4406         struct cpu_reg cpu_reg;
4407         struct fw_info fw;
4408
4409         DBENTER(BCE_VERBOSE_RESET);
4410
4411         cpu_reg.mode = BCE_TPAT_CPU_MODE;
4412         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4413         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4414         cpu_reg.state = BCE_TPAT_CPU_STATE;
4415         cpu_reg.state_value_clear = 0xffffff;
4416         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4417         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4418         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4419         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4420         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4421         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4422         cpu_reg.mips_view_base = 0x8000000;
4423
4424         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4425                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4426                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4427                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4428                 fw.start_addr = bce_TPAT_b09FwStartAddr;
4429
4430                 fw.text_addr = bce_TPAT_b09FwTextAddr;
4431                 fw.text_len = bce_TPAT_b09FwTextLen;
4432                 fw.text_index = 0;
4433                 fw.text = bce_TPAT_b09FwText;
4434
4435                 fw.data_addr = bce_TPAT_b09FwDataAddr;
4436                 fw.data_len = bce_TPAT_b09FwDataLen;
4437                 fw.data_index = 0;
4438                 fw.data = bce_TPAT_b09FwData;
4439
4440                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4441                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
4442                 fw.sbss_index = 0;
4443                 fw.sbss = bce_TPAT_b09FwSbss;
4444
4445                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
4446                 fw.bss_len = bce_TPAT_b09FwBssLen;
4447                 fw.bss_index = 0;
4448                 fw.bss = bce_TPAT_b09FwBss;
4449
4450                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4451                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
4452                 fw.rodata_index = 0;
4453                 fw.rodata = bce_TPAT_b09FwRodata;
4454         } else {
4455                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4456                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4457                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4458                 fw.start_addr = bce_TPAT_b06FwStartAddr;
4459
4460                 fw.text_addr = bce_TPAT_b06FwTextAddr;
4461                 fw.text_len = bce_TPAT_b06FwTextLen;
4462                 fw.text_index = 0;
4463                 fw.text = bce_TPAT_b06FwText;
4464
4465                 fw.data_addr = bce_TPAT_b06FwDataAddr;
4466                 fw.data_len = bce_TPAT_b06FwDataLen;
4467                 fw.data_index = 0;
4468                 fw.data = bce_TPAT_b06FwData;
4469
4470                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4471                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
4472                 fw.sbss_index = 0;
4473                 fw.sbss = bce_TPAT_b06FwSbss;
4474
4475                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
4476                 fw.bss_len = bce_TPAT_b06FwBssLen;
4477                 fw.bss_index = 0;
4478                 fw.bss = bce_TPAT_b06FwBss;
4479
4480                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4481                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
4482                 fw.rodata_index = 0;
4483                 fw.rodata = bce_TPAT_b06FwRodata;
4484         }
4485
4486         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4487         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4488         bce_start_cpu(sc, &cpu_reg);
4489
4490         DBEXIT(BCE_VERBOSE_RESET);
4491 }
4492
4493
4494 /****************************************************************************/
4495 /* Initialize the CP CPU.                                                   */
4496 /*                                                                          */
4497 /* Returns:                                                                 */
4498 /*   Nothing.                                                               */
4499 /****************************************************************************/
4500 static void
4501 bce_init_cp_cpu(struct bce_softc *sc)
4502 {
4503         struct cpu_reg cpu_reg;
4504         struct fw_info fw;
4505
4506         DBENTER(BCE_VERBOSE_RESET);
4507
4508         cpu_reg.mode = BCE_CP_CPU_MODE;
4509         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4510         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4511         cpu_reg.state = BCE_CP_CPU_STATE;
4512         cpu_reg.state_value_clear = 0xffffff;
4513         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4514         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4515         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4516         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4517         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4518         cpu_reg.spad_base = BCE_CP_SCRATCH;
4519         cpu_reg.mips_view_base = 0x8000000;
4520
4521         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4522                 fw.ver_major = bce_CP_b09FwReleaseMajor;
4523                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
4524                 fw.ver_fix = bce_CP_b09FwReleaseFix;
4525                 fw.start_addr = bce_CP_b09FwStartAddr;
4526
4527                 fw.text_addr = bce_CP_b09FwTextAddr;
4528                 fw.text_len = bce_CP_b09FwTextLen;
4529                 fw.text_index = 0;
4530                 fw.text = bce_CP_b09FwText;
4531
4532                 fw.data_addr = bce_CP_b09FwDataAddr;
4533                 fw.data_len = bce_CP_b09FwDataLen;
4534                 fw.data_index = 0;
4535                 fw.data = bce_CP_b09FwData;
4536
4537                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
4538                 fw.sbss_len = bce_CP_b09FwSbssLen;
4539                 fw.sbss_index = 0;
4540                 fw.sbss = bce_CP_b09FwSbss;
4541
4542                 fw.bss_addr = bce_CP_b09FwBssAddr;
4543                 fw.bss_len = bce_CP_b09FwBssLen;
4544                 fw.bss_index = 0;
4545                 fw.bss = bce_CP_b09FwBss;
4546
4547                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
4548                 fw.rodata_len = bce_CP_b09FwRodataLen;
4549                 fw.rodata_index = 0;
4550                 fw.rodata = bce_CP_b09FwRodata;
4551         } else {
4552                 fw.ver_major = bce_CP_b06FwReleaseMajor;
4553                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
4554                 fw.ver_fix = bce_CP_b06FwReleaseFix;
4555                 fw.start_addr = bce_CP_b06FwStartAddr;
4556
4557                 fw.text_addr = bce_CP_b06FwTextAddr;
4558                 fw.text_len = bce_CP_b06FwTextLen;
4559                 fw.text_index = 0;
4560                 fw.text = bce_CP_b06FwText;
4561
4562                 fw.data_addr = bce_CP_b06FwDataAddr;
4563                 fw.data_len = bce_CP_b06FwDataLen;
4564                 fw.data_index = 0;
4565                 fw.data = bce_CP_b06FwData;
4566
4567                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
4568                 fw.sbss_len = bce_CP_b06FwSbssLen;
4569                 fw.sbss_index = 0;
4570                 fw.sbss = bce_CP_b06FwSbss;
4571
4572                 fw.bss_addr = bce_CP_b06FwBssAddr;
4573                 fw.bss_len = bce_CP_b06FwBssLen;
4574                 fw.bss_index = 0;
4575                 fw.bss = bce_CP_b06FwBss;
4576
4577                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
4578                 fw.rodata_len = bce_CP_b06FwRodataLen;
4579                 fw.rodata_index = 0;
4580                 fw.rodata = bce_CP_b06FwRodata;
4581         }
4582
4583         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4584         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4585         bce_start_cpu(sc, &cpu_reg);
4586
4587         DBEXIT(BCE_VERBOSE_RESET);
4588 }
4589
4590
4591 /****************************************************************************/
4592 /* Initialize the COM CPU.                                                 */
4593 /*                                                                          */
4594 /* Returns:                                                                 */
4595 /*   Nothing.                                                               */
4596 /****************************************************************************/
4597 static void
4598 bce_init_com_cpu(struct bce_softc *sc)
4599 {
4600         struct cpu_reg cpu_reg;
4601         struct fw_info fw;
4602
4603         DBENTER(BCE_VERBOSE_RESET);
4604
4605         cpu_reg.mode = BCE_COM_CPU_MODE;
4606         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4607         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4608         cpu_reg.state = BCE_COM_CPU_STATE;
4609         cpu_reg.state_value_clear = 0xffffff;
4610         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4611         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4612         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4613         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4614         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4615         cpu_reg.spad_base = BCE_COM_SCRATCH;
4616         cpu_reg.mips_view_base = 0x8000000;
4617
4618         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4619                 fw.ver_major = bce_COM_b09FwReleaseMajor;
4620                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
4621                 fw.ver_fix = bce_COM_b09FwReleaseFix;
4622                 fw.start_addr = bce_COM_b09FwStartAddr;
4623
4624                 fw.text_addr = bce_COM_b09FwTextAddr;
4625                 fw.text_len = bce_COM_b09FwTextLen;
4626                 fw.text_index = 0;
4627                 fw.text = bce_COM_b09FwText;
4628
4629                 fw.data_addr = bce_COM_b09FwDataAddr;
4630                 fw.data_len = bce_COM_b09FwDataLen;
4631                 fw.data_index = 0;
4632                 fw.data = bce_COM_b09FwData;
4633
4634                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
4635                 fw.sbss_len = bce_COM_b09FwSbssLen;
4636                 fw.sbss_index = 0;
4637                 fw.sbss = bce_COM_b09FwSbss;
4638
4639                 fw.bss_addr = bce_COM_b09FwBssAddr;
4640                 fw.bss_len = bce_COM_b09FwBssLen;
4641                 fw.bss_index = 0;
4642                 fw.bss = bce_COM_b09FwBss;
4643
4644                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
4645                 fw.rodata_len = bce_COM_b09FwRodataLen;
4646                 fw.rodata_index = 0;
4647                 fw.rodata = bce_COM_b09FwRodata;
4648         } else {
4649                 fw.ver_major = bce_COM_b06FwReleaseMajor;
4650                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
4651                 fw.ver_fix = bce_COM_b06FwReleaseFix;
4652                 fw.start_addr = bce_COM_b06FwStartAddr;
4653
4654                 fw.text_addr = bce_COM_b06FwTextAddr;
4655                 fw.text_len = bce_COM_b06FwTextLen;
4656                 fw.text_index = 0;
4657                 fw.text = bce_COM_b06FwText;
4658
4659                 fw.data_addr = bce_COM_b06FwDataAddr;
4660                 fw.data_len = bce_COM_b06FwDataLen;
4661                 fw.data_index = 0;
4662                 fw.data = bce_COM_b06FwData;
4663
4664                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
4665                 fw.sbss_len = bce_COM_b06FwSbssLen;
4666                 fw.sbss_index = 0;
4667                 fw.sbss = bce_COM_b06FwSbss;
4668
4669                 fw.bss_addr = bce_COM_b06FwBssAddr;
4670                 fw.bss_len = bce_COM_b06FwBssLen;
4671                 fw.bss_index = 0;
4672                 fw.bss = bce_COM_b06FwBss;
4673
4674                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
4675                 fw.rodata_len = bce_COM_b06FwRodataLen;
4676                 fw.rodata_index = 0;
4677                 fw.rodata = bce_COM_b06FwRodata;
4678         }
4679
4680         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4681         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4682         bce_start_cpu(sc, &cpu_reg);
4683
4684         DBEXIT(BCE_VERBOSE_RESET);
4685 }
4686
4687
4688 /****************************************************************************/
4689 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4690 /*                                                                          */
4691 /* Loads the firmware for each CPU and starts the CPU.                      */
4692 /*                                                                          */
4693 /* Returns:                                                                 */
4694 /*   Nothing.                                                               */
4695 /****************************************************************************/
4696 static void
4697 bce_init_cpus(struct bce_softc *sc)
4698 {
4699         DBENTER(BCE_VERBOSE_RESET);
4700
4701         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4702
4703                 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4704                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4705                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4706                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4707                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4708                 } else {
4709                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4710                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4711                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4712                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4713                 }
4714
4715         } else {
4716                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4717                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
4718                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4719                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
4720         }
4721
4722         bce_init_rxp_cpu(sc);
4723         bce_init_txp_cpu(sc);
4724         bce_init_tpat_cpu(sc);
4725         bce_init_com_cpu(sc);
4726         bce_init_cp_cpu(sc);
4727
4728         DBEXIT(BCE_VERBOSE_RESET);
4729 }
4730
4731
4732 /****************************************************************************/
4733 /* Initialize context memory.                                               */
4734 /*                                                                          */
4735 /* Clears the memory associated with each Context ID (CID).                 */
4736 /*                                                                          */
4737 /* Returns:                                                                 */
4738 /*   Nothing.                                                               */
4739 /****************************************************************************/
4740 static int
4741 bce_init_ctx(struct bce_softc *sc)
4742 {
4743         u32 offset, val, vcid_addr;
4744         int i, j, rc, retry_cnt;
4745
4746         rc = 0;
4747         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4748
4749         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4750                 retry_cnt = CTX_INIT_RETRY_COUNT;
4751
4752                 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4753
4754                 /*
4755                  * BCM5709 context memory may be cached
4756                  * in host memory so prepare the host memory
4757                  * for access.
4758                  */
4759                 val = BCE_CTX_COMMAND_ENABLED |
4760                     BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4761                 val |= (BCM_PAGE_BITS - 8) << 16;
4762                 REG_WR(sc, BCE_CTX_COMMAND, val);
4763
4764                 /* Wait for mem init command to complete. */
4765                 for (i = 0; i < retry_cnt; i++) {
4766                         val = REG_RD(sc, BCE_CTX_COMMAND);
4767                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4768                                 break;
4769                         DELAY(2);
4770                 }
4771                 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4772                         BCE_PRINTF("%s(): Context memory initialization failed!\n",
4773                             __FUNCTION__);
4774                         rc = EBUSY;
4775                         goto init_ctx_fail;
4776                 }
4777
4778                 for (i = 0; i < sc->ctx_pages; i++) {
4779                         /* Set the physical address of the context memory. */
4780                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4781                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4782                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4783                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4784                             BCE_ADDR_HI(sc->ctx_paddr[i]));
4785                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4786                             BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4787
4788                         /* Verify the context memory write was successful. */
4789                         for (j = 0; j < retry_cnt; j++) {
4790                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4791                                 if ((val &
4792                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4793                                         break;
4794                                 DELAY(5);
4795                         }
4796                         if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4797                                 BCE_PRINTF("%s(): Failed to initialize "
4798                                     "context page %d!\n", __FUNCTION__, i);
4799                                 rc = EBUSY;
4800                                 goto init_ctx_fail;
4801                         }
4802                 }
4803         } else {
4804
4805                 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4806
4807                 /*
4808                  * For the 5706/5708, context memory is local to
4809                  * the controller, so initialize the controller
4810                  * context memory.
4811                  */
4812
4813                 vcid_addr = GET_CID_ADDR(96);
4814                 while (vcid_addr) {
4815
4816                         vcid_addr -= PHY_CTX_SIZE;
4817
4818                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4819                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4820
4821                         for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4822                                 CTX_WR(sc, 0x00, offset, 0);
4823                         }
4824
4825                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4826                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4827                 }
4828
4829         }
4830 init_ctx_fail:
4831         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4832         return (rc);
4833 }
4834
4835
4836 /****************************************************************************/
4837 /* Fetch the permanent MAC address of the controller.                       */
4838 /*                                                                          */
4839 /* Returns:                                                                 */
4840 /*   Nothing.                                                               */
4841 /****************************************************************************/
4842 static void
4843 bce_get_mac_addr(struct bce_softc *sc)
4844 {
4845         u32 mac_lo = 0, mac_hi = 0;
4846
4847         DBENTER(BCE_VERBOSE_RESET);
4848
4849         /*
4850          * The NetXtreme II bootcode populates various NIC
4851          * power-on and runtime configuration items in a
4852          * shared memory area.  The factory configured MAC
4853          * address is available from both NVRAM and the
4854          * shared memory area so we'll read the value from
4855          * shared memory for speed.
4856          */
4857
4858         mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4859         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4860
4861         if ((mac_lo == 0) && (mac_hi == 0)) {
4862                 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4863                     __FILE__, __LINE__);
4864         } else {
4865                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
4866                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
4867                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
4868                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
4869                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
4870                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
4871         }
4872
4873         DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4874             "address = %6D\n", sc->eaddr, ":");
4875         DBEXIT(BCE_VERBOSE_RESET);
4876 }
4877
4878
4879 /****************************************************************************/
4880 /* Program the MAC address.                                                 */
4881 /*                                                                          */
4882 /* Returns:                                                                 */
4883 /*   Nothing.                                                               */
4884 /****************************************************************************/
4885 static void
4886 bce_set_mac_addr(struct bce_softc *sc)
4887 {
4888         u32 val;
4889         u8 *mac_addr = sc->eaddr;
4890
4891         /* ToDo: Add support for setting multiple MAC addresses. */
4892
4893         DBENTER(BCE_VERBOSE_RESET);
4894         DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4895             "%6D\n", sc->eaddr, ":");
4896
4897         val = (mac_addr[0] << 8) | mac_addr[1];
4898
4899         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4900
4901         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4902             (mac_addr[4] << 8) | mac_addr[5];
4903
4904         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4905
4906         DBEXIT(BCE_VERBOSE_RESET);
4907 }
4908
4909
4910 /****************************************************************************/
4911 /* Stop the controller.                                                     */
4912 /*                                                                          */
4913 /* Returns:                                                                 */
4914 /*   Nothing.                                                               */
4915 /****************************************************************************/
4916 static void
4917 bce_stop(struct bce_softc *sc)
4918 {
4919         struct ifnet *ifp;
4920
4921         DBENTER(BCE_VERBOSE_RESET);
4922
4923         BCE_LOCK_ASSERT(sc);
4924
4925         ifp = sc->bce_ifp;
4926
4927         callout_stop(&sc->bce_tick_callout);
4928
4929         /* Disable the transmit/receive blocks. */
4930         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4931         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4932         DELAY(20);
4933
4934         bce_disable_intr(sc);
4935
4936         /* Free RX buffers. */
4937         if (bce_hdr_split == TRUE) {
4938                 bce_free_pg_chain(sc);
4939         }
4940         bce_free_rx_chain(sc);
4941
4942         /* Free TX buffers. */
4943         bce_free_tx_chain(sc);
4944
4945         sc->watchdog_timer = 0;
4946
4947         sc->bce_link_up = FALSE;
4948
4949         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4950
4951         DBEXIT(BCE_VERBOSE_RESET);
4952 }
4953
4954
4955 static int
4956 bce_reset(struct bce_softc *sc, u32 reset_code)
4957 {
4958         u32 emac_mode_save, val;
4959         int i, rc = 0;
4960         static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4961             BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4962
4963         DBENTER(BCE_VERBOSE_RESET);
4964
4965         DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4966             __FUNCTION__, reset_code);
4967
4968         /*
4969          * If ASF/IPMI is operational, then the EMAC Mode register already
4970          * contains appropriate values for the link settings that have
4971          * been auto-negotiated.  Resetting the chip will clobber those
4972          * values.  Save the important bits so we can restore them after
4973          * the reset.
4974          */
4975         emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4976
4977         /* Wait for pending PCI transactions to complete. */
4978         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4979             BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4980             BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4981             BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4982             BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4983         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4984         DELAY(5);
4985
4986         /* Disable DMA */
4987         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4988                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4989                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4990                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4991         }
4992
4993         /* Assume bootcode is running. */
4994         sc->bce_fw_timed_out = FALSE;
4995         sc->bce_drv_cardiac_arrest = FALSE;
4996
4997         /* Give the firmware a chance to prepare for the reset. */
4998         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4999         if (rc)
5000                 goto bce_reset_exit;
5001
5002         /* Set a firmware reminder that this is a soft reset. */
5003         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5004
5005         /* Dummy read to force the chip to complete all current transactions. */
5006         val = REG_RD(sc, BCE_MISC_ID);
5007
5008         /* Chip reset. */
5009         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5010                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5011                 REG_RD(sc, BCE_MISC_COMMAND);
5012                 DELAY(5);
5013
5014                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5015                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5016
5017                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5018         } else {
5019                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5020                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5021                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5022                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5023
5024                 /* Allow up to 30us for reset to complete. */
5025                 for (i = 0; i < 10; i++) {
5026                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5027                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5028                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5029                                 break;
5030                         }
5031                         DELAY(10);
5032                 }
5033
5034                 /* Check that reset completed successfully. */
5035                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5036                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5037                         BCE_PRINTF("%s(%d): Reset failed!\n",
5038                             __FILE__, __LINE__);
5039                         rc = EBUSY;
5040                         goto bce_reset_exit;
5041                 }
5042         }
5043
5044         /* Make sure byte swapping is properly configured. */
5045         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5046         if (val != 0x01020304) {
5047                 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5048                     __FILE__, __LINE__);
5049                 rc = ENODEV;
5050                 goto bce_reset_exit;
5051         }
5052
5053         /* Just completed a reset, assume that firmware is running again. */
5054         sc->bce_fw_timed_out = FALSE;
5055         sc->bce_drv_cardiac_arrest = FALSE;
5056
5057         /* Wait for the firmware to finish its initialization. */
5058         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5059         if (rc)
5060                 BCE_PRINTF("%s(%d): Firmware did not complete "
5061                     "initialization!\n", __FILE__, __LINE__);
5062         /* Get firmware capabilities. */
5063         bce_fw_cap_init(sc);
5064
5065 bce_reset_exit:
5066         /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5067         val = REG_RD(sc, BCE_EMAC_MODE);
5068         val = (val & ~emac_mode_mask) | emac_mode_save;
5069         REG_WR(sc, BCE_EMAC_MODE, val);
5070
5071         DBEXIT(BCE_VERBOSE_RESET);
5072         return (rc);
5073 }
5074
5075
5076 static int
5077 bce_chipinit(struct bce_softc *sc)
5078 {
5079         u32 val;
5080         int rc = 0;
5081
5082         DBENTER(BCE_VERBOSE_RESET);
5083
5084         bce_disable_intr(sc);
5085
5086         /*
5087          * Initialize DMA byte/word swapping, configure the number of DMA
5088          * channels and PCI clock compensation delay.
5089          */
5090         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5091             BCE_DMA_CONFIG_DATA_WORD_SWAP |
5092 #if BYTE_ORDER == BIG_ENDIAN
5093             BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5094 #endif
5095             BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5096             DMA_READ_CHANS << 12 |
5097             DMA_WRITE_CHANS << 16;
5098
5099         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5100
5101         if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5102                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5103
5104         /*
5105          * This setting resolves a problem observed on certain Intel PCI
5106          * chipsets that cannot handle multiple outstanding DMA operations.
5107          * See errata E9_5706A1_65.
5108          */
5109         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5110             (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5111             !(sc->bce_flags & BCE_PCIX_FLAG))
5112                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5113
5114         REG_WR(sc, BCE_DMA_CONFIG, val);
5115
5116         /* Enable the RX_V2P and Context state machines before access. */
5117         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5118             BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5119             BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5120             BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5121
5122         /* Initialize context mapping and zero out the quick contexts. */
5123         if ((rc = bce_init_ctx(sc)) != 0)
5124                 goto bce_chipinit_exit;
5125
5126         /* Initialize the on-boards CPUs */
5127         bce_init_cpus(sc);
5128
5129         /* Enable management frames (NC-SI) to flow to the MCP. */
5130         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5131                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5132                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5133         }
5134
5135         /* Prepare NVRAM for access. */
5136         if ((rc = bce_init_nvram(sc)) != 0)
5137                 goto bce_chipinit_exit;
5138
5139         /* Set the kernel bypass block size */
5140         val = REG_RD(sc, BCE_MQ_CONFIG);
5141         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5142         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5143
5144         /* Enable bins used on the 5709. */
5145         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5146                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5147                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5148                         val |= BCE_MQ_CONFIG_HALT_DIS;
5149         }
5150
5151         REG_WR(sc, BCE_MQ_CONFIG, val);
5152
5153         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5154         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5155         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5156
5157         /* Set the page size and clear the RV2P processor stall bits. */
5158         val = (BCM_PAGE_BITS - 8) << 24;
5159         REG_WR(sc, BCE_RV2P_CONFIG, val);
5160
5161         /* Configure page size. */
5162         val = REG_RD(sc, BCE_TBDR_CONFIG);
5163         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5164         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5165         REG_WR(sc, BCE_TBDR_CONFIG, val);
5166
5167         /* Set the perfect match control register to default. */
5168         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5169
5170 bce_chipinit_exit:
5171         DBEXIT(BCE_VERBOSE_RESET);
5172
5173         return(rc);
5174 }
5175
5176
5177 /****************************************************************************/
5178 /* Initialize the controller in preparation to send/receive traffic.        */
5179 /*                                                                          */
5180 /* Returns:                                                                 */
5181 /*   0 for success, positive value for failure.                             */
5182 /****************************************************************************/
5183 static int
5184 bce_blockinit(struct bce_softc *sc)
5185 {
5186         u32 reg, val;
5187         int rc = 0;
5188
5189         DBENTER(BCE_VERBOSE_RESET);
5190
5191         /* Load the hardware default MAC address. */
5192         bce_set_mac_addr(sc);
5193
5194         /* Set the Ethernet backoff seed value */
5195         val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5196               (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5197               (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5198         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5199
5200         sc->last_status_idx = 0;
5201         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5202
5203         /* Set up link change interrupt generation. */
5204         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5205
5206         /* Program the physical address of the status block. */
5207         REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5208             BCE_ADDR_LO(sc->status_block_paddr));
5209         REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5210             BCE_ADDR_HI(sc->status_block_paddr));
5211
5212         /* Program the physical address of the statistics block. */
5213         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5214             BCE_ADDR_LO(sc->stats_block_paddr));
5215         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5216             BCE_ADDR_HI(sc->stats_block_paddr));
5217
5218         /*
5219          * Program various host coalescing parameters.
5220          * Trip points control how many BDs should be ready before generating
5221          * an interrupt while ticks control how long a BD can sit in the chain
5222          * before generating an interrupt.
5223          */
5224         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5225             (sc->bce_tx_quick_cons_trip_int << 16) |
5226             sc->bce_tx_quick_cons_trip);
5227         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5228             (sc->bce_rx_quick_cons_trip_int << 16) |
5229             sc->bce_rx_quick_cons_trip);
5230         REG_WR(sc, BCE_HC_TX_TICKS,
5231             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5232         REG_WR(sc, BCE_HC_RX_TICKS,
5233             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5234         REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5235         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5236         /* Not used for L2. */
5237         REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5238         REG_WR(sc, BCE_HC_COM_TICKS, 0);
5239         REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5240
5241         /* Configure the Host Coalescing block. */
5242         val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5243             BCE_HC_CONFIG_COLLECT_STATS;
5244
5245 #if 0
5246         /* ToDo: Add MSI-X support. */
5247         if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5248                 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5249                     BCE_HC_SB_CONFIG_1;
5250
5251                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5252
5253                 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5254                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
5255
5256                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5257                     (sc->tx_quick_cons_trip_int << 16) |
5258                      sc->tx_quick_cons_trip);
5259
5260                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5261                     (sc->tx_ticks_int << 16) | sc->tx_ticks);
5262
5263                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5264         }
5265
5266         /*
5267          * Tell the HC block to automatically set the
5268          * INT_MASK bit after an MSI/MSI-X interrupt
5269          * is generated so the driver doesn't have to.
