]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/safe/safe.c
Merge r254306:
[FreeBSD/releng/9.2.git] / sys / dev / safe / safe.c
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63
64 #include "cryptodev_if.h"
65
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74
75 #ifndef bswap32
76 #define bswap32 NTOHL
77 #endif
78
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static  int safe_probe(device_t);
83 static  int safe_attach(device_t);
84 static  int safe_detach(device_t);
85 static  int safe_suspend(device_t);
86 static  int safe_resume(device_t);
87 static  int safe_shutdown(device_t);
88
89 static  int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static  int safe_freesession(device_t, u_int64_t);
91 static  int safe_process(device_t, struct cryptop *, int);
92
93 static device_method_t safe_methods[] = {
94         /* Device interface */
95         DEVMETHOD(device_probe,         safe_probe),
96         DEVMETHOD(device_attach,        safe_attach),
97         DEVMETHOD(device_detach,        safe_detach),
98         DEVMETHOD(device_suspend,       safe_suspend),
99         DEVMETHOD(device_resume,        safe_resume),
100         DEVMETHOD(device_shutdown,      safe_shutdown),
101
102         /* crypto device methods */
103         DEVMETHOD(cryptodev_newsession, safe_newsession),
104         DEVMETHOD(cryptodev_freesession,safe_freesession),
105         DEVMETHOD(cryptodev_process,    safe_process),
106
107         DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110         "safe",
111         safe_methods,
112         sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121
122 static  void safe_intr(void *);
123 static  void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static  void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static  void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static  void safe_rng_init(struct safe_softc *);
128 static  void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static  int safe_dma_malloc(struct safe_softc *, bus_size_t,
131                 struct safe_dma_alloc *, int);
132 #define safe_dma_sync(_dma, _flags) \
133         bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static  void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static  int safe_dmamap_aligned(const struct safe_operand *);
136 static  int safe_dmamap_uniform(const struct safe_operand *);
137
138 static  void safe_reset_board(struct safe_softc *);
139 static  void safe_init_board(struct safe_softc *);
140 static  void safe_init_pciregs(device_t dev);
141 static  void safe_cleanchip(struct safe_softc *);
142 static  void safe_totalreset(struct safe_softc *);
143
144 static  int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147     "SafeNet driver parameters");
148
149 #ifdef SAFE_DEBUG
150 static  void safe_dump_dmastatus(struct safe_softc *, const char *);
151 static  void safe_dump_ringstate(struct safe_softc *, const char *);
152 static  void safe_dump_intrstate(struct safe_softc *, const char *);
153 static  void safe_dump_request(struct safe_softc *, const char *,
154                 struct safe_ringentry *);
155
156 static  struct safe_softc *safec;               /* for use by hw.safe.dump */
157
158 static  int safe_debug = 0;
159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160             0, "control debugging msgs");
161 #define DPRINTF(_x)     if (safe_debug) printf _x
162 #else
163 #define DPRINTF(_x)
164 #endif
165
166 #define READ_REG(sc,r) \
167         bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168
169 #define WRITE_REG(sc,reg,val) \
170         bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171
172 struct safe_stats safestats;
173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174             safe_stats, "driver statistics");
175 #ifndef SAFE_NO_RNG
176 static  int safe_rnginterval = 1;               /* poll once a second */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178             0, "RNG polling interval (secs)");
179 static  int safe_rngbufsize = 16;               /* 64 bytes each poll  */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181             0, "RNG polling buffer size (32-bit words)");
182 static  int safe_rngmaxalarm = 8;               /* max alarms before reset */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184             0, "RNG max alarms before reset");
185 #endif /* SAFE_NO_RNG */
186
187 static int
188 safe_probe(device_t dev)
189 {
190         if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191             pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192                 return (BUS_PROBE_DEFAULT);
193         return (ENXIO);
194 }
195
196 static const char*
197 safe_partname(struct safe_softc *sc)
198 {
199         /* XXX sprintf numbers when not decoded */
200         switch (pci_get_vendor(sc->sc_dev)) {
201         case PCI_VENDOR_SAFENET:
202                 switch (pci_get_device(sc->sc_dev)) {
203                 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204                 }
205                 return "SafeNet unknown-part";
206         }
207         return "Unknown-vendor unknown-part";
208 }
209
210 #ifndef SAFE_NO_RNG
211 static void
212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213 {
214         random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
215 }
216 #endif /* SAFE_NO_RNG */
217
218 static int
219 safe_attach(device_t dev)
220 {
221         struct safe_softc *sc = device_get_softc(dev);
222         u_int32_t raddr;
223         u_int32_t i, devinfo;
224         int rid;
225
226         bzero(sc, sizeof (*sc));
227         sc->sc_dev = dev;
228
229         /* XXX handle power management */
230
231         pci_enable_busmaster(dev);
232
233         /* 
234          * Setup memory-mapping of PCI registers.
235          */
236         rid = BS_BAR;
237         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
238                                            RF_ACTIVE);
239         if (sc->sc_sr == NULL) {
240                 device_printf(dev, "cannot map register space\n");
241                 goto bad;
242         }
243         sc->sc_st = rman_get_bustag(sc->sc_sr);
244         sc->sc_sh = rman_get_bushandle(sc->sc_sr);
245
246         /*
247          * Arrange interrupt line.
248          */
249         rid = 0;
250         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
251                                             RF_SHAREABLE|RF_ACTIVE);
252         if (sc->sc_irq == NULL) {
253                 device_printf(dev, "could not map interrupt\n");
254                 goto bad1;
255         }
256         /*
257          * NB: Network code assumes we are blocked with splimp()
258          *     so make sure the IRQ is mapped appropriately.
259          */
260         if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
261                            NULL, safe_intr, sc, &sc->sc_ih)) {
262                 device_printf(dev, "could not establish interrupt\n");
263                 goto bad2;
264         }
265
266         sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
267         if (sc->sc_cid < 0) {
268                 device_printf(dev, "could not get crypto driver id\n");
269                 goto bad3;
270         }
271
272         sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
273                 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
274
275         /*
276          * Setup DMA descriptor area.
277          */
278         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
279                                1,                       /* alignment */
280                                SAFE_DMA_BOUNDARY,       /* boundary */
281                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
282                                BUS_SPACE_MAXADDR,       /* highaddr */
283                                NULL, NULL,              /* filter, filterarg */
284                                SAFE_MAX_DMA,            /* maxsize */
285                                SAFE_MAX_PART,           /* nsegments */
286                                SAFE_MAX_SSIZE,          /* maxsegsize */
287                                BUS_DMA_ALLOCNOW,        /* flags */
288                                NULL, NULL,              /* locking */
289                                &sc->sc_srcdmat)) {
290                 device_printf(dev, "cannot allocate DMA tag\n");
291                 goto bad4;
292         }
293         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
294                                1,                       /* alignment */
295                                SAFE_MAX_DSIZE,          /* boundary */
296                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
297                                BUS_SPACE_MAXADDR,       /* highaddr */
298                                NULL, NULL,              /* filter, filterarg */
299                                SAFE_MAX_DMA,            /* maxsize */
300                                SAFE_MAX_PART,           /* nsegments */
301                                SAFE_MAX_DSIZE,          /* maxsegsize */
302                                BUS_DMA_ALLOCNOW,        /* flags */
303                                NULL, NULL,              /* locking */
304                                &sc->sc_dstdmat)) {
305                 device_printf(dev, "cannot allocate DMA tag\n");
306                 goto bad4;
307         }
308
309         /*
310          * Allocate packet engine descriptors.
311          */
312         if (safe_dma_malloc(sc,
313             SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
314             &sc->sc_ringalloc, 0)) {
315                 device_printf(dev, "cannot allocate PE descriptor ring\n");
316                 bus_dma_tag_destroy(sc->sc_srcdmat);
317                 goto bad4;
318         }
319         /*
320          * Hookup the static portion of all our data structures.
321          */
322         sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
323         sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
324         sc->sc_front = sc->sc_ring;
325         sc->sc_back = sc->sc_ring;
326         raddr = sc->sc_ringalloc.dma_paddr;
327         bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
328         for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
329                 struct safe_ringentry *re = &sc->sc_ring[i];
330
331                 re->re_desc.d_sa = raddr +
332                         offsetof(struct safe_ringentry, re_sa);
333                 re->re_sa.sa_staterec = raddr +
334                         offsetof(struct safe_ringentry, re_sastate);
335
336                 raddr += sizeof (struct safe_ringentry);
337         }
338         mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
339                 "packet engine ring", MTX_DEF);
340
341         /*
342          * Allocate scatter and gather particle descriptors.
