]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/drm2/i915/i915_gem_execbuffer.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / drm2 / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <dev/drm2/drmP.h>
33 #include <dev/drm2/drm.h>
34 #include <dev/drm2/i915/i915_drm.h>
35 #include <dev/drm2/i915/i915_drv.h>
36 #include <dev/drm2/i915/intel_drv.h>
37 #include <sys/limits.h>
38 #include <sys/sf_buf.h>
39
40 struct change_domains {
41         uint32_t invalidate_domains;
42         uint32_t flush_domains;
43         uint32_t flush_rings;
44         uint32_t flips;
45 };
46
47 /*
48  * Set the next domain for the specified object. This
49  * may not actually perform the necessary flushing/invaliding though,
50  * as that may want to be batched with other set_domain operations
51  *
52  * This is (we hope) the only really tricky part of gem. The goal
53  * is fairly simple -- track which caches hold bits of the object
54  * and make sure they remain coherent. A few concrete examples may
55  * help to explain how it works. For shorthand, we use the notation
56  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
57  * a pair of read and write domain masks.
58  *
59  * Case 1: the batch buffer
60  *
61  *      1. Allocated
62  *      2. Written by CPU
63  *      3. Mapped to GTT
64  *      4. Read by GPU
65  *      5. Unmapped from GTT
66  *      6. Freed
67  *
68  *      Let's take these a step at a time
69  *
70  *      1. Allocated
71  *              Pages allocated from the kernel may still have
72  *              cache contents, so we set them to (CPU, CPU) always.
73  *      2. Written by CPU (using pwrite)
74  *              The pwrite function calls set_domain (CPU, CPU) and
75  *              this function does nothing (as nothing changes)
76  *      3. Mapped by GTT
77  *              This function asserts that the object is not
78  *              currently in any GPU-based read or write domains
79  *      4. Read by GPU
80  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
81  *              As write_domain is zero, this function adds in the
82  *              current read domains (CPU+COMMAND, 0).
83  *              flush_domains is set to CPU.
84  *              invalidate_domains is set to COMMAND
85  *              clflush is run to get data out of the CPU caches
86  *              then i915_dev_set_domain calls i915_gem_flush to
87  *              emit an MI_FLUSH and drm_agp_chipset_flush
88  *      5. Unmapped from GTT
89  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
90  *              flush_domains and invalidate_domains end up both zero
91  *              so no flushing/invalidating happens
92  *      6. Freed
93  *              yay, done
94  *
95  * Case 2: The shared render buffer
96  *
97  *      1. Allocated
98  *      2. Mapped to GTT
99  *      3. Read/written by GPU
100  *      4. set_domain to (CPU,CPU)
101  *      5. Read/written by CPU
102  *      6. Read/written by GPU
103  *
104  *      1. Allocated
105  *              Same as last example, (CPU, CPU)
106  *      2. Mapped to GTT
107  *              Nothing changes (assertions find that it is not in the GPU)
108  *      3. Read/written by GPU
109  *              execbuffer calls set_domain (RENDER, RENDER)
110  *              flush_domains gets CPU
111  *              invalidate_domains gets GPU
112  *              clflush (obj)
113  *              MI_FLUSH and drm_agp_chipset_flush
114  *      4. set_domain (CPU, CPU)
115  *              flush_domains gets GPU
116  *              invalidate_domains gets CPU
117  *              wait_rendering (obj) to make sure all drawing is complete.
118  *              This will include an MI_FLUSH to get the data from GPU
119  *              to memory
120  *              clflush (obj) to invalidate the CPU cache
121  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
122  *      5. Read/written by CPU
123  *              cache lines are loaded and dirtied
124  *      6. Read written by GPU
125  *              Same as last GPU access
126  *
127  * Case 3: The constant buffer
128  *
129  *      1. Allocated
130  *      2. Written by CPU
131  *      3. Read by GPU
132  *      4. Updated (written) by CPU again
133  *      5. Read by GPU
134  *
135  *      1. Allocated
136  *              (CPU, CPU)
137  *      2. Written by CPU
138  *              (CPU, CPU)
139  *      3. Read by GPU
140  *              (CPU+RENDER, 0)
141  *              flush_domains = CPU
142  *              invalidate_domains = RENDER
143  *              clflush (obj)
144  *              MI_FLUSH
145  *              drm_agp_chipset_flush
146  *      4. Updated (written) by CPU again
147  *              (CPU, CPU)
148  *              flush_domains = 0 (no previous write domain)
149  *              invalidate_domains = 0 (no new read domains)
150  *      5. Read by GPU
151  *              (CPU+RENDER, 0)
152  *              flush_domains = CPU
153  *              invalidate_domains = RENDER
154  *              clflush (obj)
155  *              MI_FLUSH
156  *              drm_agp_chipset_flush
157  */
158 static void
159 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
160                                   struct intel_ring_buffer *ring,
161                                   struct change_domains *cd)
162 {
163         uint32_t invalidate_domains = 0, flush_domains = 0;
164
165         /*
166          * If the object isn't moving to a new write domain,
167          * let the object stay in multiple read domains
168          */
169         if (obj->base.pending_write_domain == 0)
170                 obj->base.pending_read_domains |= obj->base.read_domains;
171
172         /*
173          * Flush the current write domain if
174          * the new read domains don't match. Invalidate
175          * any read domains which differ from the old
176          * write domain
177          */
178         if (obj->base.write_domain &&
179             (((obj->base.write_domain != obj->base.pending_read_domains ||
180                obj->ring != ring)) ||
181              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
182                 flush_domains |= obj->base.write_domain;
183                 invalidate_domains |=
184                         obj->base.pending_read_domains & ~obj->base.write_domain;
185         }
186         /*
187          * Invalidate any read caches which may have
188          * stale data. That is, any new read domains.
189          */
190         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
191         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
192                 i915_gem_clflush_object(obj);
193
194         if (obj->base.pending_write_domain)
195                 cd->flips |= atomic_read(&obj->pending_flip);
196
197         /* The actual obj->write_domain will be updated with
198          * pending_write_domain after we emit the accumulated flush for all
199          * of our domain changes in execbuffers (which clears objects'
200          * write_domains).  So if we have a current write domain that we
201          * aren't changing, set pending_write_domain to that.