5270          */
5271         if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5272                 val |= BCE_HC_CONFIG_ONE_SHOT;
5273
5274         /* Set the MSI-X status blocks to 128 byte boundaries. */
5275         if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5276                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5277 #endif
5278
5279         REG_WR(sc, BCE_HC_CONFIG, val);
5280
5281         /* Clear the internal statistics counters. */
5282         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5283
5284         /* Verify that bootcode is running. */
5285         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5286
5287         DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5288             BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5289             __FILE__, __LINE__);
5290             reg = 0);
5291
5292         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5293             BCE_DEV_INFO_SIGNATURE_MAGIC) {
5294                 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5295                     "Expected: 08%08X\n", __FILE__, __LINE__,
5296                     (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5297                     BCE_DEV_INFO_SIGNATURE_MAGIC);
5298                 rc = ENODEV;
5299                 goto bce_blockinit_exit;
5300         }
5301
5302         /* Enable DMA */
5303         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5304                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5305                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5306                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5307         }
5308
5309         /* Allow bootcode to apply additional fixes before enabling MAC. */
5310         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5311             BCE_DRV_MSG_CODE_RESET);
5312
5313         /* Enable link state change interrupt generation. */
5314         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5315
5316         /* Enable the RXP. */
5317         bce_start_rxp_cpu(sc);
5318
5319         /* Disable management frames (NC-SI) from flowing to the MCP. */
5320         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5321                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5322                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5323                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5324         }
5325
5326         /* Enable all remaining blocks in the MAC. */
5327         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5328                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5329                     BCE_MISC_ENABLE_DEFAULT_XI);
5330         else
5331                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5332                     BCE_MISC_ENABLE_DEFAULT);
5333
5334         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5335         DELAY(20);
5336
5337         /* Save the current host coalescing block settings. */
5338         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5339
5340 bce_blockinit_exit:
5341         DBEXIT(BCE_VERBOSE_RESET);
5342
5343         return (rc);
5344 }
5345
5346
5347 /****************************************************************************/
5348 /* Encapsulate an mbuf into the rx_bd chain.                                */
5349 /*                                                                          */
5350 /* Returns:                                                                 */
5351 /*   0 for success, positive value for failure.                             */
5352 /****************************************************************************/
5353 static int
5354 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5355 {
5356         bus_dma_segment_t segs[1];
5357         struct mbuf *m_new = NULL;
5358         struct rx_bd *rxbd;
5359         int nsegs, error, rc = 0;
5360 #ifdef BCE_DEBUG
5361         u16 debug_chain_prod = chain_prod;
5362 #endif
5363
5364         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5365
5366         /* Make sure the inputs are valid. */
5367         DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5368             BCE_PRINTF("%s(%d): RX producer out of range: "
5369             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5370             chain_prod, (u16)MAX_RX_BD_ALLOC));
5371
5372         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5373             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5374             prod, chain_prod, *prod_bseq);
5375
5376         /* Update some debug statistic counters */
5377         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5378             sc->rx_low_watermark = sc->free_rx_bd);
5379         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5380             sc->rx_empty_count++);
5381
5382         /* Simulate an mbuf allocation failure. */
5383         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5384             sc->mbuf_alloc_failed_count++;
5385             sc->mbuf_alloc_failed_sim_count++;
5386             rc = ENOBUFS;
5387             goto bce_get_rx_buf_exit);
5388
5389         /* This is a new mbuf allocation. */
5390         if (bce_hdr_split == TRUE)
5391                 MGETHDR(m_new, M_NOWAIT, MT_DATA);
5392         else
5393                 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5394                     sc->rx_bd_mbuf_alloc_size);
5395
5396         if (m_new == NULL) {
5397                 sc->mbuf_alloc_failed_count++;
5398                 rc = ENOBUFS;
5399                 goto bce_get_rx_buf_exit;
5400         }
5401
5402         DBRUN(sc->debug_rx_mbuf_alloc++);
5403
5404         /* Make sure we have a valid packet header. */
5405         M_ASSERTPKTHDR(m_new);
5406
5407         /* Initialize the mbuf size and pad if necessary for alignment. */
5408         m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5409         m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5410
5411         /* ToDo: Consider calling m_fragment() to test error handling. */
5412
5413         /* Map the mbuf cluster into device memory. */
5414         error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5415             sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5416
5417         /* Handle any mapping errors. */
5418         if (error) {
5419                 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5420                     "chain (%d)!\n", __FILE__, __LINE__, error);
5421
5422                 sc->dma_map_addr_rx_failed_count++;
5423                 m_freem(m_new);
5424
5425                 DBRUN(sc->debug_rx_mbuf_alloc--);
5426
5427                 rc = ENOBUFS;
5428                 goto bce_get_rx_buf_exit;
5429         }
5430
5431         /* All mbufs must map to a single segment. */
5432         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5433             __FUNCTION__, nsegs));
5434
5435         /* Setup the rx_bd for the segment. */
5436         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5437
5438         rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5439         rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5440         rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5441         rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5442         *prod_bseq += segs[0].ds_len;
5443
5444         /* Save the mbuf and update our counter. */
5445         sc->rx_mbuf_ptr[chain_prod] = m_new;
5446         sc->free_rx_bd -= nsegs;
5447
5448         DBRUNMSG(BCE_INSANE_RECV,
5449             bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5450
5451         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5452             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5453             chain_prod, *prod_bseq);
5454
5455 bce_get_rx_buf_exit:
5456         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5457
5458         return(rc);
5459 }
5460
5461
5462 /****************************************************************************/
5463 /* Encapsulate an mbuf cluster into the page chain.                         */
5464 /*                                                                          */
5465 /* Returns:                                                                 */
5466 /*   0 for success, positive value for failure.                             */
5467 /****************************************************************************/
5468 static int
5469 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5470 {
5471         bus_dma_segment_t segs[1];
5472         struct mbuf *m_new = NULL;
5473         struct rx_bd *pgbd;
5474         int error, nsegs, rc = 0;
5475 #ifdef BCE_DEBUG
5476         u16 debug_prod_idx = prod_idx;
5477 #endif
5478
5479         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5480
5481         /* Make sure the inputs are valid. */
5482         DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5483             BCE_PRINTF("%s(%d): page producer out of range: "
5484             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5485             prod_idx, (u16)MAX_PG_BD_ALLOC));
5486
5487         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5488             "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5489
5490         /* Update counters if we've hit a new low or run out of pages. */
5491         DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5492             sc->pg_low_watermark = sc->free_pg_bd);
5493         DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5494
5495         /* Simulate an mbuf allocation failure. */
5496         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5497             sc->mbuf_alloc_failed_count++;
5498             sc->mbuf_alloc_failed_sim_count++;
5499             rc = ENOBUFS;
5500             goto bce_get_pg_buf_exit);
5501
5502         /* This is a new mbuf allocation. */
5503         m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5504         if (m_new == NULL) {
5505                 sc->mbuf_alloc_failed_count++;
5506                 rc = ENOBUFS;
5507                 goto bce_get_pg_buf_exit;
5508         }
5509
5510         DBRUN(sc->debug_pg_mbuf_alloc++);
5511
5512         m_new->m_len = MCLBYTES;
5513
5514         /* ToDo: Consider calling m_fragment() to test error handling. */
5515
5516         /* Map the mbuf cluster into device memory. */
5517         error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5518             sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5519
5520         /* Handle any mapping errors. */
5521         if (error) {
5522                 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5523                     __FILE__, __LINE__);
5524
5525                 m_freem(m_new);
5526                 DBRUN(sc->debug_pg_mbuf_alloc--);
5527
5528                 rc = ENOBUFS;
5529                 goto bce_get_pg_buf_exit;
5530         }
5531
5532         /* All mbufs must map to a single segment. */
5533         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5534             __FUNCTION__, nsegs));
5535
5536         /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5537
5538         /*
5539          * The page chain uses the same rx_bd data structure
5540          * as the receive chain but doesn't require a byte sequence (bseq).
5541          */
5542         pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5543
5544         pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5545         pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5546         pgbd->rx_bd_len       = htole32(MCLBYTES);
5547         pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5548
5549         /* Save the mbuf and update our counter. */
5550         sc->pg_mbuf_ptr[prod_idx] = m_new;
5551         sc->free_pg_bd--;
5552
5553         DBRUNMSG(BCE_INSANE_RECV,
5554             bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5555
5556         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5557             "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5558
5559 bce_get_pg_buf_exit:
5560         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5561
5562         return(rc);
5563 }
5564
5565
5566 /****************************************************************************/
5567 /* Initialize the TX context memory.                                        */
5568 /*                                                                          */
5569 /* Returns:                                                                 */
5570 /*   Nothing                                                                */
5571 /****************************************************************************/
5572 static void
5573 bce_init_tx_context(struct bce_softc *sc)
5574 {
5575         u32 val;
5576
5577         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5578
5579         /* Initialize the context ID for an L2 TX chain. */
5580         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5581                 /* Set the CID type to support an L2 connection. */
5582                 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5583                     BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5584                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5585                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5586                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5587                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
5588
5589                 /* Point the hardware to the first page in the chain. */
5590                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5591                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5592                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5593                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5594                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5595                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5596         } else {
5597                 /* Set the CID type to support an L2 connection. */
5598                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5599                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5600                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5601                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5602
5603                 /* Point the hardware to the first page in the chain. */
5604                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5605                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5606                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5607                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5608                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5609                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5610         }
5611
5612         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5613 }
5614
5615
5616 /****************************************************************************/
5617 /* Allocate memory and initialize the TX data structures.                   */
5618 /*                                                                          */
5619 /* Returns:                                                                 */
5620 /*   0 for success, positive value for failure.                             */
5621 /****************************************************************************/
5622 static int
5623 bce_init_tx_chain(struct bce_softc *sc)
5624 {
5625         struct tx_bd *txbd;
5626         int i, rc = 0;
5627
5628         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5629
5630         /* Set the initial TX producer/consumer indices. */
5631         sc->tx_prod        = 0;
5632         sc->tx_cons        = 0;
5633         sc->tx_prod_bseq   = 0;
5634         sc->used_tx_bd     = 0;
5635         sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5636         DBRUN(sc->tx_hi_watermark = 0);
5637         DBRUN(sc->tx_full_count = 0);
5638
5639         /*
5640          * The NetXtreme II supports a linked-list structre called
5641          * a Buffer Descriptor Chain (or BD chain).  A BD chain
5642          * consists of a series of 1 or more chain pages, each of which
5643          * consists of a fixed number of BD entries.
5644          * The last BD entry on each page is a pointer to the next page
5645          * in the chain, and the last pointer in the BD chain
5646          * points back to the beginning of the chain.
5647          */
5648
5649         /* Set the TX next pointer chain entries. */
5650         for (i = 0; i < sc->tx_pages; i++) {
5651                 int j;
5652
5653                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5654
5655                 /* Check if we've reached the last page. */
5656                 if (i == (sc->tx_pages - 1))
5657                         j = 0;
5658                 else
5659                         j = i + 1;
5660
5661                 txbd->tx_bd_haddr_hi =
5662                     htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5663                 txbd->tx_bd_haddr_lo =
5664                     htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5665         }
5666
5667         bce_init_tx_context(sc);
5668
5669         DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5670         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5671
5672         return(rc);
5673 }
5674
5675
5676 /****************************************************************************/
5677 /* Free memory and clear the TX data structures.                            */
5678 /*                                                                          */
5679 /* Returns:                                                                 */
5680 /*   Nothing.                                                               */
5681 /****************************************************************************/
5682 static void
5683 bce_free_tx_chain(struct bce_softc *sc)
5684 {
5685         int i;
5686
5687         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5688
5689         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5690         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5691                 if (sc->tx_mbuf_ptr[i] != NULL) {
5692                         if (sc->tx_mbuf_map[i] != NULL)
5693                                 bus_dmamap_sync(sc->tx_mbuf_tag,
5694                                     sc->tx_mbuf_map[i],
5695                                     BUS_DMASYNC_POSTWRITE);
5696                         m_freem(sc->tx_mbuf_ptr[i]);
5697                         sc->tx_mbuf_ptr[i] = NULL;
5698                         DBRUN(sc->debug_tx_mbuf_alloc--);
5699                 }
5700         }
5701
5702         /* Clear each TX chain page. */
5703         for (i = 0; i < sc->tx_pages; i++)
5704                 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5705
5706         sc->used_tx_bd = 0;
5707
5708         /* Check if we lost any mbufs in the process. */
5709         DBRUNIF((sc->debug_tx_mbuf_alloc),
5710             BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5711             "from tx chain!\n", __FILE__, __LINE__,
5712             sc->debug_tx_mbuf_alloc));
5713
5714         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5715 }
5716
5717
5718 /****************************************************************************/
5719 /* Initialize the RX context memory.                                        */
5720 /*                                                                          */
5721 /* Returns:                                                                 */
5722 /*   Nothing                                                                */
5723 /****************************************************************************/
5724 static void
5725 bce_init_rx_context(struct bce_softc *sc)
5726 {
5727         u32 val;
5728
5729         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5730
5731         /* Init the type, size, and BD cache levels for the RX context. */
5732         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5733             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5734             (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5735
5736         /*
5737          * Set the level for generating pause frames
5738          * when the number of available rx_bd's gets
5739          * too low (the low watermark) and the level
5740          * when pause frames can be stopped (the high
5741          * watermark).
5742          */
5743         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5744                 u32 lo_water, hi_water;
5745
5746                 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5747                         lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5748                 } else {
5749                         lo_water = 0;
5750                 }
5751
5752                 if (lo_water >= USABLE_RX_BD_ALLOC) {
5753                         lo_water = 0;
5754                 }
5755
5756                 hi_water = USABLE_RX_BD_ALLOC / 4;
5757
5758                 if (hi_water <= lo_water) {
5759                         lo_water = 0;
5760                 }
5761
5762                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5763                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5764
5765                 if (hi_water > 0xf)
5766                         hi_water = 0xf;
5767                 else if (hi_water == 0)
5768                         lo_water = 0;
5769
5770                 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5771                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5772         }
5773
5774         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5775
5776         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5777         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5778                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5779                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5780         }
5781
5782         /* Point the hardware to the first page in the chain. */
5783         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5784         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5785         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5786         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5787
5788         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5789 }
5790
5791
5792 /****************************************************************************/
5793 /* Allocate memory and initialize the RX data structures.                   */
5794 /*                                                                          */
5795 /* Returns:                                                                 */
5796 /*   0 for success, positive value for failure.                             */
5797 /****************************************************************************/
5798 static int
5799 bce_init_rx_chain(struct bce_softc *sc)
5800 {
5801         struct rx_bd *rxbd;
5802         int i, rc = 0;
5803
5804         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5805             BCE_VERBOSE_CTX);
5806
5807         /* Initialize the RX producer and consumer indices. */
5808         sc->rx_prod        = 0;
5809         sc->rx_cons        = 0;
5810         sc->rx_prod_bseq   = 0;
5811         sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5812         sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5813
5814         /* Initialize the RX next pointer chain entries. */
5815         for (i = 0; i < sc->rx_pages; i++) {
5816                 int j;
5817
5818                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5819
5820                 /* Check if we've reached the last page. */
5821                 if (i == (sc->rx_pages - 1))
5822                         j = 0;
5823                 else
5824                         j = i + 1;
5825
5826                 /* Setup the chain page pointers. */
5827                 rxbd->rx_bd_haddr_hi =
5828                     htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5829                 rxbd->rx_bd_haddr_lo =
5830                     htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5831         }
5832
5833         /* Fill up the RX chain. */
5834         bce_fill_rx_chain(sc);
5835
5836         DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5837         DBRUN(sc->rx_empty_count = 0);
5838         for (i = 0; i < sc->rx_pages; i++) {
5839                 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5840                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5841         }
5842
5843         bce_init_rx_context(sc);
5844
5845         DBRUNMSG(BCE_EXTREME_RECV,
5846             bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5847         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5848             BCE_VERBOSE_CTX);
5849
5850         /* ToDo: Are there possible failure modes here? */
5851
5852         return(rc);
5853 }
5854
5855
5856 /****************************************************************************/
5857 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5858 /* occurs.                                                                  */
5859 /*                                                                          */
5860 /* Returns:                                                                 */
5861 /*   Nothing                                                                */
5862 /****************************************************************************/
5863 static void
5864 bce_fill_rx_chain(struct bce_softc *sc)
5865 {
5866         u16 prod, prod_idx;
5867         u32 prod_bseq;
5868
5869         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5870             BCE_VERBOSE_CTX);
5871
5872         /* Get the RX chain producer indices. */
5873         prod      = sc->rx_prod;
5874         prod_bseq = sc->rx_prod_bseq;
5875
5876         /* Keep filling the RX chain until it's full. */
5877         while (sc->free_rx_bd > 0) {
5878                 prod_idx = RX_CHAIN_IDX(prod);
5879                 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5880                         /* Bail out if we can't add an mbuf to the chain. */
5881                         break;
5882                 }
5883                 prod = NEXT_RX_BD(prod);
5884         }
5885
5886         /* Save the RX chain producer indices. */
5887         sc->rx_prod      = prod;
5888         sc->rx_prod_bseq = prod_bseq;
5889
5890         /* We should never end up pointing to a next page pointer. */
5891         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5892             BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5893             __FUNCTION__, rx_prod));
5894
5895         /* Write the mailbox and tell the chip about the waiting rx_bd's. */
5896         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5897         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5898
5899         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5900             BCE_VERBOSE_CTX);
5901 }
5902
5903
5904 /****************************************************************************/
5905 /* Free memory and clear the RX data structures.                            */
5906 /*                                                                          */
5907 /* Returns:                                                                 */
5908 /*   Nothing.                                                               */
5909 /****************************************************************************/
5910 static void
5911 bce_free_rx_chain(struct bce_softc *sc)
5912 {
5913         int i;
5914
5915         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5916
5917         /* Free any mbufs still in the RX mbuf chain. */
5918         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5919                 if (sc->rx_mbuf_ptr[i] != NULL) {
5920                         if (sc->rx_mbuf_map[i] != NULL)
5921                                 bus_dmamap_sync(sc->rx_mbuf_tag,
5922                                     sc->rx_mbuf_map[i],
5923                                     BUS_DMASYNC_POSTREAD);
5924                         m_freem(sc->rx_mbuf_ptr[i]);
5925                         sc->rx_mbuf_ptr[i] = NULL;
5926                         DBRUN(sc->debug_rx_mbuf_alloc--);
5927                 }
5928         }
5929
5930         /* Clear each RX chain page. */
5931         for (i = 0; i < sc->rx_pages; i++)
5932                 if (sc->rx_bd_chain[i] != NULL)
5933                         bzero((char *)sc->rx_bd_chain[i],
5934                             BCE_RX_CHAIN_PAGE_SZ);
5935
5936         sc->free_rx_bd = sc->max_rx_bd;
5937
5938         /* Check if we lost any mbufs in the process. */
5939         DBRUNIF((sc->debug_rx_mbuf_alloc),
5940             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5941             __FUNCTION__, sc->debug_rx_mbuf_alloc));
5942
5943         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5944 }
5945
5946
5947 /****************************************************************************/
5948 /* Allocate memory and initialize the page data structures.                 */
5949 /* Assumes that bce_init_rx_chain() has not already been called.            */
5950 /*                                                                          */
5951 /* Returns:                                                                 */
5952 /*   0 for success, positive value for failure.                             */
5953 /****************************************************************************/
5954 static int
5955 bce_init_pg_chain(struct bce_softc *sc)
5956 {
5957         struct rx_bd *pgbd;
5958         int i, rc = 0;
5959         u32 val;
5960
5961         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5962                 BCE_VERBOSE_CTX);
5963
5964         /* Initialize the page producer and consumer indices. */
5965         sc->pg_prod        = 0;
5966         sc->pg_cons        = 0;
5967         sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5968         sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5969         DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5970         DBRUN(sc->pg_empty_count = 0);
5971
5972         /* Initialize the page next pointer chain entries. */
5973         for (i = 0; i < sc->pg_pages; i++) {
5974                 int j;
5975
5976                 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5977
5978                 /* Check if we've reached the last page. */
5979                 if (i == (sc->pg_pages - 1))
5980                         j = 0;
5981                 else
5982                         j = i + 1;
5983
5984                 /* Setup the chain page pointers. */
5985                 pgbd->rx_bd_haddr_hi =
5986                     htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5987                 pgbd->rx_bd_haddr_lo =
5988                     htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5989         }
5990
5991         /* Setup the MQ BIN mapping for host_pg_bidx. */
5992         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5993                 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5994
5995         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5996
5997         /* Configure the rx_bd and page chain mbuf cluster size. */
5998         val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5999         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6000
6001         /* Configure the context reserved for jumbo support. */
6002         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6003                 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6004
6005         /* Point the hardware to the first page in the page chain. */
6006         val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6007         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6008         val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6009         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6010
6011         /* Fill up the page chain. */
6012         bce_fill_pg_chain(sc);
6013
6014         for (i = 0; i < sc->pg_pages; i++) {
6015                 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6016                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6017         }
6018
6019         DBRUNMSG(BCE_EXTREME_RECV,
6020             bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6021         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6022                 BCE_VERBOSE_CTX);
6023         return(rc);
6024 }
6025
6026
6027 /****************************************************************************/
6028 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6029 /* occurs.                                                                  */
6030 /*                                                                          */
6031 /* Returns:                                                                 */
6032 /*   Nothing                                                                */
6033 /****************************************************************************/
6034 static void
6035 bce_fill_pg_chain(struct bce_softc *sc)
6036 {
6037         u16 prod, prod_idx;
6038
6039         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6040             BCE_VERBOSE_CTX);
6041
6042         /* Get the page chain prodcuer index. */
6043         prod = sc->pg_prod;
6044
6045         /* Keep filling the page chain until it's full. */
6046         while (sc->free_pg_bd > 0) {
6047                 prod_idx = PG_CHAIN_IDX(prod);
6048                 if (bce_get_pg_buf(sc, prod, prod_idx)) {
6049                         /* Bail out if we can't add an mbuf to the chain. */
6050                         break;
6051                 }
6052                 prod = NEXT_PG_BD(prod);
6053         }
6054
6055         /* Save the page chain producer index. */
6056         sc->pg_prod = prod;
6057
6058         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6059             BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6060             __FUNCTION__, pg_prod));
6061
6062         /*
6063          * Write the mailbox and tell the chip about
6064          * the new rx_bd's in the page chain.
6065          */
6066         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6067             prod);
6068
6069         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6070             BCE_VERBOSE_CTX);
6071 }
6072
6073
6074 /****************************************************************************/
6075 /* Free memory and clear the RX data structures.                            */
6076 /*                                                                          */
6077 /* Returns:                                                                 */
6078 /*   Nothing.                                                               */
6079 /****************************************************************************/
6080 static void
6081 bce_free_pg_chain(struct bce_softc *sc)
6082 {
6083         int i;
6084
6085         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6086
6087         /* Free any mbufs still in the mbuf page chain. */
6088         for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6089                 if (sc->pg_mbuf_ptr[i] != NULL) {
6090                         if (sc->pg_mbuf_map[i] != NULL)
6091                                 bus_dmamap_sync(sc->pg_mbuf_tag,
6092                                     sc->pg_mbuf_map[i],
6093                                     BUS_DMASYNC_POSTREAD);
6094                         m_freem(sc->pg_mbuf_ptr[i]);
6095                         sc->pg_mbuf_ptr[i] = NULL;
6096                         DBRUN(sc->debug_pg_mbuf_alloc--);
6097                 }
6098         }
6099
6100         /* Clear each page chain pages. */
6101         for (i = 0; i < sc->pg_pages; i++)
6102                 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6103
6104         sc->free_pg_bd = sc->max_pg_bd;
6105
6106         /* Check if we lost any mbufs in the process. */
6107         DBRUNIF((sc->debug_pg_mbuf_alloc),
6108             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6109             __FUNCTION__, sc->debug_pg_mbuf_alloc));
6110
6111         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6112 }
6113
6114
6115 static u32
6116 bce_get_rphy_link(struct bce_softc *sc)
6117 {
6118         u32 advertise, link;
6119         int fdpx;
6120
6121         advertise = 0;
6122         fdpx = 0;
6123         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6124                 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6125         else
6126                 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6127         if (link & BCE_NETLINK_ANEG_ENB)
6128                 advertise |= BCE_NETLINK_ANEG_ENB;
6129         if (link & BCE_NETLINK_SPEED_10HALF)
6130                 advertise |= BCE_NETLINK_SPEED_10HALF;
6131         if (link & BCE_NETLINK_SPEED_10FULL) {
6132                 advertise |= BCE_NETLINK_SPEED_10FULL;
6133                 fdpx++;
6134         }
6135         if (link & BCE_NETLINK_SPEED_100HALF)
6136                 advertise |= BCE_NETLINK_SPEED_100HALF;
6137         if (link & BCE_NETLINK_SPEED_100FULL) {
6138                 advertise |= BCE_NETLINK_SPEED_100FULL;
6139                 fdpx++;
6140         }
6141         if (link & BCE_NETLINK_SPEED_1000HALF)
6142                 advertise |= BCE_NETLINK_SPEED_1000HALF;
6143         if (link & BCE_NETLINK_SPEED_1000FULL) {
6144                 advertise |= BCE_NETLINK_SPEED_1000FULL;
6145                 fdpx++;
6146         }
6147         if (link & BCE_NETLINK_SPEED_2500HALF)
6148                 advertise |= BCE_NETLINK_SPEED_2500HALF;
6149         if (link & BCE_NETLINK_SPEED_2500FULL) {
6150                 advertise |= BCE_NETLINK_SPEED_2500FULL;
6151                 fdpx++;
6152         }
6153         if (fdpx)
6154                 advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6155                     BCE_NETLINK_FC_PAUSE_ASYM;
6156         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6157                 advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6158                     BCE_NETLINK_ETH_AT_WIRESPEED;
6159
6160         return (advertise);
6161 }
6162
6163
6164 /****************************************************************************/
6165 /* Set media options.                                                       */
6166 /*                                                                          */
6167 /* Returns:                                                                 */
6168 /*   0 for success, positive value for failure.                             */
6169 /****************************************************************************/
6170 static int
6171 bce_ifmedia_upd(struct ifnet *ifp)
6172 {
6173         struct bce_softc *sc = ifp->if_softc;
6174         int error;
6175
6176         DBENTER(BCE_VERBOSE);
6177
6178         BCE_LOCK(sc);
6179         error = bce_ifmedia_upd_locked(ifp);
6180         BCE_UNLOCK(sc);
6181
6182         DBEXIT(BCE_VERBOSE);
6183         return (error);
6184 }
6185
6186
6187 /****************************************************************************/
6188 /* Set media options.                                                       */
6189 /*                                                                          */
6190 /* Returns:                                                                 */
6191 /*   Nothing.                                                               */
6192 /****************************************************************************/
6193 static int
6194 bce_ifmedia_upd_locked(struct ifnet *ifp)
6195 {
6196         struct bce_softc *sc = ifp->if_softc;
6197         struct mii_data *mii;
6198         struct mii_softc *miisc;
6199         struct ifmedia *ifm;
6200         u32 link;
6201         int error, fdx;
6202
6203         DBENTER(BCE_VERBOSE_PHY);
6204
6205         error = 0;
6206         BCE_LOCK_ASSERT(sc);
6207
6208         sc->bce_link_up = FALSE;
6209         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6210                 ifm = &sc->bce_ifmedia;
6211                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6212                         return (EINVAL);
6213                 link = 0;
6214                 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6215                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
6216                 case IFM_AUTO:
6217                         /*
6218                          * Check advertised link of remote PHY by reading
6219                          * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6220                          * Always use the same link type of remote PHY.
