]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/safe/safe.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / safe / safe.c
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63
64 #include "cryptodev_if.h"
65
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74
75 #ifndef bswap32
76 #define bswap32 NTOHL
77 #endif
78
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static  int safe_probe(device_t);
83 static  int safe_attach(device_t);
84 static  int safe_detach(device_t);
85 static  int safe_suspend(device_t);
86 static  int safe_resume(device_t);
87 static  int safe_shutdown(device_t);
88
89 static  int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static  int safe_freesession(device_t, u_int64_t);
91 static  int safe_process(device_t, struct cryptop *, int);
92
93 static device_method_t safe_methods[] = {
94         /* Device interface */
95         DEVMETHOD(device_probe,         safe_probe),
96         DEVMETHOD(device_attach,        safe_attach),
97         DEVMETHOD(device_detach,        safe_detach),
98         DEVMETHOD(device_suspend,       safe_suspend),
99         DEVMETHOD(device_resume,        safe_resume),
100         DEVMETHOD(device_shutdown,      safe_shutdown),
101
102         /* crypto device methods */
103         DEVMETHOD(cryptodev_newsession, safe_newsession),
104         DEVMETHOD(cryptodev_freesession,safe_freesession),
105         DEVMETHOD(cryptodev_process,    safe_process),
106
107         DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110         "safe",
111         safe_methods,
112         sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121
122 static  void safe_intr(void *);
123 static  void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static  void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static  void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static  void safe_rng_init(struct safe_softc *);
128 static  void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static  int safe_dma_malloc(struct safe_softc *, bus_size_t,
131                 struct safe_dma_alloc *, int);
132 #define safe_dma_sync(_dma, _flags) \
133         bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static  void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static  int safe_dmamap_aligned(const struct safe_operand *);
136 static  int safe_dmamap_uniform(const struct safe_operand *);
137
138 static  void safe_reset_board(struct safe_softc *);
139 static  void safe_init_board(struct safe_softc *);
140 static  void safe_init_pciregs(device_t dev);
141 static  void safe_cleanchip(struct safe_softc *);
142 static  void safe_totalreset(struct safe_softc *);
143
144 static  int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147     "SafeNet driver parameters");
148
149 #ifdef SAFE_DEBUG
150 static  void safe_dump_dmastatus(struct safe_softc *, const char *);
151 static  void safe_dump_ringstate(struct safe_softc *, const char *);
152 static  void safe_dump_intrstate(struct safe_softc *, const char *);
153 static  void safe_dump_request(struct safe_softc *, const char *,
154                 struct safe_ringentry *);
155
156 static  struct safe_softc *safec;               /* for use by hw.safe.dump */
157
158 static  int safe_debug = 0;
159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160             0, "control debugging msgs");
161 #define DPRINTF(_x)     if (safe_debug) printf _x
162 #else
163 #define DPRINTF(_x)
164 #endif
165
166 #define READ_REG(sc,r) \
167         bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168
169 #define WRITE_REG(sc,reg,val) \
170         bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171
172 struct safe_stats safestats;
173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174             safe_stats, "driver statistics");
175 #ifndef SAFE_NO_RNG
176 static  int safe_rnginterval = 1;               /* poll once a second */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178             0, "RNG polling interval (secs)");
179 static  int safe_rngbufsize = 16;               /* 64 bytes each poll  */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181             0, "RNG polling buffer size (32-bit words)");
182 static  int safe_rngmaxalarm = 8;               /* max alarms before reset */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184             0, "RNG max alarms before reset");
185 #endif /* SAFE_NO_RNG */
186
187 static int
188 safe_probe(device_t dev)
189 {
190         if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191             pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192                 return (BUS_PROBE_DEFAULT);
193         return (ENXIO);
194 }
195
196 static const char*
197 safe_partname(struct safe_softc *sc)
198 {
199         /* XXX sprintf numbers when not decoded */
200         switch (pci_get_vendor(sc->sc_dev)) {
201         case PCI_VENDOR_SAFENET:
202                 switch (pci_get_device(sc->sc_dev)) {
203                 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204                 }
205                 return "SafeNet unknown-part";
206         }
207         return "Unknown-vendor unknown-part";
208 }
209
210 #ifndef SAFE_NO_RNG
211 static void
212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213 {
214         random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
215 }
216 #endif /* SAFE_NO_RNG */
217
218 static int
219 safe_attach(device_t dev)
220 {
221         struct safe_softc *sc = device_get_softc(dev);
222         u_int32_t raddr;
223         u_int32_t cmd, i, devinfo;
224         int rid;
225
226         bzero(sc, sizeof (*sc));
227         sc->sc_dev = dev;
228
229         /* XXX handle power management */
230  
231         cmd = pci_read_config(dev, PCIR_COMMAND, 4);
232         cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
233         pci_write_config(dev, PCIR_COMMAND, cmd, 4);
234         cmd = pci_read_config(dev, PCIR_COMMAND, 4);
235
236         if (!(cmd & PCIM_CMD_MEMEN)) {
237                 device_printf(dev, "failed to enable memory mapping\n");
238                 goto bad;
239         }
240
241         if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
242                 device_printf(dev, "failed to enable bus mastering\n");
243                 goto bad;
244         }
245
246         /* 
247          * Setup memory-mapping of PCI registers.
248          */
249         rid = BS_BAR;
250         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
251                                            RF_ACTIVE);
252         if (sc->sc_sr == NULL) {
253                 device_printf(dev, "cannot map register space\n");
254                 goto bad;
255         }
256         sc->sc_st = rman_get_bustag(sc->sc_sr);
257         sc->sc_sh = rman_get_bushandle(sc->sc_sr);
258
259         /*
260          * Arrange interrupt line.
261          */
262         rid = 0;
263         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
264                                             RF_SHAREABLE|RF_ACTIVE);
265         if (sc->sc_irq == NULL) {
266                 device_printf(dev, "could not map interrupt\n");
267                 goto bad1;
268         }
269         /*
270          * NB: Network code assumes we are blocked with splimp()
271          *     so make sure the IRQ is mapped appropriately.
272          */
273         if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
274                            NULL, safe_intr, sc, &sc->sc_ih)) {
275                 device_printf(dev, "could not establish interrupt\n");
276                 goto bad2;
277         }
278
279         sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
280         if (sc->sc_cid < 0) {
281                 device_printf(dev, "could not get crypto driver id\n");
282                 goto bad3;
283         }
284
285         sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
286                 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
287
288         /*
289          * Setup DMA descriptor area.
290          */
291         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
292                                1,                       /* alignment */
293                                SAFE_DMA_BOUNDARY,       /* boundary */
294                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
295                                BUS_SPACE_MAXADDR,       /* highaddr */
296                                NULL, NULL,              /* filter, filterarg */
297                                SAFE_MAX_DMA,            /* maxsize */
298                                SAFE_MAX_PART,           /* nsegments */
299                                SAFE_MAX_SSIZE,          /* maxsegsize */
300                                BUS_DMA_ALLOCNOW,        /* flags */
301                                NULL, NULL,              /* locking */
302                                &sc->sc_srcdmat)) {
303                 device_printf(dev, "cannot allocate DMA tag\n");
304                 goto bad4;
305         }
306         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
307                                1,                       /* alignment */
308                                SAFE_MAX_DSIZE,          /* boundary */
309                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
310                                BUS_SPACE_MAXADDR,       /* highaddr */
311                                NULL, NULL,              /* filter, filterarg */
312                                SAFE_MAX_DMA,            /* maxsize */
313                                SAFE_MAX_PART,           /* nsegments */
314                                SAFE_MAX_DSIZE,          /* maxsegsize */
315                                BUS_DMA_ALLOCNOW,        /* flags */
316                                NULL, NULL,              /* locking */
317                                &sc->sc_dstdmat)) {
318                 device_printf(dev, "cannot allocate DMA tag\n");
319                 goto bad4;
320         }
321
322         /*
323          * Allocate packet engine descriptors.
324          */
325         if (safe_dma_malloc(sc,
326             SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
327             &sc->sc_ringalloc, 0)) {
328                 device_printf(dev, "cannot allocate PE descriptor ring\n");
329                 bus_dma_tag_destroy(sc->sc_srcdmat);
330                 goto bad4;
331         }
332         /*
333          * Hookup the static portion of all our data structures.
334          */
335         sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
336         sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
337         sc->sc_front = sc->sc_ring;
338         sc->sc_back = sc->sc_ring;
339         raddr = sc->sc_ringalloc.dma_paddr;
340         bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
341         for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
342                 struct safe_ringentry *re = &sc->sc_ring[i];
343
344                 re->re_desc.d_sa = raddr +
345                         offsetof(struct safe_ringentry, re_sa);
346                 re->re_sa.sa_staterec = raddr +
347                         offsetof(struct safe_ringentry, re_sastate);
348
349                 raddr += sizeof (struct safe_ringentry);
350         }
351         mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
352                 "packet engine ring", MTX_DEF);
353
354         /*
355          * Allocate scatter and gather particle descriptors.
