]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/drm2/i915/intel_display.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / drm2 / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <dev/drm2/drmP.h>
31 #include <dev/drm2/drm.h>
32 #include <dev/drm2/i915/i915_drm.h>
33 #include <dev/drm2/i915/i915_drv.h>
34 #include <dev/drm2/i915/intel_drv.h>
35 #include <dev/drm2/drm_edid.h>
36 #include <dev/drm2/drm_dp_helper.h>
37 #include <dev/drm2/drm_crtc_helper.h>
38 #include <sys/kdb.h>
39 #include <sys/limits.h>
40
41 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42
43 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
44 static void intel_update_watermarks(struct drm_device *dev);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 static bool
82 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
83                     int target, int refclk, intel_clock_t *match_clock,
84                     intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87                         int target, int refclk, intel_clock_t *match_clock,
88                         intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92                       int target, int refclk, intel_clock_t *match_clock,
93                       intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96                            int target, int refclk, intel_clock_t *match_clock,
97                            intel_clock_t *best_clock);
98
99 static inline u32 /* units of 100MHz */
100 intel_fdi_link_freq(struct drm_device *dev)
101 {
102         if (IS_GEN5(dev)) {
103                 struct drm_i915_private *dev_priv = dev->dev_private;
104                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
105         } else
106                 return 27;
107 }
108
109 static const intel_limit_t intel_limits_i8xx_dvo = {
110         .dot = { .min = 25000, .max = 350000 },
111         .vco = { .min = 930000, .max = 1400000 },
112         .n = { .min = 3, .max = 16 },
113         .m = { .min = 96, .max = 140 },
114         .m1 = { .min = 18, .max = 26 },
115         .m2 = { .min = 6, .max = 16 },
116         .p = { .min = 4, .max = 128 },
117         .p1 = { .min = 2, .max = 33 },
118         .p2 = { .dot_limit = 165000,
119                 .p2_slow = 4, .p2_fast = 2 },
120         .find_pll = intel_find_best_PLL,
121 };
122
123 static const intel_limit_t intel_limits_i8xx_lvds = {
124         .dot = { .min = 25000, .max = 350000 },
125         .vco = { .min = 930000, .max = 1400000 },
126         .n = { .min = 3, .max = 16 },
127         .m = { .min = 96, .max = 140 },
128         .m1 = { .min = 18, .max = 26 },
129         .m2 = { .min = 6, .max = 16 },
130         .p = { .min = 4, .max = 128 },
131         .p1 = { .min = 1, .max = 6 },
132         .p2 = { .dot_limit = 165000,
133                 .p2_slow = 14, .p2_fast = 7 },
134         .find_pll = intel_find_best_PLL,
135 };
136
137 static const intel_limit_t intel_limits_i9xx_sdvo = {
138         .dot = { .min = 20000, .max = 400000 },
139         .vco = { .min = 1400000, .max = 2800000 },
140         .n = { .min = 1, .max = 6 },
141         .m = { .min = 70, .max = 120 },
142         .m1 = { .min = 10, .max = 22 },
143         .m2 = { .min = 5, .max = 9 },
144         .p = { .min = 5, .max = 80 },
145         .p1 = { .min = 1, .max = 8 },
146         .p2 = { .dot_limit = 200000,
147                 .p2_slow = 10, .p2_fast = 5 },
148         .find_pll = intel_find_best_PLL,
149 };
150
151 static const intel_limit_t intel_limits_i9xx_lvds = {
152         .dot = { .min = 20000, .max = 400000 },
153         .vco = { .min = 1400000, .max = 2800000 },
154         .n = { .min = 1, .max = 6 },
155         .m = { .min = 70, .max = 120 },
156         .m1 = { .min = 10, .max = 22 },
157         .m2 = { .min = 5, .max = 9 },
158         .p = { .min = 7, .max = 98 },
159         .p1 = { .min = 1, .max = 8 },
160         .p2 = { .dot_limit = 112000,
161                 .p2_slow = 14, .p2_fast = 7 },
162         .find_pll = intel_find_best_PLL,
163 };
164
165
166 static const intel_limit_t intel_limits_g4x_sdvo = {
167         .dot = { .min = 25000, .max = 270000 },
168         .vco = { .min = 1750000, .max = 3500000},
169         .n = { .min = 1, .max = 4 },
170         .m = { .min = 104, .max = 138 },
171         .m1 = { .min = 17, .max = 23 },
172         .m2 = { .min = 5, .max = 11 },
173         .p = { .min = 10, .max = 30 },
174         .p1 = { .min = 1, .max = 3},
175         .p2 = { .dot_limit = 270000,
176                 .p2_slow = 10,
177                 .p2_fast = 10
178         },
179         .find_pll = intel_g4x_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_g4x_hdmi = {
183         .dot = { .min = 22000, .max = 400000 },
184         .vco = { .min = 1750000, .max = 3500000},
185         .n = { .min = 1, .max = 4 },
186         .m = { .min = 104, .max = 138 },
187         .m1 = { .min = 16, .max = 23 },
188         .m2 = { .min = 5, .max = 11 },
189         .p = { .min = 5, .max = 80 },
190         .p1 = { .min = 1, .max = 8},
191         .p2 = { .dot_limit = 165000,
192                 .p2_slow = 10, .p2_fast = 5 },
193         .find_pll = intel_g4x_find_best_PLL,
194 };
195
196 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
197         .dot = { .min = 20000, .max = 115000 },
198         .vco = { .min = 1750000, .max = 3500000 },
199         .n = { .min = 1, .max = 3 },
200         .m = { .min = 104, .max = 138 },
201         .m1 = { .min = 17, .max = 23 },
202         .m2 = { .min = 5, .max = 11 },
203         .p = { .min = 28, .max = 112 },
204         .p1 = { .min = 2, .max = 8 },
205         .p2 = { .dot_limit = 0,
206                 .p2_slow = 14, .p2_fast = 14
207         },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
212         .dot = { .min = 80000, .max = 224000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 14, .max = 42 },
219         .p1 = { .min = 2, .max = 6 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 7, .p2_fast = 7
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_display_port = {
227         .dot = { .min = 161670, .max = 227000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 2 },
230         .m = { .min = 97, .max = 108 },
231         .m1 = { .min = 0x10, .max = 0x12 },
232         .m2 = { .min = 0x05, .max = 0x06 },
233         .p = { .min = 10, .max = 20 },
234         .p1 = { .min = 1, .max = 2},
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 10, .p2_fast = 10 },
237         .find_pll = intel_find_pll_g4x_dp,
238 };
239
240 static const intel_limit_t intel_limits_pineview_sdvo = {
241         .dot = { .min = 20000, .max = 400000},
242         .vco = { .min = 1700000, .max = 3500000 },
243         /* Pineview's Ncounter is a ring counter */
244         .n = { .min = 3, .max = 6 },
245         .m = { .min = 2, .max = 256 },
246         /* Pineview only has one combined m divider, which we treat as m2. */
247         .m1 = { .min = 0, .max = 0 },
248         .m2 = { .min = 0, .max = 254 },
249         .p = { .min = 5, .max = 80 },
250         .p1 = { .min = 1, .max = 8 },
251         .p2 = { .dot_limit = 200000,
252                 .p2_slow = 10, .p2_fast = 5 },
253         .find_pll = intel_find_best_PLL,
254 };
255
256 static const intel_limit_t intel_limits_pineview_lvds = {
257         .dot = { .min = 20000, .max = 400000 },
258         .vco = { .min = 1700000, .max = 3500000 },
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         .m1 = { .min = 0, .max = 0 },
262         .m2 = { .min = 0, .max = 254 },
263         .p = { .min = 7, .max = 112 },
264         .p1 = { .min = 1, .max = 8 },
265         .p2 = { .dot_limit = 112000,
266                 .p2_slow = 14, .p2_fast = 14 },
267         .find_pll = intel_find_best_PLL,
268 };
269
270 /* Ironlake / Sandybridge
271  *
272  * We calculate clock using (register_value + 2) for N/M1/M2, so here
273  * the range value for them is (actual_value - 2).
274  */
275 static const intel_limit_t intel_limits_ironlake_dac = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 1760000, .max = 3510000 },
278         .n = { .min = 1, .max = 5 },
279         .m = { .min = 79, .max = 127 },
280         .m1 = { .min = 12, .max = 22 },
281         .m2 = { .min = 5, .max = 9 },
282         .p = { .min = 5, .max = 80 },
283         .p1 = { .min = 1, .max = 8 },
284         .p2 = { .dot_limit = 225000,
285                 .p2_slow = 10, .p2_fast = 5 },
286         .find_pll = intel_g4x_find_best_PLL,
287 };
288
289 static const intel_limit_t intel_limits_ironlake_single_lvds = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 1760000, .max = 3510000 },
292         .n = { .min = 1, .max = 3 },
293         .m = { .min = 79, .max = 118 },
294         .m1 = { .min = 12, .max = 22 },
295         .m2 = { .min = 5, .max = 9 },
296         .p = { .min = 28, .max = 112 },
297         .p1 = { .min = 2, .max = 8 },
298         .p2 = { .dot_limit = 225000,
299                 .p2_slow = 14, .p2_fast = 14 },
300         .find_pll = intel_g4x_find_best_PLL,
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 3 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 14, .max = 56 },
311         .p1 = { .min = 2, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 7, .p2_fast = 7 },
314         .find_pll = intel_g4x_find_best_PLL,
315 };
316
317 /* LVDS 100mhz refclk limits. */
318 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 2 },
322         .m = { .min = 79, .max = 126 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 28, .max = 112 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 14, .p2_fast = 14 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
333         .dot = { .min = 25000, .max = 350000 },
334         .vco = { .min = 1760000, .max = 3510000 },
335         .n = { .min = 1, .max = 3 },
336         .m = { .min = 79, .max = 126 },
337         .m1 = { .min = 12, .max = 22 },
338         .m2 = { .min = 5, .max = 9 },
339         .p = { .min = 14, .max = 42 },
340         .p1 = { .min = 2, .max = 6 },
341         .p2 = { .dot_limit = 225000,
342                 .p2_slow = 7, .p2_fast = 7 },
343         .find_pll = intel_g4x_find_best_PLL,
344 };
345
346 static const intel_limit_t intel_limits_ironlake_display_port = {
347         .dot = { .min = 25000, .max = 350000 },
348         .vco = { .min = 1760000, .max = 3510000},
349         .n = { .min = 1, .max = 2 },
350         .m = { .min = 81, .max = 90 },
351         .m1 = { .min = 12, .max = 22 },
352         .m2 = { .min = 5, .max = 9 },
353         .p = { .min = 10, .max = 20 },
354         .p1 = { .min = 1, .max = 2},
355         .p2 = { .dot_limit = 0,
356                 .p2_slow = 10, .p2_fast = 10 },
357         .find_pll = intel_find_pll_ironlake_dp,
358 };
359
360 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
361                                                 int refclk)
362 {
363         struct drm_device *dev = crtc->dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         const intel_limit_t *limit;
366
367         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
368                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
369                     LVDS_CLKB_POWER_UP) {
370                         /* LVDS dual channel */
371                         if (refclk == 100000)
372                                 limit = &intel_limits_ironlake_dual_lvds_100m;
373                         else
374                                 limit = &intel_limits_ironlake_dual_lvds;
375                 } else {
376                         if (refclk == 100000)
377                                 limit = &intel_limits_ironlake_single_lvds_100m;
378                         else
379                                 limit = &intel_limits_ironlake_single_lvds;
380                 }
381         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
382                         HAS_eDP)
383                 limit = &intel_limits_ironlake_display_port;
384         else
385                 limit = &intel_limits_ironlake_dac;
386
387         return limit;
388 }
389
390 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
391 {
392         struct drm_device *dev = crtc->dev;
393         struct drm_i915_private *dev_priv = dev->dev_private;
394         const intel_limit_t *limit;
395
396         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
397                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
398                     LVDS_CLKB_POWER_UP)
399                         /* LVDS with dual channel */
400                         limit = &intel_limits_g4x_dual_channel_lvds;
401                 else
402                         /* LVDS with dual channel */
403                         limit = &intel_limits_g4x_single_channel_lvds;
404         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
405                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
406                 limit = &intel_limits_g4x_hdmi;
407         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
408                 limit = &intel_limits_g4x_sdvo;
409         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
410                 limit = &intel_limits_g4x_display_port;
411         } else /* The option is for other outputs */
412                 limit = &intel_limits_i9xx_sdvo;
413
414         return limit;
415 }
416
417 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
418 {
419         struct drm_device *dev = crtc->dev;
420         const intel_limit_t *limit;
421
422         if (HAS_PCH_SPLIT(dev))
423                 limit = intel_ironlake_limit(crtc, refclk);
424         else if (IS_G4X(dev)) {
425                 limit = intel_g4x_limit(crtc);
426         } else if (IS_PINEVIEW(dev)) {
427                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428                         limit = &intel_limits_pineview_lvds;
429                 else
430                         limit = &intel_limits_pineview_sdvo;
431         } else if (!IS_GEN2(dev)) {
432                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
433                         limit = &intel_limits_i9xx_lvds;
434                 else
435                         limit = &intel_limits_i9xx_sdvo;
436         } else {
437                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
438                         limit = &intel_limits_i8xx_lvds;
439                 else
440                         limit = &intel_limits_i8xx_dvo;
441         }
442         return limit;
443 }
444
445 /* m1 is reserved as 0 in Pineview, n is a ring counter */
446 static void pineview_clock(int refclk, intel_clock_t *clock)
447 {
448         clock->m = clock->m2 + 2;
449         clock->p = clock->p1 * clock->p2;
450         clock->vco = refclk * clock->m / clock->n;
451         clock->dot = clock->vco / clock->p;
452 }
453
454 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
455 {
456         if (IS_PINEVIEW(dev)) {
457                 pineview_clock(refclk, clock);
458                 return;
459         }
460         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
461         clock->p = clock->p1 * clock->p2;
462         clock->vco = refclk * clock->m / (clock->n + 2);
463         clock->dot = clock->vco / clock->p;
464 }
465
466 /**
467  * Returns whether any output on the specified pipe is of the specified type
468  */
469 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
470 {
471         struct drm_device *dev = crtc->dev;
472         struct drm_mode_config *mode_config = &dev->mode_config;
473         struct intel_encoder *encoder;
474
475         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
476                 if (encoder->base.crtc == crtc && encoder->type == type)
477                         return true;
478
479         return false;
480 }
481
482 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
483 /**
484  * Returns whether the given set of divisors are valid for a given refclk with
485  * the given connectors.
486  */
487
488 static bool intel_PLL_is_valid(struct drm_device *dev,
489                                const intel_limit_t *limit,
490                                const intel_clock_t *clock)
491 {
492         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
493                 INTELPllInvalid("p1 out of range\n");
494         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
495                 INTELPllInvalid("p out of range\n");
496         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
497                 INTELPllInvalid("m2 out of range\n");
498         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
499                 INTELPllInvalid("m1 out of range\n");
500         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
501                 INTELPllInvalid("m1 <= m2\n");
502         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
503                 INTELPllInvalid("m out of range\n");
504         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
505                 INTELPllInvalid("n out of range\n");
506         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
507                 INTELPllInvalid("vco out of range\n");
508         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
509          * connector, etc., rather than just a single range.
510          */
511         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
512                 INTELPllInvalid("dot out of range\n");
513
514         return true;
515 }
516
517 static bool
518 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
519                     int target, int refclk, intel_clock_t *match_clock,
520                     intel_clock_t *best_clock)
521
522 {
523         struct drm_device *dev = crtc->dev;
524         struct drm_i915_private *dev_priv = dev->dev_private;
525         intel_clock_t clock;
526         int err = target;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
529             (I915_READ(LVDS)) != 0) {
530                 /*
531                  * For LVDS, if the panel is on, just rely on its current
532                  * settings for dual-channel.  We haven't figured out how to
533                  * reliably set up different single/dual channel state, if we
534                  * even can.
535                  */
536                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
537                     LVDS_CLKB_POWER_UP)
538                         clock.p2 = limit->p2.p2_fast;
539                 else
540                         clock.p2 = limit->p2.p2_slow;
541         } else {
542                 if (target < limit->p2.dot_limit)
543                         clock.p2 = limit->p2.p2_slow;
544                 else
545                         clock.p2 = limit->p2.p2_fast;
546         }
547
548         memset(best_clock, 0, sizeof(*best_clock));
549
550         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
551              clock.m1++) {
552                 for (clock.m2 = limit->m2.min;
553                      clock.m2 <= limit->m2.max; clock.m2++) {
554                         /* m1 is always 0 in Pineview */
555                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
556                                 break;
557                         for (clock.n = limit->n.min;
558                              clock.n <= limit->n.max; clock.n++) {
559                                 for (clock.p1 = limit->p1.min;
560                                         clock.p1 <= limit->p1.max; clock.p1++) {
561                                         int this_err;
562
563                                         intel_clock(dev, refclk, &clock);
564                                         if (!intel_PLL_is_valid(dev, limit,
565                                                                 &clock))
566                                                 continue;
567                                         if (match_clock &&
568                                             clock.p != match_clock->p)
569                                                 continue;
570
571                                         this_err = abs(clock.dot - target);
572                                         if (this_err < err) {
573                                                 *best_clock = clock;
574                                                 err = this_err;
575                                         }
576                                 }
577                         }
578                 }
579         }
580
581         return (err != target);
582 }
583
584 static bool
585 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
586                         int target, int refclk, intel_clock_t *match_clock,
587                         intel_clock_t *best_clock)
588 {
589         struct drm_device *dev = crtc->dev;
590         struct drm_i915_private *dev_priv = dev->dev_private;
591         intel_clock_t clock;
592         int max_n;
593         bool found;
594         /* approximately equals target * 0.00585 */
595         int err_most = (target >> 8) + (target >> 9);
596         found = false;
597
598         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
599                 int lvds_reg;
600
601                 if (HAS_PCH_SPLIT(dev))
602                         lvds_reg = PCH_LVDS;
603                 else
604                         lvds_reg = LVDS;
605                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
606                     LVDS_CLKB_POWER_UP)
607                         clock.p2 = limit->p2.p2_fast;
608                 else
609                         clock.p2 = limit->p2.p2_slow;
610         } else {
611                 if (target < limit->p2.dot_limit)
612                         clock.p2 = limit->p2.p2_slow;
613                 else
614                         clock.p2 = limit->p2.p2_fast;
615         }
616
617         memset(best_clock, 0, sizeof(*best_clock));
618         max_n = limit->n.max;
619         /* based on hardware requirement, prefer smaller n to precision */
620         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
621                 /* based on hardware requirement, prefere larger m1,m2 */
622                 for (clock.m1 = limit->m1.max;
623                      clock.m1 >= limit->m1.min; clock.m1--) {
624                         for (clock.m2 = limit->m2.max;
625                              clock.m2 >= limit->m2.min; clock.m2--) {
626                                 for (clock.p1 = limit->p1.max;
627                                      clock.p1 >= limit->p1.min; clock.p1--) {
628                                         int this_err;
629
630                                         intel_clock(dev, refclk, &clock);
631                                         if (!intel_PLL_is_valid(dev, limit,
632                                                                 &clock))
633                                                 continue;
634                                         if (match_clock &&
635                                             clock.p != match_clock->p)
636                                                 continue;
637
638                                         this_err = abs(clock.dot - target);
639                                         if (this_err < err_most) {
640                                                 *best_clock = clock;
641                                                 err_most = this_err;
642                                                 max_n = clock.n;
643                                                 found = true;
644                                         }
645                                 }
646                         }
647                 }
648         }
649         return found;
650 }
651
652 static bool
653 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
654                            int target, int refclk, intel_clock_t *match_clock,
655                            intel_clock_t *best_clock)
656 {
657         struct drm_device *dev = crtc->dev;
658         intel_clock_t clock;
659
660         if (target < 200000) {
661                 clock.n = 1;
662                 clock.p1 = 2;
663                 clock.p2 = 10;
664                 clock.m1 = 12;
665                 clock.m2 = 9;
666         } else {
667                 clock.n = 2;
668                 clock.p1 = 1;
669                 clock.p2 = 10;
670                 clock.m1 = 14;
671                 clock.m2 = 8;
672         }
673         intel_clock(dev, refclk, &clock);
674         memcpy(best_clock, &clock, sizeof(intel_clock_t));
675         return true;
676 }
677
678 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
679 static bool
680 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
681                       int target, int refclk, intel_clock_t *match_clock,
682                       intel_clock_t *best_clock)
683 {
684         intel_clock_t clock;
685         if (target < 200000) {
686                 clock.p1 = 2;
687                 clock.p2 = 10;
688                 clock.n = 2;
689                 clock.m1 = 23;
690                 clock.m2 = 8;
691         } else {
692                 clock.p1 = 1;
693                 clock.p2 = 10;
694                 clock.n = 1;
695                 clock.m1 = 14;
696                 clock.m2 = 2;
697         }
698         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
699         clock.p = (clock.p1 * clock.p2);
700         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
701         clock.vco = 0;
702         memcpy(best_clock, &clock, sizeof(intel_clock_t));
703         return true;
704 }
705
706 /**
707  * intel_wait_for_vblank - wait for vblank on a given pipe
708  * @dev: drm device
709  * @pipe: pipe to wait for
710  *
711  * Wait for vblank to occur on a given pipe.  Needed for various bits of
712  * mode setting code.
713  */
714 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
715 {
716         struct drm_i915_private *dev_priv = dev->dev_private;
717         int pipestat_reg = PIPESTAT(pipe);
718
719         /* Clear existing vblank status. Note this will clear any other
720          * sticky status fields as well.
721          *
722          * This races with i915_driver_irq_handler() with the result
723          * that either function could miss a vblank event.  Here it is not
724          * fatal, as we will either wait upon the next vblank interrupt or
725          * timeout.  Generally speaking intel_wait_for_vblank() is only
726          * called during modeset at which time the GPU should be idle and
727          * should *not* be performing page flips and thus not waiting on
728          * vblanks...
729          * Currently, the result of us stealing a vblank from the irq
730          * handler is that a single frame will be skipped during swapbuffers.
731          */
732         I915_WRITE(pipestat_reg,
733                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
734
735         /* Wait for vblank interrupt bit to set */
736         if (_intel_wait_for(dev,
737             I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS,
738             50, 1, "915vbl"))
739                 DRM_DEBUG_KMS("vblank wait timed out\n");
740 }
741
742 /*
743  * intel_wait_for_pipe_off - wait for pipe to turn off
744  * @dev: drm device
745  * @pipe: pipe to wait for
746  *
747  * After disabling a pipe, we can't wait for vblank in the usual way,
748  * spinning on the vblank interrupt status bit, since we won't actually
749  * see an interrupt when the pipe is disabled.
750  *
751  * On Gen4 and above:
752  *   wait for the pipe register state bit to turn off
753  *
754  * Otherwise:
755  *   wait for the display line value to settle (it usually
756  *   ends up stopping at the start of the next frame).
757  *
758  */
759 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
760 {
761         struct drm_i915_private *dev_priv = dev->dev_private;
762
763         if (INTEL_INFO(dev)->gen >= 4) {
764                 int reg = PIPECONF(pipe);
765
766                 /* Wait for the Pipe State to go off */
767                 if (_intel_wait_for(dev,
768                     (I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100,
769                     1, "915pip"))
770                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
771         } else {
772                 u32 last_line;
773                 int reg = PIPEDSL(pipe);
774                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
775
776                 /* Wait for the display line to settle */
777                 do {
778                         last_line = I915_READ(reg) & DSL_LINEMASK;
779                         DELAY(5000);
780                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
781                          time_after(timeout, jiffies));
782                 if (time_after(jiffies, timeout))
783                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
784         }
785 }
786
787 static const char *state_string(bool enabled)
788 {
789         return enabled ? "on" : "off";
790 }
791
792 /* Only for pre-ILK configs */
793 static void assert_pll(struct drm_i915_private *dev_priv,
794                        enum pipe pipe, bool state)
795 {
796         int reg;
797         u32 val;
798         bool cur_state;
799
800         reg = DPLL(pipe);
801         val = I915_READ(reg);
802         cur_state = !!(val & DPLL_VCO_ENABLE);
803         if (cur_state != state)
804                 printf("PLL state assertion failure (expected %s, current %s)\n",
805                     state_string(state), state_string(cur_state));
806 }
807 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
808 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
809
810 /* For ILK+ */
811 static void assert_pch_pll(struct drm_i915_private *dev_priv,
812                            enum pipe pipe, bool state)
813 {
814         int reg;
815         u32 val;
816         bool cur_state;
817
818         if (HAS_PCH_CPT(dev_priv->dev)) {
819                 u32 pch_dpll;
820
821                 pch_dpll = I915_READ(PCH_DPLL_SEL);
822
823                 /* Make sure the selected PLL is enabled to the transcoder */
824                 KASSERT(((pch_dpll >> (4 * pipe)) & 8) != 0,
825                     ("transcoder %d PLL not enabled\n", pipe));
826
827                 /* Convert the transcoder pipe number to a pll pipe number */
828                 pipe = (pch_dpll >> (4 * pipe)) & 1;
829         }
830
831         reg = PCH_DPLL(pipe);
832         val = I915_READ(reg);
833         cur_state = !!(val & DPLL_VCO_ENABLE);
834         if (cur_state != state)
835                 printf("PCH PLL state assertion failure (expected %s, current %s)\n",
836                     state_string(state), state_string(cur_state));
837 }
838 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
839 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
840
841 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
842                           enum pipe pipe, bool state)
843 {
844         int reg;
845         u32 val;
846         bool cur_state;
847
848         reg = FDI_TX_CTL(pipe);
849         val = I915_READ(reg);
850         cur_state = !!(val & FDI_TX_ENABLE);
851         if (cur_state != state)
852                 printf("FDI TX state assertion failure (expected %s, current %s)\n",
853                     state_string(state), state_string(cur_state));
854 }
855 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
856 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
857
858 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
859                           enum pipe pipe, bool state)
860 {
861         int reg;
862         u32 val;
863         bool cur_state;
864
865         reg = FDI_RX_CTL(pipe);
866         val = I915_READ(reg);
867         cur_state = !!(val & FDI_RX_ENABLE);
868         if (cur_state != state)
869                 printf("FDI RX state assertion failure (expected %s, current %s)\n",
870                     state_string(state), state_string(cur_state));
871 }
872 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
873 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
874
875 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
876                                       enum pipe pipe)
877 {
878         int reg;
879         u32 val;
880
881         /* ILK FDI PLL is always enabled */
882         if (dev_priv->info->gen == 5)
883                 return;
884
885         reg = FDI_TX_CTL(pipe);
886         val = I915_READ(reg);
887         if (!(val & FDI_TX_PLL_ENABLE))
888                 printf("FDI TX PLL assertion failure, should be active but is disabled\n");
889 }
890
891 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
892                                       enum pipe pipe)
893 {
894         int reg;
895         u32 val;
896
897         reg = FDI_RX_CTL(pipe);
898         val = I915_READ(reg);
899         if (!(val & FDI_RX_PLL_ENABLE))
900                 printf("FDI RX PLL assertion failure, should be active but is disabled\n");
901 }
902
903 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904                                   enum pipe pipe)
905 {
906         int pp_reg, lvds_reg;
907         u32 val;
908         enum pipe panel_pipe = PIPE_A;
909         bool locked = true;
910
911         if (HAS_PCH_SPLIT(dev_priv->dev)) {
912                 pp_reg = PCH_PP_CONTROL;
913                 lvds_reg = PCH_LVDS;
914         } else {
915                 pp_reg = PP_CONTROL;
916                 lvds_reg = LVDS;
917         }
918
919         val = I915_READ(pp_reg);
920         if (!(val & PANEL_POWER_ON) ||
921             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922                 locked = false;
923
924         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925                 panel_pipe = PIPE_B;
926
927         if (panel_pipe == pipe && locked)
928                 printf("panel assertion failure, pipe %c regs locked\n",
929              pipe_name(pipe));
930 }
931
932 void assert_pipe(struct drm_i915_private *dev_priv,
933                  enum pipe pipe, bool state)
934 {
935         int reg;
936         u32 val;
937         bool cur_state;
938
939         /* if we need the pipe A quirk it must be always on */
940         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
941                 state = true;
942
943         reg = PIPECONF(pipe);
944         val = I915_READ(reg);
945         cur_state = !!(val & PIPECONF_ENABLE);
946         if (cur_state != state)
947                 printf("pipe %c assertion failure (expected %s, current %s)\n",
948                     pipe_name(pipe), state_string(state), state_string(cur_state));
949 }
950
951 static void assert_plane(struct drm_i915_private *dev_priv,
952                          enum plane plane, bool state)
953 {
954         int reg;
955         u32 val;
956         bool cur_state;
957
958         reg = DSPCNTR(plane);
959         val = I915_READ(reg);
960         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
961         if (cur_state != state)
962                 printf("plane %c assertion failure, (expected %s, current %s)\n",
963                        plane_name(plane), state_string(state), state_string(cur_state));
964 }
965
966 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
967 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
968
969 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
970                                    enum pipe pipe)
971 {
972         int reg, i;
973         u32 val;
974         int cur_pipe;
975
976         /* Planes are fixed to pipes on ILK+ */
977         if (HAS_PCH_SPLIT(dev_priv->dev)) {
978                 reg = DSPCNTR(pipe);
979                 val = I915_READ(reg);
980                 if ((val & DISPLAY_PLANE_ENABLE) != 0)
981                         printf("plane %c assertion failure, should be disabled but not\n",
982                                plane_name(pipe));
983                 return;
984         }
985
986         /* Need to check both planes against the pipe */
987         for (i = 0; i < 2; i++) {
988                 reg = DSPCNTR(i);
989                 val = I915_READ(reg);
990                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
991                         DISPPLANE_SEL_PIPE_SHIFT;
992                 if ((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe)
993                         printf("plane %c assertion failure, should be off on pipe %c but is still active\n",
994                      plane_name(i), pipe_name(pipe));
995         }
996 }
997
998 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
999 {
1000         u32 val;
1001         bool enabled;
1002
1003         val = I915_READ(PCH_DREF_CONTROL);
1004         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1005                             DREF_SUPERSPREAD_SOURCE_MASK));
1006         if (!enabled)
1007                 printf("PCH refclk assertion failure, should be active but is disabled\n");
1008 }
1009
1010 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1011                                        enum pipe pipe)
1012 {
1013         int reg;
1014         u32 val;
1015         bool enabled;
1016
1017         reg = TRANSCONF(pipe);
1018         val = I915_READ(reg);
1019         enabled = !!(val & TRANS_ENABLE);
1020         if (enabled)
1021                 printf("transcoder assertion failed, should be off on pipe %c but is still active\n",
1022              pipe_name(pipe));
1023 }
1024
1025 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1026                               enum pipe pipe, u32 val)
1027 {
1028         if ((val & PORT_ENABLE) == 0)
1029                 return false;
1030
1031         if (HAS_PCH_CPT(dev_priv->dev)) {
1032                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1033                         return false;
1034         } else {
1035                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1036                         return false;
1037         }
1038         return true;
1039 }
1040
1041 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1042                               enum pipe pipe, u32 val)
1043 {
1044         if ((val & LVDS_PORT_EN) == 0)
1045                 return false;
1046
1047         if (HAS_PCH_CPT(dev_priv->dev)) {
1048                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1049                         return false;
1050         } else {
1051                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1052                         return false;
1053         }
1054         return true;
1055 }
1056
1057 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1058                               enum pipe pipe, u32 val)
1059 {
1060         if ((val & ADPA_DAC_ENABLE) == 0)
1061                 return false;
1062         if (HAS_PCH_CPT(dev_priv->dev)) {
1063                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1064                         return false;
1065         } else {
1066                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1067                         return false;
1068         }
1069         return true;
1070 }
1071
1072 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1073                             enum pipe pipe, u32 port_sel, u32 val)
1074 {
1075         if ((val & DP_PORT_EN) == 0)
1076                 return false;
1077
1078         if (HAS_PCH_CPT(dev_priv->dev)) {
1079                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1080                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1081                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1082                         return false;
1083         } else {
1084                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1085                         return false;
1086         }
1087         return true;
1088 }
1089
1090 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1091                                    enum pipe pipe, int reg, u32 port_sel)
1092 {
1093         u32 val = I915_READ(reg);
1094         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val))
1095                 printf("PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1096              reg, pipe_name(pipe));
1097 }
1098
1099 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1100                                      enum pipe pipe, int reg)
1101 {
1102         u32 val = I915_READ(reg);
1103         if (hdmi_pipe_enabled(dev_priv, val, pipe))
1104                 printf("PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1105              reg, pipe_name(pipe));
1106 }
1107
1108 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1109                                       enum pipe pipe)
1110 {
1111         int reg;
1112         u32 val;
1113
1114         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1115         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1116         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1117
1118         reg = PCH_ADPA;
1119         val = I915_READ(reg);
1120         if (adpa_pipe_enabled(dev_priv, val, pipe))
1121                 printf("PCH VGA enabled on transcoder %c, should be disabled\n",
1122              pipe_name(pipe));
1123
1124         reg = PCH_LVDS;
1125         val = I915_READ(reg);
1126         if (lvds_pipe_enabled(dev_priv, val, pipe))
1127                 printf("PCH LVDS enabled on transcoder %c, should be disabled\n",
1128              pipe_name(pipe));
1129
1130         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1131         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1132         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1133 }
1134
1135 /**
1136  * intel_enable_pll - enable a PLL
1137  * @dev_priv: i915 private structure
1138  * @pipe: pipe PLL to enable
1139  *
1140  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1141  * make sure the PLL reg is writable first though, since the panel write
1142  * protect mechanism may be enabled.
1143  *
1144  * Note!  This is for pre-ILK only.
1145  */
1146 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1147 {
1148         int reg;
1149         u32 val;
1150
1151         /* No really, not for ILK+ */
1152         KASSERT(dev_priv->info->gen < 5, ("Wrong device gen"));
1153
1154         /* PLL is protected by panel, make sure we can write it */
1155         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1156                 assert_panel_unlocked(dev_priv, pipe);
1157
1158         reg = DPLL(pipe);
1159         val = I915_READ(reg);
1160         val |= DPLL_VCO_ENABLE;
1161
1162         /* We do this three times for luck */
1163         I915_WRITE(reg, val);
1164         POSTING_READ(reg);
1165         DELAY(150); /* wait for warmup */
1166         I915_WRITE(reg, val);
1167         POSTING_READ(reg);
1168         DELAY(150); /* wait for warmup */
1169         I915_WRITE(reg, val);
1170         POSTING_READ(reg);
1171         DELAY(150); /* wait for warmup */
1172 }
1173
1174 /**
1175  * intel_disable_pll - disable a PLL
1176  * @dev_priv: i915 private structure
1177  * @pipe: pipe PLL to disable
1178  *
1179  * Disable the PLL for @pipe, making sure the pipe is off first.
1180  *
1181  * Note!  This is for pre-ILK only.
1182  */
1183 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1184 {
1185         int reg;
1186         u32 val;
1187
1188         /* Don't disable pipe A or pipe A PLLs if needed */
1189         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1190                 return;
1191
1192         /* Make sure the pipe isn't still relying on us */
1193         assert_pipe_disabled(dev_priv, pipe);
1194
1195         reg = DPLL(pipe);
1196         val = I915_READ(reg);
1197         val &= ~DPLL_VCO_ENABLE;
1198         I915_WRITE(reg, val);
1199         POSTING_READ(reg);
1200 }
1201
1202 /**
1203  * intel_enable_pch_pll - enable PCH PLL
1204  * @dev_priv: i915 private structure
1205  * @pipe: pipe PLL to enable
1206  *
1207  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1208  * drives the transcoder clock.
1209  */
1210 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1211                                  enum pipe pipe)
1212 {
1213         int reg;
1214         u32 val;
1215
1216         if (pipe > 1)
1217                 return;
1218
1219         /* PCH only available on ILK+ */
1220         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1221
1222         /* PCH refclock must be enabled first */
1223         assert_pch_refclk_enabled(dev_priv);
1224
1225         reg = PCH_DPLL(pipe);
1226         val = I915_READ(reg);
1227         val |= DPLL_VCO_ENABLE;
1228         I915_WRITE(reg, val);
1229         POSTING_READ(reg);
1230         DELAY(200);
1231 }
1232
1233 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1234                                   enum pipe pipe)
1235 {
1236         int reg;
1237         u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1238                 pll_sel = TRANSC_DPLL_ENABLE;
1239
1240         if (pipe > 1)
1241                 return;
1242
1243         /* PCH only available on ILK+ */
1244         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1245
1246         /* Make sure transcoder isn't still depending on us */
1247         assert_transcoder_disabled(dev_priv, pipe);
1248
1249         if (pipe == 0)
1250                 pll_sel |= TRANSC_DPLLA_SEL;
1251         else if (pipe == 1)
1252                 pll_sel |= TRANSC_DPLLB_SEL;
1253
1254
1255         if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1256                 return;
1257
1258         reg = PCH_DPLL(pipe);
1259         val = I915_READ(reg);
1260         val &= ~DPLL_VCO_ENABLE;
1261         I915_WRITE(reg, val);
1262         POSTING_READ(reg);
1263         DELAY(200);
1264 }
1265
1266 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1267                                     enum pipe pipe)
1268 {
1269         int reg;
1270         u32 val, pipeconf_val;
1271         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1272
1273         /* PCH only available on ILK+ */
1274         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1275
1276         /* Make sure PCH DPLL is enabled */
1277         assert_pch_pll_enabled(dev_priv, pipe);
1278
1279         /* FDI must be feeding us bits for PCH ports */
1280         assert_fdi_tx_enabled(dev_priv, pipe);
1281         assert_fdi_rx_enabled(dev_priv, pipe);
1282
1283
1284         reg = TRANSCONF(pipe);
1285         val = I915_READ(reg);
1286         pipeconf_val = I915_READ(PIPECONF(pipe));
1287
1288         if (HAS_PCH_IBX(dev_priv->dev)) {
1289                 /*
1290                  * make the BPC in transcoder be consistent with
1291                  * that in pipeconf reg.