6221                          */
6222                         link = bce_get_rphy_link(sc);
6223                         break;
6224                 case IFM_2500_SX:
6225                         if ((sc->bce_phy_flags &
6226                             (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6227                             BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6228                                 return (EINVAL);
6229                         /*
6230                          * XXX
6231                          * Have to enable forced 2.5Gbps configuration.
6232                          */
6233                         if (fdx != 0)
6234                                 link |= BCE_NETLINK_SPEED_2500FULL;
6235                         else
6236                                 link |= BCE_NETLINK_SPEED_2500HALF;
6237                         break;
6238                 case IFM_1000_SX:
6239                         if ((sc->bce_phy_flags &
6240                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6241                                 return (EINVAL);
6242                         /*
6243                          * XXX
6244                          * Have to disable 2.5Gbps configuration.
6245                          */
6246                         if (fdx != 0)
6247                                 link = BCE_NETLINK_SPEED_1000FULL;
6248                         else
6249                                 link = BCE_NETLINK_SPEED_1000HALF;
6250                         break;
6251                 case IFM_1000_T:
6252                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6253                                 return (EINVAL);
6254                         if (fdx != 0)
6255                                 link = BCE_NETLINK_SPEED_1000FULL;
6256                         else
6257                                 link = BCE_NETLINK_SPEED_1000HALF;
6258                         break;
6259                 case IFM_100_TX:
6260                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6261                                 return (EINVAL);
6262                         if (fdx != 0)
6263                                 link = BCE_NETLINK_SPEED_100FULL;
6264                         else
6265                                 link = BCE_NETLINK_SPEED_100HALF;
6266                         break;
6267                 case IFM_10_T:
6268                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6269                                 return (EINVAL);
6270                         if (fdx != 0)
6271                                 link = BCE_NETLINK_SPEED_10FULL;
6272                         else
6273                                 link = BCE_NETLINK_SPEED_10HALF;
6274                         break;
6275                 default:
6276                         return (EINVAL);
6277                 }
6278                 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6279                         /*
6280                          * XXX
6281                          * Advertise pause capability for full-duplex media.
6282                          */
6283                         if (fdx != 0)
6284                                 link |= BCE_NETLINK_FC_PAUSE_SYM |
6285                                     BCE_NETLINK_FC_PAUSE_ASYM;
6286                         if ((sc->bce_phy_flags &
6287                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6288                                 link |= BCE_NETLINK_PHY_APP_REMOTE |
6289                                     BCE_NETLINK_ETH_AT_WIRESPEED;
6290                 }
6291
6292                 bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6293                 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6294         } else {
6295                 mii = device_get_softc(sc->bce_miibus);
6296
6297                 /* Make sure the MII bus has been enumerated. */
6298                 if (mii) {
6299                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6300                                 PHY_RESET(miisc);
6301                         error = mii_mediachg(mii);
6302                 }
6303         }
6304
6305         DBEXIT(BCE_VERBOSE_PHY);
6306         return (error);
6307 }
6308
6309
6310 static void
6311 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6312 {
6313         struct ifnet *ifp;
6314         u32 link;
6315
6316         ifp = sc->bce_ifp;
6317         BCE_LOCK_ASSERT(sc);
6318
6319         ifmr->ifm_status = IFM_AVALID;
6320         ifmr->ifm_active = IFM_ETHER;
6321         link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6322         /* XXX Handle heart beat status? */
6323         if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6324                 ifmr->ifm_status |= IFM_ACTIVE;
6325         else {
6326                 ifmr->ifm_active |= IFM_NONE;
6327                 ifp->if_baudrate = 0;
6328                 return;
6329         }
6330         switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6331         case BCE_LINK_STATUS_10HALF:
6332                 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6333                 ifp->if_baudrate = IF_Mbps(10UL);
6334                 break;
6335         case BCE_LINK_STATUS_10FULL:
6336                 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6337                 ifp->if_baudrate = IF_Mbps(10UL);
6338                 break;
6339         case BCE_LINK_STATUS_100HALF:
6340                 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6341                 ifp->if_baudrate = IF_Mbps(100UL);
6342                 break;
6343         case BCE_LINK_STATUS_100FULL:
6344                 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6345                 ifp->if_baudrate = IF_Mbps(100UL);
6346                 break;
6347         case BCE_LINK_STATUS_1000HALF:
6348                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6349                         ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6350                 else
6351                         ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6352                 ifp->if_baudrate = IF_Mbps(1000UL);
6353                 break;
6354         case BCE_LINK_STATUS_1000FULL:
6355                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6356                         ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6357                 else
6358                         ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6359                 ifp->if_baudrate = IF_Mbps(1000UL);
6360                 break;
6361         case BCE_LINK_STATUS_2500HALF:
6362                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6363                         ifmr->ifm_active |= IFM_NONE;
6364                         return;
6365                 } else
6366                         ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6367                 ifp->if_baudrate = IF_Mbps(2500UL);
6368                 break;
6369         case BCE_LINK_STATUS_2500FULL:
6370                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6371                         ifmr->ifm_active |= IFM_NONE;
6372                         return;
6373                 } else
6374                         ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6375                 ifp->if_baudrate = IF_Mbps(2500UL);
6376                 break;
6377         default:
6378                 ifmr->ifm_active |= IFM_NONE;
6379                 return;
6380         }
6381
6382         if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6383                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6384         if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6385                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6386 }
6387
6388
6389 /****************************************************************************/
6390 /* Reports current media status.                                            */
6391 /*                                                                          */
6392 /* Returns:                                                                 */
6393 /*   Nothing.                                                               */
6394 /****************************************************************************/
6395 static void
6396 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6397 {
6398         struct bce_softc *sc = ifp->if_softc;
6399         struct mii_data *mii;
6400
6401         DBENTER(BCE_VERBOSE_PHY);
6402
6403         BCE_LOCK(sc);
6404
6405         if ((ifp->if_flags & IFF_UP) == 0) {
6406                 BCE_UNLOCK(sc);
6407                 return;
6408         }
6409
6410         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6411                 bce_ifmedia_sts_rphy(sc, ifmr);
6412         else {
6413                 mii = device_get_softc(sc->bce_miibus);
6414                 mii_pollstat(mii);
6415                 ifmr->ifm_active = mii->mii_media_active;
6416                 ifmr->ifm_status = mii->mii_media_status;
6417         }
6418
6419         BCE_UNLOCK(sc);
6420
6421         DBEXIT(BCE_VERBOSE_PHY);
6422 }
6423
6424
6425 /****************************************************************************/
6426 /* Handles PHY generated interrupt events.                                  */
6427 /*                                                                          */
6428 /* Returns:                                                                 */
6429 /*   Nothing.                                                               */
6430 /****************************************************************************/
6431 static void
6432 bce_phy_intr(struct bce_softc *sc)
6433 {
6434         u32 new_link_state, old_link_state;
6435
6436         DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6437
6438         DBRUN(sc->phy_interrupts++);
6439
6440         new_link_state = sc->status_block->status_attn_bits &
6441             STATUS_ATTN_BITS_LINK_STATE;
6442         old_link_state = sc->status_block->status_attn_bits_ack &
6443             STATUS_ATTN_BITS_LINK_STATE;
6444
6445         /* Handle any changes if the link state has changed. */
6446         if (new_link_state != old_link_state) {
6447
6448                 /* Update the status_attn_bits_ack field. */
6449                 if (new_link_state) {
6450                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6451                             STATUS_ATTN_BITS_LINK_STATE);
6452                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6453                             __FUNCTION__);
6454                 } else {
6455                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6456                             STATUS_ATTN_BITS_LINK_STATE);
6457                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6458                             __FUNCTION__);
6459                 }
6460
6461                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6462                         if (new_link_state) {
6463                                 if (bootverbose)
6464                                         if_printf(sc->bce_ifp, "link UP\n");
6465                                 if_link_state_change(sc->bce_ifp,
6466                                     LINK_STATE_UP);
6467                         } else {
6468                                 if (bootverbose)
6469                                         if_printf(sc->bce_ifp, "link DOWN\n");
6470                                 if_link_state_change(sc->bce_ifp,
6471                                     LINK_STATE_DOWN);
6472                         }
6473                 }
6474                 /*
6475                  * Assume link is down and allow
6476                  * tick routine to update the state
6477                  * based on the actual media state.
6478                  */
6479                 sc->bce_link_up = FALSE;
6480                 callout_stop(&sc->bce_tick_callout);
6481                 bce_tick(sc);
6482         }
6483
6484         /* Acknowledge the link change interrupt. */
6485         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6486
6487         DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6488 }
6489
6490
6491 /****************************************************************************/
6492 /* Reads the receive consumer value from the status block (skipping over    */
6493 /* chain page pointer if necessary).                                        */
6494 /*                                                                          */
6495 /* Returns:                                                                 */
6496 /*   hw_cons                                                                */
6497 /****************************************************************************/
6498 static inline u16
6499 bce_get_hw_rx_cons(struct bce_softc *sc)
6500 {
6501         u16 hw_cons;
6502
6503         rmb();
6504         hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6505         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6506                 hw_cons++;
6507
6508         return hw_cons;
6509 }
6510
6511 /****************************************************************************/
6512 /* Handles received frame interrupt events.                                 */
6513 /*                                                                          */
6514 /* Returns:                                                                 */
6515 /*   Nothing.                                                               */
6516 /****************************************************************************/
6517 static void
6518 bce_rx_intr(struct bce_softc *sc)
6519 {
6520         struct ifnet *ifp = sc->bce_ifp;
6521         struct l2_fhdr *l2fhdr;
6522         struct ether_vlan_header *vh;
6523         unsigned int pkt_len;
6524         u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6525         u32 status;
6526         unsigned int rem_len;
6527         u16 sw_pg_cons, sw_pg_cons_idx;
6528
6529         DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6530         DBRUN(sc->interrupts_rx++);
6531         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6532             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6533             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6534
6535         /* Prepare the RX chain pages to be accessed by the host CPU. */
6536         for (int i = 0; i < sc->rx_pages; i++)
6537                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6538                     sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6539
6540         /* Prepare the page chain pages to be accessed by the host CPU. */
6541         if (bce_hdr_split == TRUE) {
6542                 for (int i = 0; i < sc->pg_pages; i++)
6543                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6544                             sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6545         }
6546
6547         /* Get the hardware's view of the RX consumer index. */
6548         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6549
6550         /* Get working copies of the driver's view of the consumer indices. */
6551         sw_rx_cons = sc->rx_cons;
6552         sw_pg_cons = sc->pg_cons;
6553
6554         /* Update some debug statistics counters */
6555         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6556             sc->rx_low_watermark = sc->free_rx_bd);
6557         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6558             sc->rx_empty_count++);
6559
6560         /* Scan through the receive chain as long as there is work to do */
6561         /* ToDo: Consider setting a limit on the number of packets processed. */
6562         rmb();
6563         while (sw_rx_cons != hw_rx_cons) {
6564                 struct mbuf *m0;
6565
6566                 /* Convert the producer/consumer indices to an actual rx_bd index. */
6567                 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6568
6569                 /* Unmap the mbuf from DMA space. */
6570                 bus_dmamap_sync(sc->rx_mbuf_tag,
6571                     sc->rx_mbuf_map[sw_rx_cons_idx],
6572                     BUS_DMASYNC_POSTREAD);
6573                 bus_dmamap_unload(sc->rx_mbuf_tag,
6574                     sc->rx_mbuf_map[sw_rx_cons_idx]);
6575
6576                 /* Remove the mbuf from the RX chain. */
6577                 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6578                 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6579                 DBRUN(sc->debug_rx_mbuf_alloc--);
6580                 sc->free_rx_bd++;
6581
6582                 /*
6583                  * Frames received on the NetXteme II are prepended
6584                  * with an l2_fhdr structure which provides status
6585                  * information about the received frame (including
6586                  * VLAN tags and checksum info).  The frames are
6587                  * also automatically adjusted to word align the IP
6588                  * header (i.e. two null bytes are inserted before
6589                  * the Ethernet header).  As a result the data
6590                  * DMA'd by the controller into the mbuf looks
6591                  * like this:
6592                  *
6593                  * +---------+-----+---------------------+-----+
6594                  * | l2_fhdr | pad | packet data         | FCS |
6595                  * +---------+-----+---------------------+-----+
6596                  *
6597                  * The l2_fhdr needs to be checked and skipped and
6598                  * the FCS needs to be stripped before sending the
6599                  * packet up the stack.
6600                  */
6601                 l2fhdr  = mtod(m0, struct l2_fhdr *);
6602
6603                 /* Get the packet data + FCS length and the status. */
6604                 pkt_len = l2fhdr->l2_fhdr_pkt_len;
6605                 status  = l2fhdr->l2_fhdr_status;
6606
6607                 /*
6608                  * Skip over the l2_fhdr and pad, resulting in the
6609                  * following data in the mbuf:
6610                  * +---------------------+-----+
6611                  * | packet data         | FCS |
6612                  * +---------------------+-----+
6613                  */
6614                 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6615
6616                 /*
6617                  * When split header mode is used, an ethernet frame
6618                  * may be split across the receive chain and the
6619                  * page chain. If that occurs an mbuf cluster must be
6620                  * reassembled from the individual mbuf pieces.
6621                  */
6622                 if (bce_hdr_split == TRUE) {
6623                         /*
6624                          * Check whether the received frame fits in a single
6625                          * mbuf or not (i.e. packet data + FCS <=
6626                          * sc->rx_bd_mbuf_data_len bytes).
6627                          */
6628                         if (pkt_len > m0->m_len) {
6629                                 /*
6630                                  * The received frame is larger than a single mbuf.
6631                                  * If the frame was a TCP frame then only the TCP
6632                                  * header is placed in the mbuf, the remaining
6633                                  * payload (including FCS) is placed in the page
6634                                  * chain, the SPLIT flag is set, and the header
6635                                  * length is placed in the IP checksum field.
6636                                  * If the frame is not a TCP frame then the mbuf
6637                                  * is filled and the remaining bytes are placed
6638                                  * in the page chain.
6639                                  */
6640
6641                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6642                                         "packet.\n", __FUNCTION__);
6643                                 DBRUN(sc->split_header_frames_rcvd++);
6644
6645                                 /*
6646                                  * When the page chain is enabled and the TCP
6647                                  * header has been split from the TCP payload,
6648                                  * the ip_xsum structure will reflect the length
6649                                  * of the TCP header, not the IP checksum.  Set
6650                                  * the packet length of the mbuf accordingly.
6651                                  */
6652                                 if (status & L2_FHDR_STATUS_SPLIT) {
6653                                         m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6654                                         DBRUN(sc->split_header_tcp_frames_rcvd++);
6655                                 }
6656
6657                                 rem_len = pkt_len - m0->m_len;
6658
6659                                 /* Pull mbufs off the page chain for any remaining data. */
6660                                 while (rem_len > 0) {
6661                                         struct mbuf *m_pg;
6662
6663                                         sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6664
6665                                         /* Remove the mbuf from the page chain. */
6666                                         m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6667                                         sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6668                                         DBRUN(sc->debug_pg_mbuf_alloc--);
6669                                         sc->free_pg_bd++;
6670
6671                                         /* Unmap the page chain mbuf from DMA space. */
6672                                         bus_dmamap_sync(sc->pg_mbuf_tag,
6673                                                 sc->pg_mbuf_map[sw_pg_cons_idx],
6674                                                 BUS_DMASYNC_POSTREAD);
6675                                         bus_dmamap_unload(sc->pg_mbuf_tag,
6676                                                 sc->pg_mbuf_map[sw_pg_cons_idx]);
6677
6678                                         /* Adjust the mbuf length. */
6679                                         if (rem_len < m_pg->m_len) {
6680                                                 /* The mbuf chain is complete. */
6681                                                 m_pg->m_len = rem_len;
6682                                                 rem_len = 0;
6683                                         } else {
6684                                                 /* More packet data is waiting. */
6685                                                 rem_len -= m_pg->m_len;
6686                                         }
6687
6688                                         /* Concatenate the mbuf cluster to the mbuf. */
6689                                         m_cat(m0, m_pg);
6690
6691                                         sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6692                                 }
6693
6694                                 /* Set the total packet length. */
6695                                 m0->m_pkthdr.len = pkt_len;
6696
6697                         } else {
6698                                 /*
6699                                  * The received packet is small and fits in a
6700                                  * single mbuf (i.e. the l2_fhdr + pad + packet +
6701                                  * FCS <= MHLEN).  In other words, the packet is
6702                                  * 154 bytes or less in size.
6703                                  */
6704
6705                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6706                                         "packet.\n", __FUNCTION__);
6707
6708                                 /* Set the total packet length. */
6709                                 m0->m_pkthdr.len = m0->m_len = pkt_len;
6710                         }
6711                 } else
6712                         /* Set the total packet length. */
6713                         m0->m_pkthdr.len = m0->m_len = pkt_len;
6714
6715                 /* Remove the trailing Ethernet FCS. */
6716                 m_adj(m0, -ETHER_CRC_LEN);
6717
6718                 /* Check that the resulting mbuf chain is valid. */
6719                 DBRUN(m_sanity(m0, FALSE));
6720                 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6721                     (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6722                     BCE_PRINTF("Invalid Ethernet frame size!\n");
6723                     m_print(m0, 128));
6724
6725                 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6726                     sc->l2fhdr_error_sim_count++;
6727                     status = status | L2_FHDR_ERRORS_PHY_DECODE);
6728
6729                 /* Check the received frame for errors. */
6730                 if (status & (L2_FHDR_ERRORS_BAD_CRC |
6731                     L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6732                     L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6733
6734                         /* Log the error and release the mbuf. */
6735                         ifp->if_ierrors++;
6736                         sc->l2fhdr_error_count++;
6737
6738                         m_freem(m0);
6739                         m0 = NULL;
6740                         goto bce_rx_intr_next_rx;
6741                 }
6742
6743                 /* Send the packet to the appropriate interface. */
6744                 m0->m_pkthdr.rcvif = ifp;
6745
6746                 /* Assume no hardware checksum. */
6747                 m0->m_pkthdr.csum_flags = 0;
6748
6749                 /* Validate the checksum if offload enabled. */
6750                 if (ifp->if_capenable & IFCAP_RXCSUM) {
6751                         /* Check for an IP datagram. */
6752                         if (!(status & L2_FHDR_STATUS_SPLIT) &&
6753                             (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6754                                 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6755                                 DBRUN(sc->csum_offload_ip++);
6756                                 /* Check if the IP checksum is valid. */
6757                                 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6758                                         m0->m_pkthdr.csum_flags |=
6759                                             CSUM_IP_VALID;
6760                         }
6761
6762                         /* Check for a valid TCP/UDP frame. */
6763                         if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6764                             L2_FHDR_STATUS_UDP_DATAGRAM)) {
6765
6766                                 /* Check for a good TCP/UDP checksum. */
6767                                 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6768                                     L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6769                                         DBRUN(sc->csum_offload_tcp_udp++);
6770                                         m0->m_pkthdr.csum_data =
6771                                             l2fhdr->l2_fhdr_tcp_udp_xsum;
6772                                         m0->m_pkthdr.csum_flags |=
6773                                             (CSUM_DATA_VALID
6774                                             | CSUM_PSEUDO_HDR);
6775                                 }
6776                         }
6777                 }
6778
6779                 /* Attach the VLAN tag. */
6780                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6781                     !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6782                         DBRUN(sc->vlan_tagged_frames_rcvd++);
6783                         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6784                                 DBRUN(sc->vlan_tagged_frames_stripped++);
6785 #if __FreeBSD_version < 700000
6786                                 VLAN_INPUT_TAG(ifp, m0,
6787                                     l2fhdr->l2_fhdr_vlan_tag, continue);
6788 #else
6789                                 m0->m_pkthdr.ether_vtag =
6790                                     l2fhdr->l2_fhdr_vlan_tag;
6791                                 m0->m_flags |= M_VLANTAG;
6792 #endif
6793                         } else {
6794                                 /*
6795                                  * bce(4) controllers can't disable VLAN
6796                                  * tag stripping if management firmware
6797                                  * (ASF/IPMI/UMP) is running. So we always
6798                                  * strip VLAN tag and manually reconstruct
6799                                  * the VLAN frame by appending stripped
6800                                  * VLAN tag in driver if VLAN tag stripping
6801                                  * was disabled.
6802                                  *
6803                                  * TODO: LLC SNAP handling.
6804                                  */
6805                                 bcopy(mtod(m0, uint8_t *),
6806                                     mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6807                                     ETHER_ADDR_LEN * 2);
6808                                 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6809                                 vh = mtod(m0, struct ether_vlan_header *);
6810                                 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6811                                 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6812                                 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6813                                 m0->m_len += ETHER_VLAN_ENCAP_LEN;
6814                         }
6815                 }
6816
6817                 /* Increment received packet statistics. */
6818                 ifp->if_ipackets++;
6819
6820 bce_rx_intr_next_rx:
6821                 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6822
6823                 /* If we have a packet, pass it up the stack */
6824                 if (m0) {
6825                         /* Make sure we don't lose our place when we release the lock. */
6826                         sc->rx_cons = sw_rx_cons;
6827                         sc->pg_cons = sw_pg_cons;
6828
6829                         BCE_UNLOCK(sc);
6830                         (*ifp->if_input)(ifp, m0);
6831                         BCE_LOCK(sc);
6832
6833                         /* Recover our place. */
6834                         sw_rx_cons = sc->rx_cons;
6835                         sw_pg_cons = sc->pg_cons;
6836                 }
6837
6838                 /* Refresh hw_cons to see if there's new work */
6839                 if (sw_rx_cons == hw_rx_cons)
6840                         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6841         }
6842
6843         /* No new packets.  Refill the page chain. */
6844         if (bce_hdr_split == TRUE) {
6845                 sc->pg_cons = sw_pg_cons;
6846                 bce_fill_pg_chain(sc);
6847         }
6848
6849         /* No new packets.  Refill the RX chain. */
6850         sc->rx_cons = sw_rx_cons;
6851         bce_fill_rx_chain(sc);
6852
6853         /* Prepare the page chain pages to be accessed by the NIC. */
6854         for (int i = 0; i < sc->rx_pages; i++)
6855                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6856                     sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6857
6858         if (bce_hdr_split == TRUE) {
6859                 for (int i = 0; i < sc->pg_pages; i++)
6860                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6861                             sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6862         }
6863
6864         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6865             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6866             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6867         DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6868 }
6869
6870
6871 /****************************************************************************/
6872 /* Reads the transmit consumer value from the status block (skipping over   */
6873 /* chain page pointer if necessary).                                        */
6874 /*                                                                          */
6875 /* Returns:                                                                 */
6876 /*   hw_cons                                                                */
6877 /****************************************************************************/
6878 static inline u16
6879 bce_get_hw_tx_cons(struct bce_softc *sc)
6880 {
6881         u16 hw_cons;
6882
6883         mb();
6884         hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6885         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6886                 hw_cons++;
6887
6888         return hw_cons;
6889 }
6890
6891
6892 /****************************************************************************/
6893 /* Handles transmit completion interrupt events.                            */
6894 /*                                                                          */
6895 /* Returns:                                                                 */
6896 /*   Nothing.                                                               */
6897 /****************************************************************************/
6898 static void
6899 bce_tx_intr(struct bce_softc *sc)
6900 {
6901         struct ifnet *ifp = sc->bce_ifp;
6902         u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6903
6904         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6905         DBRUN(sc->interrupts_tx++);
6906         DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6907             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6908             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6909
6910         BCE_LOCK_ASSERT(sc);
6911
6912         /* Get the hardware's view of the TX consumer index. */
6913         hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6914         sw_tx_cons = sc->tx_cons;
6915
6916         /* Prevent speculative reads of the status block. */
6917         bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6918             BUS_SPACE_BARRIER_READ);
6919
6920         /* Cycle through any completed TX chain page entries. */
6921         while (sw_tx_cons != hw_tx_cons) {
6922 #ifdef BCE_DEBUG
6923                 struct tx_bd *txbd = NULL;
6924 #endif
6925                 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6926
6927                 DBPRINT(sc, BCE_INFO_SEND,
6928                     "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6929                     "sw_tx_chain_cons = 0x%04X\n",
6930                     __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6931
6932                 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6933                     BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6934                     " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6935                     (int) MAX_TX_BD_ALLOC);
6936                     bce_breakpoint(sc));
6937
6938                 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6939                     [TX_IDX(sw_tx_chain_cons)]);
6940
6941                 DBRUNIF((txbd == NULL),
6942                     BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6943                     __FILE__, __LINE__, sw_tx_chain_cons);
6944                     bce_breakpoint(sc));
6945
6946                 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6947                     bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6948
6949                 /*
6950                  * Free the associated mbuf. Remember
6951                  * that only the last tx_bd of a packet
6952                  * has an mbuf pointer and DMA map.