356          */
357         if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
358             &sc->sc_spalloc, 0)) {
359                 device_printf(dev, "cannot allocate source particle "
360                         "descriptor ring\n");
361                 mtx_destroy(&sc->sc_ringmtx);
362                 safe_dma_free(sc, &sc->sc_ringalloc);
363                 bus_dma_tag_destroy(sc->sc_srcdmat);
364                 goto bad4;
365         }
366         sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
367         sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
368         sc->sc_spfree = sc->sc_spring;
369         bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
370
371         if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
372             &sc->sc_dpalloc, 0)) {
373                 device_printf(dev, "cannot allocate destination particle "
374                         "descriptor ring\n");
375                 mtx_destroy(&sc->sc_ringmtx);
376                 safe_dma_free(sc, &sc->sc_spalloc);
377                 safe_dma_free(sc, &sc->sc_ringalloc);
378                 bus_dma_tag_destroy(sc->sc_dstdmat);
379                 goto bad4;
380         }
381         sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
382         sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
383         sc->sc_dpfree = sc->sc_dpring;
384         bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
385
386         device_printf(sc->sc_dev, "%s", safe_partname(sc));
387
388         devinfo = READ_REG(sc, SAFE_DEVINFO);
389         if (devinfo & SAFE_DEVINFO_RNG) {
390                 sc->sc_flags |= SAFE_FLAGS_RNG;
391                 printf(" rng");
392         }
393         if (devinfo & SAFE_DEVINFO_PKEY) {
394 #if 0
395                 printf(" key");
396                 sc->sc_flags |= SAFE_FLAGS_KEY;
397                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
398                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
399 #endif
400         }
401         if (devinfo & SAFE_DEVINFO_DES) {
402                 printf(" des/3des");
403                 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
404                 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
405         }
406         if (devinfo & SAFE_DEVINFO_AES) {
407                 printf(" aes");
408                 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
409         }
410         if (devinfo & SAFE_DEVINFO_MD5) {
411                 printf(" md5");
412                 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
413         }
414         if (devinfo & SAFE_DEVINFO_SHA1) {
415                 printf(" sha1");
416                 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
417         }
418         printf(" null");
419         crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
420         crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
421         /* XXX other supported algorithms */
422         printf("\n");
423
424         safe_reset_board(sc);           /* reset h/w */
425         safe_init_pciregs(dev);         /* init pci settings */
426         safe_init_board(sc);            /* init h/w */
427
428 #ifndef SAFE_NO_RNG
429         if (sc->sc_flags & SAFE_FLAGS_RNG) {
430 #ifdef SAFE_RNDTEST
431                 sc->sc_rndtest = rndtest_attach(dev);
432                 if (sc->sc_rndtest)
433                         sc->sc_harvest = rndtest_harvest;
434                 else
435                         sc->sc_harvest = default_harvest;
436 #else
437                 sc->sc_harvest = default_harvest;
438 #endif
439                 safe_rng_init(sc);
440
441                 callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
442                 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
443         }
444 #endif /* SAFE_NO_RNG */
445 #ifdef SAFE_DEBUG
446         safec = sc;                     /* for use by hw.safe.dump */
447 #endif
448         return (0);
449 bad4:
450         crypto_unregister_all(sc->sc_cid);
451 bad3:
452         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
453 bad2:
454         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
455 bad1:
456         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
457 bad:
458         return (ENXIO);
459 }
460
461 /*
462  * Detach a device that successfully probed.
463  */
464 static int
465 safe_detach(device_t dev)
466 {
467         struct safe_softc *sc = device_get_softc(dev);
468
469         /* XXX wait/abort active ops */
470
471         WRITE_REG(sc, SAFE_HI_MASK, 0);         /* disable interrupts */
472
473         callout_stop(&sc->sc_rngto);
474
475         crypto_unregister_all(sc->sc_cid);
476
477 #ifdef SAFE_RNDTEST
478         if (sc->sc_rndtest)
479                 rndtest_detach(sc->sc_rndtest);
480 #endif
481
482         safe_cleanchip(sc);
483         safe_dma_free(sc, &sc->sc_dpalloc);
484         safe_dma_free(sc, &sc->sc_spalloc);
485         mtx_destroy(&sc->sc_ringmtx);
486         safe_dma_free(sc, &sc->sc_ringalloc);
487
488         bus_generic_detach(dev);
489         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
490         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
491
492         bus_dma_tag_destroy(sc->sc_srcdmat);
493         bus_dma_tag_destroy(sc->sc_dstdmat);
494         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
495
496         return (0);
497 }
498
499 /*
500  * Stop all chip i/o so that the kernel's probe routines don't
501  * get confused by errant DMAs when rebooting.
502  */
503 static int
504 safe_shutdown(device_t dev)
505 {
506 #ifdef notyet
507         safe_stop(device_get_softc(dev));
508 #endif
509         return (0);
510 }
511
512 /*
513  * Device suspend routine.
514  */
515 static int
516 safe_suspend(device_t dev)
517 {
518         struct safe_softc *sc = device_get_softc(dev);
519
520 #ifdef notyet
521         /* XXX stop the device and save PCI settings */
522 #endif
523         sc->sc_suspended = 1;
524
525         return (0);
526 }
527
528 static int
529 safe_resume(device_t dev)
530 {
531         struct safe_softc *sc = device_get_softc(dev);
532
533 #ifdef notyet
534         /* XXX retore PCI settings and start the device */
535 #endif
536         sc->sc_suspended = 0;
537         return (0);
538 }
539
540 /*
541  * SafeXcel Interrupt routine
542  */
543 static void
544 safe_intr(void *arg)
545 {
546         struct safe_softc *sc = arg;
547         volatile u_int32_t stat;
548
549         stat = READ_REG(sc, SAFE_HM_STAT);
550         if (stat == 0)                  /* shared irq, not for us */
551                 return;
552
553         WRITE_REG(sc, SAFE_HI_CLR, stat);       /* IACK */
554
555         if ((stat & SAFE_INT_PE_DDONE)) {
556                 /*
557                  * Descriptor(s) done; scan the ring and
558                  * process completed operations.
559                  */
560                 mtx_lock(&sc->sc_ringmtx);
561                 while (sc->sc_back != sc->sc_front) {
562                         struct safe_ringentry *re = sc->sc_back;
563 #ifdef SAFE_DEBUG
564                         if (safe_debug) {
565                                 safe_dump_ringstate(sc, __func__);
566                                 safe_dump_request(sc, __func__, re);
567                         }
568 #endif
569                         /*
570                          * safe_process marks ring entries that were allocated
571                          * but not used with a csr of zero.  This insures the
572                          * ring front pointer never needs to be set backwards
573                          * in the event that an entry is allocated but not used
574                          * because of a setup error.
575                          */
576                         if (re->re_desc.d_csr != 0) {
577                                 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
578                                         break;
579                                 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
580                                         break;
581                                 sc->sc_nqchip--;
582                                 safe_callback(sc, re);
583                         }
584                         if (++(sc->sc_back) == sc->sc_ringtop)
585                                 sc->sc_back = sc->sc_ring;
586                 }
587                 mtx_unlock(&sc->sc_ringmtx);
588         }
589
590         /*
591          * Check to see if we got any DMA Error
592          */
593         if (stat & SAFE_INT_PE_ERROR) {
594                 DPRINTF(("dmaerr dmastat %08x\n",
595                         READ_REG(sc, SAFE_PE_DMASTAT)));
596                 safestats.st_dmaerr++;
597                 safe_totalreset(sc);
598 #if 0
599                 safe_feed(sc);
600 #endif
601         }
602
603         if (sc->sc_needwakeup) {                /* XXX check high watermark */
604                 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
605                 DPRINTF(("%s: wakeup crypto %x\n", __func__,
606                         sc->sc_needwakeup));
607                 sc->sc_needwakeup &= ~wakeup;
608                 crypto_unblock(sc->sc_cid, wakeup);
609         }
610 }
611
612 /*
613  * safe_feed() - post a request to chip
614  */
615 static void
616 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
617 {
618         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
619         if (re->re_dst_map != NULL)
620                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
621                         BUS_DMASYNC_PREREAD);
622         /* XXX have no smaller granularity */
623         safe_dma_sync(&sc->sc_ringalloc,
624                 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
625         safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
626         safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
627
628 #ifdef SAFE_DEBUG
629         if (safe_debug) {
630                 safe_dump_ringstate(sc, __func__);
631                 safe_dump_request(sc, __func__, re);
632         }
633 #endif
634         sc->sc_nqchip++;
635         if (sc->sc_nqchip > safestats.st_maxqchip)
636                 safestats.st_maxqchip = sc->sc_nqchip;
637         /* poke h/w to check descriptor ring, any value can be written */
638         WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
639 }
640
641 #define N(a)    (sizeof(a) / sizeof (a[0]))
642 static void
643 safe_setup_enckey(struct safe_session *ses, caddr_t key)
644 {
645         int i;
646
647         bcopy(key, ses->ses_key, ses->ses_klen / 8);
648
649         /* PE is little-endian, insure proper byte order */
650         for (i = 0; i < N(ses->ses_key); i++)
651                 ses->ses_key[i] = htole32(ses->ses_key[i]);
652 }
653
654 static void
655 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
656 {
657         MD5_CTX md5ctx;
658         SHA1_CTX sha1ctx;
659         int i;
660
661
662         for (i = 0; i < klen; i++)
663                 key[i] ^= HMAC_IPAD_VAL;
664
665         if (algo == CRYPTO_MD5_HMAC) {
666                 MD5Init(&md5ctx);
667                 MD5Update(&md5ctx, key, klen);
668                 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
669                 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
670         } else {
671                 SHA1Init(&sha1ctx);
672                 SHA1Update(&sha1ctx, key, klen);
673                 SHA1Update(&sha1ctx, hmac_ipad_buffer,
674                     SHA1_HMAC_BLOCK_LEN - klen);
675                 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
676         }
677
678         for (i = 0; i < klen; i++)
679                 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
680
681         if (algo == CRYPTO_MD5_HMAC) {
682                 MD5Init(&md5ctx);
683                 MD5Update(&md5ctx, key, klen);
684                 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
685                 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
686         } else {
687                 SHA1Init(&sha1ctx);
688                 SHA1Update(&sha1ctx, key, klen);
689                 SHA1Update(&sha1ctx, hmac_opad_buffer,
690                     SHA1_HMAC_BLOCK_LEN - klen);
691                 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
692         }
693
694         for (i = 0; i < klen; i++)
695                 key[i] ^= HMAC_OPAD_VAL;
696
697         /* PE is little-endian, insure proper byte order */
698         for (i = 0; i < N(ses->ses_hminner); i++) {
699                 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
700                 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
701         }
702 }
703 #undef N
704
705 /*
706  * Allocate a new 'session' and return an encoded session id.  'sidp'
707  * contains our registration id, and should contain an encoded session
708  * id on successful allocation.
