]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/drm2/i915/intel_ringbuffer.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / drm2 / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <dev/drm2/drmP.h>
34 #include <dev/drm2/drm.h>
35 #include <dev/drm2/i915/i915_drm.h>
36 #include <dev/drm2/i915/i915_drv.h>
37 #include <dev/drm2/i915/intel_drv.h>
38 #include <dev/drm2/i915/intel_ringbuffer.h>
39 #include <sys/sched.h>
40 #include <sys/sf_buf.h>
41
42 /*
43  * 965+ support PIPE_CONTROL commands, which provide finer grained control
44  * over cache flushing.
45  */
46 struct pipe_control {
47         struct drm_i915_gem_object *obj;
48         volatile u32 *cpu_page;
49         u32 gtt_offset;
50 };
51
52 void
53 i915_trace_irq_get(struct intel_ring_buffer *ring, uint32_t seqno)
54 {
55
56         if (ring->trace_irq_seqno == 0) {
57                 mtx_lock(&ring->irq_lock);
58                 if (ring->irq_get(ring))
59                         ring->trace_irq_seqno = seqno;
60                 mtx_unlock(&ring->irq_lock);
61         }
62 }
63
64 static inline int ring_space(struct intel_ring_buffer *ring)
65 {
66         int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
67         if (space < 0)
68                 space += ring->size;
69         return space;
70 }
71
72 static int
73 render_ring_flush(struct intel_ring_buffer *ring,
74                   uint32_t      invalidate_domains,
75                   uint32_t      flush_domains)
76 {
77         struct drm_device *dev = ring->dev;
78         uint32_t cmd;
79         int ret;
80
81         /*
82          * read/write caches:
83          *
84          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
85          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
86          * also flushed at 2d versus 3d pipeline switches.
87          *
88          * read-only caches:
89          *
90          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
91          * MI_READ_FLUSH is set, and is always flushed on 965.
92          *
93          * I915_GEM_DOMAIN_COMMAND may not exist?
94          *
95          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
96          * invalidated when MI_EXE_FLUSH is set.
97          *
98          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
99          * invalidated with every MI_FLUSH.
100          *
101          * TLBs:
102          *
103          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
104          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
105          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
106          * are flushed at any MI_FLUSH.
107          */
108
109         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
110         if ((invalidate_domains|flush_domains) &
111             I915_GEM_DOMAIN_RENDER)
112                 cmd &= ~MI_NO_WRITE_FLUSH;
113         if (INTEL_INFO(dev)->gen < 4) {
114                 /*
115                  * On the 965, the sampler cache always gets flushed
116                  * and this bit is reserved.
117                  */
118                 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
119                         cmd |= MI_READ_FLUSH;
120         }
121         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
122                 cmd |= MI_EXE_FLUSH;
123
124         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
125             (IS_G4X(dev) || IS_GEN5(dev)))
126                 cmd |= MI_INVALIDATE_ISP;
127
128         ret = intel_ring_begin(ring, 2);
129         if (ret)
130                 return ret;
131
132         intel_ring_emit(ring, cmd);
133         intel_ring_emit(ring, MI_NOOP);
134         intel_ring_advance(ring);
135
136         return 0;
137 }
138
139 /**
140  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
141  * implementing two workarounds on gen6.  From section 1.4.7.1
142  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
143  *
144  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
145  * produced by non-pipelined state commands), software needs to first
146  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
147  * 0.
148  *
149  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
150  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
151  *
152  * And the workaround for these two requires this workaround first:
153  *
154  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
155  * BEFORE the pipe-control with a post-sync op and no write-cache
156  * flushes.
157  *
158  * And this last workaround is tricky because of the requirements on
159  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
160  * volume 2 part 1:
161  *
162  *     "1 of the following must also be set:
163  *      - Render Target Cache Flush Enable ([12] of DW1)
164  *      - Depth Cache Flush Enable ([0] of DW1)
165  *      - Stall at Pixel Scoreboard ([1] of DW1)
166  *      - Depth Stall ([13] of DW1)
167  *      - Post-Sync Operation ([13] of DW1)
168  *      - Notify Enable ([8] of DW1)"
169  *
170  * The cache flushes require the workaround flush that triggered this
171  * one, so we can't use it.  Depth stall would trigger the same.
172  * Post-sync nonzero is what triggered this second workaround, so we
173  * can't use that one either.  Notify enable is IRQs, which aren't
174  * really our business.  That leaves only stall at scoreboard.
175  */
176 static int
177 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
178 {
179         struct pipe_control *pc = ring->private;
180         u32 scratch_addr = pc->gtt_offset + 128;
181         int ret;
182
183
184         ret = intel_ring_begin(ring, 6);
185         if (ret)
186                 return ret;
187
188         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
189         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
190                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
191         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
192         intel_ring_emit(ring, 0); /* low dword */
193         intel_ring_emit(ring, 0); /* high dword */
194         intel_ring_emit(ring, MI_NOOP);
195         intel_ring_advance(ring);
196
197         ret = intel_ring_begin(ring, 6);
198         if (ret)
199                 return ret;
200
201         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
202         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
203         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
204         intel_ring_emit(ring, 0);
205         intel_ring_emit(ring, 0);
206         intel_ring_emit(ring, MI_NOOP);
207         intel_ring_advance(ring);
208
209         return 0;
210 }
211
212 static int
213 gen6_render_ring_flush(struct intel_ring_buffer *ring,
214                          u32 invalidate_domains, u32 flush_domains)
215 {
216         u32 flags = 0;
217         struct pipe_control *pc = ring->private;
218         u32 scratch_addr = pc->gtt_offset + 128;
219         int ret;
220
221         /* Force SNB workarounds for PIPE_CONTROL flushes */
222         intel_emit_post_sync_nonzero_flush(ring);
223
224         /* Just flush everything.  Experiments have shown that reducing the
225          * number of bits based on the write domains has little performance
226          * impact.
