]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/nvme/nvme_ctrlr.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2013 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include "nvme_private.h"
44
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46                                                 struct nvme_async_event_request *aer);
47
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51
52         /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
53         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
54                 ctrlr->resource_id = PCIR_BAR(2);
55         else
56                 ctrlr->resource_id = PCIR_BAR(0);
57
58         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
59             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
60
61         if(ctrlr->resource == NULL) {
62                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
63                 return (ENOMEM);
64         }
65
66         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
67         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
68         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
69
70         /*
71          * The NVMe spec allows for the MSI-X table to be placed behind
72          *  BAR 4/5, separate from the control/doorbell registers.  Always
73          *  try to map this bar, because it must be mapped prior to calling
74          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
75          *  bus_alloc_resource() will just return NULL which is OK.
76          */
77         ctrlr->bar4_resource_id = PCIR_BAR(4);
78         ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
79             &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
80
81         return (0);
82 }
83
84 #ifdef CHATHAM2
85 static int
86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
87 {
88
89         ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
90         ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
91             SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
92             RF_ACTIVE);
93
94         if(ctrlr->chatham_resource == NULL) {
95                 nvme_printf(ctrlr, "unable to alloc pci resource\n");
96                 return (ENOMEM);
97         }
98
99         ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
100         ctrlr->chatham_bus_handle =
101             rman_get_bushandle(ctrlr->chatham_resource);
102
103         return (0);
104 }
105
106 static void
107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
108 {
109         uint64_t reg1, reg2, reg3;
110         uint64_t temp1, temp2;
111         uint32_t temp3;
112         uint32_t use_flash_timings = 0;
113
114         DELAY(10000);
115
116         temp3 = chatham_read_4(ctrlr, 0x8080);
117
118         device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
119
120         ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
121         ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
122
123         device_printf(ctrlr->dev, "Chatham size: %jd\n",
124             (intmax_t)ctrlr->chatham_size);
125
126         reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
127
128         TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
129         if (use_flash_timings) {
130                 device_printf(ctrlr->dev, "Chatham: using flash timings\n");
131                 temp1 = 0x00001b58000007d0LL;
132                 temp2 = 0x000000cb00000131LL;
133         } else {
134                 device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
135                 temp1 = temp2 = 0x0LL;
136         }
137
138         chatham_write_8(ctrlr, 0x8000, reg1);
139         chatham_write_8(ctrlr, 0x8008, reg2);
140         chatham_write_8(ctrlr, 0x8010, reg3);
141
142         chatham_write_8(ctrlr, 0x8020, temp1);
143         temp3 = chatham_read_4(ctrlr, 0x8020);
144
145         chatham_write_8(ctrlr, 0x8028, temp2);
146         temp3 = chatham_read_4(ctrlr, 0x8028);
147
148         chatham_write_8(ctrlr, 0x8030, temp1);
149         chatham_write_8(ctrlr, 0x8038, temp2);
150         chatham_write_8(ctrlr, 0x8040, temp1);
151         chatham_write_8(ctrlr, 0x8048, temp2);
152         chatham_write_8(ctrlr, 0x8050, temp1);
153         chatham_write_8(ctrlr, 0x8058, temp2);
154
155         DELAY(10000);
156 }
157
158 static void
159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
160 {
161         struct nvme_controller_data *cdata;
162
163         cdata = &ctrlr->cdata;
164
165         cdata->vid = 0x8086;
166         cdata->ssvid = 0x2011;
167
168         /*
169          * Chatham2 puts garbage data in these fields when we
170          *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
171          *  the fields before calling bcopy().