1292                  */
1293                 val &= ~PIPE_BPC_MASK;
1294                 val |= pipeconf_val & PIPE_BPC_MASK;
1295         }
1296
1297         val &= ~TRANS_INTERLACE_MASK;
1298         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1299                 if (HAS_PCH_IBX(dev_priv->dev) &&
1300                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1301                         val |= TRANS_LEGACY_INTERLACED_ILK;
1302                 else
1303                         val |= TRANS_INTERLACED;
1304         else
1305                 val |= TRANS_PROGRESSIVE;
1306
1307         I915_WRITE(reg, val | TRANS_ENABLE);
1308         if (_intel_wait_for(dev_priv->dev, I915_READ(reg) & TRANS_STATE_ENABLE,
1309             100, 1, "915trc"))
1310                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1311 }
1312
1313 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1314                                      enum pipe pipe)
1315 {
1316         int reg;
1317         u32 val;
1318
1319         /* FDI relies on the transcoder */
1320         assert_fdi_tx_disabled(dev_priv, pipe);
1321         assert_fdi_rx_disabled(dev_priv, pipe);
1322
1323         /* Ports must be off as well */
1324         assert_pch_ports_disabled(dev_priv, pipe);
1325
1326         reg = TRANSCONF(pipe);
1327         val = I915_READ(reg);
1328         val &= ~TRANS_ENABLE;
1329         I915_WRITE(reg, val);
1330         /* wait for PCH transcoder off, transcoder state */
1331         if (_intel_wait_for(dev_priv->dev,
1332             (I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50,
1333             1, "915trd"))
1334                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1335 }
1336
1337 /**
1338  * intel_enable_pipe - enable a pipe, asserting requirements
1339  * @dev_priv: i915 private structure
1340  * @pipe: pipe to enable
1341  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1342  *
1343  * Enable @pipe, making sure that various hardware specific requirements
1344  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1345  *
1346  * @pipe should be %PIPE_A or %PIPE_B.
1347  *
1348  * Will wait until the pipe is actually running (i.e. first vblank) before
1349  * returning.
1350  */
1351 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1352                               bool pch_port)
1353 {
1354         int reg;
1355         u32 val;
1356
1357         /*
1358          * A pipe without a PLL won't actually be able to drive bits from
1359          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1360          * need the check.
1361          */
1362         if (!HAS_PCH_SPLIT(dev_priv->dev))
1363                 assert_pll_enabled(dev_priv, pipe);
1364         else {
1365                 if (pch_port) {
1366                         /* if driving the PCH, we need FDI enabled */
1367                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1368                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1369                 }
1370                 /* FIXME: assert CPU port conditions for SNB+ */
1371         }
1372
1373         reg = PIPECONF(pipe);
1374         val = I915_READ(reg);
1375         if (val & PIPECONF_ENABLE)
1376                 return;
1377
1378         I915_WRITE(reg, val | PIPECONF_ENABLE);
1379         intel_wait_for_vblank(dev_priv->dev, pipe);
1380 }
1381
1382 /**
1383  * intel_disable_pipe - disable a pipe, asserting requirements
1384  * @dev_priv: i915 private structure
1385  * @pipe: pipe to disable
1386  *
1387  * Disable @pipe, making sure that various hardware specific requirements
1388  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1389  *
1390  * @pipe should be %PIPE_A or %PIPE_B.
1391  *
1392  * Will wait until the pipe has shut down before returning.
1393  */
1394 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1395                                enum pipe pipe)
1396 {
1397         int reg;
1398         u32 val;
1399
1400         /*
1401          * Make sure planes won't keep trying to pump pixels to us,
1402          * or we might hang the display.
1403          */
1404         assert_planes_disabled(dev_priv, pipe);
1405
1406         /* Don't disable pipe A or pipe A PLLs if needed */
1407         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1408                 return;
1409
1410         reg = PIPECONF(pipe);
1411         val = I915_READ(reg);
1412         if ((val & PIPECONF_ENABLE) == 0)
1413                 return;
1414
1415         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1416         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1417 }
1418
1419 /*
1420  * Plane regs are double buffered, going from enabled->disabled needs a
1421  * trigger in order to latch.  The display address reg provides this.
1422  */
1423 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1424                                       enum plane plane)
1425 {
1426         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1427         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1428 }
1429
1430 /**
1431  * intel_enable_plane - enable a display plane on a given pipe
1432  * @dev_priv: i915 private structure
1433  * @plane: plane to enable
1434  * @pipe: pipe being fed
1435  *
1436  * Enable @plane on @pipe, making sure that @pipe is running first.
1437  */
1438 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1439                                enum plane plane, enum pipe pipe)
1440 {
1441         int reg;
1442         u32 val;
1443
1444         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1445         assert_pipe_enabled(dev_priv, pipe);
1446
1447         reg = DSPCNTR(plane);
1448         val = I915_READ(reg);
1449         if (val & DISPLAY_PLANE_ENABLE)
1450                 return;
1451
1452         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1453         intel_flush_display_plane(dev_priv, plane);
1454         intel_wait_for_vblank(dev_priv->dev, pipe);
1455 }
1456
1457 /**
1458  * intel_disable_plane - disable a display plane
1459  * @dev_priv: i915 private structure
1460  * @plane: plane to disable
1461  * @pipe: pipe consuming the data
1462  *
1463  * Disable @plane; should be an independent operation.
1464  */
1465 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1466                                 enum plane plane, enum pipe pipe)
1467 {
1468         int reg;
1469         u32 val;
1470
1471         reg = DSPCNTR(plane);
1472         val = I915_READ(reg);
1473         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1474                 return;
1475
1476         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1477         intel_flush_display_plane(dev_priv, plane);
1478         intel_wait_for_vblank(dev_priv->dev, pipe);
1479 }
1480
1481 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1482                            enum pipe pipe, int reg, u32 port_sel)
1483 {
1484         u32 val = I915_READ(reg);
1485         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1486                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1487                 I915_WRITE(reg, val & ~DP_PORT_EN);
1488         }
1489 }
1490
1491 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1492                              enum pipe pipe, int reg)
1493 {
1494         u32 val = I915_READ(reg);
1495         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1496                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1497                               reg, pipe);
1498                 I915_WRITE(reg, val & ~PORT_ENABLE);
1499         }
1500 }
1501
1502 /* Disable any ports connected to this transcoder */
1503 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1504                                     enum pipe pipe)
1505 {
1506         u32 reg, val;
1507
1508         val = I915_READ(PCH_PP_CONTROL);
1509         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1510
1511         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1512         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1513         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1514
1515         reg = PCH_ADPA;
1516         val = I915_READ(reg);
1517         if (adpa_pipe_enabled(dev_priv, val, pipe))
1518                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1519
1520         reg = PCH_LVDS;
1521         val = I915_READ(reg);
1522         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1523                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1524                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1525                 POSTING_READ(reg);
1526                 DELAY(100);
1527         }
1528
1529         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1530         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1531         disable_pch_hdmi(dev_priv, pipe, HDMID);
1532 }
1533
1534 static void i8xx_disable_fbc(struct drm_device *dev)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537         u32 fbc_ctl;
1538
1539         /* Disable compression */
1540         fbc_ctl = I915_READ(FBC_CONTROL);
1541         if ((fbc_ctl & FBC_CTL_EN) == 0)
1542                 return;
1543
1544         fbc_ctl &= ~FBC_CTL_EN;
1545         I915_WRITE(FBC_CONTROL, fbc_ctl);
1546
1547         /* Wait for compressing bit to clear */
1548         if (_intel_wait_for(dev,
1549             (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10,
1550             1, "915fbd")) {
1551                 DRM_DEBUG_KMS("FBC idle timed out\n");
1552                 return;
1553         }
1554
1555         DRM_DEBUG_KMS("disabled FBC\n");
1556 }
1557
1558 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1559 {
1560         struct drm_device *dev = crtc->dev;
1561         struct drm_i915_private *dev_priv = dev->dev_private;
1562         struct drm_framebuffer *fb = crtc->fb;
1563         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1564         struct drm_i915_gem_object *obj = intel_fb->obj;
1565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1566         int cfb_pitch;
1567         int plane, i;
1568         u32 fbc_ctl, fbc_ctl2;
1569
1570         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1571         if (fb->pitches[0] < cfb_pitch)
1572                 cfb_pitch = fb->pitches[0];
1573
1574         /* FBC_CTL wants 64B units */
1575         cfb_pitch = (cfb_pitch / 64) - 1;
1576         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1577
1578         /* Clear old tags */
1579         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1580                 I915_WRITE(FBC_TAG + (i * 4), 0);
1581
1582         /* Set it up... */
1583         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1584         fbc_ctl2 |= plane;
1585         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1586         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1587
1588         /* enable it... */
1589         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1590         if (IS_I945GM(dev))
1591                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1592         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1593         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1594         fbc_ctl |= obj->fence_reg;
1595         I915_WRITE(FBC_CONTROL, fbc_ctl);
1596
1597         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1598                       cfb_pitch, crtc->y, intel_crtc->plane);
1599 }
1600
1601 static bool i8xx_fbc_enabled(struct drm_device *dev)
1602 {
1603         struct drm_i915_private *dev_priv = dev->dev_private;
1604
1605         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1606 }
1607
1608 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1609 {
1610         struct drm_device *dev = crtc->dev;
1611         struct drm_i915_private *dev_priv = dev->dev_private;
1612         struct drm_framebuffer *fb = crtc->fb;
1613         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1614         struct drm_i915_gem_object *obj = intel_fb->obj;
1615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1616         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1617         unsigned long stall_watermark = 200;
1618         u32 dpfc_ctl;
1619
1620         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1621         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1622         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1623
1624         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1625                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1626                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1627         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1628
1629         /* enable it... */
1630         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1631
1632         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1633 }
1634
1635 static void g4x_disable_fbc(struct drm_device *dev)
1636 {
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         u32 dpfc_ctl;
1639
1640         /* Disable compression */
1641         dpfc_ctl = I915_READ(DPFC_CONTROL);
1642         if (dpfc_ctl & DPFC_CTL_EN) {
1643                 dpfc_ctl &= ~DPFC_CTL_EN;
1644                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1645
1646                 DRM_DEBUG_KMS("disabled FBC\n");
1647         }
1648 }
1649
1650 static bool g4x_fbc_enabled(struct drm_device *dev)
1651 {
1652         struct drm_i915_private *dev_priv = dev->dev_private;
1653
1654         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1655 }
1656
1657 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1658 {
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660         u32 blt_ecoskpd;
1661
1662         /* Make sure blitter notifies FBC of writes */
1663         gen6_gt_force_wake_get(dev_priv);
1664         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1665         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1666                 GEN6_BLITTER_LOCK_SHIFT;
1667         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1668         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1669         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1670         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1671                          GEN6_BLITTER_LOCK_SHIFT);
1672         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1673         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1674         gen6_gt_force_wake_put(dev_priv);
1675 }
1676
1677 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1678 {
1679         struct drm_device *dev = crtc->dev;
1680         struct drm_i915_private *dev_priv = dev->dev_private;
1681         struct drm_framebuffer *fb = crtc->fb;
1682         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1683         struct drm_i915_gem_object *obj = intel_fb->obj;
1684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1685         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1686         unsigned long stall_watermark = 200;
1687         u32 dpfc_ctl;
1688
1689         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1690         dpfc_ctl &= DPFC_RESERVED;
1691         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1692         /* Set persistent mode for front-buffer rendering, ala X. */
1693         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1694         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1695         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1696
1697         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1698                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1699                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1700         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1701         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1702         /* enable it... */
1703         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1704
1705         if (IS_GEN6(dev)) {
1706                 I915_WRITE(SNB_DPFC_CTL_SA,
1707                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1708                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1709                 sandybridge_blit_fbc_update(dev);
1710         }
1711
1712         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1713 }
1714
1715 static void ironlake_disable_fbc(struct drm_device *dev)
1716 {
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         u32 dpfc_ctl;
1719
1720         /* Disable compression */
1721         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1722         if (dpfc_ctl & DPFC_CTL_EN) {
1723                 dpfc_ctl &= ~DPFC_CTL_EN;
1724                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1725
1726                 DRM_DEBUG_KMS("disabled FBC\n");
1727         }
1728 }
1729
1730 static bool ironlake_fbc_enabled(struct drm_device *dev)
1731 {
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733
1734         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1735 }
1736
1737 bool intel_fbc_enabled(struct drm_device *dev)
1738 {
1739         struct drm_i915_private *dev_priv = dev->dev_private;
1740
1741         if (!dev_priv->display.fbc_enabled)
1742                 return false;
1743
1744         return dev_priv->display.fbc_enabled(dev);
1745 }
1746
1747 static void intel_fbc_work_fn(void *arg, int pending)
1748 {
1749         struct intel_fbc_work *work = arg;
1750         struct drm_device *dev = work->crtc->dev;
1751         struct drm_i915_private *dev_priv = dev->dev_private;
1752
1753         DRM_LOCK(dev);
1754         if (work == dev_priv->fbc_work) {
1755                 /* Double check that we haven't switched fb without cancelling
1756                  * the prior work.
1757                  */
1758                 if (work->crtc->fb == work->fb) {
1759                         dev_priv->display.enable_fbc(work->crtc,
1760                                                      work->interval);
1761
1762                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1763                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1764                         dev_priv->cfb_y = work->crtc->y;
1765                 }
1766
1767                 dev_priv->fbc_work = NULL;
1768         }
1769         DRM_UNLOCK(dev);
1770
1771         free(work, DRM_MEM_KMS);
1772 }
1773
1774 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1775 {
1776         u_int pending;
1777
1778         if (dev_priv->fbc_work == NULL)
1779                 return;
1780
1781         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1782
1783         /* Synchronisation is provided by struct_mutex and checking of
1784          * dev_priv->fbc_work, so we can perform the cancellation
1785          * entirely asynchronously.
1786          */
1787         if (taskqueue_cancel_timeout(dev_priv->tq, &dev_priv->fbc_work->task,
1788             &pending) == 0)
1789                 /* tasklet was killed before being run, clean up */
1790                 free(dev_priv->fbc_work, DRM_MEM_KMS);
1791
1792         /* Mark the work as no longer wanted so that if it does
1793          * wake-up (because the work was already running and waiting
1794          * for our mutex), it will discover that is no longer
1795          * necessary to run.
1796          */
1797         dev_priv->fbc_work = NULL;
1798 }
1799
1800 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1801 {
1802         struct intel_fbc_work *work;
1803         struct drm_device *dev = crtc->dev;
1804         struct drm_i915_private *dev_priv = dev->dev_private;
1805
1806         if (!dev_priv->display.enable_fbc)
1807                 return;
1808
1809         intel_cancel_fbc_work(dev_priv);
1810
1811         work = malloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
1812         work->crtc = crtc;
1813         work->fb = crtc->fb;
1814         work->interval = interval;
1815         TIMEOUT_TASK_INIT(dev_priv->tq, &work->task, 0, intel_fbc_work_fn,
1816             work);
1817
1818         dev_priv->fbc_work = work;
1819
1820         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1821
1822         /* Delay the actual enabling to let pageflipping cease and the
1823          * display to settle before starting the compression. Note that
1824          * this delay also serves a second purpose: it allows for a
1825          * vblank to pass after disabling the FBC before we attempt
1826          * to modify the control registers.
1827          *
1828          * A more complicated solution would involve tracking vblanks
1829          * following the termination of the page-flipping sequence
1830          * and indeed performing the enable as a co-routine and not
1831          * waiting synchronously upon the vblank.
1832          */
1833         taskqueue_enqueue_timeout(dev_priv->tq, &work->task,
1834             msecs_to_jiffies(50));
1835 }
1836
1837 void intel_disable_fbc(struct drm_device *dev)
1838 {
1839         struct drm_i915_private *dev_priv = dev->dev_private;
1840
1841         intel_cancel_fbc_work(dev_priv);
1842
1843         if (!dev_priv->display.disable_fbc)
1844                 return;
1845
1846         dev_priv->display.disable_fbc(dev);
1847         dev_priv->cfb_plane = -1;
1848 }
1849
1850 /**
1851  * intel_update_fbc - enable/disable FBC as needed
1852  * @dev: the drm_device
1853  *
1854  * Set up the framebuffer compression hardware at mode set time.  We
1855  * enable it if possible:
1856  *   - plane A only (on pre-965)
1857  *   - no pixel mulitply/line duplication
1858  *   - no alpha buffer discard
1859  *   - no dual wide
1860  *   - framebuffer <= 2048 in width, 1536 in height
1861  *
1862  * We can't assume that any compression will take place (worst case),
1863  * so the compressed buffer has to be the same size as the uncompressed
1864  * one.  It also must reside (along with the line length buffer) in
1865  * stolen memory.
1866  *
1867  * We need to enable/disable FBC on a global basis.
1868  */
1869 static void intel_update_fbc(struct drm_device *dev)
1870 {
1871         struct drm_i915_private *dev_priv = dev->dev_private;
1872         struct drm_crtc *crtc = NULL, *tmp_crtc;
1873         struct intel_crtc *intel_crtc;
1874         struct drm_framebuffer *fb;
1875         struct intel_framebuffer *intel_fb;
1876         struct drm_i915_gem_object *obj;
1877         int enable_fbc;
1878
1879         DRM_DEBUG_KMS("\n");
1880
1881         if (!i915_powersave)
1882                 return;
1883
1884         if (!I915_HAS_FBC(dev))
1885                 return;
1886
1887         /*
1888          * If FBC is already on, we just have to verify that we can
1889          * keep it that way...
1890          * Need to disable if:
1891          *   - more than one pipe is active
1892          *   - changing FBC params (stride, fence, mode)
1893          *   - new fb is too large to fit in compressed buffer
1894          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1895          */
1896         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1897                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1898                         if (crtc) {
1899                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1900                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1901                                 goto out_disable;
1902                         }
1903                         crtc = tmp_crtc;
1904                 }
1905         }
1906
1907         if (!crtc || crtc->fb == NULL) {
1908                 DRM_DEBUG_KMS("no output, disabling\n");
1909                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1910                 goto out_disable;
1911         }
1912
1913         intel_crtc = to_intel_crtc(crtc);
1914         fb = crtc->fb;
1915         intel_fb = to_intel_framebuffer(fb);
1916         obj = intel_fb->obj;
1917
1918         enable_fbc = i915_enable_fbc;
1919         if (enable_fbc < 0) {
1920                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1921                 enable_fbc = 1;
1922                 if (INTEL_INFO(dev)->gen <= 6)
1923                         enable_fbc = 0;
1924         }
1925         if (!enable_fbc) {
1926                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1927                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1928                 goto out_disable;
1929         }
1930         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1931                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1932                               "compression\n");
1933                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1934                 goto out_disable;
1935         }
1936         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1937             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1938                 DRM_DEBUG_KMS("mode incompatible with compression, "
1939                               "disabling\n");
1940                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1941                 goto out_disable;
1942         }
1943         if ((crtc->mode.hdisplay > 2048) ||
1944             (crtc->mode.vdisplay > 1536)) {
1945                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1946                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1947                 goto out_disable;
1948         }
1949         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1950                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1951                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1952                 goto out_disable;
1953         }
1954         if (obj->tiling_mode != I915_TILING_X ||
1955             obj->fence_reg == I915_FENCE_REG_NONE) {
1956                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1957                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1958                 goto out_disable;
1959         }
1960
1961         /* If the kernel debugger is active, always disable compression */
1962         if (kdb_active)
1963                 goto out_disable;
1964
1965         /* If the scanout has not changed, don't modify the FBC settings.
1966          * Note that we make the fundamental assumption that the fb->obj
1967          * cannot be unpinned (and have its GTT offset and fence revoked)
1968          * without first being decoupled from the scanout and FBC disabled.
1969          */
1970         if (dev_priv->cfb_plane == intel_crtc->plane &&
1971             dev_priv->cfb_fb == fb->base.id &&
1972             dev_priv->cfb_y == crtc->y)
1973                 return;
1974
1975         if (intel_fbc_enabled(dev)) {
1976                 /* We update FBC along two paths, after changing fb/crtc
1977                  * configuration (modeswitching) and after page-flipping
1978                  * finishes. For the latter, we know that not only did
1979                  * we disable the FBC at the start of the page-flip
1980                  * sequence, but also more than one vblank has passed.
1981                  *
1982                  * For the former case of modeswitching, it is possible
1983                  * to switch between two FBC valid configurations
1984                  * instantaneously so we do need to disable the FBC
1985                  * before we can modify its control registers. We also
1986                  * have to wait for the next vblank for that to take
1987                  * effect. However, since we delay enabling FBC we can
1988                  * assume that a vblank has passed since disabling and
1989                  * that we can safely alter the registers in the deferred
1990                  * callback.
1991                  *
1992                  * In the scenario that we go from a valid to invalid
1993                  * and then back to valid FBC configuration we have
1994                  * no strict enforcement that a vblank occurred since
1995                  * disabling the FBC. However, along all current pipe
1996                  * disabling paths we do need to wait for a vblank at
1997                  * some point. And we wait before enabling FBC anyway.
1998                  */
1999                 DRM_DEBUG_KMS("disabling active FBC for update\n");
2000                 intel_disable_fbc(dev);
2001         }
2002
2003         intel_enable_fbc(crtc, 500);
2004         return;
2005
2006 out_disable:
2007         /* Multiple disables should be harmless */
2008         if (intel_fbc_enabled(dev)) {
2009                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2010                 intel_disable_fbc(dev);
2011         }
2012 }
2013
2014 int
2015 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2016                            struct drm_i915_gem_object *obj,
2017                            struct intel_ring_buffer *pipelined)
2018 {
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         u32 alignment;
2021         int ret;
2022
2023         alignment = 0; /* shut gcc */
2024         switch (obj->tiling_mode) {
2025         case I915_TILING_NONE:
2026                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2027                         alignment = 128 * 1024;
2028                 else if (INTEL_INFO(dev)->gen >= 4)
2029                         alignment = 4 * 1024;
2030                 else
2031                         alignment = 64 * 1024;
2032                 break;
2033         case I915_TILING_X:
2034                 /* pin() will align the object as required by fence */
2035                 alignment = 0;
2036                 break;
2037         case I915_TILING_Y:
2038                 /* FIXME: Is this true? */
2039                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2040                 return -EINVAL;
2041         default:
2042                 KASSERT(0, ("Wrong tiling for fb obj"));
2043         }
2044
2045         dev_priv->mm.interruptible = false;
2046         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2047         if (ret)
2048                 goto err_interruptible;
2049
2050         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2051          * fence, whereas 965+ only requires a fence if using
2052          * framebuffer compression.  For simplicity, we always install
2053          * a fence as the cost is not that onerous.
2054          */
2055         if (obj->tiling_mode != I915_TILING_NONE) {
2056                 ret = i915_gem_object_get_fence(obj, pipelined);
2057                 if (ret)
2058                         goto err_unpin;
2059
2060                 i915_gem_object_pin_fence(obj);
2061         }
2062
2063         dev_priv->mm.interruptible = true;
2064         return 0;
2065
2066 err_unpin:
2067         i915_gem_object_unpin(obj);
2068 err_interruptible:
2069         dev_priv->mm.interruptible = true;
2070         return ret;
2071 }
2072
2073 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2074 {
2075         i915_gem_object_unpin_fence(obj);
2076         i915_gem_object_unpin(obj);
2077 }
2078
2079 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2080                              int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long Start, Offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095                 break;
2096         default:
2097                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2098                 return -EINVAL;
2099         }
2100
2101         intel_fb = to_intel_framebuffer(fb);
2102         obj = intel_fb->obj;
2103
2104         reg = DSPCNTR(plane);
2105         dspcntr = I915_READ(reg);
2106         /* Mask out pixel format bits in case we change it */
2107         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2108         switch (fb->bits_per_pixel) {
2109         case 8:
2110                 dspcntr |= DISPPLANE_8BPP;
2111                 break;
2112         case 16:
2113                 if (fb->depth == 15)
2114                         dspcntr |= DISPPLANE_15_16BPP;
2115                 else
2116                         dspcntr |= DISPPLANE_16BPP;
2117                 break;
2118         case 24:
2119         case 32:
2120                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2121                 break;
2122         default:
2123                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2124                 return -EINVAL;
2125         }
2126         if (INTEL_INFO(dev)->gen >= 4) {
2127                 if (obj->tiling_mode != I915_TILING_NONE)
2128                         dspcntr |= DISPPLANE_TILED;
2129                 else
2130                         dspcntr &= ~DISPPLANE_TILED;
2131         }
2132
2133         I915_WRITE(reg, dspcntr);
2134
2135         Start = obj->gtt_offset;
2136         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2137
2138         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2139                       Start, Offset, x, y, fb->pitches[0]);
2140         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2141         if (INTEL_INFO(dev)->gen >= 4) {
2142                 I915_WRITE(DSPSURF(plane), Start);
2143                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2144                 I915_WRITE(DSPADDR(plane), Offset);
2145         } else
2146                 I915_WRITE(DSPADDR(plane), Start + Offset);
2147         POSTING_READ(reg);
2148
2149         return (0);
2150 }
2151
2152 static int ironlake_update_plane(struct drm_crtc *crtc,
2153                                  struct drm_framebuffer *fb, int x, int y)
2154 {
2155         struct drm_device *dev = crtc->dev;
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2158         struct intel_framebuffer *intel_fb;
2159         struct drm_i915_gem_object *obj;
2160         int plane = intel_crtc->plane;
2161         unsigned long Start, Offset;
2162         u32 dspcntr;
2163         u32 reg;
2164
2165         switch (plane) {
2166         case 0:
2167         case 1:
2168         case 2:
2169                 break;
2170         default:
2171                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2172                 return -EINVAL;
2173         }
2174
2175         intel_fb = to_intel_framebuffer(fb);
2176         obj = intel_fb->obj;
2177
2178         reg = DSPCNTR(plane);
2179         dspcntr = I915_READ(reg);
2180         /* Mask out pixel format bits in case we change it */
2181         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2182         switch (fb->bits_per_pixel) {
2183         case 8:
2184                 dspcntr |= DISPPLANE_8BPP;
2185                 break;
2186         case 16:
2187                 if (fb->depth != 16) {
2188                         DRM_ERROR("bpp 16, depth %d\n", fb->depth);
2189                         return -EINVAL;
2190                 }
2191
2192                 dspcntr |= DISPPLANE_16BPP;
2193                 break;
2194         case 24:
2195         case 32:
2196                 if (fb->depth == 24)
2197                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2198                 else if (fb->depth == 30)
2199                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2200                 else {
2201                         DRM_ERROR("bpp %d depth %d\n", fb->bits_per_pixel,
2202                             fb->depth);
2203                         return -EINVAL;
2204                 }
2205                 break;
2206         default:
2207                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2208                 return -EINVAL;
2209         }
2210
2211         if (obj->tiling_mode != I915_TILING_NONE)
2212                 dspcntr |= DISPPLANE_TILED;
2213         else
2214                 dspcntr &= ~DISPPLANE_TILED;
2215
2216         /* must disable */
2217         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2218
2219         I915_WRITE(reg, dspcntr);
2220
2221         Start = obj->gtt_offset;
2222         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2223
2224         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2225                       Start, Offset, x, y, fb->pitches[0]);
2226         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2227         I915_WRITE(DSPSURF(plane), Start);
2228         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2229         I915_WRITE(DSPADDR(plane), Offset);
2230         POSTING_READ(reg);
2231
2232         return 0;
2233 }
2234
2235 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2236 static int
2237 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2238                            int x, int y, enum mode_set_atomic state)
2239 {
2240         struct drm_device *dev = crtc->dev;
2241         struct drm_i915_private *dev_priv = dev->dev_private;
2242         int ret;
2243
2244         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2245         if (ret)
2246                 return ret;
2247
2248         intel_update_fbc(dev);
2249         intel_increase_pllclock(crtc);
2250
2251         return 0;
2252 }
2253
2254 static int
2255 intel_finish_fb(struct drm_framebuffer *old_fb)
2256 {
2257         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2258         struct drm_device *dev = obj->base.dev;
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         bool was_interruptible = dev_priv->mm.interruptible;
2261         int ret;
2262
2263         mtx_lock(&dev->event_lock);
2264         while (!atomic_read(&dev_priv->mm.wedged) &&
2265             atomic_read(&obj->pending_flip) != 0) {
2266                 msleep(&obj->pending_flip, &dev->event_lock,
2267                     0, "915flp", 0);
2268         }
2269         mtx_unlock(&dev->event_lock);      
2270
2271         /* Big Hammer, we also need to ensure that any pending
2272          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2273          * current scanout is retired before unpinning the old
2274          * framebuffer.
2275          *
2276          * This should only fail upon a hung GPU, in which case we
2277          * can safely continue.