202          */
203         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
204                 obj->base.pending_write_domain = obj->base.write_domain;
205
206         cd->invalidate_domains |= invalidate_domains;
207         cd->flush_domains |= flush_domains;
208         if (flush_domains & I915_GEM_GPU_DOMAINS)
209                 cd->flush_rings |= intel_ring_flag(obj->ring);
210         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
211                 cd->flush_rings |= intel_ring_flag(ring);
212 }
213
214 struct eb_objects {
215         u_long hashmask;
216         LIST_HEAD(, drm_i915_gem_object) *buckets;
217 };
218
219 static struct eb_objects *
220 eb_create(int size)
221 {
222         struct eb_objects *eb;
223
224         eb = malloc(sizeof(*eb), DRM_I915_GEM, M_WAITOK | M_ZERO);
225         eb->buckets = hashinit(size, DRM_I915_GEM, &eb->hashmask);
226         return (eb);
227 }
228
229 static void
230 eb_reset(struct eb_objects *eb)
231 {
232         int i;
233
234         for (i = 0; i <= eb->hashmask; i++)
235                 LIST_INIT(&eb->buckets[i]);
236 }
237
238 static void
239 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
240 {
241
242         LIST_INSERT_HEAD(&eb->buckets[obj->exec_handle & eb->hashmask],
243             obj, exec_node);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249         struct drm_i915_gem_object *obj;
250
251         LIST_FOREACH(obj, &eb->buckets[handle & eb->hashmask], exec_node) {
252                 if (obj->exec_handle == handle)
253                         return (obj);
254         }
255         return (NULL);
256 }
257
258 static void
259 eb_destroy(struct eb_objects *eb)
260 {
261
262         free(eb->buckets, DRM_I915_GEM);
263         free(eb, DRM_I915_GEM);
264 }
265
266 static int
267 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
268                                    struct eb_objects *eb,
269                                    struct drm_i915_gem_relocation_entry *reloc)
270 {
271         struct drm_device *dev = obj->base.dev;
272         struct drm_gem_object *target_obj;
273         uint32_t target_offset;
274         int ret = -EINVAL;
275
276         /* we've already hold a reference to all valid objects */
277         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
278         if (unlikely(target_obj == NULL))
279                 return -ENOENT;
280
281         target_offset = to_intel_bo(target_obj)->gtt_offset;
282
283 #if WATCH_RELOC
284         DRM_INFO("%s: obj %p offset %08x target %d "
285                  "read %08x write %08x gtt %08x "
286                  "presumed %08x delta %08x\n",
287                  __func__,
288                  obj,
289                  (int) reloc->offset,
290                  (int) reloc->target_handle,
291                  (int) reloc->read_domains,
292                  (int) reloc->write_domain,
293                  (int) target_offset,
294                  (int) reloc->presumed_offset,
295                  reloc->delta);
296 #endif
297
298         /* The target buffer should have appeared before us in the
299          * exec_object list, so it should have a GTT space bound by now.
300          */
301         if (unlikely(target_offset == 0)) {
302                 DRM_DEBUG("No GTT space found for object %d\n",
303                           reloc->target_handle);
304                 return ret;
305         }
306
307         /* Validate that the target is in a valid r/w GPU domain */
308         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
309                 DRM_DEBUG("reloc with multiple write domains: "
310                           "obj %p target %d offset %d "
311                           "read %08x write %08x",
312                           obj, reloc->target_handle,
313                           (int) reloc->offset,
314                           reloc->read_domains,
315                           reloc->write_domain);
316                 return ret;
317         }
318         if (unlikely((reloc->write_domain | reloc->read_domains)
319                      & ~I915_GEM_GPU_DOMAINS)) {
320                 DRM_DEBUG("reloc with read/write non-GPU domains: "
321                           "obj %p target %d offset %d "
322                           "read %08x write %08x",
323                           obj, reloc->target_handle,
324                           (int) reloc->offset,
325                           reloc->read_domains,
326                           reloc->write_domain);
327                 return ret;
328         }
329         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
330                      reloc->write_domain != target_obj->pending_write_domain)) {
331                 DRM_DEBUG("Write domain conflict: "
332                           "obj %p target %d offset %d "
333                           "new %08x old %08x\n",
334                           obj, reloc->target_handle,
335                           (int) reloc->offset,
336                           reloc->write_domain,
337                           target_obj->pending_write_domain);
338                 return ret;
339         }
340
341         target_obj->pending_read_domains |= reloc->read_domains;
342         target_obj->pending_write_domain |= reloc->write_domain;
343
344         /* If the relocation already has the right value in it, no
345          * more work needs to be done.
346          */
347         if (target_offset == reloc->presumed_offset)
348                 return 0;
349
350         /* Check that the relocation address is valid... */
351         if (unlikely(reloc->offset > obj->base.size - 4)) {
352                 DRM_DEBUG("Relocation beyond object bounds: "
353                           "obj %p target %d offset %d size %d.\n",
354                           obj, reloc->target_handle,
355                           (int) reloc->offset,
356                           (int) obj->base.size);
357                 return ret;
358         }
359         if (unlikely(reloc->offset & 3)) {
360                 DRM_DEBUG("Relocation not 4-byte aligned: "
361                           "obj %p target %d offset %d.\n",
362                           obj, reloc->target_handle,
363                           (int) reloc->offset);
364                 return ret;
365         }
366
367         reloc->delta += target_offset;
368         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
369                 uint32_t page_offset = reloc->offset & PAGE_MASK;
370                 char *vaddr;
371                 struct sf_buf *sf;
372
373                 sf = sf_buf_alloc(obj->pages[OFF_TO_IDX(reloc->offset)],
374                     SFB_NOWAIT);
375                 if (sf == NULL)
376                         return (-ENOMEM);
377                 vaddr = (void *)sf_buf_kva(sf);
378                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
379                 sf_buf_free(sf);
380         } else {
381                 uint32_t *reloc_entry;
382                 char *reloc_page;
383
384                 /* We can't wait for rendering with pagefaults disabled */
385                 if (obj->active && (curthread->td_pflags & TDP_NOFAULTING) != 0)
386                         return (-EFAULT);
387                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
388                 if (ret)
389                         return ret;
390
391                 /*
392                  * Map the page containing the relocation we're going
393                  * to perform.