172          */
173         memset(cdata->sn, 0, sizeof(cdata->sn));
174         memcpy(cdata->sn, "2012", strlen("2012"));
175         memset(cdata->mn, 0, sizeof(cdata->mn));
176         memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
177         memset(cdata->fr, 0, sizeof(cdata->fr));
178         memcpy(cdata->fr, "0", strlen("0"));
179         cdata->rab = 8;
180         cdata->aerl = 3;
181         cdata->lpa.ns_smart = 1;
182         cdata->sqes.min = 6;
183         cdata->sqes.max = 6;
184         cdata->sqes.min = 4;
185         cdata->sqes.max = 4;
186         cdata->nn = 1;
187
188         /* Chatham2 doesn't support DSM command */
189         cdata->oncs.dsm = 0;
190
191         cdata->vwc.present = 1;
192 }
193 #endif /* CHATHAM2 */
194
195 static void
196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
197 {
198         struct nvme_qpair       *qpair;
199         uint32_t                num_entries;
200
201         qpair = &ctrlr->adminq;
202
203         num_entries = NVME_ADMIN_ENTRIES;
204         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
205         /*
206          * If admin_entries was overridden to an invalid value, revert it
207          *  back to our default value.
208          */
209         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
210             num_entries > NVME_MAX_ADMIN_ENTRIES) {
211                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
212                     "specified\n", num_entries);
213                 num_entries = NVME_ADMIN_ENTRIES;
214         }
215
216         /*
217          * The admin queue's max xfer size is treated differently than the
218          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
219          */
220         nvme_qpair_construct(qpair, 
221                              0, /* qpair ID */
222                              0, /* vector */
223                              num_entries,
224                              NVME_ADMIN_TRACKERS,
225                              ctrlr);
226 }
227
228 static int
229 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
230 {
231         struct nvme_qpair       *qpair;
232         union cap_lo_register   cap_lo;
233         int                     i, num_entries, num_trackers;
234
235         num_entries = NVME_IO_ENTRIES;
236         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
237
238         /*
239          * NVMe spec sets a hard limit of 64K max entries, but
240          *  devices may specify a smaller limit, so we need to check
241          *  the MQES field in the capabilities register.
242          */
243         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
244         num_entries = min(num_entries, cap_lo.bits.mqes+1);
245
246         num_trackers = NVME_IO_TRACKERS;
247         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
248
249         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
250         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
251         /*
252          * No need to have more trackers than entries in the submit queue.
253          *  Note also that for a queue size of N, we can only have (N-1)
254          *  commands outstanding, hence the "-1" here.
255          */
256         num_trackers = min(num_trackers, (num_entries-1));
257
258         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
259             M_NVME, M_ZERO | M_WAITOK);
260
261         for (i = 0; i < ctrlr->num_io_queues; i++) {
262                 qpair = &ctrlr->ioq[i];
263
264                 /*
265                  * Admin queue has ID=0. IO queues start at ID=1 -
266                  *  hence the 'i+1' here.
267                  *
268                  * For I/O queues, use the controller-wide max_xfer_size
269                  *  calculated in nvme_attach().
270                  */
271                 nvme_qpair_construct(qpair,
272                                      i+1, /* qpair ID */
273                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
274                                      num_entries,
275                                      num_trackers,
276                                      ctrlr);
277
278                 if (ctrlr->per_cpu_io_queues)
279                         bus_bind_intr(ctrlr->dev, qpair->res, i);
280         }
281
282         return (0);
283 }
284
285 static void
286 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
287 {
288         int i;
289
290         ctrlr->is_failed = TRUE;
291         nvme_qpair_fail(&ctrlr->adminq);
292         for (i = 0; i < ctrlr->num_io_queues; i++)
293                 nvme_qpair_fail(&ctrlr->ioq[i]);
294         nvme_notify_fail_consumers(ctrlr);
295 }
296
297 void
298 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
299     struct nvme_request *req)
300 {
301
302         mtx_lock(&ctrlr->lock);
303         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
304         mtx_unlock(&ctrlr->lock);
305         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
306 }
307
308 static void
309 nvme_ctrlr_fail_req_task(void *arg, int pending)
310 {
311         struct nvme_controller  *ctrlr = arg;
312         struct nvme_request     *req;
313
314         mtx_lock(&ctrlr->lock);