343          */
344         if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
345             &sc->sc_spalloc, 0)) {
346                 device_printf(dev, "cannot allocate source particle "
347                         "descriptor ring\n");
348                 mtx_destroy(&sc->sc_ringmtx);
349                 safe_dma_free(sc, &sc->sc_ringalloc);
350                 bus_dma_tag_destroy(sc->sc_srcdmat);
351                 goto bad4;
352         }
353         sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
354         sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
355         sc->sc_spfree = sc->sc_spring;
356         bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
357
358         if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
359             &sc->sc_dpalloc, 0)) {
360                 device_printf(dev, "cannot allocate destination particle "
361                         "descriptor ring\n");
362                 mtx_destroy(&sc->sc_ringmtx);
363                 safe_dma_free(sc, &sc->sc_spalloc);
364                 safe_dma_free(sc, &sc->sc_ringalloc);
365                 bus_dma_tag_destroy(sc->sc_dstdmat);
366                 goto bad4;
367         }
368         sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
369         sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
370         sc->sc_dpfree = sc->sc_dpring;
371         bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
372
373         device_printf(sc->sc_dev, "%s", safe_partname(sc));
374
375         devinfo = READ_REG(sc, SAFE_DEVINFO);
376         if (devinfo & SAFE_DEVINFO_RNG) {
377                 sc->sc_flags |= SAFE_FLAGS_RNG;
378                 printf(" rng");
379         }
380         if (devinfo & SAFE_DEVINFO_PKEY) {
381 #if 0
382                 printf(" key");
383                 sc->sc_flags |= SAFE_FLAGS_KEY;
384                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
385                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
386 #endif
387         }
388         if (devinfo & SAFE_DEVINFO_DES) {
389                 printf(" des/3des");
390                 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
391                 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
392         }
393         if (devinfo & SAFE_DEVINFO_AES) {
394                 printf(" aes");
395                 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
396         }
397         if (devinfo & SAFE_DEVINFO_MD5) {
398                 printf(" md5");
399                 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
400         }
401         if (devinfo & SAFE_DEVINFO_SHA1) {
402                 printf(" sha1");
403                 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
404         }
405         printf(" null");
406         crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
407         crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
408         /* XXX other supported algorithms */
409         printf("\n");
410
411         safe_reset_board(sc);           /* reset h/w */
412         safe_init_pciregs(dev);         /* init pci settings */
413         safe_init_board(sc);            /* init h/w */
414
415 #ifndef SAFE_NO_RNG
416         if (sc->sc_flags & SAFE_FLAGS_RNG) {
417 #ifdef SAFE_RNDTEST
418                 sc->sc_rndtest = rndtest_attach(dev);
419                 if (sc->sc_rndtest)
420                         sc->sc_harvest = rndtest_harvest;
421                 else
422                         sc->sc_harvest = default_harvest;
423 #else
424                 sc->sc_harvest = default_harvest;
425 #endif
426                 safe_rng_init(sc);
427
428                 callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
429                 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
430         }
431 #endif /* SAFE_NO_RNG */
432 #ifdef SAFE_DEBUG
433         safec = sc;                     /* for use by hw.safe.dump */
434 #endif
435         return (0);
436 bad4:
437         crypto_unregister_all(sc->sc_cid);
438 bad3:
439         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
440 bad2:
441         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
442 bad1:
443         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
444 bad:
445         return (ENXIO);
446 }
447
448 /*
449  * Detach a device that successfully probed.
450  */
451 static int
452 safe_detach(device_t dev)
453 {
454         struct safe_softc *sc = device_get_softc(dev);
455
456         /* XXX wait/abort active ops */
457
458         WRITE_REG(sc, SAFE_HI_MASK, 0);         /* disable interrupts */
459
460         callout_stop(&sc->sc_rngto);
461
462         crypto_unregister_all(sc->sc_cid);
463
464 #ifdef SAFE_RNDTEST
465         if (sc->sc_rndtest)
466                 rndtest_detach(sc->sc_rndtest);
467 #endif
468
469         safe_cleanchip(sc);
470         safe_dma_free(sc, &sc->sc_dpalloc);
471         safe_dma_free(sc, &sc->sc_spalloc);
472         mtx_destroy(&sc->sc_ringmtx);
473         safe_dma_free(sc, &sc->sc_ringalloc);
474
475         bus_generic_detach(dev);
476         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
477         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
478
479         bus_dma_tag_destroy(sc->sc_srcdmat);
480         bus_dma_tag_destroy(sc->sc_dstdmat);
481         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
482
483         return (0);
484 }
485
486 /*
487  * Stop all chip i/o so that the kernel's probe routines don't
488  * get confused by errant DMAs when rebooting.
489  */
490 static int
491 safe_shutdown(device_t dev)
492 {
493 #ifdef notyet
494         safe_stop(device_get_softc(dev));
495 #endif
496         return (0);
497 }
498
499 /*
500  * Device suspend routine.
501  */
502 static int
503 safe_suspend(device_t dev)
504 {
505         struct safe_softc *sc = device_get_softc(dev);
506
507 #ifdef notyet
508         /* XXX stop the device and save PCI settings */
509 #endif
510         sc->sc_suspended = 1;
511
512         return (0);
513 }
514
515 static int
516 safe_resume(device_t dev)
517 {
518         struct safe_softc *sc = device_get_softc(dev);
519
520 #ifdef notyet
521         /* XXX retore PCI settings and start the device */
522 #endif
523         sc->sc_suspended = 0;
524         return (0);
525 }
526
527 /*
528  * SafeXcel Interrupt routine
529  */
530 static void
531 safe_intr(void *arg)
532 {
533         struct safe_softc *sc = arg;
534         volatile u_int32_t stat;
535
536         stat = READ_REG(sc, SAFE_HM_STAT);
537         if (stat == 0)                  /* shared irq, not for us */
538                 return;
539
540         WRITE_REG(sc, SAFE_HI_CLR, stat);       /* IACK */
541
542         if ((stat & SAFE_INT_PE_DDONE)) {
543                 /*
544                  * Descriptor(s) done; scan the ring and
545                  * process completed operations.
546                  */
547                 mtx_lock(&sc->sc_ringmtx);
548                 while (sc->sc_back != sc->sc_front) {
549                         struct safe_ringentry *re = sc->sc_back;
550 #ifdef SAFE_DEBUG
551                         if (safe_debug) {
552                                 safe_dump_ringstate(sc, __func__);
553                                 safe_dump_request(sc, __func__, re);
554                         }
555 #endif
556                         /*
557                          * safe_process marks ring entries that were allocated
558                          * but not used with a csr of zero.  This insures the
559                          * ring front pointer never needs to be set backwards
560                          * in the event that an entry is allocated but not used
561                          * because of a setup error.
562                          */
563                         if (re->re_desc.d_csr != 0) {
564                                 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
565                                         break;
566                                 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
567                                         break;
568                                 sc->sc_nqchip--;
569                                 safe_callback(sc, re);
570                         }
571                         if (++(sc->sc_back) == sc->sc_ringtop)
572                                 sc->sc_back = sc->sc_ring;
573                 }
574                 mtx_unlock(&sc->sc_ringmtx);
575         }
576
577         /*
578          * Check to see if we got any DMA Error
579          */
580         if (stat & SAFE_INT_PE_ERROR) {
581                 DPRINTF(("dmaerr dmastat %08x\n",
582                         READ_REG(sc, SAFE_PE_DMASTAT)));
583                 safestats.st_dmaerr++;
584                 safe_totalreset(sc);
585 #if 0
586                 safe_feed(sc);
587 #endif
588         }
589
590         if (sc->sc_needwakeup) {                /* XXX check high watermark */
591                 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
592                 DPRINTF(("%s: wakeup crypto %x\n", __func__,
593                         sc->sc_needwakeup));
594                 sc->sc_needwakeup &= ~wakeup;
595                 crypto_unblock(sc->sc_cid, wakeup);
596         }
597 }
598
599 /*
600  * safe_feed() - post a request to chip
601  */
602 static void
603 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
604 {
605         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
606         if (re->re_dst_map != NULL)
607                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
608                         BUS_DMASYNC_PREREAD);
609         /* XXX have no smaller granularity */
610         safe_dma_sync(&sc->sc_ringalloc,
611                 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
612         safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
613         safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
614
615 #ifdef SAFE_DEBUG
616         if (safe_debug) {
617                 safe_dump_ringstate(sc, __func__);
618                 safe_dump_request(sc, __func__, re);
619         }
620 #endif
621         sc->sc_nqchip++;
622         if (sc->sc_nqchip > safestats.st_maxqchip)
623                 safestats.st_maxqchip = sc->sc_nqchip;
624         /* poke h/w to check descriptor ring, any value can be written */
625         WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
626 }
627
628 #define N(a)    (sizeof(a) / sizeof (a[0]))
629 static void
630 safe_setup_enckey(struct safe_session *ses, caddr_t key)
631 {
632         int i;
633
634         bcopy(key, ses->ses_key, ses->ses_klen / 8);
635
636         /* PE is little-endian, insure proper byte order */
637         for (i = 0; i < N(ses->ses_key); i++)
638                 ses->ses_key[i] = htole32(ses->ses_key[i]);
639 }
640
641 static void
642 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
643 {
644         MD5_CTX md5ctx;
645         SHA1_CTX sha1ctx;
646         int i;
647
648
649         for (i = 0; i < klen; i++)
650                 key[i] ^= HMAC_IPAD_VAL;
651
652         if (algo == CRYPTO_MD5_HMAC) {
653                 MD5Init(&md5ctx);
654                 MD5Update(&md5ctx, key, klen);
655                 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
656                 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
657         } else {
658                 SHA1Init(&sha1ctx);
659                 SHA1Update(&sha1ctx, key, klen);
660                 SHA1Update(&sha1ctx, hmac_ipad_buffer,
661                     SHA1_HMAC_BLOCK_LEN - klen);
662                 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
663         }
664
665         for (i = 0; i < klen; i++)
666                 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
667
668         if (algo == CRYPTO_MD5_HMAC) {
669                 MD5Init(&md5ctx);
670                 MD5Update(&md5ctx, key, klen);
671                 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
672                 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
673         } else {
674                 SHA1Init(&sha1ctx);
675                 SHA1Update(&sha1ctx, key, klen);
676                 SHA1Update(&sha1ctx, hmac_opad_buffer,
677                     SHA1_HMAC_BLOCK_LEN - klen);
678                 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
679         }
680
681         for (i = 0; i < klen; i++)
682                 key[i] ^= HMAC_OPAD_VAL;
683
684         /* PE is little-endian, insure proper byte order */
685         for (i = 0; i < N(ses->ses_hminner); i++) {
686                 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
687                 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
688         }
689 }
690 #undef N
691
692 /*
693  * Allocate a new 'session' and return an encoded session id.  'sidp'
694  * contains our registration id, and should contain an encoded session
695  * id on successful allocation.