709  */
710 static int
711 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
712 {
713         struct safe_softc *sc = device_get_softc(dev);
714         struct cryptoini *c, *encini = NULL, *macini = NULL;
715         struct safe_session *ses = NULL;
716         int sesn;
717
718         if (sidp == NULL || cri == NULL || sc == NULL)
719                 return (EINVAL);
720
721         for (c = cri; c != NULL; c = c->cri_next) {
722                 if (c->cri_alg == CRYPTO_MD5_HMAC ||
723                     c->cri_alg == CRYPTO_SHA1_HMAC ||
724                     c->cri_alg == CRYPTO_NULL_HMAC) {
725                         if (macini)
726                                 return (EINVAL);
727                         macini = c;
728                 } else if (c->cri_alg == CRYPTO_DES_CBC ||
729                     c->cri_alg == CRYPTO_3DES_CBC ||
730                     c->cri_alg == CRYPTO_AES_CBC ||
731                     c->cri_alg == CRYPTO_NULL_CBC) {
732                         if (encini)
733                                 return (EINVAL);
734                         encini = c;
735                 } else
736                         return (EINVAL);
737         }
738         if (encini == NULL && macini == NULL)
739                 return (EINVAL);
740         if (encini) {                   /* validate key length */
741                 switch (encini->cri_alg) {
742                 case CRYPTO_DES_CBC:
743                         if (encini->cri_klen != 64)
744                                 return (EINVAL);
745                         break;
746                 case CRYPTO_3DES_CBC:
747                         if (encini->cri_klen != 192)
748                                 return (EINVAL);
749                         break;
750                 case CRYPTO_AES_CBC:
751                         if (encini->cri_klen != 128 &&
752                             encini->cri_klen != 192 &&
753                             encini->cri_klen != 256)
754                                 return (EINVAL);
755                         break;
756                 }
757         }
758
759         if (sc->sc_sessions == NULL) {
760                 ses = sc->sc_sessions = (struct safe_session *)malloc(
761                     sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
762                 if (ses == NULL)
763                         return (ENOMEM);
764                 sesn = 0;
765                 sc->sc_nsessions = 1;
766         } else {
767                 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
768                         if (sc->sc_sessions[sesn].ses_used == 0) {
769                                 ses = &sc->sc_sessions[sesn];
770                                 break;
771                         }
772                 }
773
774                 if (ses == NULL) {
775                         sesn = sc->sc_nsessions;
776                         ses = (struct safe_session *)malloc((sesn + 1) *
777                             sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
778                         if (ses == NULL)
779                                 return (ENOMEM);
780                         bcopy(sc->sc_sessions, ses, sesn *
781                             sizeof(struct safe_session));
782                         bzero(sc->sc_sessions, sesn *
783                             sizeof(struct safe_session));
784                         free(sc->sc_sessions, M_DEVBUF);
785                         sc->sc_sessions = ses;
786                         ses = &sc->sc_sessions[sesn];
787                         sc->sc_nsessions++;
788                 }
789         }
790
791         bzero(ses, sizeof(struct safe_session));
792         ses->ses_used = 1;
793
794         if (encini) {
795                 /* get an IV */
796                 /* XXX may read fewer than requested */
797                 read_random(ses->ses_iv, sizeof(ses->ses_iv));
798
799                 ses->ses_klen = encini->cri_klen;
800                 if (encini->cri_key != NULL)
801                         safe_setup_enckey(ses, encini->cri_key);
802         }
803
804         if (macini) {
805                 ses->ses_mlen = macini->cri_mlen;
806                 if (ses->ses_mlen == 0) {
807                         if (macini->cri_alg == CRYPTO_MD5_HMAC)
808                                 ses->ses_mlen = MD5_HASH_LEN;
809                         else
810                                 ses->ses_mlen = SHA1_HASH_LEN;
811                 }
812
813                 if (macini->cri_key != NULL) {
814                         safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
815                             macini->cri_klen / 8);
816                 }
817         }
818
819         *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
820         return (0);
821 }
822
823 /*
824  * Deallocate a session.
825  */
826 static int
827 safe_freesession(device_t dev, u_int64_t tid)
828 {
829         struct safe_softc *sc = device_get_softc(dev);
830         int session, ret;
831         u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
832
833         if (sc == NULL)
834                 return (EINVAL);
835
836         session = SAFE_SESSION(sid);
837         if (session < sc->sc_nsessions) {
838                 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
839                 ret = 0;
840         } else
841                 ret = EINVAL;
842         return (ret);
843 }
844
845 static void
846 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
847 {
848         struct safe_operand *op = arg;
849
850         DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
851                 (u_int) mapsize, nsegs, error));
852         if (error != 0)
853                 return;
854         op->mapsize = mapsize;
855         op->nsegs = nsegs;
856         bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
857 }
858
859 static int
860 safe_process(device_t dev, struct cryptop *crp, int hint)
861 {
862         struct safe_softc *sc = device_get_softc(dev);
863         int err = 0, i, nicealign, uniform;
864         struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
865         int bypass, oplen, ivsize;
866         caddr_t iv;
867         int16_t coffset;
868         struct safe_session *ses;
869         struct safe_ringentry *re;
870         struct safe_sarec *sa;
871         struct safe_pdesc *pd;
872         u_int32_t cmd0, cmd1, staterec;
873
874         if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
875                 safestats.st_invalid++;
876                 return (EINVAL);
877         }
878         if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
879                 safestats.st_badsession++;
880                 return (EINVAL);
881         }
882
883         mtx_lock(&sc->sc_ringmtx);
884         if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
885                 safestats.st_ringfull++;
886                 sc->sc_needwakeup |= CRYPTO_SYMQ;
887                 mtx_unlock(&sc->sc_ringmtx);
888                 return (ERESTART);
889         }
890         re = sc->sc_front;
891
892         staterec = re->re_sa.sa_staterec;       /* save */
893         /* NB: zero everything but the PE descriptor */
894         bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
895         re->re_sa.sa_staterec = staterec;       /* restore */
896
897         re->re_crp = crp;
898         re->re_sesn = SAFE_SESSION(crp->crp_sid);
899
900         if (crp->crp_flags & CRYPTO_F_IMBUF) {
901                 re->re_src_m = (struct mbuf *)crp->crp_buf;
902                 re->re_dst_m = (struct mbuf *)crp->crp_buf;
903         } else if (crp->crp_flags & CRYPTO_F_IOV) {
904                 re->re_src_io = (struct uio *)crp->crp_buf;
905                 re->re_dst_io = (struct uio *)crp->crp_buf;
906         } else {
907                 safestats.st_badflags++;
908                 err = EINVAL;
909                 goto errout;    /* XXX we don't handle contiguous blocks! */
910         }
911
912         sa = &re->re_sa;
913         ses = &sc->sc_sessions[re->re_sesn];
914
915         crd1 = crp->crp_desc;
916         if (crd1 == NULL) {
917                 safestats.st_nodesc++;
918                 err = EINVAL;
919                 goto errout;
920         }
921         crd2 = crd1->crd_next;
922
923         cmd0 = SAFE_SA_CMD0_BASIC;              /* basic group operation */
924         cmd1 = 0;
925         if (crd2 == NULL) {
926                 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
927                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
928                     crd1->crd_alg == CRYPTO_NULL_HMAC) {
929                         maccrd = crd1;
930                         enccrd = NULL;
931                         cmd0 |= SAFE_SA_CMD0_OP_HASH;
932                 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
933                     crd1->crd_alg == CRYPTO_3DES_CBC ||
934                     crd1->crd_alg == CRYPTO_AES_CBC ||
935                     crd1->crd_alg == CRYPTO_NULL_CBC) {
936                         maccrd = NULL;
937                         enccrd = crd1;
938                         cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
939                 } else {
940                         safestats.st_badalg++;
941                         err = EINVAL;
942                         goto errout;
943                 }
944         } else {
945                 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
946                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
947                     crd1->crd_alg == CRYPTO_NULL_HMAC) &&
948                     (crd2->crd_alg == CRYPTO_DES_CBC ||
949                         crd2->crd_alg == CRYPTO_3DES_CBC ||
950                         crd2->crd_alg == CRYPTO_AES_CBC ||
951                         crd2->crd_alg == CRYPTO_NULL_CBC) &&
952                     ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
953                         maccrd = crd1;
954                         enccrd = crd2;