2278          */
2279         dev_priv->mm.interruptible = false;
2280         ret = i915_gem_object_finish_gpu(obj);
2281         dev_priv->mm.interruptible = was_interruptible;
2282         return ret;
2283 }
2284
2285 static int
2286 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2287                     struct drm_framebuffer *old_fb)
2288 {
2289         struct drm_device *dev = crtc->dev;
2290 #if 0
2291         struct drm_i915_master_private *master_priv;
2292 #else
2293         drm_i915_private_t *dev_priv = dev->dev_private;
2294 #endif
2295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2296         int ret;
2297
2298         /* no fb bound */
2299         if (!crtc->fb) {
2300                 DRM_ERROR("No FB bound\n");
2301                 return 0;
2302         }
2303
2304         switch (intel_crtc->plane) {
2305         case 0:
2306         case 1:
2307                 break;
2308         case 2:
2309                 if (IS_IVYBRIDGE(dev))
2310                         break;
2311                 /* fall through otherwise */
2312         default:
2313                 DRM_ERROR("no plane for crtc\n");
2314                 return -EINVAL;
2315         }
2316
2317         DRM_LOCK(dev);
2318         ret = intel_pin_and_fence_fb_obj(dev,
2319                                          to_intel_framebuffer(crtc->fb)->obj,
2320                                          NULL);
2321         if (ret != 0) {
2322                 DRM_UNLOCK(dev);
2323                 DRM_ERROR("pin & fence failed\n");
2324                 return ret;
2325         }
2326
2327         if (old_fb)
2328                 intel_finish_fb(old_fb);
2329
2330         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2331                                          LEAVE_ATOMIC_MODE_SET);
2332         if (ret) {
2333                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2334                 DRM_UNLOCK(dev);
2335                 DRM_ERROR("failed to update base address\n");
2336                 return ret;
2337         }
2338
2339         if (old_fb) {
2340                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2341                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2342         }
2343
2344         DRM_UNLOCK(dev);
2345
2346 #if 0
2347         if (!dev->primary->master)
2348                 return 0;
2349
2350         master_priv = dev->primary->master->driver_priv;
2351         if (!master_priv->sarea_priv)
2352                 return 0;
2353
2354         if (intel_crtc->pipe) {
2355                 master_priv->sarea_priv->pipeB_x = x;
2356                 master_priv->sarea_priv->pipeB_y = y;
2357         } else {
2358                 master_priv->sarea_priv->pipeA_x = x;
2359                 master_priv->sarea_priv->pipeA_y = y;
2360         }
2361 #else
2362
2363         if (!dev_priv->sarea_priv)
2364                 return 0;
2365
2366         if (intel_crtc->pipe) {
2367                 dev_priv->sarea_priv->planeB_x = x;
2368                 dev_priv->sarea_priv->planeB_y = y;
2369         } else {
2370                 dev_priv->sarea_priv->planeA_x = x;
2371                 dev_priv->sarea_priv->planeA_y = y;
2372         }
2373 #endif
2374
2375         return 0;
2376 }
2377
2378 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2379 {
2380         struct drm_device *dev = crtc->dev;
2381         struct drm_i915_private *dev_priv = dev->dev_private;
2382         u32 dpa_ctl;
2383
2384         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2385         dpa_ctl = I915_READ(DP_A);
2386         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2387
2388         if (clock < 200000) {
2389                 u32 temp;
2390                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2391                 /* workaround for 160Mhz:
2392                    1) program 0x4600c bits 15:0 = 0x8124
2393                    2) program 0x46010 bit 0 = 1
2394                    3) program 0x46034 bit 24 = 1
2395                    4) program 0x64000 bit 14 = 1
2396                    */
2397                 temp = I915_READ(0x4600c);
2398                 temp &= 0xffff0000;
2399                 I915_WRITE(0x4600c, temp | 0x8124);
2400
2401                 temp = I915_READ(0x46010);
2402                 I915_WRITE(0x46010, temp | 1);
2403
2404                 temp = I915_READ(0x46034);
2405                 I915_WRITE(0x46034, temp | (1 << 24));
2406         } else {
2407                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2408         }
2409         I915_WRITE(DP_A, dpa_ctl);
2410
2411         POSTING_READ(DP_A);
2412         DELAY(500);
2413 }
2414
2415 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2416 {
2417         struct drm_device *dev = crtc->dev;
2418         struct drm_i915_private *dev_priv = dev->dev_private;
2419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2420         int pipe = intel_crtc->pipe;
2421         u32 reg, temp;
2422
2423         /* enable normal train */
2424         reg = FDI_TX_CTL(pipe);
2425         temp = I915_READ(reg);
2426         if (IS_IVYBRIDGE(dev)) {
2427                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2428                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2429         } else {
2430                 temp &= ~FDI_LINK_TRAIN_NONE;
2431                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2432         }
2433         I915_WRITE(reg, temp);
2434
2435         reg = FDI_RX_CTL(pipe);
2436         temp = I915_READ(reg);
2437         if (HAS_PCH_CPT(dev)) {
2438                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2439                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2440         } else {
2441                 temp &= ~FDI_LINK_TRAIN_NONE;
2442                 temp |= FDI_LINK_TRAIN_NONE;
2443         }
2444         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2445
2446         /* wait one idle pattern time */
2447         POSTING_READ(reg);
2448         DELAY(1000);
2449
2450         /* IVB wants error correction enabled */
2451         if (IS_IVYBRIDGE(dev))
2452                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2453                            FDI_FE_ERRC_ENABLE);
2454 }
2455
2456 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2457 {
2458         struct drm_i915_private *dev_priv = dev->dev_private;
2459         u32 flags = I915_READ(SOUTH_CHICKEN1);
2460
2461         flags |= FDI_PHASE_SYNC_OVR(pipe);
2462         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2463         flags |= FDI_PHASE_SYNC_EN(pipe);
2464         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2465         POSTING_READ(SOUTH_CHICKEN1);
2466 }
2467
2468 /* The FDI link training functions for ILK/Ibexpeak. */
2469 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2470 {
2471         struct drm_device *dev = crtc->dev;
2472         struct drm_i915_private *dev_priv = dev->dev_private;
2473         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2474         int pipe = intel_crtc->pipe;
2475         int plane = intel_crtc->plane;
2476         u32 reg, temp, tries;
2477
2478         /* FDI needs bits from pipe & plane first */
2479         assert_pipe_enabled(dev_priv, pipe);
2480         assert_plane_enabled(dev_priv, plane);
2481
2482         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2483            for train result */
2484         reg = FDI_RX_IMR(pipe);
2485         temp = I915_READ(reg);
2486         temp &= ~FDI_RX_SYMBOL_LOCK;
2487         temp &= ~FDI_RX_BIT_LOCK;
2488         I915_WRITE(reg, temp);
2489         I915_READ(reg);
2490         DELAY(150);
2491
2492         /* enable CPU FDI TX and PCH FDI RX */
2493         reg = FDI_TX_CTL(pipe);
2494         temp = I915_READ(reg);
2495         temp &= ~(7 << 19);
2496         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2497         temp &= ~FDI_LINK_TRAIN_NONE;
2498         temp |= FDI_LINK_TRAIN_PATTERN_1;
2499         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2500
2501         reg = FDI_RX_CTL(pipe);
2502         temp = I915_READ(reg);
2503         temp &= ~FDI_LINK_TRAIN_NONE;
2504         temp |= FDI_LINK_TRAIN_PATTERN_1;
2505         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2506
2507         POSTING_READ(reg);
2508         DELAY(150);
2509
2510         /* Ironlake workaround, enable clock pointer after FDI enable*/
2511         if (HAS_PCH_IBX(dev)) {
2512                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2513                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2514                            FDI_RX_PHASE_SYNC_POINTER_EN);
2515         }
2516
2517         reg = FDI_RX_IIR(pipe);
2518         for (tries = 0; tries < 5; tries++) {
2519                 temp = I915_READ(reg);
2520                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2521
2522                 if ((temp & FDI_RX_BIT_LOCK)) {
2523                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2524                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2525                         break;
2526                 }
2527         }
2528         if (tries == 5)
2529                 DRM_ERROR("FDI train 1 fail!\n");
2530
2531         /* Train 2 */
2532         reg = FDI_TX_CTL(pipe);
2533         temp = I915_READ(reg);
2534         temp &= ~FDI_LINK_TRAIN_NONE;
2535         temp |= FDI_LINK_TRAIN_PATTERN_2;
2536         I915_WRITE(reg, temp);
2537
2538         reg = FDI_RX_CTL(pipe);
2539         temp = I915_READ(reg);
2540         temp &= ~FDI_LINK_TRAIN_NONE;
2541         temp |= FDI_LINK_TRAIN_PATTERN_2;
2542         I915_WRITE(reg, temp);
2543
2544         POSTING_READ(reg);
2545         DELAY(150);
2546
2547         reg = FDI_RX_IIR(pipe);
2548         for (tries = 0; tries < 5; tries++) {
2549                 temp = I915_READ(reg);
2550                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2551
2552                 if (temp & FDI_RX_SYMBOL_LOCK) {
2553                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2554                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2555                         break;
2556                 }
2557         }
2558         if (tries == 5)
2559                 DRM_ERROR("FDI train 2 fail!\n");
2560
2561         DRM_DEBUG_KMS("FDI train done\n");
2562
2563 }
2564
2565 static const int snb_b_fdi_train_param[] = {
2566         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2567         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2568         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2569         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2570 };
2571
2572 /* The FDI link training functions for SNB/Cougarpoint. */
2573 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2574 {
2575         struct drm_device *dev = crtc->dev;
2576         struct drm_i915_private *dev_priv = dev->dev_private;
2577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2578         int pipe = intel_crtc->pipe;
2579         u32 reg, temp, i;
2580
2581         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2582            for train result */
2583         reg = FDI_RX_IMR(pipe);
2584         temp = I915_READ(reg);
2585         temp &= ~FDI_RX_SYMBOL_LOCK;
2586         temp &= ~FDI_RX_BIT_LOCK;
2587         I915_WRITE(reg, temp);
2588
2589         POSTING_READ(reg);
2590         DELAY(150);
2591
2592         /* enable CPU FDI TX and PCH FDI RX */
2593         reg = FDI_TX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         temp &= ~(7 << 19);
2596         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2597         temp &= ~FDI_LINK_TRAIN_NONE;
2598         temp |= FDI_LINK_TRAIN_PATTERN_1;
2599         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2600         /* SNB-B */
2601         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2602         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2603
2604         reg = FDI_RX_CTL(pipe);
2605         temp = I915_READ(reg);
2606         if (HAS_PCH_CPT(dev)) {
2607                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2609         } else {
2610                 temp &= ~FDI_LINK_TRAIN_NONE;
2611                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2612         }
2613         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2614
2615         POSTING_READ(reg);
2616         DELAY(150);
2617
2618         if (HAS_PCH_CPT(dev))
2619                 cpt_phase_pointer_enable(dev, pipe);
2620
2621         for (i = 0; i < 4; i++) {
2622                 reg = FDI_TX_CTL(pipe);
2623                 temp = I915_READ(reg);
2624                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2625                 temp |= snb_b_fdi_train_param[i];
2626                 I915_WRITE(reg, temp);
2627
2628                 POSTING_READ(reg);
2629                 DELAY(500);
2630
2631                 reg = FDI_RX_IIR(pipe);
2632                 temp = I915_READ(reg);
2633                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2634
2635                 if (temp & FDI_RX_BIT_LOCK) {
2636                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2637                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2638                         break;
2639                 }
2640         }
2641         if (i == 4)
2642                 DRM_ERROR("FDI train 1 fail!\n");
2643
2644         /* Train 2 */
2645         reg = FDI_TX_CTL(pipe);
2646         temp = I915_READ(reg);
2647         temp &= ~FDI_LINK_TRAIN_NONE;
2648         temp |= FDI_LINK_TRAIN_PATTERN_2;
2649         if (IS_GEN6(dev)) {
2650                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2651                 /* SNB-B */
2652                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2653         }
2654         I915_WRITE(reg, temp);
2655
2656         reg = FDI_RX_CTL(pipe);
2657         temp = I915_READ(reg);
2658         if (HAS_PCH_CPT(dev)) {
2659                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2660                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2661         } else {
2662                 temp &= ~FDI_LINK_TRAIN_NONE;
2663                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2664         }
2665         I915_WRITE(reg, temp);
2666
2667         POSTING_READ(reg);
2668         DELAY(150);
2669
2670         for (i = 0; i < 4; i++) {
2671                 reg = FDI_TX_CTL(pipe);
2672                 temp = I915_READ(reg);
2673                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674                 temp |= snb_b_fdi_train_param[i];
2675                 I915_WRITE(reg, temp);
2676
2677                 POSTING_READ(reg);
2678                 DELAY(500);
2679
2680                 reg = FDI_RX_IIR(pipe);
2681                 temp = I915_READ(reg);
2682                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2683
2684                 if (temp & FDI_RX_SYMBOL_LOCK) {
2685                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2686                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2687                         break;
2688                 }
2689         }
2690         if (i == 4)
2691                 DRM_ERROR("FDI train 2 fail!\n");
2692
2693         DRM_DEBUG_KMS("FDI train done.\n");
2694 }
2695
2696 /* Manual link training for Ivy Bridge A0 parts */
2697 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2698 {
2699         struct drm_device *dev = crtc->dev;
2700         struct drm_i915_private *dev_priv = dev->dev_private;
2701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2702         int pipe = intel_crtc->pipe;
2703         u32 reg, temp, i;
2704
2705         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2706            for train result */
2707         reg = FDI_RX_IMR(pipe);
2708         temp = I915_READ(reg);
2709         temp &= ~FDI_RX_SYMBOL_LOCK;
2710         temp &= ~FDI_RX_BIT_LOCK;
2711         I915_WRITE(reg, temp);
2712
2713         POSTING_READ(reg);
2714         DELAY(150);
2715
2716         /* enable CPU FDI TX and PCH FDI RX */
2717         reg = FDI_TX_CTL(pipe);
2718         temp = I915_READ(reg);
2719         temp &= ~(7 << 19);
2720         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2721         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2722         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2723         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2724         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2725         temp |= FDI_COMPOSITE_SYNC;
2726         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2727
2728         reg = FDI_RX_CTL(pipe);
2729         temp = I915_READ(reg);
2730         temp &= ~FDI_LINK_TRAIN_AUTO;
2731         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2732         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2733         temp |= FDI_COMPOSITE_SYNC;
2734         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2735
2736         POSTING_READ(reg);
2737         DELAY(150);
2738
2739         for (i = 0; i < 4; i++) {
2740                 reg = FDI_TX_CTL(pipe);
2741                 temp = I915_READ(reg);
2742                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743                 temp |= snb_b_fdi_train_param[i];
2744                 I915_WRITE(reg, temp);
2745
2746                 POSTING_READ(reg);
2747                 DELAY(500);
2748
2749                 reg = FDI_RX_IIR(pipe);
2750                 temp = I915_READ(reg);
2751                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753                 if (temp & FDI_RX_BIT_LOCK ||
2754                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2755                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2756                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2757                         break;
2758                 }
2759         }
2760         if (i == 4)
2761                 DRM_ERROR("FDI train 1 fail!\n");
2762
2763         /* Train 2 */
2764         reg = FDI_TX_CTL(pipe);
2765         temp = I915_READ(reg);
2766         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2767         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2768         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2769         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2770         I915_WRITE(reg, temp);
2771
2772         reg = FDI_RX_CTL(pipe);
2773         temp = I915_READ(reg);
2774         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2775         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2776         I915_WRITE(reg, temp);
2777
2778         POSTING_READ(reg);
2779         DELAY(150);
2780
2781         for (i = 0; i < 4; i++ ) {
2782                 reg = FDI_TX_CTL(pipe);
2783                 temp = I915_READ(reg);
2784                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2785                 temp |= snb_b_fdi_train_param[i];
2786                 I915_WRITE(reg, temp);
2787
2788                 POSTING_READ(reg);
2789                 DELAY(500);
2790
2791                 reg = FDI_RX_IIR(pipe);
2792                 temp = I915_READ(reg);
2793                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2794
2795                 if (temp & FDI_RX_SYMBOL_LOCK) {
2796                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2797                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2798                         break;
2799                 }
2800         }
2801         if (i == 4)
2802                 DRM_ERROR("FDI train 2 fail!\n");
2803
2804         DRM_DEBUG_KMS("FDI train done.\n");
2805 }
2806
2807 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2808 {
2809         struct drm_device *dev = crtc->dev;
2810         struct drm_i915_private *dev_priv = dev->dev_private;
2811         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2812         int pipe = intel_crtc->pipe;
2813         u32 reg, temp;
2814
2815         /* Write the TU size bits so error detection works */
2816         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2817                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2818
2819         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2820         reg = FDI_RX_CTL(pipe);
2821         temp = I915_READ(reg);
2822         temp &= ~((0x7 << 19) | (0x7 << 16));
2823         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2824         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2825         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2826
2827         POSTING_READ(reg);
2828         DELAY(200);
2829
2830         /* Switch from Rawclk to PCDclk */
2831         temp = I915_READ(reg);
2832         I915_WRITE(reg, temp | FDI_PCDCLK);
2833
2834         POSTING_READ(reg);
2835         DELAY(200);
2836
2837         /* Enable CPU FDI TX PLL, always on for Ironlake */
2838         reg = FDI_TX_CTL(pipe);
2839         temp = I915_READ(reg);
2840         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2841                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2842
2843                 POSTING_READ(reg);
2844                 DELAY(100);
2845         }
2846 }
2847
2848 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2849 {
2850         struct drm_i915_private *dev_priv = dev->dev_private;
2851         u32 flags = I915_READ(SOUTH_CHICKEN1);
2852
2853         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2854         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2855         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2856         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2857         POSTING_READ(SOUTH_CHICKEN1);
2858 }
2859
2860 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2861 {
2862         struct drm_device *dev = crtc->dev;
2863         struct drm_i915_private *dev_priv = dev->dev_private;
2864         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2865         int pipe = intel_crtc->pipe;
2866         u32 reg, temp;
2867
2868         /* disable CPU FDI tx and PCH FDI rx */
2869         reg = FDI_TX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2872         POSTING_READ(reg);
2873
2874         reg = FDI_RX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         temp &= ~(0x7 << 16);
2877         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2878         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2879
2880         POSTING_READ(reg);
2881         DELAY(100);
2882
2883         /* Ironlake workaround, disable clock pointer after downing FDI */
2884         if (HAS_PCH_IBX(dev)) {
2885                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2886                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2887                            I915_READ(FDI_RX_CHICKEN(pipe) &
2888                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2889         } else if (HAS_PCH_CPT(dev)) {
2890                 cpt_phase_pointer_disable(dev, pipe);
2891         }
2892
2893         /* still set train pattern 1 */
2894         reg = FDI_TX_CTL(pipe);
2895         temp = I915_READ(reg);
2896         temp &= ~FDI_LINK_TRAIN_NONE;
2897         temp |= FDI_LINK_TRAIN_PATTERN_1;
2898         I915_WRITE(reg, temp);
2899
2900         reg = FDI_RX_CTL(pipe);
2901         temp = I915_READ(reg);
2902         if (HAS_PCH_CPT(dev)) {
2903                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2904                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2905         } else {
2906                 temp &= ~FDI_LINK_TRAIN_NONE;
2907                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2908         }
2909         /* BPC in FDI rx is consistent with that in PIPECONF */
2910         temp &= ~(0x07 << 16);
2911         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2912         I915_WRITE(reg, temp);
2913
2914         POSTING_READ(reg);
2915         DELAY(100);
2916 }
2917
2918 /*
2919  * When we disable a pipe, we need to clear any pending scanline wait events
2920  * to avoid hanging the ring, which we assume we are waiting on.
2921  */
2922 static void intel_clear_scanline_wait(struct drm_device *dev)
2923 {
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925         struct intel_ring_buffer *ring;
2926         u32 tmp;
2927
2928         if (IS_GEN2(dev))
2929                 /* Can't break the hang on i8xx */
2930                 return;
2931
2932         ring = LP_RING(dev_priv);
2933         tmp = I915_READ_CTL(ring);
2934         if (tmp & RING_WAIT)
2935                 I915_WRITE_CTL(ring, tmp);
2936 }
2937
2938 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2939 {
2940         struct drm_i915_gem_object *obj;
2941         struct drm_i915_private *dev_priv;
2942         struct drm_device *dev;
2943
2944         if (crtc->fb == NULL)
2945                 return;
2946
2947         obj = to_intel_framebuffer(crtc->fb)->obj;
2948         dev = crtc->dev;
2949         dev_priv = dev->dev_private;
2950         mtx_lock(&dev->event_lock);
2951         while (atomic_read(&obj->pending_flip) != 0)
2952                 msleep(&obj->pending_flip, &dev->event_lock, 0, "915wfl", 0);
2953         mtx_unlock(&dev->event_lock);
2954 }
2955
2956 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2957 {
2958         struct drm_device *dev = crtc->dev;
2959         struct drm_mode_config *mode_config = &dev->mode_config;
2960         struct intel_encoder *encoder;
2961
2962         /*
2963          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2964          * must be driven by its own crtc; no sharing is possible.
2965          */
2966         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2967                 if (encoder->base.crtc != crtc)
2968                         continue;
2969
2970                 switch (encoder->type) {
2971                 case INTEL_OUTPUT_EDP:
2972                         if (!intel_encoder_is_pch_edp(&encoder->base))
2973                                 return false;
2974                         continue;
2975                 }
2976         }
2977
2978         return true;
2979 }
2980
2981 /*
2982  * Enable PCH resources required for PCH ports:
2983  *   - PCH PLLs
2984  *   - FDI training & RX/TX
2985  *   - update transcoder timings
2986  *   - DP transcoding bits
2987  *   - transcoder
2988  */
2989 static void ironlake_pch_enable(struct drm_crtc *crtc)
2990 {
2991         struct drm_device *dev = crtc->dev;
2992         struct drm_i915_private *dev_priv = dev->dev_private;
2993         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2994         int pipe = intel_crtc->pipe;
2995         u32 reg, temp, transc_sel;
2996
2997         /* For PCH output, training FDI link */
2998         dev_priv->display.fdi_link_train(crtc);
2999
3000         intel_enable_pch_pll(dev_priv, pipe);
3001
3002         if (HAS_PCH_CPT(dev)) {
3003                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3004                         TRANSC_DPLLB_SEL;
3005
3006                 /* Be sure PCH DPLL SEL is set */
3007                 temp = I915_READ(PCH_DPLL_SEL);
3008                 if (pipe == 0) {
3009                         temp &= ~(TRANSA_DPLLB_SEL);
3010                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3011                 } else if (pipe == 1) {
3012                         temp &= ~(TRANSB_DPLLB_SEL);
3013                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3014                 } else if (pipe == 2) {
3015                         temp &= ~(TRANSC_DPLLB_SEL);
3016                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3017                 }
3018                 I915_WRITE(PCH_DPLL_SEL, temp);
3019         }
3020
3021         /* set transcoder timing, panel must allow it */
3022         assert_panel_unlocked(dev_priv, pipe);
3023         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3024         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3025         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3026
3027         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3028         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3029         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3030         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3031
3032         intel_fdi_normal_train(crtc);
3033
3034         /* For PCH DP, enable TRANS_DP_CTL */
3035         if (HAS_PCH_CPT(dev) &&
3036             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3037              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3038                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3039                 reg = TRANS_DP_CTL(pipe);
3040                 temp = I915_READ(reg);
3041                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3042                           TRANS_DP_SYNC_MASK |
3043                           TRANS_DP_BPC_MASK);
3044                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3045                          TRANS_DP_ENH_FRAMING);
3046                 temp |= bpc << 9; /* same format but at 11:9 */
3047
3048                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3049                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3050                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3051                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3052
3053                 switch (intel_trans_dp_port_sel(crtc)) {
3054                 case PCH_DP_B:
3055                         temp |= TRANS_DP_PORT_SEL_B;
3056                         break;
3057                 case PCH_DP_C:
3058                         temp |= TRANS_DP_PORT_SEL_C;
3059                         break;
3060                 case PCH_DP_D:
3061                         temp |= TRANS_DP_PORT_SEL_D;
3062                         break;
3063                 default:
3064                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3065                         temp |= TRANS_DP_PORT_SEL_B;
3066                         break;
3067                 }
3068
3069                 I915_WRITE(reg, temp);
3070         }
3071
3072         intel_enable_transcoder(dev_priv, pipe);
3073 }
3074
3075 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3076 {
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3079         u32 temp;
3080
3081         temp = I915_READ(dslreg);
3082         DELAY(500);
3083         if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1, "915cp1")) {
3084                 /* Without this, mode sets may fail silently on FDI */
3085                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3086                 DELAY(250);
3087                 I915_WRITE(tc2reg, 0);
3088                 if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1,
3089                     "915cp2"))
3090                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3091         }
3092 }
3093
3094 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3095 {
3096         struct drm_device *dev = crtc->dev;
3097         struct drm_i915_private *dev_priv = dev->dev_private;
3098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3099         int pipe = intel_crtc->pipe;
3100         int plane = intel_crtc->plane;
3101         u32 temp;
3102         bool is_pch_port;
3103
3104         if (intel_crtc->active)
3105                 return;
3106
3107         intel_crtc->active = true;
3108         intel_update_watermarks(dev);
3109
3110         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3111                 temp = I915_READ(PCH_LVDS);
3112                 if ((temp & LVDS_PORT_EN) == 0)
3113                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3114         }
3115
3116         is_pch_port = intel_crtc_driving_pch(crtc);
3117
3118         if (is_pch_port)
3119                 ironlake_fdi_pll_enable(crtc);
3120         else
3121                 ironlake_fdi_disable(crtc);
3122
3123         /* Enable panel fitting for LVDS */
3124         if (dev_priv->pch_pf_size &&
3125             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3126                 /* Force use of hard-coded filter coefficients
3127                  * as some pre-programmed values are broken,
3128                  * e.g. x201.
3129                  */
3130                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3131                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3132                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3133         }
3134
3135         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3136         intel_enable_plane(dev_priv, plane, pipe);
3137
3138         if (is_pch_port)
3139                 ironlake_pch_enable(crtc);
3140
3141         intel_crtc_load_lut(crtc);
3142
3143         DRM_LOCK(dev);
3144         intel_update_fbc(dev);
3145         DRM_UNLOCK(dev);
3146
3147         intel_crtc_update_cursor(crtc, true);
3148 }
3149
3150 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3151 {
3152         struct drm_device *dev = crtc->dev;
3153         struct drm_i915_private *dev_priv = dev->dev_private;
3154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3155         int pipe = intel_crtc->pipe;
3156         int plane = intel_crtc->plane;
3157         u32 reg, temp;
3158
3159         if (!intel_crtc->active)
3160                 return;
3161
3162         intel_crtc_wait_for_pending_flips(crtc);
3163         drm_vblank_off(dev, pipe);
3164         intel_crtc_update_cursor(crtc, false);
3165
3166         intel_disable_plane(dev_priv, plane, pipe);
3167
3168         if (dev_priv->cfb_plane == plane)
3169                 intel_disable_fbc(dev);
3170
3171         intel_disable_pipe(dev_priv, pipe);
3172
3173         /* Disable PF */
3174         I915_WRITE(PF_CTL(pipe), 0);
3175         I915_WRITE(PF_WIN_SZ(pipe), 0);
3176
3177         ironlake_fdi_disable(crtc);
3178
3179         /* This is a horrible layering violation; we should be doing this in
3180          * the connector/encoder ->prepare instead, but we don't always have
3181          * enough information there about the config to know whether it will
3182          * actually be necessary or just cause undesired flicker.
3183          */
3184         intel_disable_pch_ports(dev_priv, pipe);
3185
3186         intel_disable_transcoder(dev_priv, pipe);
3187
3188         if (HAS_PCH_CPT(dev)) {
3189                 /* disable TRANS_DP_CTL */
3190                 reg = TRANS_DP_CTL(pipe);
3191                 temp = I915_READ(reg);
3192                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3193                 temp |= TRANS_DP_PORT_SEL_NONE;
3194                 I915_WRITE(reg, temp);
3195
3196                 /* disable DPLL_SEL */
3197                 temp = I915_READ(PCH_DPLL_SEL);
3198                 switch (pipe) {
3199                 case 0:
3200                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3201                         break;
3202                 case 1:
3203                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3204                         break;
3205                 case 2:
3206                         /* C shares PLL A or B */
3207                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3208                         break;
3209                 default:
3210                         KASSERT(1, ("Wrong pipe %d", pipe)); /* wtf */
3211                 }
3212                 I915_WRITE(PCH_DPLL_SEL, temp);
3213         }
3214
3215         /* disable PCH DPLL */
3216         if (!intel_crtc->no_pll)
3217                 intel_disable_pch_pll(dev_priv, pipe);
3218
3219         /* Switch from PCDclk to Rawclk */
3220         reg = FDI_RX_CTL(pipe);
3221         temp = I915_READ(reg);
3222         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3223
3224         /* Disable CPU FDI TX PLL */
3225         reg = FDI_TX_CTL(pipe);
3226         temp = I915_READ(reg);
3227         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3228
3229         POSTING_READ(reg);
3230         DELAY(100);
3231
3232         reg = FDI_RX_CTL(pipe);
3233         temp = I915_READ(reg);
3234         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3235
3236         /* Wait for the clocks to turn off. */
3237         POSTING_READ(reg);
3238         DELAY(100);
3239
3240         intel_crtc->active = false;
3241         intel_update_watermarks(dev);
3242
3243         DRM_LOCK(dev);
3244         intel_update_fbc(dev);
3245         intel_clear_scanline_wait(dev);
3246         DRM_UNLOCK(dev);
3247 }
3248
3249 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3250 {
3251         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3252         int pipe = intel_crtc->pipe;
3253         int plane = intel_crtc->plane;
3254
3255         /* XXX: When our outputs are all unaware of DPMS modes other than off
3256          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3257          */
3258         switch (mode) {
3259         case DRM_MODE_DPMS_ON:
3260         case DRM_MODE_DPMS_STANDBY:
3261         case DRM_MODE_DPMS_SUSPEND:
3262                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3263                 ironlake_crtc_enable(crtc);
3264                 break;
3265
3266         case DRM_MODE_DPMS_OFF:
3267                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3268                 ironlake_crtc_disable(crtc);
3269                 break;
3270         }
3271 }
3272
3273 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3274 {
3275         if (!enable && intel_crtc->overlay) {
3276                 struct drm_device *dev = intel_crtc->base.dev;
3277                 struct drm_i915_private *dev_priv = dev->dev_private;
3278
3279                 DRM_LOCK(dev);
3280                 dev_priv->mm.interruptible = false;
3281                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3282                 dev_priv->mm.interruptible = true;
3283                 DRM_UNLOCK(dev);
3284         }
3285
3286         /* Let userspace switch the overlay on again. In most cases userspace
3287          * has to recompute where to put it anyway.
3288          */
3289 }
3290
3291 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3292 {
3293         struct drm_device *dev = crtc->dev;
3294         struct drm_i915_private *dev_priv = dev->dev_private;
3295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3296         int pipe = intel_crtc->pipe;
3297         int plane = intel_crtc->plane;
3298
3299         if (intel_crtc->active)
3300                 return;
3301
3302         intel_crtc->active = true;
3303         intel_update_watermarks(dev);
3304
3305         intel_enable_pll(dev_priv, pipe);
3306         intel_enable_pipe(dev_priv, pipe, false);
3307         intel_enable_plane(dev_priv, plane, pipe);
3308
3309         intel_crtc_load_lut(crtc);
3310         intel_update_fbc(dev);
3311
3312         /* Give the overlay scaler a chance to enable if it's on this pipe */
3313         intel_crtc_dpms_overlay(intel_crtc, true);
3314         intel_crtc_update_cursor(crtc, true);
3315 }
3316
3317 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3318 {
3319         struct drm_device *dev = crtc->dev;
3320         struct drm_i915_private *dev_priv = dev->dev_private;
3321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3322         int pipe = intel_crtc->pipe;
3323         int plane = intel_crtc->plane;
3324
3325         if (!intel_crtc->active)
3326                 return;
3327
3328         /* Give the overlay scaler a chance to disable if it's on this pipe */
3329         intel_crtc_wait_for_pending_flips(crtc);
3330         drm_vblank_off(dev, pipe);
3331         intel_crtc_dpms_overlay(intel_crtc, false);
3332         intel_crtc_update_cursor(crtc, false);
3333
3334         if (dev_priv->cfb_plane == plane)
3335                 intel_disable_fbc(dev);
3336
3337         intel_disable_plane(dev_priv, plane, pipe);
3338         intel_disable_pipe(dev_priv, pipe);
3339         intel_disable_pll(dev_priv, pipe);
3340
3341         intel_crtc->active = false;
3342         intel_update_fbc(dev);
3343         intel_update_watermarks(dev);
3344         intel_clear_scanline_wait(dev);
3345 }
3346
3347 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3348 {
3349         /* XXX: When our outputs are all unaware of DPMS modes other than off
3350          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3351          */
3352         switch (mode) {
3353         case DRM_MODE_DPMS_ON:
3354         case DRM_MODE_DPMS_STANDBY:
3355         case DRM_MODE_DPMS_SUSPEND:
3356                 i9xx_crtc_enable(crtc);
3357                 break;
3358         case DRM_MODE_DPMS_OFF:
3359                 i9xx_crtc_disable(crtc);
3360                 break;
3361         }
3362 }
3363
3364 /**
3365  * Sets the power management mode of the pipe and plane.
3366  */
3367 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3368 {
3369         struct drm_device *dev = crtc->dev;
3370         struct drm_i915_private *dev_priv = dev->dev_private;
3371 #if 0
3372         struct drm_i915_master_private *master_priv;
3373 #endif
3374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3375         int pipe = intel_crtc->pipe;
3376         bool enabled;
3377
3378         if (intel_crtc->dpms_mode == mode)
3379                 return;
3380
3381         intel_crtc->dpms_mode = mode;
3382
3383         dev_priv->display.dpms(crtc, mode);
3384
3385 #if 0
3386         if (!dev->primary->master)
3387                 return;
3388
3389         master_priv = dev->primary->master->driver_priv;
3390         if (!master_priv->sarea_priv)
3391                 return;
3392 #else
3393         if (!dev_priv->sarea_priv)
3394                 return;
3395 #endif
3396
3397         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3398
3399         switch (pipe) {
3400         case 0:
3401 #if 0
3402                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3403                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3404 #else
3405                 dev_priv->sarea_priv->planeA_w = enabled ? crtc->mode.hdisplay : 0;
3406                 dev_priv->sarea_priv->planeA_h = enabled ? crtc->mode.vdisplay : 0;
3407 #endif
3408                 break;
3409         case 1:
3410 #if 0
3411                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3412                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3413 #else
3414                 dev_priv->sarea_priv->planeB_w = enabled ? crtc->mode.hdisplay : 0;
3415                 dev_priv->sarea_priv->planeB_h = enabled ? crtc->mode.vdisplay : 0;
3416 #endif
3417                 break;
3418         default:
3419                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3420                 break;
3421         }
3422 }
3423
3424 static void intel_crtc_disable(struct drm_crtc *crtc)
3425 {
3426         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3427         struct drm_device *dev = crtc->dev;
3428
3429         /* Flush any pending WAITs before we disable the pipe. Note that
3430          * we need to drop the struct_mutex in order to acquire it again
3431          * during the lowlevel dpms routines around a couple of the
3432          * operations. It does not look trivial nor desirable to move
3433          * that locking higher. So instead we leave a window for the
3434          * submission of further commands on the fb before we can actually
3435          * disable it. This race with userspace exists anyway, and we can
3436          * only rely on the pipe being disabled by userspace after it
3437          * receives the hotplug notification and has flushed any pending
3438          * batches.
3439          */
3440         if (crtc->fb) {
3441                 DRM_LOCK(dev);
3442                 intel_finish_fb(crtc->fb);
3443                 DRM_UNLOCK(dev);
3444         }
3445
3446         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3447         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3448         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3449
3450         if (crtc->fb) {
3451                 DRM_LOCK(dev);
3452                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3453                 DRM_UNLOCK(dev);
3454         }
3455 }
3456
3457 /* Prepare for a mode set.
3458  *
3459  * Note we could be a lot smarter here.  We need to figure out which outputs
3460  * will be enabled, which disabled (in short, how the config will changes)
3461  * and perform the minimum necessary steps to accomplish that, e.g. updating
3462  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3463  * panel fitting is in the proper state, etc.
3464  */
3465 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3466 {
3467         i9xx_crtc_disable(crtc);
3468 }
3469
3470 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3471 {
3472         i9xx_crtc_enable(crtc);
3473 }
3474
3475 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3476 {
3477         ironlake_crtc_disable(crtc);
3478 }
3479
3480 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3481 {
3482         ironlake_crtc_enable(crtc);
3483 }
3484
3485 void intel_encoder_prepare(struct drm_encoder *encoder)
3486 {
3487         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3488         /* lvds has its own version of prepare see intel_lvds_prepare */
3489         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3490 }
3491
3492 void intel_encoder_commit(struct drm_encoder *encoder)
3493 {
3494         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3495         struct drm_device *dev = encoder->dev;
3496         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3497         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3498
3499         /* lvds has its own version of commit see intel_lvds_commit */
3500         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3501
3502         if (HAS_PCH_CPT(dev))
3503                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3504 }
3505
3506 void intel_encoder_destroy(struct drm_encoder *encoder)
3507 {
3508         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3509
3510         drm_encoder_cleanup(encoder);
3511         free(intel_encoder, DRM_MEM_KMS);
3512 }
3513
3514 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3515                                   struct drm_display_mode *mode,
3516                                   struct drm_display_mode *adjusted_mode)
3517 {
3518         struct drm_device *dev = crtc->dev;
3519
3520         if (HAS_PCH_SPLIT(dev)) {
3521                 /* FDI link clock is fixed at 2.7G */
3522                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3523                         return false;
3524         }
3525
3526         /* All interlaced capable intel hw wants timings in frames. Note though
3527          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3528          * timings, so we need to be careful not to clobber these.*/
3529         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3530                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3531
3532         return true;
3533 }
3534
3535 static int i945_get_display_clock_speed(struct drm_device *dev)
3536 {
3537         return 400000;
3538 }
3539
3540 static int i915_get_display_clock_speed(struct drm_device *dev)
3541 {
3542         return 333000;
3543 }
3544
3545 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3546 {
3547         return 200000;
3548 }
3549
3550 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3551 {
3552         u16 gcfgc = 0;
3553
3554         gcfgc = pci_read_config(dev->device, GCFGC, 2);
3555
3556         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3557                 return 133000;
3558         else {
3559                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3560                 case GC_DISPLAY_CLOCK_333_MHZ:
3561                         return 333000;
3562                 default:
3563                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3564                         return 190000;
3565                 }
3566         }
3567 }
3568
3569 static int i865_get_display_clock_speed(struct drm_device *dev)
3570 {
3571         return 266000;
3572 }
3573
3574 static int i855_get_display_clock_speed(struct drm_device *dev)
3575 {
3576         u16 hpllcc = 0;
3577         /* Assume that the hardware is in the high speed state.  This
3578          * should be the default.
3579          */
3580         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3581         case GC_CLOCK_133_200:
3582         case GC_CLOCK_100_200:
3583                 return 200000;
3584         case GC_CLOCK_166_250:
3585                 return 250000;
3586         case GC_CLOCK_100_133:
3587                 return 133000;
3588         }
3589
3590         /* Shouldn't happen */
3591         return 0;
3592 }
3593
3594 static int i830_get_display_clock_speed(struct drm_device *dev)
3595 {
3596         return 133000;
3597 }
3598
3599 struct fdi_m_n {
3600         u32        tu;
3601         u32        gmch_m;
3602         u32        gmch_n;
3603         u32        link_m;
3604         u32        link_n;
3605 };
3606
3607 static void
3608 fdi_reduce_ratio(u32 *num, u32 *den)
3609 {
3610         while (*num > 0xffffff || *den > 0xffffff) {
3611                 *num >>= 1;
3612                 *den >>= 1;
3613         }
3614 }
3615
3616 static void
3617 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3618                      int link_clock, struct fdi_m_n *m_n)
3619 {
3620         m_n->tu = 64; /* default size */
3621
3622         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3623         m_n->gmch_m = bits_per_pixel * pixel_clock;
3624         m_n->gmch_n = link_clock * nlanes * 8;
3625         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3626
3627         m_n->link_m = pixel_clock;
3628         m_n->link_n = link_clock;
3629         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3630 }
3631
3632
3633 struct intel_watermark_params {
3634         unsigned long fifo_size;
3635         unsigned long max_wm;
3636         unsigned long default_wm;
3637         unsigned long guard_size;
3638         unsigned long cacheline_size;
3639 };
3640
3641 /* Pineview has different values for various configs */
3642 static const struct intel_watermark_params pineview_display_wm = {
3643         PINEVIEW_DISPLAY_FIFO,
3644         PINEVIEW_MAX_WM,
3645         PINEVIEW_DFT_WM,
3646         PINEVIEW_GUARD_WM,
3647         PINEVIEW_FIFO_LINE_SIZE
3648 };
3649 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3650         PINEVIEW_DISPLAY_FIFO,
3651         PINEVIEW_MAX_WM,
3652         PINEVIEW_DFT_HPLLOFF_WM,
3653         PINEVIEW_GUARD_WM,
3654         PINEVIEW_FIFO_LINE_SIZE
3655 };
3656 static const struct intel_watermark_params pineview_cursor_wm = {
3657         PINEVIEW_CURSOR_FIFO,
3658         PINEVIEW_CURSOR_MAX_WM,
3659         PINEVIEW_CURSOR_DFT_WM,
3660         PINEVIEW_CURSOR_GUARD_WM,
3661         PINEVIEW_FIFO_LINE_SIZE,
3662 };
3663 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3664         PINEVIEW_CURSOR_FIFO,
3665         PINEVIEW_CURSOR_MAX_WM,
3666         PINEVIEW_CURSOR_DFT_WM,
3667         PINEVIEW_CURSOR_GUARD_WM,
3668         PINEVIEW_FIFO_LINE_SIZE
3669 };
3670 static const struct intel_watermark_params g4x_wm_info = {
3671         G4X_FIFO_SIZE,
3672         G4X_MAX_WM,
3673         G4X_MAX_WM,
3674         2,
3675         G4X_FIFO_LINE_SIZE,
3676 };
3677 static const struct intel_watermark_params g4x_cursor_wm_info = {
3678         I965_CURSOR_FIFO,
3679         I965_CURSOR_MAX_WM,
3680         I965_CURSOR_DFT_WM,
3681         2,
3682         G4X_FIFO_LINE_SIZE,
3683 };
3684 static const struct intel_watermark_params i965_cursor_wm_info = {
3685         I965_CURSOR_FIFO,
3686         I965_CURSOR_MAX_WM,
3687         I965_CURSOR_DFT_WM,
3688         2,
3689         I915_FIFO_LINE_SIZE,
3690 };
3691 static const struct intel_watermark_params i945_wm_info = {
3692         I945_FIFO_SIZE,
3693         I915_MAX_WM,
3694         1,
3695         2,
3696         I915_FIFO_LINE_SIZE
3697 };
3698 static const struct intel_watermark_params i915_wm_info = {
3699         I915_FIFO_SIZE,
3700         I915_MAX_WM,
3701         1,
3702         2,
3703         I915_FIFO_LINE_SIZE
3704 };
3705 static const struct intel_watermark_params i855_wm_info = {
3706         I855GM_FIFO_SIZE,
3707         I915_MAX_WM,
3708         1,
3709         2,
3710         I830_FIFO_LINE_SIZE
3711 };
3712 static const struct intel_watermark_params i830_wm_info = {
3713         I830_FIFO_SIZE,
3714         I915_MAX_WM,
3715         1,
3716         2,
3717         I830_FIFO_LINE_SIZE
3718 };
3719
3720 static const struct intel_watermark_params ironlake_display_wm_info = {
3721         ILK_DISPLAY_FIFO,
3722         ILK_DISPLAY_MAXWM,
3723         ILK_DISPLAY_DFTWM,
3724         2,
3725         ILK_FIFO_LINE_SIZE
3726 };
3727 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3728         ILK_CURSOR_FIFO,
3729         ILK_CURSOR_MAXWM,
3730         ILK_CURSOR_DFTWM,
3731         2,
3732         ILK_FIFO_LINE_SIZE
3733 };
3734 static const struct intel_watermark_params ironlake_display_srwm_info = {
3735         ILK_DISPLAY_SR_FIFO,
3736         ILK_DISPLAY_MAX_SRWM,
3737         ILK_DISPLAY_DFT_SRWM,
3738         2,
3739         ILK_FIFO_LINE_SIZE
3740 };
3741 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3742         ILK_CURSOR_SR_FIFO,
3743         ILK_CURSOR_MAX_SRWM,
3744         ILK_CURSOR_DFT_SRWM,
3745         2,
3746         ILK_FIFO_LINE_SIZE
3747 };
3748
3749 static const struct intel_watermark_params sandybridge_display_wm_info = {
3750         SNB_DISPLAY_FIFO,
3751         SNB_DISPLAY_MAXWM,
3752         SNB_DISPLAY_DFTWM,
3753         2,
3754         SNB_FIFO_LINE_SIZE
3755 };
3756 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3757         SNB_CURSOR_FIFO,
3758         SNB_CURSOR_MAXWM,
3759         SNB_CURSOR_DFTWM,
3760         2,
3761         SNB_FIFO_LINE_SIZE
3762 };
3763 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3764         SNB_DISPLAY_SR_FIFO,
3765         SNB_DISPLAY_MAX_SRWM,
3766         SNB_DISPLAY_DFT_SRWM,
3767         2,
3768         SNB_FIFO_LINE_SIZE
3769 };
3770 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3771         SNB_CURSOR_SR_FIFO,
3772         SNB_CURSOR_MAX_SRWM,
3773         SNB_CURSOR_DFT_SRWM,
3774         2,
3775         SNB_FIFO_LINE_SIZE
3776 };
3777
3778
3779 /**
3780  * intel_calculate_wm - calculate watermark level
3781  * @clock_in_khz: pixel clock
3782  * @wm: chip FIFO params
3783  * @pixel_size: display pixel size
3784  * @latency_ns: memory latency for the platform
3785  *
3786  * Calculate the watermark level (the level at which the display plane will
3787  * start fetching from memory again).  Each chip has a different display
3788  * FIFO size and allocation, so the caller needs to figure that out and pass
3789  * in the correct intel_watermark_params structure.