315         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
316                 req = STAILQ_FIRST(&ctrlr->fail_req);
317                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
318                 nvme_qpair_manual_complete_request(req->qpair, req,
319                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
320         }
321         mtx_unlock(&ctrlr->lock);
322 }
323
324 static int
325 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
326 {
327         int ms_waited;
328         union cc_register cc;
329         union csts_register csts;
330
331         cc.raw = nvme_mmio_read_4(ctrlr, cc);
332         csts.raw = nvme_mmio_read_4(ctrlr, csts);
333
334         if (!cc.bits.en) {
335                 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
336                 return (ENXIO);
337         }
338
339         ms_waited = 0;
340
341         while (!csts.bits.rdy) {
342                 DELAY(1000);
343                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
344                         nvme_printf(ctrlr, "controller did not become ready "
345                             "within %d ms\n", ctrlr->ready_timeout_in_ms);
346                         return (ENXIO);
347                 }
348                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
349         }
350
351         return (0);
352 }
353
354 static void
355 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
356 {
357         union cc_register cc;
358         union csts_register csts;
359
360         cc.raw = nvme_mmio_read_4(ctrlr, cc);
361         csts.raw = nvme_mmio_read_4(ctrlr, csts);
362
363         if (cc.bits.en == 1 && csts.bits.rdy == 0)
364                 nvme_ctrlr_wait_for_ready(ctrlr);
365
366         cc.bits.en = 0;
367         nvme_mmio_write_4(ctrlr, cc, cc.raw);
368         DELAY(5000);
369 }
370
371 static int
372 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
373 {
374         union cc_register       cc;
375         union csts_register     csts;
376         union aqa_register      aqa;
377
378         cc.raw = nvme_mmio_read_4(ctrlr, cc);
379         csts.raw = nvme_mmio_read_4(ctrlr, csts);
380
381         if (cc.bits.en == 1) {
382                 if (csts.bits.rdy == 1)
383                         return (0);
384                 else
385                         return (nvme_ctrlr_wait_for_ready(ctrlr));
386         }
387
388         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
389         DELAY(5000);
390         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
391         DELAY(5000);
392
393         aqa.raw = 0;
394         /* acqs and asqs are 0-based. */
395         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
396         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
397         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
398         DELAY(5000);
399
400         cc.bits.en = 1;
401         cc.bits.css = 0;
402         cc.bits.ams = 0;
403         cc.bits.shn = 0;
404         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
405         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
406
407         /* This evaluates to 0, which is according to spec. */
408         cc.bits.mps = (PAGE_SIZE >> 13);
409
410         nvme_mmio_write_4(ctrlr, cc, cc.raw);
411         DELAY(5000);
412
413         return (nvme_ctrlr_wait_for_ready(ctrlr));
414 }
415
416 int
417 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
418 {
419         int i;
420
421         nvme_admin_qpair_disable(&ctrlr->adminq);
422         for (i = 0; i < ctrlr->num_io_queues; i++)
423                 nvme_io_qpair_disable(&ctrlr->ioq[i]);
424
425         DELAY(100*1000);
426
427         nvme_ctrlr_disable(ctrlr);
428         return (nvme_ctrlr_enable(ctrlr));
429 }
430
431 void
432 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
433 {
434         int cmpset;
435
436         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
437
438         if (cmpset == 0 || ctrlr->is_failed)
439                 /*
440                  * Controller is already resetting or has failed.  Return
441                  *  immediately since there is no need to kick off another
442                  *  reset in these cases.
443                  */
444                 return;
445
446         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
447 }
448
449 static int
450 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
451 {
452         struct nvme_completion_poll_status      status;
453
454         status.done = FALSE;
455         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
456             nvme_completion_poll_cb, &status);
457         while (status.done == FALSE)
458                 pause("nvme", 1);
459         if (nvme_completion_is_error(&status.cpl)) {
460                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
461                 return (ENXIO);
462         }
463
464 #ifdef CHATHAM2
465         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
466                 nvme_chatham_populate_cdata(ctrlr);
467 #endif
468
469         /*
470          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
471          *  controller supports.