955                 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
956                     crd1->crd_alg == CRYPTO_3DES_CBC ||
957                     crd1->crd_alg == CRYPTO_AES_CBC ||
958                     crd1->crd_alg == CRYPTO_NULL_CBC) &&
959                     (crd2->crd_alg == CRYPTO_MD5_HMAC ||
960                         crd2->crd_alg == CRYPTO_SHA1_HMAC ||
961                         crd2->crd_alg == CRYPTO_NULL_HMAC) &&
962                     (crd1->crd_flags & CRD_F_ENCRYPT)) {
963                         enccrd = crd1;
964                         maccrd = crd2;
965                 } else {
966                         safestats.st_badalg++;
967                         err = EINVAL;
968                         goto errout;
969                 }
970                 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
971         }
972
973         if (enccrd) {
974                 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
975                         safe_setup_enckey(ses, enccrd->crd_key);
976
977                 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
978                         cmd0 |= SAFE_SA_CMD0_DES;
979                         cmd1 |= SAFE_SA_CMD1_CBC;
980                         ivsize = 2*sizeof(u_int32_t);
981                 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
982                         cmd0 |= SAFE_SA_CMD0_3DES;
983                         cmd1 |= SAFE_SA_CMD1_CBC;
984                         ivsize = 2*sizeof(u_int32_t);
985                 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
986                         cmd0 |= SAFE_SA_CMD0_AES;
987                         cmd1 |= SAFE_SA_CMD1_CBC;
988                         if (ses->ses_klen == 128)
989                              cmd1 |=  SAFE_SA_CMD1_AES128;
990                         else if (ses->ses_klen == 192)
991                              cmd1 |=  SAFE_SA_CMD1_AES192;
992                         else
993                              cmd1 |=  SAFE_SA_CMD1_AES256;
994                         ivsize = 4*sizeof(u_int32_t);
995                 } else {
996                         cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
997                         ivsize = 0;
998                 }
999
1000                 /*
1001                  * Setup encrypt/decrypt state.  When using basic ops
1002                  * we can't use an inline IV because hash/crypt offset
1003                  * must be from the end of the IV to the start of the
1004                  * crypt data and this leaves out the preceding header
1005                  * from the hash calculation.  Instead we place the IV
1006                  * in the state record and set the hash/crypt offset to
1007                  * copy both the header+IV.
1008                  */
1009                 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1010                         cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1011
1012                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1013                                 iv = enccrd->crd_iv;
1014                         else
1015                                 iv = (caddr_t) ses->ses_iv;
1016                         if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1017                                 crypto_copyback(crp->crp_flags, crp->crp_buf,
1018                                     enccrd->crd_inject, ivsize, iv);
1019                         }
1020                         bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1021                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1022                         re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1023                 } else {
1024                         cmd0 |= SAFE_SA_CMD0_INBOUND;
1025
1026                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1027                                 bcopy(enccrd->crd_iv,
1028                                         re->re_sastate.sa_saved_iv, ivsize);
1029                         } else {
1030                                 crypto_copydata(crp->crp_flags, crp->crp_buf,
1031                                     enccrd->crd_inject, ivsize,
1032                                     (caddr_t)re->re_sastate.sa_saved_iv);
1033                         }
1034                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1035                 }
1036                 /*
1037                  * For basic encryption use the zero pad algorithm.
1038                  * This pads results to an 8-byte boundary and
1039                  * suppresses padding verification for inbound (i.e.
1040                  * decrypt) operations.
1041                  *
1042                  * NB: Not sure if the 8-byte pad boundary is a problem.
1043                  */
1044                 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1045
1046                 /* XXX assert key bufs have the same size */
1047                 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1048         }
1049
1050         if (maccrd) {
1051                 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1052                         safe_setup_mackey(ses, maccrd->crd_alg,
1053                             maccrd->crd_key, maccrd->crd_klen / 8);
1054                 }
1055
1056                 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1057                         cmd0 |= SAFE_SA_CMD0_MD5;
1058                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1059                 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1060                         cmd0 |= SAFE_SA_CMD0_SHA1;
1061                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1062                 } else {
1063                         cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1064                 }
1065                 /*
1066                  * Digest data is loaded from the SA and the hash
1067                  * result is saved to the state block where we
1068                  * retrieve it for return to the caller.
1069                  */
1070                 /* XXX assert digest bufs have the same size */
1071                 bcopy(ses->ses_hminner, sa->sa_indigest,
1072                         sizeof(sa->sa_indigest));
1073                 bcopy(ses->ses_hmouter, sa->sa_outdigest,
1074                         sizeof(sa->sa_outdigest));
1075
1076                 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1077                 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1078         }
1079
1080         if (enccrd && maccrd) {
1081                 /*
1082                  * The offset from hash data to the start of
1083                  * crypt data is the difference in the skips.
1084                  */
1085                 bypass = maccrd->crd_skip;
1086                 coffset = enccrd->crd_skip - maccrd->crd_skip;
1087                 if (coffset < 0) {
1088                         DPRINTF(("%s: hash does not precede crypt; "
1089                                 "mac skip %u enc skip %u\n",
1090                                 __func__, maccrd->crd_skip, enccrd->crd_skip));
1091                         safestats.st_skipmismatch++;
1092                         err = EINVAL;
1093                         goto errout;
1094                 }
1095                 oplen = enccrd->crd_skip + enccrd->crd_len;
1096                 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1097                         DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1098                                 __func__, maccrd->crd_skip + maccrd->crd_len,
1099                                 oplen));
1100                         safestats.st_lenmismatch++;
1101                         err = EINVAL;
1102                         goto errout;
1103                 }
1104 #ifdef SAFE_DEBUG
1105                 if (safe_debug) {
1106                         printf("mac: skip %d, len %d, inject %d\n",
1107                             maccrd->crd_skip, maccrd->crd_len,
1108                             maccrd->crd_inject);
1109                         printf("enc: skip %d, len %d, inject %d\n",
1110                             enccrd->crd_skip, enccrd->crd_len,
1111                             enccrd->crd_inject);
1112                         printf("bypass %d coffset %d oplen %d\n",
1113                                 bypass, coffset, oplen);
1114                 }
1115 #endif
1116                 if (coffset & 3) {      /* offset must be 32-bit aligned */
1117                         DPRINTF(("%s: coffset %u misaligned\n",
1118                                 __func__, coffset));
1119                         safestats.st_coffmisaligned++;
1120                         err = EINVAL;
1121                         goto errout;
1122                 }
1123                 coffset >>= 2;
1124                 if (coffset > 255) {    /* offset must be <256 dwords */
1125                         DPRINTF(("%s: coffset %u too big\n",
1126                                 __func__, coffset));
1127                         safestats.st_cofftoobig++;
1128                         err = EINVAL;
1129                         goto errout;
1130                 }
1131                 /*
1132                  * Tell the hardware to copy the header to the output.
1133                  * The header is defined as the data from the end of
1134                  * the bypass to the start of data to be encrypted. 
1135                  * Typically this is the inline IV.  Note that you need
1136                  * to do this even if src+dst are the same; it appears
1137                  * that w/o this bit the crypted data is written
1138                  * immediately after the bypass data.
1139                  */
1140                 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1141                 /*
1142                  * Disable IP header mutable bit handling.  This is
1143                  * needed to get correct HMAC calculations.