227          */
228         flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229         flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
230         flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
231         flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232         flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
233         flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
234         flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
235
236         ret = intel_ring_begin(ring, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, flags);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
243         intel_ring_emit(ring, 0); /* lower dword */
244         intel_ring_emit(ring, 0); /* uppwer dword */
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static void ring_write_tail(struct intel_ring_buffer *ring,
252                             uint32_t value)
253 {
254         drm_i915_private_t *dev_priv = ring->dev->dev_private;
255         I915_WRITE_TAIL(ring, value);
256 }
257
258 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
259 {
260         drm_i915_private_t *dev_priv = ring->dev->dev_private;
261         uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
262                         RING_ACTHD(ring->mmio_base) : ACTHD;
263
264         return I915_READ(acthd_reg);
265 }
266
267 static int init_ring_common(struct intel_ring_buffer *ring)
268 {
269         drm_i915_private_t *dev_priv = ring->dev->dev_private;
270         struct drm_i915_gem_object *obj = ring->obj;
271         uint32_t head;
272
273         /* Stop the ring if it's running. */
274         I915_WRITE_CTL(ring, 0);
275         I915_WRITE_HEAD(ring, 0);
276         ring->write_tail(ring, 0);
277
278         /* Initialize the ring. */
279         I915_WRITE_START(ring, obj->gtt_offset);
280         head = I915_READ_HEAD(ring) & HEAD_ADDR;
281
282         /* G45 ring initialization fails to reset head to zero */
283         if (head != 0) {
284                 DRM_DEBUG("%s head not reset to zero "
285                               "ctl %08x head %08x tail %08x start %08x\n",
286                               ring->name,
287                               I915_READ_CTL(ring),
288                               I915_READ_HEAD(ring),
289                               I915_READ_TAIL(ring),
290                               I915_READ_START(ring));
291
292                 I915_WRITE_HEAD(ring, 0);
293
294                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
295                         DRM_ERROR("failed to set %s head to zero "
296                                   "ctl %08x head %08x tail %08x start %08x\n",
297                                   ring->name,
298                                   I915_READ_CTL(ring),
299                                   I915_READ_HEAD(ring),
300                                   I915_READ_TAIL(ring),
301                                   I915_READ_START(ring));
302                 }
303         }
304
305         I915_WRITE_CTL(ring,
306                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
307                         | RING_VALID);
308
309         /* If the head is still not zero, the ring is dead */
310         if (_intel_wait_for(ring->dev,
311             (I915_READ_CTL(ring) & RING_VALID) != 0 &&
312              I915_READ_START(ring) == obj->gtt_offset &&
313              (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
314             50, 1, "915rii")) {
315                 DRM_ERROR("%s initialization failed "
316                                 "ctl %08x head %08x tail %08x start %08x\n",
317                                 ring->name,
318                                 I915_READ_CTL(ring),
319                                 I915_READ_HEAD(ring),
320                                 I915_READ_TAIL(ring),
321                                 I915_READ_START(ring));
322                 return -EIO;
323         }
324
325         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
326                 i915_kernel_lost_context(ring->dev);
327         else {
328                 ring->head = I915_READ_HEAD(ring);
329                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
330                 ring->space = ring_space(ring);
331         }
332
333         return 0;
334 }
335
336 static int
337 init_pipe_control(struct intel_ring_buffer *ring)
338 {
339         struct pipe_control *pc;
340         struct drm_i915_gem_object *obj;
341         int ret;
342
343         if (ring->private)
344                 return 0;
345
346         pc = malloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
347         if (!pc)
348                 return -ENOMEM;
349
350         obj = i915_gem_alloc_object(ring->dev, 4096);
351         if (obj == NULL) {
352                 DRM_ERROR("Failed to allocate seqno page\n");
353                 ret = -ENOMEM;
354                 goto err;
355         }
356
357         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
358
359         ret = i915_gem_object_pin(obj, 4096, true);
360         if (ret)
361                 goto err_unref;
362
363         pc->gtt_offset = obj->gtt_offset;
364         pc->cpu_page = (uint32_t *)kmem_alloc_nofault(kernel_map, PAGE_SIZE);
365         if (pc->cpu_page == NULL)
366                 goto err_unpin;
367         pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
368         pmap_invalidate_range(kernel_pmap, (vm_offset_t)pc->cpu_page,
369             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
370         pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
371             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
372
373         pc->obj = obj;
374         ring->private = pc;
375         return 0;
376
377 err_unpin:
378         i915_gem_object_unpin(obj);
379 err_unref:
380         drm_gem_object_unreference(&obj->base);
381 err:
382         free(pc, DRM_I915_GEM);
383         return ret;
384 }
385
386 static void
387 cleanup_pipe_control(struct intel_ring_buffer *ring)
388 {
389         struct pipe_control *pc = ring->private;
390         struct drm_i915_gem_object *obj;
391
392         if (!ring->private)
393                 return;
394
395         obj = pc->obj;
396         pmap_qremove((vm_offset_t)pc->cpu_page, 1);
397         pmap_invalidate_range(kernel_pmap, (vm_offset_t)pc->cpu_page,
398             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
399         kmem_free(kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
400         i915_gem_object_unpin(obj);
401         drm_gem_object_unreference(&obj->base);
402
403         free(pc, DRM_I915_GEM);
404         ring->private = NULL;
405 }
406
407 static int init_render_ring(struct intel_ring_buffer *ring)
408 {
409         struct drm_device *dev = ring->dev;
410         struct drm_i915_private *dev_priv = dev->dev_private;
411         int ret = init_ring_common(ring);
412
413         if (INTEL_INFO(dev)->gen > 3) {
414                 int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
415                 I915_WRITE(MI_MODE, mode);
416                 if (IS_GEN7(dev))
417                         I915_WRITE(GFX_MODE_GEN7,
418                                    GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
419                                    GFX_MODE_ENABLE(GFX_REPLAY_MODE));
420         }
421
422         if (INTEL_INFO(dev)->gen >= 5) {
423                 ret = init_pipe_control(ring);
424                 if (ret)
425                         return ret;
426         }
427
428
429         if (IS_GEN6(dev)) {
430                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
431                  * "If this bit is set, STCunit will have LRA as replacement
432                  *  policy. [...] This bit must be reset.  LRA replacement
433                  *  policy is not supported."