6953                  */
6954                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6955
6956                         /* Validate that this is the last tx_bd. */
6957                         DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6958                             BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6959                             "txmbuf == NULL!\n", __FILE__, __LINE__);
6960                             bce_breakpoint(sc));
6961
6962                         DBRUNMSG(BCE_INFO_SEND,
6963                             BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6964                             "from tx_bd[0x%04X]\n", __FUNCTION__,
6965                             sw_tx_chain_cons));
6966
6967                         /* Unmap the mbuf. */
6968                         bus_dmamap_unload(sc->tx_mbuf_tag,
6969                             sc->tx_mbuf_map[sw_tx_chain_cons]);
6970
6971                         /* Free the mbuf. */
6972                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6973                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6974                         DBRUN(sc->debug_tx_mbuf_alloc--);
6975
6976                         ifp->if_opackets++;
6977                 }
6978
6979                 sc->used_tx_bd--;
6980                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6981
6982                 /* Refresh hw_cons to see if there's new work. */
6983                 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6984
6985                 /* Prevent speculative reads of the status block. */
6986                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6987                     BUS_SPACE_BARRIER_READ);
6988         }
6989
6990         /* Clear the TX timeout timer. */
6991         sc->watchdog_timer = 0;
6992
6993         /* Clear the tx hardware queue full flag. */
6994         if (sc->used_tx_bd < sc->max_tx_bd) {
6995                 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6996                     DBPRINT(sc, BCE_INFO_SEND,
6997                     "%s(): Open TX chain! %d/%d (used/total)\n",
6998                     __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6999                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7000         }
7001
7002         sc->tx_cons = sw_tx_cons;
7003
7004         DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7005             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7006             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7007         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7008 }
7009
7010
7011 /****************************************************************************/
7012 /* Disables interrupt generation.                                           */
7013 /*                                                                          */
7014 /* Returns:                                                                 */
7015 /*   Nothing.                                                               */
7016 /****************************************************************************/
7017 static void
7018 bce_disable_intr(struct bce_softc *sc)
7019 {
7020         DBENTER(BCE_VERBOSE_INTR);
7021
7022         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7023         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7024
7025         DBEXIT(BCE_VERBOSE_INTR);
7026 }
7027
7028
7029 /****************************************************************************/
7030 /* Enables interrupt generation.                                            */
7031 /*                                                                          */
7032 /* Returns:                                                                 */
7033 /*   Nothing.                                                               */
7034 /****************************************************************************/
7035 static void
7036 bce_enable_intr(struct bce_softc *sc, int coal_now)
7037 {
7038         DBENTER(BCE_VERBOSE_INTR);
7039
7040         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7041             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7042             BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7043
7044         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7045             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7046
7047         /* Force an immediate interrupt (whether there is new data or not). */
7048         if (coal_now)
7049                 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7050
7051         DBEXIT(BCE_VERBOSE_INTR);
7052 }
7053
7054
7055 /****************************************************************************/
7056 /* Handles controller initialization.                                       */
7057 /*                                                                          */
7058 /* Returns:                                                                 */
7059 /*   Nothing.                                                               */
7060 /****************************************************************************/
7061 static void
7062 bce_init_locked(struct bce_softc *sc)
7063 {
7064         struct ifnet *ifp;
7065         u32 ether_mtu = 0;
7066
7067         DBENTER(BCE_VERBOSE_RESET);
7068
7069         BCE_LOCK_ASSERT(sc);
7070
7071         ifp = sc->bce_ifp;
7072
7073         /* Check if the driver is still running and bail out if it is. */
7074         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7075                 goto bce_init_locked_exit;
7076
7077         bce_stop(sc);
7078
7079         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7080                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
7081                     __FILE__, __LINE__);
7082                 goto bce_init_locked_exit;
7083         }
7084
7085         if (bce_chipinit(sc)) {
7086                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7087                     __FILE__, __LINE__);
7088                 goto bce_init_locked_exit;
7089         }
7090
7091         if (bce_blockinit(sc)) {
7092                 BCE_PRINTF("%s(%d): Block initialization failed!\n",
7093                     __FILE__, __LINE__);
7094                 goto bce_init_locked_exit;
7095         }
7096
7097         /* Load our MAC address. */
7098         bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7099         bce_set_mac_addr(sc);
7100
7101         if (bce_hdr_split == FALSE)
7102                 bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7103         /*
7104          * Calculate and program the hardware Ethernet MTU
7105          * size. Be generous on the receive if we have room
7106          * and allowed by the user.
7107          */
7108         if (bce_strict_rx_mtu == TRUE)
7109                 ether_mtu = ifp->if_mtu;
7110         else {
7111                 if (bce_hdr_split == TRUE) {
7112                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7113                                 ether_mtu = sc->rx_bd_mbuf_data_len +
7114                                     MCLBYTES;
7115                         else
7116                                 ether_mtu = ifp->if_mtu;
7117                 } else {
7118                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7119                                 ether_mtu = sc->rx_bd_mbuf_data_len;
7120                         else
7121                                 ether_mtu = ifp->if_mtu;
7122                 }
7123         }
7124
7125         ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7126
7127         DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7128             __FUNCTION__, ether_mtu);
7129
7130         /* Program the mtu, enabling jumbo frame support if necessary. */
7131         if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7132                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7133                     min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7134                     BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7135         else
7136                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7137
7138         /* Program appropriate promiscuous/multicast filtering. */
7139         bce_set_rx_mode(sc);
7140
7141         if (bce_hdr_split == TRUE) {
7142                 /* Init page buffer descriptor chain. */
7143                 bce_init_pg_chain(sc);
7144         }
7145
7146         /* Init RX buffer descriptor chain. */
7147         bce_init_rx_chain(sc);
7148
7149         /* Init TX buffer descriptor chain. */
7150         bce_init_tx_chain(sc);
7151
7152         /* Enable host interrupts. */
7153         bce_enable_intr(sc, 1);
7154
7155         bce_ifmedia_upd_locked(ifp);
7156
7157         /* Let the OS know the driver is up and running. */
7158         ifp->if_drv_flags |= IFF_DRV_RUNNING;
7159         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7160
7161         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7162
7163 bce_init_locked_exit:
7164         DBEXIT(BCE_VERBOSE_RESET);
7165 }
7166
7167
7168 /****************************************************************************/
7169 /* Initialize the controller just enough so that any management firmware    */
7170 /* running on the device will continue to operate correctly.                */
7171 /*                                                                          */
7172 /* Returns:                                                                 */
7173 /*   Nothing.                                                               */
7174 /****************************************************************************/
7175 static void
7176 bce_mgmt_init_locked(struct bce_softc *sc)
7177 {
7178         struct ifnet *ifp;
7179
7180         DBENTER(BCE_VERBOSE_RESET);
7181
7182         BCE_LOCK_ASSERT(sc);
7183
7184         /* Bail out if management firmware is not running. */
7185         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7186                 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7187                     "No management firmware running...\n");
7188                 goto bce_mgmt_init_locked_exit;
7189         }
7190
7191         ifp = sc->bce_ifp;
7192
7193         /* Enable all critical blocks in the MAC. */
7194         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7195         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7196         DELAY(20);
7197
7198         bce_ifmedia_upd_locked(ifp);
7199
7200 bce_mgmt_init_locked_exit:
7201         DBEXIT(BCE_VERBOSE_RESET);
7202 }
7203
7204
7205 /****************************************************************************/
7206 /* Handles controller initialization when called from an unlocked routine.  */
7207 /*                                                                          */
7208 /* Returns:                                                                 */
7209 /*   Nothing.                                                               */
7210 /****************************************************************************/
7211 static void
7212 bce_init(void *xsc)
7213 {
7214         struct bce_softc *sc = xsc;
7215
7216         DBENTER(BCE_VERBOSE_RESET);
7217
7218         BCE_LOCK(sc);
7219         bce_init_locked(sc);
7220         BCE_UNLOCK(sc);
7221
7222         DBEXIT(BCE_VERBOSE_RESET);
7223 }
7224
7225
7226 /****************************************************************************/
7227 /* Modifies an mbuf for TSO on the hardware.                                */
7228 /*                                                                          */
7229 /* Returns:                                                                 */
7230 /*   Pointer to a modified mbuf.                                            */
7231 /****************************************************************************/
7232 static struct mbuf *
7233 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7234 {
7235         struct mbuf *m;
7236         struct ether_header *eh;
7237         struct ip *ip;
7238         struct tcphdr *th;
7239         u16 etype;
7240         int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7241
7242         DBRUN(sc->tso_frames_requested++);
7243
7244         /* Controller may modify mbuf chains. */
7245         if (M_WRITABLE(*m_head) == 0) {
7246                 m = m_dup(*m_head, M_NOWAIT);
7247                 m_freem(*m_head);
7248                 if (m == NULL) {
7249                         sc->mbuf_alloc_failed_count++;
7250                         *m_head = NULL;
7251                         return (NULL);
7252                 }
7253                 *m_head = m;
7254         }
7255
7256         /*
7257          * For TSO the controller needs two pieces of info,
7258          * the MSS and the IP+TCP options length.
7259          */
7260         m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7261         if (m == NULL) {
7262                 *m_head = NULL;
7263                 return (NULL);
7264         }
7265         eh = mtod(m, struct ether_header *);
7266         etype = ntohs(eh->ether_type);
7267
7268         /* Check for supported TSO Ethernet types (only IPv4 for now) */
7269         switch (etype) {
7270         case ETHERTYPE_IP:
7271                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7272                 /* TSO only supported for TCP protocol. */
7273                 if (ip->ip_p != IPPROTO_TCP) {
7274                         BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7275                             __FILE__, __LINE__);
7276                         m_freem(*m_head);
7277                         *m_head = NULL;
7278                         return (NULL);
7279                 }
7280
7281                 /* Get IP header length in bytes (min 20) */
7282                 ip_hlen = ip->ip_hl << 2;
7283                 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7284                     sizeof(struct tcphdr));
7285                 if (m == NULL) {
7286                         *m_head = NULL;
7287                         return (NULL);
7288                 }
7289
7290                 /* Get the TCP header length in bytes (min 20) */
7291                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7292                 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7293                 tcp_hlen = (th->th_off << 2);
7294
7295                 /* Make sure all IP/TCP options live in the same buffer. */
7296                 m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7297                     tcp_hlen);
7298                 if (m == NULL) {
7299                         *m_head = NULL;
7300                         return (NULL);
7301                 }
7302
7303                 /* Clear IP header length and checksum, will be calc'd by h/w. */
7304                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7305                 ip_len = ip->ip_len;
7306                 ip->ip_len = 0;
7307                 ip->ip_sum = 0;
7308                 break;
7309         case ETHERTYPE_IPV6:
7310                 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7311                     __FILE__, __LINE__);
7312                 m_freem(*m_head);
7313                 *m_head = NULL;
7314                 return (NULL);
7315                 /* NOT REACHED */
7316         default:
7317                 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7318                     __FILE__, __LINE__);
7319                 m_freem(*m_head);
7320                 *m_head = NULL;
7321                 return (NULL);
7322         }
7323
7324         hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7325
7326         DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7327             "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7328             __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7329             tcp_hlen, ip_len);
7330
7331         /* Set the LSO flag in the TX BD */
7332         *flags |= TX_BD_FLAGS_SW_LSO;
7333
7334         /* Set the length of IP + TCP options (in 32 bit words) */
7335         *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7336             sizeof(struct tcphdr)) >> 2) << 8);
7337
7338         DBRUN(sc->tso_frames_completed++);
7339         return (*m_head);
7340 }
7341
7342
7343 /****************************************************************************/
7344 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7345 /* memory visible to the controller.                                        */
7346 /*                                                                          */
7347 /* Returns:                                                                 */
7348 /*   0 for success, positive value for failure.                             */
7349 /* Modified:                                                                */
7350 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7351 /****************************************************************************/
7352 static int
7353 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7354 {
7355         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7356         bus_dmamap_t map;
7357         struct tx_bd *txbd = NULL;
7358         struct mbuf *m0;
7359         u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7360         u32 prod_bseq;
7361
7362 #ifdef BCE_DEBUG
7363         u16 debug_prod;
7364 #endif
7365
7366         int i, error, nsegs, rc = 0;
7367
7368         DBENTER(BCE_VERBOSE_SEND);
7369
7370         /* Make sure we have room in the TX chain. */
7371         if (sc->used_tx_bd >= sc->max_tx_bd)
7372                 goto bce_tx_encap_exit;
7373
7374         /* Transfer any checksum offload flags to the bd. */
7375         m0 = *m_head;
7376         if (m0->m_pkthdr.csum_flags) {
7377                 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7378                         m0 = bce_tso_setup(sc, m_head, &flags);
7379                         if (m0 == NULL) {
7380                                 DBRUN(sc->tso_frames_failed++);
7381                                 goto bce_tx_encap_exit;
7382                         }
7383                         mss = htole16(m0->m_pkthdr.tso_segsz);
7384                 } else {
7385                         if (m0->m_pkthdr.csum_flags & CSUM_IP)
7386                                 flags |= TX_BD_FLAGS_IP_CKSUM;
7387                         if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7388                                 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7389                 }
7390         }
7391
7392         /* Transfer any VLAN tags to the bd. */
7393         if (m0->m_flags & M_VLANTAG) {
7394                 flags |= TX_BD_FLAGS_VLAN_TAG;
7395                 vlan_tag = m0->m_pkthdr.ether_vtag;
7396         }
7397
7398         /* Map the mbuf into DMAable memory. */
7399         prod = sc->tx_prod;
7400         chain_prod = TX_CHAIN_IDX(prod);
7401         map = sc->tx_mbuf_map[chain_prod];
7402
7403         /* Map the mbuf into our DMA address space. */
7404         error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7405             segs, &nsegs, BUS_DMA_NOWAIT);
7406
7407         /* Check if the DMA mapping was successful */
7408         if (error == EFBIG) {
7409                 sc->mbuf_frag_count++;
7410
7411                 /* Try to defrag the mbuf. */
7412                 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7413                 if (m0 == NULL) {
7414                         /* Defrag was unsuccessful */
7415                         m_freem(*m_head);
7416                         *m_head = NULL;
7417                         sc->mbuf_alloc_failed_count++;
7418                         rc = ENOBUFS;
7419                         goto bce_tx_encap_exit;
7420                 }
7421
7422                 /* Defrag was successful, try mapping again */
7423                 *m_head = m0;
7424                 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7425                     map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7426
7427                 /* Still getting an error after a defrag. */
7428                 if (error == ENOMEM) {
7429                         /* Insufficient DMA buffers available. */
7430                         sc->dma_map_addr_tx_failed_count++;
7431                         rc = error;
7432                         goto bce_tx_encap_exit;
7433                 } else if (error != 0) {
7434                         /* Release it and return an error. */
7435                         BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7436                             "TX chain!\n", __FILE__, __LINE__);
7437                         m_freem(m0);
7438                         *m_head = NULL;
7439                         sc->dma_map_addr_tx_failed_count++;
7440                         rc = ENOBUFS;
7441                         goto bce_tx_encap_exit;
7442                 }
7443         } else if (error == ENOMEM) {
7444                 /* Insufficient DMA buffers available. */
7445                 sc->dma_map_addr_tx_failed_count++;
7446                 rc = error;
7447                 goto bce_tx_encap_exit;
7448         } else if (error != 0) {
7449                 m_freem(m0);
7450                 *m_head = NULL;
7451                 sc->dma_map_addr_tx_failed_count++;
7452                 rc = error;
7453                 goto bce_tx_encap_exit;
7454         }
7455
7456         /* Make sure there's room in the chain */
7457         if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7458                 bus_dmamap_unload(sc->tx_mbuf_tag, map);
7459                 rc = ENOBUFS;
7460                 goto bce_tx_encap_exit;
7461         }
7462
7463         /* prod points to an empty tx_bd at this point. */
7464         prod_bseq  = sc->tx_prod_bseq;
7465
7466 #ifdef BCE_DEBUG
7467         debug_prod = chain_prod;
7468 #endif
7469
7470         DBPRINT(sc, BCE_INFO_SEND,
7471             "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7472             "prod_bseq = 0x%08X\n",
7473             __FUNCTION__, prod, chain_prod, prod_bseq);
7474
7475         /*
7476          * Cycle through each mbuf segment that makes up
7477          * the outgoing frame, gathering the mapping info
7478          * for that segment and creating a tx_bd for
7479          * the mbuf.
7480          */
7481         for (i = 0; i < nsegs ; i++) {
7482
7483                 chain_prod = TX_CHAIN_IDX(prod);
7484                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7485                     [TX_IDX(chain_prod)];
7486
7487                 txbd->tx_bd_haddr_lo =
7488                     htole32(BCE_ADDR_LO(segs[i].ds_addr));
7489                 txbd->tx_bd_haddr_hi =
7490                     htole32(BCE_ADDR_HI(segs[i].ds_addr));
7491                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7492                     htole16(segs[i].ds_len);
7493                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7494                 txbd->tx_bd_flags = htole16(flags);
7495                 prod_bseq += segs[i].ds_len;
7496                 if (i == 0)
7497                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7498                 prod = NEXT_TX_BD(prod);
7499         }
7500
7501         /* Set the END flag on the last TX buffer descriptor. */
7502         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7503
7504         DBRUNMSG(BCE_EXTREME_SEND,
7505             bce_dump_tx_chain(sc, debug_prod, nsegs));
7506
7507         /*
7508          * Ensure that the mbuf pointer for this transmission
7509          * is placed at the array index of the last
7510          * descriptor in this chain.  This is done
7511          * because a single map is used for all
7512          * segments of the mbuf and we don't want to
7513          * unload the map before all of the segments
7514          * have been freed.
7515          */
7516         sc->tx_mbuf_ptr[chain_prod] = m0;
7517         sc->used_tx_bd += nsegs;
7518
7519         /* Update some debug statistic counters */
7520         DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7521             sc->tx_hi_watermark = sc->used_tx_bd);
7522         DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7523         DBRUNIF(sc->debug_tx_mbuf_alloc++);
7524
7525         DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7526
7527         /* prod points to the next free tx_bd at this point. */
7528         sc->tx_prod = prod;
7529         sc->tx_prod_bseq = prod_bseq;
7530
7531         /* Tell the chip about the waiting TX frames. */
7532         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7533             BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7534         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7535             BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7536
7537 bce_tx_encap_exit:
7538         DBEXIT(BCE_VERBOSE_SEND);
7539         return(rc);
7540 }
7541
7542
7543 /****************************************************************************/
7544 /* Main transmit routine when called from another routine with a lock.      */
7545 /*                                                                          */
7546 /* Returns:                                                                 */
7547 /*   Nothing.                                                               */
7548 /****************************************************************************/
7549 static void
7550 bce_start_locked(struct ifnet *ifp)
7551 {
7552         struct bce_softc *sc = ifp->if_softc;
7553         struct mbuf *m_head = NULL;
7554         int count = 0;
7555         u16 tx_prod, tx_chain_prod;
7556
7557         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7558
7559         BCE_LOCK_ASSERT(sc);
7560
7561         /* prod points to the next free tx_bd. */
7562         tx_prod = sc->tx_prod;
7563         tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7564
7565         DBPRINT(sc, BCE_INFO_SEND,
7566             "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7567             "tx_prod_bseq = 0x%08X\n",
7568             __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7569
7570         /* If there's no link or the transmit queue is empty then just exit. */
7571         if (sc->bce_link_up == FALSE) {
7572                 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7573                     __FUNCTION__);
7574                 goto bce_start_locked_exit;
7575         }
7576
7577         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7578                 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7579                     __FUNCTION__);
7580                 goto bce_start_locked_exit;
7581         }
7582
7583         /*
7584          * Keep adding entries while there is space in the ring.
7585          */
7586         while (sc->used_tx_bd < sc->max_tx_bd) {
7587
7588                 /* Check for any frames to send. */
7589                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7590
7591                 /* Stop when the transmit queue is empty. */
7592                 if (m_head == NULL)
7593                         break;
7594
7595                 /*
7596                  * Pack the data into the transmit ring. If we
7597                  * don't have room, place the mbuf back at the
7598                  * head of the queue and set the OACTIVE flag
7599                  * to wait for the NIC to drain the chain.
7600                  */
7601                 if (bce_tx_encap(sc, &m_head)) {
7602                         if (m_head != NULL)
7603                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7604                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7605                         DBPRINT(sc, BCE_INFO_SEND,
7606                             "TX chain is closed for business! Total "
7607                             "tx_bd used = %d\n", sc->used_tx_bd);
7608                         break;
7609                 }
7610
7611                 count++;
7612
7613                 /* Send a copy of the frame to any BPF listeners. */
7614                 ETHER_BPF_MTAP(ifp, m_head);
7615         }
7616
7617         /* Exit if no packets were dequeued. */
7618         if (count == 0) {
7619                 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7620                     "dequeued\n", __FUNCTION__);
7621                 goto bce_start_locked_exit;
7622         }
7623
7624         DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7625             "send queue.\n", __FUNCTION__, count);
7626
7627         /* Set the tx timeout. */
7628         sc->watchdog_timer = BCE_TX_TIMEOUT;
7629
7630         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7631         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7632
7633 bce_start_locked_exit:
7634         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7635 }
7636
7637
7638 /****************************************************************************/
7639 /* Main transmit routine when called from another routine without a lock.   */
7640 /*                                                                          */
7641 /* Returns:                                                                 */
7642 /*   Nothing.                                                               */
7643 /****************************************************************************/
7644 static void
7645 bce_start(struct ifnet *ifp)
7646 {
7647         struct bce_softc *sc = ifp->if_softc;
7648
7649         DBENTER(BCE_VERBOSE_SEND);
7650
7651         BCE_LOCK(sc);
7652         bce_start_locked(ifp);
7653         BCE_UNLOCK(sc);
7654
7655         DBEXIT(BCE_VERBOSE_SEND);
7656 }
7657
7658
7659 /****************************************************************************/
7660 /* Handles any IOCTL calls from the operating system.                       */
7661 /*                                                                          */
7662 /* Returns:                                                                 */
7663 /*   0 for success, positive value for failure.                             */
7664 /****************************************************************************/
7665 static int
7666 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7667 {
7668         struct bce_softc *sc = ifp->if_softc;
7669         struct ifreq *ifr = (struct ifreq *) data;
7670         struct mii_data *mii;
7671         int mask, error = 0;
7672
7673         DBENTER(BCE_VERBOSE_MISC);
7674
7675         switch(command) {
7676
7677         /* Set the interface MTU. */
7678         case SIOCSIFMTU:
7679                 /* Check that the MTU setting is supported. */
7680                 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7681                         (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7682                         error = EINVAL;
7683                         break;
7684                 }
7685
7686                 DBPRINT(sc, BCE_INFO_MISC,
7687                     "SIOCSIFMTU: Changing MTU from %d to %d\n",
7688                     (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7689
7690                 BCE_LOCK(sc);
7691                 ifp->if_mtu = ifr->ifr_mtu;
7692                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7693                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7694                         bce_init_locked(sc);
7695                 }
7696                 BCE_UNLOCK(sc);
7697                 break;
7698
7699         /* Set interface flags. */
7700         case SIOCSIFFLAGS:
7701                 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7702
7703                 BCE_LOCK(sc);
7704
7705                 /* Check if the interface is up. */
7706                 if (ifp->if_flags & IFF_UP) {
7707                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7708                                 /* Change promiscuous/multicast flags as necessary. */
7709                                 bce_set_rx_mode(sc);
7710                         } else {
7711                                 /* Start the HW */
7712                                 bce_init_locked(sc);
7713                         }
7714                 } else {
7715                         /* The interface is down, check if driver is running. */
7716                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7717                                 bce_stop(sc);
7718
7719                                 /* If MFW is running, restart the controller a bit. */
7720                                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7721                                         bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7722                                         bce_chipinit(sc);
7723                                         bce_mgmt_init_locked(sc);
7724                                 }
7725                         }
7726                 }
7727
7728                 BCE_UNLOCK(sc);
7729                 break;
7730
7731         /* Add/Delete multicast address */
7732         case SIOCADDMULTI:
7733         case SIOCDELMULTI:
7734                 DBPRINT(sc, BCE_VERBOSE_MISC,
7735                     "Received SIOCADDMULTI/SIOCDELMULTI\n");
7736
7737                 BCE_LOCK(sc);
7738                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7739                         bce_set_rx_mode(sc);
7740                 BCE_UNLOCK(sc);
7741
7742                 break;
7743
7744         /* Set/Get Interface media */
7745         case SIOCSIFMEDIA:
7746         case SIOCGIFMEDIA:
7747                 DBPRINT(sc, BCE_VERBOSE_MISC,
7748                     "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7749                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7750                         error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7751                             command);
7752                 else {
7753                         mii = device_get_softc(sc->bce_miibus);
7754                         error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7755                             command);
7756                 }
7757                 break;
7758
7759         /* Set interface capability */
7760         case SIOCSIFCAP:
7761                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7762                 DBPRINT(sc, BCE_INFO_MISC,
7763                     "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7764
7765                 /* Toggle the TX checksum capabilities enable flag. */
7766                 if (mask & IFCAP_TXCSUM &&
7767                     ifp->if_capabilities & IFCAP_TXCSUM) {
7768                         ifp->if_capenable ^= IFCAP_TXCSUM;
7769                         if (IFCAP_TXCSUM & ifp->if_capenable)
7770                                 ifp->if_hwassist |= BCE_IF_HWASSIST;
7771                         else
7772                                 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7773                 }
7774
7775                 /* Toggle the RX checksum capabilities enable flag. */
7776                 if (mask & IFCAP_RXCSUM &&
7777                     ifp->if_capabilities & IFCAP_RXCSUM)
7778                         ifp->if_capenable ^= IFCAP_RXCSUM;
7779
7780                 /* Toggle the TSO capabilities enable flag. */
7781                 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7782                     ifp->if_capabilities & IFCAP_TSO4) {
7783                         ifp->if_capenable ^= IFCAP_TSO4;
7784                         if (IFCAP_TSO4 & ifp->if_capenable)
7785                                 ifp->if_hwassist |= CSUM_TSO;
7786                         else
7787                                 ifp->if_hwassist &= ~CSUM_TSO;
7788                 }
7789
7790                 if (mask & IFCAP_VLAN_HWCSUM &&
7791                     ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7792                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7793
7794                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7795                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7796                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7797                 /*
7798                  * Don't actually disable VLAN tag stripping as
7799                  * management firmware (ASF/IPMI/UMP) requires the
7800                  * feature. If VLAN tag stripping is disabled driver
7801                  * will manually reconstruct the VLAN frame by
7802                  * appending stripped VLAN tag.