1144                  */
1145                 cmd1 |= SAFE_SA_CMD1_MUTABLE;
1146         } else {
1147                 if (enccrd) {
1148                         bypass = enccrd->crd_skip;
1149                         oplen = bypass + enccrd->crd_len;
1150                 } else {
1151                         bypass = maccrd->crd_skip;
1152                         oplen = bypass + maccrd->crd_len;
1153                 }
1154                 coffset = 0;
1155         }
1156         /* XXX verify multiple of 4 when using s/g */
1157         if (bypass > 96) {              /* bypass offset must be <= 96 bytes */
1158                 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1159                 safestats.st_bypasstoobig++;
1160                 err = EINVAL;
1161                 goto errout;
1162         }
1163
1164         if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1165                 safestats.st_nomap++;
1166                 err = ENOMEM;
1167                 goto errout;
1168         }
1169         if (crp->crp_flags & CRYPTO_F_IMBUF) {
1170                 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1171                     re->re_src_m, safe_op_cb,
1172                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1173                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1174                         re->re_src_map = NULL;
1175                         safestats.st_noload++;
1176                         err = ENOMEM;
1177                         goto errout;
1178                 }
1179         } else if (crp->crp_flags & CRYPTO_F_IOV) {
1180                 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1181                     re->re_src_io, safe_op_cb,
1182                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1183                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1184                         re->re_src_map = NULL;
1185                         safestats.st_noload++;
1186                         err = ENOMEM;
1187                         goto errout;
1188                 }
1189         }
1190         nicealign = safe_dmamap_aligned(&re->re_src);
1191         uniform = safe_dmamap_uniform(&re->re_src);
1192
1193         DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1194                 nicealign, uniform, re->re_src.nsegs));
1195         if (re->re_src.nsegs > 1) {
1196                 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1197                         ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1198                 for (i = 0; i < re->re_src_nsegs; i++) {
1199                         /* NB: no need to check if there's space */
1200                         pd = sc->sc_spfree;
1201                         if (++(sc->sc_spfree) == sc->sc_springtop)
1202                                 sc->sc_spfree = sc->sc_spring;
1203
1204                         KASSERT((pd->pd_flags&3) == 0 ||
1205                                 (pd->pd_flags&3) == SAFE_PD_DONE,
1206                                 ("bogus source particle descriptor; flags %x",
1207                                 pd->pd_flags));
1208                         pd->pd_addr = re->re_src_segs[i].ds_addr;
1209                         pd->pd_size = re->re_src_segs[i].ds_len;
1210                         pd->pd_flags = SAFE_PD_READY;
1211                 }
1212                 cmd0 |= SAFE_SA_CMD0_IGATHER;
1213         } else {
1214                 /*
1215                  * No need for gather, reference the operand directly.
1216                  */
1217                 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1218         }
1219
1220         if (enccrd == NULL && maccrd != NULL) {
1221                 /*
1222                  * Hash op; no destination needed.
1223                  */
1224         } else {
1225                 if (crp->crp_flags & CRYPTO_F_IOV) {
1226                         if (!nicealign) {
1227                                 safestats.st_iovmisaligned++;
1228                                 err = EINVAL;
1229                                 goto errout;
1230                         }
1231                         if (uniform != 1) {
1232                                 /*
1233                                  * Source is not suitable for direct use as
1234                                  * the destination.  Create a new scatter/gather
1235                                  * list based on the destination requirements
1236                                  * and check if that's ok.
1237                                  */
1238                                 if (bus_dmamap_create(sc->sc_dstdmat,
1239                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1240                                         safestats.st_nomap++;
1241                                         err = ENOMEM;
1242                                         goto errout;
1243                                 }
1244                                 if (bus_dmamap_load_uio(sc->sc_dstdmat,
1245                                     re->re_dst_map, re->re_dst_io,
1246                                     safe_op_cb, &re->re_dst,
1247                                     BUS_DMA_NOWAIT) != 0) {
1248                                         bus_dmamap_destroy(sc->sc_dstdmat,
1249                                                 re->re_dst_map);
1250                                         re->re_dst_map = NULL;
1251                                         safestats.st_noload++;
1252                                         err = ENOMEM;
1253                                         goto errout;
1254                                 }
1255                                 uniform = safe_dmamap_uniform(&re->re_dst);
1256                                 if (!uniform) {
1257                                         /*
1258                                          * There's no way to handle the DMA
1259                                          * requirements with this uio.  We
1260                                          * could create a separate DMA area for
1261                                          * the result and then copy it back,
1262                                          * but for now we just bail and return
1263                                          * an error.  Note that uio requests
1264                                          * > SAFE_MAX_DSIZE are handled because
1265                                          * the DMA map and segment list for the
1266                                          * destination wil result in a
1267                                          * destination particle list that does
1268                                          * the necessary scatter DMA.
1269                                          */ 
1270                                         safestats.st_iovnotuniform++;
1271                                         err = EINVAL;
1272                                         goto errout;
1273                                 }
1274                         } else
1275                                 re->re_dst = re->re_src;
1276                 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1277                         if (nicealign && uniform == 1) {
1278                                 /*
1279                                  * Source layout is suitable for direct
1280                                  * sharing of the DMA map and segment list.
1281                                  */
1282                                 re->re_dst = re->re_src;
1283                         } else if (nicealign && uniform == 2) {
1284                                 /*
1285                                  * The source is properly aligned but requires a
1286                                  * different particle list to handle DMA of the
1287                                  * result.  Create a new map and do the load to
1288                                  * create the segment list.  The particle
1289                                  * descriptor setup code below will handle the
1290                                  * rest.
1291                                  */
1292                                 if (bus_dmamap_create(sc->sc_dstdmat,
1293                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1294                                         safestats.st_nomap++;
1295                                         err = ENOMEM;
1296                                         goto errout;
1297                                 }
1298                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1299                                     re->re_dst_map, re->re_dst_m,
1300                                     safe_op_cb, &re->re_dst,
1301                                     BUS_DMA_NOWAIT) != 0) {
1302                                         bus_dmamap_destroy(sc->sc_dstdmat,
1303                                                 re->re_dst_map);
1304                                         re->re_dst_map = NULL;
1305                                         safestats.st_noload++;
1306                                         err = ENOMEM;
1307                                         goto errout;
1308                                 }
1309                         } else {                /* !(aligned and/or uniform) */
1310                                 int totlen, len;
1311                                 struct mbuf *m, *top, **mp;
1312
1313                                 /*
1314                                  * DMA constraints require that we allocate a
1315                                  * new mbuf chain for the destination.  We
1316                                  * allocate an entire new set of mbufs of
1317                                  * optimal/required size and then tell the
1318                                  * hardware to copy any bits that are not
1319                                  * created as a byproduct of the operation.
1320                                  */
1321                                 if (!nicealign)
1322                                         safestats.st_unaligned++;
1323                                 if (!uniform)
1324                                         safestats.st_notuniform++;
1325                                 totlen = re->re_src_mapsize;
1326                                 if (re->re_src_m->m_flags & M_PKTHDR) {
1327                                         len = MHLEN;
1328                                         MGETHDR(m, M_NOWAIT, MT_DATA);
1329                                         if (m && !m_dup_pkthdr(m, re->re_src_m,
1330                                             M_NOWAIT)) {
1331                                                 m_free(m);
1332                                                 m = NULL;
1333                                         }
1334                                 } else {
1335                                         len = MLEN;
1336                                         MGET(m, M_NOWAIT, MT_DATA);
1337                                 }
1338                                 if (m == NULL) {
1339                                         safestats.st_nombuf++;
1340                                         err = sc->sc_nqchip ? ERESTART : ENOMEM;
1341                                         goto errout;
1342                                 }
1343                                 if (totlen >= MINCLSIZE) {
1344                                         MCLGET(m, M_NOWAIT);
1345                                         if ((m->m_flags & M_EXT) == 0) {
1346                                                 m_free(m);
1347                                                 safestats.st_nomcl++;
1348                                                 err = sc->sc_nqchip ?
1349                                                         ERESTART : ENOMEM;
1350                                                 goto errout;
1351                                         }
1352                                         len = MCLBYTES;
1353                                 }
1354                                 m->m_len = len;
1355                                 top = NULL;
1356                                 mp = &top;
1357
1358                                 while (totlen > 0) {
1359                                         if (top) {
1360                                                 MGET(m, M_NOWAIT, MT_DATA);
1361                                                 if (m == NULL) {
1362                                                         m_freem(top);
1363                                                         safestats.st_nombuf++;
1364                                                         err = sc->sc_nqchip ?
1365                                                             ERESTART : ENOMEM;
1366                                                         goto errout;
1367                                                 }
1368                                                 len = MLEN;
1369                                         }
1370                                         if (top && totlen >= MINCLSIZE) {
1371                                                 MCLGET(m, M_NOWAIT);
1372                                                 if ((m->m_flags & M_EXT) == 0) {
1373                                                         *mp = m;
1374                                                         m_freem(top);
1375                                                         safestats.st_nomcl++;
1376                                                         err = sc->sc_nqchip ?
1377                                                             ERESTART : ENOMEM;
1378                                                         goto errout;
1379                                                 }
1380                                                 len = MCLBYTES;
1381                                         }
1382                                         m->m_len = len = min(totlen, len);
1383                                         totlen -= len;
1384                                         *mp = m;
1385                                         mp = &m->m_next;
1386                                 }
1387                                 re->re_dst_m = top;
1388                                 if (bus_dmamap_create(sc->sc_dstdmat, 
1389                                     BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1390                                         safestats.st_nomap++;
1391                                         err = ENOMEM;
1392                                         goto errout;
1393                                 }
1394                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1395                                     re->re_dst_map, re->re_dst_m,
1396                                     safe_op_cb, &re->re_dst,
1397                                     BUS_DMA_NOWAIT) != 0) {
1398                                         bus_dmamap_destroy(sc->sc_dstdmat,
1399                                         re->re_dst_map);
1400                                         re->re_dst_map = NULL;
1401                                         safestats.st_noload++;
1402                                         err = ENOMEM;
1403                                         goto errout;
1404                                 }
1405                                 if (re->re_src.mapsize > oplen) {
1406                                         /*
1407                                          * There's data following what the
1408                                          * hardware will copy for us.  If this
1409                                          * isn't just the ICV (that's going to
1410                                          * be written on completion), copy it
1411                                          * to the new mbufs
1412                                          */
1413                                         if (!(maccrd &&
1414                                             (re->re_src.mapsize-oplen) == 12 &&
1415                                             maccrd->crd_inject == oplen))
1416                                                 safe_mcopy(re->re_src_m,
1417                                                            re->re_dst_m,
1418                                                            oplen);
1419                                         else
1420                                                 safestats.st_noicvcopy++;
1421                                 }
1422                         }
1423                 } else {
1424                         safestats.st_badflags++;
1425                         err = EINVAL;
1426                         goto errout;
1427                 }
1428
1429                 if (re->re_dst.nsegs > 1) {
1430                         re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1431                             ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1432                         for (i = 0; i < re->re_dst_nsegs; i++) {
1433                                 pd = sc->sc_dpfree;
1434                                 KASSERT((pd->pd_flags&3) == 0 ||
1435                                         (pd->pd_flags&3) == SAFE_PD_DONE,
1436                                         ("bogus dest particle descriptor; flags %x",
1437                                                 pd->pd_flags));
1438                                 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1439                                         sc->sc_dpfree = sc->sc_dpring;
1440                                 pd->pd_addr = re->re_dst_segs[i].ds_addr;
1441                                 pd->pd_flags = SAFE_PD_READY;
1442                         }
1443                         cmd0 |= SAFE_SA_CMD0_OSCATTER;
1444                 } else {
1445                         /*
1446                          * No need for scatter, reference the operand directly.