434                  */
435                 I915_WRITE(CACHE_MODE_0,
436                            CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
437         }
438
439         if (INTEL_INFO(dev)->gen >= 6) {
440                 I915_WRITE(INSTPM,
441                            INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
442         }
443
444         return ret;
445 }
446
447 static void render_ring_cleanup(struct intel_ring_buffer *ring)
448 {
449         if (!ring->private)
450                 return;
451
452         cleanup_pipe_control(ring);
453 }
454
455 static void
456 update_mboxes(struct intel_ring_buffer *ring,
457             u32 seqno,
458             u32 mmio_offset)
459 {
460         intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
461                               MI_SEMAPHORE_GLOBAL_GTT |
462                               MI_SEMAPHORE_REGISTER |
463                               MI_SEMAPHORE_UPDATE);
464         intel_ring_emit(ring, seqno);
465         intel_ring_emit(ring, mmio_offset);
466 }
467
468 /**
469  * gen6_add_request - Update the semaphore mailbox registers
470  * 
471  * @ring - ring that is adding a request
472  * @seqno - return seqno stuck into the ring
473  *
474  * Update the mailbox registers in the *other* rings with the current seqno.
475  * This acts like a signal in the canonical semaphore.
476  */
477 static int
478 gen6_add_request(struct intel_ring_buffer *ring,
479                  u32 *seqno)
480 {
481         u32 mbox1_reg;
482         u32 mbox2_reg;
483         int ret;
484
485         ret = intel_ring_begin(ring, 10);
486         if (ret)
487                 return ret;
488
489         mbox1_reg = ring->signal_mbox[0];
490         mbox2_reg = ring->signal_mbox[1];
491
492         *seqno = i915_gem_next_request_seqno(ring);
493
494         update_mboxes(ring, *seqno, mbox1_reg);
495         update_mboxes(ring, *seqno, mbox2_reg);
496         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
497         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
498         intel_ring_emit(ring, *seqno);
499         intel_ring_emit(ring, MI_USER_INTERRUPT);
500         intel_ring_advance(ring);
501
502         return 0;
503 }
504
505 /**
506  * intel_ring_sync - sync the waiter to the signaller on seqno
507  *
508  * @waiter - ring that is waiting
509  * @signaller - ring which has, or will signal
510  * @seqno - seqno which the waiter will block on
511  */
512 static int
513 intel_ring_sync(struct intel_ring_buffer *waiter,
514                 struct intel_ring_buffer *signaller,
515                 int ring,
516                 u32 seqno)
517 {
518         int ret;
519         u32 dw1 = MI_SEMAPHORE_MBOX |
520                   MI_SEMAPHORE_COMPARE |
521                   MI_SEMAPHORE_REGISTER;
522
523         ret = intel_ring_begin(waiter, 4);
524         if (ret)
525                 return ret;
526
527         intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
528         intel_ring_emit(waiter, seqno);
529         intel_ring_emit(waiter, 0);
530         intel_ring_emit(waiter, MI_NOOP);
531         intel_ring_advance(waiter);
532
533         return 0;
534 }
535
536 int render_ring_sync_to(struct intel_ring_buffer *waiter,
537     struct intel_ring_buffer *signaller, u32 seqno);
538 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
539     struct intel_ring_buffer *signaller, u32 seqno);
540 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
541     struct intel_ring_buffer *signaller, u32 seqno);
542
543 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
544 int
545 render_ring_sync_to(struct intel_ring_buffer *waiter,
546                     struct intel_ring_buffer *signaller,
547                     u32 seqno)
548 {
549         KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
550             ("valid RCS semaphore"));
551         return intel_ring_sync(waiter,
552                                signaller,
553                                RCS,
554                                seqno);
555 }
556
557 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
558 int
559 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
560                       struct intel_ring_buffer *signaller,
561                       u32 seqno)
562 {
563         KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
564             ("Valid VCS semaphore"));
565         return intel_ring_sync(waiter,
566                                signaller,
567                                VCS,
568                                seqno);
569 }
570
571 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
572 int
573 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
574                       struct intel_ring_buffer *signaller,
575                       u32 seqno)
576 {
577         KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
578             ("Valid BCS semaphore"));
579         return intel_ring_sync(waiter,
580                                signaller,
581                                BCS,
582                                seqno);
583 }
584
585 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
586 do {                                                                    \
587         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
588                  PIPE_CONTROL_DEPTH_STALL);                             \
589         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
590         intel_ring_emit(ring__, 0);                                                     \
591         intel_ring_emit(ring__, 0);                                                     \
592 } while (0)
593
594 static int
595 pc_render_add_request(struct intel_ring_buffer *ring,
596                       uint32_t *result)
597 {
598         u32 seqno = i915_gem_next_request_seqno(ring);
599         struct pipe_control *pc = ring->private;
600         u32 scratch_addr = pc->gtt_offset + 128;
601         int ret;
602
603         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
604          * incoherent with writes to memory, i.e. completely fubar,
605          * so we need to use PIPE_NOTIFY instead.
606          *
607          * However, we also need to workaround the qword write
608          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
609          * memory before requesting an interrupt.