3790  *
3791  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3792  * on the pixel size.  When it reaches the watermark level, it'll start
3793  * fetching FIFO line sized based chunks from memory until the FIFO fills
3794  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3795  * will occur, and a display engine hang could result.
3796  */
3797 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3798                                         const struct intel_watermark_params *wm,
3799                                         int fifo_size,
3800                                         int pixel_size,
3801                                         unsigned long latency_ns)
3802 {
3803         long entries_required, wm_size;
3804
3805         /*
3806          * Note: we need to make sure we don't overflow for various clock &
3807          * latency values.
3808          * clocks go from a few thousand to several hundred thousand.
3809          * latency is usually a few thousand
3810          */
3811         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3812                 1000;
3813         entries_required = howmany(entries_required, wm->cacheline_size);
3814
3815         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3816
3817         wm_size = fifo_size - (entries_required + wm->guard_size);
3818
3819         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3820
3821         /* Don't promote wm_size to unsigned... */
3822         if (wm_size > (long)wm->max_wm)
3823                 wm_size = wm->max_wm;
3824         if (wm_size <= 0)
3825                 wm_size = wm->default_wm;
3826         return wm_size;
3827 }
3828
3829 struct cxsr_latency {
3830         int is_desktop;
3831         int is_ddr3;
3832         unsigned long fsb_freq;
3833         unsigned long mem_freq;
3834         unsigned long display_sr;
3835         unsigned long display_hpll_disable;
3836         unsigned long cursor_sr;
3837         unsigned long cursor_hpll_disable;
3838 };
3839
3840 static const struct cxsr_latency cxsr_latency_table[] = {
3841         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3842         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3843         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3844         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3845         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3846
3847         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3848         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3849         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3850         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3851         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3852
3853         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3854         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3855         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3856         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3857         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3858
3859         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3860         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3861         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3862         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3863         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3864
3865         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3866         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3867         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3868         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3869         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3870
3871         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3872         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3873         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3874         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3875         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3876 };
3877
3878 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3879                                                          int is_ddr3,
3880                                                          int fsb,
3881                                                          int mem)
3882 {
3883         const struct cxsr_latency *latency;
3884         int i;
3885
3886         if (fsb == 0 || mem == 0)
3887                 return NULL;
3888
3889         for (i = 0; i < DRM_ARRAY_SIZE(cxsr_latency_table); i++) {
3890                 latency = &cxsr_latency_table[i];
3891                 if (is_desktop == latency->is_desktop &&
3892                     is_ddr3 == latency->is_ddr3 &&
3893                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3894                         return latency;
3895         }
3896
3897         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3898
3899         return NULL;
3900 }
3901
3902 static void pineview_disable_cxsr(struct drm_device *dev)
3903 {
3904         struct drm_i915_private *dev_priv = dev->dev_private;
3905
3906         /* deactivate cxsr */
3907         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3908 }
3909
3910 /*
3911  * Latency for FIFO fetches is dependent on several factors:
3912  *   - memory configuration (speed, channels)
3913  *   - chipset
3914  *   - current MCH state
3915  * It can be fairly high in some situations, so here we assume a fairly
3916  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3917  * set this value too high, the FIFO will fetch frequently to stay full)
3918  * and power consumption (set it too low to save power and we might see
3919  * FIFO underruns and display "flicker").
3920  *
3921  * A value of 5us seems to be a good balance; safe for very low end
3922  * platforms but not overly aggressive on lower latency configs.
3923  */
3924 static const int latency_ns = 5000;
3925
3926 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3927 {
3928         struct drm_i915_private *dev_priv = dev->dev_private;
3929         uint32_t dsparb = I915_READ(DSPARB);
3930         int size;
3931
3932         size = dsparb & 0x7f;
3933         if (plane)
3934                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3935
3936         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3937                       plane ? "B" : "A", size);
3938
3939         return size;
3940 }
3941
3942 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3943 {
3944         struct drm_i915_private *dev_priv = dev->dev_private;
3945         uint32_t dsparb = I915_READ(DSPARB);
3946         int size;
3947
3948         size = dsparb & 0x1ff;
3949         if (plane)
3950                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3951         size >>= 1; /* Convert to cachelines */
3952
3953         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3954                       plane ? "B" : "A", size);
3955
3956         return size;
3957 }
3958
3959 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3960 {
3961         struct drm_i915_private *dev_priv = dev->dev_private;
3962         uint32_t dsparb = I915_READ(DSPARB);
3963         int size;
3964
3965         size = dsparb & 0x7f;
3966         size >>= 2; /* Convert to cachelines */
3967
3968         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3969                       plane ? "B" : "A",
3970                       size);
3971
3972         return size;
3973 }
3974
3975 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3976 {
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978         uint32_t dsparb = I915_READ(DSPARB);
3979         int size;
3980
3981         size = dsparb & 0x7f;
3982         size >>= 1; /* Convert to cachelines */
3983
3984         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3985                       plane ? "B" : "A", size);
3986
3987         return size;
3988 }
3989
3990 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3991 {
3992         struct drm_crtc *crtc, *enabled = NULL;
3993
3994         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3995                 if (crtc->enabled && crtc->fb) {
3996                         if (enabled)
3997                                 return NULL;
3998                         enabled = crtc;
3999                 }
4000         }
4001
4002         return enabled;
4003 }
4004
4005 static void pineview_update_wm(struct drm_device *dev)
4006 {
4007         struct drm_i915_private *dev_priv = dev->dev_private;
4008         struct drm_crtc *crtc;
4009         const struct cxsr_latency *latency;
4010         u32 reg;
4011         unsigned long wm;
4012
4013         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4014                                          dev_priv->fsb_freq, dev_priv->mem_freq);
4015         if (!latency) {
4016                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4017                 pineview_disable_cxsr(dev);
4018                 return;
4019         }
4020
4021         crtc = single_enabled_crtc(dev);
4022         if (crtc) {
4023                 int clock = crtc->mode.clock;
4024                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4025
4026                 /* Display SR */
4027                 wm = intel_calculate_wm(clock, &pineview_display_wm,
4028                                         pineview_display_wm.fifo_size,
4029                                         pixel_size, latency->display_sr);
4030                 reg = I915_READ(DSPFW1);
4031                 reg &= ~DSPFW_SR_MASK;
4032                 reg |= wm << DSPFW_SR_SHIFT;
4033                 I915_WRITE(DSPFW1, reg);
4034                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4035
4036                 /* cursor SR */
4037                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4038                                         pineview_display_wm.fifo_size,
4039                                         pixel_size, latency->cursor_sr);
4040                 reg = I915_READ(DSPFW3);
4041                 reg &= ~DSPFW_CURSOR_SR_MASK;
4042                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4043                 I915_WRITE(DSPFW3, reg);
4044
4045                 /* Display HPLL off SR */
4046                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4047                                         pineview_display_hplloff_wm.fifo_size,
4048                                         pixel_size, latency->display_hpll_disable);
4049                 reg = I915_READ(DSPFW3);
4050                 reg &= ~DSPFW_HPLL_SR_MASK;
4051                 reg |= wm & DSPFW_HPLL_SR_MASK;
4052                 I915_WRITE(DSPFW3, reg);
4053
4054                 /* cursor HPLL off SR */
4055                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4056                                         pineview_display_hplloff_wm.fifo_size,
4057                                         pixel_size, latency->cursor_hpll_disable);
4058                 reg = I915_READ(DSPFW3);
4059                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4060                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4061                 I915_WRITE(DSPFW3, reg);
4062                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4063
4064                 /* activate cxsr */
4065                 I915_WRITE(DSPFW3,
4066                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4067                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4068         } else {
4069                 pineview_disable_cxsr(dev);
4070                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4071         }
4072 }
4073
4074 static bool g4x_compute_wm0(struct drm_device *dev,
4075                             int plane,
4076                             const struct intel_watermark_params *display,
4077                             int display_latency_ns,
4078                             const struct intel_watermark_params *cursor,
4079                             int cursor_latency_ns,
4080                             int *plane_wm,
4081                             int *cursor_wm)
4082 {
4083         struct drm_crtc *crtc;
4084         int htotal, hdisplay, clock, pixel_size;
4085         int line_time_us, line_count;
4086         int entries, tlb_miss;
4087
4088         crtc = intel_get_crtc_for_plane(dev, plane);
4089         if (crtc->fb == NULL || !crtc->enabled) {
4090                 *cursor_wm = cursor->guard_size;
4091                 *plane_wm = display->guard_size;
4092                 return false;
4093         }
4094
4095         htotal = crtc->mode.htotal;
4096         hdisplay = crtc->mode.hdisplay;
4097         clock = crtc->mode.clock;
4098         pixel_size = crtc->fb->bits_per_pixel / 8;
4099
4100         /* Use the small buffer method to calculate plane watermark */
4101         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4102         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4103         if (tlb_miss > 0)
4104                 entries += tlb_miss;
4105         entries = howmany(entries, display->cacheline_size);
4106         *plane_wm = entries + display->guard_size;
4107         if (*plane_wm > (int)display->max_wm)
4108                 *plane_wm = display->max_wm;
4109
4110         /* Use the large buffer method to calculate cursor watermark */
4111         line_time_us = ((htotal * 1000) / clock);
4112         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4113         entries = line_count * 64 * pixel_size;
4114         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4115         if (tlb_miss > 0)
4116                 entries += tlb_miss;
4117         entries = howmany(entries, cursor->cacheline_size);
4118         *cursor_wm = entries + cursor->guard_size;
4119         if (*cursor_wm > (int)cursor->max_wm)
4120                 *cursor_wm = (int)cursor->max_wm;
4121
4122         return true;
4123 }
4124
4125 /*
4126  * Check the wm result.
4127  *
4128  * If any calculated watermark values is larger than the maximum value that
4129  * can be programmed into the associated watermark register, that watermark
4130  * must be disabled.
4131  */
4132 static bool g4x_check_srwm(struct drm_device *dev,
4133                            int display_wm, int cursor_wm,
4134                            const struct intel_watermark_params *display,
4135                            const struct intel_watermark_params *cursor)
4136 {
4137         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4138                       display_wm, cursor_wm);
4139
4140         if (display_wm > display->max_wm) {
4141                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4142                               display_wm, display->max_wm);
4143                 return false;
4144         }
4145
4146         if (cursor_wm > cursor->max_wm) {
4147                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4148                               cursor_wm, cursor->max_wm);
4149                 return false;
4150         }
4151
4152         if (!(display_wm || cursor_wm)) {
4153                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4154                 return false;
4155         }
4156
4157         return true;
4158 }
4159
4160 static bool g4x_compute_srwm(struct drm_device *dev,
4161                              int plane,
4162                              int latency_ns,
4163                              const struct intel_watermark_params *display,
4164                              const struct intel_watermark_params *cursor,
4165                              int *display_wm, int *cursor_wm)
4166 {
4167         struct drm_crtc *crtc;
4168         int hdisplay, htotal, pixel_size, clock;
4169         unsigned long line_time_us;
4170         int line_count, line_size;
4171         int small, large;
4172         int entries;
4173
4174         if (!latency_ns) {
4175                 *display_wm = *cursor_wm = 0;
4176                 return false;
4177         }
4178
4179         crtc = intel_get_crtc_for_plane(dev, plane);
4180         hdisplay = crtc->mode.hdisplay;
4181         htotal = crtc->mode.htotal;
4182         clock = crtc->mode.clock;
4183         pixel_size = crtc->fb->bits_per_pixel / 8;
4184
4185         line_time_us = (htotal * 1000) / clock;
4186         line_count = (latency_ns / line_time_us + 1000) / 1000;
4187         line_size = hdisplay * pixel_size;
4188
4189         /* Use the minimum of the small and large buffer method for primary */
4190         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4191         large = line_count * line_size;
4192
4193         entries = howmany(min(small, large), display->cacheline_size);
4194         *display_wm = entries + display->guard_size;
4195
4196         /* calculate the self-refresh watermark for display cursor */
4197         entries = line_count * pixel_size * 64;
4198         entries = howmany(entries, cursor->cacheline_size);
4199         *cursor_wm = entries + cursor->guard_size;
4200
4201         return g4x_check_srwm(dev,
4202                               *display_wm, *cursor_wm,
4203                               display, cursor);
4204 }
4205
4206 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
4207
4208 static void g4x_update_wm(struct drm_device *dev)
4209 {
4210         static const int sr_latency_ns = 12000;
4211         struct drm_i915_private *dev_priv = dev->dev_private;
4212         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4213         int plane_sr, cursor_sr;
4214         unsigned int enabled = 0;
4215
4216         if (g4x_compute_wm0(dev, 0,
4217                             &g4x_wm_info, latency_ns,
4218                             &g4x_cursor_wm_info, latency_ns,
4219                             &planea_wm, &cursora_wm))
4220                 enabled |= 1;
4221
4222         if (g4x_compute_wm0(dev, 1,
4223                             &g4x_wm_info, latency_ns,
4224                             &g4x_cursor_wm_info, latency_ns,
4225                             &planeb_wm, &cursorb_wm))
4226                 enabled |= 2;
4227
4228         plane_sr = cursor_sr = 0;
4229         if (single_plane_enabled(enabled) &&
4230             g4x_compute_srwm(dev, ffs(enabled) - 1,
4231                              sr_latency_ns,
4232                              &g4x_wm_info,
4233                              &g4x_cursor_wm_info,
4234                              &plane_sr, &cursor_sr))
4235                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4236         else
4237                 I915_WRITE(FW_BLC_SELF,
4238                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4239
4240         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4241                       planea_wm, cursora_wm,
4242                       planeb_wm, cursorb_wm,
4243                       plane_sr, cursor_sr);
4244
4245         I915_WRITE(DSPFW1,
4246                    (plane_sr << DSPFW_SR_SHIFT) |
4247                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4248                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4249                    planea_wm);
4250         I915_WRITE(DSPFW2,
4251                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4252                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4253         /* HPLL off in SR has some issues on G4x... disable it */
4254         I915_WRITE(DSPFW3,
4255                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4256                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4257 }
4258
4259 static void i965_update_wm(struct drm_device *dev)
4260 {
4261         struct drm_i915_private *dev_priv = dev->dev_private;
4262         struct drm_crtc *crtc;
4263         int srwm = 1;
4264         int cursor_sr = 16;
4265
4266         /* Calc sr entries for one plane configs */
4267         crtc = single_enabled_crtc(dev);
4268         if (crtc) {
4269                 /* self-refresh has much higher latency */
4270                 static const int sr_latency_ns = 12000;
4271                 int clock = crtc->mode.clock;
4272                 int htotal = crtc->mode.htotal;
4273                 int hdisplay = crtc->mode.hdisplay;
4274                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4275                 unsigned long line_time_us;
4276                 int entries;
4277
4278                 line_time_us = ((htotal * 1000) / clock);
4279
4280                 /* Use ns/us then divide to preserve precision */
4281                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4282                         pixel_size * hdisplay;
4283                 entries = howmany(entries, I915_FIFO_LINE_SIZE);
4284                 srwm = I965_FIFO_SIZE - entries;
4285                 if (srwm < 0)
4286                         srwm = 1;
4287                 srwm &= 0x1ff;
4288                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4289                               entries, srwm);
4290
4291                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4292                         pixel_size * 64;
4293                 entries = howmany(entries, i965_cursor_wm_info.cacheline_size);
4294                 cursor_sr = i965_cursor_wm_info.fifo_size -
4295                         (entries + i965_cursor_wm_info.guard_size);
4296
4297                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4298                         cursor_sr = i965_cursor_wm_info.max_wm;
4299
4300                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4301                               "cursor %d\n", srwm, cursor_sr);
4302
4303                 if (IS_CRESTLINE(dev))
4304                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4305         } else {
4306                 /* Turn off self refresh if both pipes are enabled */
4307                 if (IS_CRESTLINE(dev))
4308                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4309                                    & ~FW_BLC_SELF_EN);
4310         }
4311
4312         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4313                       srwm);
4314
4315         /* 965 has limitations... */
4316         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4317                    (8 << 16) | (8 << 8) | (8 << 0));
4318         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4319         /* update cursor SR watermark */
4320         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4321 }
4322
4323 static void i9xx_update_wm(struct drm_device *dev)
4324 {
4325         struct drm_i915_private *dev_priv = dev->dev_private;
4326         const struct intel_watermark_params *wm_info;
4327         uint32_t fwater_lo;
4328         uint32_t fwater_hi;
4329         int cwm, srwm = 1;
4330         int fifo_size;
4331         int planea_wm, planeb_wm;
4332         struct drm_crtc *crtc, *enabled = NULL;
4333
4334         if (IS_I945GM(dev))
4335                 wm_info = &i945_wm_info;
4336         else if (!IS_GEN2(dev))
4337                 wm_info = &i915_wm_info;
4338         else
4339                 wm_info = &i855_wm_info;
4340
4341         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4342         crtc = intel_get_crtc_for_plane(dev, 0);
4343         if (crtc->enabled && crtc->fb) {
4344                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4345                                                wm_info, fifo_size,
4346                                                crtc->fb->bits_per_pixel / 8,
4347                                                latency_ns);
4348                 enabled = crtc;
4349         } else
4350                 planea_wm = fifo_size - wm_info->guard_size;
4351
4352         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4353         crtc = intel_get_crtc_for_plane(dev, 1);
4354         if (crtc->enabled && crtc->fb) {
4355                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4356                                                wm_info, fifo_size,
4357                                                crtc->fb->bits_per_pixel / 8,
4358                                                latency_ns);
4359                 if (enabled == NULL)
4360                         enabled = crtc;
4361                 else
4362                         enabled = NULL;
4363         } else
4364                 planeb_wm = fifo_size - wm_info->guard_size;
4365
4366         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4367
4368         /*
4369          * Overlay gets an aggressive default since video jitter is bad.
4370          */
4371         cwm = 2;
4372
4373         /* Play safe and disable self-refresh before adjusting watermarks. */
4374         if (IS_I945G(dev) || IS_I945GM(dev))
4375                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4376         else if (IS_I915GM(dev))
4377                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4378
4379         /* Calc sr entries for one plane configs */
4380         if (HAS_FW_BLC(dev) && enabled) {
4381                 /* self-refresh has much higher latency */
4382                 static const int sr_latency_ns = 6000;
4383                 int clock = enabled->mode.clock;
4384                 int htotal = enabled->mode.htotal;
4385                 int hdisplay = enabled->mode.hdisplay;
4386                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4387                 unsigned long line_time_us;
4388                 int entries;
4389
4390                 line_time_us = (htotal * 1000) / clock;
4391
4392                 /* Use ns/us then divide to preserve precision */
4393                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4394                         pixel_size * hdisplay;
4395                 entries = howmany(entries, wm_info->cacheline_size);
4396                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4397                 srwm = wm_info->fifo_size - entries;
4398                 if (srwm < 0)
4399                         srwm = 1;
4400
4401                 if (IS_I945G(dev) || IS_I945GM(dev))
4402                         I915_WRITE(FW_BLC_SELF,
4403                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4404                 else if (IS_I915GM(dev))
4405                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4406         }
4407
4408         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4409                       planea_wm, planeb_wm, cwm, srwm);
4410
4411         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4412         fwater_hi = (cwm & 0x1f);
4413
4414         /* Set request length to 8 cachelines per fetch */
4415         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4416         fwater_hi = fwater_hi | (1 << 8);
4417
4418         I915_WRITE(FW_BLC, fwater_lo);
4419         I915_WRITE(FW_BLC2, fwater_hi);
4420
4421         if (HAS_FW_BLC(dev)) {
4422                 if (enabled) {
4423                         if (IS_I945G(dev) || IS_I945GM(dev))
4424                                 I915_WRITE(FW_BLC_SELF,
4425                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4426                         else if (IS_I915GM(dev))
4427                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4428                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4429                 } else
4430                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4431         }
4432 }
4433
4434 static void i830_update_wm(struct drm_device *dev)
4435 {
4436         struct drm_i915_private *dev_priv = dev->dev_private;
4437         struct drm_crtc *crtc;
4438         uint32_t fwater_lo;
4439         int planea_wm;
4440
4441         crtc = single_enabled_crtc(dev);
4442         if (crtc == NULL)
4443                 return;
4444
4445         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4446                                        dev_priv->display.get_fifo_size(dev, 0),
4447                                        crtc->fb->bits_per_pixel / 8,
4448                                        latency_ns);
4449         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4450         fwater_lo |= (3<<8) | planea_wm;
4451
4452         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4453
4454         I915_WRITE(FW_BLC, fwater_lo);
4455 }
4456
4457 #define ILK_LP0_PLANE_LATENCY           700
4458 #define ILK_LP0_CURSOR_LATENCY          1300
4459
4460 /*
4461  * Check the wm result.
4462  *
4463  * If any calculated watermark values is larger than the maximum value that
4464  * can be programmed into the associated watermark register, that watermark
4465  * must be disabled.
4466  */
4467 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4468                                 int fbc_wm, int display_wm, int cursor_wm,
4469                                 const struct intel_watermark_params *display,
4470                                 const struct intel_watermark_params *cursor)
4471 {
4472         struct drm_i915_private *dev_priv = dev->dev_private;
4473
4474         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4475                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4476
4477         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4478                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4479                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4480
4481                 /* fbc has it's own way to disable FBC WM */
4482                 I915_WRITE(DISP_ARB_CTL,
4483                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4484                 return false;
4485         }
4486
4487         if (display_wm > display->max_wm) {
4488                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4489                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4490                 return false;
4491         }
4492
4493         if (cursor_wm > cursor->max_wm) {
4494                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4495                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4496                 return false;
4497         }
4498
4499         if (!(fbc_wm || display_wm || cursor_wm)) {
4500                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4501                 return false;
4502         }
4503
4504         return true;
4505 }
4506
4507 /*
4508  * Compute watermark values of WM[1-3],
4509  */
4510 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4511                                   int latency_ns,
4512                                   const struct intel_watermark_params *display,
4513                                   const struct intel_watermark_params *cursor,
4514                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4515 {
4516         struct drm_crtc *crtc;
4517         unsigned long line_time_us;
4518         int hdisplay, htotal, pixel_size, clock;
4519         int line_count, line_size;
4520         int small, large;
4521         int entries;
4522
4523         if (!latency_ns) {
4524                 *fbc_wm = *display_wm = *cursor_wm = 0;
4525                 return false;
4526         }
4527
4528         crtc = intel_get_crtc_for_plane(dev, plane);
4529         hdisplay = crtc->mode.hdisplay;
4530         htotal = crtc->mode.htotal;
4531         clock = crtc->mode.clock;
4532         pixel_size = crtc->fb->bits_per_pixel / 8;
4533
4534         line_time_us = (htotal * 1000) / clock;
4535         line_count = (latency_ns / line_time_us + 1000) / 1000;
4536         line_size = hdisplay * pixel_size;
4537
4538         /* Use the minimum of the small and large buffer method for primary */
4539         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4540         large = line_count * line_size;
4541
4542         entries = howmany(min(small, large), display->cacheline_size);
4543         *display_wm = entries + display->guard_size;
4544
4545         /*
4546          * Spec says:
4547          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4548          */
4549         *fbc_wm = howmany(*display_wm * 64, line_size) + 2;
4550
4551         /* calculate the self-refresh watermark for display cursor */
4552         entries = line_count * pixel_size * 64;
4553         entries = howmany(entries, cursor->cacheline_size);
4554         *cursor_wm = entries + cursor->guard_size;
4555
4556         return ironlake_check_srwm(dev, level,
4557                                    *fbc_wm, *display_wm, *cursor_wm,
4558                                    display, cursor);
4559 }
4560
4561 static void ironlake_update_wm(struct drm_device *dev)
4562 {
4563         struct drm_i915_private *dev_priv = dev->dev_private;
4564         int fbc_wm, plane_wm, cursor_wm;
4565         unsigned int enabled;
4566
4567         enabled = 0;
4568         if (g4x_compute_wm0(dev, 0,
4569                             &ironlake_display_wm_info,
4570                             ILK_LP0_PLANE_LATENCY,
4571                             &ironlake_cursor_wm_info,
4572                             ILK_LP0_CURSOR_LATENCY,
4573                             &plane_wm, &cursor_wm)) {
4574                 I915_WRITE(WM0_PIPEA_ILK,
4575                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4576                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4577                               " plane %d, " "cursor: %d\n",
4578                               plane_wm, cursor_wm);
4579                 enabled |= 1;
4580         }
4581
4582         if (g4x_compute_wm0(dev, 1,
4583                             &ironlake_display_wm_info,
4584                             ILK_LP0_PLANE_LATENCY,
4585                             &ironlake_cursor_wm_info,
4586                             ILK_LP0_CURSOR_LATENCY,
4587                             &plane_wm, &cursor_wm)) {
4588                 I915_WRITE(WM0_PIPEB_ILK,
4589                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4590                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4591                               " plane %d, cursor: %d\n",
4592                               plane_wm, cursor_wm);
4593                 enabled |= 2;
4594         }
4595
4596         /*
4597          * Calculate and update the self-refresh watermark only when one
4598          * display plane is used.
4599          */
4600         I915_WRITE(WM3_LP_ILK, 0);
4601         I915_WRITE(WM2_LP_ILK, 0);
4602         I915_WRITE(WM1_LP_ILK, 0);
4603
4604         if (!single_plane_enabled(enabled))
4605                 return;
4606         enabled = ffs(enabled) - 1;
4607
4608         /* WM1 */
4609         if (!ironlake_compute_srwm(dev, 1, enabled,
4610                                    ILK_READ_WM1_LATENCY() * 500,
4611                                    &ironlake_display_srwm_info,
4612                                    &ironlake_cursor_srwm_info,
4613                                    &fbc_wm, &plane_wm, &cursor_wm))
4614                 return;
4615
4616         I915_WRITE(WM1_LP_ILK,
4617                    WM1_LP_SR_EN |
4618                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4619                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4620                    (plane_wm << WM1_LP_SR_SHIFT) |
4621                    cursor_wm);
4622
4623         /* WM2 */
4624         if (!ironlake_compute_srwm(dev, 2, enabled,
4625                                    ILK_READ_WM2_LATENCY() * 500,
4626                                    &ironlake_display_srwm_info,
4627                                    &ironlake_cursor_srwm_info,
4628                                    &fbc_wm, &plane_wm, &cursor_wm))
4629                 return;
4630
4631         I915_WRITE(WM2_LP_ILK,
4632                    WM2_LP_EN |
4633                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4634                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4635                    (plane_wm << WM1_LP_SR_SHIFT) |
4636                    cursor_wm);
4637
4638         /*
4639          * WM3 is unsupported on ILK, probably because we don't have latency
4640          * data for that power state
4641          */
4642 }
4643
4644 void sandybridge_update_wm(struct drm_device *dev)
4645 {
4646         struct drm_i915_private *dev_priv = dev->dev_private;
4647         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4648         u32 val;
4649         int fbc_wm, plane_wm, cursor_wm;
4650         unsigned int enabled;
4651
4652         enabled = 0;
4653         if (g4x_compute_wm0(dev, 0,
4654                             &sandybridge_display_wm_info, latency,
4655                             &sandybridge_cursor_wm_info, latency,
4656                             &plane_wm, &cursor_wm)) {
4657                 val = I915_READ(WM0_PIPEA_ILK);
4658                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4659                 I915_WRITE(WM0_PIPEA_ILK, val |
4660                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4661                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4662                               " plane %d, " "cursor: %d\n",
4663                               plane_wm, cursor_wm);
4664                 enabled |= 1;
4665         }
4666
4667         if (g4x_compute_wm0(dev, 1,
4668                             &sandybridge_display_wm_info, latency,
4669                             &sandybridge_cursor_wm_info, latency,
4670                             &plane_wm, &cursor_wm)) {
4671                 val = I915_READ(WM0_PIPEB_ILK);
4672                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4673                 I915_WRITE(WM0_PIPEB_ILK, val |
4674                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4675                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4676                               " plane %d, cursor: %d\n",
4677                               plane_wm, cursor_wm);
4678                 enabled |= 2;
4679         }
4680
4681         /* IVB has 3 pipes */
4682         if (IS_IVYBRIDGE(dev) &&
4683             g4x_compute_wm0(dev, 2,
4684                             &sandybridge_display_wm_info, latency,
4685                             &sandybridge_cursor_wm_info, latency,
4686                             &plane_wm, &cursor_wm)) {
4687                 val = I915_READ(WM0_PIPEC_IVB);
4688                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4689                 I915_WRITE(WM0_PIPEC_IVB, val |
4690                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4691                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4692                               " plane %d, cursor: %d\n",
4693                               plane_wm, cursor_wm);
4694                 enabled |= 3;
4695         }
4696
4697         /*
4698          * Calculate and update the self-refresh watermark only when one
4699          * display plane is used.
4700          *
4701          * SNB support 3 levels of watermark.
4702          *
4703          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4704          * and disabled in the descending order
4705          *
4706          */
4707         I915_WRITE(WM3_LP_ILK, 0);
4708         I915_WRITE(WM2_LP_ILK, 0);
4709         I915_WRITE(WM1_LP_ILK, 0);
4710
4711         if (!single_plane_enabled(enabled) ||
4712             dev_priv->sprite_scaling_enabled)
4713                 return;
4714         enabled = ffs(enabled) - 1;
4715
4716         /* WM1 */
4717         if (!ironlake_compute_srwm(dev, 1, enabled,
4718                                    SNB_READ_WM1_LATENCY() * 500,
4719                                    &sandybridge_display_srwm_info,
4720                                    &sandybridge_cursor_srwm_info,
4721                                    &fbc_wm, &plane_wm, &cursor_wm))
4722                 return;
4723
4724         I915_WRITE(WM1_LP_ILK,
4725                    WM1_LP_SR_EN |
4726                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4727                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4728                    (plane_wm << WM1_LP_SR_SHIFT) |
4729                    cursor_wm);
4730
4731         /* WM2 */
4732         if (!ironlake_compute_srwm(dev, 2, enabled,
4733                                    SNB_READ_WM2_LATENCY() * 500,
4734                                    &sandybridge_display_srwm_info,
4735                                    &sandybridge_cursor_srwm_info,
4736                                    &fbc_wm, &plane_wm, &cursor_wm))
4737                 return;
4738
4739         I915_WRITE(WM2_LP_ILK,
4740                    WM2_LP_EN |
4741                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4742                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4743                    (plane_wm << WM1_LP_SR_SHIFT) |
4744                    cursor_wm);
4745
4746         /* WM3 */
4747         if (!ironlake_compute_srwm(dev, 3, enabled,
4748                                    SNB_READ_WM3_LATENCY() * 500,
4749                                    &sandybridge_display_srwm_info,
4750                                    &sandybridge_cursor_srwm_info,
4751                                    &fbc_wm, &plane_wm, &cursor_wm))
4752                 return;
4753
4754         I915_WRITE(WM3_LP_ILK,
4755                    WM3_LP_EN |
4756                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4757                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4758                    (plane_wm << WM1_LP_SR_SHIFT) |
4759                    cursor_wm);
4760 }
4761
4762 static bool
4763 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4764                               uint32_t sprite_width, int pixel_size,
4765                               const struct intel_watermark_params *display,
4766                               int display_latency_ns, int *sprite_wm)
4767 {
4768         struct drm_crtc *crtc;
4769         int clock;
4770         int entries, tlb_miss;
4771
4772         crtc = intel_get_crtc_for_plane(dev, plane);
4773         if (crtc->fb == NULL || !crtc->enabled) {
4774                 *sprite_wm = display->guard_size;
4775                 return false;
4776         }
4777
4778         clock = crtc->mode.clock;
4779
4780         /* Use the small buffer method to calculate the sprite watermark */
4781         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4782         tlb_miss = display->fifo_size*display->cacheline_size -
4783                 sprite_width * 8;
4784         if (tlb_miss > 0)
4785                 entries += tlb_miss;
4786         entries = howmany(entries, display->cacheline_size);
4787         *sprite_wm = entries + display->guard_size;
4788         if (*sprite_wm > (int)display->max_wm)
4789                 *sprite_wm = display->max_wm;
4790
4791         return true;
4792 }
4793
4794 static bool
4795 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4796                                 uint32_t sprite_width, int pixel_size,
4797                                 const struct intel_watermark_params *display,
4798                                 int latency_ns, int *sprite_wm)
4799 {
4800         struct drm_crtc *crtc;
4801         unsigned long line_time_us;
4802         int clock;
4803         int line_count, line_size;
4804         int small, large;
4805         int entries;
4806
4807         if (!latency_ns) {
4808                 *sprite_wm = 0;
4809                 return false;
4810         }
4811
4812         crtc = intel_get_crtc_for_plane(dev, plane);
4813         clock = crtc->mode.clock;
4814         if (!clock) {
4815                 *sprite_wm = 0;
4816                 return false;
4817         }
4818
4819         line_time_us = (sprite_width * 1000) / clock;
4820         if (!line_time_us) {
4821                 *sprite_wm = 0;
4822                 return false;
4823         }
4824
4825         line_count = (latency_ns / line_time_us + 1000) / 1000;
4826         line_size = sprite_width * pixel_size;
4827
4828         /* Use the minimum of the small and large buffer method for primary */
4829         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4830         large = line_count * line_size;
4831
4832         entries = howmany(min(small, large), display->cacheline_size);
4833         *sprite_wm = entries + display->guard_size;
4834
4835         return *sprite_wm > 0x3ff ? false : true;
4836 }
4837
4838 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4839                                          uint32_t sprite_width, int pixel_size)
4840 {
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4843         u32 val;
4844         int sprite_wm, reg;
4845         int ret;
4846
4847         switch (pipe) {
4848         case 0:
4849                 reg = WM0_PIPEA_ILK;
4850                 break;
4851         case 1:
4852                 reg = WM0_PIPEB_ILK;
4853                 break;
4854         case 2:
4855                 reg = WM0_PIPEC_IVB;
4856                 break;
4857         default:
4858                 return; /* bad pipe */
4859         }
4860
4861         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4862                                             &sandybridge_display_wm_info,
4863                                             latency, &sprite_wm);
4864         if (!ret) {
4865                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4866                               pipe);
4867                 return;
4868         }
4869
4870         val = I915_READ(reg);
4871         val &= ~WM0_PIPE_SPRITE_MASK;
4872         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4873         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4874
4875
4876         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4877                                               pixel_size,
4878                                               &sandybridge_display_srwm_info,
4879                                               SNB_READ_WM1_LATENCY() * 500,
4880                                               &sprite_wm);
4881         if (!ret) {
4882                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4883                               pipe);
4884                 return;
4885         }
4886         I915_WRITE(WM1S_LP_ILK, sprite_wm);
4887
4888         /* Only IVB has two more LP watermarks for sprite */
4889         if (!IS_IVYBRIDGE(dev))
4890                 return;
4891
4892         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4893                                               pixel_size,
4894                                               &sandybridge_display_srwm_info,
4895                                               SNB_READ_WM2_LATENCY() * 500,
4896                                               &sprite_wm);
4897         if (!ret) {
4898                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4899                               pipe);
4900                 return;
4901         }
4902         I915_WRITE(WM2S_LP_IVB, sprite_wm);
4903
4904         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4905                                               pixel_size,
4906                                               &sandybridge_display_srwm_info,
4907                                               SNB_READ_WM3_LATENCY() * 500,
4908                                               &sprite_wm);
4909         if (!ret) {
4910                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4911                               pipe);
4912                 return;
4913         }
4914         I915_WRITE(WM3S_LP_IVB, sprite_wm);
4915 }
4916
4917 /**
4918  * intel_update_watermarks - update FIFO watermark values based on current modes
4919  *
4920  * Calculate watermark values for the various WM regs based on current mode
4921  * and plane configuration.