472          */
473         if (ctrlr->cdata.mdts > 0)
474                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
475                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
476
477         return (0);
478 }
479
480 static int
481 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
482 {
483         struct nvme_completion_poll_status      status;
484         int                                     cq_allocated, i, sq_allocated;
485
486         status.done = FALSE;
487         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
488             nvme_completion_poll_cb, &status);
489         while (status.done == FALSE)
490                 pause("nvme", 1);
491         if (nvme_completion_is_error(&status.cpl)) {
492                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
493                 return (ENXIO);
494         }
495
496         /*
497          * Data in cdw0 is 0-based.
498          * Lower 16-bits indicate number of submission queues allocated.
499          * Upper 16-bits indicate number of completion queues allocated.
500          */
501         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
502         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
503
504         /*
505          * Check that the controller was able to allocate the number of
506          *  queues we requested.  If not, revert to one IO queue pair.
507          */
508         if (sq_allocated < ctrlr->num_io_queues ||
509             cq_allocated < ctrlr->num_io_queues) {
510
511                 /*
512                  * Destroy extra IO queue pairs that were created at
513                  *  controller construction time but are no longer
514                  *  needed.  This will only happen when a controller
515                  *  supports fewer queues than MSI-X vectors.  This
516                  *  is not the normal case, but does occur with the
517                  *  Chatham prototype board.
518                  */
519                 for (i = 1; i < ctrlr->num_io_queues; i++)
520                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
521
522                 ctrlr->num_io_queues = 1;
523                 ctrlr->per_cpu_io_queues = 0;
524         }
525
526         return (0);
527 }
528
529 static int
530 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
531 {
532         struct nvme_completion_poll_status      status;
533         struct nvme_qpair                       *qpair;
534         int                                     i;
535
536         for (i = 0; i < ctrlr->num_io_queues; i++) {
537                 qpair = &ctrlr->ioq[i];
538
539                 status.done = FALSE;
540                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
541                     nvme_completion_poll_cb, &status);
542                 while (status.done == FALSE)
543                         pause("nvme", 1);
544                 if (nvme_completion_is_error(&status.cpl)) {
545                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
546                         return (ENXIO);
547                 }
548
549                 status.done = FALSE;
550                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
551                     nvme_completion_poll_cb, &status);
552                 while (status.done == FALSE)
553                         pause("nvme", 1);
554                 if (nvme_completion_is_error(&status.cpl)) {
555                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
556                         return (ENXIO);
557                 }
558         }
559
560         return (0);
561 }
562
563 static int
564 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
565 {
566         struct nvme_namespace   *ns;
567         int                     i, status;
568
569         for (i = 0; i < ctrlr->cdata.nn; i++) {
570                 ns = &ctrlr->ns[i];
571                 status = nvme_ns_construct(ns, i+1, ctrlr);
572                 if (status != 0)
573                         return (status);
574         }
575
576         return (0);
577 }
578
579 static boolean_t
580 is_log_page_id_valid(uint8_t page_id)
581 {
582
583         switch (page_id) {
584         case NVME_LOG_ERROR:
585         case NVME_LOG_HEALTH_INFORMATION:
586         case NVME_LOG_FIRMWARE_SLOT:
587                 return (TRUE);
588         }
589
590         return (FALSE);
591 }
592
593 static uint32_t
594 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
595 {
596         uint32_t        log_page_size;
597
598         switch (page_id) {
599         case NVME_LOG_ERROR:
600                 log_page_size = min(
601                     sizeof(struct nvme_error_information_entry) *
602                     ctrlr->cdata.elpe,
603                     NVME_MAX_AER_LOG_SIZE);
604                 break;
605         case NVME_LOG_HEALTH_INFORMATION:
606                 log_page_size = sizeof(struct nvme_health_information_page);
607                 break;
608         case NVME_LOG_FIRMWARE_SLOT:
609                 log_page_size = sizeof(struct nvme_firmware_page);
610                 break;
611         default:
612                 log_page_size = 0;
613                 break;
614         }
615
616         return (log_page_size);
617 }
618
619 static void
620 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
621 {
622         struct nvme_async_event_request *aer = arg;
623
624         /*
625          * If the log page fetch for some reason completed with an error,
626          *  don't pass log page data to the consumers.  In practice, this case
627          *  should never happen.