610          */
611         ret = intel_ring_begin(ring, 32);
612         if (ret)
613                 return ret;
614
615         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
616                         PIPE_CONTROL_WRITE_FLUSH |
617                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
618         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
619         intel_ring_emit(ring, seqno);
620         intel_ring_emit(ring, 0);
621         PIPE_CONTROL_FLUSH(ring, scratch_addr);
622         scratch_addr += 128; /* write to separate cachelines */
623         PIPE_CONTROL_FLUSH(ring, scratch_addr);
624         scratch_addr += 128;
625         PIPE_CONTROL_FLUSH(ring, scratch_addr);
626         scratch_addr += 128;
627         PIPE_CONTROL_FLUSH(ring, scratch_addr);
628         scratch_addr += 128;
629         PIPE_CONTROL_FLUSH(ring, scratch_addr);
630         scratch_addr += 128;
631         PIPE_CONTROL_FLUSH(ring, scratch_addr);
632         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
633                         PIPE_CONTROL_WRITE_FLUSH |
634                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
635                         PIPE_CONTROL_NOTIFY);
636         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
637         intel_ring_emit(ring, seqno);
638         intel_ring_emit(ring, 0);
639         intel_ring_advance(ring);
640
641         *result = seqno;
642         return 0;
643 }
644
645 static int
646 render_ring_add_request(struct intel_ring_buffer *ring,
647                         uint32_t *result)
648 {
649         u32 seqno = i915_gem_next_request_seqno(ring);
650         int ret;
651
652         ret = intel_ring_begin(ring, 4);
653         if (ret)
654                 return ret;
655
656         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
657         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
658         intel_ring_emit(ring, seqno);
659         intel_ring_emit(ring, MI_USER_INTERRUPT);
660         intel_ring_advance(ring);
661
662         *result = seqno;
663         return 0;
664 }
665
666  static u32
667 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
668 {
669         struct drm_device *dev = ring->dev;
670
671         /* Workaround to force correct ordering between irq and seqno writes on
672          * ivb (and maybe also on snb) by reading from a CS register (like
673          * ACTHD) before reading the status page. */
674         if (/* IS_GEN6(dev) || */IS_GEN7(dev))
675                 intel_ring_get_active_head(ring);
676         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
677 }
678
679 static uint32_t
680 ring_get_seqno(struct intel_ring_buffer *ring)
681 {
682         if (ring->status_page.page_addr == NULL)
683                 return (-1);
684         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
685 }
686
687 static uint32_t
688 pc_render_get_seqno(struct intel_ring_buffer *ring)
689 {
690         struct pipe_control *pc = ring->private;
691         if (pc != NULL)
692                 return pc->cpu_page[0];
693         else
694                 return (-1);
695 }
696
697 static void
698 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
699 {
700         dev_priv->gt_irq_mask &= ~mask;
701         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
702         POSTING_READ(GTIMR);
703 }
704
705 static void
706 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
707 {
708         dev_priv->gt_irq_mask |= mask;
709         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
710         POSTING_READ(GTIMR);
711 }
712
713 static void
714 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
715 {
716         dev_priv->irq_mask &= ~mask;
717         I915_WRITE(IMR, dev_priv->irq_mask);
718         POSTING_READ(IMR);
719 }
720
721 static void
722 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
723 {
724         dev_priv->irq_mask |= mask;
725         I915_WRITE(IMR, dev_priv->irq_mask);
726         POSTING_READ(IMR);
727 }
728
729 static bool
730 render_ring_get_irq(struct intel_ring_buffer *ring)
731 {
732         struct drm_device *dev = ring->dev;
733         drm_i915_private_t *dev_priv = dev->dev_private;
734
735         if (!dev->irq_enabled)
736                 return false;
737
738         mtx_assert(&ring->irq_lock, MA_OWNED);
739         if (ring->irq_refcount++ == 0) {
740                 if (HAS_PCH_SPLIT(dev))
741                         ironlake_enable_irq(dev_priv,
742                                             GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
743                 else
744                         i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
745         }
746
747         return true;
748 }
749
750 static void
751 render_ring_put_irq(struct intel_ring_buffer *ring)
752 {
753         struct drm_device *dev = ring->dev;
754         drm_i915_private_t *dev_priv = dev->dev_private;
755
756         mtx_assert(&ring->irq_lock, MA_OWNED);
757         if (--ring->irq_refcount == 0) {
758                 if (HAS_PCH_SPLIT(dev))
759                         ironlake_disable_irq(dev_priv,
760                                              GT_USER_INTERRUPT |
761                                              GT_PIPE_NOTIFY);
762                 else
763                         i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
764         }
765 }
766
767 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
768 {
769         struct drm_device *dev = ring->dev;
770         drm_i915_private_t *dev_priv = dev->dev_private;
771         uint32_t mmio = 0;
772
773         /* The ring status page addresses are no longer next to the rest of
774          * the ring registers as of gen7.
775          */
776         if (IS_GEN7(dev)) {
777                 switch (ring->id) {
778                 case RCS:
779                         mmio = RENDER_HWS_PGA_GEN7;
780                         break;
781                 case BCS:
782                         mmio = BLT_HWS_PGA_GEN7;
783                         break;
784                 case VCS:
785                         mmio = BSD_HWS_PGA_GEN7;
786                         break;
787                 }
788         } else if (IS_GEN6(dev)) {
789                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
790         } else {
791                 mmio = RING_HWS_PGA(ring->mmio_base);
792         }
793
794         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
795         POSTING_READ(mmio);
796 }
797
798 static int
799 bsd_ring_flush(struct intel_ring_buffer *ring,
800                uint32_t     invalidate_domains,
801                uint32_t     flush_domains)
802 {
803         int ret;
804
805         ret = intel_ring_begin(ring, 2);
806         if (ret)
807                 return ret;
808
809         intel_ring_emit(ring, MI_FLUSH);
810         intel_ring_emit(ring, MI_NOOP);
811         intel_ring_advance(ring);
812         return 0;
813 }
814
815 static int
816 ring_add_request(struct intel_ring_buffer *ring,
817                  uint32_t *result)
818 {
819         uint32_t seqno;
820         int ret;
821
822         ret = intel_ring_begin(ring, 4);
823         if (ret)
824                 return ret;
825
826         seqno = i915_gem_next_request_seqno(ring);
827
828         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
829         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
830         intel_ring_emit(ring, seqno);
831         intel_ring_emit(ring, MI_USER_INTERRUPT);
832         intel_ring_advance(ring);
833
834         *result = seqno;
835         return 0;
836 }
837
838 static bool
839 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
840 {
841         struct drm_device *dev = ring->dev;
842         drm_i915_private_t *dev_priv = dev->dev_private;
843
844         if (!dev->irq_enabled)
845                return false;
846
847         gen6_gt_force_wake_get(dev_priv);
848
849         mtx_assert(&ring->irq_lock, MA_OWNED);
850         if (ring->irq_refcount++ == 0) {
851                 ring->irq_mask &= ~rflag;
852                 I915_WRITE_IMR(ring, ring->irq_mask);
853                 ironlake_enable_irq(dev_priv, gflag);
854         }
855
856         return true;
857 }
858
859 static void