7803                  */
7804                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7805                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7806                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7807                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7808                             == 0)
7809                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7810                 }
7811                 VLAN_CAPABILITIES(ifp);
7812                 break;
7813         default:
7814                 /* We don't know how to handle the IOCTL, pass it on. */
7815                 error = ether_ioctl(ifp, command, data);
7816                 break;
7817         }
7818
7819         DBEXIT(BCE_VERBOSE_MISC);
7820         return(error);
7821 }
7822
7823
7824 /****************************************************************************/
7825 /* Transmit timeout handler.                                                */
7826 /*                                                                          */
7827 /* Returns:                                                                 */
7828 /*   Nothing.                                                               */
7829 /****************************************************************************/
7830 static void
7831 bce_watchdog(struct bce_softc *sc)
7832 {
7833         uint32_t status;
7834
7835         DBENTER(BCE_EXTREME_SEND);
7836
7837         BCE_LOCK_ASSERT(sc);
7838
7839         status = 0;
7840         /* If the watchdog timer hasn't expired then just exit. */
7841         if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7842                 goto bce_watchdog_exit;
7843
7844         status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7845         /* If pause frames are active then don't reset the hardware. */
7846         if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7847                 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7848                         /*
7849                          * If link partner has us in XOFF state then wait for
7850                          * the condition to clear.
7851                          */
7852                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7853                         goto bce_watchdog_exit;
7854                 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7855                         (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7856                         /*
7857                          * If we're not currently XOFF'ed but have recently
7858                          * been XOFF'd/XON'd then assume that's delaying TX
7859                          * this time around.
7860                          */
7861                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7862                         goto bce_watchdog_exit;
7863                 }
7864                 /*
7865                  * Any other condition is unexpected and the controller
7866                  * should be reset.
7867                  */
7868         }
7869
7870         BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7871             __FILE__, __LINE__);
7872
7873         DBRUNMSG(BCE_INFO,
7874             bce_dump_driver_state(sc);
7875             bce_dump_status_block(sc);
7876             bce_dump_stats_block(sc);
7877             bce_dump_ftqs(sc);
7878             bce_dump_txp_state(sc, 0);
7879             bce_dump_rxp_state(sc, 0);
7880             bce_dump_tpat_state(sc, 0);
7881             bce_dump_cp_state(sc, 0);
7882             bce_dump_com_state(sc, 0));
7883
7884         DBRUN(bce_breakpoint(sc));
7885
7886         sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7887
7888         bce_init_locked(sc);
7889         sc->bce_ifp->if_oerrors++;
7890
7891 bce_watchdog_exit:
7892         REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7893         DBEXIT(BCE_EXTREME_SEND);
7894 }
7895
7896
7897 /*
7898  * Interrupt handler.
7899  */
7900 /****************************************************************************/
7901 /* Main interrupt entry point.  Verifies that the controller generated the  */
7902 /* interrupt and then calls a separate routine for handle the various       */
7903 /* interrupt causes (PHY, TX, RX).                                          */
7904 /*                                                                          */
7905 /* Returns:                                                                 */
7906 /*   Nothing.                                                               */
7907 /****************************************************************************/
7908 static void
7909 bce_intr(void *xsc)
7910 {
7911         struct bce_softc *sc;
7912         struct ifnet *ifp;
7913         u32 status_attn_bits;
7914         u16 hw_rx_cons, hw_tx_cons;
7915
7916         sc = xsc;
7917         ifp = sc->bce_ifp;
7918
7919         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7920         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7921         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7922
7923         BCE_LOCK(sc);
7924
7925         DBRUN(sc->interrupts_generated++);
7926
7927         /* Synchnorize before we read from interface's status block */
7928         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7929
7930         /*
7931          * If the hardware status block index matches the last value read
7932          * by the driver and we haven't asserted our interrupt then there's
7933          * nothing to do.  This may only happen in case of INTx due to the
7934          * interrupt arriving at the CPU before the status block is updated.
7935          */
7936         if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7937             sc->status_block->status_idx == sc->last_status_idx &&
7938             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7939              BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7940                 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7941                     __FUNCTION__);
7942                 goto bce_intr_exit;
7943         }
7944
7945         /* Ack the interrupt and stop others from occuring. */
7946         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7947             BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7948             BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7949
7950         /* Check if the hardware has finished any work. */
7951         hw_rx_cons = bce_get_hw_rx_cons(sc);
7952         hw_tx_cons = bce_get_hw_tx_cons(sc);
7953
7954         /* Keep processing data as long as there is work to do. */
7955         for (;;) {
7956
7957                 status_attn_bits = sc->status_block->status_attn_bits;
7958
7959                 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7960                     BCE_PRINTF("Simulating unexpected status attention "
7961                     "bit set.");
7962                     sc->unexpected_attention_sim_count++;
7963                     status_attn_bits = status_attn_bits |
7964                     STATUS_ATTN_BITS_PARITY_ERROR);
7965
7966                 /* Was it a link change interrupt? */
7967                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7968                     (sc->status_block->status_attn_bits_ack &
7969                      STATUS_ATTN_BITS_LINK_STATE)) {
7970                         bce_phy_intr(sc);
7971
7972                         /* Clear transient updates during link state change. */
7973                         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7974                             BCE_HC_COMMAND_COAL_NOW_WO_INT);
7975                         REG_RD(sc, BCE_HC_COMMAND);
7976                 }
7977
7978                 /* If any other attention is asserted, the chip is toast. */
7979                 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7980                     (sc->status_block->status_attn_bits_ack &
7981                     ~STATUS_ATTN_BITS_LINK_STATE))) {
7982
7983                         sc->unexpected_attention_count++;
7984
7985                         BCE_PRINTF("%s(%d): Fatal attention detected: "
7986                             "0x%08X\n", __FILE__, __LINE__,
7987                             sc->status_block->status_attn_bits);
7988
7989                         DBRUNMSG(BCE_FATAL,
7990                             if (unexpected_attention_sim_control == 0)
7991                                 bce_breakpoint(sc));
7992
7993                         bce_init_locked(sc);
7994                         goto bce_intr_exit;
7995                 }
7996
7997                 /* Check for any completed RX frames. */
7998                 if (hw_rx_cons != sc->hw_rx_cons)
7999                         bce_rx_intr(sc);
8000
8001                 /* Check for any completed TX frames. */
8002                 if (hw_tx_cons != sc->hw_tx_cons)
8003                         bce_tx_intr(sc);
8004
8005                 /* Save status block index value for the next interrupt. */
8006                 sc->last_status_idx = sc->status_block->status_idx;
8007
8008                 /*
8009                  * Prevent speculative reads from getting
8010                  * ahead of the status block.
8011                  */
8012                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8013                     BUS_SPACE_BARRIER_READ);
8014
8015                 /*
8016                  * If there's no work left then exit the
8017                  * interrupt service routine.
8018                  */
8019                 hw_rx_cons = bce_get_hw_rx_cons(sc);
8020                 hw_tx_cons = bce_get_hw_tx_cons(sc);
8021
8022                 if ((hw_rx_cons == sc->hw_rx_cons) &&
8023                     (hw_tx_cons == sc->hw_tx_cons))
8024                         break;
8025         }
8026
8027         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
8028
8029         /* Re-enable interrupts. */
8030         bce_enable_intr(sc, 0);
8031
8032         /* Handle any frames that arrived while handling the interrupt. */
8033         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8034             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8035                 bce_start_locked(ifp);
8036
8037 bce_intr_exit:
8038         BCE_UNLOCK(sc);
8039
8040         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8041 }
8042
8043
8044 /****************************************************************************/
8045 /* Programs the various packet receive modes (broadcast and multicast).     */
8046 /*                                                                          */
8047 /* Returns:                                                                 */
8048 /*   Nothing.                                                               */
8049 /****************************************************************************/
8050 static void
8051 bce_set_rx_mode(struct bce_softc *sc)
8052 {
8053         struct ifnet *ifp;
8054         struct ifmultiaddr *ifma;
8055         u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8056         u32 rx_mode, sort_mode;
8057         int h, i;
8058
8059         DBENTER(BCE_VERBOSE_MISC);
8060
8061         BCE_LOCK_ASSERT(sc);
8062
8063         ifp = sc->bce_ifp;
8064
8065         /* Initialize receive mode default settings. */
8066         rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8067             BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8068         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8069
8070         /*
8071          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8072          * be enbled.
8073          */
8074         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8075             (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8076                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8077
8078         /*
8079          * Check for promiscuous, all multicast, or selected
8080          * multicast address filtering.
8081          */
8082         if (ifp->if_flags & IFF_PROMISC) {
8083                 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8084
8085                 /* Enable promiscuous mode. */
8086                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8087                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8088         } else if (ifp->if_flags & IFF_ALLMULTI) {
8089                 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8090
8091                 /* Enable all multicast addresses. */
8092                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8093                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8094                             0xffffffff);
8095                 }
8096                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8097         } else {
8098                 /* Accept one or more multicast(s). */
8099                 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8100
8101                 if_maddr_rlock(ifp);
8102                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8103                         if (ifma->ifma_addr->sa_family != AF_LINK)
8104                                 continue;
8105                         h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8106                             ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8107                             hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8108                 }
8109                 if_maddr_runlock(ifp);
8110
8111                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8112                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8113
8114                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8115         }
8116
8117         /* Only make changes if the recive mode has actually changed. */
8118         if (rx_mode != sc->rx_mode) {
8119                 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8120                     "0x%08X\n", rx_mode);
8121
8122                 sc->rx_mode = rx_mode;
8123                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8124         }
8125
8126         /* Disable and clear the exisitng sort before enabling a new sort. */
8127         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8128         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8129         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8130
8131         DBEXIT(BCE_VERBOSE_MISC);
8132 }
8133
8134
8135 /****************************************************************************/
8136 /* Called periodically to updates statistics from the controllers           */
8137 /* statistics block.                                                        */
8138 /*                                                                          */
8139 /* Returns:                                                                 */
8140 /*   Nothing.                                                               */
8141 /****************************************************************************/
8142 static void
8143 bce_stats_update(struct bce_softc *sc)
8144 {
8145         struct ifnet *ifp;
8146         struct statistics_block *stats;
8147
8148         DBENTER(BCE_EXTREME_MISC);
8149
8150         ifp = sc->bce_ifp;
8151
8152         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8153
8154         stats = (struct statistics_block *) sc->stats_block;
8155
8156         /*
8157          * Certain controllers don't report
8158          * carrier sense errors correctly.
8159          * See errata E11_5708CA0_1165.
8160          */
8161         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8162             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8163                 ifp->if_oerrors +=
8164                     (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8165
8166         /*
8167          * Update the sysctl statistics from the
8168          * hardware statistics.
8169          */
8170         sc->stat_IfHCInOctets =
8171             ((u64) stats->stat_IfHCInOctets_hi << 32) +
8172              (u64) stats->stat_IfHCInOctets_lo;
8173
8174         sc->stat_IfHCInBadOctets =
8175             ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8176              (u64) stats->stat_IfHCInBadOctets_lo;
8177
8178         sc->stat_IfHCOutOctets =
8179             ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8180              (u64) stats->stat_IfHCOutOctets_lo;
8181
8182         sc->stat_IfHCOutBadOctets =
8183             ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8184              (u64) stats->stat_IfHCOutBadOctets_lo;
8185
8186         sc->stat_IfHCInUcastPkts =
8187             ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8188              (u64) stats->stat_IfHCInUcastPkts_lo;
8189
8190         sc->stat_IfHCInMulticastPkts =
8191             ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8192              (u64) stats->stat_IfHCInMulticastPkts_lo;
8193
8194         sc->stat_IfHCInBroadcastPkts =
8195             ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8196              (u64) stats->stat_IfHCInBroadcastPkts_lo;
8197
8198         sc->stat_IfHCOutUcastPkts =
8199             ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8200              (u64) stats->stat_IfHCOutUcastPkts_lo;
8201
8202         sc->stat_IfHCOutMulticastPkts =
8203             ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8204              (u64) stats->stat_IfHCOutMulticastPkts_lo;
8205
8206         sc->stat_IfHCOutBroadcastPkts =
8207             ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8208              (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8209
8210         /* ToDo: Preserve counters beyond 32 bits? */
8211         /* ToDo: Read the statistics from auto-clear regs? */
8212
8213         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8214             stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8215
8216         sc->stat_Dot3StatsCarrierSenseErrors =
8217             stats->stat_Dot3StatsCarrierSenseErrors;
8218
8219         sc->stat_Dot3StatsFCSErrors =
8220             stats->stat_Dot3StatsFCSErrors;
8221
8222         sc->stat_Dot3StatsAlignmentErrors =
8223             stats->stat_Dot3StatsAlignmentErrors;
8224
8225         sc->stat_Dot3StatsSingleCollisionFrames =
8226             stats->stat_Dot3StatsSingleCollisionFrames;
8227
8228         sc->stat_Dot3StatsMultipleCollisionFrames =
8229             stats->stat_Dot3StatsMultipleCollisionFrames;
8230
8231         sc->stat_Dot3StatsDeferredTransmissions =
8232             stats->stat_Dot3StatsDeferredTransmissions;
8233
8234         sc->stat_Dot3StatsExcessiveCollisions =
8235             stats->stat_Dot3StatsExcessiveCollisions;
8236
8237         sc->stat_Dot3StatsLateCollisions =
8238             stats->stat_Dot3StatsLateCollisions;
8239
8240         sc->stat_EtherStatsCollisions =
8241             stats->stat_EtherStatsCollisions;
8242
8243         sc->stat_EtherStatsFragments =
8244             stats->stat_EtherStatsFragments;
8245
8246         sc->stat_EtherStatsJabbers =
8247             stats->stat_EtherStatsJabbers;
8248
8249         sc->stat_EtherStatsUndersizePkts =
8250             stats->stat_EtherStatsUndersizePkts;
8251
8252         sc->stat_EtherStatsOversizePkts =
8253              stats->stat_EtherStatsOversizePkts;
8254
8255         sc->stat_EtherStatsPktsRx64Octets =
8256             stats->stat_EtherStatsPktsRx64Octets;
8257
8258         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8259             stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8260
8261         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8262             stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8263
8264         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8265             stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8266
8267         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8268             stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8269
8270         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8271             stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8272
8273         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8274             stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8275
8276         sc->stat_EtherStatsPktsTx64Octets =
8277             stats->stat_EtherStatsPktsTx64Octets;
8278
8279         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8280             stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8281
8282         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8283             stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8284
8285         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8286             stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8287
8288         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8289             stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8290
8291         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8292             stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8293
8294         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8295             stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8296
8297         sc->stat_XonPauseFramesReceived =
8298             stats->stat_XonPauseFramesReceived;
8299
8300         sc->stat_XoffPauseFramesReceived =
8301             stats->stat_XoffPauseFramesReceived;
8302
8303         sc->stat_OutXonSent =
8304             stats->stat_OutXonSent;
8305
8306         sc->stat_OutXoffSent =
8307             stats->stat_OutXoffSent;
8308
8309         sc->stat_FlowControlDone =
8310             stats->stat_FlowControlDone;
8311
8312         sc->stat_MacControlFramesReceived =
8313             stats->stat_MacControlFramesReceived;
8314
8315         sc->stat_XoffStateEntered =
8316             stats->stat_XoffStateEntered;
8317
8318         sc->stat_IfInFramesL2FilterDiscards =
8319             stats->stat_IfInFramesL2FilterDiscards;
8320
8321         sc->stat_IfInRuleCheckerDiscards =
8322             stats->stat_IfInRuleCheckerDiscards;
8323
8324         sc->stat_IfInFTQDiscards =
8325             stats->stat_IfInFTQDiscards;
8326
8327         sc->stat_IfInMBUFDiscards =
8328             stats->stat_IfInMBUFDiscards;
8329
8330         sc->stat_IfInRuleCheckerP4Hit =
8331             stats->stat_IfInRuleCheckerP4Hit;
8332
8333         sc->stat_CatchupInRuleCheckerDiscards =
8334             stats->stat_CatchupInRuleCheckerDiscards;
8335
8336         sc->stat_CatchupInFTQDiscards =
8337             stats->stat_CatchupInFTQDiscards;
8338
8339         sc->stat_CatchupInMBUFDiscards =
8340             stats->stat_CatchupInMBUFDiscards;
8341
8342         sc->stat_CatchupInRuleCheckerP4Hit =
8343             stats->stat_CatchupInRuleCheckerP4Hit;
8344
8345         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8346
8347         /*
8348          * Update the interface statistics from the
8349          * hardware statistics.
8350          */
8351         ifp->if_collisions =
8352             (u_long) sc->stat_EtherStatsCollisions;
8353
8354         /* ToDo: This method loses soft errors. */
8355         ifp->if_ierrors =
8356             (u_long) sc->stat_EtherStatsUndersizePkts +
8357             (u_long) sc->stat_EtherStatsOversizePkts +
8358             (u_long) sc->stat_IfInMBUFDiscards +
8359             (u_long) sc->stat_Dot3StatsAlignmentErrors +
8360             (u_long) sc->stat_Dot3StatsFCSErrors +
8361             (u_long) sc->stat_IfInRuleCheckerDiscards +
8362             (u_long) sc->stat_IfInFTQDiscards +
8363             (u_long) sc->com_no_buffers;
8364
8365         /* ToDo: This method loses soft errors. */
8366         ifp->if_oerrors =
8367             (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8368             (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8369             (u_long) sc->stat_Dot3StatsLateCollisions;
8370
8371         /* ToDo: Add additional statistics? */
8372
8373         DBEXIT(BCE_EXTREME_MISC);
8374 }
8375
8376
8377 /****************************************************************************/
8378 /* Periodic function to notify the bootcode that the driver is still        */
8379 /* present.                                                                 */
8380 /*                                                                          */
8381 /* Returns:                                                                 */
8382 /*   Nothing.                                                               */
8383 /****************************************************************************/
8384 static void
8385 bce_pulse(void *xsc)
8386 {
8387         struct bce_softc *sc = xsc;
8388         u32 msg;
8389
8390         DBENTER(BCE_EXTREME_MISC);
8391
8392         BCE_LOCK_ASSERT(sc);
8393
8394         /* Tell the firmware that the driver is still running. */
8395         msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8396         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8397
8398         /* Update the bootcode condition. */
8399         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8400
8401         /* Report whether the bootcode still knows the driver is running. */
8402         if (bce_verbose || bootverbose) {
8403                 if (sc->bce_drv_cardiac_arrest == FALSE) {
8404                         if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8405                                 sc->bce_drv_cardiac_arrest = TRUE;
8406                                 BCE_PRINTF("%s(): Warning: bootcode "
8407                                     "thinks driver is absent! "
8408                                     "(bc_state = 0x%08X)\n",
8409                                     __FUNCTION__, sc->bc_state);
8410                         }
8411                 } else {
8412                         /*
8413                          * Not supported by all bootcode versions.
8414                          * (v5.0.11+ and v5.2.1+)  Older bootcode
8415                          * will require the driver to reset the
8416                          * controller to clear this condition.