696  */
697 static int
698 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
699 {
700         struct safe_softc *sc = device_get_softc(dev);
701         struct cryptoini *c, *encini = NULL, *macini = NULL;
702         struct safe_session *ses = NULL;
703         int sesn;
704
705         if (sidp == NULL || cri == NULL || sc == NULL)
706                 return (EINVAL);
707
708         for (c = cri; c != NULL; c = c->cri_next) {
709                 if (c->cri_alg == CRYPTO_MD5_HMAC ||
710                     c->cri_alg == CRYPTO_SHA1_HMAC ||
711                     c->cri_alg == CRYPTO_NULL_HMAC) {
712                         if (macini)
713                                 return (EINVAL);
714                         macini = c;
715                 } else if (c->cri_alg == CRYPTO_DES_CBC ||
716                     c->cri_alg == CRYPTO_3DES_CBC ||
717                     c->cri_alg == CRYPTO_AES_CBC ||
718                     c->cri_alg == CRYPTO_NULL_CBC) {
719                         if (encini)
720                                 return (EINVAL);
721                         encini = c;
722                 } else
723                         return (EINVAL);
724         }
725         if (encini == NULL && macini == NULL)
726                 return (EINVAL);
727         if (encini) {                   /* validate key length */
728                 switch (encini->cri_alg) {
729                 case CRYPTO_DES_CBC:
730                         if (encini->cri_klen != 64)
731                                 return (EINVAL);
732                         break;
733                 case CRYPTO_3DES_CBC:
734                         if (encini->cri_klen != 192)
735                                 return (EINVAL);
736                         break;
737                 case CRYPTO_AES_CBC:
738                         if (encini->cri_klen != 128 &&
739                             encini->cri_klen != 192 &&
740                             encini->cri_klen != 256)
741                                 return (EINVAL);
742                         break;
743                 }
744         }
745
746         if (sc->sc_sessions == NULL) {
747                 ses = sc->sc_sessions = (struct safe_session *)malloc(
748                     sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
749                 if (ses == NULL)
750                         return (ENOMEM);
751                 sesn = 0;
752                 sc->sc_nsessions = 1;
753         } else {
754                 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
755                         if (sc->sc_sessions[sesn].ses_used == 0) {
756                                 ses = &sc->sc_sessions[sesn];
757                                 break;
758                         }
759                 }
760
761                 if (ses == NULL) {
762                         sesn = sc->sc_nsessions;
763                         ses = (struct safe_session *)malloc((sesn + 1) *
764                             sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
765                         if (ses == NULL)
766                                 return (ENOMEM);
767                         bcopy(sc->sc_sessions, ses, sesn *
768                             sizeof(struct safe_session));
769                         bzero(sc->sc_sessions, sesn *
770                             sizeof(struct safe_session));
771                         free(sc->sc_sessions, M_DEVBUF);
772                         sc->sc_sessions = ses;
773                         ses = &sc->sc_sessions[sesn];
774                         sc->sc_nsessions++;
775                 }
776         }
777
778         bzero(ses, sizeof(struct safe_session));
779         ses->ses_used = 1;
780
781         if (encini) {
782                 /* get an IV */
783                 /* XXX may read fewer than requested */
784                 read_random(ses->ses_iv, sizeof(ses->ses_iv));
785
786                 ses->ses_klen = encini->cri_klen;
787                 if (encini->cri_key != NULL)
788                         safe_setup_enckey(ses, encini->cri_key);
789         }
790
791         if (macini) {
792                 ses->ses_mlen = macini->cri_mlen;
793                 if (ses->ses_mlen == 0) {
794                         if (macini->cri_alg == CRYPTO_MD5_HMAC)
795                                 ses->ses_mlen = MD5_HASH_LEN;
796                         else
797                                 ses->ses_mlen = SHA1_HASH_LEN;
798                 }
799
800                 if (macini->cri_key != NULL) {
801                         safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
802                             macini->cri_klen / 8);
803                 }
804         }
805
806         *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
807         return (0);
808 }
809
810 /*
811  * Deallocate a session.
812  */
813 static int
814 safe_freesession(device_t dev, u_int64_t tid)
815 {
816         struct safe_softc *sc = device_get_softc(dev);
817         int session, ret;
818         u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
819
820         if (sc == NULL)
821                 return (EINVAL);
822
823         session = SAFE_SESSION(sid);
824         if (session < sc->sc_nsessions) {
825                 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
826                 ret = 0;
827         } else
828                 ret = EINVAL;
829         return (ret);
830 }
831
832 static void
833 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
834 {
835         struct safe_operand *op = arg;
836
837         DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
838                 (u_int) mapsize, nsegs, error));
839         if (error != 0)
840                 return;
841         op->mapsize = mapsize;
842         op->nsegs = nsegs;
843         bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
844 }
845
846 static int
847 safe_process(device_t dev, struct cryptop *crp, int hint)
848 {
849         struct safe_softc *sc = device_get_softc(dev);
850         int err = 0, i, nicealign, uniform;
851         struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
852         int bypass, oplen, ivsize;
853         caddr_t iv;
854         int16_t coffset;
855         struct safe_session *ses;
856         struct safe_ringentry *re;
857         struct safe_sarec *sa;
858         struct safe_pdesc *pd;
859         u_int32_t cmd0, cmd1, staterec;
860
861         if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
862                 safestats.st_invalid++;
863                 return (EINVAL);
864         }
865         if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
866                 safestats.st_badsession++;
867                 return (EINVAL);
868         }
869
870         mtx_lock(&sc->sc_ringmtx);
871         if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
872                 safestats.st_ringfull++;
873                 sc->sc_needwakeup |= CRYPTO_SYMQ;
874                 mtx_unlock(&sc->sc_ringmtx);
875                 return (ERESTART);
876         }
877         re = sc->sc_front;
878
879         staterec = re->re_sa.sa_staterec;       /* save */
880         /* NB: zero everything but the PE descriptor */
881         bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
882         re->re_sa.sa_staterec = staterec;       /* restore */
883
884         re->re_crp = crp;
885         re->re_sesn = SAFE_SESSION(crp->crp_sid);
886
887         if (crp->crp_flags & CRYPTO_F_IMBUF) {
888                 re->re_src_m = (struct mbuf *)crp->crp_buf;
889                 re->re_dst_m = (struct mbuf *)crp->crp_buf;
890         } else if (crp->crp_flags & CRYPTO_F_IOV) {
891                 re->re_src_io = (struct uio *)crp->crp_buf;
892                 re->re_dst_io = (struct uio *)crp->crp_buf;
893         } else {
894                 safestats.st_badflags++;
895                 err = EINVAL;
896                 goto errout;    /* XXX we don't handle contiguous blocks! */
897         }
898
899         sa = &re->re_sa;
900         ses = &sc->sc_sessions[re->re_sesn];
901
902         crd1 = crp->crp_desc;
903         if (crd1 == NULL) {
904                 safestats.st_nodesc++;
905                 err = EINVAL;
906                 goto errout;
907         }
908         crd2 = crd1->crd_next;
909
910         cmd0 = SAFE_SA_CMD0_BASIC;              /* basic group operation */
911         cmd1 = 0;
912         if (crd2 == NULL) {
913                 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
914                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
915                     crd1->crd_alg == CRYPTO_NULL_HMAC) {
916                         maccrd = crd1;
917                         enccrd = NULL;
918                         cmd0 |= SAFE_SA_CMD0_OP_HASH;
919                 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
920                     crd1->crd_alg == CRYPTO_3DES_CBC ||
921                     crd1->crd_alg == CRYPTO_AES_CBC ||
922                     crd1->crd_alg == CRYPTO_NULL_CBC) {
923                         maccrd = NULL;
924                         enccrd = crd1;
925                         cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
926                 } else {
927                         safestats.st_badalg++;
928                         err = EINVAL;
929                         goto errout;
930                 }
931         } else {
932                 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
933                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
934                     crd1->crd_alg == CRYPTO_NULL_HMAC) &&
935                     (crd2->crd_alg == CRYPTO_DES_CBC ||
936                         crd2->crd_alg == CRYPTO_3DES_CBC ||
937                         crd2->crd_alg == CRYPTO_AES_CBC ||
938                         crd2->crd_alg == CRYPTO_NULL_CBC) &&
939                     ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
940                         maccrd = crd1;
941                         enccrd = crd2;
942                 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
943                     crd1->crd_alg == CRYPTO_3DES_CBC ||
944                     crd1->crd_alg == CRYPTO_AES_CBC ||
945                     crd1->crd_alg == CRYPTO_NULL_CBC) &&
946                     (crd2->crd_alg == CRYPTO_MD5_HMAC ||
947                         crd2->crd_alg == CRYPTO_SHA1_HMAC ||
948                         crd2->crd_alg == CRYPTO_NULL_HMAC) &&
949                     (crd1->crd_flags & CRD_F_ENCRYPT)) {
950                         enccrd = crd1;
951                         maccrd = crd2;
952                 } else {
953                         safestats.st_badalg++;
954                         err = EINVAL;
955                         goto errout;
956                 }
957                 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
958         }
959
960         if (enccrd) {
961                 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
962                         safe_setup_enckey(ses, enccrd->crd_key);
963
964                 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
965                         cmd0 |= SAFE_SA_CMD0_DES;
966                         cmd1 |= SAFE_SA_CMD1_CBC;
967                         ivsize = 2*sizeof(u_int32_t);
968                 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
969                         cmd0 |= SAFE_SA_CMD0_3DES;
970                         cmd1 |= SAFE_SA_CMD1_CBC;
971                         ivsize = 2*sizeof(u_int32_t);
972                 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
973                         cmd0 |= SAFE_SA_CMD0_AES;
974                         cmd1 |= SAFE_SA_CMD1_CBC;
975                         if (ses->ses_klen == 128)
976                              cmd1 |=  SAFE_SA_CMD1_AES128;
977                         else if (ses->ses_klen == 192)
978                              cmd1 |=  SAFE_SA_CMD1_AES192;
979                         else
980                              cmd1 |=  SAFE_SA_CMD1_AES256;
981                         ivsize = 4*sizeof(u_int32_t);
982                 } else {
983                         cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
984                         ivsize = 0;
985                 }
986
987                 /*
988                  * Setup encrypt/decrypt state.  When using basic ops
989                  * we can't use an inline IV because hash/crypt offset
990                  * must be from the end of the IV to the start of the
991                  * crypt data and this leaves out the preceding header
992                  * from the hash calculation.  Instead we place the IV
993                  * in the state record and set the hash/crypt offset to
994                  * copy both the header+IV.