860 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
861 {
862         struct drm_device *dev = ring->dev;
863         drm_i915_private_t *dev_priv = dev->dev_private;
864
865         mtx_assert(&ring->irq_lock, MA_OWNED);
866         if (--ring->irq_refcount == 0) {
867                 ring->irq_mask |= rflag;
868                 I915_WRITE_IMR(ring, ring->irq_mask);
869                 ironlake_disable_irq(dev_priv, gflag);
870         }
871
872         gen6_gt_force_wake_put(dev_priv);
873 }
874
875 static bool
876 bsd_ring_get_irq(struct intel_ring_buffer *ring)
877 {
878         struct drm_device *dev = ring->dev;
879         drm_i915_private_t *dev_priv = dev->dev_private;
880
881         if (!dev->irq_enabled)
882                 return false;
883
884         mtx_assert(&ring->irq_lock, MA_OWNED);
885         if (ring->irq_refcount++ == 0) {
886                 if (IS_G4X(dev))
887                         i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
888                 else
889                         ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
890         }
891
892         return true;
893 }
894 static void
895 bsd_ring_put_irq(struct intel_ring_buffer *ring)
896 {
897         struct drm_device *dev = ring->dev;
898         drm_i915_private_t *dev_priv = dev->dev_private;
899
900         mtx_assert(&ring->irq_lock, MA_OWNED);
901         if (--ring->irq_refcount == 0) {
902                 if (IS_G4X(dev))
903                         i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
904                 else
905                         ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
906         }
907 }
908
909 static int
910 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
911     uint32_t length)
912 {
913         int ret;
914
915         ret = intel_ring_begin(ring, 2);
916         if (ret)
917                 return ret;
918
919         intel_ring_emit(ring,
920                         MI_BATCH_BUFFER_START | (2 << 6) |
921                         MI_BATCH_NON_SECURE_I965);
922         intel_ring_emit(ring, offset);
923         intel_ring_advance(ring);
924
925         return 0;
926 }
927
928 static int
929 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
930                                 uint32_t offset, uint32_t len)
931 {
932         struct drm_device *dev = ring->dev;
933         int ret;
934
935         if (IS_I830(dev) || IS_845G(dev)) {
936                 ret = intel_ring_begin(ring, 4);
937                 if (ret)
938                         return ret;
939
940                 intel_ring_emit(ring, MI_BATCH_BUFFER);
941                 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
942                 intel_ring_emit(ring, offset + len - 8);
943                 intel_ring_emit(ring, 0);
944         } else {
945                 ret = intel_ring_begin(ring, 2);
946                 if (ret)
947                         return ret;
948
949                 if (INTEL_INFO(dev)->gen >= 4) {
950                         intel_ring_emit(ring,
951                                         MI_BATCH_BUFFER_START | (2 << 6) |
952                                         MI_BATCH_NON_SECURE_I965);
953                         intel_ring_emit(ring, offset);
954                 } else {
955                         intel_ring_emit(ring,
956                                         MI_BATCH_BUFFER_START | (2 << 6));
957                         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
958                 }
959         }
960         intel_ring_advance(ring);
961
962         return 0;
963 }
964
965 static void cleanup_status_page(struct intel_ring_buffer *ring)
966 {
967         drm_i915_private_t *dev_priv = ring->dev->dev_private;
968         struct drm_i915_gem_object *obj;
969
970         obj = ring->status_page.obj;
971         if (obj == NULL)
972                 return;
973
974         pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
975         pmap_invalidate_range(kernel_pmap,
976             (vm_offset_t)ring->status_page.page_addr,
977             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
978         kmem_free(kernel_map, (vm_offset_t)ring->status_page.page_addr,
979             PAGE_SIZE);
980         i915_gem_object_unpin(obj);
981         drm_gem_object_unreference(&obj->base);
982         ring->status_page.obj = NULL;
983
984         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
985 }
986
987 static int init_status_page(struct intel_ring_buffer *ring)
988 {
989         struct drm_device *dev = ring->dev;
990         drm_i915_private_t *dev_priv = dev->dev_private;
991         struct drm_i915_gem_object *obj;
992         int ret;
993
994         obj = i915_gem_alloc_object(dev, 4096);
995         if (obj == NULL) {
996                 DRM_ERROR("Failed to allocate status page\n");
997                 ret = -ENOMEM;
998                 goto err;
999         }
1000
1001         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1002
1003         ret = i915_gem_object_pin(obj, 4096, true);
1004         if (ret != 0) {
1005                 goto err_unref;
1006         }
1007
1008         ring->status_page.gfx_addr = obj->gtt_offset;
1009         ring->status_page.page_addr = (void *)kmem_alloc_nofault(kernel_map,
1010             PAGE_SIZE);
1011         if (ring->status_page.page_addr == NULL) {
1012                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1013                 goto err_unpin;
1014         }
1015         pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1016             1);
1017         pmap_invalidate_range(kernel_pmap,
1018             (vm_offset_t)ring->status_page.page_addr,
1019             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1020         pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1021             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1022         ring->status_page.obj = obj;
1023         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1024
1025         intel_ring_setup_status_page(ring);
1026         DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1027                         ring->name, ring->status_page.gfx_addr);
1028
1029         return 0;
1030
1031 err_unpin:
1032         i915_gem_object_unpin(obj);
1033 err_unref:
1034         drm_gem_object_unreference(&obj->base);
1035 err:
1036         return ret;
1037 }
1038
1039 static
1040 int intel_init_ring_buffer(struct drm_device *dev,
1041                            struct intel_ring_buffer *ring)
1042 {
1043         struct drm_i915_gem_object *obj;
1044         int ret;
1045
1046         ring->dev = dev;
1047         INIT_LIST_HEAD(&ring->active_list);
1048         INIT_LIST_HEAD(&ring->request_list);
1049         INIT_LIST_HEAD(&ring->gpu_write_list);
1050
1051         mtx_init(&ring->irq_lock, "ringb", NULL, MTX_DEF);
1052         ring->irq_mask = ~0;
1053
1054         if (I915_NEED_GFX_HWS(dev)) {
1055                 ret = init_status_page(ring);
1056                 if (ret)
1057                         return ret;
1058         }
1059
1060         obj = i915_gem_alloc_object(dev, ring->size);
1061         if (obj == NULL) {
1062                 DRM_ERROR("Failed to allocate ringbuffer\n");
1063                 ret = -ENOMEM;
1064                 goto err_hws;
1065         }
1066
1067         ring->obj = obj;
1068
1069         ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1070         if (ret)
1071                 goto err_unref;
1072
1073         ring->map.size = ring->size;
1074         ring->map.offset = dev->agp->base + obj->gtt_offset;
1075         ring->map.type = 0;
1076         ring->map.flags = 0;
1077         ring->map.mtrr = 0;
1078
1079         drm_core_ioremap_wc(&ring->map, dev);
1080         if (ring->map.virtual == NULL) {
1081                 DRM_ERROR("Failed to map ringbuffer.\n");
1082                 ret = -EINVAL;
1083                 goto err_unpin;
1084         }
1085
1086         ring->virtual_start = ring->map.virtual;
1087         ret = ring->init(ring);
1088         if (ret)
1089                 goto err_unmap;
1090
1091         /* Workaround an erratum on the i830 which causes a hang if
1092          * the TAIL pointer points to within the last 2 cachelines
1093          * of the buffer.