1447                          */
1448                         re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1449                 }
1450         }
1451
1452         /*
1453          * All done with setup; fillin the SA command words
1454          * and the packet engine descriptor.  The operation
1455          * is now ready for submission to the hardware.
1456          */
1457         sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1458         sa->sa_cmd1 = cmd1
1459                     | (coffset << SAFE_SA_CMD1_OFFSET_S)
1460                     | SAFE_SA_CMD1_SAREV1       /* Rev 1 SA data structure */
1461                     | SAFE_SA_CMD1_SRPCI
1462                     ;
1463         /*
1464          * NB: the order of writes is important here.  In case the
1465          * chip is scanning the ring because of an outstanding request
1466          * it might nab this one too.  In that case we need to make
1467          * sure the setup is complete before we write the length
1468          * field of the descriptor as it signals the descriptor is
1469          * ready for processing.
1470          */
1471         re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1472         if (maccrd)
1473                 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1474         re->re_desc.d_len = oplen
1475                           | SAFE_PE_LEN_READY
1476                           | (bypass << SAFE_PE_LEN_BYPASS_S)
1477                           ;
1478
1479         safestats.st_ipackets++;
1480         safestats.st_ibytes += oplen;
1481
1482         if (++(sc->sc_front) == sc->sc_ringtop)
1483                 sc->sc_front = sc->sc_ring;
1484
1485         /* XXX honor batching */
1486         safe_feed(sc, re);
1487         mtx_unlock(&sc->sc_ringmtx);
1488         return (0);
1489
1490 errout:
1491         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1492                 m_freem(re->re_dst_m);
1493
1494         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1495                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1496                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1497         }
1498         if (re->re_src_map != NULL) {
1499                 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1500                 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1501         }
1502         mtx_unlock(&sc->sc_ringmtx);
1503         if (err != ERESTART) {
1504                 crp->crp_etype = err;
1505                 crypto_done(crp);
1506         } else {
1507                 sc->sc_needwakeup |= CRYPTO_SYMQ;
1508         }
1509         return (err);
1510 }
1511
1512 static void
1513 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1514 {
1515         struct cryptop *crp = (struct cryptop *)re->re_crp;
1516         struct cryptodesc *crd;
1517
1518         safestats.st_opackets++;
1519         safestats.st_obytes += re->re_dst.mapsize;
1520
1521         safe_dma_sync(&sc->sc_ringalloc,
1522                 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1523         if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1524                 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1525                         re->re_desc.d_csr,
1526                         re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1527                 safestats.st_peoperr++;
1528                 crp->crp_etype = EIO;           /* something more meaningful? */
1529         }
1530         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1531                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1532                     BUS_DMASYNC_POSTREAD);
1533                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1534                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1535         }
1536         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1537         bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1538         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1539
1540         /* 
1541          * If result was written to a differet mbuf chain, swap
1542          * it in as the return value and reclaim the original.
1543          */
1544         if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1545                 m_freem(re->re_src_m);
1546                 crp->crp_buf = (caddr_t)re->re_dst_m;
1547         }
1548
1549         if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1550                 /* copy out IV for future use */
1551                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1552                         int ivsize;
1553
1554                         if (crd->crd_alg == CRYPTO_DES_CBC ||
1555                             crd->crd_alg == CRYPTO_3DES_CBC) {
1556                                 ivsize = 2*sizeof(u_int32_t);
1557                         } else if (crd->crd_alg == CRYPTO_AES_CBC) {
1558                                 ivsize = 4*sizeof(u_int32_t);
1559                         } else
1560                                 continue;
1561                         crypto_copydata(crp->crp_flags, crp->crp_buf,
1562                             crd->crd_skip + crd->crd_len - ivsize, ivsize,
1563                             (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1564                         break;
1565                 }
1566         }
1567
1568         if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1569                 /* copy out ICV result */
1570                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1571                         if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1572                             crd->crd_alg == CRYPTO_SHA1_HMAC ||
1573                             crd->crd_alg == CRYPTO_NULL_HMAC))
1574                                 continue;
1575                         if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1576                                 /*
1577                                  * SHA-1 ICV's are byte-swapped; fix 'em up
1578                                  * before copy them to their destination.
1579                                  */
1580                                 re->re_sastate.sa_saved_indigest[0] =
1581                                     bswap32(re->re_sastate.sa_saved_indigest[0]);
1582                                 re->re_sastate.sa_saved_indigest[1] =
1583                                     bswap32(re->re_sastate.sa_saved_indigest[1]);
1584                                 re->re_sastate.sa_saved_indigest[2] =
1585                                     bswap32(re->re_sastate.sa_saved_indigest[2]);
1586                         }
1587                         crypto_copyback(crp->crp_flags, crp->crp_buf,
1588                             crd->crd_inject,
1589                             sc->sc_sessions[re->re_sesn].ses_mlen,
1590                             (caddr_t)re->re_sastate.sa_saved_indigest);
1591                         break;
1592                 }
1593         }
1594         crypto_done(crp);
1595 }
1596
1597 /*
1598  * Copy all data past offset from srcm to dstm.
1599  */
1600 static void
1601 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1602 {
1603         u_int j, dlen, slen;
1604         caddr_t dptr, sptr;
1605
1606         /*
1607          * Advance src and dst to offset.
1608          */
1609         j = offset;
1610         while (j >= 0) {
1611                 if (srcm->m_len > j)
1612                         break;
1613                 j -= srcm->m_len;
1614                 srcm = srcm->m_next;
1615                 if (srcm == NULL)
1616                         return;
1617         }
1618         sptr = mtod(srcm, caddr_t) + j;
1619         slen = srcm->m_len - j;
1620
1621         j = offset;
1622         while (j >= 0) {
1623                 if (dstm->m_len > j)
1624                         break;
1625                 j -= dstm->m_len;
1626                 dstm = dstm->m_next;
1627                 if (dstm == NULL)
1628                         return;
1629         }
1630         dptr = mtod(dstm, caddr_t) + j;
1631         dlen = dstm->m_len - j;
1632
1633         /*
1634          * Copy everything that remains.
1635          */
1636         for (;;) {
1637                 j = min(slen, dlen);
1638                 bcopy(sptr, dptr, j);
1639                 if (slen == j) {
1640                         srcm = srcm->m_next;
1641                         if (srcm == NULL)
1642                                 return;
1643                         sptr = srcm->m_data;
1644                         slen = srcm->m_len;
1645                 } else
1646                         sptr += j, slen -= j;
1647                 if (dlen == j) {
1648                         dstm = dstm->m_next;
1649                         if (dstm == NULL)
1650                                 return;
1651                         dptr = dstm->m_data;
1652                         dlen = dstm->m_len;
1653                 } else
1654                         dptr += j, dlen -= j;
1655         }
1656 }
1657
1658 #ifndef SAFE_NO_RNG
1659 #define SAFE_RNG_MAXWAIT        1000
1660
1661 static void
1662 safe_rng_init(struct safe_softc *sc)
1663 {
1664         u_int32_t w, v;
1665         int i;
1666
1667         WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1668         /* use default value according to the manual */
1669         WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);    /* magic from SafeNet */
1670         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1671
1672         /*
1673          * There is a bug in rev 1.0 of the 1140 that when the RNG
1674          * is brought out of reset the ready status flag does not
1675          * work until the RNG has finished its internal initialization.
1676          *
1677          * So in order to determine the device is through its
1678          * initialization we must read the data register, using the
1679          * status reg in the read in case it is initialized.  Then read
1680          * the data register until it changes from the first read.
1681          * Once it changes read the data register until it changes
1682          * again.  At this time the RNG is considered initialized. 
1683          * This could take between 750ms - 1000ms in time.