4922  *
4923  * There are several cases to deal with here:
4924  *   - normal (i.e. non-self-refresh)
4925  *   - self-refresh (SR) mode
4926  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4927  *   - lines are small relative to FIFO size (buffer can hold more than 2
4928  *     lines), so need to account for TLB latency
4929  *
4930  *   The normal calculation is:
4931  *     watermark = dotclock * bytes per pixel * latency
4932  *   where latency is platform & configuration dependent (we assume pessimal
4933  *   values here).
4934  *
4935  *   The SR calculation is:
4936  *     watermark = (trunc(latency/line time)+1) * surface width *
4937  *       bytes per pixel
4938  *   where
4939  *     line time = htotal / dotclock
4940  *     surface width = hdisplay for normal plane and 64 for cursor
4941  *   and latency is assumed to be high, as above.
4942  *
4943  * The final value programmed to the register should always be rounded up,
4944  * and include an extra 2 entries to account for clock crossings.
4945  *
4946  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4947  * to set the non-SR watermarks to 8.
4948  */
4949 static void intel_update_watermarks(struct drm_device *dev)
4950 {
4951         struct drm_i915_private *dev_priv = dev->dev_private;
4952
4953         if (dev_priv->display.update_wm)
4954                 dev_priv->display.update_wm(dev);
4955 }
4956
4957 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4958                                     uint32_t sprite_width, int pixel_size)
4959 {
4960         struct drm_i915_private *dev_priv = dev->dev_private;
4961
4962         if (dev_priv->display.update_sprite_wm)
4963                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4964                                                    pixel_size);
4965 }
4966
4967 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4968 {
4969         if (i915_panel_use_ssc >= 0)
4970                 return i915_panel_use_ssc != 0;
4971         return dev_priv->lvds_use_ssc
4972                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4973 }
4974
4975 /**
4976  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4977  * @crtc: CRTC structure
4978  * @mode: requested mode
4979  *
4980  * A pipe may be connected to one or more outputs.  Based on the depth of the
4981  * attached framebuffer, choose a good color depth to use on the pipe.
4982  *
4983  * If possible, match the pipe depth to the fb depth.  In some cases, this
4984  * isn't ideal, because the connected output supports a lesser or restricted
4985  * set of depths.  Resolve that here:
4986  *    LVDS typically supports only 6bpc, so clamp down in that case
4987  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4988  *    Displays may support a restricted set as well, check EDID and clamp as
4989  *      appropriate.
4990  *    DP may want to dither down to 6bpc to fit larger modes
4991  *
4992  * RETURNS:
4993  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4994  * true if they don't match).
4995  */
4996 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4997                                          unsigned int *pipe_bpp,
4998                                          struct drm_display_mode *mode)
4999 {
5000         struct drm_device *dev = crtc->dev;
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         struct drm_encoder *encoder;
5003         struct drm_connector *connector;
5004         unsigned int display_bpc = UINT_MAX, bpc;
5005
5006         /* Walk the encoders & connectors on this crtc, get min bpc */
5007         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5008                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5009
5010                 if (encoder->crtc != crtc)
5011                         continue;
5012
5013                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5014                         unsigned int lvds_bpc;
5015
5016                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5017                             LVDS_A3_POWER_UP)
5018                                 lvds_bpc = 8;
5019                         else
5020                                 lvds_bpc = 6;
5021
5022                         if (lvds_bpc < display_bpc) {
5023                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5024                                 display_bpc = lvds_bpc;
5025                         }
5026                         continue;
5027                 }
5028
5029                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5030                         /* Use VBT settings if we have an eDP panel */
5031                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5032
5033                         if (edp_bpc < display_bpc) {
5034                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5035                                 display_bpc = edp_bpc;
5036                         }
5037                         continue;
5038                 }
5039
5040                 /* Not one of the known troublemakers, check the EDID */
5041                 list_for_each_entry(connector, &dev->mode_config.connector_list,
5042                                     head) {
5043                         if (connector->encoder != encoder)
5044                                 continue;
5045
5046                         /* Don't use an invalid EDID bpc value */
5047                         if (connector->display_info.bpc &&
5048                             connector->display_info.bpc < display_bpc) {
5049                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5050                                 display_bpc = connector->display_info.bpc;
5051                         }
5052                 }
5053
5054                 /*
5055                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5056                  * through, clamp it down.  (Note: >12bpc will be caught below.)
5057                  */
5058                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5059                         if (display_bpc > 8 && display_bpc < 12) {
5060                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5061                                 display_bpc = 12;
5062                         } else {
5063                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5064                                 display_bpc = 8;
5065                         }
5066                 }
5067         }
5068
5069         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5070                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5071                 display_bpc = 6;
5072         }
5073
5074         /*
5075          * We could just drive the pipe at the highest bpc all the time and
5076          * enable dithering as needed, but that costs bandwidth.  So choose
5077          * the minimum value that expresses the full color range of the fb but
5078          * also stays within the max display bpc discovered above.
5079          */
5080
5081         switch (crtc->fb->depth) {
5082         case 8:
5083                 bpc = 8; /* since we go through a colormap */
5084                 break;
5085         case 15:
5086         case 16:
5087                 bpc = 6; /* min is 18bpp */
5088                 break;
5089         case 24:
5090                 bpc = 8;
5091                 break;
5092         case 30:
5093                 bpc = 10;
5094                 break;
5095         case 48:
5096                 bpc = 12;
5097                 break;
5098         default:
5099                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5100                 bpc = min((unsigned int)8, display_bpc);
5101                 break;
5102         }
5103
5104         display_bpc = min(display_bpc, bpc);
5105
5106         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5107                          bpc, display_bpc);
5108
5109         *pipe_bpp = display_bpc * 3;
5110
5111         return display_bpc != bpc;
5112 }
5113
5114 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5115 {
5116         struct drm_device *dev = crtc->dev;
5117         struct drm_i915_private *dev_priv = dev->dev_private;
5118         int refclk;
5119
5120         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5121             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5122                 refclk = dev_priv->lvds_ssc_freq * 1000;
5123                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5124                               refclk / 1000);
5125         } else if (!IS_GEN2(dev)) {
5126                 refclk = 96000;
5127         } else {
5128                 refclk = 48000;
5129         }
5130
5131         return refclk;
5132 }
5133
5134 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5135                                       intel_clock_t *clock)
5136 {
5137         /* SDVO TV has fixed PLL values depend on its clock range,
5138            this mirrors vbios setting. */
5139         if (adjusted_mode->clock >= 100000
5140             && adjusted_mode->clock < 140500) {
5141                 clock->p1 = 2;
5142                 clock->p2 = 10;
5143                 clock->n = 3;
5144                 clock->m1 = 16;
5145                 clock->m2 = 8;
5146         } else if (adjusted_mode->clock >= 140500
5147                    && adjusted_mode->clock <= 200000) {
5148                 clock->p1 = 1;
5149                 clock->p2 = 10;
5150                 clock->n = 6;
5151                 clock->m1 = 12;
5152                 clock->m2 = 8;
5153         }
5154 }
5155
5156 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5157                                      intel_clock_t *clock,
5158                                      intel_clock_t *reduced_clock)
5159 {
5160         struct drm_device *dev = crtc->dev;
5161         struct drm_i915_private *dev_priv = dev->dev_private;
5162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5163         int pipe = intel_crtc->pipe;
5164         u32 fp, fp2 = 0;
5165
5166         if (IS_PINEVIEW(dev)) {
5167                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5168                 if (reduced_clock)
5169                         fp2 = (1 << reduced_clock->n) << 16 |
5170                                 reduced_clock->m1 << 8 | reduced_clock->m2;
5171         } else {
5172                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5173                 if (reduced_clock)
5174                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5175                                 reduced_clock->m2;
5176         }
5177
5178         I915_WRITE(FP0(pipe), fp);
5179
5180         intel_crtc->lowfreq_avail = false;
5181         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5182             reduced_clock && i915_powersave) {
5183                 I915_WRITE(FP1(pipe), fp2);
5184                 intel_crtc->lowfreq_avail = true;
5185         } else {
5186                 I915_WRITE(FP1(pipe), fp);
5187         }
5188 }
5189
5190 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5191                               struct drm_display_mode *mode,
5192                               struct drm_display_mode *adjusted_mode,
5193                               int x, int y,
5194                               struct drm_framebuffer *old_fb)
5195 {
5196         struct drm_device *dev = crtc->dev;
5197         struct drm_i915_private *dev_priv = dev->dev_private;
5198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5199         int pipe = intel_crtc->pipe;
5200         int plane = intel_crtc->plane;
5201         int refclk, num_connectors = 0;
5202         intel_clock_t clock, reduced_clock;
5203         u32 dpll, dspcntr, pipeconf, vsyncshift;
5204         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5205         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5206         struct drm_mode_config *mode_config = &dev->mode_config;
5207         struct intel_encoder *encoder;
5208         const intel_limit_t *limit;
5209         int ret;
5210         u32 temp;
5211         u32 lvds_sync = 0;
5212
5213         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5214                 if (encoder->base.crtc != crtc)
5215                         continue;
5216
5217                 switch (encoder->type) {
5218                 case INTEL_OUTPUT_LVDS:
5219                         is_lvds = true;
5220                         break;
5221                 case INTEL_OUTPUT_SDVO:
5222                 case INTEL_OUTPUT_HDMI:
5223                         is_sdvo = true;
5224                         if (encoder->needs_tv_clock)
5225                                 is_tv = true;
5226                         break;
5227                 case INTEL_OUTPUT_DVO:
5228                         is_dvo = true;
5229                         break;
5230                 case INTEL_OUTPUT_TVOUT:
5231                         is_tv = true;
5232                         break;
5233                 case INTEL_OUTPUT_ANALOG:
5234                         is_crt = true;
5235                         break;
5236                 case INTEL_OUTPUT_DISPLAYPORT:
5237                         is_dp = true;
5238                         break;
5239                 }
5240
5241                 num_connectors++;
5242         }
5243
5244         refclk = i9xx_get_refclk(crtc, num_connectors);
5245
5246         /*
5247          * Returns a set of divisors for the desired target clock with the given
5248          * refclk, or false.  The returned values represent the clock equation:
5249          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5250          */
5251         limit = intel_limit(crtc, refclk);
5252         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5253                              &clock);
5254         if (!ok) {
5255                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5256                 return -EINVAL;
5257         }
5258
5259         /* Ensure that the cursor is valid for the new mode before changing... */
5260         intel_crtc_update_cursor(crtc, true);
5261
5262         if (is_lvds && dev_priv->lvds_downclock_avail) {
5263                 /*
5264                  * Ensure we match the reduced clock's P to the target clock.
5265                  * If the clocks don't match, we can't switch the display clock
5266                  * by using the FP0/FP1. In such case we will disable the LVDS
5267                  * downclock feature.
5268                 */
5269                 has_reduced_clock = limit->find_pll(limit, crtc,
5270                                                     dev_priv->lvds_downclock,
5271                                                     refclk,
5272                                                     &clock,
5273                                                     &reduced_clock);
5274         }
5275
5276         if (is_sdvo && is_tv)
5277                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5278
5279         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5280                                  &reduced_clock : NULL);
5281
5282         dpll = DPLL_VGA_MODE_DIS;
5283
5284         if (!IS_GEN2(dev)) {
5285                 if (is_lvds)
5286                         dpll |= DPLLB_MODE_LVDS;
5287                 else
5288                         dpll |= DPLLB_MODE_DAC_SERIAL;
5289                 if (is_sdvo) {
5290                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5291                         if (pixel_multiplier > 1) {
5292                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5293                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5294                         }
5295                         dpll |= DPLL_DVO_HIGH_SPEED;
5296                 }
5297                 if (is_dp)
5298                         dpll |= DPLL_DVO_HIGH_SPEED;
5299
5300                 /* compute bitmask from p1 value */
5301                 if (IS_PINEVIEW(dev))
5302                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5303                 else {
5304                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5305                         if (IS_G4X(dev) && has_reduced_clock)
5306                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5307                 }
5308                 switch (clock.p2) {
5309                 case 5:
5310                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5311                         break;
5312                 case 7:
5313                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5314                         break;
5315                 case 10:
5316                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5317                         break;
5318                 case 14:
5319                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5320                         break;
5321                 }
5322                 if (INTEL_INFO(dev)->gen >= 4)
5323                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5324         } else {
5325                 if (is_lvds) {
5326                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5327                 } else {
5328                         if (clock.p1 == 2)
5329                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
5330                         else
5331                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5332                         if (clock.p2 == 4)
5333                                 dpll |= PLL_P2_DIVIDE_BY_4;
5334                 }
5335         }
5336
5337         if (is_sdvo && is_tv)
5338                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5339         else if (is_tv)
5340                 /* XXX: just matching BIOS for now */
5341                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5342                 dpll |= 3;
5343         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5344                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5345         else
5346                 dpll |= PLL_REF_INPUT_DREFCLK;
5347
5348         /* setup pipeconf */
5349         pipeconf = I915_READ(PIPECONF(pipe));
5350
5351         /* Set up the display plane register */
5352         dspcntr = DISPPLANE_GAMMA_ENABLE;
5353
5354         if (pipe == 0)
5355                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5356         else
5357                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5358
5359         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5360                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5361                  * core speed.
5362                  *
5363                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5364                  * pipe == 0 check?
5365                  */
5366                 if (mode->clock >
5367                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5368                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5369                 else
5370                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5371         }
5372
5373         /* default to 8bpc */
5374         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5375         if (is_dp) {
5376                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5377                         pipeconf |= PIPECONF_BPP_6 |
5378                                     PIPECONF_DITHER_EN |
5379                                     PIPECONF_DITHER_TYPE_SP;
5380                 }
5381         }
5382
5383         dpll |= DPLL_VCO_ENABLE;
5384
5385         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5386         drm_mode_debug_printmodeline(mode);
5387
5388         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5389
5390         POSTING_READ(DPLL(pipe));
5391         DELAY(150);
5392
5393         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5394          * This is an exception to the general rule that mode_set doesn't turn
5395          * things on.
5396          */
5397         if (is_lvds) {
5398                 temp = I915_READ(LVDS);
5399                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5400                 if (pipe == 1) {
5401                         temp |= LVDS_PIPEB_SELECT;
5402                 } else {
5403                         temp &= ~LVDS_PIPEB_SELECT;
5404                 }
5405                 /* set the corresponsding LVDS_BORDER bit */
5406                 temp |= dev_priv->lvds_border_bits;
5407                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5408                  * set the DPLLs for dual-channel mode or not.
5409                  */
5410                 if (clock.p2 == 7)
5411                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5412                 else
5413                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5414
5415                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5416                  * appropriately here, but we need to look more thoroughly into how
5417                  * panels behave in the two modes.
5418                  */
5419                 /* set the dithering flag on LVDS as needed */
5420                 if (INTEL_INFO(dev)->gen >= 4) {
5421                         if (dev_priv->lvds_dither)
5422                                 temp |= LVDS_ENABLE_DITHER;
5423                         else
5424                                 temp &= ~LVDS_ENABLE_DITHER;
5425                 }
5426                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5427                         lvds_sync |= LVDS_HSYNC_POLARITY;
5428                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5429                         lvds_sync |= LVDS_VSYNC_POLARITY;
5430                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5431                     != lvds_sync) {
5432                         char flags[2] = "-+";
5433                         DRM_INFO("Changing LVDS panel from "
5434                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5435                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5436                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5437                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5438                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5439                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5440                         temp |= lvds_sync;
5441                 }
5442                 I915_WRITE(LVDS, temp);
5443         }
5444
5445         if (is_dp) {
5446                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5447         }
5448
5449         I915_WRITE(DPLL(pipe), dpll);
5450
5451         /* Wait for the clocks to stabilize. */
5452         POSTING_READ(DPLL(pipe));
5453         DELAY(150);
5454
5455         if (INTEL_INFO(dev)->gen >= 4) {
5456                 temp = 0;
5457                 if (is_sdvo) {
5458                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5459                         if (temp > 1)
5460                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5461                         else
5462                                 temp = 0;
5463                 }
5464                 I915_WRITE(DPLL_MD(pipe), temp);
5465         } else {
5466                 /* The pixel multiplier can only be updated once the
5467                  * DPLL is enabled and the clocks are stable.
5468                  *
5469                  * So write it again.
5470                  */
5471                 I915_WRITE(DPLL(pipe), dpll);
5472         }
5473
5474         if (HAS_PIPE_CXSR(dev)) {
5475                 if (intel_crtc->lowfreq_avail) {
5476                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5477                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5478                 } else {
5479                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5480                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5481                 }
5482         }
5483
5484         pipeconf &= ~PIPECONF_INTERLACE_MASK;
5485         if (!IS_GEN2(dev) &&
5486             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5487                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5488                 /* the chip adds 2 halflines automatically */
5489                 adjusted_mode->crtc_vtotal -= 1;
5490                 adjusted_mode->crtc_vblank_end -= 1;
5491                 vsyncshift = adjusted_mode->crtc_hsync_start
5492                              - adjusted_mode->crtc_htotal/2;
5493         } else {
5494                 pipeconf |= PIPECONF_PROGRESSIVE;
5495                 vsyncshift = 0;
5496         }
5497
5498         if (!IS_GEN3(dev))
5499                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5500
5501         I915_WRITE(HTOTAL(pipe),
5502                    (adjusted_mode->crtc_hdisplay - 1) |
5503                    ((adjusted_mode->crtc_htotal - 1) << 16));
5504         I915_WRITE(HBLANK(pipe),
5505                    (adjusted_mode->crtc_hblank_start - 1) |
5506                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5507         I915_WRITE(HSYNC(pipe),
5508                    (adjusted_mode->crtc_hsync_start - 1) |
5509                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5510
5511         I915_WRITE(VTOTAL(pipe),
5512                    (adjusted_mode->crtc_vdisplay - 1) |
5513                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5514         I915_WRITE(VBLANK(pipe),
5515                    (adjusted_mode->crtc_vblank_start - 1) |
5516                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5517         I915_WRITE(VSYNC(pipe),
5518                    (adjusted_mode->crtc_vsync_start - 1) |
5519                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5520
5521         /* pipesrc and dspsize control the size that is scaled from,
5522          * which should always be the user's requested size.
5523          */
5524         I915_WRITE(DSPSIZE(plane),
5525                    ((mode->vdisplay - 1) << 16) |
5526                    (mode->hdisplay - 1));
5527         I915_WRITE(DSPPOS(plane), 0);
5528         I915_WRITE(PIPESRC(pipe),
5529                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5530
5531         I915_WRITE(PIPECONF(pipe), pipeconf);
5532         POSTING_READ(PIPECONF(pipe));
5533         intel_enable_pipe(dev_priv, pipe, false);
5534
5535         intel_wait_for_vblank(dev, pipe);
5536
5537         I915_WRITE(DSPCNTR(plane), dspcntr);
5538         POSTING_READ(DSPCNTR(plane));
5539         intel_enable_plane(dev_priv, plane, pipe);
5540
5541         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5542
5543         intel_update_watermarks(dev);
5544
5545         return ret;
5546 }
5547
5548 /*
5549  * Initialize reference clocks when the driver loads
5550  */
5551 void ironlake_init_pch_refclk(struct drm_device *dev)
5552 {
5553         struct drm_i915_private *dev_priv = dev->dev_private;
5554         struct drm_mode_config *mode_config = &dev->mode_config;
5555         struct intel_encoder *encoder;
5556         u32 temp;
5557         bool has_lvds = false;
5558         bool has_cpu_edp = false;
5559         bool has_pch_edp = false;
5560         bool has_panel = false;
5561         bool has_ck505 = false;
5562         bool can_ssc = false;
5563
5564         /* We need to take the global config into account */
5565         list_for_each_entry(encoder, &mode_config->encoder_list,
5566                             base.head) {
5567                 switch (encoder->type) {
5568                 case INTEL_OUTPUT_LVDS:
5569                         has_panel = true;
5570                         has_lvds = true;
5571                         break;
5572                 case INTEL_OUTPUT_EDP:
5573                         has_panel = true;
5574                         if (intel_encoder_is_pch_edp(&encoder->base))
5575                                 has_pch_edp = true;
5576                         else
5577                                 has_cpu_edp = true;
5578                         break;
5579                 }
5580         }
5581
5582         if (HAS_PCH_IBX(dev)) {
5583                 has_ck505 = dev_priv->display_clock_mode;
5584                 can_ssc = has_ck505;
5585         } else {
5586                 has_ck505 = false;
5587                 can_ssc = true;
5588         }
5589
5590         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5591                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5592                       has_ck505);
5593
5594         /* Ironlake: try to setup display ref clock before DPLL
5595          * enabling. This is only under driver's control after
5596          * PCH B stepping, previous chipset stepping should be
5597          * ignoring this setting.
5598          */
5599         temp = I915_READ(PCH_DREF_CONTROL);
5600         /* Always enable nonspread source */
5601         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5602
5603         if (has_ck505)
5604                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5605         else
5606                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5607
5608         if (has_panel) {
5609                 temp &= ~DREF_SSC_SOURCE_MASK;
5610                 temp |= DREF_SSC_SOURCE_ENABLE;
5611
5612                 /* SSC must be turned on before enabling the CPU output  */
5613                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5614                         DRM_DEBUG_KMS("Using SSC on panel\n");
5615                         temp |= DREF_SSC1_ENABLE;
5616                 } else
5617                         temp &= ~DREF_SSC1_ENABLE;
5618
5619                 /* Get SSC going before enabling the outputs */
5620                 I915_WRITE(PCH_DREF_CONTROL, temp);
5621                 POSTING_READ(PCH_DREF_CONTROL);
5622                 DELAY(200);
5623
5624                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5625
5626                 /* Enable CPU source on CPU attached eDP */
5627                 if (has_cpu_edp) {
5628                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5629                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5630                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5631                         }
5632                         else
5633                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5634                 } else
5635                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5636
5637                 I915_WRITE(PCH_DREF_CONTROL, temp);
5638                 POSTING_READ(PCH_DREF_CONTROL);
5639                 DELAY(200);
5640         } else {
5641                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5642
5643                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5644
5645                 /* Turn off CPU output */
5646                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5647
5648                 I915_WRITE(PCH_DREF_CONTROL, temp);
5649                 POSTING_READ(PCH_DREF_CONTROL);
5650                 DELAY(200);
5651
5652                 /* Turn off the SSC source */
5653                 temp &= ~DREF_SSC_SOURCE_MASK;
5654                 temp |= DREF_SSC_SOURCE_DISABLE;
5655
5656                 /* Turn off SSC1 */
5657                 temp &= ~ DREF_SSC1_ENABLE;
5658
5659                 I915_WRITE(PCH_DREF_CONTROL, temp);
5660                 POSTING_READ(PCH_DREF_CONTROL);
5661                 DELAY(200);
5662         }
5663 }
5664
5665 static int ironlake_get_refclk(struct drm_crtc *crtc)
5666 {
5667         struct drm_device *dev = crtc->dev;
5668         struct drm_i915_private *dev_priv = dev->dev_private;
5669         struct intel_encoder *encoder;
5670         struct drm_mode_config *mode_config = &dev->mode_config;
5671         struct intel_encoder *edp_encoder = NULL;
5672         int num_connectors = 0;
5673         bool is_lvds = false;
5674
5675         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5676                 if (encoder->base.crtc != crtc)
5677                         continue;
5678
5679                 switch (encoder->type) {
5680                 case INTEL_OUTPUT_LVDS:
5681                         is_lvds = true;
5682                         break;
5683                 case INTEL_OUTPUT_EDP:
5684                         edp_encoder = encoder;
5685                         break;
5686                 }
5687                 num_connectors++;
5688         }
5689
5690         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5691                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5692                               dev_priv->lvds_ssc_freq);
5693                 return dev_priv->lvds_ssc_freq * 1000;
5694         }
5695
5696         return 120000;
5697 }
5698
5699 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5700                                   struct drm_display_mode *mode,
5701                                   struct drm_display_mode *adjusted_mode,
5702                                   int x, int y,
5703                                   struct drm_framebuffer *old_fb)
5704 {
5705         struct drm_device *dev = crtc->dev;
5706         struct drm_i915_private *dev_priv = dev->dev_private;
5707         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5708         int pipe = intel_crtc->pipe;
5709         int plane = intel_crtc->plane;
5710         int refclk, num_connectors = 0;
5711         intel_clock_t clock, reduced_clock;
5712         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5713         bool ok, has_reduced_clock = false, is_sdvo = false;
5714         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5715         struct intel_encoder *has_edp_encoder = NULL;
5716         struct drm_mode_config *mode_config = &dev->mode_config;
5717         struct intel_encoder *encoder;
5718         const intel_limit_t *limit;
5719         int ret;
5720         struct fdi_m_n m_n = {0};
5721         u32 temp;
5722         u32 lvds_sync = 0;
5723         int target_clock, pixel_multiplier, lane, link_bw, factor;
5724         unsigned int pipe_bpp;
5725         bool dither;
5726
5727         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5728                 if (encoder->base.crtc != crtc)
5729                         continue;
5730
5731                 switch (encoder->type) {
5732                 case INTEL_OUTPUT_LVDS:
5733                         is_lvds = true;
5734                         break;
5735                 case INTEL_OUTPUT_SDVO:
5736                 case INTEL_OUTPUT_HDMI:
5737                         is_sdvo = true;
5738                         if (encoder->needs_tv_clock)
5739                                 is_tv = true;
5740                         break;
5741                 case INTEL_OUTPUT_TVOUT:
5742                         is_tv = true;
5743                         break;
5744                 case INTEL_OUTPUT_ANALOG:
5745                         is_crt = true;
5746                         break;
5747                 case INTEL_OUTPUT_DISPLAYPORT:
5748                         is_dp = true;
5749                         break;
5750                 case INTEL_OUTPUT_EDP:
5751                         has_edp_encoder = encoder;
5752                         break;
5753                 }
5754
5755                 num_connectors++;
5756         }
5757
5758         refclk = ironlake_get_refclk(crtc);
5759
5760         /*
5761          * Returns a set of divisors for the desired target clock with the given
5762          * refclk, or false.  The returned values represent the clock equation:
5763          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5764          */
5765         limit = intel_limit(crtc, refclk);
5766         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5767                              &clock);
5768         if (!ok) {
5769                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5770                 return -EINVAL;
5771         }
5772
5773         /* Ensure that the cursor is valid for the new mode before changing... */
5774         intel_crtc_update_cursor(crtc, true);
5775
5776         if (is_lvds && dev_priv->lvds_downclock_avail) {
5777                 /*
5778                  * Ensure we match the reduced clock's P to the target clock.
5779                  * If the clocks don't match, we can't switch the display clock
5780                  * by using the FP0/FP1. In such case we will disable the LVDS
5781                  * downclock feature.
5782                 */
5783                 has_reduced_clock = limit->find_pll(limit, crtc,
5784                                                     dev_priv->lvds_downclock,
5785                                                     refclk,
5786                                                     &clock,
5787                                                     &reduced_clock);
5788         }
5789         /* SDVO TV has fixed PLL values depend on its clock range,
5790            this mirrors vbios setting. */
5791         if (is_sdvo && is_tv) {
5792                 if (adjusted_mode->clock >= 100000
5793                     && adjusted_mode->clock < 140500) {
5794                         clock.p1 = 2;
5795                         clock.p2 = 10;
5796                         clock.n = 3;
5797                         clock.m1 = 16;
5798                         clock.m2 = 8;
5799                 } else if (adjusted_mode->clock >= 140500
5800                            && adjusted_mode->clock <= 200000) {
5801                         clock.p1 = 1;
5802                         clock.p2 = 10;
5803                         clock.n = 6;
5804                         clock.m1 = 12;
5805                         clock.m2 = 8;
5806                 }
5807         }
5808
5809         /* FDI link */
5810         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5811         lane = 0;
5812         /* CPU eDP doesn't require FDI link, so just set DP M/N
5813            according to current link config */
5814         if (has_edp_encoder &&
5815             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5816                 target_clock = mode->clock;
5817                 intel_edp_link_config(has_edp_encoder,
5818                                       &lane, &link_bw);
5819         } else {
5820                 /* [e]DP over FDI requires target mode clock
5821                    instead of link clock */
5822                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5823                         target_clock = mode->clock;
5824                 else
5825                         target_clock = adjusted_mode->clock;
5826
5827                 /* FDI is a binary signal running at ~2.7GHz, encoding
5828                  * each output octet as 10 bits. The actual frequency
5829                  * is stored as a divider into a 100MHz clock, and the
5830                  * mode pixel clock is stored in units of 1KHz.
5831                  * Hence the bw of each lane in terms of the mode signal
5832                  * is:
5833                  */
5834                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5835         }
5836
5837         /* determine panel color depth */
5838         temp = I915_READ(PIPECONF(pipe));
5839         temp &= ~PIPE_BPC_MASK;
5840         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5841         switch (pipe_bpp) {
5842         case 18:
5843                 temp |= PIPE_6BPC;
5844                 break;
5845         case 24:
5846                 temp |= PIPE_8BPC;
5847                 break;
5848         case 30:
5849                 temp |= PIPE_10BPC;
5850                 break;
5851         case 36:
5852                 temp |= PIPE_12BPC;
5853                 break;
5854         default:
5855                 printf("intel_choose_pipe_bpp returned invalid value %d\n",
5856                         pipe_bpp);
5857                 temp |= PIPE_8BPC;
5858                 pipe_bpp = 24;
5859                 break;
5860         }
5861
5862         intel_crtc->bpp = pipe_bpp;
5863         I915_WRITE(PIPECONF(pipe), temp);
5864
5865         if (!lane) {
5866                 /*
5867                  * Account for spread spectrum to avoid
5868                  * oversubscribing the link. Max center spread
5869                  * is 2.5%; use 5% for safety's sake.
5870                  */
5871                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5872                 lane = bps / (link_bw * 8) + 1;
5873         }
5874
5875         intel_crtc->fdi_lanes = lane;
5876
5877         if (pixel_multiplier > 1)
5878                 link_bw *= pixel_multiplier;
5879         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5880                              &m_n);
5881
5882         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5883         if (has_reduced_clock)
5884                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5885                         reduced_clock.m2;
5886
5887         /* Enable autotuning of the PLL clock (if permissible) */
5888         factor = 21;
5889         if (is_lvds) {
5890                 if ((intel_panel_use_ssc(dev_priv) &&
5891                      dev_priv->lvds_ssc_freq == 100) ||
5892                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5893                         factor = 25;
5894         } else if (is_sdvo && is_tv)
5895                 factor = 20;
5896
5897         if (clock.m < factor * clock.n)
5898                 fp |= FP_CB_TUNE;
5899
5900         dpll = 0;
5901
5902         if (is_lvds)
5903                 dpll |= DPLLB_MODE_LVDS;
5904         else
5905                 dpll |= DPLLB_MODE_DAC_SERIAL;
5906         if (is_sdvo) {
5907                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5908                 if (pixel_multiplier > 1) {
5909                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5910                 }
5911                 dpll |= DPLL_DVO_HIGH_SPEED;
5912         }
5913         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5914                 dpll |= DPLL_DVO_HIGH_SPEED;
5915
5916         /* compute bitmask from p1 value */
5917         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5918         /* also FPA1 */
5919         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5920
5921         switch (clock.p2) {
5922         case 5:
5923                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5924                 break;
5925         case 7:
5926                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5927                 break;
5928         case 10:
5929                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5930                 break;
5931         case 14:
5932                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5933                 break;
5934         }
5935
5936         if (is_sdvo && is_tv)
5937                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5938         else if (is_tv)
5939                 /* XXX: just matching BIOS for now */
5940                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5941                 dpll |= 3;
5942         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5943                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5944         else
5945                 dpll |= PLL_REF_INPUT_DREFCLK;
5946
5947         /* setup pipeconf */
5948         pipeconf = I915_READ(PIPECONF(pipe));
5949
5950         /* Set up the display plane register */
5951         dspcntr = DISPPLANE_GAMMA_ENABLE;
5952
5953         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5954         drm_mode_debug_printmodeline(mode);
5955
5956         /* PCH eDP needs FDI, but CPU eDP does not */
5957         if (!intel_crtc->no_pll) {
5958                 if (!has_edp_encoder ||
5959                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5960                         I915_WRITE(PCH_FP0(pipe), fp);
5961                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5962
5963                         POSTING_READ(PCH_DPLL(pipe));
5964                         DELAY(150);
5965                 }
5966         } else {
5967                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5968                     fp == I915_READ(PCH_FP0(0))) {
5969                         intel_crtc->use_pll_a = true;
5970                         DRM_DEBUG_KMS("using pipe a dpll\n");
5971                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5972                            fp == I915_READ(PCH_FP0(1))) {
5973                         intel_crtc->use_pll_a = false;
5974                         DRM_DEBUG_KMS("using pipe b dpll\n");
5975                 } else {
5976                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5977                         return -EINVAL;
5978                 }
5979         }
5980
5981         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5982          * This is an exception to the general rule that mode_set doesn't turn
5983          * things on.
5984          */
5985         if (is_lvds) {
5986                 temp = I915_READ(PCH_LVDS);
5987                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5988                 if (HAS_PCH_CPT(dev)) {
5989                         temp &= ~PORT_TRANS_SEL_MASK;
5990                         temp |= PORT_TRANS_SEL_CPT(pipe);
5991                 } else {
5992                         if (pipe == 1)
5993                                 temp |= LVDS_PIPEB_SELECT;
5994                         else
5995                                 temp &= ~LVDS_PIPEB_SELECT;
5996                 }
5997
5998                 /* set the corresponsding LVDS_BORDER bit */
5999                 temp |= dev_priv->lvds_border_bits;
6000                 /* Set the B0-B3 data pairs corresponding to whether we're going to
6001                  * set the DPLLs for dual-channel mode or not.
6002                  */
6003                 if (clock.p2 == 7)
6004                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6005                 else
6006                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6007
6008                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6009                  * appropriately here, but we need to look more thoroughly into how
6010                  * panels behave in the two modes.
6011                  */
6012                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6013                         lvds_sync |= LVDS_HSYNC_POLARITY;
6014                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6015                         lvds_sync |= LVDS_VSYNC_POLARITY;
6016                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6017                     != lvds_sync) {
6018                         char flags[2] = "-+";
6019                         DRM_INFO("Changing LVDS panel from "
6020                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6021                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
6022                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
6023                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6024                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6025                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6026                         temp |= lvds_sync;
6027                 }
6028                 I915_WRITE(PCH_LVDS, temp);
6029         }
6030
6031         pipeconf &= ~PIPECONF_DITHER_EN;
6032         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6033         if ((is_lvds && dev_priv->lvds_dither) || dither) {
6034                 pipeconf |= PIPECONF_DITHER_EN;
6035                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
6036         }
6037         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6038                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
6039         } else {
6040                 /* For non-DP output, clear any trans DP clock recovery setting.*/
6041                 I915_WRITE(TRANSDATA_M1(pipe), 0);
6042                 I915_WRITE(TRANSDATA_N1(pipe), 0);
6043                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6044                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6045         }
6046
6047         if (!intel_crtc->no_pll &&
6048             (!has_edp_encoder ||
6049              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
6050                 I915_WRITE(PCH_DPLL(pipe), dpll);
6051
6052                 /* Wait for the clocks to stabilize. */
6053                 POSTING_READ(PCH_DPLL(pipe));
6054                 DELAY(150);
6055
6056                 /* The pixel multiplier can only be updated once the
6057                  * DPLL is enabled and the clocks are stable.
6058                  *
6059                  * So write it again.