995                  */
996                 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
997                         cmd0 |= SAFE_SA_CMD0_OUTBOUND;
998
999                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1000                                 iv = enccrd->crd_iv;
1001                         else
1002                                 iv = (caddr_t) ses->ses_iv;
1003                         if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1004                                 crypto_copyback(crp->crp_flags, crp->crp_buf,
1005                                     enccrd->crd_inject, ivsize, iv);
1006                         }
1007                         bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1008                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1009                         re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1010                 } else {
1011                         cmd0 |= SAFE_SA_CMD0_INBOUND;
1012
1013                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1014                                 bcopy(enccrd->crd_iv,
1015                                         re->re_sastate.sa_saved_iv, ivsize);
1016                         } else {
1017                                 crypto_copydata(crp->crp_flags, crp->crp_buf,
1018                                     enccrd->crd_inject, ivsize,
1019                                     (caddr_t)re->re_sastate.sa_saved_iv);
1020                         }
1021                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1022                 }
1023                 /*
1024                  * For basic encryption use the zero pad algorithm.
1025                  * This pads results to an 8-byte boundary and
1026                  * suppresses padding verification for inbound (i.e.
1027                  * decrypt) operations.
1028                  *
1029                  * NB: Not sure if the 8-byte pad boundary is a problem.
1030                  */
1031                 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1032
1033                 /* XXX assert key bufs have the same size */
1034                 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1035         }
1036
1037         if (maccrd) {
1038                 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1039                         safe_setup_mackey(ses, maccrd->crd_alg,
1040                             maccrd->crd_key, maccrd->crd_klen / 8);
1041                 }
1042
1043                 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1044                         cmd0 |= SAFE_SA_CMD0_MD5;
1045                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1046                 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1047                         cmd0 |= SAFE_SA_CMD0_SHA1;
1048                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1049                 } else {
1050                         cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1051                 }
1052                 /*
1053                  * Digest data is loaded from the SA and the hash
1054                  * result is saved to the state block where we
1055                  * retrieve it for return to the caller.
1056                  */
1057                 /* XXX assert digest bufs have the same size */
1058                 bcopy(ses->ses_hminner, sa->sa_indigest,
1059                         sizeof(sa->sa_indigest));
1060                 bcopy(ses->ses_hmouter, sa->sa_outdigest,
1061                         sizeof(sa->sa_outdigest));
1062
1063                 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1064                 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1065         }
1066
1067         if (enccrd && maccrd) {
1068                 /*
1069                  * The offset from hash data to the start of
1070                  * crypt data is the difference in the skips.
1071                  */
1072                 bypass = maccrd->crd_skip;
1073                 coffset = enccrd->crd_skip - maccrd->crd_skip;
1074                 if (coffset < 0) {
1075                         DPRINTF(("%s: hash does not precede crypt; "
1076                                 "mac skip %u enc skip %u\n",
1077                                 __func__, maccrd->crd_skip, enccrd->crd_skip));
1078                         safestats.st_skipmismatch++;
1079                         err = EINVAL;
1080                         goto errout;
1081                 }
1082                 oplen = enccrd->crd_skip + enccrd->crd_len;
1083                 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1084                         DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1085                                 __func__, maccrd->crd_skip + maccrd->crd_len,
1086                                 oplen));
1087                         safestats.st_lenmismatch++;
1088                         err = EINVAL;
1089                         goto errout;
1090                 }
1091 #ifdef SAFE_DEBUG
1092                 if (safe_debug) {
1093                         printf("mac: skip %d, len %d, inject %d\n",
1094                             maccrd->crd_skip, maccrd->crd_len,
1095                             maccrd->crd_inject);
1096                         printf("enc: skip %d, len %d, inject %d\n",
1097                             enccrd->crd_skip, enccrd->crd_len,
1098                             enccrd->crd_inject);
1099                         printf("bypass %d coffset %d oplen %d\n",
1100                                 bypass, coffset, oplen);
1101                 }
1102 #endif
1103                 if (coffset & 3) {      /* offset must be 32-bit aligned */
1104                         DPRINTF(("%s: coffset %u misaligned\n",
1105                                 __func__, coffset));
1106                         safestats.st_coffmisaligned++;
1107                         err = EINVAL;
1108                         goto errout;
1109                 }
1110                 coffset >>= 2;
1111                 if (coffset > 255) {    /* offset must be <256 dwords */
1112                         DPRINTF(("%s: coffset %u too big\n",
1113                                 __func__, coffset));
1114                         safestats.st_cofftoobig++;
1115                         err = EINVAL;
1116                         goto errout;
1117                 }
1118                 /*
1119                  * Tell the hardware to copy the header to the output.
1120                  * The header is defined as the data from the end of
1121                  * the bypass to the start of data to be encrypted. 
1122                  * Typically this is the inline IV.  Note that you need
1123                  * to do this even if src+dst are the same; it appears
1124                  * that w/o this bit the crypted data is written
1125                  * immediately after the bypass data.
1126                  */
1127                 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1128                 /*
1129                  * Disable IP header mutable bit handling.  This is
1130                  * needed to get correct HMAC calculations.
1131                  */
1132                 cmd1 |= SAFE_SA_CMD1_MUTABLE;
1133         } else {
1134                 if (enccrd) {
1135                         bypass = enccrd->crd_skip;
1136                         oplen = bypass + enccrd->crd_len;
1137                 } else {
1138                         bypass = maccrd->crd_skip;
1139                         oplen = bypass + maccrd->crd_len;
1140                 }
1141                 coffset = 0;
1142         }
1143         /* XXX verify multiple of 4 when using s/g */
1144         if (bypass > 96) {              /* bypass offset must be <= 96 bytes */
1145                 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1146                 safestats.st_bypasstoobig++;
1147                 err = EINVAL;
1148                 goto errout;
1149         }
1150
1151         if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1152                 safestats.st_nomap++;
1153                 err = ENOMEM;
1154                 goto errout;
1155         }
1156         if (crp->crp_flags & CRYPTO_F_IMBUF) {
1157                 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1158                     re->re_src_m, safe_op_cb,
1159                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1160                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1161                         re->re_src_map = NULL;
1162                         safestats.st_noload++;
1163                         err = ENOMEM;
1164                         goto errout;
1165                 }
1166         } else if (crp->crp_flags & CRYPTO_F_IOV) {
1167                 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1168                     re->re_src_io, safe_op_cb,
1169                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1170                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1171                         re->re_src_map = NULL;
1172                         safestats.st_noload++;
1173                         err = ENOMEM;
1174                         goto errout;
1175                 }
1176         }
1177         nicealign = safe_dmamap_aligned(&re->re_src);
1178         uniform = safe_dmamap_uniform(&re->re_src);
1179
1180         DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1181                 nicealign, uniform, re->re_src.nsegs));
1182         if (re->re_src.nsegs > 1) {
1183                 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1184                         ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1185                 for (i = 0; i < re->re_src_nsegs; i++) {
1186                         /* NB: no need to check if there's space */
1187                         pd = sc->sc_spfree;
1188                         if (++(sc->sc_spfree) == sc->sc_springtop)
1189                                 sc->sc_spfree = sc->sc_spring;
1190
1191                         KASSERT((pd->pd_flags&3) == 0 ||
1192                                 (pd->pd_flags&3) == SAFE_PD_DONE,
1193                                 ("bogus source particle descriptor; flags %x",
1194                                 pd->pd_flags));
1195                         pd->pd_addr = re->re_src_segs[i].ds_addr;
1196                         pd->pd_size = re->re_src_segs[i].ds_len;
1197                         pd->pd_flags = SAFE_PD_READY;
1198                 }
1199                 cmd0 |= SAFE_SA_CMD0_IGATHER;
1200         } else {
1201                 /*
1202                  * No need for gather, reference the operand directly.