1684          */
1685         i = 0;
1686         w = READ_REG(sc, SAFE_RNG_OUT);
1687         do {
1688                 v = READ_REG(sc, SAFE_RNG_OUT);
1689                 if (v != w) {
1690                         w = v;
1691                         break;
1692                 }
1693                 DELAY(10);
1694         } while (++i < SAFE_RNG_MAXWAIT);
1695
1696         /* Wait Until data changes again */
1697         i = 0;
1698         do {
1699                 v = READ_REG(sc, SAFE_RNG_OUT);
1700                 if (v != w)
1701                         break;
1702                 DELAY(10);
1703         } while (++i < SAFE_RNG_MAXWAIT);
1704 }
1705
1706 static __inline void
1707 safe_rng_disable_short_cycle(struct safe_softc *sc)
1708 {
1709         WRITE_REG(sc, SAFE_RNG_CTRL,
1710                 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1711 }
1712
1713 static __inline void
1714 safe_rng_enable_short_cycle(struct safe_softc *sc)
1715 {
1716         WRITE_REG(sc, SAFE_RNG_CTRL, 
1717                 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1718 }
1719
1720 static __inline u_int32_t
1721 safe_rng_read(struct safe_softc *sc)
1722 {
1723         int i;
1724
1725         i = 0;
1726         while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1727                 ;
1728         return READ_REG(sc, SAFE_RNG_OUT);
1729 }
1730
1731 static void
1732 safe_rng(void *arg)
1733 {
1734         struct safe_softc *sc = arg;
1735         u_int32_t buf[SAFE_RNG_MAXBUFSIZ];      /* NB: maybe move to softc */
1736         u_int maxwords;
1737         int i;
1738
1739         safestats.st_rng++;
1740         /*
1741          * Fetch the next block of data.
1742          */
1743         maxwords = safe_rngbufsize;
1744         if (maxwords > SAFE_RNG_MAXBUFSIZ)
1745                 maxwords = SAFE_RNG_MAXBUFSIZ;
1746 retry:
1747         for (i = 0; i < maxwords; i++)
1748                 buf[i] = safe_rng_read(sc);
1749         /*
1750          * Check the comparator alarm count and reset the h/w if
1751          * it exceeds our threshold.  This guards against the
1752          * hardware oscillators resonating with external signals.
1753          */
1754         if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1755                 u_int32_t freq_inc, w;
1756
1757                 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1758                         READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1759                 safestats.st_rngalarm++;
1760                 safe_rng_enable_short_cycle(sc);
1761                 freq_inc = 18;
1762                 for (i = 0; i < 64; i++) {
1763                         w = READ_REG(sc, SAFE_RNG_CNFG);
1764                         freq_inc = ((w + freq_inc) & 0x3fL);
1765                         w = ((w & ~0x3fL) | freq_inc);
1766                         WRITE_REG(sc, SAFE_RNG_CNFG, w);
1767
1768                         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769
1770                         (void) safe_rng_read(sc);
1771                         DELAY(25);
1772
1773                         if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1774                                 safe_rng_disable_short_cycle(sc);
1775                                 goto retry;
1776                         }
1777                         freq_inc = 1;
1778                 }
1779                 safe_rng_disable_short_cycle(sc);
1780         } else
1781                 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1782
1783         (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1784         callout_reset(&sc->sc_rngto,
1785                 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1786 }
1787 #endif /* SAFE_NO_RNG */
1788
1789 static void
1790 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1791 {
1792         bus_addr_t *paddr = (bus_addr_t*) arg;
1793         *paddr = segs->ds_addr;
1794 }
1795
1796 static int
1797 safe_dma_malloc(
1798         struct safe_softc *sc,
1799         bus_size_t size,
1800         struct safe_dma_alloc *dma,
1801         int mapflags
1802 )
1803 {
1804         int r;
1805
1806         r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),     /* parent */
1807                                sizeof(u_int32_t), 0,    /* alignment, bounds */
1808                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1809                                BUS_SPACE_MAXADDR,       /* highaddr */
1810                                NULL, NULL,              /* filter, filterarg */
1811                                size,                    /* maxsize */
1812                                1,                       /* nsegments */
1813                                size,                    /* maxsegsize */
1814                                BUS_DMA_ALLOCNOW,        /* flags */
1815                                NULL, NULL,              /* locking */
1816                                &dma->dma_tag);
1817         if (r != 0) {
1818                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1819                         "bus_dma_tag_create failed; error %u\n", r);
1820                 goto fail_0;
1821         }
1822
1823         r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1824         if (r != 0) {
1825                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1826                         "bus_dmamap_create failed; error %u\n", r);
1827                 goto fail_1;
1828         }
1829
1830         r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1831                              BUS_DMA_NOWAIT, &dma->dma_map);
1832         if (r != 0) {
1833                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1834                         "bus_dmammem_alloc failed; size %zu, error %u\n",
1835                         size, r);
1836                 goto fail_2;
1837         }
1838
1839         r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1840                             size,
1841                             safe_dmamap_cb,
1842                             &dma->dma_paddr,
1843                             mapflags | BUS_DMA_NOWAIT);
1844         if (r != 0) {
1845                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1846                         "bus_dmamap_load failed; error %u\n", r);
1847                 goto fail_3;
1848         }
1849
1850         dma->dma_size = size;
1851         return (0);
1852
1853 fail_3:
1854         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1855 fail_2:
1856         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1857 fail_1:
1858         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1859         bus_dma_tag_destroy(dma->dma_tag);
1860 fail_0:
1861         dma->dma_map = NULL;
1862         dma->dma_tag = NULL;
1863         return (r);
1864 }
1865
1866 static void
1867 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1868 {
1869         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1870         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1871         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1872         bus_dma_tag_destroy(dma->dma_tag);
1873 }
1874
1875 /*
1876  * Resets the board.  Values in the regesters are left as is
1877  * from the reset (i.e. initial values are assigned elsewhere).
1878  */
1879 static void
1880 safe_reset_board(struct safe_softc *sc)
1881 {
1882         u_int32_t v;
1883         /*
1884          * Reset the device.  The manual says no delay
1885          * is needed between marking and clearing reset.
1886          */
1887         v = READ_REG(sc, SAFE_PE_DMACFG) &~
1888                 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1889                  SAFE_PE_DMACFG_SGRESET);
1890         WRITE_REG(sc, SAFE_PE_DMACFG, v
1891                                     | SAFE_PE_DMACFG_PERESET
1892                                     | SAFE_PE_DMACFG_PDRRESET
1893                                     | SAFE_PE_DMACFG_SGRESET);
1894         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1895 }
1896
1897 /*
1898  * Initialize registers we need to touch only once.
1899  */
1900 static void
1901 safe_init_board(struct safe_softc *sc)
1902 {
1903         u_int32_t v, dwords;
1904
1905         v = READ_REG(sc, SAFE_PE_DMACFG);
1906         v &=~ SAFE_PE_DMACFG_PEMODE;
1907         v |= SAFE_PE_DMACFG_FSENA               /* failsafe enable */
1908           |  SAFE_PE_DMACFG_GPRPCI              /* gather ring on PCI */
1909           |  SAFE_PE_DMACFG_SPRPCI              /* scatter ring on PCI */
1910           |  SAFE_PE_DMACFG_ESDESC              /* endian-swap descriptors */
1911           |  SAFE_PE_DMACFG_ESSA                /* endian-swap SA's */
1912           |  SAFE_PE_DMACFG_ESPDESC             /* endian-swap part. desc's */
1913           ;
1914         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1915 #if 0
1916         /* XXX select byte swap based on host byte order */
1917         WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1918 #endif
1919         if (sc->sc_chiprev == SAFE_REV(1,0)) {
1920                 /*
1921                  * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1922                  * "target mode transfers" done while the chip is DMA'ing
1923                  * >1020 bytes cause the hardware to lockup.  To avoid this
1924                  * we reduce the max PCI transfer size and use small source
1925                  * particle descriptors (<= 256 bytes).
1926                  */
1927                 WRITE_REG(sc, SAFE_DMA_CFG, 256);
1928                 device_printf(sc->sc_dev,
1929                         "Reduce max DMA size to %u words for rev %u.%u WAR\n",
1930                         (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1931                         SAFE_REV_MAJ(sc->sc_chiprev),
1932                         SAFE_REV_MIN(sc->sc_chiprev));
1933         }
1934
1935         /* NB: operands+results are overlaid */
1936         WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1937         WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1938         /*
1939          * Configure ring entry size and number of items in the ring.
1940          */
1941         KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1942                 ("PE ring entry not 32-bit aligned!"));
1943         dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1944         WRITE_REG(sc, SAFE_PE_RINGCFG,
1945                 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1946         WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);     /* disable polling */
1947
1948         WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1949         WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1950         WRITE_REG(sc, SAFE_PE_PARTSIZE,
1951                 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1952         /*
1953          * NB: destination particles are fixed size.  We use
1954          *     an mbuf cluster and require all results go to
1955          *     clusters or smaller.
1956          */
1957         WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1958
1959         /* it's now safe to enable PE mode, do it */
1960         WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1961
1962         /*
1963          * Configure hardware to use level-triggered interrupts and
1964          * to interrupt after each descriptor is processed.
1965          */
1966         WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1967         WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1968         WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1969 }
1970
1971 /*
1972  * Init PCI registers
1973  */
1974 static void
1975 safe_init_pciregs(device_t dev)
1976 {
1977 }
1978
1979 /*
1980  * Clean up after a chip crash.