6060                  */
6061                 I915_WRITE(PCH_DPLL(pipe), dpll);
6062         }
6063
6064         intel_crtc->lowfreq_avail = false;
6065         if (!intel_crtc->no_pll) {
6066                 if (is_lvds && has_reduced_clock && i915_powersave) {
6067                         I915_WRITE(PCH_FP1(pipe), fp2);
6068                         intel_crtc->lowfreq_avail = true;
6069                         if (HAS_PIPE_CXSR(dev)) {
6070                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6071                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6072                         }
6073                 } else {
6074                         I915_WRITE(PCH_FP1(pipe), fp);
6075                         if (HAS_PIPE_CXSR(dev)) {
6076                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6077                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6078                         }
6079                 }
6080         }
6081
6082         pipeconf &= ~PIPECONF_INTERLACE_MASK;
6083         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6084                 pipeconf |= PIPECONF_INTERLACED_ILK;
6085                 /* the chip adds 2 halflines automatically */
6086                 adjusted_mode->crtc_vtotal -= 1;
6087                 adjusted_mode->crtc_vblank_end -= 1;
6088                 I915_WRITE(VSYNCSHIFT(pipe),
6089                            adjusted_mode->crtc_hsync_start
6090                            - adjusted_mode->crtc_htotal/2);
6091         } else {
6092                 pipeconf |= PIPECONF_PROGRESSIVE;
6093                 I915_WRITE(VSYNCSHIFT(pipe), 0);
6094         }
6095
6096         I915_WRITE(HTOTAL(pipe),
6097                    (adjusted_mode->crtc_hdisplay - 1) |
6098                    ((adjusted_mode->crtc_htotal - 1) << 16));
6099         I915_WRITE(HBLANK(pipe),
6100                    (adjusted_mode->crtc_hblank_start - 1) |
6101                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6102         I915_WRITE(HSYNC(pipe),
6103                    (adjusted_mode->crtc_hsync_start - 1) |
6104                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6105
6106         I915_WRITE(VTOTAL(pipe),
6107                    (adjusted_mode->crtc_vdisplay - 1) |
6108                    ((adjusted_mode->crtc_vtotal - 1) << 16));
6109         I915_WRITE(VBLANK(pipe),
6110                    (adjusted_mode->crtc_vblank_start - 1) |
6111                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
6112         I915_WRITE(VSYNC(pipe),
6113                    (adjusted_mode->crtc_vsync_start - 1) |
6114                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6115
6116         /* pipesrc controls the size that is scaled from, which should
6117          * always be the user's requested size.
6118          */
6119         I915_WRITE(PIPESRC(pipe),
6120                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6121
6122         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6123         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6124         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6125         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6126
6127         if (has_edp_encoder &&
6128             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6129                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6130         }
6131
6132         I915_WRITE(PIPECONF(pipe), pipeconf);
6133         POSTING_READ(PIPECONF(pipe));
6134
6135         intel_wait_for_vblank(dev, pipe);
6136
6137         I915_WRITE(DSPCNTR(plane), dspcntr);
6138         POSTING_READ(DSPCNTR(plane));
6139
6140         ret = intel_pipe_set_base(crtc, x, y, old_fb);
6141
6142         intel_update_watermarks(dev);
6143
6144         return ret;
6145 }
6146
6147 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6148                                struct drm_display_mode *mode,
6149                                struct drm_display_mode *adjusted_mode,
6150                                int x, int y,
6151                                struct drm_framebuffer *old_fb)
6152 {
6153         struct drm_device *dev = crtc->dev;
6154         struct drm_i915_private *dev_priv = dev->dev_private;
6155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6156         int pipe = intel_crtc->pipe;
6157         int ret;
6158
6159         drm_vblank_pre_modeset(dev, pipe);
6160
6161         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6162                                               x, y, old_fb);
6163         drm_vblank_post_modeset(dev, pipe);
6164
6165         if (ret)
6166                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6167         else
6168                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6169
6170         return ret;
6171 }
6172
6173 static bool intel_eld_uptodate(struct drm_connector *connector,
6174                                int reg_eldv, uint32_t bits_eldv,
6175                                int reg_elda, uint32_t bits_elda,
6176                                int reg_edid)
6177 {
6178         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6179         uint8_t *eld = connector->eld;
6180         uint32_t i;
6181
6182         i = I915_READ(reg_eldv);
6183         i &= bits_eldv;
6184
6185         if (!eld[0])
6186                 return !i;
6187
6188         if (!i)
6189                 return false;
6190
6191         i = I915_READ(reg_elda);
6192         i &= ~bits_elda;
6193         I915_WRITE(reg_elda, i);
6194
6195         for (i = 0; i < eld[2]; i++)
6196                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6197                         return false;
6198
6199         return true;
6200 }
6201
6202 static void g4x_write_eld(struct drm_connector *connector,
6203                           struct drm_crtc *crtc)
6204 {
6205         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6206         uint8_t *eld = connector->eld;
6207         uint32_t eldv;
6208         uint32_t len;
6209         uint32_t i;
6210
6211         i = I915_READ(G4X_AUD_VID_DID);
6212
6213         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6214                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6215         else
6216                 eldv = G4X_ELDV_DEVCTG;
6217
6218         if (intel_eld_uptodate(connector,
6219                                G4X_AUD_CNTL_ST, eldv,
6220                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6221                                G4X_HDMIW_HDMIEDID))
6222                 return;
6223
6224         i = I915_READ(G4X_AUD_CNTL_ST);
6225         i &= ~(eldv | G4X_ELD_ADDR);
6226         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6227         I915_WRITE(G4X_AUD_CNTL_ST, i);
6228
6229         if (!eld[0])
6230                 return;
6231
6232         if (eld[2] < (uint8_t)len)
6233                 len = eld[2];
6234         DRM_DEBUG_KMS("ELD size %d\n", len);
6235         for (i = 0; i < len; i++)
6236                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6237
6238         i = I915_READ(G4X_AUD_CNTL_ST);
6239         i |= eldv;
6240         I915_WRITE(G4X_AUD_CNTL_ST, i);
6241 }
6242
6243 static void ironlake_write_eld(struct drm_connector *connector,
6244                                      struct drm_crtc *crtc)
6245 {
6246         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6247         uint8_t *eld = connector->eld;
6248         uint32_t eldv;
6249         uint32_t i;
6250         int len;
6251         int hdmiw_hdmiedid;
6252         int aud_config;
6253         int aud_cntl_st;
6254         int aud_cntrl_st2;
6255
6256         if (HAS_PCH_IBX(connector->dev)) {
6257                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6258                 aud_config = IBX_AUD_CONFIG_A;
6259                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6260                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6261         } else {
6262                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6263                 aud_config = CPT_AUD_CONFIG_A;
6264                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6265                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6266         }
6267
6268         i = to_intel_crtc(crtc)->pipe;
6269         hdmiw_hdmiedid += i * 0x100;
6270         aud_cntl_st += i * 0x100;
6271         aud_config += i * 0x100;
6272
6273         DRM_DEBUG_KMS("ELD on pipe %c\n", pipe_name(i));
6274
6275         i = I915_READ(aud_cntl_st);
6276         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
6277         if (!i) {
6278                 DRM_DEBUG_KMS("Audio directed to unknown port\n");
6279                 /* operate blindly on all ports */
6280                 eldv = IBX_ELD_VALIDB;
6281                 eldv |= IBX_ELD_VALIDB << 4;
6282                 eldv |= IBX_ELD_VALIDB << 8;
6283         } else {
6284                 DRM_DEBUG_KMS("ELD on port %c\n", 'A' + i);
6285                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6286         }
6287
6288         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6289                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6290                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6291                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6292         } else
6293                 I915_WRITE(aud_config, 0);
6294
6295         if (intel_eld_uptodate(connector,
6296                                aud_cntrl_st2, eldv,
6297                                aud_cntl_st, IBX_ELD_ADDRESS,
6298                                hdmiw_hdmiedid))
6299                 return;
6300
6301         i = I915_READ(aud_cntrl_st2);
6302         i &= ~eldv;
6303         I915_WRITE(aud_cntrl_st2, i);
6304
6305         if (!eld[0])
6306                 return;
6307
6308         i = I915_READ(aud_cntl_st);
6309         i &= ~IBX_ELD_ADDRESS;
6310         I915_WRITE(aud_cntl_st, i);
6311
6312         /* 84 bytes of hw ELD buffer */
6313         len = 21;
6314         if (eld[2] < (uint8_t)len)
6315                 len = eld[2];
6316         DRM_DEBUG_KMS("ELD size %d\n", len);
6317         for (i = 0; i < len; i++)
6318                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6319
6320         i = I915_READ(aud_cntrl_st2);
6321         i |= eldv;
6322         I915_WRITE(aud_cntrl_st2, i);
6323 }
6324
6325 void intel_write_eld(struct drm_encoder *encoder,
6326                      struct drm_display_mode *mode)
6327 {
6328         struct drm_crtc *crtc = encoder->crtc;
6329         struct drm_connector *connector;
6330         struct drm_device *dev = encoder->dev;
6331         struct drm_i915_private *dev_priv = dev->dev_private;
6332
6333         connector = drm_select_eld(encoder, mode);
6334         if (!connector)
6335                 return;
6336
6337         DRM_DEBUG_KMS("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6338                          connector->base.id,
6339                          drm_get_connector_name(connector),
6340                          connector->encoder->base.id,
6341                          drm_get_encoder_name(connector->encoder));
6342
6343         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6344
6345         if (dev_priv->display.write_eld)
6346                 dev_priv->display.write_eld(connector, crtc);
6347 }
6348
6349 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6350 void intel_crtc_load_lut(struct drm_crtc *crtc)
6351 {
6352         struct drm_device *dev = crtc->dev;
6353         struct drm_i915_private *dev_priv = dev->dev_private;
6354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6355         int palreg = PALETTE(intel_crtc->pipe);
6356         int i;
6357
6358         /* The clocks have to be on to load the palette. */
6359         if (!crtc->enabled || !intel_crtc->active)
6360                 return;
6361
6362         /* use legacy palette for Ironlake */
6363         if (HAS_PCH_SPLIT(dev))
6364                 palreg = LGC_PALETTE(intel_crtc->pipe);
6365
6366         for (i = 0; i < 256; i++) {
6367                 I915_WRITE(palreg + 4 * i,
6368                            (intel_crtc->lut_r[i] << 16) |
6369                            (intel_crtc->lut_g[i] << 8) |
6370                            intel_crtc->lut_b[i]);
6371         }
6372 }
6373
6374 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6375 {
6376         struct drm_device *dev = crtc->dev;
6377         struct drm_i915_private *dev_priv = dev->dev_private;
6378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6379         bool visible = base != 0;
6380         u32 cntl;
6381
6382         if (intel_crtc->cursor_visible == visible)
6383                 return;
6384
6385         cntl = I915_READ(_CURACNTR);
6386         if (visible) {
6387                 /* On these chipsets we can only modify the base whilst
6388                  * the cursor is disabled.
6389                  */
6390                 I915_WRITE(_CURABASE, base);
6391
6392                 cntl &= ~(CURSOR_FORMAT_MASK);
6393                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6394                 cntl |= CURSOR_ENABLE |
6395                         CURSOR_GAMMA_ENABLE |
6396                         CURSOR_FORMAT_ARGB;
6397         } else
6398                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6399         I915_WRITE(_CURACNTR, cntl);
6400
6401         intel_crtc->cursor_visible = visible;
6402 }
6403
6404 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6405 {
6406         struct drm_device *dev = crtc->dev;
6407         struct drm_i915_private *dev_priv = dev->dev_private;
6408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409         int pipe = intel_crtc->pipe;
6410         bool visible = base != 0;
6411
6412         if (intel_crtc->cursor_visible != visible) {
6413                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6414                 if (base) {
6415                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6416                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6417                         cntl |= pipe << 28; /* Connect to correct pipe */
6418                 } else {
6419                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6420                         cntl |= CURSOR_MODE_DISABLE;
6421                 }
6422                 I915_WRITE(CURCNTR(pipe), cntl);
6423
6424                 intel_crtc->cursor_visible = visible;
6425         }
6426         /* and commit changes on next vblank */
6427         I915_WRITE(CURBASE(pipe), base);
6428 }
6429
6430 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6431 {
6432         struct drm_device *dev = crtc->dev;
6433         struct drm_i915_private *dev_priv = dev->dev_private;
6434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6435         int pipe = intel_crtc->pipe;
6436         bool visible = base != 0;
6437
6438         if (intel_crtc->cursor_visible != visible) {
6439                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6440                 if (base) {
6441                         cntl &= ~CURSOR_MODE;
6442                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6443                 } else {
6444                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6445                         cntl |= CURSOR_MODE_DISABLE;
6446                 }
6447                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6448
6449                 intel_crtc->cursor_visible = visible;
6450         }
6451         /* and commit changes on next vblank */
6452         I915_WRITE(CURBASE_IVB(pipe), base);
6453 }
6454
6455 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6456 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6457                                      bool on)
6458 {
6459         struct drm_device *dev = crtc->dev;
6460         struct drm_i915_private *dev_priv = dev->dev_private;
6461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6462         int pipe = intel_crtc->pipe;
6463         int x = intel_crtc->cursor_x;
6464         int y = intel_crtc->cursor_y;
6465         u32 base, pos;
6466         bool visible;
6467
6468         pos = 0;
6469
6470         if (on && crtc->enabled && crtc->fb) {
6471                 base = intel_crtc->cursor_addr;
6472                 if (x > (int) crtc->fb->width)
6473                         base = 0;
6474
6475                 if (y > (int) crtc->fb->height)
6476                         base = 0;
6477         } else
6478                 base = 0;
6479
6480         if (x < 0) {
6481                 if (x + intel_crtc->cursor_width < 0)
6482                         base = 0;
6483
6484                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6485                 x = -x;
6486         }
6487         pos |= x << CURSOR_X_SHIFT;
6488
6489         if (y < 0) {
6490                 if (y + intel_crtc->cursor_height < 0)
6491                         base = 0;
6492
6493                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6494                 y = -y;
6495         }
6496         pos |= y << CURSOR_Y_SHIFT;
6497
6498         visible = base != 0;
6499         if (!visible && !intel_crtc->cursor_visible)
6500                 return;
6501
6502         if (IS_IVYBRIDGE(dev)) {
6503                 I915_WRITE(CURPOS_IVB(pipe), pos);
6504                 ivb_update_cursor(crtc, base);
6505         } else {
6506                 I915_WRITE(CURPOS(pipe), pos);
6507                 if (IS_845G(dev) || IS_I865G(dev))
6508                         i845_update_cursor(crtc, base);
6509                 else
6510                         i9xx_update_cursor(crtc, base);
6511         }
6512
6513         if (visible)
6514                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6515 }
6516
6517 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6518                                  struct drm_file *file,
6519                                  uint32_t handle,
6520                                  uint32_t width, uint32_t height)
6521 {
6522         struct drm_device *dev = crtc->dev;
6523         struct drm_i915_private *dev_priv = dev->dev_private;
6524         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6525         struct drm_i915_gem_object *obj;
6526         uint32_t addr;
6527         int ret;
6528
6529         DRM_DEBUG_KMS("\n");
6530
6531         /* if we want to turn off the cursor ignore width and height */
6532         if (!handle) {
6533                 DRM_DEBUG_KMS("cursor off\n");
6534                 addr = 0;
6535                 obj = NULL;
6536                 DRM_LOCK(dev);
6537                 goto finish;
6538         }
6539
6540         /* Currently we only support 64x64 cursors */
6541         if (width != 64 || height != 64) {
6542                 DRM_ERROR("we currently only support 64x64 cursors\n");
6543                 return -EINVAL;
6544         }
6545
6546         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6547         if (&obj->base == NULL)
6548                 return -ENOENT;
6549
6550         if (obj->base.size < width * height * 4) {
6551                 DRM_ERROR("buffer is to small\n");
6552                 ret = -ENOMEM;
6553                 goto fail;
6554         }
6555
6556         /* we only need to pin inside GTT if cursor is non-phy */
6557         DRM_LOCK(dev);
6558         if (!dev_priv->info->cursor_needs_physical) {
6559                 if (obj->tiling_mode) {
6560                         DRM_ERROR("cursor cannot be tiled\n");
6561                         ret = -EINVAL;
6562                         goto fail_locked;
6563                 }
6564
6565                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6566                 if (ret) {
6567                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6568                         goto fail_locked;
6569                 }
6570
6571                 ret = i915_gem_object_put_fence(obj);
6572                 if (ret) {
6573                         DRM_ERROR("failed to release fence for cursor\n");
6574                         goto fail_unpin;
6575                 }
6576
6577                 addr = obj->gtt_offset;
6578         } else {
6579                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6580                 ret = i915_gem_attach_phys_object(dev, obj,
6581                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6582                                                   align);
6583                 if (ret) {
6584                         DRM_ERROR("failed to attach phys object\n");
6585                         goto fail_locked;
6586                 }
6587                 addr = obj->phys_obj->handle->busaddr;
6588         }
6589
6590         if (IS_GEN2(dev))
6591                 I915_WRITE(CURSIZE, (height << 12) | width);
6592
6593  finish:
6594         if (intel_crtc->cursor_bo) {
6595                 if (dev_priv->info->cursor_needs_physical) {
6596                         if (intel_crtc->cursor_bo != obj)
6597                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6598                 } else
6599                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6600                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6601         }
6602
6603         DRM_UNLOCK(dev);
6604
6605         intel_crtc->cursor_addr = addr;
6606         intel_crtc->cursor_bo = obj;
6607         intel_crtc->cursor_width = width;
6608         intel_crtc->cursor_height = height;
6609
6610         intel_crtc_update_cursor(crtc, true);
6611
6612         return 0;
6613 fail_unpin:
6614         i915_gem_object_unpin(obj);
6615 fail_locked:
6616         DRM_UNLOCK(dev);
6617 fail:
6618         drm_gem_object_unreference_unlocked(&obj->base);
6619         return ret;
6620 }
6621
6622 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6623 {
6624         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6625
6626         intel_crtc->cursor_x = x;
6627         intel_crtc->cursor_y = y;
6628
6629         intel_crtc_update_cursor(crtc, true);
6630
6631         return 0;
6632 }
6633
6634 /** Sets the color ramps on behalf of RandR */
6635 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6636                                  u16 blue, int regno)
6637 {
6638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6639
6640         intel_crtc->lut_r[regno] = red >> 8;
6641         intel_crtc->lut_g[regno] = green >> 8;
6642         intel_crtc->lut_b[regno] = blue >> 8;
6643 }
6644
6645 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6646                              u16 *blue, int regno)
6647 {
6648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6649
6650         *red = intel_crtc->lut_r[regno] << 8;
6651         *green = intel_crtc->lut_g[regno] << 8;
6652         *blue = intel_crtc->lut_b[regno] << 8;
6653 }
6654
6655 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6656                                  u16 *blue, uint32_t start, uint32_t size)
6657 {
6658         int end = (start + size > 256) ? 256 : start + size, i;
6659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6660
6661         for (i = start; i < end; i++) {
6662                 intel_crtc->lut_r[i] = red[i] >> 8;
6663                 intel_crtc->lut_g[i] = green[i] >> 8;
6664                 intel_crtc->lut_b[i] = blue[i] >> 8;
6665         }
6666
6667         intel_crtc_load_lut(crtc);
6668 }
6669
6670 /**
6671  * Get a pipe with a simple mode set on it for doing load-based monitor
6672  * detection.
6673  *
6674  * It will be up to the load-detect code to adjust the pipe as appropriate for
6675  * its requirements.  The pipe will be connected to no other encoders.
6676  *
6677  * Currently this code will only succeed if there is a pipe with no encoders
6678  * configured for it.  In the future, it could choose to temporarily disable
6679  * some outputs to free up a pipe for its use.
6680  *
6681  * \return crtc, or NULL if no pipes are available.
6682  */
6683
6684 /* VESA 640x480x72Hz mode to set on the pipe */
6685 static struct drm_display_mode load_detect_mode = {
6686         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6687                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6688 };
6689
6690 static int
6691 intel_framebuffer_create(struct drm_device *dev,
6692     struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj,
6693      struct drm_framebuffer **res)
6694 {
6695         struct intel_framebuffer *intel_fb;
6696         int ret;
6697
6698         intel_fb = malloc(sizeof(*intel_fb), DRM_MEM_KMS, M_WAITOK | M_ZERO);
6699         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6700         if (ret) {
6701                 drm_gem_object_unreference_unlocked(&obj->base);
6702                 free(intel_fb, DRM_MEM_KMS);
6703                 return (ret);
6704         }
6705
6706         *res = &intel_fb->base;
6707         return (0);
6708 }
6709
6710 static u32
6711 intel_framebuffer_pitch_for_width(int width, int bpp)
6712 {
6713         u32 pitch = howmany(width * bpp, 8);
6714         return roundup2(pitch, 64);
6715 }
6716
6717 static u32
6718 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6719 {
6720         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6721         return roundup2(pitch * mode->vdisplay, PAGE_SIZE);
6722 }
6723
6724 static int
6725 intel_framebuffer_create_for_mode(struct drm_device *dev,
6726     struct drm_display_mode *mode, int depth, int bpp,
6727     struct drm_framebuffer **res)
6728 {
6729         struct drm_i915_gem_object *obj;
6730         struct drm_mode_fb_cmd2 mode_cmd;
6731
6732         obj = i915_gem_alloc_object(dev,
6733                                     intel_framebuffer_size_for_mode(mode, bpp));
6734         if (obj == NULL)
6735                 return (-ENOMEM);
6736
6737         mode_cmd.width = mode->hdisplay;
6738         mode_cmd.height = mode->vdisplay;
6739         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6740                                                                 bpp);
6741         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6742
6743         return (intel_framebuffer_create(dev, &mode_cmd, obj, res));
6744 }
6745
6746 static int
6747 mode_fits_in_fbdev(struct drm_device *dev,
6748     struct drm_display_mode *mode, struct drm_framebuffer **res)
6749 {
6750         struct drm_i915_private *dev_priv = dev->dev_private;
6751         struct drm_i915_gem_object *obj;
6752         struct drm_framebuffer *fb;
6753
6754         if (dev_priv->fbdev == NULL) {
6755                 *res = NULL;
6756                 return (0);
6757         }
6758
6759         obj = dev_priv->fbdev->ifb.obj;
6760         if (obj == NULL) {
6761                 *res = NULL;
6762                 return (0);
6763         }
6764
6765         fb = &dev_priv->fbdev->ifb.base;
6766         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6767             fb->bits_per_pixel)) {
6768                 *res = NULL;
6769                 return (0);
6770         }
6771
6772         if (obj->base.size < mode->vdisplay * fb->pitches[0]) {
6773                 *res = NULL;
6774                 return (0);
6775         }
6776
6777         *res = fb;
6778         return (0);
6779 }
6780
6781 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6782                                 struct drm_connector *connector,
6783                                 struct drm_display_mode *mode,
6784                                 struct intel_load_detect_pipe *old)
6785 {
6786         struct intel_crtc *intel_crtc;
6787         struct drm_crtc *possible_crtc;
6788         struct drm_encoder *encoder = &intel_encoder->base;
6789         struct drm_crtc *crtc = NULL;
6790         struct drm_device *dev = encoder->dev;
6791         struct drm_framebuffer *old_fb;
6792         int i = -1, r;
6793
6794         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6795                       connector->base.id, drm_get_connector_name(connector),
6796                       encoder->base.id, drm_get_encoder_name(encoder));
6797
6798         /*
6799          * Algorithm gets a little messy:
6800          *
6801          *   - if the connector already has an assigned crtc, use it (but make
6802          *     sure it's on first)
6803          *
6804          *   - try to find the first unused crtc that can drive this connector,
6805          *     and use that if we find one
6806          */
6807
6808         /* See if we already have a CRTC for this connector */
6809         if (encoder->crtc) {
6810                 crtc = encoder->crtc;
6811
6812                 intel_crtc = to_intel_crtc(crtc);
6813                 old->dpms_mode = intel_crtc->dpms_mode;
6814                 old->load_detect_temp = false;
6815
6816                 /* Make sure the crtc and connector are running */
6817                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6818                         struct drm_encoder_helper_funcs *encoder_funcs;
6819                         struct drm_crtc_helper_funcs *crtc_funcs;
6820
6821                         crtc_funcs = crtc->helper_private;
6822                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6823
6824                         encoder_funcs = encoder->helper_private;
6825                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6826                 }
6827
6828                 return true;
6829         }
6830
6831         /* Find an unused one (if possible) */
6832         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6833                 i++;
6834                 if (!(encoder->possible_crtcs & (1 << i)))
6835                         continue;
6836                 if (!possible_crtc->enabled) {
6837                         crtc = possible_crtc;
6838                         break;
6839                 }
6840         }
6841
6842         /*
6843          * If we didn't find an unused CRTC, don't use any.
6844          */
6845         if (!crtc) {
6846                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6847                 return false;
6848         }
6849
6850         encoder->crtc = crtc;
6851         connector->encoder = encoder;
6852
6853         intel_crtc = to_intel_crtc(crtc);
6854         old->dpms_mode = intel_crtc->dpms_mode;
6855         old->load_detect_temp = true;
6856         old->release_fb = NULL;
6857
6858         if (!mode)
6859                 mode = &load_detect_mode;
6860
6861         old_fb = crtc->fb;
6862
6863         /* We need a framebuffer large enough to accommodate all accesses
6864          * that the plane may generate whilst we perform load detection.
6865          * We can not rely on the fbcon either being present (we get called
6866          * during its initialisation to detect all boot displays, or it may
6867          * not even exist) or that it is large enough to satisfy the
6868          * requested mode.
6869          */
6870         r = mode_fits_in_fbdev(dev, mode, &crtc->fb);
6871         if (crtc->fb == NULL) {
6872                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6873                 r = intel_framebuffer_create_for_mode(dev, mode, 24, 32,
6874                     &crtc->fb);
6875                 old->release_fb = crtc->fb;
6876         } else
6877                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6878         if (r != 0) {
6879                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6880                 crtc->fb = old_fb;
6881                 return false;
6882         }
6883
6884         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6885                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6886                 if (old->release_fb)
6887                         old->release_fb->funcs->destroy(old->release_fb);
6888                 crtc->fb = old_fb;
6889                 return false;
6890         }
6891
6892         /* let the connector get through one full cycle before testing */
6893         intel_wait_for_vblank(dev, intel_crtc->pipe);
6894
6895         return true;
6896 }
6897
6898 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6899                                     struct drm_connector *connector,
6900                                     struct intel_load_detect_pipe *old)
6901 {
6902         struct drm_encoder *encoder = &intel_encoder->base;
6903         struct drm_device *dev = encoder->dev;
6904         struct drm_crtc *crtc = encoder->crtc;
6905         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6906         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6907
6908         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6909                       connector->base.id, drm_get_connector_name(connector),
6910                       encoder->base.id, drm_get_encoder_name(encoder));
6911
6912         if (old->load_detect_temp) {
6913                 connector->encoder = NULL;
6914                 drm_helper_disable_unused_functions(dev);
6915
6916                 if (old->release_fb)
6917                         old->release_fb->funcs->destroy(old->release_fb);
6918
6919                 return;
6920         }
6921
6922         /* Switch crtc and encoder back off if necessary */
6923         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6924                 encoder_funcs->dpms(encoder, old->dpms_mode);
6925                 crtc_funcs->dpms(crtc, old->dpms_mode);
6926         }
6927 }
6928
6929 /* Returns the clock of the currently programmed mode of the given pipe. */
6930 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6931 {
6932         struct drm_i915_private *dev_priv = dev->dev_private;
6933         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6934         int pipe = intel_crtc->pipe;
6935         u32 dpll = I915_READ(DPLL(pipe));
6936         u32 fp;
6937         intel_clock_t clock;
6938
6939         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6940                 fp = I915_READ(FP0(pipe));
6941         else
6942                 fp = I915_READ(FP1(pipe));
6943
6944         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6945         if (IS_PINEVIEW(dev)) {
6946                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6947                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6948         } else {
6949                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6950                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6951         }
6952
6953         if (!IS_GEN2(dev)) {
6954                 if (IS_PINEVIEW(dev))
6955                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6956                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6957                 else
6958                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6959                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6960
6961                 switch (dpll & DPLL_MODE_MASK) {
6962                 case DPLLB_MODE_DAC_SERIAL:
6963                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6964                                 5 : 10;
6965                         break;
6966                 case DPLLB_MODE_LVDS:
6967                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6968                                 7 : 14;
6969                         break;
6970                 default:
6971                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6972                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6973                         return 0;
6974                 }
6975
6976                 /* XXX: Handle the 100Mhz refclk */
6977                 intel_clock(dev, 96000, &clock);
6978         } else {
6979                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6980
6981                 if (is_lvds) {
6982                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6983                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6984                         clock.p2 = 14;
6985
6986                         if ((dpll & PLL_REF_INPUT_MASK) ==
6987                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6988                                 /* XXX: might not be 66MHz */
6989                                 intel_clock(dev, 66000, &clock);
6990                         } else
6991                                 intel_clock(dev, 48000, &clock);
6992                 } else {
6993                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6994                                 clock.p1 = 2;
6995                         else {
6996                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6997                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6998                         }
6999                         if (dpll & PLL_P2_DIVIDE_BY_4)
7000                                 clock.p2 = 4;
7001                         else
7002                                 clock.p2 = 2;
7003
7004                         intel_clock(dev, 48000, &clock);
7005                 }
7006         }
7007
7008         /* XXX: It would be nice to validate the clocks, but we can't reuse
7009          * i830PllIsValid() because it relies on the xf86_config connector
7010          * configuration being accurate, which it isn't necessarily.
7011          */
7012
7013         return clock.dot;
7014 }
7015
7016 /** Returns the currently programmed mode of the given pipe. */
7017 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7018                                              struct drm_crtc *crtc)
7019 {
7020         struct drm_i915_private *dev_priv = dev->dev_private;
7021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7022         int pipe = intel_crtc->pipe;
7023         struct drm_display_mode *mode;
7024         int htot = I915_READ(HTOTAL(pipe));
7025         int hsync = I915_READ(HSYNC(pipe));
7026         int vtot = I915_READ(VTOTAL(pipe));
7027         int vsync = I915_READ(VSYNC(pipe));
7028
7029         mode = malloc(sizeof(*mode), DRM_MEM_KMS, M_WAITOK | M_ZERO);
7030
7031         mode->clock = intel_crtc_clock_get(dev, crtc);
7032         mode->hdisplay = (htot & 0xffff) + 1;
7033         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7034         mode->hsync_start = (hsync & 0xffff) + 1;
7035         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7036         mode->vdisplay = (vtot & 0xffff) + 1;
7037         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7038         mode->vsync_start = (vsync & 0xffff) + 1;
7039         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7040
7041         drm_mode_set_name(mode);
7042         drm_mode_set_crtcinfo(mode, 0);
7043
7044         return mode;
7045 }
7046
7047 #define GPU_IDLE_TIMEOUT (500 /* ms */ * 1000 / hz)
7048
7049 /* When this timer fires, we've been idle for awhile */
7050 static void intel_gpu_idle_timer(void *arg)
7051 {
7052         struct drm_device *dev = arg;
7053         drm_i915_private_t *dev_priv = dev->dev_private;
7054
7055         if (!list_empty(&dev_priv->mm.active_list)) {
7056                 /* Still processing requests, so just re-arm the timer. */
7057                 callout_schedule(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT);
7058                 return;
7059         }
7060
7061         dev_priv->busy = false;
7062         taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7063 }
7064
7065 #define CRTC_IDLE_TIMEOUT (1000 /* ms */ * 1000 / hz)
7066
7067 static void intel_crtc_idle_timer(void *arg)
7068 {
7069         struct intel_crtc *intel_crtc = arg;
7070         struct drm_crtc *crtc = &intel_crtc->base;
7071         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7072         struct intel_framebuffer *intel_fb;
7073
7074         intel_fb = to_intel_framebuffer(crtc->fb);
7075         if (intel_fb && intel_fb->obj->active) {
7076                 /* The framebuffer is still being accessed by the GPU. */
7077                 callout_schedule(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT);
7078                 return;
7079         }
7080
7081         intel_crtc->busy = false;
7082         taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7083 }
7084
7085 static void intel_increase_pllclock(struct drm_crtc *crtc)
7086 {
7087         struct drm_device *dev = crtc->dev;
7088         drm_i915_private_t *dev_priv = dev->dev_private;
7089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7090         int pipe = intel_crtc->pipe;
7091         int dpll_reg = DPLL(pipe);
7092         int dpll;
7093
7094         if (HAS_PCH_SPLIT(dev))
7095                 return;
7096
7097         if (!dev_priv->lvds_downclock_avail)
7098                 return;
7099
7100         dpll = I915_READ(dpll_reg);
7101         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7102                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7103
7104                 assert_panel_unlocked(dev_priv, pipe);
7105
7106                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7107                 I915_WRITE(dpll_reg, dpll);
7108                 intel_wait_for_vblank(dev, pipe);
7109
7110                 dpll = I915_READ(dpll_reg);
7111                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7112                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7113         }
7114
7115         /* Schedule downclock */
7116         callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
7117             intel_crtc_idle_timer, intel_crtc);
7118 }
7119
7120 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7121 {
7122         struct drm_device *dev = crtc->dev;
7123         drm_i915_private_t *dev_priv = dev->dev_private;
7124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7125
7126         if (HAS_PCH_SPLIT(dev))
7127                 return;
7128
7129         if (!dev_priv->lvds_downclock_avail)
7130                 return;
7131
7132         /*
7133          * Since this is called by a timer, we should never get here in
7134          * the manual case.
7135          */
7136         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7137                 int pipe = intel_crtc->pipe;
7138                 int dpll_reg = DPLL(pipe);
7139                 u32 dpll;
7140
7141                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7142
7143                 assert_panel_unlocked(dev_priv, pipe);
7144
7145                 dpll = I915_READ(dpll_reg);
7146                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7147                 I915_WRITE(dpll_reg, dpll);
7148                 intel_wait_for_vblank(dev, pipe);
7149                 dpll = I915_READ(dpll_reg);
7150                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7151                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7152         }
7153 }
7154
7155 /**
7156  * intel_idle_update - adjust clocks for idleness
7157  * @work: work struct
7158  *
7159  * Either the GPU or display (or both) went idle.  Check the busy status
7160  * here and adjust the CRTC and GPU clocks as necessary.
7161  */
7162 static void intel_idle_update(void *arg, int pending)
7163 {
7164         drm_i915_private_t *dev_priv = arg;
7165         struct drm_device *dev = dev_priv->dev;
7166         struct drm_crtc *crtc;
7167         struct intel_crtc *intel_crtc;
7168
7169         if (!i915_powersave)
7170                 return;
7171
7172         DRM_LOCK(dev);
7173
7174         i915_update_gfx_val(dev_priv);
7175
7176         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7177                 /* Skip inactive CRTCs */
7178                 if (!crtc->fb)
7179                         continue;
7180
7181                 intel_crtc = to_intel_crtc(crtc);
7182                 if (!intel_crtc->busy)
7183                         intel_decrease_pllclock(crtc);
7184         }
7185
7186         DRM_UNLOCK(dev);
7187 }
7188
7189 /**
7190  * intel_mark_busy - mark the GPU and possibly the display busy
7191  * @dev: drm device
7192  * @obj: object we're operating on
7193  *
7194  * Callers can use this function to indicate that the GPU is busy processing
7195  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7196  * buffer), we'll also mark the display as busy, so we know to increase its
7197  * clock frequency.
7198  */
7199 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7200 {
7201         drm_i915_private_t *dev_priv = dev->dev_private;
7202         struct drm_crtc *crtc = NULL;
7203         struct intel_framebuffer *intel_fb;
7204         struct intel_crtc *intel_crtc;
7205
7206         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7207                 return;
7208
7209         if (!dev_priv->busy)
7210                 dev_priv->busy = true;
7211         else
7212                 callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
7213                     intel_gpu_idle_timer, dev);
7214
7215         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7216                 if (!crtc->fb)
7217                         continue;
7218
7219                 intel_crtc = to_intel_crtc(crtc);
7220                 intel_fb = to_intel_framebuffer(crtc->fb);
7221                 if (intel_fb->obj == obj) {
7222                         if (!intel_crtc->busy) {
7223                                 /* Non-busy -> busy, upclock */
7224                                 intel_increase_pllclock(crtc);
7225                                 intel_crtc->busy = true;
7226                         } else {
7227                                 /* Busy -> busy, put off timer */
7228                                 callout_reset(&intel_crtc->idle_callout, 
7229                                     CRTC_IDLE_TIMEOUT, intel_crtc_idle_timer,
7230                                     intel_crtc);
7231                         }
7232                 }
7233         }
7234 }
7235
7236 static void intel_crtc_destroy(struct drm_crtc *crtc)
7237 {
7238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7239         struct drm_device *dev = crtc->dev;
7240         struct drm_i915_private *dev_priv = dev->dev_private;
7241         struct intel_unpin_work *work;
7242
7243         mtx_lock(&dev->event_lock);
7244         work = intel_crtc->unpin_work;
7245         intel_crtc->unpin_work = NULL;
7246         mtx_unlock(&dev->event_lock);
7247
7248         if (work) {
7249                 taskqueue_cancel(dev_priv->tq, &work->task, NULL);
7250                 taskqueue_drain(dev_priv->tq, &work->task);
7251                 free(work, DRM_MEM_KMS);
7252         }
7253
7254         drm_crtc_cleanup(crtc);
7255
7256         free(intel_crtc, DRM_MEM_KMS);
7257 }
7258
7259 static void intel_unpin_work_fn(void *arg, int pending)
7260 {
7261         struct intel_unpin_work *work = arg;
7262         struct drm_device *dev;
7263
7264         dev = work->dev;
7265         DRM_LOCK(dev);
7266         intel_unpin_fb_obj(work->old_fb_obj);
7267         drm_gem_object_unreference(&work->pending_flip_obj->base);
7268         drm_gem_object_unreference(&work->old_fb_obj->base);
7269
7270         intel_update_fbc(work->dev);
7271         DRM_UNLOCK(dev);
7272         free(work, DRM_MEM_KMS);
7273 }
7274
7275 static void do_intel_finish_page_flip(struct drm_device *dev,
7276                                       struct drm_crtc *crtc)
7277 {
7278         drm_i915_private_t *dev_priv = dev->dev_private;
7279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7280         struct intel_unpin_work *work;
7281         struct drm_i915_gem_object *obj;
7282         struct drm_pending_vblank_event *e;
7283         struct timeval tnow, tvbl;
7284
7285         /* Ignore early vblank irqs */
7286         if (intel_crtc == NULL)
7287                 return;
7288
7289         microtime(&tnow);
7290
7291         mtx_lock(&dev->event_lock);
7292         work = intel_crtc->unpin_work;
7293         if (work == NULL || !work->pending) {
7294                 mtx_unlock(&dev->event_lock);
7295                 return;
7296         }
7297
7298         intel_crtc->unpin_work = NULL;
7299
7300         if (work->event) {
7301                 e = work->event;
7302                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7303
7304                 /* Called before vblank count and timestamps have
7305                  * been updated for the vblank interval of flip
7306                  * completion? Need to increment vblank count and
7307                  * add one videorefresh duration to returned timestamp
7308                  * to account for this. We assume this happened if we
7309                  * get called over 0.9 frame durations after the last
7310                  * timestamped vblank.