394                  */
395                 reloc->offset += obj->gtt_offset;
396                 reloc_page = pmap_mapdev_attr(dev->agp->base + (reloc->offset &
397                     ~PAGE_MASK), PAGE_SIZE, PAT_WRITE_COMBINING);
398                 reloc_entry = (uint32_t *)(reloc_page + (reloc->offset &
399                     PAGE_MASK));
400                 *(volatile uint32_t *)reloc_entry = reloc->delta;
401                 pmap_unmapdev((vm_offset_t)reloc_page, PAGE_SIZE);
402         }
403
404         /* and update the user's relocation entry */
405         reloc->presumed_offset = target_offset;
406
407         return 0;
408 }
409
410 static int
411 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
412     struct eb_objects *eb)
413 {
414         struct drm_i915_gem_relocation_entry *user_relocs;
415         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
416         struct drm_i915_gem_relocation_entry reloc;
417         int i, ret;
418
419         user_relocs = (void *)(uintptr_t)entry->relocs_ptr;
420         for (i = 0; i < entry->relocation_count; i++) {
421                 ret = -copyin_nofault(user_relocs + i, &reloc, sizeof(reloc));
422                 if (ret != 0)
423                         return (ret);
424
425                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
426                 if (ret != 0)
427                         return (ret);
428
429                 ret = -copyout_nofault(&reloc.presumed_offset,
430                     &user_relocs[i].presumed_offset,
431                     sizeof(reloc.presumed_offset));
432                 if (ret != 0)
433                         return (ret);
434         }
435
436         return (0);
437 }
438
439 static int
440 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
441     struct eb_objects *eb, struct drm_i915_gem_relocation_entry *relocs)
442 {
443         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
444         int i, ret;
445
446         for (i = 0; i < entry->relocation_count; i++) {
447                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
448                 if (ret)
449                         return ret;
450         }
451
452         return 0;
453 }
454
455 static int
456 i915_gem_execbuffer_relocate(struct drm_device *dev,
457                              struct eb_objects *eb,
458                              struct list_head *objects)
459 {
460         struct drm_i915_gem_object *obj;
461         int ret, pflags;
462
463         /* Try to move as many of the relocation targets off the active list
464          * to avoid unnecessary fallbacks to the slow path, as we cannot wait
465          * for the retirement with pagefaults disabled.
466          */
467         i915_gem_retire_requests(dev);
468
469         ret = 0;
470         pflags = vm_fault_disable_pagefaults();
471         /* This is the fast path and we cannot handle a pagefault whilst
472          * holding the device lock lest the user pass in the relocations
473          * contained within a mmaped bo. For in such a case we, the page
474          * fault handler would call i915_gem_fault() and we would try to
475          * acquire the device lock again. Obviously this is bad.
476          */
477
478         list_for_each_entry(obj, objects, exec_list) {
479                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
480                 if (ret != 0)
481                         break;
482         }
483         vm_fault_enable_pagefaults(pflags);
484         return (ret);
485 }
486
487 #define  __EXEC_OBJECT_HAS_FENCE (1<<31)
488
489 static int
490 pin_and_fence_object(struct drm_i915_gem_object *obj,
491                      struct intel_ring_buffer *ring)
492 {
493         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
494         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
495         bool need_fence, need_mappable;
496         int ret;
497
498         need_fence =
499                 has_fenced_gpu_access &&
500                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
501                 obj->tiling_mode != I915_TILING_NONE;
502         need_mappable =
503                 entry->relocation_count ? true : need_fence;
504
505         ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
506         if (ret)
507                 return ret;
508
509         if (has_fenced_gpu_access) {
510                 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
511                         if (obj->tiling_mode) {
512                                 ret = i915_gem_object_get_fence(obj, ring);
513                                 if (ret)
514                                         goto err_unpin;
515
516                                 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
517                                 i915_gem_object_pin_fence(obj);
518                         } else {
519                                 ret = i915_gem_object_put_fence(obj);
520                                 if (ret)
521                                         goto err_unpin;
522                         }
523                         obj->pending_fenced_gpu_access = true;
524                 }
525         }
526
527         entry->offset = obj->gtt_offset;
528         return 0;
529
530 err_unpin:
531         i915_gem_object_unpin(obj);
532         return ret;
533 }
534
535 static int
536 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
537                             struct drm_file *file,
538                             struct list_head *objects)
539 {
540         drm_i915_private_t *dev_priv;
541         struct drm_i915_gem_object *obj;
542         int ret, retry;
543         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
544         struct list_head ordered_objects;
545
546         dev_priv = ring->dev->dev_private;
547         INIT_LIST_HEAD(&ordered_objects);
548         while (!list_empty(objects)) {
549                 struct drm_i915_gem_exec_object2 *entry;
550                 bool need_fence, need_mappable;
551
552                 obj = list_first_entry(objects,
553                                        struct drm_i915_gem_object,
554                                        exec_list);
555                 entry = obj->exec_entry;
556
557                 need_fence =
558                         has_fenced_gpu_access &&
559                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
560                         obj->tiling_mode != I915_TILING_NONE;
561                 need_mappable =
562                         entry->relocation_count ? true : need_fence;
563
564                 if (need_mappable)
565                         list_move(&obj->exec_list, &ordered_objects);
566                 else
567                         list_move_tail(&obj->exec_list, &ordered_objects);
568
569                 obj->base.pending_read_domains = 0;
570                 obj->base.pending_write_domain = 0;
571         }
572         list_splice(&ordered_objects, objects);
573
574         /* Attempt to pin all of the buffers into the GTT.
575          * This is done in 3 phases:
576          *
577          * 1a. Unbind all objects that do not match the GTT constraints for
578          *     the execbuffer (fenceable, mappable, alignment etc).
579          * 1b. Increment pin count for already bound objects and obtain
580          *     a fence register if required.
581          * 2.  Bind new objects.
582          * 3.  Decrement pin count.
583          *
584          * This avoid unnecessary unbinding of later objects in order to makr
585          * room for the earlier objects *unless* we need to defragment.