1094          */
1095         ring->effective_size = ring->size;
1096         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1097                 ring->effective_size -= 128;
1098
1099         return 0;
1100
1101 err_unmap:
1102         drm_core_ioremapfree(&ring->map, dev);
1103 err_unpin:
1104         i915_gem_object_unpin(obj);
1105 err_unref:
1106         drm_gem_object_unreference(&obj->base);
1107         ring->obj = NULL;
1108 err_hws:
1109         cleanup_status_page(ring);
1110         return ret;
1111 }
1112
1113 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1114 {
1115         struct drm_i915_private *dev_priv;
1116         int ret;
1117
1118         if (ring->obj == NULL)
1119                 return;
1120
1121         /* Disable the ring buffer. The ring must be idle at this point */
1122         dev_priv = ring->dev->dev_private;
1123         ret = intel_wait_ring_idle(ring);
1124         I915_WRITE_CTL(ring, 0);
1125
1126         drm_core_ioremapfree(&ring->map, ring->dev);
1127
1128         i915_gem_object_unpin(ring->obj);
1129         drm_gem_object_unreference(&ring->obj->base);
1130         ring->obj = NULL;
1131
1132         if (ring->cleanup)
1133                 ring->cleanup(ring);
1134
1135         cleanup_status_page(ring);
1136 }
1137
1138 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1139 {
1140         unsigned int *virt;
1141         int rem = ring->size - ring->tail;
1142
1143         if (ring->space < rem) {
1144                 int ret = intel_wait_ring_buffer(ring, rem);
1145                 if (ret)
1146                         return ret;
1147         }
1148
1149         virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1150         rem /= 8;
1151         while (rem--) {
1152                 *virt++ = MI_NOOP;
1153                 *virt++ = MI_NOOP;
1154         }
1155
1156         ring->tail = 0;
1157         ring->space = ring_space(ring);
1158
1159         return 0;
1160 }
1161
1162 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1163 {
1164         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1165         bool was_interruptible;
1166         int ret;
1167
1168         /* XXX As we have not yet audited all the paths to check that
1169          * they are ready for ERESTARTSYS from intel_ring_begin, do not
1170          * allow us to be interruptible by a signal.
1171          */
1172         was_interruptible = dev_priv->mm.interruptible;
1173         dev_priv->mm.interruptible = false;
1174
1175         ret = i915_wait_request(ring, seqno, true);
1176
1177         dev_priv->mm.interruptible = was_interruptible;
1178
1179         return ret;
1180 }
1181
1182 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1183 {
1184         struct drm_i915_gem_request *request;
1185         u32 seqno = 0;
1186         int ret;
1187
1188         i915_gem_retire_requests_ring(ring);
1189
1190         if (ring->last_retired_head != -1) {
1191                 ring->head = ring->last_retired_head;
1192                 ring->last_retired_head = -1;
1193                 ring->space = ring_space(ring);
1194                 if (ring->space >= n)
1195                         return 0;
1196         }
1197
1198         list_for_each_entry(request, &ring->request_list, list) {
1199                 int space;
1200
1201                 if (request->tail == -1)
1202                         continue;
1203
1204                 space = request->tail - (ring->tail + 8);
1205                 if (space < 0)
1206                         space += ring->size;
1207                 if (space >= n) {
1208                         seqno = request->seqno;
1209                         break;
1210                 }
1211
1212                 /* Consume this request in case we need more space than
1213                  * is available and so need to prevent a race between
1214                  * updating last_retired_head and direct reads of
1215                  * I915_RING_HEAD. It also provides a nice sanity check.
1216                  */
1217                 request->tail = -1;
1218         }
1219
1220         if (seqno == 0)
1221                 return -ENOSPC;
1222
1223         ret = intel_ring_wait_seqno(ring, seqno);
1224         if (ret)
1225                 return ret;
1226
1227         if (ring->last_retired_head == -1)
1228                 return -ENOSPC;
1229
1230         ring->head = ring->last_retired_head;
1231         ring->last_retired_head = -1;
1232         ring->space = ring_space(ring);
1233         if (ring->space < n)
1234                 return -ENOSPC;
1235
1236         return 0;
1237 }
1238
1239 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1240 {
1241         struct drm_device *dev = ring->dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         int end;
1244         int ret;
1245
1246         ret = intel_ring_wait_request(ring, n);
1247         if (ret != -ENOSPC)
1248                 return ret;
1249
1250         CTR1(KTR_DRM, "ring_wait_begin %s", ring->name);
1251         if (drm_core_check_feature(dev, DRIVER_GEM))
1252                 /* With GEM the hangcheck timer should kick us out of the loop,
1253                  * leaving it early runs the risk of corrupting GEM state (due
1254                  * to running on almost untested codepaths). But on resume
1255                  * timers don't work yet, so prevent a complete hang in that
1256                  * case by choosing an insanely large timeout. */
1257                 end = ticks + hz * 60;
1258         else
1259                 end = ticks + hz * 3;
1260         do {
1261                 ring->head = I915_READ_HEAD(ring);
1262                 ring->space = ring_space(ring);
1263                 if (ring->space >= n) {
1264                         CTR1(KTR_DRM, "ring_wait_end %s", ring->name);
1265                         return 0;
1266                 }
1267
1268 #if 0
1269                 if (dev->primary->master) {
1270                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1271                         if (master_priv->sarea_priv)
1272                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1273                 }
1274 #else
1275                 if (dev_priv->sarea_priv)
1276                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1277 #endif
1278
1279                 pause("915rng", 1);
1280                 if (atomic_load_acq_32(&dev_priv->mm.wedged) != 0) {
1281                         CTR1(KTR_DRM, "ring_wait_end %s wedged", ring->name);
1282                         return -EAGAIN;
1283                 }