7311                  *
7312                  * This calculation can not be used with vrefresh rates
7313                  * below 5Hz (10Hz to be on the safe side) without
7314                  * promoting to 64 integers.
7315                  */
7316                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7317                     9 * crtc->framedur_ns) {
7318                         e->event.sequence++;
7319                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7320                                              crtc->framedur_ns);
7321                 }
7322
7323                 e->event.tv_sec = tvbl.tv_sec;
7324                 e->event.tv_usec = tvbl.tv_usec;
7325
7326                 list_add_tail(&e->base.link,
7327                               &e->base.file_priv->event_list);
7328                 drm_event_wakeup(&e->base);
7329         }
7330
7331         drm_vblank_put(dev, intel_crtc->pipe);
7332
7333         obj = work->old_fb_obj;
7334
7335         atomic_clear_int(&obj->pending_flip, 1 << intel_crtc->plane);
7336         if (atomic_read(&obj->pending_flip) == 0)
7337                 wakeup(&obj->pending_flip);
7338         mtx_unlock(&dev->event_lock);
7339
7340         taskqueue_enqueue(dev_priv->tq, &work->task);
7341
7342         CTR2(KTR_DRM, "i915_flip_complete %d %p", intel_crtc->plane,
7343             work->pending_flip_obj);
7344 }
7345
7346 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7347 {
7348         drm_i915_private_t *dev_priv = dev->dev_private;
7349         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7350
7351         do_intel_finish_page_flip(dev, crtc);
7352 }
7353
7354 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7355 {
7356         drm_i915_private_t *dev_priv = dev->dev_private;
7357         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7358
7359         do_intel_finish_page_flip(dev, crtc);
7360 }
7361
7362 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7363 {
7364         drm_i915_private_t *dev_priv = dev->dev_private;
7365         struct intel_crtc *intel_crtc =
7366                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7367
7368         mtx_lock(&dev->event_lock);
7369         if (intel_crtc->unpin_work) {
7370                 if ((++intel_crtc->unpin_work->pending) > 1)
7371                         DRM_ERROR("Prepared flip multiple times\n");
7372         } else {
7373                 DRM_DEBUG("preparing flip with no unpin work?\n");
7374         }
7375         mtx_unlock(&dev->event_lock);
7376 }
7377
7378 static int intel_gen2_queue_flip(struct drm_device *dev,
7379                                  struct drm_crtc *crtc,
7380                                  struct drm_framebuffer *fb,
7381                                  struct drm_i915_gem_object *obj)
7382 {
7383         struct drm_i915_private *dev_priv = dev->dev_private;
7384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7385         unsigned long offset;
7386         u32 flip_mask;
7387         int ret;
7388
7389         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7390         if (ret)
7391                 goto out;
7392
7393         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7394         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7395
7396         ret = BEGIN_LP_RING(6);
7397         if (ret)
7398                 goto out;
7399
7400         /* Can't queue multiple flips, so wait for the previous
7401          * one to finish before executing the next.
7402          */
7403         if (intel_crtc->plane)
7404                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7405         else
7406                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7407         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7408         OUT_RING(MI_NOOP);
7409         OUT_RING(MI_DISPLAY_FLIP |
7410                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7411         OUT_RING(fb->pitches[0]);
7412         OUT_RING(obj->gtt_offset + offset);
7413         OUT_RING(0); /* aux display base address, unused */
7414         ADVANCE_LP_RING();
7415 out:
7416         return ret;
7417 }
7418
7419 static int intel_gen3_queue_flip(struct drm_device *dev,
7420                                  struct drm_crtc *crtc,
7421                                  struct drm_framebuffer *fb,
7422                                  struct drm_i915_gem_object *obj)
7423 {
7424         struct drm_i915_private *dev_priv = dev->dev_private;
7425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7426         unsigned long offset;
7427         u32 flip_mask;
7428         int ret;
7429
7430         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7431         if (ret)
7432                 goto out;
7433
7434         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7435         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7436
7437         ret = BEGIN_LP_RING(6);
7438         if (ret)
7439                 goto out;
7440
7441         if (intel_crtc->plane)
7442                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7443         else
7444                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7445         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7446         OUT_RING(MI_NOOP);
7447         OUT_RING(MI_DISPLAY_FLIP_I915 |
7448                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7449         OUT_RING(fb->pitches[0]);
7450         OUT_RING(obj->gtt_offset + offset);
7451         OUT_RING(MI_NOOP);
7452
7453         ADVANCE_LP_RING();
7454 out:
7455         return ret;
7456 }
7457
7458 static int intel_gen4_queue_flip(struct drm_device *dev,
7459                                  struct drm_crtc *crtc,
7460                                  struct drm_framebuffer *fb,
7461                                  struct drm_i915_gem_object *obj)
7462 {
7463         struct drm_i915_private *dev_priv = dev->dev_private;
7464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7465         uint32_t pf, pipesrc;
7466         int ret;
7467
7468         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7469         if (ret)
7470                 goto out;
7471
7472         ret = BEGIN_LP_RING(4);
7473         if (ret)
7474                 goto out;
7475
7476         /* i965+ uses the linear or tiled offsets from the
7477          * Display Registers (which do not change across a page-flip)
7478          * so we need only reprogram the base address.
7479          */
7480         OUT_RING(MI_DISPLAY_FLIP |
7481                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7482         OUT_RING(fb->pitches[0]);
7483         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7484
7485         /* XXX Enabling the panel-fitter across page-flip is so far
7486          * untested on non-native modes, so ignore it for now.
7487          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7488          */
7489         pf = 0;
7490         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7491         OUT_RING(pf | pipesrc);
7492         ADVANCE_LP_RING();
7493 out:
7494         return ret;
7495 }
7496
7497 static int intel_gen6_queue_flip(struct drm_device *dev,
7498                                  struct drm_crtc *crtc,
7499                                  struct drm_framebuffer *fb,
7500                                  struct drm_i915_gem_object *obj)
7501 {
7502         struct drm_i915_private *dev_priv = dev->dev_private;
7503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7504         uint32_t pf, pipesrc;
7505         int ret;
7506
7507         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7508         if (ret)
7509                 goto out;
7510
7511         ret = BEGIN_LP_RING(4);
7512         if (ret)
7513                 goto out;
7514
7515         OUT_RING(MI_DISPLAY_FLIP |
7516                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7517         OUT_RING(fb->pitches[0] | obj->tiling_mode);
7518         OUT_RING(obj->gtt_offset);
7519
7520         /* Contrary to the suggestions in the documentation,
7521          * "Enable Panel Fitter" does not seem to be required when page
7522          * flipping with a non-native mode, and worse causes a normal
7523          * modeset to fail.
7524          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7525          */
7526         pf = 0;
7527         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7528         OUT_RING(pf | pipesrc);
7529         ADVANCE_LP_RING();
7530 out:
7531         return ret;
7532 }
7533
7534 /*
7535  * On gen7 we currently use the blit ring because (in early silicon at least)
7536  * the render ring doesn't give us interrpts for page flip completion, which
7537  * means clients will hang after the first flip is queued.  Fortunately the
7538  * blit ring generates interrupts properly, so use it instead.
7539  */
7540 static int intel_gen7_queue_flip(struct drm_device *dev,
7541                                  struct drm_crtc *crtc,
7542                                  struct drm_framebuffer *fb,
7543                                  struct drm_i915_gem_object *obj)
7544 {
7545         struct drm_i915_private *dev_priv = dev->dev_private;
7546         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7547         struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
7548         int ret;
7549
7550         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7551         if (ret)
7552                 goto out;
7553
7554         ret = intel_ring_begin(ring, 4);
7555         if (ret)
7556                 goto out;
7557
7558         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7559         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7560         intel_ring_emit(ring, (obj->gtt_offset));
7561         intel_ring_emit(ring, (MI_NOOP));
7562         intel_ring_advance(ring);
7563 out:
7564         return ret;
7565 }
7566
7567 static int intel_default_queue_flip(struct drm_device *dev,
7568                                     struct drm_crtc *crtc,
7569                                     struct drm_framebuffer *fb,
7570                                     struct drm_i915_gem_object *obj)
7571 {
7572         return -ENODEV;
7573 }
7574
7575 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7576                                 struct drm_framebuffer *fb,
7577                                 struct drm_pending_vblank_event *event)
7578 {
7579         struct drm_device *dev = crtc->dev;
7580         struct drm_i915_private *dev_priv = dev->dev_private;
7581         struct intel_framebuffer *intel_fb;
7582         struct drm_i915_gem_object *obj;
7583         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7584         struct intel_unpin_work *work;
7585         int ret;
7586
7587         work = malloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
7588
7589         work->event = event;
7590         work->dev = crtc->dev;
7591         intel_fb = to_intel_framebuffer(crtc->fb);
7592         work->old_fb_obj = intel_fb->obj;
7593         TASK_INIT(&work->task, 0, intel_unpin_work_fn, work);
7594
7595         ret = drm_vblank_get(dev, intel_crtc->pipe);
7596         if (ret)
7597                 goto free_work;
7598
7599         /* We borrow the event spin lock for protecting unpin_work */
7600         mtx_lock(&dev->event_lock);
7601         if (intel_crtc->unpin_work) {
7602                 mtx_unlock(&dev->event_lock);
7603                 free(work, DRM_MEM_KMS);
7604                 drm_vblank_put(dev, intel_crtc->pipe);
7605
7606                 DRM_DEBUG("flip queue: crtc already busy\n");
7607                 return -EBUSY;
7608         }
7609         intel_crtc->unpin_work = work;
7610         mtx_unlock(&dev->event_lock);
7611
7612         intel_fb = to_intel_framebuffer(fb);
7613         obj = intel_fb->obj;
7614
7615         DRM_LOCK(dev);
7616
7617         /* Reference the objects for the scheduled work. */
7618         drm_gem_object_reference(&work->old_fb_obj->base);
7619         drm_gem_object_reference(&obj->base);
7620
7621         crtc->fb = fb;
7622
7623         work->pending_flip_obj = obj;
7624
7625         work->enable_stall_check = true;
7626
7627         /* Block clients from rendering to the new back buffer until
7628          * the flip occurs and the object is no longer visible.
7629          */
7630         atomic_set_int(&work->old_fb_obj->pending_flip, 1 << intel_crtc->plane);
7631
7632         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7633         if (ret)
7634                 goto cleanup_pending;
7635         intel_disable_fbc(dev);
7636         DRM_UNLOCK(dev);
7637
7638         CTR2(KTR_DRM, "i915_flip_request %d %p", intel_crtc->plane, obj);
7639
7640         return 0;
7641
7642 cleanup_pending:
7643         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7644         drm_gem_object_unreference(&work->old_fb_obj->base);
7645         drm_gem_object_unreference(&obj->base);
7646         DRM_UNLOCK(dev);
7647
7648         mtx_lock(&dev->event_lock);
7649         intel_crtc->unpin_work = NULL;
7650         mtx_unlock(&dev->event_lock);
7651
7652         drm_vblank_put(dev, intel_crtc->pipe);
7653 free_work:
7654         free(work, DRM_MEM_KMS);
7655
7656         return ret;
7657 }
7658
7659 static void intel_sanitize_modesetting(struct drm_device *dev,
7660                                        int pipe, int plane)
7661 {
7662         struct drm_i915_private *dev_priv = dev->dev_private;
7663         u32 reg, val;
7664
7665         /* Clear any frame start delays used for debugging left by the BIOS */
7666         for_each_pipe(pipe) {
7667                 reg = PIPECONF(pipe);
7668                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7669         }
7670
7671         if (HAS_PCH_SPLIT(dev))
7672                 return;
7673
7674         /* Who knows what state these registers were left in by the BIOS or
7675          * grub?
7676          *
7677          * If we leave the registers in a conflicting state (e.g. with the
7678          * display plane reading from the other pipe than the one we intend
7679          * to use) then when we attempt to teardown the active mode, we will
7680          * not disable the pipes and planes in the correct order -- leaving
7681          * a plane reading from a disabled pipe and possibly leading to
7682          * undefined behaviour.
7683          */
7684
7685         reg = DSPCNTR(plane);
7686         val = I915_READ(reg);
7687
7688         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7689                 return;
7690         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7691                 return;
7692
7693         /* This display plane is active and attached to the other CPU pipe. */
7694         pipe = !pipe;
7695
7696         /* Disable the plane and wait for it to stop reading from the pipe. */
7697         intel_disable_plane(dev_priv, plane, pipe);
7698         intel_disable_pipe(dev_priv, pipe);
7699 }
7700
7701 static void intel_crtc_reset(struct drm_crtc *crtc)
7702 {
7703         struct drm_device *dev = crtc->dev;
7704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7705
7706         /* Reset flags back to the 'unknown' status so that they
7707          * will be correctly set on the initial modeset.
7708          */
7709         intel_crtc->dpms_mode = -1;
7710
7711         /* We need to fix up any BIOS configuration that conflicts with
7712          * our expectations.
7713          */
7714         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7715 }
7716
7717 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7718         .dpms = intel_crtc_dpms,
7719         .mode_fixup = intel_crtc_mode_fixup,
7720         .mode_set = intel_crtc_mode_set,
7721         .mode_set_base = intel_pipe_set_base,
7722         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7723         .load_lut = intel_crtc_load_lut,
7724         .disable = intel_crtc_disable,
7725 };
7726
7727 static const struct drm_crtc_funcs intel_crtc_funcs = {
7728         .reset = intel_crtc_reset,
7729         .cursor_set = intel_crtc_cursor_set,
7730         .cursor_move = intel_crtc_cursor_move,
7731         .gamma_set = intel_crtc_gamma_set,
7732         .set_config = drm_crtc_helper_set_config,
7733         .destroy = intel_crtc_destroy,
7734         .page_flip = intel_crtc_page_flip,
7735 };
7736
7737 static void intel_crtc_init(struct drm_device *dev, int pipe)
7738 {
7739         drm_i915_private_t *dev_priv = dev->dev_private;
7740         struct intel_crtc *intel_crtc;
7741         int i;
7742
7743         intel_crtc = malloc(sizeof(struct intel_crtc) +
7744             (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
7745             DRM_MEM_KMS, M_WAITOK | M_ZERO);
7746
7747         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7748
7749         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7750         for (i = 0; i < 256; i++) {
7751                 intel_crtc->lut_r[i] = i;
7752                 intel_crtc->lut_g[i] = i;
7753                 intel_crtc->lut_b[i] = i;
7754         }
7755
7756         /* Swap pipes & planes for FBC on pre-965 */
7757         intel_crtc->pipe = pipe;
7758         intel_crtc->plane = pipe;
7759         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7760                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7761                 intel_crtc->plane = !pipe;
7762         }
7763
7764         KASSERT(pipe < DRM_ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) &&
7765             dev_priv->plane_to_crtc_mapping[intel_crtc->plane] == NULL,
7766             ("plane_to_crtc is already initialized"));
7767         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7768         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7769
7770         intel_crtc_reset(&intel_crtc->base);
7771         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7772         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7773
7774         if (HAS_PCH_SPLIT(dev)) {
7775                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7776                         intel_crtc->no_pll = true;
7777                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7778                 intel_helper_funcs.commit = ironlake_crtc_commit;
7779         } else {
7780                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7781                 intel_helper_funcs.commit = i9xx_crtc_commit;
7782         }
7783
7784         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7785
7786         intel_crtc->busy = false;
7787
7788         callout_init(&intel_crtc->idle_callout, CALLOUT_MPSAFE);
7789 }
7790
7791 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7792                                 struct drm_file *file)
7793 {
7794         drm_i915_private_t *dev_priv = dev->dev_private;
7795         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7796         struct drm_mode_object *drmmode_obj;
7797         struct intel_crtc *crtc;
7798
7799         if (!dev_priv) {
7800                 DRM_ERROR("called with no initialization\n");
7801                 return -EINVAL;
7802         }
7803
7804         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7805                         DRM_MODE_OBJECT_CRTC);
7806
7807         if (!drmmode_obj) {
7808                 DRM_ERROR("no such CRTC id\n");
7809                 return -EINVAL;
7810         }
7811
7812         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7813         pipe_from_crtc_id->pipe = crtc->pipe;
7814
7815         return 0;
7816 }
7817
7818 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7819 {
7820         struct intel_encoder *encoder;
7821         int index_mask = 0;
7822         int entry = 0;
7823
7824         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7825                 if (type_mask & encoder->clone_mask)
7826                         index_mask |= (1 << entry);
7827                 entry++;
7828         }
7829
7830         return index_mask;
7831 }
7832
7833 static bool has_edp_a(struct drm_device *dev)
7834 {
7835         struct drm_i915_private *dev_priv = dev->dev_private;
7836
7837         if (!IS_MOBILE(dev))
7838                 return false;
7839
7840         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7841                 return false;
7842
7843         if (IS_GEN5(dev) &&
7844             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7845                 return false;
7846
7847         return true;
7848 }
7849
7850 static void intel_setup_outputs(struct drm_device *dev)
7851 {
7852         struct drm_i915_private *dev_priv = dev->dev_private;
7853         struct intel_encoder *encoder;
7854         bool dpd_is_edp = false;
7855         bool has_lvds;
7856
7857         has_lvds = intel_lvds_init(dev);
7858         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7859                 /* disable the panel fitter on everything but LVDS */
7860                 I915_WRITE(PFIT_CONTROL, 0);
7861         }
7862
7863         if (HAS_PCH_SPLIT(dev)) {
7864                 dpd_is_edp = intel_dpd_is_edp(dev);
7865
7866                 if (has_edp_a(dev))
7867                         intel_dp_init(dev, DP_A);
7868
7869                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7870                         intel_dp_init(dev, PCH_DP_D);
7871         }
7872
7873         intel_crt_init(dev);
7874
7875         if (HAS_PCH_SPLIT(dev)) {
7876                 int found;
7877
7878                 DRM_DEBUG_KMS(
7879 "HDMIB %d PCH_DP_B %d HDMIC %d HDMID %d PCH_DP_C %d PCH_DP_D %d LVDS %d\n",
7880                     (I915_READ(HDMIB) & PORT_DETECTED) != 0,
7881                     (I915_READ(PCH_DP_B) & DP_DETECTED) != 0,
7882                     (I915_READ(HDMIC) & PORT_DETECTED) != 0,
7883                     (I915_READ(HDMID) & PORT_DETECTED) != 0,
7884                     (I915_READ(PCH_DP_C) & DP_DETECTED) != 0,
7885                     (I915_READ(PCH_DP_D) & DP_DETECTED) != 0,
7886                     (I915_READ(PCH_LVDS) & LVDS_DETECTED) != 0);
7887
7888                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7889                         /* PCH SDVOB multiplex with HDMIB */
7890                         found = intel_sdvo_init(dev, PCH_SDVOB);
7891                         if (!found)
7892                                 intel_hdmi_init(dev, HDMIB);
7893                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7894                                 intel_dp_init(dev, PCH_DP_B);
7895                 }
7896
7897                 if (I915_READ(HDMIC) & PORT_DETECTED)
7898                         intel_hdmi_init(dev, HDMIC);
7899
7900                 if (I915_READ(HDMID) & PORT_DETECTED)
7901                         intel_hdmi_init(dev, HDMID);
7902
7903                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7904                         intel_dp_init(dev, PCH_DP_C);
7905
7906                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7907                         intel_dp_init(dev, PCH_DP_D);
7908
7909         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7910                 bool found = false;
7911
7912                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7913                         DRM_DEBUG_KMS("probing SDVOB\n");
7914                         found = intel_sdvo_init(dev, SDVOB);
7915                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7916                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7917                                 intel_hdmi_init(dev, SDVOB);
7918                         }
7919
7920                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7921                                 DRM_DEBUG_KMS("probing DP_B\n");
7922                                 intel_dp_init(dev, DP_B);
7923                         }
7924                 }
7925
7926                 /* Before G4X SDVOC doesn't have its own detect register */
7927
7928                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7929                         DRM_DEBUG_KMS("probing SDVOC\n");
7930                         found = intel_sdvo_init(dev, SDVOC);
7931                 }
7932
7933                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7934
7935                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7936                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7937                                 intel_hdmi_init(dev, SDVOC);
7938                         }
7939                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7940                                 DRM_DEBUG_KMS("probing DP_C\n");
7941                                 intel_dp_init(dev, DP_C);
7942                         }
7943                 }
7944
7945                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7946                     (I915_READ(DP_D) & DP_DETECTED)) {
7947                         DRM_DEBUG_KMS("probing DP_D\n");
7948                         intel_dp_init(dev, DP_D);
7949                 }
7950         } else if (IS_GEN2(dev)) {
7951 #if 1
7952                 KIB_NOTYET();
7953 #else
7954                 intel_dvo_init(dev);
7955 #endif
7956         }
7957
7958         if (SUPPORTS_TV(dev))
7959                 intel_tv_init(dev);
7960
7961         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7962                 encoder->base.possible_crtcs = encoder->crtc_mask;
7963                 encoder->base.possible_clones =
7964                         intel_encoder_clones(dev, encoder->clone_mask);
7965         }
7966
7967         /* disable all the possible outputs/crtcs before entering KMS mode */
7968         drm_helper_disable_unused_functions(dev);
7969
7970         if (HAS_PCH_SPLIT(dev))
7971                 ironlake_init_pch_refclk(dev);
7972 }
7973
7974 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7975 {
7976         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7977
7978         drm_framebuffer_cleanup(fb);
7979         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7980
7981         free(intel_fb, DRM_MEM_KMS);
7982 }
7983
7984 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7985                                                 struct drm_file *file,
7986                                                 unsigned int *handle)
7987 {
7988         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7989         struct drm_i915_gem_object *obj = intel_fb->obj;
7990
7991         return drm_gem_handle_create(file, &obj->base, handle);
7992 }
7993
7994 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7995         .destroy = intel_user_framebuffer_destroy,
7996         .create_handle = intel_user_framebuffer_create_handle,
7997 };
7998
7999 int intel_framebuffer_init(struct drm_device *dev,
8000                            struct intel_framebuffer *intel_fb,
8001                            struct drm_mode_fb_cmd2 *mode_cmd,
8002                            struct drm_i915_gem_object *obj)
8003 {
8004         int ret;
8005
8006         if (obj->tiling_mode == I915_TILING_Y)
8007                 return -EINVAL;
8008
8009         if (mode_cmd->pitches[0] & 63)
8010                 return -EINVAL;
8011
8012         switch (mode_cmd->pixel_format) {
8013         case DRM_FORMAT_RGB332:
8014         case DRM_FORMAT_RGB565:
8015         case DRM_FORMAT_XRGB8888:
8016         case DRM_FORMAT_XBGR8888:
8017         case DRM_FORMAT_ARGB8888:
8018         case DRM_FORMAT_XRGB2101010:
8019         case DRM_FORMAT_ARGB2101010:
8020                 /* RGB formats are common across chipsets */
8021                 break;
8022         case DRM_FORMAT_YUYV:
8023         case DRM_FORMAT_UYVY:
8024         case DRM_FORMAT_YVYU:
8025         case DRM_FORMAT_VYUY:
8026                 break;
8027         default:
8028                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8029                                 mode_cmd->pixel_format);
8030                 return -EINVAL;
8031         }
8032
8033         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8034         if (ret) {
8035                 DRM_ERROR("framebuffer init failed %d\n", ret);
8036                 return ret;
8037         }
8038
8039         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8040         intel_fb->obj = obj;
8041         return 0;
8042 }
8043
8044 static int
8045 intel_user_framebuffer_create(struct drm_device *dev,
8046     struct drm_file *filp, struct drm_mode_fb_cmd2 *mode_cmd,
8047     struct drm_framebuffer **res)
8048 {
8049         struct drm_i915_gem_object *obj;
8050
8051         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8052                                                 mode_cmd->handles[0]));
8053         if (&obj->base == NULL)
8054                 return (-ENOENT);
8055
8056         return (intel_framebuffer_create(dev, mode_cmd, obj, res));
8057 }
8058
8059 static const struct drm_mode_config_funcs intel_mode_funcs = {
8060         .fb_create = intel_user_framebuffer_create,
8061         .output_poll_changed = intel_fb_output_poll_changed,
8062 };
8063
8064 static struct drm_i915_gem_object *
8065 intel_alloc_context_page(struct drm_device *dev)
8066 {
8067         struct drm_i915_gem_object *ctx;
8068         int ret;
8069
8070         DRM_LOCK_ASSERT(dev);
8071
8072         ctx = i915_gem_alloc_object(dev, 4096);
8073         if (!ctx) {
8074                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8075                 return NULL;
8076         }
8077
8078         ret = i915_gem_object_pin(ctx, 4096, true);
8079         if (ret) {
8080                 DRM_ERROR("failed to pin power context: %d\n", ret);
8081                 goto err_unref;
8082         }
8083
8084         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8085         if (ret) {
8086                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8087                 goto err_unpin;
8088         }
8089
8090         return ctx;
8091
8092 err_unpin:
8093         i915_gem_object_unpin(ctx);
8094 err_unref:
8095         drm_gem_object_unreference(&ctx->base);
8096         DRM_UNLOCK(dev);
8097         return NULL;
8098 }
8099
8100 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8101 {
8102         struct drm_i915_private *dev_priv = dev->dev_private;
8103         u16 rgvswctl;
8104
8105         rgvswctl = I915_READ16(MEMSWCTL);
8106         if (rgvswctl & MEMCTL_CMD_STS) {
8107                 DRM_DEBUG("gpu busy, RCS change rejected\n");
8108                 return false; /* still busy with another command */
8109         }
8110
8111         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8112                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8113         I915_WRITE16(MEMSWCTL, rgvswctl);
8114         POSTING_READ16(MEMSWCTL);
8115
8116         rgvswctl |= MEMCTL_CMD_STS;
8117         I915_WRITE16(MEMSWCTL, rgvswctl);
8118
8119         return true;
8120 }
8121
8122 void ironlake_enable_drps(struct drm_device *dev)
8123 {
8124         struct drm_i915_private *dev_priv = dev->dev_private;
8125         u32 rgvmodectl = I915_READ(MEMMODECTL);
8126         u8 fmax, fmin, fstart, vstart;
8127
8128         /* Enable temp reporting */
8129         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8130         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8131
8132         /* 100ms RC evaluation intervals */
8133         I915_WRITE(RCUPEI, 100000);
8134         I915_WRITE(RCDNEI, 100000);
8135
8136         /* Set max/min thresholds to 90ms and 80ms respectively */
8137         I915_WRITE(RCBMAXAVG, 90000);
8138         I915_WRITE(RCBMINAVG, 80000);
8139
8140         I915_WRITE(MEMIHYST, 1);
8141
8142         /* Set up min, max, and cur for interrupt handling */
8143         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8144         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8145         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8146                 MEMMODE_FSTART_SHIFT;
8147
8148         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8149                 PXVFREQ_PX_SHIFT;
8150
8151         dev_priv->fmax = fmax; /* IPS callback will increase this */
8152         dev_priv->fstart = fstart;
8153
8154         dev_priv->max_delay = fstart;
8155         dev_priv->min_delay = fmin;
8156         dev_priv->cur_delay = fstart;
8157
8158         DRM_DEBUG("fmax: %d, fmin: %d, fstart: %d\n",
8159                          fmax, fmin, fstart);
8160
8161         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8162
8163         /*
8164          * Interrupts will be enabled in ironlake_irq_postinstall
8165          */
8166
8167         I915_WRITE(VIDSTART, vstart);
8168         POSTING_READ(VIDSTART);
8169
8170         rgvmodectl |= MEMMODE_SWMODE_EN;
8171         I915_WRITE(MEMMODECTL, rgvmodectl);
8172
8173         if (_intel_wait_for(dev,
8174             (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10,
8175             1, "915per"))
8176                 DRM_ERROR("stuck trying to change perf mode\n");
8177         pause("915dsp", 1);
8178
8179         ironlake_set_drps(dev, fstart);
8180
8181         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8182                 I915_READ(0x112e0);
8183         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8184         dev_priv->last_count2 = I915_READ(0x112f4);
8185         nanotime(&dev_priv->last_time2);
8186 }
8187
8188 void ironlake_disable_drps(struct drm_device *dev)
8189 {
8190         struct drm_i915_private *dev_priv = dev->dev_private;
8191         u16 rgvswctl = I915_READ16(MEMSWCTL);
8192
8193         /* Ack interrupts, disable EFC interrupt */
8194         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8195         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8196         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8197         I915_WRITE(DEIIR, DE_PCU_EVENT);
8198         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8199
8200         /* Go back to the starting frequency */
8201         ironlake_set_drps(dev, dev_priv->fstart);
8202         pause("915dsp", 1);
8203         rgvswctl |= MEMCTL_CMD_STS;
8204         I915_WRITE(MEMSWCTL, rgvswctl);
8205         pause("915dsp", 1);
8206
8207 }
8208
8209 void gen6_set_rps(struct drm_device *dev, u8 val)
8210 {
8211         struct drm_i915_private *dev_priv = dev->dev_private;
8212         u32 swreq;
8213
8214         swreq = (val & 0x3ff) << 25;
8215         I915_WRITE(GEN6_RPNSWREQ, swreq);
8216 }
8217
8218 void gen6_disable_rps(struct drm_device *dev)
8219 {
8220         struct drm_i915_private *dev_priv = dev->dev_private;
8221
8222         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8223         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8224         I915_WRITE(GEN6_PMIER, 0);
8225         /* Complete PM interrupt masking here doesn't race with the rps work
8226          * item again unmasking PM interrupts because that is using a different
8227          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8228          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8229
8230         mtx_lock(&dev_priv->rps_lock);
8231         dev_priv->pm_iir = 0;
8232         mtx_unlock(&dev_priv->rps_lock);
8233
8234         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8235 }
8236
8237 static unsigned long intel_pxfreq(u32 vidfreq)
8238 {
8239         unsigned long freq;
8240         int div = (vidfreq & 0x3f0000) >> 16;
8241         int post = (vidfreq & 0x3000) >> 12;
8242         int pre = (vidfreq & 0x7);
8243
8244         if (!pre)
8245                 return 0;
8246
8247         freq = ((div * 133333) / ((1<<post) * pre));
8248
8249         return freq;
8250 }
8251
8252 void intel_init_emon(struct drm_device *dev)
8253 {
8254         struct drm_i915_private *dev_priv = dev->dev_private;
8255         u32 lcfuse;
8256         u8 pxw[16];
8257         int i;
8258
8259         /* Disable to program */
8260         I915_WRITE(ECR, 0);
8261         POSTING_READ(ECR);
8262
8263         /* Program energy weights for various events */
8264         I915_WRITE(SDEW, 0x15040d00);
8265         I915_WRITE(CSIEW0, 0x007f0000);
8266         I915_WRITE(CSIEW1, 0x1e220004);
8267         I915_WRITE(CSIEW2, 0x04000004);
8268
8269         for (i = 0; i < 5; i++)
8270                 I915_WRITE(PEW + (i * 4), 0);
8271         for (i = 0; i < 3; i++)
8272                 I915_WRITE(DEW + (i * 4), 0);
8273
8274         /* Program P-state weights to account for frequency power adjustment */
8275         for (i = 0; i < 16; i++) {
8276                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8277                 unsigned long freq = intel_pxfreq(pxvidfreq);
8278                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8279                         PXVFREQ_PX_SHIFT;
8280                 unsigned long val;
8281
8282                 val = vid * vid;
8283                 val *= (freq / 1000);
8284                 val *= 255;
8285                 val /= (127*127*900);
8286                 if (val > 0xff)
8287                         DRM_ERROR("bad pxval: %ld\n", val);
8288                 pxw[i] = val;
8289         }
8290         /* Render standby states get 0 weight */
8291         pxw[14] = 0;
8292         pxw[15] = 0;
8293
8294         for (i = 0; i < 4; i++) {
8295                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8296                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8297                 I915_WRITE(PXW + (i * 4), val);
8298         }
8299
8300         /* Adjust magic regs to magic values (more experimental results) */
8301         I915_WRITE(OGW0, 0);
8302         I915_WRITE(OGW1, 0);
8303         I915_WRITE(EG0, 0x00007f00);
8304         I915_WRITE(EG1, 0x0000000e);
8305         I915_WRITE(EG2, 0x000e0000);
8306         I915_WRITE(EG3, 0x68000300);
8307         I915_WRITE(EG4, 0x42000000);
8308         I915_WRITE(EG5, 0x00140031);
8309         I915_WRITE(EG6, 0);
8310         I915_WRITE(EG7, 0);
8311
8312         for (i = 0; i < 8; i++)
8313                 I915_WRITE(PXWL + (i * 4), 0);
8314
8315         /* Enable PMON + select events */
8316         I915_WRITE(ECR, 0x80000019);
8317
8318         lcfuse = I915_READ(LCFUSE02);
8319
8320         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8321 }
8322
8323 static int intel_enable_rc6(struct drm_device *dev)
8324 {
8325         /*
8326          * Respect the kernel parameter if it is set
8327          */
8328         if (i915_enable_rc6 >= 0)
8329                 return i915_enable_rc6;
8330
8331         /*
8332          * Disable RC6 on Ironlake
8333          */
8334         if (INTEL_INFO(dev)->gen == 5)
8335                 return 0;
8336
8337         /*
8338          * Enable rc6 on Sandybridge if DMA remapping is disabled
8339          */
8340         if (INTEL_INFO(dev)->gen == 6) {
8341                 DRM_DEBUG_DRIVER(
8342                     "Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
8343                      intel_iommu_enabled ? "true" : "false",
8344                      !intel_iommu_enabled ? "en" : "dis");
8345                 return (intel_iommu_enabled ? 0 : INTEL_RC6_ENABLE);
8346         }
8347         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8348         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8349 }
8350
8351 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8352 {
8353         struct drm_device *dev = dev_priv->dev;
8354         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8355         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8356         u32 pcu_mbox, rc6_mask = 0;
8357         u32 gtfifodbg;
8358         int cur_freq, min_freq, max_freq;
8359         int rc6_mode;
8360         int i;
8361
8362         /* Here begins a magic sequence of register writes to enable
8363          * auto-downclocking.
8364          *
8365          * Perhaps there might be some value in exposing these to
8366          * userspace...