586          */
587         retry = 0;
588         do {
589                 ret = 0;
590
591                 /* Unbind any ill-fitting objects or pin. */
592                 list_for_each_entry(obj, objects, exec_list) {
593                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
594                         bool need_fence, need_mappable;
595
596                         if (!obj->gtt_space)
597                                 continue;
598
599                         need_fence =
600                                 has_fenced_gpu_access &&
601                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
602                                 obj->tiling_mode != I915_TILING_NONE;
603                         need_mappable =
604                                 entry->relocation_count ? true : need_fence;
605
606                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
607                             (need_mappable && !obj->map_and_fenceable))
608                                 ret = i915_gem_object_unbind(obj);
609                         else
610                                 ret = pin_and_fence_object(obj, ring);
611                         if (ret)
612                                 goto err;
613                 }
614
615                 /* Bind fresh objects */
616                 list_for_each_entry(obj, objects, exec_list) {
617                         if (obj->gtt_space)
618                                 continue;
619
620                         ret = pin_and_fence_object(obj, ring);
621                         if (ret) {
622                                 int ret_ignore;
623
624                                 /* This can potentially raise a harmless
625                                  * -EINVAL if we failed to bind in the above
626                                  * call. It cannot raise -EINTR since we know
627                                  * that the bo is freshly bound and so will
628                                  * not need to be flushed or waited upon.
629                                  */
630                                 ret_ignore = i915_gem_object_unbind(obj);
631                                 (void)ret_ignore;
632                                 if (obj->gtt_space != NULL)
633                                         printf("%s: gtt_space\n", __func__);
634                                 break;
635                         }
636                 }
637
638                 /* Decrement pin count for bound objects */
639                 list_for_each_entry(obj, objects, exec_list) {
640                         struct drm_i915_gem_exec_object2 *entry;
641
642                         if (!obj->gtt_space)
643                                 continue;
644
645                         entry = obj->exec_entry;
646                         if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
647                                 i915_gem_object_unpin_fence(obj);
648                                 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
649                         }
650
651                         i915_gem_object_unpin(obj);
652
653                         /* ... and ensure ppgtt mapping exist if needed. */
654                         if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
655                                 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
656                                                        obj, obj->cache_level);
657
658                                 obj->has_aliasing_ppgtt_mapping = 1;
659                         }
660                 }
661
662                 if (ret != -ENOSPC || retry > 1)
663                         return ret;
664
665                 /* First attempt, just clear anything that is purgeable.
666                  * Second attempt, clear the entire GTT.
667                  */
668                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
669                 if (ret)
670                         return ret;
671
672                 retry++;
673         } while (1);
674
675 err:
676         list_for_each_entry_continue_reverse(obj, objects, exec_list) {
677                 struct drm_i915_gem_exec_object2 *entry;
678
679                 if (!obj->gtt_space)
680                         continue;
681
682                 entry = obj->exec_entry;
683                 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
684                         i915_gem_object_unpin_fence(obj);
685                         entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
686                 }
687
688                 i915_gem_object_unpin(obj);
689         }
690
691         return ret;
692 }
693
694 static int
695 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
696     struct drm_file *file, struct intel_ring_buffer *ring,
697     struct list_head *objects, struct eb_objects *eb,
698     struct drm_i915_gem_exec_object2 *exec, int count)
699 {
700         struct drm_i915_gem_relocation_entry *reloc;
701         struct drm_i915_gem_object *obj;
702         int *reloc_offset;
703         int i, total, ret;
704
705         /* We may process another execbuffer during the unlock... */
706         while (!list_empty(objects)) {
707                 obj = list_first_entry(objects,
708                                        struct drm_i915_gem_object,
709                                        exec_list);
710                 list_del_init(&obj->exec_list);
711                 drm_gem_object_unreference(&obj->base);
712         }
713
714         DRM_UNLOCK(dev);
715
716         total = 0;
717         for (i = 0; i < count; i++)
718                 total += exec[i].relocation_count;
719
720         reloc_offset = malloc(count * sizeof(*reloc_offset), DRM_I915_GEM,
721             M_WAITOK | M_ZERO);
722         reloc = malloc(total * sizeof(*reloc), DRM_I915_GEM, M_WAITOK | M_ZERO);
723
724         total = 0;
725         for (i = 0; i < count; i++) {
726                 struct drm_i915_gem_relocation_entry *user_relocs;
727
728                 user_relocs = (void *)(uintptr_t)exec[i].relocs_ptr;
729                 ret = -copyin(user_relocs, reloc + total,
730                     exec[i].relocation_count * sizeof(*reloc));
731                 if (ret != 0) {
732                         DRM_LOCK(dev);
733                         goto err;
734                 }
735
736                 reloc_offset[i] = total;
737                 total += exec[i].relocation_count;
738         }
739
740         ret = i915_mutex_lock_interruptible(dev);
741         if (ret) {
742                 DRM_LOCK(dev);
743                 goto err;
744         }
745
746         /* reacquire the objects */
747         eb_reset(eb);
748         for (i = 0; i < count; i++) {
749                 struct drm_i915_gem_object *obj;
750
751                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
752                                                         exec[i].handle));
753                 if (&obj->base == NULL) {
754                         DRM_DEBUG("Invalid object handle %d at index %d\n",
755                                    exec[i].handle, i);
756                         ret = -ENOENT;
757                         goto err;
758                 }
759
760                 list_add_tail(&obj->exec_list, objects);
761                 obj->exec_handle = exec[i].handle;
762                 obj->exec_entry = &exec[i];
763                 eb_add_object(eb, obj);
764         }
765
766         ret = i915_gem_execbuffer_reserve(ring, file, objects);
767         if (ret)
768                 goto err;
769
770         list_for_each_entry(obj, objects, exec_list) {
771                 int offset = obj->exec_entry - exec;
772                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
773                     reloc + reloc_offset[offset]);
774                 if (ret)
775                         goto err;
776         }
777
778         /* Leave the user relocations as are, this is the painfully slow path,
779          * and we want to avoid the complication of dropping the lock whilst
780          * having buffers reserved in the aperture and so causing spurious
781          * ENOSPC for random operations.