1284         } while (!time_after(ticks, end));
1285         CTR1(KTR_DRM, "ring_wait_end %s busy", ring->name);
1286         return -EBUSY;
1287 }
1288
1289 int intel_ring_begin(struct intel_ring_buffer *ring,
1290                      int num_dwords)
1291 {
1292         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1293         int n = 4*num_dwords;
1294         int ret;
1295
1296         if (atomic_load_acq_int(&dev_priv->mm.wedged))
1297                 return -EIO;
1298
1299         if (ring->tail + n > ring->effective_size) {
1300                 ret = intel_wrap_ring_buffer(ring);
1301                 if (ret != 0)
1302                         return ret;
1303         }
1304
1305         if (ring->space < n) {
1306                 ret = intel_wait_ring_buffer(ring, n);
1307                 if (ret != 0)
1308                         return ret;
1309         }
1310
1311         ring->space -= n;
1312         return 0;
1313 }
1314
1315 void intel_ring_advance(struct intel_ring_buffer *ring)
1316 {
1317         ring->tail &= ring->size - 1;
1318         ring->write_tail(ring, ring->tail);
1319 }
1320
1321 static const struct intel_ring_buffer render_ring = {
1322         .name                   = "render ring",
1323         .id                     = RCS,
1324         .mmio_base              = RENDER_RING_BASE,
1325         .size                   = 32 * PAGE_SIZE,
1326         .init                   = init_render_ring,
1327         .write_tail             = ring_write_tail,
1328         .flush                  = render_ring_flush,
1329         .add_request            = render_ring_add_request,
1330         .get_seqno              = ring_get_seqno,
1331         .irq_get                = render_ring_get_irq,
1332         .irq_put                = render_ring_put_irq,
1333         .dispatch_execbuffer    = render_ring_dispatch_execbuffer,
1334         .cleanup                = render_ring_cleanup,
1335         .sync_to                = render_ring_sync_to,
1336         .semaphore_register     = {MI_SEMAPHORE_SYNC_INVALID,
1337                                    MI_SEMAPHORE_SYNC_RV,
1338                                    MI_SEMAPHORE_SYNC_RB},
1339         .signal_mbox            = {GEN6_VRSYNC, GEN6_BRSYNC},
1340 };
1341
1342 /* ring buffer for bit-stream decoder */
1343
1344 static const struct intel_ring_buffer bsd_ring = {
1345         .name                   = "bsd ring",
1346         .id                     = VCS,
1347         .mmio_base              = BSD_RING_BASE,
1348         .size                   = 32 * PAGE_SIZE,
1349         .init                   = init_ring_common,
1350         .write_tail             = ring_write_tail,
1351         .flush                  = bsd_ring_flush,
1352         .add_request            = ring_add_request,
1353         .get_seqno              = ring_get_seqno,
1354         .irq_get                = bsd_ring_get_irq,
1355         .irq_put                = bsd_ring_put_irq,
1356         .dispatch_execbuffer    = ring_dispatch_execbuffer,
1357 };
1358
1359
1360 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1361                                      uint32_t value)
1362 {
1363         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1364
1365         /* Every tail move must follow the sequence below */
1366         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1367             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1368             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1369         I915_WRITE(GEN6_BSD_RNCID, 0x0);
1370
1371         if (_intel_wait_for(ring->dev,
1372             (I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1373              GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0, 50,
1374             true, "915g6i") != 0)
1375                 DRM_ERROR("timed out waiting for IDLE Indicator\n");
1376
1377         I915_WRITE_TAIL(ring, value);
1378         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1379             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1380             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1381 }
1382
1383 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1384                            uint32_t invalidate, uint32_t flush)
1385 {
1386         uint32_t cmd;
1387         int ret;
1388
1389         ret = intel_ring_begin(ring, 4);
1390         if (ret)
1391                 return ret;
1392
1393         cmd = MI_FLUSH_DW;
1394         if (invalidate & I915_GEM_GPU_DOMAINS)
1395                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1396         intel_ring_emit(ring, cmd);
1397         intel_ring_emit(ring, 0);
1398         intel_ring_emit(ring, 0);
1399         intel_ring_emit(ring, MI_NOOP);
1400         intel_ring_advance(ring);
1401         return 0;
1402 }
1403
1404 static int
1405 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1406                               uint32_t offset, uint32_t len)
1407 {
1408         int ret;
1409
1410         ret = intel_ring_begin(ring, 2);
1411         if (ret)
1412                 return ret;
1413
1414         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1415         /* bit0-7 is the length on GEN6+ */
1416         intel_ring_emit(ring, offset);
1417         intel_ring_advance(ring);
1418
1419         return 0;
1420 }
1421
1422 static bool
1423 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1424 {
1425         return gen6_ring_get_irq(ring,
1426                                  GT_USER_INTERRUPT,
1427                                  GEN6_RENDER_USER_INTERRUPT);
1428 }
1429
1430 static void
1431 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1432 {
1433         return gen6_ring_put_irq(ring,
1434                                  GT_USER_INTERRUPT,
1435                                  GEN6_RENDER_USER_INTERRUPT);
1436 }
1437
1438 static bool
1439 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1440 {
1441         return gen6_ring_get_irq(ring,
1442                                  GT_GEN6_BSD_USER_INTERRUPT,
1443                                  GEN6_BSD_USER_INTERRUPT);
1444 }
1445
1446 static void
1447 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1448 {
1449         return gen6_ring_put_irq(ring,
1450                                  GT_GEN6_BSD_USER_INTERRUPT,
1451                                  GEN6_BSD_USER_INTERRUPT);
1452 }
1453
1454 /* ring buffer for Video Codec for Gen6+ */
1455 static const struct intel_ring_buffer gen6_bsd_ring = {
1456         .name                   = "gen6 bsd ring",