628          */
629         if (nvme_completion_is_error(cpl))
630                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
631                     aer->log_page_id, NULL, 0);
632         else
633                 /*
634                  * Pass the cpl data from the original async event completion,
635                  *  not the log page fetch.
636                  */
637                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
638                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
639
640         /*
641          * Repost another asynchronous event request to replace the one
642          *  that just completed.
643          */
644         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
645 }
646
647 static void
648 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
649 {
650         struct nvme_async_event_request *aer = arg;
651
652         if (nvme_completion_is_error(cpl)) {
653                 /*
654                  *  Do not retry failed async event requests.  This avoids
655                  *  infinite loops where a new async event request is submitted
656                  *  to replace the one just failed, only to fail again and
657                  *  perpetuate the loop.
658                  */
659                 return;
660         }
661
662         /* Associated log page is in bits 23:16 of completion entry dw0. */
663         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
664
665         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
666             aer->log_page_id);
667
668         if (is_log_page_id_valid(aer->log_page_id)) {
669                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
670                     aer->log_page_id);
671                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
672                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
673                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
674                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
675                     aer);
676                 /* Wait to notify consumers until after log page is fetched. */
677         } else {
678                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
679                     NULL, 0);
680
681                 /*
682                  * Repost another asynchronous event request to replace the one
683                  *  that just completed.
684                  */
685                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
686         }
687 }
688
689 static void
690 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
691     struct nvme_async_event_request *aer)
692 {
693         struct nvme_request *req;
694
695         aer->ctrlr = ctrlr;
696         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
697         aer->req = req;
698
699         /*
700          * Disable timeout here, since asynchronous event requests should by
701          *  nature never be timed out.
702          */
703         req->timeout = FALSE;
704         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
705         nvme_ctrlr_submit_admin_request(ctrlr, req);
706 }
707
708 static void
709 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
710 {
711         union nvme_critical_warning_state       state;
712         struct nvme_async_event_request         *aer;
713         uint32_t                                i;
714
715         state.raw = 0xFF;
716         state.bits.reserved = 0;
717         nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
718
719         /* aerl is a zero-based value, so we need to add 1 here. */
720         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
721
722         /* Chatham doesn't support AERs. */
723         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
724                 ctrlr->num_aers = 0;
725
726         for (i = 0; i < ctrlr->num_aers; i++) {
727                 aer = &ctrlr->aer[i];
728                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
729         }
730 }
731
732 static void
733 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
734 {
735
736         ctrlr->int_coal_time = 0;
737         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
738             &ctrlr->int_coal_time);
739
740         ctrlr->int_coal_threshold = 0;
741         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
742             &ctrlr->int_coal_threshold);
743
744         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
745             ctrlr->int_coal_threshold, NULL, NULL);
746 }
747
748 static void
749 nvme_ctrlr_start(void *ctrlr_arg)
750 {
751         struct nvme_controller *ctrlr = ctrlr_arg;
752         int i;
753
754         nvme_qpair_reset(&ctrlr->adminq);
755         for (i = 0; i < ctrlr->num_io_queues; i++)
756                 nvme_qpair_reset(&ctrlr->ioq[i]);
757
758         nvme_admin_qpair_enable(&ctrlr->adminq);
759
760         if (nvme_ctrlr_identify(ctrlr) != 0) {
761                 nvme_ctrlr_fail(ctrlr);
762                 return;
763         }
764
765         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
766                 nvme_ctrlr_fail(ctrlr);
767                 return;
768         }
769
770         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
771                 nvme_ctrlr_fail(ctrlr);
772                 return;
773         }
774
775         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
776                 nvme_ctrlr_fail(ctrlr);
777                 return;
778         }
779
780         nvme_ctrlr_configure_aer(ctrlr);
781         nvme_ctrlr_configure_int_coalescing(ctrlr);
782
783         for (i = 0; i < ctrlr->num_io_queues; i++)
784                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
785
786         /*
787          * Clear software progress marker to 0, to indicate to pre-boot
788          *  software that OS driver load was successful.