782          */
783
784 err:
785         free(reloc, DRM_I915_GEM);
786         free(reloc_offset, DRM_I915_GEM);
787         return ret;
788 }
789
790 static int
791 i915_gem_execbuffer_flush(struct drm_device *dev,
792                           uint32_t invalidate_domains,
793                           uint32_t flush_domains,
794                           uint32_t flush_rings)
795 {
796         drm_i915_private_t *dev_priv = dev->dev_private;
797         int i, ret;
798
799         if (flush_domains & I915_GEM_DOMAIN_CPU)
800                 intel_gtt_chipset_flush();
801
802         if (flush_domains & I915_GEM_DOMAIN_GTT)
803                 wmb();
804
805         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
806                 for (i = 0; i < I915_NUM_RINGS; i++)
807                         if (flush_rings & (1 << i)) {
808                                 ret = i915_gem_flush_ring(&dev_priv->rings[i],
809                                     invalidate_domains, flush_domains);
810                                 if (ret)
811                                         return ret;
812                         }
813         }
814
815         return 0;
816 }
817
818 static bool
819 intel_enable_semaphores(struct drm_device *dev)
820 {
821         if (INTEL_INFO(dev)->gen < 6)
822                 return 0;
823
824         if (i915_semaphores >= 0)
825                 return i915_semaphores;
826
827         /* Enable semaphores on SNB when IO remapping is off */
828         if (INTEL_INFO(dev)->gen == 6)
829                 return !intel_iommu_enabled;
830
831         return 1;
832 }
833
834 static int
835 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
836                                struct intel_ring_buffer *to)
837 {
838         struct intel_ring_buffer *from = obj->ring;
839         u32 seqno;
840         int ret, idx;
841
842         if (from == NULL || to == from)
843                 return 0;
844
845         /* XXX gpu semaphores are implicated in various hard hangs on SNB */
846         if (!intel_enable_semaphores(obj->base.dev))
847                 return i915_gem_object_wait_rendering(obj);
848
849         idx = intel_ring_sync_index(from, to);
850
851         seqno = obj->last_rendering_seqno;
852         if (seqno <= from->sync_seqno[idx])
853                 return 0;
854
855         if (seqno == from->outstanding_lazy_request) {
856                 struct drm_i915_gem_request *request;
857
858                 request = malloc(sizeof(*request), DRM_I915_GEM,
859                     M_WAITOK | M_ZERO);
860                 ret = i915_add_request(from, NULL, request);
861                 if (ret) {
862                         free(request, DRM_I915_GEM);
863                         return ret;
864                 }
865
866                 seqno = request->seqno;
867         }
868
869         from->sync_seqno[idx] = seqno;
870
871         return to->sync_to(to, from, seqno - 1);
872 }
873
874 static int
875 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
876 {
877         u32 plane, flip_mask;
878         int ret;
879
880         /* Check for any pending flips. As we only maintain a flip queue depth
881          * of 1, we can simply insert a WAIT for the next display flip prior
882          * to executing the batch and avoid stalling the CPU.
883          */
884
885         for (plane = 0; flips >> plane; plane++) {
886                 if (((flips >> plane) & 1) == 0)
887                         continue;
888
889                 if (plane)
890                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
891                 else
892                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
893
894                 ret = intel_ring_begin(ring, 2);
895                 if (ret)
896                         return ret;
897
898                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
899                 intel_ring_emit(ring, MI_NOOP);
900                 intel_ring_advance(ring);
901         }
902
903         return 0;
904 }
905
906 static int
907 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
908                                 struct list_head *objects)
909 {
910         struct drm_i915_gem_object *obj;
911         struct change_domains cd;
912         int ret;
913
914         memset(&cd, 0, sizeof(cd));
915         list_for_each_entry(obj, objects, exec_list)
916                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
917
918         if (cd.invalidate_domains | cd.flush_domains) {
919 #if WATCH_EXEC
920                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
921                           __func__,
922                          cd.invalidate_domains,
923                          cd.flush_domains);
924 #endif
925                 ret = i915_gem_execbuffer_flush(ring->dev,
926                                                 cd.invalidate_domains,
927                                                 cd.flush_domains,
928                                                 cd.flush_rings);
929                 if (ret)
930                         return ret;
931         }
932
933         if (cd.flips) {
934                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
935                 if (ret)
936                         return ret;
937         }
938
939         list_for_each_entry(obj, objects, exec_list) {
940                 ret = i915_gem_execbuffer_sync_rings(obj, ring);
941                 if (ret)
942                         return ret;
943         }
944
945         return 0;
946 }
947
948 static bool
949 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
950 {
951         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
952 }
953
954 static int
955 validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count,
956     vm_page_t ***map)
957 {
958         vm_page_t *ma;
959         int i, length, page_count;
960
961         /* XXXKIB various limits checking is missing there */
962         *map = malloc(count * sizeof(*ma), DRM_I915_GEM, M_WAITOK | M_ZERO);
963         for (i = 0; i < count; i++) {
964                 /* First check for malicious input causing overflow */
965                 if (exec[i].relocation_count >
966                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
967                         return -EINVAL;
968
969                 length = exec[i].relocation_count *
970                     sizeof(struct drm_i915_gem_relocation_entry);
971                 if (length == 0) {
972                         (*map)[i] = NULL;
973                         continue;
974                 }
975                 /*
976                  * Since both start and end of the relocation region
977                  * may be not aligned on the page boundary, be
978                  * conservative and request a page slot for each
979                  * partial page.  Thus +2.
980                  */
981                 page_count = howmany(length, PAGE_SIZE) + 2;
982                 ma = (*map)[i] = malloc(page_count * sizeof(vm_page_t),
983                     DRM_I915_GEM, M_WAITOK | M_ZERO);
984                 if (vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
985                     exec[i].relocs_ptr, length, VM_PROT_READ | VM_PROT_WRITE,
986                     ma, page_count) == -1) {
987                         free(ma, DRM_I915_GEM);
988                         (*map)[i] = NULL;
989                         return (-EFAULT);
990                 }
991         }
992
993         return 0;
994 }
995
996 static void
997 i915_gem_execbuffer_move_to_active(struct list_head *objects,
998                                    struct intel_ring_buffer *ring,
999                                    u32 seqno)
1000 {
1001         struct drm_i915_gem_object *obj;
1002         uint32_t old_read, old_write;
1003
1004         list_for_each_entry(obj, objects, exec_list) {
1005                 old_read = obj->base.read_domains;
1006                 old_write = obj->base.write_domain;
1007
1008                 obj->base.read_domains = obj->base.pending_read_domains;
1009                 obj->base.write_domain = obj->base.pending_write_domain;
1010                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
1011
1012                 i915_gem_object_move_to_active(obj, ring, seqno);
1013                 if (obj->base.write_domain) {
1014                         obj->dirty = 1;
1015                         obj->pending_gpu_write = true;
1016                         list_move_tail(&obj->gpu_write_list,
1017                                        &ring->gpu_write_list);
1018                         intel_mark_busy(ring->dev, obj);
1019                 }
1020                 CTR3(KTR_DRM, "object_change_domain move_to_active %p %x %x",
1021                     obj, old_read, old_write);
1022         }
1023 }
1024
1025 int i915_gem_sync_exec_requests;
1026
1027 static void
1028 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
1029                                     struct drm_file *file,
1030                                     struct intel_ring_buffer *ring)
1031 {
1032         struct drm_i915_gem_request *request;
1033         u32 invalidate;
1034
1035         /*
1036          * Ensure that the commands in the batch buffer are
1037          * finished before the interrupt fires.