1203                  */
1204                 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1205         }
1206
1207         if (enccrd == NULL && maccrd != NULL) {
1208                 /*
1209                  * Hash op; no destination needed.
1210                  */
1211         } else {
1212                 if (crp->crp_flags & CRYPTO_F_IOV) {
1213                         if (!nicealign) {
1214                                 safestats.st_iovmisaligned++;
1215                                 err = EINVAL;
1216                                 goto errout;
1217                         }
1218                         if (uniform != 1) {
1219                                 /*
1220                                  * Source is not suitable for direct use as
1221                                  * the destination.  Create a new scatter/gather
1222                                  * list based on the destination requirements
1223                                  * and check if that's ok.
1224                                  */
1225                                 if (bus_dmamap_create(sc->sc_dstdmat,
1226                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1227                                         safestats.st_nomap++;
1228                                         err = ENOMEM;
1229                                         goto errout;
1230                                 }
1231                                 if (bus_dmamap_load_uio(sc->sc_dstdmat,
1232                                     re->re_dst_map, re->re_dst_io,
1233                                     safe_op_cb, &re->re_dst,
1234                                     BUS_DMA_NOWAIT) != 0) {
1235                                         bus_dmamap_destroy(sc->sc_dstdmat,
1236                                                 re->re_dst_map);
1237                                         re->re_dst_map = NULL;
1238                                         safestats.st_noload++;
1239                                         err = ENOMEM;
1240                                         goto errout;
1241                                 }
1242                                 uniform = safe_dmamap_uniform(&re->re_dst);
1243                                 if (!uniform) {
1244                                         /*
1245                                          * There's no way to handle the DMA
1246                                          * requirements with this uio.  We
1247                                          * could create a separate DMA area for
1248                                          * the result and then copy it back,
1249                                          * but for now we just bail and return
1250                                          * an error.  Note that uio requests
1251                                          * > SAFE_MAX_DSIZE are handled because
1252                                          * the DMA map and segment list for the
1253                                          * destination wil result in a
1254                                          * destination particle list that does
1255                                          * the necessary scatter DMA.
1256                                          */ 
1257                                         safestats.st_iovnotuniform++;
1258                                         err = EINVAL;
1259                                         goto errout;
1260                                 }
1261                         } else
1262                                 re->re_dst = re->re_src;
1263                 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1264                         if (nicealign && uniform == 1) {
1265                                 /*
1266                                  * Source layout is suitable for direct
1267                                  * sharing of the DMA map and segment list.
1268                                  */
1269                                 re->re_dst = re->re_src;
1270                         } else if (nicealign && uniform == 2) {
1271                                 /*
1272                                  * The source is properly aligned but requires a
1273                                  * different particle list to handle DMA of the
1274                                  * result.  Create a new map and do the load to
1275                                  * create the segment list.  The particle
1276                                  * descriptor setup code below will handle the
1277                                  * rest.
1278                                  */
1279                                 if (bus_dmamap_create(sc->sc_dstdmat,
1280                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1281                                         safestats.st_nomap++;
1282                                         err = ENOMEM;
1283                                         goto errout;
1284                                 }
1285                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1286                                     re->re_dst_map, re->re_dst_m,
1287                                     safe_op_cb, &re->re_dst,
1288                                     BUS_DMA_NOWAIT) != 0) {
1289                                         bus_dmamap_destroy(sc->sc_dstdmat,
1290                                                 re->re_dst_map);
1291                                         re->re_dst_map = NULL;
1292                                         safestats.st_noload++;
1293                                         err = ENOMEM;
1294                                         goto errout;
1295                                 }
1296                         } else {                /* !(aligned and/or uniform) */
1297                                 int totlen, len;
1298                                 struct mbuf *m, *top, **mp;
1299
1300                                 /*
1301                                  * DMA constraints require that we allocate a
1302                                  * new mbuf chain for the destination.  We
1303                                  * allocate an entire new set of mbufs of
1304                                  * optimal/required size and then tell the
1305                                  * hardware to copy any bits that are not
1306                                  * created as a byproduct of the operation.
1307                                  */
1308                                 if (!nicealign)
1309                                         safestats.st_unaligned++;
1310                                 if (!uniform)
1311                                         safestats.st_notuniform++;
1312                                 totlen = re->re_src_mapsize;
1313                                 if (re->re_src_m->m_flags & M_PKTHDR) {
1314                                         len = MHLEN;
1315                                         MGETHDR(m, M_NOWAIT, MT_DATA);
1316                                         if (m && !m_dup_pkthdr(m, re->re_src_m,
1317                                             M_NOWAIT)) {
1318                                                 m_free(m);
1319                                                 m = NULL;
1320                                         }
1321                                 } else {
1322                                         len = MLEN;
1323                                         MGET(m, M_NOWAIT, MT_DATA);
1324                                 }
1325                                 if (m == NULL) {
1326                                         safestats.st_nombuf++;
1327                                         err = sc->sc_nqchip ? ERESTART : ENOMEM;
1328                                         goto errout;
1329                                 }
1330                                 if (totlen >= MINCLSIZE) {
1331                                         MCLGET(m, M_NOWAIT);
1332                                         if ((m->m_flags & M_EXT) == 0) {
1333                                                 m_free(m);
1334                                                 safestats.st_nomcl++;
1335                                                 err = sc->sc_nqchip ?
1336                                                         ERESTART : ENOMEM;
1337                                                 goto errout;
1338                                         }
1339                                         len = MCLBYTES;
1340                                 }
1341                                 m->m_len = len;
1342                                 top = NULL;
1343                                 mp = &top;
1344
1345                                 while (totlen > 0) {
1346                                         if (top) {
1347                                                 MGET(m, M_NOWAIT, MT_DATA);
1348                                                 if (m == NULL) {
1349                                                         m_freem(top);
1350                                                         safestats.st_nombuf++;
1351                                                         err = sc->sc_nqchip ?
1352                                                             ERESTART : ENOMEM;
1353                                                         goto errout;
1354                                                 }
1355                                                 len = MLEN;
1356                                         }
1357                                         if (top && totlen >= MINCLSIZE) {
1358                                                 MCLGET(m, M_NOWAIT);
1359                                                 if ((m->m_flags & M_EXT) == 0) {
1360                                                         *mp = m;
1361                                                         m_freem(top);
1362                                                         safestats.st_nomcl++;
1363                                                         err = sc->sc_nqchip ?
1364                                                             ERESTART : ENOMEM;
1365                                                         goto errout;
1366                                                 }
1367                                                 len = MCLBYTES;
1368                                         }
1369                                         m->m_len = len = min(totlen, len);
1370                                         totlen -= len;
1371                                         *mp = m;
1372                                         mp = &m->m_next;
1373                                 }
1374                                 re->re_dst_m = top;
1375                                 if (bus_dmamap_create(sc->sc_dstdmat, 
1376                                     BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1377                                         safestats.st_nomap++;
1378                                         err = ENOMEM;
1379                                         goto errout;
1380                                 }
1381                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1382                                     re->re_dst_map, re->re_dst_m,
1383                                     safe_op_cb, &re->re_dst,
1384                                     BUS_DMA_NOWAIT) != 0) {
1385                                         bus_dmamap_destroy(sc->sc_dstdmat,
1386                                         re->re_dst_map);
1387                                         re->re_dst_map = NULL;
1388                                         safestats.st_noload++;
1389                                         err = ENOMEM;
1390                                         goto errout;
1391                                 }
1392                                 if (re->re_src.mapsize > oplen) {
1393                                         /*
1394                                          * There's data following what the
1395                                          * hardware will copy for us.  If this
1396                                          * isn't just the ICV (that's going to
1397                                          * be written on completion), copy it
1398                                          * to the new mbufs
1399                                          */
1400                                         if (!(maccrd &&
1401                                             (re->re_src.mapsize-oplen) == 12 &&
1402                                             maccrd->crd_inject == oplen))
1403                                                 safe_mcopy(re->re_src_m,
1404                                                            re->re_dst_m,
1405                                                            oplen);
1406                                         else
1407                                                 safestats.st_noicvcopy++;
1408                                 }
1409                         }
1410                 } else {
1411                         safestats.st_badflags++;
1412                         err = EINVAL;
1413                         goto errout;
1414                 }
1415
1416                 if (re->re_dst.nsegs > 1) {
1417                         re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1418                             ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1419                         for (i = 0; i < re->re_dst_nsegs; i++) {
1420                                 pd = sc->sc_dpfree;
1421                                 KASSERT((pd->pd_flags&3) == 0 ||
1422                                         (pd->pd_flags&3) == SAFE_PD_DONE,
1423                                         ("bogus dest particle descriptor; flags %x",
1424                                                 pd->pd_flags));
1425                                 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1426                                         sc->sc_dpfree = sc->sc_dpring;
1427                                 pd->pd_addr = re->re_dst_segs[i].ds_addr;
1428                                 pd->pd_flags = SAFE_PD_READY;
1429                         }
1430                         cmd0 |= SAFE_SA_CMD0_OSCATTER;
1431                 } else {
1432                         /*
1433                          * No need for scatter, reference the operand directly.