789          *
790          * Chatham does not support this feature.
791          */
792         if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID)
793                 nvme_ctrlr_cmd_set_feature(ctrlr,
794                     NVME_FEAT_SOFTWARE_PROGRESS_MARKER, 0, NULL, 0, NULL, NULL);
795 }
796
797 void
798 nvme_ctrlr_start_config_hook(void *arg)
799 {
800         struct nvme_controller *ctrlr = arg;
801
802         nvme_ctrlr_start(ctrlr);
803         config_intrhook_disestablish(&ctrlr->config_hook);
804 }
805
806 static void
807 nvme_ctrlr_reset_task(void *arg, int pending)
808 {
809         struct nvme_controller  *ctrlr = arg;
810         int                     status;
811
812         nvme_printf(ctrlr, "resetting controller\n");
813         status = nvme_ctrlr_hw_reset(ctrlr);
814         /*
815          * Use pause instead of DELAY, so that we yield to any nvme interrupt
816          *  handlers on this CPU that were blocked on a qpair lock. We want
817          *  all nvme interrupts completed before proceeding with restarting the
818          *  controller.
819          *
820          * XXX - any way to guarantee the interrupt handlers have quiesced?
821          */
822         pause("nvmereset", hz / 10);
823         if (status == 0)
824                 nvme_ctrlr_start(ctrlr);
825         else
826                 nvme_ctrlr_fail(ctrlr);
827
828         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
829 }
830
831 static void
832 nvme_ctrlr_intx_handler(void *arg)
833 {
834         struct nvme_controller *ctrlr = arg;
835
836         nvme_mmio_write_4(ctrlr, intms, 1);
837
838         nvme_qpair_process_completions(&ctrlr->adminq);
839
840         if (ctrlr->ioq[0].cpl)
841                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
842
843         nvme_mmio_write_4(ctrlr, intmc, 1);
844 }
845
846 static int
847 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
848 {
849
850         ctrlr->num_io_queues = 1;
851         ctrlr->per_cpu_io_queues = 0;
852         ctrlr->rid = 0;
853         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
854             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
855
856         if (ctrlr->res == NULL) {
857                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
858                 return (ENOMEM);
859         }
860
861         bus_setup_intr(ctrlr->dev, ctrlr->res,
862             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
863             ctrlr, &ctrlr->tag);
864
865         if (ctrlr->tag == NULL) {
866                 nvme_printf(ctrlr, "unable to setup intx handler\n");
867                 return (ENOMEM);
868         }
869
870         return (0);
871 }
872
873 static void
874 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
875 {
876         struct nvme_pt_command *pt = arg;
877
878         bzero(&pt->cpl, sizeof(pt->cpl));
879         pt->cpl.cdw0 = cpl->cdw0;
880         pt->cpl.status = cpl->status;
881         pt->cpl.status.p = 0;
882
883         mtx_lock(pt->driver_lock);
884         wakeup(pt);
885         mtx_unlock(pt->driver_lock);
886 }
887
888 int
889 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
890     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
891     int is_admin_cmd)
892 {
893         struct nvme_request     *req;
894         struct mtx              *mtx;
895         struct buf              *buf = NULL;
896         int                     ret = 0;
897
898         if (pt->len > 0) {
899                 if (pt->len > ctrlr->max_xfer_size) {
900                         nvme_printf(ctrlr, "pt->len (%d) "
901                             "exceeds max_xfer_size (%d)\n", pt->len,
902                             ctrlr->max_xfer_size);
903                         return EIO;
904                 }
905                 if (is_user_buffer) {
906                         /*
907                          * Ensure the user buffer is wired for the duration of
908                          *  this passthrough command.