1981  * It is assumed that the caller in splimp()
1982  */
1983 static void
1984 safe_cleanchip(struct safe_softc *sc)
1985 {
1986
1987         if (sc->sc_nqchip != 0) {
1988                 struct safe_ringentry *re = sc->sc_back;
1989
1990                 while (re != sc->sc_front) {
1991                         if (re->re_desc.d_csr != 0)
1992                                 safe_free_entry(sc, re);
1993                         if (++re == sc->sc_ringtop)
1994                                 re = sc->sc_ring;
1995                 }
1996                 sc->sc_back = re;
1997                 sc->sc_nqchip = 0;
1998         }
1999 }
2000
2001 /*
2002  * free a safe_q
2003  * It is assumed that the caller is within splimp().
2004  */
2005 static int
2006 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2007 {
2008         struct cryptop *crp;
2009
2010         /*
2011          * Free header MCR
2012          */
2013         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2014                 m_freem(re->re_dst_m);
2015
2016         crp = (struct cryptop *)re->re_crp;
2017         
2018         re->re_desc.d_csr = 0;
2019         
2020         crp->crp_etype = EFAULT;
2021         crypto_done(crp);
2022         return(0);
2023 }
2024
2025 /*
2026  * Routine to reset the chip and clean up.
2027  * It is assumed that the caller is in splimp()
2028  */
2029 static void
2030 safe_totalreset(struct safe_softc *sc)
2031 {
2032         safe_reset_board(sc);
2033         safe_init_board(sc);
2034         safe_cleanchip(sc);
2035 }
2036
2037 /*
2038  * Is the operand suitable aligned for direct DMA.  Each
2039  * segment must be aligned on a 32-bit boundary and all
2040  * but the last segment must be a multiple of 4 bytes.
2041  */
2042 static int
2043 safe_dmamap_aligned(const struct safe_operand *op)
2044 {
2045         int i;
2046
2047         for (i = 0; i < op->nsegs; i++) {
2048                 if (op->segs[i].ds_addr & 3)
2049                         return (0);
2050                 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2051                         return (0);
2052         }
2053         return (1);
2054 }
2055
2056 /*
2057  * Is the operand suitable for direct DMA as the destination
2058  * of an operation.  The hardware requires that each ``particle''
2059  * but the last in an operation result have the same size.  We
2060  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2061  * 0 if some segment is not a multiple of of this size, 1 if all
2062  * segments are exactly this size, or 2 if segments are at worst
2063  * a multple of this size.
2064  */
2065 static int
2066 safe_dmamap_uniform(const struct safe_operand *op)
2067 {
2068         int result = 1;
2069
2070         if (op->nsegs > 0) {
2071                 int i;
2072
2073                 for (i = 0; i < op->nsegs-1; i++) {
2074                         if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2075                                 return (0);
2076                         if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2077                                 result = 2;
2078                 }
2079         }
2080         return (result);
2081 }
2082
2083 #ifdef SAFE_DEBUG
2084 static void
2085 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2086 {
2087         printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2088                 , tag
2089                 , READ_REG(sc, SAFE_DMA_ENDIAN)
2090                 , READ_REG(sc, SAFE_DMA_SRCADDR)
2091                 , READ_REG(sc, SAFE_DMA_DSTADDR)
2092                 , READ_REG(sc, SAFE_DMA_STAT)
2093         );
2094 }
2095
2096 static void
2097 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2098 {
2099         printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2100                 , tag
2101                 , READ_REG(sc, SAFE_HI_CFG)
2102                 , READ_REG(sc, SAFE_HI_MASK)
2103                 , READ_REG(sc, SAFE_HI_DESC_CNT)
2104                 , READ_REG(sc, SAFE_HU_STAT)
2105                 , READ_REG(sc, SAFE_HM_STAT)
2106         );
2107 }
2108
2109 static void
2110 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2111 {
2112         u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2113
2114         /* NB: assume caller has lock on ring */
2115         printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2116                 tag,
2117                 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2118                 (unsigned long)(sc->sc_back - sc->sc_ring),
2119                 (unsigned long)(sc->sc_front - sc->sc_ring));
2120 }
2121
2122 static void
2123 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2124 {
2125         int ix, nsegs;
2126
2127         ix = re - sc->sc_ring;
2128         printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2129                 , tag
2130                 , re, ix
2131                 , re->re_desc.d_csr
2132                 , re->re_desc.d_src
2133                 , re->re_desc.d_dst
2134                 , re->re_desc.d_sa
2135                 , re->re_desc.d_len
2136         );
2137         if (re->re_src.nsegs > 1) {
2138                 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2139                         sizeof(struct safe_pdesc);
2140                 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2141                         printf(" spd[%u] %p: %p size %u flags %x"
2142                                 , ix, &sc->sc_spring[ix]
2143                                 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2144                                 , sc->sc_spring[ix].pd_size
2145                                 , sc->sc_spring[ix].pd_flags
2146                         );
2147                         if (sc->sc_spring[ix].pd_size == 0)
2148                                 printf(" (zero!)");
2149                         printf("\n");
2150                         if (++ix == SAFE_TOTAL_SPART)
2151                                 ix = 0;
2152                 }
2153         }
2154         if (re->re_dst.nsegs > 1) {
2155                 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2156                         sizeof(struct safe_pdesc);
2157                 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2158                         printf(" dpd[%u] %p: %p flags %x\n"
2159                                 , ix, &sc->sc_dpring[ix]
2160                                 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2161                                 , sc->sc_dpring[ix].pd_flags
2162                         );
2163                         if (++ix == SAFE_TOTAL_DPART)
2164                                 ix = 0;
2165                 }
2166         }
2167         printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2168                 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2169         printf("sa: key %x %x %x %x %x %x %x %x\n"
2170                 , re->re_sa.sa_key[0]
2171                 , re->re_sa.sa_key[1]
2172                 , re->re_sa.sa_key[2]
2173                 , re->re_sa.sa_key[3]
2174                 , re->re_sa.sa_key[4]
2175                 , re->re_sa.sa_key[5]
2176                 , re->re_sa.sa_key[6]
2177                 , re->re_sa.sa_key[7]
2178         );
2179         printf("sa: indigest %x %x %x %x %x\n"
2180                 , re->re_sa.sa_indigest[0]
2181                 , re->re_sa.sa_indigest[1]
2182                 , re->re_sa.sa_indigest[2]
2183                 , re->re_sa.sa_indigest[3]
2184                 , re->re_sa.sa_indigest[4]
2185         );
2186         printf("sa: outdigest %x %x %x %x %x\n"
2187                 , re->re_sa.sa_outdigest[0]
2188                 , re->re_sa.sa_outdigest[1]
2189                 , re->re_sa.sa_outdigest[2]
2190                 , re->re_sa.sa_outdigest[3]
2191                 , re->re_sa.sa_outdigest[4]
2192         );
2193         printf("sr: iv %x %x %x %x\n"
2194                 , re->re_sastate.sa_saved_iv[0]
2195                 , re->re_sastate.sa_saved_iv[1]
2196                 , re->re_sastate.sa_saved_iv[2]
2197                 , re->re_sastate.sa_saved_iv[3]
2198         );
2199         printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2200                 , re->re_sastate.sa_saved_hashbc
2201                 , re->re_sastate.sa_saved_indigest[0]
2202                 , re->re_sastate.sa_saved_indigest[1]
2203                 , re->re_sastate.sa_saved_indigest[2]
2204                 , re->re_sastate.sa_saved_indigest[3]
2205                 , re->re_sastate.sa_saved_indigest[4]
2206         );
2207 }
2208
2209 static void
2210 safe_dump_ring(struct safe_softc *sc, const char *tag)
2211 {
2212         mtx_lock(&sc->sc_ringmtx);
2213         printf("\nSafeNet Ring State:\n");
2214         safe_dump_intrstate(sc, tag);
2215         safe_dump_dmastatus(sc, tag);
2216         safe_dump_ringstate(sc, tag);
2217         if (sc->sc_nqchip) {
2218                 struct safe_ringentry *re = sc->sc_back;
2219                 do {
2220                         safe_dump_request(sc, tag, re);
2221                         if (++re == sc->sc_ringtop)
2222                                 re = sc->sc_ring;
2223                 } while (re != sc->sc_front);
2224         }
2225         mtx_unlock(&sc->sc_ringmtx);
2226 }
2227
2228 static int
2229 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2230 {
2231         char dmode[64];
2232         int error;
2233
2234         strncpy(dmode, "", sizeof(dmode) - 1);
2235         dmode[sizeof(dmode) - 1] = '\0';
2236         error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2237
2238         if (error == 0 && req->newptr != NULL) {
2239                 struct safe_softc *sc = safec;
2240
2241                 if (!sc)
2242                         return EINVAL;
2243                 if (strncmp(dmode, "dma", 3) == 0)
2244                         safe_dump_dmastatus(sc, "safe0");
2245                 else if (strncmp(dmode, "int", 3) == 0)
2246                         safe_dump_intrstate(sc, "safe0");
2247                 else if (strncmp(dmode, "ring", 4) == 0)
2248                         safe_dump_ring(sc, "safe0");
2249                 else
2250                         return EINVAL;
2251         }
2252         return error;
2253 }
2254 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2255         0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2256 #endif /* SAFE_DEBUG */