1434                          */
1435                         re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1436                 }
1437         }
1438
1439         /*
1440          * All done with setup; fillin the SA command words
1441          * and the packet engine descriptor.  The operation
1442          * is now ready for submission to the hardware.
1443          */
1444         sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1445         sa->sa_cmd1 = cmd1
1446                     | (coffset << SAFE_SA_CMD1_OFFSET_S)
1447                     | SAFE_SA_CMD1_SAREV1       /* Rev 1 SA data structure */
1448                     | SAFE_SA_CMD1_SRPCI
1449                     ;
1450         /*
1451          * NB: the order of writes is important here.  In case the
1452          * chip is scanning the ring because of an outstanding request
1453          * it might nab this one too.  In that case we need to make
1454          * sure the setup is complete before we write the length
1455          * field of the descriptor as it signals the descriptor is
1456          * ready for processing.
1457          */
1458         re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1459         if (maccrd)
1460                 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1461         re->re_desc.d_len = oplen
1462                           | SAFE_PE_LEN_READY
1463                           | (bypass << SAFE_PE_LEN_BYPASS_S)
1464                           ;
1465
1466         safestats.st_ipackets++;
1467         safestats.st_ibytes += oplen;
1468
1469         if (++(sc->sc_front) == sc->sc_ringtop)
1470                 sc->sc_front = sc->sc_ring;
1471
1472         /* XXX honor batching */
1473         safe_feed(sc, re);
1474         mtx_unlock(&sc->sc_ringmtx);
1475         return (0);
1476
1477 errout:
1478         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1479                 m_freem(re->re_dst_m);
1480
1481         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1482                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1483                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1484         }
1485         if (re->re_src_map != NULL) {
1486                 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1487                 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1488         }
1489         mtx_unlock(&sc->sc_ringmtx);
1490         if (err != ERESTART) {
1491                 crp->crp_etype = err;
1492                 crypto_done(crp);
1493         } else {
1494                 sc->sc_needwakeup |= CRYPTO_SYMQ;
1495         }
1496         return (err);
1497 }
1498
1499 static void
1500 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1501 {
1502         struct cryptop *crp = (struct cryptop *)re->re_crp;
1503         struct cryptodesc *crd;
1504
1505         safestats.st_opackets++;
1506         safestats.st_obytes += re->re_dst.mapsize;
1507
1508         safe_dma_sync(&sc->sc_ringalloc,
1509                 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1510         if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1511                 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1512                         re->re_desc.d_csr,
1513                         re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1514                 safestats.st_peoperr++;
1515                 crp->crp_etype = EIO;           /* something more meaningful? */
1516         }
1517         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1518                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1519                     BUS_DMASYNC_POSTREAD);
1520                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1521                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1522         }
1523         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1524         bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1525         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1526
1527         /* 
1528          * If result was written to a differet mbuf chain, swap
1529          * it in as the return value and reclaim the original.
1530          */
1531         if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1532                 m_freem(re->re_src_m);
1533                 crp->crp_buf = (caddr_t)re->re_dst_m;
1534         }
1535
1536         if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1537                 /* copy out IV for future use */
1538                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1539                         int ivsize;
1540
1541                         if (crd->crd_alg == CRYPTO_DES_CBC ||
1542                             crd->crd_alg == CRYPTO_3DES_CBC) {
1543                                 ivsize = 2*sizeof(u_int32_t);
1544                         } else if (crd->crd_alg == CRYPTO_AES_CBC) {
1545                                 ivsize = 4*sizeof(u_int32_t);
1546                         } else
1547                                 continue;
1548                         crypto_copydata(crp->crp_flags, crp->crp_buf,
1549                             crd->crd_skip + crd->crd_len - ivsize, ivsize,
1550                             (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1551                         break;
1552                 }
1553         }
1554
1555         if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1556                 /* copy out ICV result */
1557                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1558                         if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1559                             crd->crd_alg == CRYPTO_SHA1_HMAC ||
1560                             crd->crd_alg == CRYPTO_NULL_HMAC))
1561                                 continue;
1562                         if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1563                                 /*
1564                                  * SHA-1 ICV's are byte-swapped; fix 'em up
1565                                  * before copy them to their destination.
1566                                  */
1567                                 re->re_sastate.sa_saved_indigest[0] =
1568                                     bswap32(re->re_sastate.sa_saved_indigest[0]);
1569                                 re->re_sastate.sa_saved_indigest[1] =
1570                                     bswap32(re->re_sastate.sa_saved_indigest[1]);
1571                                 re->re_sastate.sa_saved_indigest[2] =
1572                                     bswap32(re->re_sastate.sa_saved_indigest[2]);
1573                         }
1574                         crypto_copyback(crp->crp_flags, crp->crp_buf,
1575                             crd->crd_inject,
1576                             sc->sc_sessions[re->re_sesn].ses_mlen,
1577                             (caddr_t)re->re_sastate.sa_saved_indigest);
1578                         break;
1579                 }
1580         }
1581         crypto_done(crp);
1582 }
1583
1584 /*
1585  * Copy all data past offset from srcm to dstm.
1586  */
1587 static void
1588 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1589 {
1590         u_int j, dlen, slen;
1591         caddr_t dptr, sptr;
1592
1593         /*
1594          * Advance src and dst to offset.
1595          */
1596         j = offset;
1597         while (j >= 0) {
1598                 if (srcm->m_len > j)
1599                         break;
1600                 j -= srcm->m_len;
1601                 srcm = srcm->m_next;
1602                 if (srcm == NULL)
1603                         return;
1604         }
1605         sptr = mtod(srcm, caddr_t) + j;
1606         slen = srcm->m_len - j;
1607
1608         j = offset;
1609         while (j >= 0) {
1610                 if (dstm->m_len > j)
1611                         break;
1612                 j -= dstm->m_len;
1613                 dstm = dstm->m_next;
1614                 if (dstm == NULL)
1615                         return;
1616         }
1617         dptr = mtod(dstm, caddr_t) + j;
1618         dlen = dstm->m_len - j;
1619
1620         /*
1621          * Copy everything that remains.
1622          */
1623         for (;;) {
1624                 j = min(slen, dlen);
1625                 bcopy(sptr, dptr, j);
1626                 if (slen == j) {
1627                         srcm = srcm->m_next;
1628                         if (srcm == NULL)
1629                                 return;
1630                         sptr = srcm->m_data;
1631                         slen = srcm->m_len;
1632                 } else
1633                         sptr += j, slen -= j;
1634                 if (dlen == j) {
1635                         dstm = dstm->m_next;
1636                         if (dstm == NULL)
1637                                 return;
1638                         dptr = dstm->m_data;
1639                         dlen = dstm->m_len;
1640                 } else
1641                         dptr += j, dlen -= j;
1642         }
1643 }
1644
1645 #ifndef SAFE_NO_RNG
1646 #define SAFE_RNG_MAXWAIT        1000
1647
1648 static void
1649 safe_rng_init(struct safe_softc *sc)
1650 {
1651         u_int32_t w, v;
1652         int i;
1653
1654         WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1655         /* use default value according to the manual */
1656         WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);    /* magic from SafeNet */
1657         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1658
1659         /*
1660          * There is a bug in rev 1.0 of the 1140 that when the RNG
1661          * is brought out of reset the ready status flag does not
1662          * work until the RNG has finished its internal initialization.
1663          *
1664          * So in order to determine the device is through its
1665          * initialization we must read the data register, using the
1666          * status reg in the read in case it is initialized.  Then read
1667          * the data register until it changes from the first read.
1668          * Once it changes read the data register until it changes
1669          * again.  At this time the RNG is considered initialized. 
1670          * This could take between 750ms - 1000ms in time.