1038          *
1039          * The sampler always gets flushed on i965 (sigh).
1040          */
1041         invalidate = I915_GEM_DOMAIN_COMMAND;
1042         if (INTEL_INFO(dev)->gen >= 4)
1043                 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1044         if (ring->flush(ring, invalidate, 0)) {
1045                 i915_gem_next_request_seqno(ring);
1046                 return;
1047         }
1048
1049         /* Add a breadcrumb for the completion of the batch buffer */
1050         request = malloc(sizeof(*request), DRM_I915_GEM, M_WAITOK | M_ZERO);
1051         if (request == NULL || i915_add_request(ring, file, request)) {
1052                 i915_gem_next_request_seqno(ring);
1053                 free(request, DRM_I915_GEM);
1054         } else if (i915_gem_sync_exec_requests)
1055                 i915_wait_request(ring, request->seqno, true);
1056 }
1057
1058 static void
1059 i915_gem_fix_mi_batchbuffer_end(struct drm_i915_gem_object *batch_obj,
1060     uint32_t batch_start_offset, uint32_t batch_len)
1061 {
1062         char *mkva;
1063         uint64_t po_r, po_w;
1064         uint32_t cmd;
1065         
1066         po_r = batch_obj->base.dev->agp->base + batch_obj->gtt_offset +
1067             batch_start_offset + batch_len;
1068         if (batch_len > 0)
1069                 po_r -= 4;
1070         mkva = pmap_mapdev_attr(trunc_page(po_r), 2 * PAGE_SIZE,
1071             PAT_WRITE_COMBINING);
1072         po_r &= PAGE_MASK;
1073         cmd = *(uint32_t *)(mkva + po_r);
1074
1075         if (cmd != MI_BATCH_BUFFER_END) {
1076                 /*
1077                  * batch_len != 0 due to the check at the start of
1078                  * i915_gem_do_execbuffer
1079                  */
1080                 if (batch_obj->base.size > batch_start_offset + batch_len) {
1081                         po_w = po_r + 4;
1082 /* DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END !\n"); */
1083                 } else {
1084                         po_w = po_r;
1085 DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END, overwriting last bo cmd !\n");
1086                 }
1087                 *(uint32_t *)(mkva + po_w) = MI_BATCH_BUFFER_END;
1088         }
1089
1090         pmap_unmapdev((vm_offset_t)mkva, 2 * PAGE_SIZE);
1091 }
1092
1093 int i915_fix_mi_batchbuffer_end = 0;
1094
1095  static int
1096 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1097                             struct intel_ring_buffer *ring)
1098 {
1099         drm_i915_private_t *dev_priv = dev->dev_private;
1100         int ret, i;
1101
1102         if (!IS_GEN7(dev) || ring != &dev_priv->rings[RCS])
1103                 return 0;
1104
1105         ret = intel_ring_begin(ring, 4 * 3);
1106         if (ret)
1107                 return ret;
1108
1109         for (i = 0; i < 4; i++) {
1110                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1111                 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1112                 intel_ring_emit(ring, 0);
1113         }
1114
1115         intel_ring_advance(ring);
1116
1117         return 0;
1118 }
1119
1120 static int
1121 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1122                        struct drm_file *file,
1123                        struct drm_i915_gem_execbuffer2 *args,
1124                        struct drm_i915_gem_exec_object2 *exec)
1125 {
1126         drm_i915_private_t *dev_priv = dev->dev_private;
1127         struct list_head objects;
1128         struct eb_objects *eb;
1129         struct drm_i915_gem_object *batch_obj;
1130         struct drm_clip_rect *cliprects = NULL;
1131         struct intel_ring_buffer *ring;
1132         vm_page_t **relocs_ma;
1133         u32 exec_start, exec_len;
1134         u32 seqno;
1135         u32 mask;
1136         int ret, mode, i;
1137
1138         if (!i915_gem_check_execbuffer(args)) {
1139                 DRM_DEBUG("execbuf with invalid offset/length\n");
1140                 return -EINVAL;
1141         }
1142
1143         if (args->batch_len == 0)
1144                 return (0);
1145
1146         ret = validate_exec_list(exec, args->buffer_count, &relocs_ma);
1147         if (ret != 0)
1148                 goto pre_struct_lock_err;
1149
1150         switch (args->flags & I915_EXEC_RING_MASK) {
1151         case I915_EXEC_DEFAULT:
1152         case I915_EXEC_RENDER:
1153                 ring = &dev_priv->rings[RCS];
1154                 break;
1155         case I915_EXEC_BSD:
1156                 if (!HAS_BSD(dev)) {
1157                         DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1158                         return -EINVAL;
1159                 }
1160                 ring = &dev_priv->rings[VCS];
1161                 break;
1162         case I915_EXEC_BLT:
1163                 if (!HAS_BLT(dev)) {
1164                         DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1165                         return -EINVAL;
1166                 }
1167                 ring = &dev_priv->rings[BCS];
1168                 break;
1169         default:
1170                 DRM_DEBUG("execbuf with unknown ring: %d\n",
1171                           (int)(args->flags & I915_EXEC_RING_MASK));
1172                 ret = -EINVAL;
1173                 goto pre_struct_lock_err;
1174         }
1175
1176         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1177         mask = I915_EXEC_CONSTANTS_MASK;
1178         switch (mode) {
1179         case I915_EXEC_CONSTANTS_REL_GENERAL:
1180         case I915_EXEC_CONSTANTS_ABSOLUTE:
1181         case I915_EXEC_CONSTANTS_REL_SURFACE:
1182                 if (ring == &dev_priv->rings[RCS] &&
1183                     mode != dev_priv->relative_constants_mode) {
1184                         if (INTEL_INFO(dev)->gen < 4) {
1185                                 ret = -EINVAL;
1186                                 goto pre_struct_lock_err;
1187                         }
1188
1189                         if (INTEL_INFO(dev)->gen > 5 &&
1190                             mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1191                                 ret = -EINVAL;
1192                                 goto pre_struct_lock_err;
1193                         }
1194
1195                         /* The HW changed the meaning on this bit on gen6 */
1196                         if (INTEL_INFO(dev)->gen >= 6)
1197                                 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1198                 }
1199                 break;
1200         default:
1201                 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1202                 ret = -EINVAL;
1203                 goto pre_struct_lock_err;
1204         }
1205
1206         if (args->buffer_count < 1) {
1207                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1208                 ret = -EINVAL;
1209                 goto pre_struct_lock_err;
1210         }
1211
1212         if (args->num_cliprects != 0) {
1213                 if (ring != &dev_priv->rings[RCS]) {
1214         DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1215                         ret = -EINVAL;
1216                         goto pre_struct_lock_err;
1217                 }
1218
1219                 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1220                         DRM_DEBUG("execbuf with %u cliprects\n",
1221                                   args->num_cliprects);
1222                         ret = -EINVAL;
1223                         goto pre_struct_lock_err;
1224                 }