8367          */
8368         I915_WRITE(GEN6_RC_STATE, 0);
8369         DRM_LOCK(dev);
8370
8371         /* Clear the DBG now so we don't confuse earlier errors */
8372         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8373                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8374                 I915_WRITE(GTFIFODBG, gtfifodbg);
8375         }
8376
8377         gen6_gt_force_wake_get(dev_priv);
8378
8379         /* disable the counters and set deterministic thresholds */
8380         I915_WRITE(GEN6_RC_CONTROL, 0);
8381
8382         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8383         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8384         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8385         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8386         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8387
8388         for (i = 0; i < I915_NUM_RINGS; i++)
8389                 I915_WRITE(RING_MAX_IDLE(dev_priv->rings[i].mmio_base), 10);
8390
8391         I915_WRITE(GEN6_RC_SLEEP, 0);
8392         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8393         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8394         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8395         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8396
8397         rc6_mode = intel_enable_rc6(dev_priv->dev);
8398         if (rc6_mode & INTEL_RC6_ENABLE)
8399                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8400
8401         if (rc6_mode & INTEL_RC6p_ENABLE)
8402                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8403
8404         if (rc6_mode & INTEL_RC6pp_ENABLE)
8405                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8406
8407         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8408                         (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8409                         (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8410                         (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8411
8412         I915_WRITE(GEN6_RC_CONTROL,
8413                    rc6_mask |
8414                    GEN6_RC_CTL_EI_MODE(1) |
8415                    GEN6_RC_CTL_HW_ENABLE);
8416
8417         I915_WRITE(GEN6_RPNSWREQ,
8418                    GEN6_FREQUENCY(10) |
8419                    GEN6_OFFSET(0) |
8420                    GEN6_AGGRESSIVE_TURBO);
8421         I915_WRITE(GEN6_RC_VIDEO_FREQ,
8422                    GEN6_FREQUENCY(12));
8423
8424         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8425         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8426                    18 << 24 |
8427                    6 << 16);
8428         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8429         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8430         I915_WRITE(GEN6_RP_UP_EI, 100000);
8431         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8432         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8433         I915_WRITE(GEN6_RP_CONTROL,
8434                    GEN6_RP_MEDIA_TURBO |
8435                    GEN6_RP_MEDIA_HW_MODE |
8436                    GEN6_RP_MEDIA_IS_GFX |
8437                    GEN6_RP_ENABLE |
8438                    GEN6_RP_UP_BUSY_AVG |
8439                    GEN6_RP_DOWN_IDLE_CONT);
8440
8441         if (_intel_wait_for(dev,
8442             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8443             1, "915pr1"))
8444                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8445
8446         I915_WRITE(GEN6_PCODE_DATA, 0);
8447         I915_WRITE(GEN6_PCODE_MAILBOX,
8448                    GEN6_PCODE_READY |
8449                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8450         if (_intel_wait_for(dev,
8451             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8452             1, "915pr2"))
8453                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8454
8455         min_freq = (rp_state_cap & 0xff0000) >> 16;
8456         max_freq = rp_state_cap & 0xff;
8457         cur_freq = (gt_perf_status & 0xff00) >> 8;
8458
8459         /* Check for overclock support */
8460         if (_intel_wait_for(dev,
8461             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8462             1, "915pr3"))
8463                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8464         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8465         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8466         if (_intel_wait_for(dev,
8467             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8468             1, "915pr4"))
8469                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8470         if (pcu_mbox & (1<<31)) { /* OC supported */
8471                 max_freq = pcu_mbox & 0xff;
8472                 DRM_DEBUG("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8473         }
8474
8475         /* In units of 100MHz */
8476         dev_priv->max_delay = max_freq;
8477         dev_priv->min_delay = min_freq;
8478         dev_priv->cur_delay = cur_freq;
8479
8480         /* requires MSI enabled */
8481         I915_WRITE(GEN6_PMIER,
8482                    GEN6_PM_MBOX_EVENT |
8483                    GEN6_PM_THERMAL_EVENT |
8484                    GEN6_PM_RP_DOWN_TIMEOUT |
8485                    GEN6_PM_RP_UP_THRESHOLD |
8486                    GEN6_PM_RP_DOWN_THRESHOLD |
8487                    GEN6_PM_RP_UP_EI_EXPIRED |
8488                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8489         mtx_lock(&dev_priv->rps_lock);
8490         if (dev_priv->pm_iir != 0)
8491                 printf("pm_iir %x\n", dev_priv->pm_iir);
8492         I915_WRITE(GEN6_PMIMR, 0);
8493         mtx_unlock(&dev_priv->rps_lock);
8494         /* enable all PM interrupts */
8495         I915_WRITE(GEN6_PMINTRMSK, 0);
8496
8497         gen6_gt_force_wake_put(dev_priv);
8498         DRM_UNLOCK(dev);
8499 }
8500
8501 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8502 {
8503         struct drm_device *dev;
8504         int min_freq = 15;
8505         int gpu_freq, ia_freq, max_ia_freq;
8506         int scaling_factor = 180;
8507         uint64_t tsc_freq;
8508
8509         dev = dev_priv->dev;
8510 #if 0
8511         max_ia_freq = cpufreq_quick_get_max(0);
8512         /*
8513          * Default to measured freq if none found, PCU will ensure we don't go
8514          * over
8515          */
8516         if (!max_ia_freq)
8517                 max_ia_freq = tsc_freq;
8518
8519         /* Convert from Hz to MHz */
8520         max_ia_freq /= 1000;
8521 #else
8522         tsc_freq = atomic_load_acq_64(&tsc_freq);
8523         max_ia_freq = tsc_freq / 1000 / 1000;
8524 #endif
8525
8526         DRM_LOCK(dev);
8527
8528         /*
8529          * For each potential GPU frequency, load a ring frequency we'd like
8530          * to use for memory access.  We do this by specifying the IA frequency
8531          * the PCU should use as a reference to determine the ring frequency.
8532          */
8533         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8534              gpu_freq--) {
8535                 int diff = dev_priv->max_delay - gpu_freq;
8536                 int d;
8537
8538                 /*
8539                  * For GPU frequencies less than 750MHz, just use the lowest
8540                  * ring freq.
8541                  */
8542                 if (gpu_freq < min_freq)
8543                         ia_freq = 800;
8544                 else
8545                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8546                 d = 100;
8547                 ia_freq = (ia_freq + d / 2) / d;
8548
8549                 I915_WRITE(GEN6_PCODE_DATA,
8550                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8551                            gpu_freq);
8552                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8553                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8554                 if (_intel_wait_for(dev,
8555                     (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8556                     10, 1, "915frq")) {
8557                         DRM_ERROR("pcode write of freq table timed out\n");
8558                         continue;
8559                 }
8560         }
8561
8562         DRM_UNLOCK(dev);
8563 }
8564
8565 static void ironlake_init_clock_gating(struct drm_device *dev)
8566 {
8567         struct drm_i915_private *dev_priv = dev->dev_private;
8568         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8569
8570         /* Required for FBC */
8571         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8572                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8573                 DPFDUNIT_CLOCK_GATE_DISABLE;
8574         /* Required for CxSR */
8575         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8576
8577         I915_WRITE(PCH_3DCGDIS0,
8578                    MARIUNIT_CLOCK_GATE_DISABLE |
8579                    SVSMUNIT_CLOCK_GATE_DISABLE);
8580         I915_WRITE(PCH_3DCGDIS1,
8581                    VFMUNIT_CLOCK_GATE_DISABLE);
8582
8583         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8584
8585         /*
8586          * According to the spec the following bits should be set in
8587          * order to enable memory self-refresh
8588          * The bit 22/21 of 0x42004
8589          * The bit 5 of 0x42020
8590          * The bit 15 of 0x45000
8591          */
8592         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8593                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8594                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8595         I915_WRITE(ILK_DSPCLK_GATE,
8596                    (I915_READ(ILK_DSPCLK_GATE) |
8597                     ILK_DPARB_CLK_GATE));
8598         I915_WRITE(DISP_ARB_CTL,
8599                    (I915_READ(DISP_ARB_CTL) |
8600                     DISP_FBC_WM_DIS));
8601         I915_WRITE(WM3_LP_ILK, 0);
8602         I915_WRITE(WM2_LP_ILK, 0);
8603         I915_WRITE(WM1_LP_ILK, 0);
8604
8605         /*
8606          * Based on the document from hardware guys the following bits
8607          * should be set unconditionally in order to enable FBC.
8608          * The bit 22 of 0x42000
8609          * The bit 22 of 0x42004
8610          * The bit 7,8,9 of 0x42020.
8611          */
8612         if (IS_IRONLAKE_M(dev)) {
8613                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8614                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8615                            ILK_FBCQ_DIS);
8616                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8617                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8618                            ILK_DPARB_GATE);
8619                 I915_WRITE(ILK_DSPCLK_GATE,
8620                            I915_READ(ILK_DSPCLK_GATE) |
8621                            ILK_DPFC_DIS1 |
8622                            ILK_DPFC_DIS2 |
8623                            ILK_CLK_FBC);
8624         }
8625
8626         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8627                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8628                    ILK_ELPIN_409_SELECT);
8629         I915_WRITE(_3D_CHICKEN2,
8630                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8631                    _3D_CHICKEN2_WM_READ_PIPELINED);
8632 }
8633
8634 static void gen6_init_clock_gating(struct drm_device *dev)
8635 {
8636         struct drm_i915_private *dev_priv = dev->dev_private;
8637         int pipe;
8638         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8639
8640         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8641
8642         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8643                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8644                    ILK_ELPIN_409_SELECT);
8645
8646         I915_WRITE(WM3_LP_ILK, 0);
8647         I915_WRITE(WM2_LP_ILK, 0);
8648         I915_WRITE(WM1_LP_ILK, 0);
8649
8650         I915_WRITE(GEN6_UCGCTL1,
8651                    I915_READ(GEN6_UCGCTL1) |
8652                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
8653
8654         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8655          * gating disable must be set.  Failure to set it results in
8656          * flickering pixels due to Z write ordering failures after
8657          * some amount of runtime in the Mesa "fire" demo, and Unigine
8658          * Sanctuary and Tropics, and apparently anything else with
8659          * alpha test or pixel discard.
8660          *
8661          * According to the spec, bit 11 (RCCUNIT) must also be set,
8662          * but we didn't debug actual testcases to find it out.
8663          */
8664         I915_WRITE(GEN6_UCGCTL2,
8665                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8666                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8667
8668         /*
8669          * According to the spec the following bits should be
8670          * set in order to enable memory self-refresh and fbc:
8671          * The bit21 and bit22 of 0x42000
8672          * The bit21 and bit22 of 0x42004
8673          * The bit5 and bit7 of 0x42020
8674          * The bit14 of 0x70180
8675          * The bit14 of 0x71180
8676          */
8677         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8678                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8679                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8680         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8681                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8682                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8683         I915_WRITE(ILK_DSPCLK_GATE,
8684                    I915_READ(ILK_DSPCLK_GATE) |
8685                    ILK_DPARB_CLK_GATE  |
8686                    ILK_DPFD_CLK_GATE);
8687
8688         for_each_pipe(pipe) {
8689                 I915_WRITE(DSPCNTR(pipe),
8690                            I915_READ(DSPCNTR(pipe)) |
8691                            DISPPLANE_TRICKLE_FEED_DISABLE);
8692                 intel_flush_display_plane(dev_priv, pipe);
8693         }
8694 }
8695
8696 static void ivybridge_init_clock_gating(struct drm_device *dev)
8697 {
8698         struct drm_i915_private *dev_priv = dev->dev_private;
8699         int pipe;
8700         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8701
8702         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8703
8704         I915_WRITE(WM3_LP_ILK, 0);
8705         I915_WRITE(WM2_LP_ILK, 0);
8706         I915_WRITE(WM1_LP_ILK, 0);
8707
8708         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8709          * This implements the WaDisableRCZUnitClockGating workaround.
8710          */
8711         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8712
8713         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8714
8715         I915_WRITE(IVB_CHICKEN3,
8716                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8717                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8718
8719         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8720         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8721                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8722
8723         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8724         I915_WRITE(GEN7_L3CNTLREG1,
8725                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8726         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8727                         GEN7_WA_L3_CHICKEN_MODE);
8728
8729         /* This is required by WaCatErrorRejectionIssue */
8730         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8731                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8732                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8733
8734         for_each_pipe(pipe) {
8735                 I915_WRITE(DSPCNTR(pipe),
8736                            I915_READ(DSPCNTR(pipe)) |
8737                            DISPPLANE_TRICKLE_FEED_DISABLE);
8738                 intel_flush_display_plane(dev_priv, pipe);
8739         }
8740 }
8741
8742 static void g4x_init_clock_gating(struct drm_device *dev)
8743 {
8744         struct drm_i915_private *dev_priv = dev->dev_private;
8745         uint32_t dspclk_gate;
8746
8747         I915_WRITE(RENCLK_GATE_D1, 0);
8748         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8749                    GS_UNIT_CLOCK_GATE_DISABLE |
8750                    CL_UNIT_CLOCK_GATE_DISABLE);
8751         I915_WRITE(RAMCLK_GATE_D, 0);
8752         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8753                 OVRUNIT_CLOCK_GATE_DISABLE |
8754                 OVCUNIT_CLOCK_GATE_DISABLE;
8755         if (IS_GM45(dev))
8756                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8757         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8758 }
8759
8760 static void crestline_init_clock_gating(struct drm_device *dev)
8761 {
8762         struct drm_i915_private *dev_priv = dev->dev_private;
8763
8764         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8765         I915_WRITE(RENCLK_GATE_D2, 0);
8766         I915_WRITE(DSPCLK_GATE_D, 0);
8767         I915_WRITE(RAMCLK_GATE_D, 0);
8768         I915_WRITE16(DEUC, 0);
8769 }
8770
8771 static void broadwater_init_clock_gating(struct drm_device *dev)
8772 {
8773         struct drm_i915_private *dev_priv = dev->dev_private;
8774
8775         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8776                    I965_RCC_CLOCK_GATE_DISABLE |
8777                    I965_RCPB_CLOCK_GATE_DISABLE |
8778                    I965_ISC_CLOCK_GATE_DISABLE |
8779                    I965_FBC_CLOCK_GATE_DISABLE);
8780         I915_WRITE(RENCLK_GATE_D2, 0);
8781 }
8782
8783 static void gen3_init_clock_gating(struct drm_device *dev)
8784 {
8785         struct drm_i915_private *dev_priv = dev->dev_private;
8786         u32 dstate = I915_READ(D_STATE);
8787
8788         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8789                 DSTATE_DOT_CLOCK_GATING;
8790         I915_WRITE(D_STATE, dstate);
8791 }
8792
8793 static void i85x_init_clock_gating(struct drm_device *dev)
8794 {
8795         struct drm_i915_private *dev_priv = dev->dev_private;
8796
8797         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8798 }
8799
8800 static void i830_init_clock_gating(struct drm_device *dev)
8801 {
8802         struct drm_i915_private *dev_priv = dev->dev_private;
8803
8804         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8805 }
8806
8807 static void ibx_init_clock_gating(struct drm_device *dev)
8808 {
8809         struct drm_i915_private *dev_priv = dev->dev_private;
8810
8811         /*
8812          * On Ibex Peak and Cougar Point, we need to disable clock
8813          * gating for the panel power sequencer or it will fail to
8814          * start up when no ports are active.
8815          */
8816         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8817 }
8818
8819 static void cpt_init_clock_gating(struct drm_device *dev)
8820 {
8821         struct drm_i915_private *dev_priv = dev->dev_private;
8822         int pipe;
8823
8824         /*
8825          * On Ibex Peak and Cougar Point, we need to disable clock
8826          * gating for the panel power sequencer or it will fail to
8827          * start up when no ports are active.
8828          */
8829         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8830         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8831                    DPLS_EDP_PPS_FIX_DIS);
8832         /* Without this, mode sets may fail silently on FDI */
8833         for_each_pipe(pipe)
8834                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8835 }
8836
8837 static void ironlake_teardown_rc6(struct drm_device *dev)
8838 {
8839         struct drm_i915_private *dev_priv = dev->dev_private;
8840
8841         if (dev_priv->renderctx) {
8842                 i915_gem_object_unpin(dev_priv->renderctx);
8843                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8844                 dev_priv->renderctx = NULL;
8845         }
8846
8847         if (dev_priv->pwrctx) {
8848                 i915_gem_object_unpin(dev_priv->pwrctx);
8849                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8850                 dev_priv->pwrctx = NULL;
8851         }
8852 }
8853
8854 static void ironlake_disable_rc6(struct drm_device *dev)
8855 {
8856         struct drm_i915_private *dev_priv = dev->dev_private;
8857
8858         if (I915_READ(PWRCTXA)) {
8859                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8860                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8861                 (void)_intel_wait_for(dev,
8862                     ((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8863                     50, 1, "915pro");
8864
8865                 I915_WRITE(PWRCTXA, 0);
8866                 POSTING_READ(PWRCTXA);
8867
8868                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8869                 POSTING_READ(RSTDBYCTL);
8870         }
8871
8872         ironlake_teardown_rc6(dev);
8873 }
8874
8875 static int ironlake_setup_rc6(struct drm_device *dev)
8876 {
8877         struct drm_i915_private *dev_priv = dev->dev_private;
8878
8879         if (dev_priv->renderctx == NULL)
8880                 dev_priv->renderctx = intel_alloc_context_page(dev);
8881         if (!dev_priv->renderctx)
8882                 return -ENOMEM;
8883
8884         if (dev_priv->pwrctx == NULL)
8885                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8886         if (!dev_priv->pwrctx) {
8887                 ironlake_teardown_rc6(dev);
8888                 return -ENOMEM;
8889         }
8890
8891         return 0;
8892 }
8893
8894 void ironlake_enable_rc6(struct drm_device *dev)
8895 {
8896         struct drm_i915_private *dev_priv = dev->dev_private;
8897         int ret;
8898
8899         /* rc6 disabled by default due to repeated reports of hanging during
8900          * boot and resume.
8901          */
8902         if (!intel_enable_rc6(dev))
8903                 return;
8904
8905         DRM_LOCK(dev);
8906         ret = ironlake_setup_rc6(dev);
8907         if (ret) {
8908                 DRM_UNLOCK(dev);
8909                 return;
8910         }
8911
8912         /*
8913          * GPU can automatically power down the render unit if given a page
8914          * to save state.
8915          */
8916         ret = BEGIN_LP_RING(6);
8917         if (ret) {
8918                 ironlake_teardown_rc6(dev);
8919                 DRM_UNLOCK(dev);
8920                 return;
8921         }
8922
8923         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8924         OUT_RING(MI_SET_CONTEXT);
8925         OUT_RING(dev_priv->renderctx->gtt_offset |
8926                  MI_MM_SPACE_GTT |
8927                  MI_SAVE_EXT_STATE_EN |
8928                  MI_RESTORE_EXT_STATE_EN |
8929                  MI_RESTORE_INHIBIT);
8930         OUT_RING(MI_SUSPEND_FLUSH);
8931         OUT_RING(MI_NOOP);
8932         OUT_RING(MI_FLUSH);
8933         ADVANCE_LP_RING();
8934
8935         /*
8936          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8937          * does an implicit flush, combined with MI_FLUSH above, it should be
8938          * safe to assume that renderctx is valid
8939          */
8940         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8941         if (ret) {
8942                 DRM_ERROR("failed to enable ironlake power power savings\n");
8943                 ironlake_teardown_rc6(dev);
8944                 DRM_UNLOCK(dev);
8945                 return;
8946         }
8947
8948         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8949         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8950         DRM_UNLOCK(dev);
8951 }
8952
8953 void intel_init_clock_gating(struct drm_device *dev)
8954 {
8955         struct drm_i915_private *dev_priv = dev->dev_private;
8956
8957         dev_priv->display.init_clock_gating(dev);
8958
8959         if (dev_priv->display.init_pch_clock_gating)
8960                 dev_priv->display.init_pch_clock_gating(dev);
8961 }
8962
8963 /* Set up chip specific display functions */
8964 static void intel_init_display(struct drm_device *dev)
8965 {
8966         struct drm_i915_private *dev_priv = dev->dev_private;
8967
8968         /* We always want a DPMS function */
8969         if (HAS_PCH_SPLIT(dev)) {
8970                 dev_priv->display.dpms = ironlake_crtc_dpms;
8971                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8972                 dev_priv->display.update_plane = ironlake_update_plane;
8973         } else {
8974                 dev_priv->display.dpms = i9xx_crtc_dpms;
8975                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8976                 dev_priv->display.update_plane = i9xx_update_plane;
8977         }
8978
8979         if (I915_HAS_FBC(dev)) {
8980                 if (HAS_PCH_SPLIT(dev)) {
8981                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8982                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8983                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8984                 } else if (IS_GM45(dev)) {
8985                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8986                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8987                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8988                 } else if (IS_CRESTLINE(dev)) {
8989                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8990                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8991                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8992                 }
8993                 /* 855GM needs testing */
8994         }
8995
8996         /* Returns the core display clock speed */
8997         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8998                 dev_priv->display.get_display_clock_speed =
8999                         i945_get_display_clock_speed;
9000         else if (IS_I915G(dev))
9001                 dev_priv->display.get_display_clock_speed =
9002                         i915_get_display_clock_speed;
9003         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9004                 dev_priv->display.get_display_clock_speed =
9005                         i9xx_misc_get_display_clock_speed;
9006         else if (IS_I915GM(dev))
9007                 dev_priv->display.get_display_clock_speed =
9008                         i915gm_get_display_clock_speed;
9009         else if (IS_I865G(dev))
9010                 dev_priv->display.get_display_clock_speed =
9011                         i865_get_display_clock_speed;
9012         else if (IS_I85X(dev))
9013                 dev_priv->display.get_display_clock_speed =
9014                         i855_get_display_clock_speed;
9015         else /* 852, 830 */
9016                 dev_priv->display.get_display_clock_speed =
9017                         i830_get_display_clock_speed;
9018
9019         /* For FIFO watermark updates */
9020         if (HAS_PCH_SPLIT(dev)) {
9021                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9022                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9023
9024                 /* IVB configs may use multi-threaded forcewake */
9025                 if (IS_IVYBRIDGE(dev)) {
9026                         u32     ecobus;
9027
9028                         /* A small trick here - if the bios hasn't configured MT forcewake,
9029                          * and if the device is in RC6, then force_wake_mt_get will not wake
9030                          * the device and the ECOBUS read will return zero. Which will be
9031                          * (correctly) interpreted by the test below as MT forcewake being
9032                          * disabled.
9033                          */
9034                         DRM_LOCK(dev);
9035                         __gen6_gt_force_wake_mt_get(dev_priv);
9036                         ecobus = I915_READ_NOTRACE(ECOBUS);
9037                         __gen6_gt_force_wake_mt_put(dev_priv);
9038                         DRM_UNLOCK(dev);
9039
9040                         if (ecobus & FORCEWAKE_MT_ENABLE) {
9041                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
9042                                 dev_priv->display.force_wake_get =
9043                                         __gen6_gt_force_wake_mt_get;
9044                                 dev_priv->display.force_wake_put =
9045                                         __gen6_gt_force_wake_mt_put;
9046                         }
9047                 }
9048
9049                 if (HAS_PCH_IBX(dev))
9050                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9051                 else if (HAS_PCH_CPT(dev))
9052                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9053
9054                 if (IS_GEN5(dev)) {
9055                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9056                                 dev_priv->display.update_wm = ironlake_update_wm;
9057                         else {
9058                                 DRM_DEBUG_KMS("Failed to get proper latency. "
9059                                               "Disable CxSR\n");
9060                                 dev_priv->display.update_wm = NULL;
9061                         }
9062                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9063                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9064                         dev_priv->display.write_eld = ironlake_write_eld;
9065                 } else if (IS_GEN6(dev)) {
9066                         if (SNB_READ_WM0_LATENCY()) {
9067                                 dev_priv->display.update_wm = sandybridge_update_wm;
9068                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9069                         } else {
9070                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
9071                                               "Disable CxSR\n");
9072                                 dev_priv->display.update_wm = NULL;
9073                         }
9074                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9075                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9076                         dev_priv->display.write_eld = ironlake_write_eld;
9077                 } else if (IS_IVYBRIDGE(dev)) {
9078                         /* FIXME: detect B0+ stepping and use auto training */
9079                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9080                         if (SNB_READ_WM0_LATENCY()) {
9081                                 dev_priv->display.update_wm = sandybridge_update_wm;
9082                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9083                         } else {
9084                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
9085                                               "Disable CxSR\n");
9086                                 dev_priv->display.update_wm = NULL;
9087                         }
9088                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9089                         dev_priv->display.write_eld = ironlake_write_eld;
9090                 } else
9091                         dev_priv->display.update_wm = NULL;
9092         } else if (IS_PINEVIEW(dev)) {
9093                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9094                                             dev_priv->is_ddr3,
9095                                             dev_priv->fsb_freq,
9096                                             dev_priv->mem_freq)) {
9097                         DRM_INFO("failed to find known CxSR latency "
9098                                  "(found ddr%s fsb freq %d, mem freq %d), "
9099                                  "disabling CxSR\n",
9100                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9101                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9102                         /* Disable CxSR and never update its watermark again */
9103                         pineview_disable_cxsr(dev);
9104                         dev_priv->display.update_wm = NULL;
9105                 } else
9106                         dev_priv->display.update_wm = pineview_update_wm;
9107                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9108         } else if (IS_G4X(dev)) {
9109                 dev_priv->display.write_eld = g4x_write_eld;
9110                 dev_priv->display.update_wm = g4x_update_wm;
9111                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9112         } else if (IS_GEN4(dev)) {
9113                 dev_priv->display.update_wm = i965_update_wm;
9114                 if (IS_CRESTLINE(dev))
9115                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9116                 else if (IS_BROADWATER(dev))
9117                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9118         } else if (IS_GEN3(dev)) {
9119                 dev_priv->display.update_wm = i9xx_update_wm;
9120                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9121                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9122         } else if (IS_I865G(dev)) {
9123                 dev_priv->display.update_wm = i830_update_wm;
9124                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9125                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9126         } else if (IS_I85X(dev)) {
9127                 dev_priv->display.update_wm = i9xx_update_wm;
9128                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9129                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9130         } else {
9131                 dev_priv->display.update_wm = i830_update_wm;
9132                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9133                 if (IS_845G(dev))
9134                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9135                 else
9136                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9137         }
9138
9139         /* Default just returns -ENODEV to indicate unsupported */
9140         dev_priv->display.queue_flip = intel_default_queue_flip;
9141
9142         switch (INTEL_INFO(dev)->gen) {
9143         case 2:
9144                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9145                 break;
9146
9147         case 3:
9148                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9149                 break;
9150
9151         case 4:
9152         case 5:
9153                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9154                 break;
9155
9156         case 6:
9157                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9158                 break;
9159         case 7:
9160                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9161                 break;
9162         }
9163 }
9164
9165 /*
9166  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9167  * resume, or other times.  This quirk makes sure that's the case for
9168  * affected systems.
9169  */
9170 static void quirk_pipea_force(struct drm_device *dev)
9171 {
9172         struct drm_i915_private *dev_priv = dev->dev_private;
9173
9174         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9175         DRM_DEBUG("applying pipe a force quirk\n");
9176 }
9177
9178 /*
9179  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9180  */
9181 static void quirk_ssc_force_disable(struct drm_device *dev)
9182 {
9183         struct drm_i915_private *dev_priv = dev->dev_private;
9184         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9185 }
9186
9187 struct intel_quirk {
9188         int device;
9189         int subsystem_vendor;
9190         int subsystem_device;
9191         void (*hook)(struct drm_device *dev);
9192 };
9193
9194 #define PCI_ANY_ID      (~0u)
9195
9196 struct intel_quirk intel_quirks[] = {
9197         /* HP Mini needs pipe A force quirk (LP: #322104) */
9198         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9199
9200         /* Thinkpad R31 needs pipe A force quirk */
9201         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9202         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9203         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9204
9205         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9206         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
9207         /* ThinkPad X40 needs pipe A force quirk */
9208
9209         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9210         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9211
9212         /* 855 & before need to leave pipe A & dpll A up */
9213         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9214         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9215
9216         /* Lenovo U160 cannot use SSC on LVDS */
9217         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9218
9219         /* Sony Vaio Y cannot use SSC on LVDS */
9220         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9221 };
9222
9223 static void intel_init_quirks(struct drm_device *dev)
9224 {
9225         struct intel_quirk *q;
9226         device_t d;
9227         int i;
9228
9229         d = dev->device;
9230         for (i = 0; i < DRM_ARRAY_SIZE(intel_quirks); i++) {
9231                 q = &intel_quirks[i];
9232                 if (pci_get_device(d) == q->device &&
9233                     (pci_get_subvendor(d) == q->subsystem_vendor ||
9234                      q->subsystem_vendor == PCI_ANY_ID) &&
9235                     (pci_get_subdevice(d) == q->subsystem_device ||
9236                      q->subsystem_device == PCI_ANY_ID))
9237                         q->hook(dev);
9238         }
9239 }
9240
9241 /* Disable the VGA plane that we never use */
9242 static void i915_disable_vga(struct drm_device *dev)
9243 {
9244         struct drm_i915_private *dev_priv = dev->dev_private;
9245         u8 sr1;
9246         u32 vga_reg;
9247
9248         if (HAS_PCH_SPLIT(dev))
9249                 vga_reg = CPU_VGACNTRL;
9250         else
9251                 vga_reg = VGACNTRL;
9252
9253 #if 0
9254         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9255 #endif
9256         outb(VGA_SR_INDEX, 1);
9257         sr1 = inb(VGA_SR_DATA);
9258         outb(VGA_SR_DATA, sr1 | 1 << 5);
9259 #if 0
9260         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9261 #endif
9262         DELAY(300);
9263
9264         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9265         POSTING_READ(vga_reg);
9266 }
9267
9268 void intel_modeset_init(struct drm_device *dev)
9269 {
9270         struct drm_i915_private *dev_priv = dev->dev_private;
9271         int i, ret;
9272
9273         drm_mode_config_init(dev);
9274
9275         dev->mode_config.min_width = 0;
9276         dev->mode_config.min_height = 0;
9277
9278         dev->mode_config.preferred_depth = 24;
9279         dev->mode_config.prefer_shadow = 1;
9280
9281         dev->mode_config.funcs = __DECONST(struct drm_mode_config_funcs *,
9282             &intel_mode_funcs);
9283
9284         intel_init_quirks(dev);
9285
9286         intel_init_display(dev);
9287
9288         if (IS_GEN2(dev)) {
9289                 dev->mode_config.max_width = 2048;
9290                 dev->mode_config.max_height = 2048;
9291         } else if (IS_GEN3(dev)) {
9292                 dev->mode_config.max_width = 4096;
9293                 dev->mode_config.max_height = 4096;
9294         } else {
9295                 dev->mode_config.max_width = 8192;
9296                 dev->mode_config.max_height = 8192;
9297         }
9298         dev->mode_config.fb_base = dev->agp->base;
9299
9300         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9301                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9302
9303         for (i = 0; i < dev_priv->num_pipe; i++) {
9304                 intel_crtc_init(dev, i);
9305                 ret = intel_plane_init(dev, i);
9306                 if (ret)
9307                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9308         }
9309
9310         /* Just disable it once at startup */
9311         i915_disable_vga(dev);
9312         intel_setup_outputs(dev);
9313
9314         intel_init_clock_gating(dev);
9315
9316         if (IS_IRONLAKE_M(dev)) {
9317                 ironlake_enable_drps(dev);
9318                 intel_init_emon(dev);
9319         }
9320
9321         if (IS_GEN6(dev)) {
9322                 gen6_enable_rps(dev_priv);
9323                 gen6_update_ring_freq(dev_priv);
9324         }
9325
9326         TASK_INIT(&dev_priv->idle_task, 0, intel_idle_update, dev_priv);
9327         callout_init(&dev_priv->idle_callout, CALLOUT_MPSAFE);
9328 }
9329
9330 void intel_modeset_gem_init(struct drm_device *dev)
9331 {
9332         if (IS_IRONLAKE_M(dev))
9333                 ironlake_enable_rc6(dev);
9334
9335         intel_setup_overlay(dev);
9336 }
9337
9338 void intel_modeset_cleanup(struct drm_device *dev)
9339 {
9340         struct drm_i915_private *dev_priv = dev->dev_private;
9341         struct drm_crtc *crtc;
9342         struct intel_crtc *intel_crtc;
9343
9344         drm_kms_helper_poll_fini(dev);
9345         DRM_LOCK(dev);
9346
9347 #if 0
9348         intel_unregister_dsm_handler();
9349 #endif
9350
9351         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9352                 /* Skip inactive CRTCs */
9353                 if (!crtc->fb)
9354                         continue;
9355
9356                 intel_crtc = to_intel_crtc(crtc);
9357                 intel_increase_pllclock(crtc);
9358         }
9359
9360         intel_disable_fbc(dev);
9361
9362         if (IS_IRONLAKE_M(dev))
9363                 ironlake_disable_drps(dev);
9364         if (IS_GEN6(dev))
9365                 gen6_disable_rps(dev);
9366
9367         if (IS_IRONLAKE_M(dev))
9368                 ironlake_disable_rc6(dev);
9369
9370         /* Disable the irq before mode object teardown, for the irq might
9371          * enqueue unpin/hotplug work. */
9372         drm_irq_uninstall(dev);
9373         DRM_UNLOCK(dev);
9374
9375         if (taskqueue_cancel(dev_priv->tq, &dev_priv->hotplug_task, NULL))
9376                 taskqueue_drain(dev_priv->tq, &dev_priv->hotplug_task);
9377         if (taskqueue_cancel(dev_priv->tq, &dev_priv->rps_task, NULL))
9378                 taskqueue_drain(dev_priv->tq, &dev_priv->rps_task);
9379
9380         /* Shut off idle work before the crtcs get freed. */
9381         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9382                 intel_crtc = to_intel_crtc(crtc);
9383                 callout_drain(&intel_crtc->idle_callout);
9384         }
9385         callout_drain(&dev_priv->idle_callout);
9386         if (taskqueue_cancel(dev_priv->tq, &dev_priv->idle_task, NULL))
9387                 taskqueue_drain(dev_priv->tq, &dev_priv->idle_task);
9388
9389         drm_mode_config_cleanup(dev);
9390 }
9391
9392 /*
9393  * Return which encoder is currently attached for connector.
9394  */
9395 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9396 {
9397         return &intel_attached_encoder(connector)->base;
9398 }
9399
9400 void intel_connector_attach_encoder(struct intel_connector *connector,
9401                                     struct intel_encoder *encoder)
9402 {
9403         connector->encoder = encoder;
9404         drm_mode_connector_attach_encoder(&connector->base,
9405                                           &encoder->base);
9406 }
9407
9408 /*
9409  * set vga decode state - true == enable VGA decode
9410  */
9411 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9412 {
9413         struct drm_i915_private *dev_priv;
9414         device_t bridge_dev;
9415         u16 gmch_ctrl;
9416
9417         dev_priv = dev->dev_private;
9418         bridge_dev = intel_gtt_get_bridge_device();
9419         gmch_ctrl = pci_read_config(bridge_dev, INTEL_GMCH_CTRL, 2);
9420         if (state)
9421                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9422         else
9423                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9424         pci_write_config(bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl, 2);
9425         return (0);
9426 }
9427
9428 struct intel_display_error_state {
9429         struct intel_cursor_error_state {
9430                 u32 control;
9431                 u32 position;
9432                 u32 base;
9433                 u32 size;
9434         } cursor[2];
9435
9436         struct intel_pipe_error_state {
9437                 u32 conf;
9438                 u32 source;
9439
9440                 u32 htotal;
9441                 u32 hblank;
9442                 u32 hsync;
9443                 u32 vtotal;
9444                 u32 vblank;
9445                 u32 vsync;
9446         } pipe[2];
9447
9448         struct intel_plane_error_state {
9449                 u32 control;
9450                 u32 stride;
9451                 u32 size;
9452                 u32 pos;
9453                 u32 addr;
9454                 u32 surface;
9455                 u32 tile_offset;
9456         } plane[2];
9457 };
9458
9459 struct intel_display_error_state *
9460 intel_display_capture_error_state(struct drm_device *dev)
9461 {
9462         drm_i915_private_t *dev_priv = dev->dev_private;
9463         struct intel_display_error_state *error;
9464         int i;
9465
9466         error = malloc(sizeof(*error), DRM_MEM_KMS, M_NOWAIT);
9467         if (error == NULL)
9468                 return NULL;
9469
9470         for (i = 0; i < 2; i++) {
9471                 error->cursor[i].control = I915_READ(CURCNTR(i));
9472                 error->cursor[i].position = I915_READ(CURPOS(i));
9473                 error->cursor[i].base = I915_READ(CURBASE(i));
9474
9475                 error->plane[i].control = I915_READ(DSPCNTR(i));
9476                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9477                 error->plane[i].size = I915_READ(DSPSIZE(i));
9478                 error->plane[i].pos = I915_READ(DSPPOS(i));
9479                 error->plane[i].addr = I915_READ(DSPADDR(i));
9480                 if (INTEL_INFO(dev)->gen >= 4) {
9481                         error->plane[i].surface = I915_READ(DSPSURF(i));
9482                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9483                 }
9484
9485                 error->pipe[i].conf = I915_READ(PIPECONF(i));
9486                 error->pipe[i].source = I915_READ(PIPESRC(i));
9487                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9488                 error->pipe[i].hblank = I915_READ(HBLANK(i));
9489                 error->pipe[i].hsync = I915_READ(HSYNC(i));
9490                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9491                 error->pipe[i].vblank = I915_READ(VBLANK(i));
9492                 error->pipe[i].vsync = I915_READ(VSYNC(i));
9493         }
9494
9495         return error;
9496 }
9497
9498 void
9499 intel_display_print_error_state(struct sbuf *m,
9500                                 struct drm_device *dev,
9501                                 struct intel_display_error_state *error)
9502 {
9503         int i;
9504
9505         for (i = 0; i < 2; i++) {
9506                 sbuf_printf(m, "Pipe [%d]:\n", i);
9507                 sbuf_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9508                 sbuf_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9509                 sbuf_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9510                 sbuf_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9511                 sbuf_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9512                 sbuf_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9513                 sbuf_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9514                 sbuf_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9515
9516                 sbuf_printf(m, "Plane [%d]:\n", i);
9517                 sbuf_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9518                 sbuf_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9519                 sbuf_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9520                 sbuf_printf(m, "  POS: %08x\n", error->plane[i].pos);
9521                 sbuf_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9522                 if (INTEL_INFO(dev)->gen >= 4) {
9523                         sbuf_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9524                         sbuf_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9525                 }
9526
9527                 sbuf_printf(m, "Cursor [%d]:\n", i);
9528                 sbuf_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9529                 sbuf_printf(m, "  POS: %08x\n", error->cursor[i].position);
9530                 sbuf_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9531         }
9532 }