1671          */
1672         i = 0;
1673         w = READ_REG(sc, SAFE_RNG_OUT);
1674         do {
1675                 v = READ_REG(sc, SAFE_RNG_OUT);
1676                 if (v != w) {
1677                         w = v;
1678                         break;
1679                 }
1680                 DELAY(10);
1681         } while (++i < SAFE_RNG_MAXWAIT);
1682
1683         /* Wait Until data changes again */
1684         i = 0;
1685         do {
1686                 v = READ_REG(sc, SAFE_RNG_OUT);
1687                 if (v != w)
1688                         break;
1689                 DELAY(10);
1690         } while (++i < SAFE_RNG_MAXWAIT);
1691 }
1692
1693 static __inline void
1694 safe_rng_disable_short_cycle(struct safe_softc *sc)
1695 {
1696         WRITE_REG(sc, SAFE_RNG_CTRL,
1697                 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1698 }
1699
1700 static __inline void
1701 safe_rng_enable_short_cycle(struct safe_softc *sc)
1702 {
1703         WRITE_REG(sc, SAFE_RNG_CTRL, 
1704                 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1705 }
1706
1707 static __inline u_int32_t
1708 safe_rng_read(struct safe_softc *sc)
1709 {
1710         int i;
1711
1712         i = 0;
1713         while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1714                 ;
1715         return READ_REG(sc, SAFE_RNG_OUT);
1716 }
1717
1718 static void
1719 safe_rng(void *arg)
1720 {
1721         struct safe_softc *sc = arg;
1722         u_int32_t buf[SAFE_RNG_MAXBUFSIZ];      /* NB: maybe move to softc */
1723         u_int maxwords;
1724         int i;
1725
1726         safestats.st_rng++;
1727         /*
1728          * Fetch the next block of data.
1729          */
1730         maxwords = safe_rngbufsize;
1731         if (maxwords > SAFE_RNG_MAXBUFSIZ)
1732                 maxwords = SAFE_RNG_MAXBUFSIZ;
1733 retry:
1734         for (i = 0; i < maxwords; i++)
1735                 buf[i] = safe_rng_read(sc);
1736         /*
1737          * Check the comparator alarm count and reset the h/w if
1738          * it exceeds our threshold.  This guards against the
1739          * hardware oscillators resonating with external signals.
1740          */
1741         if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1742                 u_int32_t freq_inc, w;
1743
1744                 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1745                         READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1746                 safestats.st_rngalarm++;
1747                 safe_rng_enable_short_cycle(sc);
1748                 freq_inc = 18;
1749                 for (i = 0; i < 64; i++) {
1750                         w = READ_REG(sc, SAFE_RNG_CNFG);
1751                         freq_inc = ((w + freq_inc) & 0x3fL);
1752                         w = ((w & ~0x3fL) | freq_inc);
1753                         WRITE_REG(sc, SAFE_RNG_CNFG, w);
1754
1755                         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1756
1757                         (void) safe_rng_read(sc);
1758                         DELAY(25);
1759
1760                         if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1761                                 safe_rng_disable_short_cycle(sc);
1762                                 goto retry;
1763                         }
1764                         freq_inc = 1;
1765                 }
1766                 safe_rng_disable_short_cycle(sc);
1767         } else
1768                 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769
1770         (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1771         callout_reset(&sc->sc_rngto,
1772                 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1773 }
1774 #endif /* SAFE_NO_RNG */
1775
1776 static void
1777 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1778 {
1779         bus_addr_t *paddr = (bus_addr_t*) arg;
1780         *paddr = segs->ds_addr;
1781 }
1782
1783 static int
1784 safe_dma_malloc(
1785         struct safe_softc *sc,
1786         bus_size_t size,
1787         struct safe_dma_alloc *dma,
1788         int mapflags
1789 )
1790 {
1791         int r;
1792
1793         r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),     /* parent */
1794                                sizeof(u_int32_t), 0,    /* alignment, bounds */
1795                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1796                                BUS_SPACE_MAXADDR,       /* highaddr */
1797                                NULL, NULL,              /* filter, filterarg */
1798                                size,                    /* maxsize */
1799                                1,                       /* nsegments */
1800                                size,                    /* maxsegsize */
1801                                BUS_DMA_ALLOCNOW,        /* flags */
1802                                NULL, NULL,              /* locking */
1803                                &dma->dma_tag);
1804         if (r != 0) {
1805                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1806                         "bus_dma_tag_create failed; error %u\n", r);
1807                 goto fail_0;
1808         }
1809
1810         r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1811         if (r != 0) {
1812                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1813                         "bus_dmamap_create failed; error %u\n", r);
1814                 goto fail_1;
1815         }
1816
1817         r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1818                              BUS_DMA_NOWAIT, &dma->dma_map);
1819         if (r != 0) {
1820                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1821                         "bus_dmammem_alloc failed; size %zu, error %u\n",
1822                         size, r);
1823                 goto fail_2;
1824         }
1825
1826         r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1827                             size,
1828                             safe_dmamap_cb,
1829                             &dma->dma_paddr,
1830                             mapflags | BUS_DMA_NOWAIT);
1831         if (r != 0) {
1832                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1833                         "bus_dmamap_load failed; error %u\n", r);
1834                 goto fail_3;
1835         }
1836
1837         dma->dma_size = size;
1838         return (0);
1839
1840 fail_3:
1841         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1842 fail_2:
1843         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1844 fail_1:
1845         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1846         bus_dma_tag_destroy(dma->dma_tag);
1847 fail_0:
1848         dma->dma_map = NULL;
1849         dma->dma_tag = NULL;
1850         return (r);
1851 }
1852
1853 static void
1854 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1855 {
1856         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1857         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1858         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1859         bus_dma_tag_destroy(dma->dma_tag);
1860 }
1861
1862 /*
1863  * Resets the board.  Values in the regesters are left as is
1864  * from the reset (i.e. initial values are assigned elsewhere).
1865  */
1866 static void
1867 safe_reset_board(struct safe_softc *sc)
1868 {
1869         u_int32_t v;
1870         /*
1871          * Reset the device.  The manual says no delay
1872          * is needed between marking and clearing reset.
1873          */
1874         v = READ_REG(sc, SAFE_PE_DMACFG) &~
1875                 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1876                  SAFE_PE_DMACFG_SGRESET);
1877         WRITE_REG(sc, SAFE_PE_DMACFG, v
1878                                     | SAFE_PE_DMACFG_PERESET
1879                                     | SAFE_PE_DMACFG_PDRRESET
1880                                     | SAFE_PE_DMACFG_SGRESET);
1881         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1882 }
1883
1884 /*
1885  * Initialize registers we need to touch only once.
1886  */
1887 static void
1888 safe_init_board(struct safe_softc *sc)
1889 {
1890         u_int32_t v, dwords;
1891
1892         v = READ_REG(sc, SAFE_PE_DMACFG);
1893         v &=~ SAFE_PE_DMACFG_PEMODE;
1894         v |= SAFE_PE_DMACFG_FSENA               /* failsafe enable */
1895           |  SAFE_PE_DMACFG_GPRPCI              /* gather ring on PCI */
1896           |  SAFE_PE_DMACFG_SPRPCI              /* scatter ring on PCI */
1897           |  SAFE_PE_DMACFG_ESDESC              /* endian-swap descriptors */
1898           |  SAFE_PE_DMACFG_ESSA                /* endian-swap SA's */
1899           |  SAFE_PE_DMACFG_ESPDESC             /* endian-swap part. desc's */
1900           ;
1901         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1902 #if 0
1903         /* XXX select byte swap based on host byte order */
1904         WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1905 #endif
1906         if (sc->sc_chiprev == SAFE_REV(1,0)) {
1907                 /*
1908                  * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1909                  * "target mode transfers" done while the chip is DMA'ing
1910                  * >1020 bytes cause the hardware to lockup.  To avoid this
1911                  * we reduce the max PCI transfer size and use small source
1912                  * particle descriptors (<= 256 bytes).
1913                  */
1914                 WRITE_REG(sc, SAFE_DMA_CFG, 256);
1915                 device_printf(sc->sc_dev,
1916                         "Reduce max DMA size to %u words for rev %u.%u WAR\n",
1917                         (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1918                         SAFE_REV_MAJ(sc->sc_chiprev),
1919                         SAFE_REV_MIN(sc->sc_chiprev));
1920         }
1921
1922         /* NB: operands+results are overlaid */
1923         WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1924         WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1925         /*
1926          * Configure ring entry size and number of items in the ring.
1927          */
1928         KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1929                 ("PE ring entry not 32-bit aligned!"));
1930         dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1931         WRITE_REG(sc, SAFE_PE_RINGCFG,
1932                 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1933         WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);     /* disable polling */
1934
1935         WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1936         WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1937         WRITE_REG(sc, SAFE_PE_PARTSIZE,
1938                 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1939         /*
1940          * NB: destination particles are fixed size.  We use
1941          *     an mbuf cluster and require all results go to
1942          *     clusters or smaller.
1943          */
1944         WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1945
1946         /* it's now safe to enable PE mode, do it */
1947         WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1948
1949         /*
1950          * Configure hardware to use level-triggered interrupts and
1951          * to interrupt after each descriptor is processed.
1952          */
1953         WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1954         WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1955         WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1956 }
1957
1958 /*
1959  * Init PCI registers
1960  */
1961 static void
1962 safe_init_pciregs(device_t dev)
1963 {
1964 }
1965
1966 /*
1967  * Clean up after a chip crash.