1225                 cliprects = malloc( sizeof(*cliprects) * args->num_cliprects,
1226                     DRM_I915_GEM, M_WAITOK | M_ZERO);
1227                 ret = -copyin((void *)(uintptr_t)args->cliprects_ptr, cliprects,
1228                     sizeof(*cliprects) * args->num_cliprects);
1229                 if (ret != 0)
1230                         goto pre_struct_lock_err;
1231         }
1232
1233         ret = i915_mutex_lock_interruptible(dev);
1234         if (ret)
1235                 goto pre_struct_lock_err;
1236
1237         if (dev_priv->mm.suspended) {
1238                 ret = -EBUSY;
1239                 goto struct_lock_err;
1240         }
1241
1242         eb = eb_create(args->buffer_count);
1243         if (eb == NULL) {
1244                 ret = -ENOMEM;
1245                 goto struct_lock_err;
1246         }
1247
1248         /* Look up object handles */
1249         INIT_LIST_HEAD(&objects);
1250         for (i = 0; i < args->buffer_count; i++) {
1251                 struct drm_i915_gem_object *obj;
1252                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1253                                                         exec[i].handle));
1254                 if (&obj->base == NULL) {
1255                         DRM_DEBUG("Invalid object handle %d at index %d\n",
1256                                    exec[i].handle, i);
1257                         /* prevent error path from reading uninitialized data */
1258                         ret = -ENOENT;
1259                         goto err;
1260                 }
1261
1262                 if (!list_empty(&obj->exec_list)) {
1263                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1264                                    obj, exec[i].handle, i);
1265                         ret = -EINVAL;
1266                         goto err;
1267                 }
1268
1269                 list_add_tail(&obj->exec_list, &objects);
1270                 obj->exec_handle = exec[i].handle;
1271                 obj->exec_entry = &exec[i];
1272                 eb_add_object(eb, obj);
1273         }
1274
1275         /* take note of the batch buffer before we might reorder the lists */
1276         batch_obj = list_entry(objects.prev,
1277                                struct drm_i915_gem_object,
1278                                exec_list);
1279
1280         /* Move the objects en-masse into the GTT, evicting if necessary. */
1281         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1282         if (ret)
1283                 goto err;
1284
1285         /* The objects are in their final locations, apply the relocations. */
1286         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1287         if (ret) {
1288                 if (ret == -EFAULT) {
1289                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1290                             &objects, eb, exec, args->buffer_count);
1291                         DRM_LOCK_ASSERT(dev);
1292                 }
1293                 if (ret)
1294                         goto err;
1295         }
1296
1297         /* Set the pending read domains for the batch buffer to COMMAND */
1298         if (batch_obj->base.pending_write_domain) {
1299                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1300                 ret = -EINVAL;
1301                 goto err;
1302         }
1303         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1304
1305         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1306         if (ret)
1307                 goto err;
1308
1309         seqno = i915_gem_next_request_seqno(ring);
1310         for (i = 0; i < I915_NUM_RINGS - 1; i++) {
1311                 if (seqno < ring->sync_seqno[i]) {
1312                         /* The GPU can not handle its semaphore value wrapping,
1313                          * so every billion or so execbuffers, we need to stall
1314                          * the GPU in order to reset the counters.
1315                          */
1316                         ret = i915_gpu_idle(dev, true);
1317                         if (ret)
1318                                 goto err;
1319
1320                         KASSERT(ring->sync_seqno[i] == 0, ("Non-zero sync_seqno"));
1321                 }
1322         }
1323
1324         if (ring == &dev_priv->rings[RCS] &&
1325             mode != dev_priv->relative_constants_mode) {
1326                 ret = intel_ring_begin(ring, 4);
1327                 if (ret)
1328                         goto err;
1329
1330                 intel_ring_emit(ring, MI_NOOP);
1331                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1332                 intel_ring_emit(ring, INSTPM);
1333                 intel_ring_emit(ring, mask << 16 | mode);
1334                 intel_ring_advance(ring);
1335
1336                 dev_priv->relative_constants_mode = mode;
1337         }
1338
1339         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1340                 ret = i915_reset_gen7_sol_offsets(dev, ring);
1341                 if (ret)
1342                         goto err;
1343         }
1344
1345         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1346         exec_len = args->batch_len;
1347
1348         if (i915_fix_mi_batchbuffer_end) {
1349                 i915_gem_fix_mi_batchbuffer_end(batch_obj,
1350                     args->batch_start_offset, args->batch_len);
1351         }
1352
1353         CTR4(KTR_DRM, "ring_dispatch %s %d exec %x %x", ring->name, seqno,
1354             exec_start, exec_len);
1355
1356         if (cliprects) {
1357                 for (i = 0; i < args->num_cliprects; i++) {
1358                         ret = i915_emit_box_p(dev, &cliprects[i],
1359                             args->DR1, args->DR4);
1360                         if (ret)
1361                                 goto err;
1362
1363                         ret = ring->dispatch_execbuffer(ring, exec_start,
1364                             exec_len);
1365                         if (ret)
1366                                 goto err;
1367                 }
1368         } else {
1369                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1370                 if (ret)
1371                         goto err;
1372         }
1373
1374         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1375         i915_gem_execbuffer_retire_commands(dev, file, ring);
1376
1377 err:
1378         eb_destroy(eb);
1379         while (!list_empty(&objects)) {
1380                 struct drm_i915_gem_object *obj;
1381
1382                 obj = list_first_entry(&objects, struct drm_i915_gem_object,
1383                     exec_list);
1384                 list_del_init(&obj->exec_list);
1385                 drm_gem_object_unreference(&obj->base);
1386         }
1387 struct_lock_err:
1388         DRM_UNLOCK(dev);
1389
1390 pre_struct_lock_err:
1391         for (i = 0; i < args->buffer_count; i++) {
1392                 if (relocs_ma[i] != NULL) {
1393                         vm_page_unhold_pages(relocs_ma[i], howmany(
1394                             exec[i].relocation_count *
1395                             sizeof(struct drm_i915_gem_relocation_entry),
1396                             PAGE_SIZE));
1397                         free(relocs_ma[i], DRM_I915_GEM);
1398                 }
1399         }
1400         free(relocs_ma, DRM_I915_GEM);
1401         free(cliprects, DRM_I915_GEM);
1402         return ret;
1403 }
1404
1405 /*
1406  * Legacy execbuffer just creates an exec2 list from the original exec object
1407  * list array and passes it to the real function.