909                          */
910                         PHOLD(curproc);
911                         buf = getpbuf(NULL);
912                         buf->b_saveaddr = buf->b_data;
913                         buf->b_data = pt->buf;
914                         buf->b_bufsize = pt->len;
915                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
916 #ifdef NVME_UNMAPPED_BIO_SUPPORT
917                         if (vmapbuf(buf, 1) < 0) {
918 #else
919                         if (vmapbuf(buf) < 0) {
920 #endif
921                                 ret = EFAULT;
922                                 goto err;
923                         }
924                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
925                             nvme_pt_done, pt);
926                 } else
927                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
928                             nvme_pt_done, pt);
929         } else
930                 req = nvme_allocate_request_null(nvme_pt_done, pt);
931
932         req->cmd.opc    = pt->cmd.opc;
933         req->cmd.cdw10  = pt->cmd.cdw10;
934         req->cmd.cdw11  = pt->cmd.cdw11;
935         req->cmd.cdw12  = pt->cmd.cdw12;
936         req->cmd.cdw13  = pt->cmd.cdw13;
937         req->cmd.cdw14  = pt->cmd.cdw14;
938         req->cmd.cdw15  = pt->cmd.cdw15;
939
940         req->cmd.nsid = nsid;
941
942         if (is_admin_cmd)
943                 mtx = &ctrlr->lock;
944         else
945                 mtx = &ctrlr->ns[nsid-1].lock;
946
947         mtx_lock(mtx);
948         pt->driver_lock = mtx;
949
950         if (is_admin_cmd)
951                 nvme_ctrlr_submit_admin_request(ctrlr, req);
952         else
953                 nvme_ctrlr_submit_io_request(ctrlr, req);
954
955         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
956         mtx_unlock(mtx);
957
958         pt->driver_lock = NULL;
959
960 err:
961         if (buf != NULL) {
962                 relpbuf(buf, NULL);
963                 PRELE(curproc);
964         }
965
966         return (ret);
967 }
968
969 static int
970 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
971     struct thread *td)
972 {
973         struct nvme_controller                  *ctrlr;
974         struct nvme_pt_command                  *pt;
975
976         ctrlr = cdev->si_drv1;
977
978         switch (cmd) {
979         case NVME_RESET_CONTROLLER:
980                 nvme_ctrlr_reset(ctrlr);
981                 break;
982         case NVME_PASSTHROUGH_CMD:
983                 pt = (struct nvme_pt_command *)arg;
984                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
985                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
986         default:
987                 return (ENOTTY);
988         }
989
990         return (0);
991 }
992
993 static struct cdevsw nvme_ctrlr_cdevsw = {
994         .d_version =    D_VERSION,
995         .d_flags =      0,
996         .d_ioctl =      nvme_ctrlr_ioctl
997 };
998
999 int
1000 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1001 {
1002         union cap_lo_register   cap_lo;
1003         union cap_hi_register   cap_hi;
1004         int                     num_vectors, per_cpu_io_queues, status = 0;
1005         int                     timeout_period;
1006
1007         ctrlr->dev = dev;
1008
1009         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1010
1011         status = nvme_ctrlr_allocate_bar(ctrlr);
1012
1013         if (status != 0)
1014                 return (status);
1015
1016 #ifdef CHATHAM2
1017         if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
1018                 status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
1019                 if (status != 0)
1020                         return (status);
1021                 nvme_ctrlr_setup_chatham(ctrlr);
1022         }
1023 #endif
1024
1025         /*
1026          * Software emulators may set the doorbell stride to something
1027          *  other than zero, but this driver is not set up to handle that.