1968  * It is assumed that the caller in splimp()
1969  */
1970 static void
1971 safe_cleanchip(struct safe_softc *sc)
1972 {
1973
1974         if (sc->sc_nqchip != 0) {
1975                 struct safe_ringentry *re = sc->sc_back;
1976
1977                 while (re != sc->sc_front) {
1978                         if (re->re_desc.d_csr != 0)
1979                                 safe_free_entry(sc, re);
1980                         if (++re == sc->sc_ringtop)
1981                                 re = sc->sc_ring;
1982                 }
1983                 sc->sc_back = re;
1984                 sc->sc_nqchip = 0;
1985         }
1986 }
1987
1988 /*
1989  * free a safe_q
1990  * It is assumed that the caller is within splimp().
1991  */
1992 static int
1993 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1994 {
1995         struct cryptop *crp;
1996
1997         /*
1998          * Free header MCR
1999          */
2000         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2001                 m_freem(re->re_dst_m);
2002
2003         crp = (struct cryptop *)re->re_crp;
2004         
2005         re->re_desc.d_csr = 0;
2006         
2007         crp->crp_etype = EFAULT;
2008         crypto_done(crp);
2009         return(0);
2010 }
2011
2012 /*
2013  * Routine to reset the chip and clean up.
2014  * It is assumed that the caller is in splimp()
2015  */
2016 static void
2017 safe_totalreset(struct safe_softc *sc)
2018 {
2019         safe_reset_board(sc);
2020         safe_init_board(sc);
2021         safe_cleanchip(sc);
2022 }
2023
2024 /*
2025  * Is the operand suitable aligned for direct DMA.  Each
2026  * segment must be aligned on a 32-bit boundary and all
2027  * but the last segment must be a multiple of 4 bytes.
2028  */
2029 static int
2030 safe_dmamap_aligned(const struct safe_operand *op)
2031 {
2032         int i;
2033
2034         for (i = 0; i < op->nsegs; i++) {
2035                 if (op->segs[i].ds_addr & 3)
2036                         return (0);
2037                 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2038                         return (0);
2039         }
2040         return (1);
2041 }
2042
2043 /*
2044  * Is the operand suitable for direct DMA as the destination
2045  * of an operation.  The hardware requires that each ``particle''
2046  * but the last in an operation result have the same size.  We
2047  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2048  * 0 if some segment is not a multiple of of this size, 1 if all
2049  * segments are exactly this size, or 2 if segments are at worst
2050  * a multple of this size.
2051  */
2052 static int
2053 safe_dmamap_uniform(const struct safe_operand *op)
2054 {
2055         int result = 1;
2056
2057         if (op->nsegs > 0) {
2058                 int i;
2059
2060                 for (i = 0; i < op->nsegs-1; i++) {
2061                         if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2062                                 return (0);
2063                         if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2064                                 result = 2;
2065                 }
2066         }
2067         return (result);
2068 }
2069
2070 #ifdef SAFE_DEBUG
2071 static void
2072 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2073 {
2074         printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2075                 , tag
2076                 , READ_REG(sc, SAFE_DMA_ENDIAN)
2077                 , READ_REG(sc, SAFE_DMA_SRCADDR)
2078                 , READ_REG(sc, SAFE_DMA_DSTADDR)
2079                 , READ_REG(sc, SAFE_DMA_STAT)
2080         );
2081 }
2082
2083 static void
2084 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2085 {
2086         printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2087                 , tag
2088                 , READ_REG(sc, SAFE_HI_CFG)
2089                 , READ_REG(sc, SAFE_HI_MASK)
2090                 , READ_REG(sc, SAFE_HI_DESC_CNT)
2091                 , READ_REG(sc, SAFE_HU_STAT)
2092                 , READ_REG(sc, SAFE_HM_STAT)
2093         );
2094 }
2095
2096 static void
2097 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2098 {
2099         u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2100
2101         /* NB: assume caller has lock on ring */
2102         printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2103                 tag,
2104                 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2105                 (unsigned long)(sc->sc_back - sc->sc_ring),
2106                 (unsigned long)(sc->sc_front - sc->sc_ring));
2107 }
2108
2109 static void
2110 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2111 {
2112         int ix, nsegs;
2113
2114         ix = re - sc->sc_ring;
2115         printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2116                 , tag
2117                 , re, ix
2118                 , re->re_desc.d_csr
2119                 , re->re_desc.d_src
2120                 , re->re_desc.d_dst
2121                 , re->re_desc.d_sa
2122                 , re->re_desc.d_len
2123         );
2124         if (re->re_src.nsegs > 1) {
2125                 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2126                         sizeof(struct safe_pdesc);
2127                 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2128                         printf(" spd[%u] %p: %p size %u flags %x"
2129                                 , ix, &sc->sc_spring[ix]
2130                                 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2131                                 , sc->sc_spring[ix].pd_size
2132                                 , sc->sc_spring[ix].pd_flags
2133                         );
2134                         if (sc->sc_spring[ix].pd_size == 0)
2135                                 printf(" (zero!)");
2136                         printf("\n");
2137                         if (++ix == SAFE_TOTAL_SPART)
2138                                 ix = 0;
2139                 }
2140         }
2141         if (re->re_dst.nsegs > 1) {
2142                 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2143                         sizeof(struct safe_pdesc);
2144                 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2145                         printf(" dpd[%u] %p: %p flags %x\n"
2146                                 , ix, &sc->sc_dpring[ix]
2147                                 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2148                                 , sc->sc_dpring[ix].pd_flags
2149                         );
2150                         if (++ix == SAFE_TOTAL_DPART)
2151                                 ix = 0;
2152                 }
2153         }
2154         printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2155                 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2156         printf("sa: key %x %x %x %x %x %x %x %x\n"
2157                 , re->re_sa.sa_key[0]
2158                 , re->re_sa.sa_key[1]
2159                 , re->re_sa.sa_key[2]
2160                 , re->re_sa.sa_key[3]
2161                 , re->re_sa.sa_key[4]
2162                 , re->re_sa.sa_key[5]
2163                 , re->re_sa.sa_key[6]
2164                 , re->re_sa.sa_key[7]
2165         );
2166         printf("sa: indigest %x %x %x %x %x\n"
2167                 , re->re_sa.sa_indigest[0]
2168                 , re->re_sa.sa_indigest[1]
2169                 , re->re_sa.sa_indigest[2]
2170                 , re->re_sa.sa_indigest[3]
2171                 , re->re_sa.sa_indigest[4]
2172         );
2173         printf("sa: outdigest %x %x %x %x %x\n"
2174                 , re->re_sa.sa_outdigest[0]
2175                 , re->re_sa.sa_outdigest[1]
2176                 , re->re_sa.sa_outdigest[2]
2177                 , re->re_sa.sa_outdigest[3]
2178                 , re->re_sa.sa_outdigest[4]
2179         );
2180         printf("sr: iv %x %x %x %x\n"
2181                 , re->re_sastate.sa_saved_iv[0]
2182                 , re->re_sastate.sa_saved_iv[1]
2183                 , re->re_sastate.sa_saved_iv[2]
2184                 , re->re_sastate.sa_saved_iv[3]
2185         );
2186         printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2187                 , re->re_sastate.sa_saved_hashbc
2188                 , re->re_sastate.sa_saved_indigest[0]
2189                 , re->re_sastate.sa_saved_indigest[1]
2190                 , re->re_sastate.sa_saved_indigest[2]
2191                 , re->re_sastate.sa_saved_indigest[3]
2192                 , re->re_sastate.sa_saved_indigest[4]
2193         );
2194 }
2195
2196 static void
2197 safe_dump_ring(struct safe_softc *sc, const char *tag)
2198 {
2199         mtx_lock(&sc->sc_ringmtx);
2200         printf("\nSafeNet Ring State:\n");
2201         safe_dump_intrstate(sc, tag);
2202         safe_dump_dmastatus(sc, tag);
2203         safe_dump_ringstate(sc, tag);
2204         if (sc->sc_nqchip) {
2205                 struct safe_ringentry *re = sc->sc_back;
2206                 do {
2207                         safe_dump_request(sc, tag, re);
2208                         if (++re == sc->sc_ringtop)
2209                                 re = sc->sc_ring;
2210                 } while (re != sc->sc_front);
2211         }
2212         mtx_unlock(&sc->sc_ringmtx);
2213 }
2214
2215 static int
2216 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2217 {
2218         char dmode[64];
2219         int error;
2220
2221         strncpy(dmode, "", sizeof(dmode) - 1);
2222         dmode[sizeof(dmode) - 1] = '\0';
2223         error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2224
2225         if (error == 0 && req->newptr != NULL) {
2226                 struct safe_softc *sc = safec;
2227
2228                 if (!sc)
2229                         return EINVAL;
2230                 if (strncmp(dmode, "dma", 3) == 0)
2231                         safe_dump_dmastatus(sc, "safe0");
2232                 else if (strncmp(dmode, "int", 3) == 0)
2233                         safe_dump_intrstate(sc, "safe0");
2234                 else if (strncmp(dmode, "ring", 4) == 0)
2235                         safe_dump_ring(sc, "safe0");
2236                 else
2237                         return EINVAL;
2238         }
2239         return error;
2240 }
2241 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2242         0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2243 #endif /* SAFE_DEBUG */