8417                          */
8418                         if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8419                                 sc->bce_drv_cardiac_arrest = FALSE;
8420                                 BCE_PRINTF("%s(): Bootcode found the "
8421                                     "driver pulse! (bc_state = 0x%08X)\n",
8422                                     __FUNCTION__, sc->bc_state);
8423                         }
8424                 }
8425         }
8426
8427
8428         /* Schedule the next pulse. */
8429         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8430
8431         DBEXIT(BCE_EXTREME_MISC);
8432 }
8433
8434
8435 /****************************************************************************/
8436 /* Periodic function to perform maintenance tasks.                          */
8437 /*                                                                          */
8438 /* Returns:                                                                 */
8439 /*   Nothing.                                                               */
8440 /****************************************************************************/
8441 static void
8442 bce_tick(void *xsc)
8443 {
8444         struct bce_softc *sc = xsc;
8445         struct mii_data *mii;
8446         struct ifnet *ifp;
8447         struct ifmediareq ifmr;
8448
8449         ifp = sc->bce_ifp;
8450
8451         DBENTER(BCE_EXTREME_MISC);
8452
8453         BCE_LOCK_ASSERT(sc);
8454
8455         /* Schedule the next tick. */
8456         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8457
8458         /* Update the statistics from the hardware statistics block. */
8459         bce_stats_update(sc);
8460
8461         /* Ensure page and RX chains get refilled in low-memory situations. */
8462         if (bce_hdr_split == TRUE)
8463                 bce_fill_pg_chain(sc);
8464         bce_fill_rx_chain(sc);
8465
8466         /* Check that chip hasn't hung. */
8467         bce_watchdog(sc);
8468
8469         /* If link is up already up then we're done. */
8470         if (sc->bce_link_up == TRUE)
8471                 goto bce_tick_exit;
8472
8473         /* Link is down.  Check what the PHY's doing. */
8474         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8475                 bzero(&ifmr, sizeof(ifmr));
8476                 bce_ifmedia_sts_rphy(sc, &ifmr);
8477                 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8478                     (IFM_ACTIVE | IFM_AVALID)) {
8479                         sc->bce_link_up = TRUE;
8480                         bce_miibus_statchg(sc->bce_dev);
8481                 }
8482         } else {
8483                 mii = device_get_softc(sc->bce_miibus);
8484                 mii_tick(mii);
8485                 /* Check if the link has come up. */
8486                 if ((mii->mii_media_status & IFM_ACTIVE) &&
8487                     (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8488                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8489                             __FUNCTION__);
8490                         sc->bce_link_up = TRUE;
8491                         if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8492                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8493                             IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8494                             (bce_verbose || bootverbose))
8495                                 BCE_PRINTF("Gigabit link up!\n");
8496                 }
8497
8498         }
8499         if (sc->bce_link_up == TRUE) {
8500                 /* Now that link is up, handle any outstanding TX traffic. */
8501                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8502                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8503                             "pending TX traffic.\n", __FUNCTION__);
8504                         bce_start_locked(ifp);
8505                 }
8506         }
8507
8508 bce_tick_exit:
8509         DBEXIT(BCE_EXTREME_MISC);
8510 }
8511
8512 static void
8513 bce_fw_cap_init(struct bce_softc *sc)
8514 {
8515         u32 ack, cap, link;
8516
8517         ack = 0;
8518         cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8519         if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8520             BCE_FW_CAP_SIGNATURE_MAGIC)
8521                 return;
8522         if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8523             (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8524                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8525                     BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8526         if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8527             (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8528                 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8529                 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8530                 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8531                 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8532                         sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8533                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8534                     BCE_FW_CAP_REMOTE_PHY_CAP;
8535         }
8536
8537         if (ack != 0)
8538                 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8539 }
8540
8541
8542 #ifdef BCE_DEBUG
8543 /****************************************************************************/
8544 /* Allows the driver state to be dumped through the sysctl interface.       */
8545 /*                                                                          */
8546 /* Returns:                                                                 */
8547 /*   0 for success, positive value for failure.                             */
8548 /****************************************************************************/
8549 static int
8550 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8551 {
8552         int error;
8553         int result;
8554         struct bce_softc *sc;
8555
8556         result = -1;
8557         error = sysctl_handle_int(oidp, &result, 0, req);
8558
8559         if (error || !req->newptr)
8560                 return (error);
8561
8562         if (result == 1) {
8563                 sc = (struct bce_softc *)arg1;
8564                 bce_dump_driver_state(sc);
8565         }
8566
8567         return error;
8568 }
8569
8570
8571 /****************************************************************************/
8572 /* Allows the hardware state to be dumped through the sysctl interface.     */
8573 /*                                                                          */
8574 /* Returns:                                                                 */
8575 /*   0 for success, positive value for failure.                             */
8576 /****************************************************************************/
8577 static int
8578 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8579 {
8580         int error;
8581         int result;
8582         struct bce_softc *sc;
8583
8584         result = -1;
8585         error = sysctl_handle_int(oidp, &result, 0, req);
8586
8587         if (error || !req->newptr)
8588                 return (error);
8589
8590         if (result == 1) {
8591                 sc = (struct bce_softc *)arg1;
8592                 bce_dump_hw_state(sc);
8593         }
8594
8595         return error;
8596 }
8597
8598
8599 /****************************************************************************/
8600 /* Allows the status block to be dumped through the sysctl interface.       */
8601 /*                                                                          */
8602 /* Returns:                                                                 */
8603 /*   0 for success, positive value for failure.                             */
8604 /****************************************************************************/
8605 static int
8606 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8607 {
8608         int error;
8609         int result;
8610         struct bce_softc *sc;
8611
8612         result = -1;
8613         error = sysctl_handle_int(oidp, &result, 0, req);
8614
8615         if (error || !req->newptr)
8616                 return (error);
8617
8618         if (result == 1) {
8619                 sc = (struct bce_softc *)arg1;
8620                 bce_dump_status_block(sc);
8621         }
8622
8623         return error;
8624 }
8625
8626
8627 /****************************************************************************/
8628 /* Allows the stats block to be dumped through the sysctl interface.        */
8629 /*                                                                          */
8630 /* Returns:                                                                 */
8631 /*   0 for success, positive value for failure.                             */
8632 /****************************************************************************/
8633 static int
8634 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8635 {
8636         int error;
8637         int result;
8638         struct bce_softc *sc;
8639
8640         result = -1;
8641         error = sysctl_handle_int(oidp, &result, 0, req);
8642
8643         if (error || !req->newptr)
8644                 return (error);
8645
8646         if (result == 1) {
8647                 sc = (struct bce_softc *)arg1;
8648                 bce_dump_stats_block(sc);
8649         }
8650
8651         return error;
8652 }
8653
8654
8655 /****************************************************************************/
8656 /* Allows the stat counters to be cleared without unloading/reloading the   */
8657 /* driver.                                                                  */
8658 /*                                                                          */
8659 /* Returns:                                                                 */
8660 /*   0 for success, positive value for failure.                             */
8661 /****************************************************************************/
8662 static int
8663 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8664 {
8665         int error;
8666         int result;
8667         struct bce_softc *sc;
8668
8669         result = -1;
8670         error = sysctl_handle_int(oidp, &result, 0, req);
8671
8672         if (error || !req->newptr)
8673                 return (error);
8674
8675         if (result == 1) {
8676                 sc = (struct bce_softc *)arg1;
8677                 struct statistics_block *stats;
8678
8679                 stats = (struct statistics_block *) sc->stats_block;
8680                 bzero(stats, sizeof(struct statistics_block));
8681                 bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8682                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8683
8684                 /* Clear the internal H/W statistics counters. */
8685                 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8686
8687                 /* Reset the driver maintained statistics. */
8688                 sc->interrupts_rx =
8689                     sc->interrupts_tx = 0;
8690                 sc->tso_frames_requested =
8691                     sc->tso_frames_completed =
8692                     sc->tso_frames_failed = 0;
8693                 sc->rx_empty_count =
8694                     sc->tx_full_count = 0;
8695                 sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8696                 sc->tx_hi_watermark = 0;
8697                 sc->l2fhdr_error_count =
8698                     sc->l2fhdr_error_sim_count = 0;
8699                 sc->mbuf_alloc_failed_count =
8700                     sc->mbuf_alloc_failed_sim_count = 0;
8701                 sc->dma_map_addr_rx_failed_count =
8702                     sc->dma_map_addr_tx_failed_count = 0;
8703                 sc->mbuf_frag_count = 0;
8704                 sc->csum_offload_tcp_udp =
8705                     sc->csum_offload_ip = 0;
8706                 sc->vlan_tagged_frames_rcvd =
8707                     sc->vlan_tagged_frames_stripped = 0;
8708                 sc->split_header_frames_rcvd =
8709                     sc->split_header_tcp_frames_rcvd = 0;
8710
8711                 /* Clear firmware maintained statistics. */
8712                 REG_WR_IND(sc, 0x120084, 0);
8713         }
8714
8715         return error;
8716 }
8717
8718
8719 /****************************************************************************/
8720 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8721 /* interface.                                                               */
8722 /*                                                                          */
8723 /* Returns:                                                                 */
8724 /*   0 for success, positive value for failure.                             */
8725 /****************************************************************************/
8726 static int
8727 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8728 {
8729         int error;
8730         int result;
8731         struct bce_softc *sc;
8732
8733         result = -1;
8734         error = sysctl_handle_int(oidp, &result, 0, req);
8735
8736         if (error || !req->newptr)
8737                 return (error);
8738
8739         if (result == 1) {
8740                 sc = (struct bce_softc *)arg1;
8741                 bce_dump_shmem_state(sc);
8742         }
8743
8744         return error;
8745 }
8746
8747
8748 /****************************************************************************/
8749 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8750 /*                                                                          */
8751 /* Returns:                                                                 */
8752 /*   0 for success, positive value for failure.                             */
8753 /****************************************************************************/
8754 static int
8755 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8756 {
8757         int error;
8758         int result;
8759         struct bce_softc *sc;
8760
8761         result = -1;
8762         error = sysctl_handle_int(oidp, &result, 0, req);
8763
8764         if (error || !req->newptr)
8765                 return (error);
8766
8767         if (result == 1) {
8768                 sc = (struct bce_softc *)arg1;
8769                 bce_dump_bc_state(sc);
8770         }
8771
8772         return error;
8773 }
8774
8775
8776 /****************************************************************************/
8777 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8778 /*                                                                          */
8779 /* Returns:                                                                 */
8780 /*   0 for success, positive value for failure.                             */
8781 /****************************************************************************/
8782 static int
8783 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8784 {
8785         int error;
8786         int result;
8787         struct bce_softc *sc;
8788
8789         result = -1;
8790         error = sysctl_handle_int(oidp, &result, 0, req);
8791
8792         if (error || !req->newptr)
8793                 return (error);
8794
8795         if (result == 1) {
8796                 sc = (struct bce_softc *)arg1;
8797                 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8798         }
8799
8800         return error;
8801 }
8802
8803
8804 /****************************************************************************/
8805 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8806 /*                                                                          */
8807 /* Returns:                                                                 */
8808 /*   0 for success, positive value for failure.                             */
8809 /****************************************************************************/
8810 static int
8811 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8812 {
8813         int error;
8814         int result;
8815         struct bce_softc *sc;
8816
8817         result = -1;
8818         error = sysctl_handle_int(oidp, &result, 0, req);
8819
8820         if (error || !req->newptr)
8821                 return (error);
8822
8823         if (result == 1) {
8824                 sc = (struct bce_softc *)arg1;
8825                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8826         }
8827
8828         return error;
8829 }
8830
8831
8832 /****************************************************************************/
8833 /* Provides a sysctl interface to allow dumping the TX chain.               */
8834 /*                                                                          */
8835 /* Returns:                                                                 */
8836 /*   0 for success, positive value for failure.                             */
8837 /****************************************************************************/
8838 static int
8839 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8840 {
8841         int error;
8842         int result;
8843         struct bce_softc *sc;
8844
8845         result = -1;
8846         error = sysctl_handle_int(oidp, &result, 0, req);
8847
8848         if (error || !req->newptr)
8849                 return (error);
8850
8851         if (result == 1) {
8852                 sc = (struct bce_softc *)arg1;
8853                 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8854         }
8855
8856         return error;
8857 }
8858
8859
8860 /****************************************************************************/
8861 /* Provides a sysctl interface to allow dumping the page chain.             */
8862 /*                                                                          */
8863 /* Returns:                                                                 */
8864 /*   0 for success, positive value for failure.                             */
8865 /****************************************************************************/
8866 static int
8867 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8868 {
8869         int error;
8870         int result;
8871         struct bce_softc *sc;
8872
8873         result = -1;
8874         error = sysctl_handle_int(oidp, &result, 0, req);
8875
8876         if (error || !req->newptr)
8877                 return (error);
8878
8879         if (result == 1) {
8880                 sc = (struct bce_softc *)arg1;
8881                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8882         }
8883
8884         return error;
8885 }
8886
8887 /****************************************************************************/
8888 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8889 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8890 /*                                                                          */
8891 /* Returns:                                                                 */
8892 /*   0 for success, positive value for failure.                             */
8893 /****************************************************************************/
8894 static int
8895 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8896 {
8897         struct bce_softc *sc = (struct bce_softc *)arg1;
8898         int error;
8899         u32 result;
8900         u32 val[1];
8901         u8 *data = (u8 *) val;
8902
8903         result = -1;
8904         error = sysctl_handle_int(oidp, &result, 0, req);
8905         if (error || (req->newptr == NULL))
8906                 return (error);
8907
8908         error = bce_nvram_read(sc, result, data, 4);
8909
8910         BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8911
8912         return (error);
8913 }
8914
8915
8916 /****************************************************************************/
8917 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8918 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8919 /*                                                                          */
8920 /* Returns:                                                                 */
8921 /*   0 for success, positive value for failure.                             */
8922 /****************************************************************************/
8923 static int
8924 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8925 {
8926         struct bce_softc *sc = (struct bce_softc *)arg1;
8927         int error;
8928         u32 val, result;
8929
8930         result = -1;
8931         error = sysctl_handle_int(oidp, &result, 0, req);
8932         if (error || (req->newptr == NULL))
8933                 return (error);
8934
8935         /* Make sure the register is accessible. */
8936         if (result < 0x8000) {
8937                 val = REG_RD(sc, result);
8938                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8939         } else if (result < 0x0280000) {
8940                 val = REG_RD_IND(sc, result);
8941                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8942         }
8943
8944         return (error);
8945 }
8946
8947
8948 /****************************************************************************/
8949 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8950 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8951 /*                                                                          */
8952 /* Returns:                                                                 */
8953 /*   0 for success, positive value for failure.                             */
8954 /****************************************************************************/
8955 static int
8956 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8957 {
8958         struct bce_softc *sc;
8959         device_t dev;
8960         int error, result;
8961         u16 val;
8962
8963         result = -1;
8964         error = sysctl_handle_int(oidp, &result, 0, req);
8965         if (error || (req->newptr == NULL))
8966                 return (error);
8967
8968         /* Make sure the register is accessible. */
8969         if (result < 0x20) {
8970                 sc = (struct bce_softc *)arg1;
8971                 dev = sc->bce_dev;
8972                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8973                 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8974         }
8975         return (error);
8976 }
8977
8978
8979 /****************************************************************************/
8980 /* Provides a sysctl interface for dumping the nvram contents.              */
8981 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
8982 /*                                                                          */
8983 /* Returns:                                                                 */
8984 /*   0 for success, positive errno for failure.                             */
8985 /****************************************************************************/
8986 static int
8987 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8988 {
8989         struct bce_softc *sc = (struct bce_softc *)arg1;
8990         int error, i;
8991
8992         if (sc->nvram_buf == NULL)
8993                 sc->nvram_buf = malloc(sc->bce_flash_size,
8994                                     M_TEMP, M_ZERO | M_WAITOK);
8995
8996         error = 0;
8997         if (req->oldlen == sc->bce_flash_size) {
8998                 for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8999                         error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9000         }
9001
9002         if (error == 0)
9003                 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9004
9005         return error;
9006 }
9007
9008 #ifdef BCE_NVRAM_WRITE_SUPPORT
9009 /****************************************************************************/
9010 /* Provides a sysctl interface for writing to nvram.                        */
9011 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
9012 /*                                                                          */
9013 /* Returns:                                                                 */
9014 /*   0 for success, positive errno for failure.                             */
9015 /****************************************************************************/
9016 static int
9017 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9018 {
9019         struct bce_softc *sc = (struct bce_softc *)arg1;
9020         int error;
9021
9022         if (sc->nvram_buf == NULL)
9023                 sc->nvram_buf = malloc(sc->bce_flash_size,
9024                                     M_TEMP, M_ZERO | M_WAITOK);
9025         else
9026                 bzero(sc->nvram_buf, sc->bce_flash_size);
9027
9028         error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9029         if (error == 0)
9030                 return (error);
9031
9032         if (req->newlen == sc->bce_flash_size)
9033                 error = bce_nvram_write(sc, 0, sc->nvram_buf,
9034                             sc->bce_flash_size);
9035
9036
9037         return error;
9038 }
9039 #endif
9040
9041
9042 /****************************************************************************/
9043 /* Provides a sysctl interface to allow reading a CID.                      */
9044 /*                                                                          */
9045 /* Returns:                                                                 */
9046 /*   0 for success, positive value for failure.                             */
9047 /****************************************************************************/
9048 static int
9049 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9050 {
9051         struct bce_softc *sc;
9052         int error, result;
9053
9054         result = -1;
9055         error = sysctl_handle_int(oidp, &result, 0, req);
9056         if (error || (req->newptr == NULL))
9057                 return (error);
9058
9059         /* Make sure the register is accessible. */
9060         if (result <= TX_CID) {
9061                 sc = (struct bce_softc *)arg1;
9062                 bce_dump_ctx(sc, result);
9063         }
9064
9065         return (error);
9066 }
9067
9068
9069 /****************************************************************************/
9070 /* Provides a sysctl interface to forcing the driver to dump state and      */
9071 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9072 /*                                                                          */
9073 /* Returns:                                                                 */
9074 /*   0 for success, positive value for failure.                             */
9075 /****************************************************************************/
9076 static int
9077 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9078 {
9079         int error;
9080         int result;
9081         struct bce_softc *sc;
9082
9083         result = -1;
9084         error = sysctl_handle_int(oidp, &result, 0, req);
9085
9086         if (error || !req->newptr)
9087                 return (error);
9088
9089         if (result == 1) {
9090                 sc = (struct bce_softc *)arg1;
9091                 bce_breakpoint(sc);
9092         }
9093
9094         return error;
9095 }
9096 #endif
9097
9098 /****************************************************************************/
9099 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9100 /*                                                                          */
9101 /* Returns:                                                                 */
9102 /*   0 for success, positive value for failure.                             */
9103 /****************************************************************************/
9104 static void
9105 bce_add_sysctls(struct bce_softc *sc)
9106 {
9107         struct sysctl_ctx_list *ctx;
9108         struct sysctl_oid_list *children;
9109
9110         DBENTER(BCE_VERBOSE_MISC);
9111
9112         ctx = device_get_sysctl_ctx(sc->bce_dev);
9113         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9114
9115 #ifdef BCE_DEBUG
9116         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9117             "l2fhdr_error_sim_control",
9118             CTLFLAG_RW, &l2fhdr_error_sim_control,
9119             0, "Debug control to force l2fhdr errors");
9120
9121         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9122             "l2fhdr_error_sim_count",
9123             CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9124             0, "Number of simulated l2_fhdr errors");
9125 #endif
9126
9127         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9128             "l2fhdr_error_count",
9129             CTLFLAG_RD, &sc->l2fhdr_error_count,
9130             0, "Number of l2_fhdr errors");
9131
9132 #ifdef BCE_DEBUG
9133         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9134             "mbuf_alloc_failed_sim_control",
9135             CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9136             0, "Debug control to force mbuf allocation failures");
9137
9138         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9139             "mbuf_alloc_failed_sim_count",
9140             CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9141             0, "Number of simulated mbuf cluster allocation failures");
9142 #endif
9143
9144         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9145             "mbuf_alloc_failed_count",
9146             CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9147             0, "Number of mbuf allocation failures");
9148
9149         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9150             "mbuf_frag_count",
9151             CTLFLAG_RD, &sc->mbuf_frag_count,
9152             0, "Number of fragmented mbufs");
9153
9154 #ifdef BCE_DEBUG
9155         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9156             "dma_map_addr_failed_sim_control",
9157             CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9158             0, "Debug control to force DMA mapping failures");
9159
9160         /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9161         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9162             "dma_map_addr_failed_sim_count",
9163             CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9164             0, "Number of simulated DMA mapping failures");
9165
9166 #endif
9167
9168         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9169             "dma_map_addr_rx_failed_count",
9170             CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9171             0, "Number of RX DMA mapping failures");
9172
9173         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9174             "dma_map_addr_tx_failed_count",
9175             CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9176             0, "Number of TX DMA mapping failures");
9177
9178 #ifdef BCE_DEBUG
9179         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9180             "unexpected_attention_sim_control",
9181             CTLFLAG_RW, &unexpected_attention_sim_control,
9182             0, "Debug control to simulate unexpected attentions");
9183
9184         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9185             "unexpected_attention_sim_count",
9186             CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9187             0, "Number of simulated unexpected attentions");
9188 #endif
9189
9190         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9191             "unexpected_attention_count",
9192             CTLFLAG_RW, &sc->unexpected_attention_count,
9193             0, "Number of unexpected attentions");
9194
9195 #ifdef BCE_DEBUG
9196         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9197             "debug_bootcode_running_failure",
9198             CTLFLAG_RW, &bootcode_running_failure_sim_control,
9199             0, "Debug control to force bootcode running failures");
9200
9201         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9202             "rx_low_watermark",
9203             CTLFLAG_RD, &sc->rx_low_watermark,
9204             0, "Lowest level of free rx_bd's");
9205
9206         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9207             "rx_empty_count",
9208             CTLFLAG_RD, &sc->rx_empty_count,
9209             "Number of times the RX chain was empty");
9210
9211         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9212             "tx_hi_watermark",
9213             CTLFLAG_RD, &sc->tx_hi_watermark,
9214             0, "Highest level of used tx_bd's");
9215
9216         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9217             "tx_full_count",
9218             CTLFLAG_RD, &sc->tx_full_count,
9219             "Number of times the TX chain was full");
9220
9221         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9222             "tso_frames_requested",
9223             CTLFLAG_RD, &sc->tso_frames_requested,
9224             "Number of TSO frames requested");
9225
9226         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9227             "tso_frames_completed",
9228             CTLFLAG_RD, &sc->tso_frames_completed,
9229             "Number of TSO frames completed");
9230
9231         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9232             "tso_frames_failed",
9233             CTLFLAG_RD, &sc->tso_frames_failed,
9234             "Number of TSO frames failed");
9235
9236         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9237             "csum_offload_ip",
9238             CTLFLAG_RD, &sc->csum_offload_ip,
9239             "Number of IP checksum offload frames");
9240
9241         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9242             "csum_offload_tcp_udp",
9243             CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9244             "Number of TCP/UDP checksum offload frames");
9245
9246         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9247             "vlan_tagged_frames_rcvd",
9248             CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9249             "Number of VLAN tagged frames received");
9250
9251         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9252             "vlan_tagged_frames_stripped",
9253             CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9254             "Number of VLAN tagged frames stripped");
9255
9256         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9257             "interrupts_rx",
9258             CTLFLAG_RD, &sc->interrupts_rx,
9259             "Number of RX interrupts");
9260
9261         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9262             "interrupts_tx",
9263             CTLFLAG_RD, &sc->interrupts_tx,
9264             "Number of TX interrupts");
9265
9266         if (bce_hdr_split == TRUE) {
9267                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9268                     "split_header_frames_rcvd",
9269                     CTLFLAG_RD, &sc->split_header_frames_rcvd,
9270                     "Number of split header frames received");
9271
9272                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9273                     "split_header_tcp_frames_rcvd",
9274                     CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9275                     "Number of split header TCP frames received");
9276         }
9277
9278         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9279             "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9280             (void *)sc, 0,
9281             bce_sysctl_nvram_dump, "S", "");
9282
9283 #ifdef BCE_NVRAM_WRITE_SUPPORT
9284         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9285             "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9286             (void *)sc, 0,
9287             bce_sysctl_nvram_write, "S", "");
9288 #endif
9289 #endif /* BCE_DEBUG */
9290
9291         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9292             "stat_IfHcInOctets",
9293             CTLFLAG_RD, &sc->stat_IfHCInOctets,
9294             "Bytes received");
9295
9296         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9297             "stat_IfHCInBadOctets",
9298             CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9299             "Bad bytes received");
9300
9301         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9302             "stat_IfHCOutOctets",
9303             CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9304             "Bytes sent");
9305
9306         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9307             "stat_IfHCOutBadOctets",
9308             CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9309             "Bad bytes sent");
9310
9311         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312             "stat_IfHCInUcastPkts",
9313             CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9314             "Unicast packets received");
9315
9316         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9317             "stat_IfHCInMulticastPkts",
9318             CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9319             "Multicast packets received");
9320
9321         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9322             "stat_IfHCInBroadcastPkts",
9323             CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9324             "Broadcast packets received");
9325
9326         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9327             "stat_IfHCOutUcastPkts",
9328             CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9329             "Unicast packets sent");
9330
9331         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9332             "stat_IfHCOutMulticastPkts",
9333             CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9334             "Multicast packets sent");
9335
9336         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9337             "stat_IfHCOutBroadcastPkts",
9338             CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9339             "Broadcast packets sent");
9340
9341         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9342             "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9343             CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9344             0, "Internal MAC transmit errors");
9345
9346         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9347             "stat_Dot3StatsCarrierSenseErrors",
9348             CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9349             0, "Carrier sense errors");
9350
9351         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9352             "stat_Dot3StatsFCSErrors",
9353             CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9354             0, "Frame check sequence errors");
9355
9356         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9357             "stat_Dot3StatsAlignmentErrors",
9358             CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9359             0, "Alignment errors");
9360
9361         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9362             "stat_Dot3StatsSingleCollisionFrames",
9363             CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9364             0, "Single Collision Frames");
9365
9366         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9367             "stat_Dot3StatsMultipleCollisionFrames",
9368             CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9369             0, "Multiple Collision Frames");
9370
9371         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9372             "stat_Dot3StatsDeferredTransmissions",
9373             CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9374             0, "Deferred Transmissions");
9375
9376         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9377             "stat_Dot3StatsExcessiveCollisions",
9378             CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9379             0, "Excessive Collisions");
9380
9381         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9382             "stat_Dot3StatsLateCollisions",
9383             CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9384             0, "Late Collisions");
9385
9386         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9387             "stat_EtherStatsCollisions",
9388             CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9389             0, "Collisions");
9390
9391         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392             "stat_EtherStatsFragments",
9393             CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9394             0, "Fragments");
9395
9396         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397             "stat_EtherStatsJabbers",
9398             CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9399             0, "Jabbers");
9400
9401         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402             "stat_EtherStatsUndersizePkts",
9403             CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9404             0, "Undersize packets");
9405
9406         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407             "stat_EtherStatsOversizePkts",
9408             CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9409             0, "stat_EtherStatsOversizePkts");
9410
9411         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412             "stat_EtherStatsPktsRx64Octets",
9413             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9414             0, "Bytes received in 64 byte packets");
9415
9416         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417             "stat_EtherStatsPktsRx65Octetsto127Octets",
9418             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9419             0, "Bytes received in 65 to 127 byte packets");
9420
9421         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422             "stat_EtherStatsPktsRx128Octetsto255Octets",
9423             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9424             0, "Bytes received in 128 to 255 byte packets");
9425
9426         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427             "stat_EtherStatsPktsRx256Octetsto511Octets",
9428             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9429             0, "Bytes received in 256 to 511 byte packets");
9430
9431         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432             "stat_EtherStatsPktsRx512Octetsto1023Octets",
9433             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9434             0, "Bytes received in 512 to 1023 byte packets");
9435
9436         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437             "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9438             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9439             0, "Bytes received in 1024 t0 1522 byte packets");
9440
9441         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442             "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9443             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9444             0, "Bytes received in 1523 to 9022 byte packets");
9445
9446         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447             "stat_EtherStatsPktsTx64Octets",
9448             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9449             0, "Bytes sent in 64 byte packets");
9450
9451         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452             "stat_EtherStatsPktsTx65Octetsto127Octets",
9453             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9454             0, "Bytes sent in 65 to 127 byte packets");
9455
9456         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457             "stat_EtherStatsPktsTx128Octetsto255Octets",
9458             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9459             0, "Bytes sent in 128 to 255 byte packets");
9460
9461         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462             "stat_EtherStatsPktsTx256Octetsto511Octets",
9463             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9464             0, "Bytes sent in 256 to 511 byte packets");
9465
9466         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467             "stat_EtherStatsPktsTx512Octetsto1023Octets",
9468             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9469             0, "Bytes sent in 512 to 1023 byte packets");
9470
9471         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472             "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9473             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9474             0, "Bytes sent in 1024 to 1522 byte packets");
9475
9476         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477             "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9478             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9479             0, "Bytes sent in 1523 to 9022 byte packets");
9480
9481         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482             "stat_XonPauseFramesReceived",
9483             CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9484             0, "XON pause frames receved");
9485
9486         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487             "stat_XoffPauseFramesReceived",
9488             CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9489             0, "XOFF pause frames received");
9490
9491         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492             "stat_OutXonSent",
9493             CTLFLAG_RD, &sc->stat_OutXonSent,
9494             0, "XON pause frames sent");
9495
9496         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497             "stat_OutXoffSent",
9498             CTLFLAG_RD, &sc->stat_OutXoffSent,
9499             0, "XOFF pause frames sent");
9500
9501         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502             "stat_FlowControlDone",
9503             CTLFLAG_RD, &sc->stat_FlowControlDone,
9504             0, "Flow control done");
9505
9506         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507             "stat_MacControlFramesReceived",
9508             CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9509             0, "MAC control frames received");
9510
9511         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512             "stat_XoffStateEntered",
9513             CTLFLAG_RD, &sc->stat_XoffStateEntered,
9514             0, "XOFF state entered");
9515
9516         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517             "stat_IfInFramesL2FilterDiscards",
9518             CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9519             0, "Received L2 packets discarded");
9520
9521         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522             "stat_IfInRuleCheckerDiscards",
9523             CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9524             0, "Received packets discarded by rule");
9525
9526         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527             "stat_IfInFTQDiscards",
9528             CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9529             0, "Received packet FTQ discards");
9530
9531         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532             "stat_IfInMBUFDiscards",
9533             CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9534             0, "Received packets discarded due to lack "
9535             "of controller buffer memory");
9536
9537         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9538             "stat_IfInRuleCheckerP4Hit",
9539             CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9540             0, "Received packets rule checker hits");
9541
9542         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9543             "stat_CatchupInRuleCheckerDiscards",
9544             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9545             0, "Received packets discarded in Catchup path");
9546
9547         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9548             "stat_CatchupInFTQDiscards",
9549             CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9550             0, "Received packets discarded in FTQ in Catchup path");
9551
9552         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9553             "stat_CatchupInMBUFDiscards",
9554             CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9555             0, "Received packets discarded in controller "
9556             "buffer memory in Catchup path");
9557
9558         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9559             "stat_CatchupInRuleCheckerP4Hit",
9560             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9561             0, "Received packets rule checker hits in Catchup path");
9562
9563         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9564             "com_no_buffers",
9565             CTLFLAG_RD, &sc->com_no_buffers,
9566             0, "Valid packets received but no RX buffers available");
9567
9568 #ifdef BCE_DEBUG