1408  */
1409 int
1410 i915_gem_execbuffer(struct drm_device *dev, void *data,
1411                     struct drm_file *file)
1412 {
1413         struct drm_i915_gem_execbuffer *args = data;
1414         struct drm_i915_gem_execbuffer2 exec2;
1415         struct drm_i915_gem_exec_object *exec_list = NULL;
1416         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1417         int ret, i;
1418
1419         DRM_DEBUG("buffers_ptr %d buffer_count %d len %08x\n",
1420             (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1421
1422         if (args->buffer_count < 1) {
1423                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1424                 return -EINVAL;
1425         }
1426
1427         /* Copy in the exec list from userland */
1428         /* XXXKIB user-controlled malloc size */
1429         exec_list = malloc(sizeof(*exec_list) * args->buffer_count,
1430             DRM_I915_GEM, M_WAITOK);
1431         exec2_list = malloc(sizeof(*exec2_list) * args->buffer_count,
1432             DRM_I915_GEM, M_WAITOK);
1433         ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec_list,
1434             sizeof(*exec_list) * args->buffer_count);
1435         if (ret != 0) {
1436                 DRM_DEBUG("copy %d exec entries failed %d\n",
1437                           args->buffer_count, ret);
1438                 free(exec_list, DRM_I915_GEM);
1439                 free(exec2_list, DRM_I915_GEM);
1440                 return (ret);
1441         }
1442
1443         for (i = 0; i < args->buffer_count; i++) {
1444                 exec2_list[i].handle = exec_list[i].handle;
1445                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1446                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1447                 exec2_list[i].alignment = exec_list[i].alignment;
1448                 exec2_list[i].offset = exec_list[i].offset;
1449                 if (INTEL_INFO(dev)->gen < 4)
1450                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1451                 else
1452                         exec2_list[i].flags = 0;
1453         }
1454
1455         exec2.buffers_ptr = args->buffers_ptr;
1456         exec2.buffer_count = args->buffer_count;
1457         exec2.batch_start_offset = args->batch_start_offset;
1458         exec2.batch_len = args->batch_len;
1459         exec2.DR1 = args->DR1;
1460         exec2.DR4 = args->DR4;
1461         exec2.num_cliprects = args->num_cliprects;
1462         exec2.cliprects_ptr = args->cliprects_ptr;
1463         exec2.flags = I915_EXEC_RENDER;
1464
1465         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1466         if (!ret) {
1467                 /* Copy the new buffer offsets back to the user's exec list. */
1468                 for (i = 0; i < args->buffer_count; i++)
1469                         exec_list[i].offset = exec2_list[i].offset;
1470                 /* ... and back out to userspace */
1471                 ret = -copyout(exec_list, (void *)(uintptr_t)args->buffers_ptr,
1472                     sizeof(*exec_list) * args->buffer_count);
1473                 if (ret != 0) {
1474                         DRM_DEBUG("failed to copy %d exec entries "
1475                                   "back to user (%d)\n",
1476                                   args->buffer_count, ret);
1477                 }
1478         }
1479
1480         free(exec_list, DRM_I915_GEM);
1481         free(exec2_list, DRM_I915_GEM);
1482         return ret;
1483 }
1484
1485 int
1486 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1487                      struct drm_file *file)
1488 {
1489         struct drm_i915_gem_execbuffer2 *args = data;
1490         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1491         int ret;
1492
1493         DRM_DEBUG("buffers_ptr %jx buffer_count %d len %08x\n",
1494             (uintmax_t)args->buffers_ptr, args->buffer_count, args->batch_len);
1495
1496         if (args->buffer_count < 1 ||
1497             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1498                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1499                 return -EINVAL;
1500         }
1501
1502         /* XXXKIB user-controllable malloc size */
1503         exec2_list = malloc(sizeof(*exec2_list) * args->buffer_count,
1504             DRM_I915_GEM, M_WAITOK);
1505         ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec2_list,
1506             sizeof(*exec2_list) * args->buffer_count);
1507         if (ret != 0) {
1508                 DRM_DEBUG("copy %d exec entries failed %d\n",
1509                           args->buffer_count, ret);
1510                 free(exec2_list, DRM_I915_GEM);
1511                 return (ret);
1512         }
1513
1514         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1515         if (!ret) {
1516                 /* Copy the new buffer offsets back to the user's exec list. */
1517                 ret = -copyout(exec2_list, (void *)(uintptr_t)args->buffers_ptr,
1518                     sizeof(*exec2_list) * args->buffer_count);
1519                 if (ret) {
1520                         DRM_DEBUG("failed to copy %d exec entries "
1521                                   "back to user (%d)\n",
1522                                   args->buffer_count, ret);
1523                 }
1524         }
1525
1526         free(exec2_list, DRM_I915_GEM);
1527         return ret;
1528 }