1457         .id                     = VCS,
1458         .mmio_base              = GEN6_BSD_RING_BASE,
1459         .size                   = 32 * PAGE_SIZE,
1460         .init                   = init_ring_common,
1461         .write_tail             = gen6_bsd_ring_write_tail,
1462         .flush                  = gen6_ring_flush,
1463         .add_request            = gen6_add_request,
1464         .get_seqno              = gen6_ring_get_seqno,
1465         .irq_get                = gen6_bsd_ring_get_irq,
1466         .irq_put                = gen6_bsd_ring_put_irq,
1467         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1468         .sync_to                = gen6_bsd_ring_sync_to,
1469         .semaphore_register     = {MI_SEMAPHORE_SYNC_VR,
1470                                    MI_SEMAPHORE_SYNC_INVALID,
1471                                    MI_SEMAPHORE_SYNC_VB},
1472         .signal_mbox            = {GEN6_RVSYNC, GEN6_BVSYNC},
1473 };
1474
1475 /* Blitter support (SandyBridge+) */
1476
1477 static bool
1478 blt_ring_get_irq(struct intel_ring_buffer *ring)
1479 {
1480         return gen6_ring_get_irq(ring,
1481                                  GT_BLT_USER_INTERRUPT,
1482                                  GEN6_BLITTER_USER_INTERRUPT);
1483 }
1484
1485 static void
1486 blt_ring_put_irq(struct intel_ring_buffer *ring)
1487 {
1488         gen6_ring_put_irq(ring,
1489                           GT_BLT_USER_INTERRUPT,
1490                           GEN6_BLITTER_USER_INTERRUPT);
1491 }
1492
1493 static int blt_ring_flush(struct intel_ring_buffer *ring,
1494                           uint32_t invalidate, uint32_t flush)
1495 {
1496         uint32_t cmd;
1497         int ret;
1498
1499         ret = intel_ring_begin(ring, 4);
1500         if (ret)
1501                 return ret;
1502
1503         cmd = MI_FLUSH_DW;
1504         if (invalidate & I915_GEM_DOMAIN_RENDER)
1505                 cmd |= MI_INVALIDATE_TLB;
1506         intel_ring_emit(ring, cmd);
1507         intel_ring_emit(ring, 0);
1508         intel_ring_emit(ring, 0);
1509         intel_ring_emit(ring, MI_NOOP);
1510         intel_ring_advance(ring);
1511         return 0;
1512 }
1513
1514 static const struct intel_ring_buffer gen6_blt_ring = {
1515         .name                   = "blt ring",
1516         .id                     = BCS,
1517         .mmio_base              = BLT_RING_BASE,
1518         .size                   = 32 * PAGE_SIZE,
1519         .init                   = init_ring_common,
1520         .write_tail             = ring_write_tail,
1521         .flush                  = blt_ring_flush,
1522         .add_request            = gen6_add_request,
1523         .get_seqno              = gen6_ring_get_seqno,
1524         .irq_get                = blt_ring_get_irq,
1525         .irq_put                = blt_ring_put_irq,
1526         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1527         .sync_to                = gen6_blt_ring_sync_to,
1528         .semaphore_register     = {MI_SEMAPHORE_SYNC_BR,
1529                                    MI_SEMAPHORE_SYNC_BV,
1530                                    MI_SEMAPHORE_SYNC_INVALID},
1531         .signal_mbox            = {GEN6_RBSYNC, GEN6_VBSYNC},
1532 };
1533
1534 int intel_init_render_ring_buffer(struct drm_device *dev)
1535 {
1536         drm_i915_private_t *dev_priv = dev->dev_private;
1537         struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1538
1539         *ring = render_ring;
1540         if (INTEL_INFO(dev)->gen >= 6) {
1541                 ring->add_request = gen6_add_request;
1542                 ring->flush = gen6_render_ring_flush;
1543                 ring->irq_get = gen6_render_ring_get_irq;
1544                 ring->irq_put = gen6_render_ring_put_irq;
1545                 ring->get_seqno = gen6_ring_get_seqno;
1546         } else if (IS_GEN5(dev)) {
1547                 ring->add_request = pc_render_add_request;
1548                 ring->get_seqno = pc_render_get_seqno;
1549         }
1550
1551         if (!I915_NEED_GFX_HWS(dev)) {
1552                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1553                 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1554         }
1555
1556         return intel_init_ring_buffer(dev, ring);
1557 }
1558
1559 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1560     uint32_t size)
1561 {
1562         drm_i915_private_t *dev_priv = dev->dev_private;
1563         struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1564
1565         *ring = render_ring;
1566         if (INTEL_INFO(dev)->gen >= 6) {
1567                 ring->add_request = gen6_add_request;
1568                 ring->irq_get = gen6_render_ring_get_irq;
1569                 ring->irq_put = gen6_render_ring_put_irq;
1570         } else if (IS_GEN5(dev)) {
1571                 ring->add_request = pc_render_add_request;
1572                 ring->get_seqno = pc_render_get_seqno;
1573         }
1574
1575         ring->dev = dev;
1576         INIT_LIST_HEAD(&ring->active_list);
1577         INIT_LIST_HEAD(&ring->request_list);
1578         INIT_LIST_HEAD(&ring->gpu_write_list);
1579
1580         ring->size = size;
1581         ring->effective_size = ring->size;
1582         if (IS_I830(ring->dev))
1583                 ring->effective_size -= 128;
1584
1585         ring->map.offset = start;
1586         ring->map.size = size;
1587         ring->map.type = 0;
1588         ring->map.flags = 0;
1589         ring->map.mtrr = 0;
1590
1591         drm_core_ioremap_wc(&ring->map, dev);
1592         if (ring->map.virtual == NULL) {
1593                 DRM_ERROR("can not ioremap virtual address for"
1594                           " ring buffer\n");
1595                 return -ENOMEM;
1596         }
1597
1598         ring->virtual_start = (void *)ring->map.virtual;
1599         return 0;
1600 }
1601
1602 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1603 {
1604         drm_i915_private_t *dev_priv = dev->dev_private;
1605         struct intel_ring_buffer *ring = &dev_priv->rings[VCS];
1606
1607         if (IS_GEN6(dev) || IS_GEN7(dev))
1608                 *ring = gen6_bsd_ring;
1609         else
1610                 *ring = bsd_ring;
1611
1612         return intel_init_ring_buffer(dev, ring);
1613 }
1614
1615 int intel_init_blt_ring_buffer(struct drm_device *dev)
1616 {
1617         drm_i915_private_t *dev_priv = dev->dev_private;
1618         struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
1619
1620         *ring = gen6_blt_ring;
1621
1622         return intel_init_ring_buffer(dev, ring);
1623 }