9569         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9570             "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9571             (void *)sc, 0,
9572             bce_sysctl_driver_state, "I", "Drive state information");
9573
9574         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9575             "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9576             (void *)sc, 0,
9577             bce_sysctl_hw_state, "I", "Hardware state information");
9578
9579         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9580             "status_block", CTLTYPE_INT | CTLFLAG_RW,
9581             (void *)sc, 0,
9582             bce_sysctl_status_block, "I", "Dump status block");
9583
9584         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9585             "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9586             (void *)sc, 0,
9587             bce_sysctl_stats_block, "I", "Dump statistics block");
9588
9589         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9590             "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9591             (void *)sc, 0,
9592             bce_sysctl_stats_clear, "I", "Clear statistics block");
9593
9594         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9595             "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9596             (void *)sc, 0,
9597             bce_sysctl_shmem_state, "I", "Shared memory state information");
9598
9599         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9600             "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9601             (void *)sc, 0,
9602             bce_sysctl_bc_state, "I", "Bootcode state information");
9603
9604         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9605             "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9606             (void *)sc, 0,
9607             bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9608
9609         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9610             "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9611             (void *)sc, 0,
9612             bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9613
9614         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9615             "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9616             (void *)sc, 0,
9617             bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9618
9619         if (bce_hdr_split == TRUE) {
9620                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9621                     "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9622                     (void *)sc, 0,
9623                     bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9624         }
9625
9626         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9627             "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9628             (void *)sc, 0,
9629             bce_sysctl_dump_ctx, "I", "Dump context memory");
9630
9631         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9632             "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9633             (void *)sc, 0,
9634             bce_sysctl_breakpoint, "I", "Driver breakpoint");
9635
9636         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9637             "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9638             (void *)sc, 0,
9639             bce_sysctl_reg_read, "I", "Register read");
9640
9641         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9642             "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9643             (void *)sc, 0,
9644             bce_sysctl_nvram_read, "I", "NVRAM read");
9645
9646         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9647             "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9648             (void *)sc, 0,
9649             bce_sysctl_phy_read, "I", "PHY register read");
9650
9651 #endif
9652
9653         DBEXIT(BCE_VERBOSE_MISC);
9654 }
9655
9656
9657 /****************************************************************************/
9658 /* BCE Debug Routines                                                       */
9659 /****************************************************************************/
9660 #ifdef BCE_DEBUG
9661
9662 /****************************************************************************/
9663 /* Freezes the controller to allow for a cohesive state dump.               */
9664 /*                                                                          */
9665 /* Returns:                                                                 */
9666 /*   Nothing.                                                               */
9667 /****************************************************************************/
9668 static __attribute__ ((noinline)) void
9669 bce_freeze_controller(struct bce_softc *sc)
9670 {
9671         u32 val;
9672         val = REG_RD(sc, BCE_MISC_COMMAND);
9673         val |= BCE_MISC_COMMAND_DISABLE_ALL;
9674         REG_WR(sc, BCE_MISC_COMMAND, val);
9675 }
9676
9677
9678 /****************************************************************************/
9679 /* Unfreezes the controller after a freeze operation.  This may not always  */
9680 /* work and the controller will require a reset!                            */
9681 /*                                                                          */
9682 /* Returns:                                                                 */
9683 /*   Nothing.                                                               */
9684 /****************************************************************************/
9685 static __attribute__ ((noinline)) void
9686 bce_unfreeze_controller(struct bce_softc *sc)
9687 {
9688         u32 val;
9689         val = REG_RD(sc, BCE_MISC_COMMAND);
9690         val |= BCE_MISC_COMMAND_ENABLE_ALL;
9691         REG_WR(sc, BCE_MISC_COMMAND, val);
9692 }
9693
9694
9695 /****************************************************************************/
9696 /* Prints out Ethernet frame information from an mbuf.                      */
9697 /*                                                                          */
9698 /* Partially decode an Ethernet frame to look at some important headers.    */
9699 /*                                                                          */
9700 /* Returns:                                                                 */
9701 /*   Nothing.                                                               */
9702 /****************************************************************************/
9703 static __attribute__ ((noinline)) void
9704 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9705 {
9706         struct ether_vlan_header *eh;
9707         u16 etype;
9708         int ehlen;
9709         struct ip *ip;
9710         struct tcphdr *th;
9711         struct udphdr *uh;
9712         struct arphdr *ah;
9713
9714         BCE_PRINTF(
9715             "-----------------------------"
9716             " Frame Decode "
9717             "-----------------------------\n");
9718
9719         eh = mtod(m, struct ether_vlan_header *);
9720
9721         /* Handle VLAN encapsulation if present. */
9722         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9723                 etype = ntohs(eh->evl_proto);
9724                 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9725         } else {
9726                 etype = ntohs(eh->evl_encap_proto);
9727                 ehlen = ETHER_HDR_LEN;
9728         }
9729
9730         /* ToDo: Add VLAN output. */
9731         BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9732             eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9733
9734         switch (etype) {
9735         case ETHERTYPE_IP:
9736                 ip = (struct ip *)(m->m_data + ehlen);
9737                 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9738                     "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9739                     ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9740                     ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9741
9742                 switch (ip->ip_p) {
9743                 case IPPROTO_TCP:
9744                         th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9745                         BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9746                             "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9747                             ntohs(th->th_dport), ntohs(th->th_sport),
9748                             (th->th_off << 2), th->th_flags,
9749                             "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9750                             "\02SYN\01FIN", ntohs(th->th_sum));
9751                         break;
9752                 case IPPROTO_UDP:
9753                         uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9754                         BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9755                             "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9756                             ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9757                             ntohs(uh->uh_sum));
9758                         break;
9759                 case IPPROTO_ICMP:
9760                         BCE_PRINTF("icmp:\n");
9761                         break;
9762                 default:
9763                         BCE_PRINTF("----: Other IP protocol.\n");
9764                         }
9765                 break;
9766         case ETHERTYPE_IPV6:
9767                 BCE_PRINTF("ipv6: No decode supported.\n");
9768                 break;
9769         case ETHERTYPE_ARP:
9770                 BCE_PRINTF("-arp: ");
9771                 ah = (struct arphdr *) (m->m_data + ehlen);
9772                 switch (ntohs(ah->ar_op)) {
9773                 case ARPOP_REVREQUEST:
9774                         printf("reverse ARP request\n");
9775                         break;
9776                 case ARPOP_REVREPLY:
9777                         printf("reverse ARP reply\n");
9778                         break;
9779                 case ARPOP_REQUEST:
9780                         printf("ARP request\n");
9781                         break;
9782                 case ARPOP_REPLY:
9783                         printf("ARP reply\n");
9784                         break;
9785                 default:
9786                         printf("other ARP operation\n");
9787                 }
9788                 break;
9789         default:
9790                 BCE_PRINTF("----: Other protocol.\n");
9791         }
9792
9793         BCE_PRINTF(
9794                 "-----------------------------"
9795                 "--------------"
9796                 "-----------------------------\n");
9797 }
9798
9799
9800 /****************************************************************************/
9801 /* Prints out information about an mbuf.                                    */
9802 /*                                                                          */
9803 /* Returns:                                                                 */
9804 /*   Nothing.                                                               */
9805 /****************************************************************************/
9806 static __attribute__ ((noinline)) void
9807 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9808 {
9809         struct mbuf *mp = m;
9810
9811         if (m == NULL) {
9812                 BCE_PRINTF("mbuf: null pointer\n");
9813                 return;
9814         }
9815
9816         while (mp) {
9817                 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9818                     "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9819                     "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9820
9821                 if (mp->m_flags & M_PKTHDR) {
9822                         BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9823                             "csum_flags = %b\n", mp->m_pkthdr.len,
9824                             mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9825                             "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9826                             "\22M_PROMISC\23M_NOFREE",
9827                             mp->m_pkthdr.csum_flags,
9828                             "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9829                             "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9830                             "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9831                             "\14CSUM_PSEUDO_HDR");
9832                 }
9833
9834                 if (mp->m_flags & M_EXT) {
9835                         BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9836                             mp->m_ext.ext_buf, mp->m_ext.ext_size);
9837                         switch (mp->m_ext.ext_type) {
9838                         case EXT_CLUSTER:
9839                                 printf("EXT_CLUSTER\n"); break;
9840                         case EXT_SFBUF:
9841                                 printf("EXT_SFBUF\n"); break;
9842                         case EXT_JUMBO9:
9843                                 printf("EXT_JUMBO9\n"); break;
9844                         case EXT_JUMBO16:
9845                                 printf("EXT_JUMBO16\n"); break;
9846                         case EXT_PACKET:
9847                                 printf("EXT_PACKET\n"); break;
9848                         case EXT_MBUF:
9849                                 printf("EXT_MBUF\n"); break;
9850                         case EXT_NET_DRV:
9851                                 printf("EXT_NET_DRV\n"); break;
9852                         case EXT_MOD_TYPE:
9853                                 printf("EXT_MDD_TYPE\n"); break;
9854                         case EXT_DISPOSABLE:
9855                                 printf("EXT_DISPOSABLE\n"); break;
9856                         case EXT_EXTREF:
9857                                 printf("EXT_EXTREF\n"); break;
9858                         default:
9859                                 printf("UNKNOWN\n");
9860                         }
9861                 }
9862
9863                 mp = mp->m_next;
9864         }
9865 }
9866
9867
9868 /****************************************************************************/
9869 /* Prints out the mbufs in the TX mbuf chain.                               */
9870 /*                                                                          */
9871 /* Returns:                                                                 */
9872 /*   Nothing.                                                               */
9873 /****************************************************************************/
9874 static __attribute__ ((noinline)) void
9875 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9876 {
9877         struct mbuf *m;
9878
9879         BCE_PRINTF(
9880                 "----------------------------"
9881                 "  tx mbuf data  "
9882                 "----------------------------\n");
9883
9884         for (int i = 0; i < count; i++) {
9885                 m = sc->tx_mbuf_ptr[chain_prod];
9886                 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9887                 bce_dump_mbuf(sc, m);
9888                 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9889         }
9890
9891         BCE_PRINTF(
9892                 "----------------------------"
9893                 "----------------"
9894                 "----------------------------\n");
9895 }
9896
9897
9898 /****************************************************************************/
9899 /* Prints out the mbufs in the RX mbuf chain.                               */
9900 /*                                                                          */
9901 /* Returns:                                                                 */
9902 /*   Nothing.                                                               */
9903 /****************************************************************************/
9904 static __attribute__ ((noinline)) void
9905 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9906 {
9907         struct mbuf *m;
9908
9909         BCE_PRINTF(
9910                 "----------------------------"
9911                 "  rx mbuf data  "
9912                 "----------------------------\n");
9913
9914         for (int i = 0; i < count; i++) {
9915                 m = sc->rx_mbuf_ptr[chain_prod];
9916                 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9917                 bce_dump_mbuf(sc, m);
9918                 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9919         }
9920
9921
9922         BCE_PRINTF(
9923                 "----------------------------"
9924                 "----------------"
9925                 "----------------------------\n");
9926 }
9927
9928
9929 /****************************************************************************/
9930 /* Prints out the mbufs in the mbuf page chain.                             */
9931 /*                                                                          */
9932 /* Returns:                                                                 */
9933 /*   Nothing.                                                               */
9934 /****************************************************************************/
9935 static __attribute__ ((noinline)) void
9936 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9937 {
9938         struct mbuf *m;
9939
9940         BCE_PRINTF(
9941                 "----------------------------"
9942                 "  pg mbuf data  "
9943                 "----------------------------\n");
9944
9945         for (int i = 0; i < count; i++) {
9946                 m = sc->pg_mbuf_ptr[chain_prod];
9947                 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9948                 bce_dump_mbuf(sc, m);
9949                 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9950         }
9951
9952
9953         BCE_PRINTF(
9954                 "----------------------------"
9955                 "----------------"
9956                 "----------------------------\n");
9957 }
9958
9959
9960 /****************************************************************************/
9961 /* Prints out a tx_bd structure.                                            */
9962 /*                                                                          */
9963 /* Returns:                                                                 */
9964 /*   Nothing.                                                               */
9965 /****************************************************************************/
9966 static __attribute__ ((noinline)) void
9967 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9968 {
9969         int i = 0;
9970
9971         if (idx > MAX_TX_BD_ALLOC)
9972                 /* Index out of range. */
9973                 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9974         else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9975                 /* TX Chain page pointer. */
9976                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9977                     "pointer\n", idx, txbd->tx_bd_haddr_hi,
9978                     txbd->tx_bd_haddr_lo);
9979         else {
9980                 /* Normal tx_bd entry. */
9981                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9982                     "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9983                     "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9984                     txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9985                     txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9986
9987                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9988                         if (i>0)
9989                                 printf("|");
9990                         printf("CONN_FAULT");
9991                         i++;
9992                 }
9993
9994                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9995                         if (i>0)
9996                                 printf("|");
9997                         printf("TCP_UDP_CKSUM");
9998                         i++;
9999                 }
10000
10001                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10002                         if (i>0)
10003                                 printf("|");
10004                         printf("IP_CKSUM");
10005                         i++;
10006                 }
10007
10008                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10009                         if (i>0)
10010                                 printf("|");
10011                         printf("VLAN");
10012                         i++;
10013                 }
10014
10015                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10016                         if (i>0)
10017                                 printf("|");
10018                         printf("COAL_NOW");
10019                         i++;
10020                 }
10021
10022                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10023                         if (i>0)
10024                                 printf("|");
10025                         printf("DONT_GEN_CRC");
10026                         i++;
10027                 }
10028
10029                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10030                         if (i>0)
10031                                 printf("|");
10032                         printf("START");
10033                         i++;
10034                 }
10035
10036                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10037                         if (i>0)
10038                                 printf("|");
10039                         printf("END");
10040                         i++;
10041                 }
10042
10043                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10044                         if (i>0)
10045                                 printf("|");
10046                         printf("LSO");
10047                         i++;
10048                 }
10049
10050                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10051                         if (i>0)
10052                                 printf("|");
10053                         printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10054                             TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10055                 }
10056
10057                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10058                         if (i>0)
10059                                 printf("|");
10060                         printf("SW_FLAGS");
10061                         i++;
10062                 }
10063
10064                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10065                         if (i>0)
10066                                 printf("|");
10067                         printf("SNAP)");
10068                 } else {
10069                         printf(")\n");
10070                 }
10071         }
10072 }
10073
10074
10075 /****************************************************************************/
10076 /* Prints out a rx_bd structure.                                            */
10077 /*                                                                          */
10078 /* Returns:                                                                 */
10079 /*   Nothing.                                                               */
10080 /****************************************************************************/
10081 static __attribute__ ((noinline)) void
10082 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10083 {
10084         if (idx > MAX_RX_BD_ALLOC)
10085                 /* Index out of range. */
10086                 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10087         else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10088                 /* RX Chain page pointer. */
10089                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10090                     "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10091                     rxbd->rx_bd_haddr_lo);
10092         else
10093                 /* Normal rx_bd entry. */
10094                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10095                     "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10096                     rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10097                     rxbd->rx_bd_flags);
10098 }
10099
10100
10101 /****************************************************************************/
10102 /* Prints out a rx_bd structure in the page chain.                          */
10103 /*                                                                          */
10104 /* Returns:                                                                 */
10105 /*   Nothing.                                                               */
10106 /****************************************************************************/
10107 static __attribute__ ((noinline)) void
10108 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10109 {
10110         if (idx > MAX_PG_BD_ALLOC)
10111                 /* Index out of range. */
10112                 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10113         else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10114                 /* Page Chain page pointer. */
10115                 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10116                         idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10117         else
10118                 /* Normal rx_bd entry. */
10119                 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10120                         "flags = 0x%08X\n", idx,
10121                         pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10122                         pgbd->rx_bd_len, pgbd->rx_bd_flags);
10123 }
10124
10125
10126 /****************************************************************************/
10127 /* Prints out a l2_fhdr structure.                                          */
10128 /*                                                                          */
10129 /* Returns:                                                                 */
10130 /*   Nothing.                                                               */
10131 /****************************************************************************/
10132 static __attribute__ ((noinline)) void
10133 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10134 {
10135         BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10136                 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10137                 "tcp_udp_xsum = 0x%04X\n", idx,
10138                 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10139                 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10140                 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10141 }
10142
10143
10144 /****************************************************************************/
10145 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10146 /*                                                                          */
10147 /* Returns:                                                                 */
10148 /*   Nothing.                                                               */
10149 /****************************************************************************/
10150 static __attribute__ ((noinline)) void
10151 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10152 {
10153         if (cid > TX_CID) {
10154                 BCE_PRINTF(" Unknown CID\n");
10155                 return;
10156         }
10157
10158         BCE_PRINTF(
10159             "----------------------------"
10160             "    CTX Data    "
10161             "----------------------------\n");
10162
10163         BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10164
10165         if (cid == RX_CID) {
10166                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10167                    "producer index\n",
10168                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10169                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10170                     "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10171                     BCE_L2CTX_RX_HOST_BSEQ));
10172                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10173                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10174                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10175                     "descriptor address\n",
10176                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10177                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10178                     "descriptor address\n",
10179                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10180                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10181                     "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10182                     BCE_L2CTX_RX_NX_BDIDX));
10183                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10184                     "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10185                     BCE_L2CTX_RX_HOST_PG_BDIDX));
10186                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10187                     "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10188                     BCE_L2CTX_RX_PG_BUF_SIZE));
10189                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10190                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10191                     BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10192                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10193                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10194                     BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10195                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10196                     "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10197                     BCE_L2CTX_RX_NX_PG_BDIDX));
10198         } else if (cid == TX_CID) {
10199                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10200                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10201                             CTX_RD(sc, GET_CID_ADDR(cid),
10202                             BCE_L2CTX_TX_TYPE_XI));
10203                         BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10204                             "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10205                             BCE_L2CTX_TX_CMD_TYPE_XI));
10206                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10207                             "h/w buffer descriptor address\n",
10208                             CTX_RD(sc, GET_CID_ADDR(cid),
10209                             BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10210                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10211                             "h/w buffer descriptor address\n",
10212                             CTX_RD(sc, GET_CID_ADDR(cid),
10213                             BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10214                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10215                             "host producer index\n",
10216                             CTX_RD(sc, GET_CID_ADDR(cid),
10217                             BCE_L2CTX_TX_HOST_BIDX_XI));
10218                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10219                             "host byte sequence\n",
10220                             CTX_RD(sc, GET_CID_ADDR(cid),
10221                             BCE_L2CTX_TX_HOST_BSEQ_XI));
10222                 } else {
10223                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10224                             CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10225                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10226                             CTX_RD(sc, GET_CID_ADDR(cid),
10227                             BCE_L2CTX_TX_CMD_TYPE));
10228                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10229                             "h/w buffer descriptor address\n",
10230                             CTX_RD(sc, GET_CID_ADDR(cid),
10231                             BCE_L2CTX_TX_TBDR_BHADDR_HI));
10232                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10233                             "h/w buffer descriptor address\n",
10234                             CTX_RD(sc, GET_CID_ADDR(cid),
10235                             BCE_L2CTX_TX_TBDR_BHADDR_LO));
10236                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10237                             "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10238                             BCE_L2CTX_TX_HOST_BIDX));
10239                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10240                             "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10241                             BCE_L2CTX_TX_HOST_BSEQ));
10242                 }
10243         }
10244
10245         BCE_PRINTF(
10246            "----------------------------"
10247            "    Raw CTX     "
10248            "----------------------------\n");
10249
10250         for (int i = 0x0; i < 0x300; i += 0x10) {
10251                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10252                    CTX_RD(sc, GET_CID_ADDR(cid), i),
10253                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10254                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10255                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10256         }
10257
10258
10259         BCE_PRINTF(
10260            "----------------------------"
10261            "----------------"
10262            "----------------------------\n");
10263 }
10264
10265
10266 /****************************************************************************/
10267 /* Prints out the FTQ data.                                                 */
10268 /*                                                                          */
10269 /* Returns:                                                                */
10270 /*   Nothing.                                                               */
10271 /****************************************************************************/
10272 static __attribute__ ((noinline)) void
10273 bce_dump_ftqs(struct bce_softc *sc)
10274 {
10275         u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10276
10277         BCE_PRINTF(
10278             "----------------------------"
10279             "    FTQ Data    "
10280             "----------------------------\n");
10281
10282         BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10283             "Max_Depth  Valid_Cnt \n");
10284         BCE_PRINTF(" ------- ---------- ---------- ---------- "
10285             "---------- ----------\n");
10286
10287         /* Setup the generic statistic counters for the FTQ valid count. */
10288         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10289             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10290             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10291             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10292         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10293
10294         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10295             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10296             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10297             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10298         REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10299
10300         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10301             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10302             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10303             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10304         REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10305
10306         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10307             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10308             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10309             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10310         REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10311
10312         /* Input queue to the Receive Lookup state machine */
10313         cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10314         ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10315         cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10316         max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10317         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10318         BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10319             cmd, ctl, cur_depth, max_depth, valid_cnt);
10320
10321         /* Input queue to the Receive Processor */
10322         cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10323         ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10324         cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10325         max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10326         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10327         BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10328             cmd, ctl, cur_depth, max_depth, valid_cnt);
10329
10330         /* Input queue to the Recevie Processor */
10331         cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10332         ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10333         cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10334         max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10335         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10336         BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10337             cmd, ctl, cur_depth, max_depth, valid_cnt);
10338
10339         /* Input queue to the Receive Virtual to Physical state machine */
10340         cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10341         ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10342         cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10343         max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10344         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10345         BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10346             cmd, ctl, cur_depth, max_depth, valid_cnt);
10347
10348         /* Input queue to the Recevie Virtual to Physical state machine */
10349         cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10350         ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10351         cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10352         max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10353         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10354         BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10355             cmd, ctl, cur_depth, max_depth, valid_cnt);
10356
10357         /* Input queue to the Receive Virtual to Physical state machine */
10358         cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10359         ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10360         cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10361         max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10362         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10363         BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10364             cmd, ctl, cur_depth, max_depth, valid_cnt);
10365
10366         /* Input queue to the Receive DMA state machine */
10367         cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10368         ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10369         cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10370         max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10371         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10372         BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10373             cmd, ctl, cur_depth, max_depth, valid_cnt);
10374
10375         /* Input queue to the Transmit Scheduler state machine */
10376         cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10377         ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10378         cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10379         max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10380         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10381         BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10382             cmd, ctl, cur_depth, max_depth, valid_cnt);
10383
10384         /* Input queue to the Transmit Buffer Descriptor state machine */
10385         cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10386         ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10387         cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10388         max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10389         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10390         BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10391             cmd, ctl, cur_depth, max_depth, valid_cnt);
10392
10393         /* Input queue to the Transmit Processor */
10394         cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10395         ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10396         cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10397         max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10398         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10399         BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10400             cmd, ctl, cur_depth, max_depth, valid_cnt);
10401
10402         /* Input queue to the Transmit DMA state machine */
10403         cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10404         ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10405         cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10406         max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10407         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10408         BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10409             cmd, ctl, cur_depth, max_depth, valid_cnt);
10410
10411         /* Input queue to the Transmit Patch-Up Processor */
10412         cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10413         ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10414         cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10415         max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10416         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10417         BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10418             cmd, ctl, cur_depth, max_depth, valid_cnt);
10419
10420         /* Input queue to the Transmit Assembler state machine */
10421         cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10422         ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10423         cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10424         max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10425         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10426         BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10427             cmd, ctl, cur_depth, max_depth, valid_cnt);
10428
10429         /* Input queue to the Completion Processor */
10430         cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10431         ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10432         cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10433         max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10434         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10435         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10436             cmd, ctl, cur_depth, max_depth, valid_cnt);
10437
10438         /* Input queue to the Completion Processor */
10439         cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10440         ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10441         cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10442         max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10443         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10444         BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10445             cmd, ctl, cur_depth, max_depth, valid_cnt);
10446
10447         /* Input queue to the Completion Processor */
10448         cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10449         ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10450         cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10451         max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10452         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10453         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10454             cmd, ctl, cur_depth, max_depth, valid_cnt);
10455
10456         /* Setup the generic statistic counters for the FTQ valid count. */
10457         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10458             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10459             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10460
10461         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10462                 val = val |
10463                     (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10464                      24);
10465         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10466
10467         /* Input queue to the Management Control Processor */
10468         cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10469         ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10470         cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10471         max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10472         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10473         BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10474             cmd, ctl, cur_depth, max_depth, valid_cnt);
10475
10476         /* Input queue to the Command Processor */
10477         cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10478         ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10479         cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10480         max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10481         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10482         BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10483             cmd, ctl, cur_depth, max_depth, valid_cnt);
10484
10485         /* Input queue to the Completion Scheduler state machine */
10486         cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10487         ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10488         cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10489         max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10490         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10491         BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10492             cmd, ctl, cur_depth, max_depth, valid_cnt);
10493
10494         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10495                 /* Input queue to the RV2P Command Scheduler */
10496                 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10497                 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10498                 cur_depth = (ctl & 0xFFC00000) >> 22;
10499                 max_depth = (ctl & 0x003FF000) >> 12;
10500                 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10501                 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10502                     cmd, ctl, cur_depth, max_depth, valid_cnt);
10503         }
10504
10505         BCE_PRINTF(
10506             "----------------------------"
10507             "----------------"
10508             "----------------------------\n");
10509 }
10510
10511
10512 /****************************************************************************/
10513 /* Prints out the TX chain.                                                 */
10514 /*                                                                          */
10515 /* Returns:                                                                 */
10516 /*   Nothing.                                                               */
10517 /****************************************************************************/
10518 static __attribute__ ((noinline)) void
10519 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10520 {
10521         struct tx_bd *txbd;
10522
10523         /* First some info about the tx_bd chain structure. */
10524         BCE_PRINTF(
10525             "----------------------------"
10526             "  tx_bd  chain  "
10527             "----------------------------\n");
10528