1028          */
1029         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1030         if (cap_hi.bits.dstrd != 0)
1031                 return (ENXIO);
1032
1033         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1034
1035         /* Get ready timeout value from controller, in units of 500ms. */
1036         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1037         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1038
1039         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1040         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1041         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1042         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1043         ctrlr->timeout_period = timeout_period;
1044
1045         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1046         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1047
1048         per_cpu_io_queues = 1;
1049         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1050         ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
1051
1052         if (ctrlr->per_cpu_io_queues)
1053                 ctrlr->num_io_queues = mp_ncpus;
1054         else
1055                 ctrlr->num_io_queues = 1;
1056
1057         ctrlr->force_intx = 0;
1058         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1059
1060         ctrlr->enable_aborts = 0;
1061         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1062
1063         ctrlr->msix_enabled = 1;
1064
1065         if (ctrlr->force_intx) {
1066                 ctrlr->msix_enabled = 0;
1067                 goto intx;
1068         }
1069
1070         /* One vector per IO queue, plus one vector for admin queue. */
1071         num_vectors = ctrlr->num_io_queues + 1;
1072
1073         if (pci_msix_count(dev) < num_vectors) {
1074                 ctrlr->msix_enabled = 0;
1075                 goto intx;
1076         }
1077
1078         if (pci_alloc_msix(dev, &num_vectors) != 0)
1079                 ctrlr->msix_enabled = 0;
1080
1081 intx:
1082
1083         if (!ctrlr->msix_enabled)
1084                 nvme_ctrlr_configure_intx(ctrlr);
1085
1086         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1087         nvme_ctrlr_construct_admin_qpair(ctrlr);
1088         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1089
1090         if (status != 0)
1091                 return (status);
1092
1093         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
1094             "nvme%d", device_get_unit(dev));
1095
1096         if (ctrlr->cdev == NULL)
1097                 return (ENXIO);
1098
1099         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1100
1101         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1102             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1103         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1104
1105         ctrlr->is_resetting = 0;
1106         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1107
1108         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1109         STAILQ_INIT(&ctrlr->fail_req);
1110         ctrlr->is_failed = FALSE;
1111
1112         return (0);
1113 }
1114
1115 void
1116 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1117 {
1118         int                             i;
1119
1120         nvme_ctrlr_disable(ctrlr);
1121         taskqueue_free(ctrlr->taskqueue);
1122
1123         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1124                 nvme_ns_destruct(&ctrlr->ns[i]);
1125
1126         if (ctrlr->cdev)
1127                 destroy_dev(ctrlr->cdev);
1128
1129         for (i = 0; i < ctrlr->num_io_queues; i++) {
1130                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1131         }
1132
1133         free(ctrlr->ioq, M_NVME);
1134
1135         nvme_admin_qpair_destroy(&ctrlr->adminq);
1136
1137         if (ctrlr->resource != NULL) {
1138                 bus_release_resource(dev, SYS_RES_MEMORY,
1139                     ctrlr->resource_id, ctrlr->resource);
1140         }
1141
1142         if (ctrlr->bar4_resource != NULL) {
1143                 bus_release_resource(dev, SYS_RES_MEMORY,
1144                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1145         }
1146
1147 #ifdef CHATHAM2
1148         if (ctrlr->chatham_resource != NULL) {
1149                 bus_release_resource(dev, SYS_RES_MEMORY,
1150                     ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1151         }
1152 #endif
1153
1154         if (ctrlr->tag)
1155                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1156
1157         if (ctrlr->res)
1158                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1159                     rman_get_rid(ctrlr->res), ctrlr->res);
1160
1161         if (ctrlr->msix_enabled)
1162                 pci_release_msi(dev);
1163 }
1164
1165 void
1166 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1167     struct nvme_request *req)
1168 {
1169
1170         nvme_qpair_submit_request(&ctrlr->adminq, req);
1171 }
1172
1173 void
1174 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1175     struct nvme_request *req)
1176 {
1177         struct nvme_qpair       *qpair;
1178
1179         if (ctrlr->per_cpu_io_queues)
1180                 qpair = &ctrlr->ioq[curcpu];
1181         else
1182                 qpair = &ctrlr->ioq[0];
1183
1184         nvme_qpair_submit_request(qpair, req);
1185 }
1186
1187 device_t
1188 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1189 {
1190
1191         return (ctrlr->dev);
1192 }
1193
1194 const struct nvme_controller_data *
1195 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1196 {
1197
1198         return (&ctrlr->cdata);
1199 }