10529         BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10530             (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10531         BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10532             (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10533         BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10534
10535         BCE_PRINTF(
10536             "----------------------------"
10537             "   tx_bd data   "
10538             "----------------------------\n");
10539
10540         /* Now print out a decoded list of TX buffer descriptors. */
10541         for (int i = 0; i < count; i++) {
10542                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10543                 bce_dump_txbd(sc, tx_prod, txbd);
10544                 tx_prod++;
10545         }
10546
10547         BCE_PRINTF(
10548             "----------------------------"
10549             "----------------"
10550             "----------------------------\n");
10551 }
10552
10553
10554 /****************************************************************************/
10555 /* Prints out the RX chain.                                                 */
10556 /*                                                                          */
10557 /* Returns:                                                                 */
10558 /*   Nothing.                                                               */
10559 /****************************************************************************/
10560 static __attribute__ ((noinline)) void
10561 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10562 {
10563         struct rx_bd *rxbd;
10564
10565         /* First some info about the rx_bd chain structure. */
10566         BCE_PRINTF(
10567             "----------------------------"
10568             "  rx_bd  chain  "
10569             "----------------------------\n");
10570
10571         BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10572             (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10573
10574         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10575             (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10576
10577         BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10578
10579         BCE_PRINTF(
10580             "----------------------------"
10581             "   rx_bd data   "
10582             "----------------------------\n");
10583
10584         /* Now print out the rx_bd's themselves. */
10585         for (int i = 0; i < count; i++) {
10586                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10587                 bce_dump_rxbd(sc, rx_prod, rxbd);
10588                 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10589         }
10590
10591         BCE_PRINTF(
10592             "----------------------------"
10593             "----------------"
10594             "----------------------------\n");
10595 }
10596
10597
10598 /****************************************************************************/
10599 /* Prints out the page chain.                                               */
10600 /*                                                                          */
10601 /* Returns:                                                                 */
10602 /*   Nothing.                                                               */
10603 /****************************************************************************/
10604 static __attribute__ ((noinline)) void
10605 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10606 {
10607         struct rx_bd *pgbd;
10608
10609         /* First some info about the page chain structure. */
10610         BCE_PRINTF(
10611             "----------------------------"
10612             "   page chain   "
10613             "----------------------------\n");
10614
10615         BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10616             (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10617
10618         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10619             (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10620
10621         BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10622
10623         BCE_PRINTF(
10624             "----------------------------"
10625             "   page data    "
10626             "----------------------------\n");
10627
10628         /* Now print out the rx_bd's themselves. */
10629         for (int i = 0; i < count; i++) {
10630                 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10631                 bce_dump_pgbd(sc, pg_prod, pgbd);
10632                 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10633         }
10634
10635         BCE_PRINTF(
10636             "----------------------------"
10637             "----------------"
10638             "----------------------------\n");
10639 }
10640
10641
10642 #define BCE_PRINT_RX_CONS(arg)                                          \
10643 if (sblk->status_rx_quick_consumer_index##arg)                          \
10644         BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",      \
10645             sblk->status_rx_quick_consumer_index##arg, (u16)            \
10646             RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),    \
10647             arg);
10648
10649
10650 #define BCE_PRINT_TX_CONS(arg)                                          \
10651 if (sblk->status_tx_quick_consumer_index##arg)                          \
10652         BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",      \
10653             sblk->status_tx_quick_consumer_index##arg, (u16)            \
10654             TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),    \
10655             arg);
10656
10657 /****************************************************************************/
10658 /* Prints out the status block from host memory.                            */
10659 /*                                                                          */
10660 /* Returns:                                                                 */
10661 /*   Nothing.                                                               */
10662 /****************************************************************************/
10663 static __attribute__ ((noinline)) void
10664 bce_dump_status_block(struct bce_softc *sc)
10665 {
10666         struct status_block *sblk;
10667
10668         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10669
10670         sblk = sc->status_block;
10671
10672         BCE_PRINTF(
10673             "----------------------------"
10674             "  Status Block  "
10675             "----------------------------\n");
10676
10677         /* Theses indices are used for normal L2 drivers. */
10678         BCE_PRINTF("    0x%08X - attn_bits\n",
10679             sblk->status_attn_bits);
10680
10681         BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10682             sblk->status_attn_bits_ack);
10683
10684         BCE_PRINT_RX_CONS(0);
10685         BCE_PRINT_TX_CONS(0)
10686
10687         BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10688
10689         /* Theses indices are not used for normal L2 drivers. */
10690         BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10691         BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10692         BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10693         BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10694         BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10695
10696         BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10697
10698         if (sblk->status_completion_producer_index ||
10699             sblk->status_cmd_consumer_index)
10700                 BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10701                     sblk->status_completion_producer_index,
10702                     sblk->status_cmd_consumer_index);
10703
10704         BCE_PRINTF(
10705             "----------------------------"
10706             "----------------"
10707             "----------------------------\n");
10708 }
10709
10710
10711 #define BCE_PRINT_64BIT_STAT(arg)                               \
10712 if (sblk->arg##_lo || sblk->arg##_hi)                           \
10713         BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,        \
10714             sblk->arg##_lo, #arg);
10715
10716 #define BCE_PRINT_32BIT_STAT(arg)                               \
10717 if (sblk->arg)                                                  \
10718         BCE_PRINTF("         0x%08X : %s\n",                    \
10719             sblk->arg, #arg);
10720
10721 /****************************************************************************/
10722 /* Prints out the statistics block from host memory.                        */
10723 /*                                                                          */
10724 /* Returns:                                                                 */
10725 /*   Nothing.                                                               */
10726 /****************************************************************************/
10727 static __attribute__ ((noinline)) void
10728 bce_dump_stats_block(struct bce_softc *sc)
10729 {
10730         struct statistics_block *sblk;
10731
10732         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10733
10734         sblk = sc->stats_block;
10735
10736         BCE_PRINTF(
10737             "---------------"
10738             " Stats Block  (All Stats Not Shown Are 0) "
10739             "---------------\n");
10740
10741         BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10742         BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10743         BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10744         BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10745         BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10746         BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10747         BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10748         BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10749         BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10750         BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10751         BCE_PRINT_32BIT_STAT(
10752             stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10753         BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10754         BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10755         BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10756         BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10757         BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10758         BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10759         BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10760         BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10761         BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10762         BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10763         BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10764         BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10765         BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10766         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10767         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10768         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10769         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10770         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10771         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10772         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10773         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10774         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10775         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10776         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10777         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10778         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10779         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10780         BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10781         BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10782         BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10783         BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10784         BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10785         BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10786         BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10787         BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10788         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10789         BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10790         BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10791         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10792         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10793         BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10794         BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10795         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10796
10797         BCE_PRINTF(
10798             "----------------------------"
10799             "----------------"
10800             "----------------------------\n");
10801 }
10802
10803
10804 /****************************************************************************/
10805 /* Prints out a summary of the driver state.                                */
10806 /*                                                                          */
10807 /* Returns:                                                                 */
10808 /*   Nothing.                                                               */
10809 /****************************************************************************/
10810 static __attribute__ ((noinline)) void
10811 bce_dump_driver_state(struct bce_softc *sc)
10812 {
10813         u32 val_hi, val_lo;
10814
10815         BCE_PRINTF(
10816             "-----------------------------"
10817             " Driver State "
10818             "-----------------------------\n");
10819
10820         val_hi = BCE_ADDR_HI(sc);
10821         val_lo = BCE_ADDR_LO(sc);
10822         BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10823             "address\n", val_hi, val_lo);
10824
10825         val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10826         val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10827         BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10828             "address\n", val_hi, val_lo);
10829
10830         val_hi = BCE_ADDR_HI(sc->status_block);
10831         val_lo = BCE_ADDR_LO(sc->status_block);
10832         BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10833             "virtual address\n",        val_hi, val_lo);
10834
10835         val_hi = BCE_ADDR_HI(sc->stats_block);
10836         val_lo = BCE_ADDR_LO(sc->stats_block);
10837         BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10838             "virtual address\n", val_hi, val_lo);
10839
10840         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10841         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10842         BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10843             "virtual adddress\n", val_hi, val_lo);
10844
10845         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10846         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10847         BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10848             "virtual address\n", val_hi, val_lo);
10849
10850         if (bce_hdr_split == TRUE) {
10851                 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10852                 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10853                 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10854                     "virtual address\n", val_hi, val_lo);
10855         }
10856
10857         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10858         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10859         BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10860             "virtual address\n",        val_hi, val_lo);
10861
10862         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10863         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10864         BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10865             "virtual address\n", val_hi, val_lo);
10866
10867         if (bce_hdr_split == TRUE) {
10868                 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10869                 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10870                 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10871                     "virtual address\n", val_hi, val_lo);
10872         }
10873
10874         BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10875             "h/w intrs\n",
10876             (long long unsigned int) sc->interrupts_generated);
10877
10878         BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10879             "rx interrupts handled\n",
10880             (long long unsigned int) sc->interrupts_rx);
10881
10882         BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10883             "tx interrupts handled\n",
10884             (long long unsigned int) sc->interrupts_tx);
10885
10886         BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10887             "phy interrupts handled\n",
10888             (long long unsigned int) sc->phy_interrupts);
10889
10890         BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10891             "status block index\n", sc->last_status_idx);
10892
10893         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10894             "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10895
10896         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10897             "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10898
10899         BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10900             "byte seq index\n", sc->tx_prod_bseq);
10901
10902         BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10903             "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10904
10905         BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10906             "tx_bd's\n", sc->used_tx_bd);
10907
10908         BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10909             "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10910
10911         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10912             "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10913
10914         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10915             "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10916
10917         BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10918             "byte seq index\n", sc->rx_prod_bseq);
10919
10920         BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10921                    "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10922
10923         BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10924             "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10925
10926         BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10927             "rx_bd's\n", sc->free_rx_bd);
10928
10929         if (bce_hdr_split == TRUE) {
10930                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10931                     "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10932
10933                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10934                     "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10935
10936                 BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10937                     "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10938         }
10939
10940         BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10941             "rx_bd's\n", sc->free_pg_bd);
10942
10943         BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10944             "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10945
10946         BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10947             "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10948
10949         BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10950             "bce mac flags\n", sc->bce_flags);
10951
10952         BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10953             "bce phy flags\n", sc->bce_phy_flags);
10954
10955         BCE_PRINTF(
10956             "----------------------------"
10957             "----------------"
10958             "----------------------------\n");
10959 }
10960
10961
10962 /****************************************************************************/
10963 /* Prints out the hardware state through a summary of important register,   */
10964 /* followed by a complete register dump.                                    */
10965 /*                                                                          */
10966 /* Returns:                                                                 */
10967 /*   Nothing.                                                               */
10968 /****************************************************************************/
10969 static __attribute__ ((noinline)) void
10970 bce_dump_hw_state(struct bce_softc *sc)
10971 {
10972         u32 val;
10973
10974         BCE_PRINTF(
10975             "----------------------------"
10976             " Hardware State "
10977             "----------------------------\n");
10978
10979         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10980
10981         val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10982         BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10983             val, BCE_MISC_ENABLE_STATUS_BITS);
10984
10985         val = REG_RD(sc, BCE_DMA_STATUS);
10986         BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10987             val, BCE_DMA_STATUS);
10988
10989         val = REG_RD(sc, BCE_CTX_STATUS);
10990         BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10991             val, BCE_CTX_STATUS);
10992
10993         val = REG_RD(sc, BCE_EMAC_STATUS);
10994         BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10995             val, BCE_EMAC_STATUS);
10996
10997         val = REG_RD(sc, BCE_RPM_STATUS);
10998         BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10999             val, BCE_RPM_STATUS);
11000
11001         /* ToDo: Create a #define for this constant. */
11002         val = REG_RD(sc, 0x2004);
11003         BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11004             val, 0x2004);
11005
11006         val = REG_RD(sc, BCE_RV2P_STATUS);
11007         BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11008             val, BCE_RV2P_STATUS);
11009
11010         /* ToDo: Create a #define for this constant. */
11011         val = REG_RD(sc, 0x2c04);
11012         BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11013             val, 0x2c04);
11014
11015         val = REG_RD(sc, BCE_TBDR_STATUS);
11016         BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11017             val, BCE_TBDR_STATUS);
11018
11019         val = REG_RD(sc, BCE_TDMA_STATUS);
11020         BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11021             val, BCE_TDMA_STATUS);
11022
11023         val = REG_RD(sc, BCE_HC_STATUS);
11024         BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11025             val, BCE_HC_STATUS);
11026
11027         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11028         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11029             val, BCE_TXP_CPU_STATE);
11030
11031         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11032         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11033             val, BCE_TPAT_CPU_STATE);
11034
11035         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11036         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11037             val, BCE_RXP_CPU_STATE);
11038
11039         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11040         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11041             val, BCE_COM_CPU_STATE);
11042
11043         val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11044         BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11045             val, BCE_MCP_CPU_STATE);
11046
11047         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11048         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11049             val, BCE_CP_CPU_STATE);
11050
11051         BCE_PRINTF(
11052             "----------------------------"
11053             "----------------"
11054             "----------------------------\n");
11055
11056         BCE_PRINTF(
11057             "----------------------------"
11058             " Register  Dump "
11059             "----------------------------\n");
11060
11061         for (int i = 0x400; i < 0x8000; i += 0x10) {
11062                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11063                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11064                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11065         }
11066
11067         BCE_PRINTF(
11068             "----------------------------"
11069             "----------------"
11070             "----------------------------\n");
11071 }
11072
11073
11074 /****************************************************************************/
11075 /* Prints out the contentst of shared memory which is used for host driver  */
11076 /* to bootcode firmware communication.                                      */
11077 /*                                                                          */
11078 /* Returns:                                                                 */
11079 /*   Nothing.                                                               */
11080 /****************************************************************************/
11081 static __attribute__ ((noinline)) void
11082 bce_dump_shmem_state(struct bce_softc *sc)
11083 {
11084         BCE_PRINTF(
11085             "----------------------------"
11086             " Hardware State "
11087             "----------------------------\n");
11088
11089         BCE_PRINTF("0x%08X - Shared memory base address\n",
11090             sc->bce_shmem_base);
11091         BCE_PRINTF("%s - bootcode version\n",
11092             sc->bce_bc_ver);
11093
11094         BCE_PRINTF(
11095             "----------------------------"
11096             "   Shared Mem   "
11097             "----------------------------\n");
11098
11099         for (int i = 0x0; i < 0x200; i += 0x10) {
11100                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11101                     i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11102                     bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11103         }
11104
11105         BCE_PRINTF(
11106             "----------------------------"
11107             "----------------"
11108             "----------------------------\n");
11109 }
11110
11111
11112 /****************************************************************************/
11113 /* Prints out the mailbox queue registers.                                  */
11114 /*                                                                          */
11115 /* Returns:                                                                 */
11116 /*   Nothing.                                                               */
11117 /****************************************************************************/
11118 static __attribute__ ((noinline)) void
11119 bce_dump_mq_regs(struct bce_softc *sc)
11120 {
11121         BCE_PRINTF(
11122             "----------------------------"
11123             "    MQ Regs     "
11124             "----------------------------\n");
11125
11126         BCE_PRINTF(
11127             "----------------------------"
11128             "----------------"
11129             "----------------------------\n");
11130
11131         for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11132                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11133                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11134                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11135         }
11136
11137         BCE_PRINTF(
11138             "----------------------------"
11139             "----------------"
11140             "----------------------------\n");
11141 }
11142
11143
11144 /****************************************************************************/
11145 /* Prints out the bootcode state.                                           */
11146 /*                                                                          */
11147 /* Returns:                                                                 */
11148 /*   Nothing.                                                               */
11149 /****************************************************************************/
11150 static __attribute__ ((noinline)) void
11151 bce_dump_bc_state(struct bce_softc *sc)
11152 {
11153         u32 val;
11154
11155         BCE_PRINTF(
11156             "----------------------------"
11157             " Bootcode State "
11158             "----------------------------\n");
11159
11160         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11161
11162         val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11163         BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11164             val, BCE_BC_RESET_TYPE);
11165
11166         val = bce_shmem_rd(sc, BCE_BC_STATE);
11167         BCE_PRINTF("0x%08X - (0x%06X) state\n",
11168             val, BCE_BC_STATE);
11169
11170         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11171         BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11172             val, BCE_BC_STATE_CONDITION);
11173
11174         val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11175         BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11176             val, BCE_BC_STATE_DEBUG_CMD);
11177
11178         BCE_PRINTF(
11179             "----------------------------"
11180             "----------------"
11181             "----------------------------\n");
11182 }
11183
11184
11185 /****************************************************************************/
11186 /* Prints out the TXP processor state.                                      */
11187 /*                                                                          */
11188 /* Returns:                                                                 */
11189 /*   Nothing.                                                               */
11190 /****************************************************************************/
11191 static __attribute__ ((noinline)) void
11192 bce_dump_txp_state(struct bce_softc *sc, int regs)
11193 {
11194         u32 val;
11195         u32 fw_version[3];
11196
11197         BCE_PRINTF(
11198             "----------------------------"
11199             "   TXP  State   "
11200             "----------------------------\n");
11201
11202         for (int i = 0; i < 3; i++)
11203                 fw_version[i] = htonl(REG_RD_IND(sc,
11204                     (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11205         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11206
11207         val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11208         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11209             val, BCE_TXP_CPU_MODE);
11210
11211         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11212         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11213             val, BCE_TXP_CPU_STATE);
11214
11215         val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11216         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11217             val, BCE_TXP_CPU_EVENT_MASK);
11218
11219         if (regs) {
11220                 BCE_PRINTF(
11221                     "----------------------------"
11222                     " Register  Dump "
11223                     "----------------------------\n");
11224
11225                 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11226                         /* Skip the big blank spaces */
11227                         if (i < 0x454000 && i > 0x5ffff)
11228                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11229                                     "0x%08X 0x%08X\n", i,
11230                                     REG_RD_IND(sc, i),
11231                                     REG_RD_IND(sc, i + 0x4),
11232                                     REG_RD_IND(sc, i + 0x8),
11233                                     REG_RD_IND(sc, i + 0xC));
11234                 }
11235         }
11236
11237         BCE_PRINTF(
11238             "----------------------------"
11239             "----------------"
11240             "----------------------------\n");
11241 }
11242
11243
11244 /****************************************************************************/
11245 /* Prints out the RXP processor state.                                      */
11246 /*                                                                          */
11247 /* Returns:                                                                 */
11248 /*   Nothing.                                                               */
11249 /****************************************************************************/
11250 static __attribute__ ((noinline)) void
11251 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11252 {
11253         u32 val;
11254         u32 fw_version[3];
11255
11256         BCE_PRINTF(
11257             "----------------------------"
11258             "   RXP  State   "
11259             "----------------------------\n");
11260
11261         for (int i = 0; i < 3; i++)
11262                 fw_version[i] = htonl(REG_RD_IND(sc,
11263                     (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11264
11265         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11266
11267         val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11268         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11269             val, BCE_RXP_CPU_MODE);
11270
11271         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11272         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11273             val, BCE_RXP_CPU_STATE);
11274
11275         val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11276         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11277             val, BCE_RXP_CPU_EVENT_MASK);
11278
11279         if (regs) {
11280                 BCE_PRINTF(
11281                     "----------------------------"
11282                     " Register  Dump "
11283                     "----------------------------\n");
11284
11285                 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11286                         /* Skip the big blank sapces */
11287                         if (i < 0xc5400 && i > 0xdffff)
11288                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11289                                     "0x%08X 0x%08X\n", i,
11290                                     REG_RD_IND(sc, i),
11291                                     REG_RD_IND(sc, i + 0x4),
11292                                     REG_RD_IND(sc, i + 0x8),
11293                                     REG_RD_IND(sc, i + 0xC));
11294                 }
11295         }
11296
11297         BCE_PRINTF(
11298             "----------------------------"
11299             "----------------"
11300             "----------------------------\n");
11301 }
11302
11303
11304 /****************************************************************************/
11305 /* Prints out the TPAT processor state.                                     */
11306 /*                                                                          */
11307 /* Returns:                                                                 */
11308 /*   Nothing.                                                               */
11309 /****************************************************************************/
11310 static __attribute__ ((noinline)) void
11311 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11312 {
11313         u32 val;
11314         u32 fw_version[3];
11315
11316         BCE_PRINTF(
11317             "----------------------------"
11318             "   TPAT State   "
11319             "----------------------------\n");
11320
11321         for (int i = 0; i < 3; i++)
11322                 fw_version[i] = htonl(REG_RD_IND(sc,
11323                     (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11324
11325         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11326
11327         val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11328         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11329             val, BCE_TPAT_CPU_MODE);
11330
11331         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11332         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11333             val, BCE_TPAT_CPU_STATE);
11334
11335         val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11336         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11337             val, BCE_TPAT_CPU_EVENT_MASK);
11338
11339         if (regs) {
11340                 BCE_PRINTF(
11341                     "----------------------------"
11342                     " Register  Dump "
11343                     "----------------------------\n");
11344
11345                 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11346                         /* Skip the big blank spaces */
11347                         if (i < 0x854000 && i > 0x9ffff)
11348                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11349                                     "0x%08X 0x%08X\n", i,
11350                                     REG_RD_IND(sc, i),
11351                                     REG_RD_IND(sc, i + 0x4),
11352                                     REG_RD_IND(sc, i + 0x8),
11353                                     REG_RD_IND(sc, i + 0xC));
11354                 }
11355         }
11356
11357         BCE_PRINTF(
11358                 "----------------------------"
11359                 "----------------"
11360                 "----------------------------\n");
11361 }
11362
11363
11364 /****************************************************************************/
11365 /* Prints out the Command Procesor (CP) state.                              */
11366 /*                                                                          */
11367 /* Returns:                                                                 */
11368 /*   Nothing.                                                               */
11369 /****************************************************************************/
11370 static __attribute__ ((noinline)) void
11371 bce_dump_cp_state(struct bce_softc *sc, int regs)
11372 {
11373         u32 val;
11374         u32 fw_version[3];
11375
11376         BCE_PRINTF(
11377             "----------------------------"
11378             "    CP State    "
11379             "----------------------------\n");
11380
11381         for (int i = 0; i < 3; i++)
11382                 fw_version[i] = htonl(REG_RD_IND(sc,
11383                     (BCE_CP_SCRATCH + 0x10 + i * 4)));
11384
11385         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11386
11387         val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11388         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11389             val, BCE_CP_CPU_MODE);
11390
11391         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11392         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11393             val, BCE_CP_CPU_STATE);
11394
11395         val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11396         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11397             BCE_CP_CPU_EVENT_MASK);
11398
11399         if (regs) {
11400                 BCE_PRINTF(
11401                     "----------------------------"
11402                     " Register  Dump "
11403                     "----------------------------\n");
11404
11405                 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11406                         /* Skip the big blank spaces */
11407                         if (i < 0x185400 && i > 0x19ffff)
11408                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11409                                     "0x%08X 0x%08X\n", i,
11410                                     REG_RD_IND(sc, i),
11411                                     REG_RD_IND(sc, i + 0x4),
11412                                     REG_RD_IND(sc, i + 0x8),
11413                                     REG_RD_IND(sc, i + 0xC));
11414                 }
11415         }
11416
11417         BCE_PRINTF(
11418             "----------------------------"
11419             "----------------"
11420             "----------------------------\n");
11421 }
11422
11423
11424 /****************************************************************************/
11425 /* Prints out the Completion Procesor (COM) state.                          */
11426 /*                                                                          */
11427 /* Returns:                                                                 */
11428 /*   Nothing.                                                               */
11429 /****************************************************************************/
11430 static __attribute__ ((noinline)) void
11431 bce_dump_com_state(struct bce_softc *sc, int regs)
11432 {
11433         u32 val;
11434         u32 fw_version[4];
11435
11436         BCE_PRINTF(
11437             "----------------------------"
11438             "   COM State    "
11439             "----------------------------\n");
11440
11441         for (int i = 0; i < 3; i++)
11442                 fw_version[i] = htonl(REG_RD_IND(sc,
11443                     (BCE_COM_SCRATCH + 0x10 + i * 4)));
11444
11445         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11446
11447         val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11448         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11449             val, BCE_COM_CPU_MODE);
11450
11451         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11452         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11453             val, BCE_COM_CPU_STATE);
11454
11455         val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11456         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11457             BCE_COM_CPU_EVENT_MASK);
11458
11459         if (regs) {
11460                 BCE_PRINTF(
11461                     "----------------------------"
11462                     " Register  Dump "
11463                     "----------------------------\n");
11464
11465                 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11466                         BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11467                             "0x%08X 0x%08X\n", i,
11468                             REG_RD_IND(sc, i),
11469                             REG_RD_IND(sc, i + 0x4),
11470                             REG_RD_IND(sc, i + 0x8),
11471                             REG_RD_IND(sc, i + 0xC));
11472                 }
11473         }
11474
11475         BCE_PRINTF(
11476                 "----------------------------"
11477                 "----------------"
11478                 "----------------------------\n");
11479 }
11480
11481
11482 /****************************************************************************/
11483 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11484 /*                                                                          */
11485 /* Returns:                                                                 */
11486 /*   Nothing.                                                               */
11487 /****************************************************************************/
11488 static __attribute__ ((noinline)) void
11489 bce_dump_rv2p_state(struct bce_softc *sc)
11490 {
11491         u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11492
11493         BCE_PRINTF(
11494             "----------------------------"
11495             "   RV2P State   "
11496             "----------------------------\n");
11497
11498         /* Stall the RV2P processors. */
11499         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11500         val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11501         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11502
11503         /* Read the firmware version. */
11504         val = 0x00000001;
11505         REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11506         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11507         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11508             BCE_RV2P_INSTR_HIGH_HIGH;
11509         BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11510             fw_ver_high, fw_ver_low);
11511
11512         val = 0x00000001;
11513         REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11514         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11515         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11516             BCE_RV2P_INSTR_HIGH_HIGH;
11517         BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11518             fw_ver_high, fw_ver_low);
11519
11520         /* Resume the RV2P processors. */
11521         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11522         val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11523         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11524
11525         /* Fetch the program counter value. */
11526         val = 0x68007800;
11527         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11528         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11529         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11530         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11531         BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11532         BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11533
11534         /* Fetch the program counter value again to see if it is advancing. */
11535         val = 0x68007800;
11536         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11537         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11538         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11539         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11540         BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11541         BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11542
11543         BCE_PRINTF(
11544             "----------------------------"
11545             "----------------"
11546             "----------------------------\n");
11547 }
11548
11549
11550 /****************************************************************************/
11551 /* Prints out the driver state and then enters the debugger.                */
11552 /*                                                                          */
11553 /* Returns:                                                                 */
11554 /*   Nothing.                                                               */
11555 /****************************************************************************/
11556 static __attribute__ ((noinline)) void
11557 bce_breakpoint(struct bce_softc *sc)
11558 {
11559
11560         /*
11561          * Unreachable code to silence compiler warnings
11562          * about unused functions.
11563          */
11564         if (0) {
11565                 bce_freeze_controller(sc);
11566                 bce_unfreeze_controller(sc);
11567                 bce_dump_enet(sc, NULL);
11568                 bce_dump_txbd(sc, 0, NULL);
11569                 bce_dump_rxbd(sc, 0, NULL);
11570                 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11571                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11572                 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11573                 bce_dump_l2fhdr(sc, 0, NULL);
11574                 bce_dump_ctx(sc, RX_CID);
11575                 bce_dump_ftqs(sc);
11576                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11577                 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11578                 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11579                 bce_dump_status_block(sc);
11580                 bce_dump_stats_block(sc);
11581                 bce_dump_driver_state(sc);
11582                 bce_dump_hw_state(sc);
11583                 bce_dump_bc_state(sc);
11584                 bce_dump_txp_state(sc, 0);
11585                 bce_dump_rxp_state(sc, 0);
11586                 bce_dump_tpat_state(sc, 0);
11587                 bce_dump_cp_state(sc, 0);
11588                 bce_dump_com_state(sc, 0);
11589                 bce_dump_rv2p_state(sc);
11590                 bce_dump_pgbd(sc, 0, NULL);
11591         }
11592
11593         bce_dump_status_block(sc);
11594         bce_dump_driver_state(sc);
11595
11596         /* Call the debugger. */
11597         breakpoint();
11598 }
11599 #endif