]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/sge/if_sge.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / sge / if_sge.c
1 /*-
2  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
3  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
4  * Copyright (c) 1997, 1998, 1999
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
26  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33  * OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_vlan_var.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79
80 #include <machine/bus.h>
81 #include <machine/in_cksum.h>
82
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88
89 #include <dev/sge/if_sgereg.h>
90
91 MODULE_DEPEND(sge, pci, 1, 1, 1);
92 MODULE_DEPEND(sge, ether, 1, 1, 1);
93 MODULE_DEPEND(sge, miibus, 1, 1, 1);
94
95 /* "device miibus0" required.  See GENERIC if you get errors here. */
96 #include "miibus_if.h"
97
98 /*
99  * Various supported device vendors/types and their names.
100  */
101 static struct sge_type sge_devs[] = {
102         { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
103         { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
104         { 0, 0, NULL }
105 };
106
107 static int      sge_probe(device_t);
108 static int      sge_attach(device_t);
109 static int      sge_detach(device_t);
110 static int      sge_shutdown(device_t);
111 static int      sge_suspend(device_t);
112 static int      sge_resume(device_t);
113
114 static int      sge_miibus_readreg(device_t, int, int);
115 static int      sge_miibus_writereg(device_t, int, int, int);
116 static void     sge_miibus_statchg(device_t);
117
118 static int      sge_newbuf(struct sge_softc *, int);
119 static int      sge_encap(struct sge_softc *, struct mbuf **);
120 static __inline void
121                 sge_discard_rxbuf(struct sge_softc *, int);
122 static void     sge_rxeof(struct sge_softc *);
123 static void     sge_txeof(struct sge_softc *);
124 static void     sge_intr(void *);
125 static void     sge_tick(void *);
126 static void     sge_start(struct ifnet *);
127 static void     sge_start_locked(struct ifnet *);
128 static int      sge_ioctl(struct ifnet *, u_long, caddr_t);
129 static void     sge_init(void *);
130 static void     sge_init_locked(struct sge_softc *);
131 static void     sge_stop(struct sge_softc *);
132 static void     sge_watchdog(struct sge_softc *);
133 static int      sge_ifmedia_upd(struct ifnet *);
134 static void     sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
135
136 static int      sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
137 static int      sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
138 static uint16_t sge_read_eeprom(struct sge_softc *, int);
139
140 static void     sge_rxfilter(struct sge_softc *);
141 static void     sge_setvlan(struct sge_softc *);
142 static void     sge_reset(struct sge_softc *);
143 static int      sge_list_rx_init(struct sge_softc *);
144 static int      sge_list_rx_free(struct sge_softc *);
145 static int      sge_list_tx_init(struct sge_softc *);
146 static int      sge_list_tx_free(struct sge_softc *);
147
148 static int      sge_dma_alloc(struct sge_softc *);
149 static void     sge_dma_free(struct sge_softc *);
150 static void     sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
151
152 static device_method_t sge_methods[] = {
153         /* Device interface */
154         DEVMETHOD(device_probe,         sge_probe),
155         DEVMETHOD(device_attach,        sge_attach),
156         DEVMETHOD(device_detach,        sge_detach),
157         DEVMETHOD(device_suspend,       sge_suspend),
158         DEVMETHOD(device_resume,        sge_resume),
159         DEVMETHOD(device_shutdown,      sge_shutdown),
160
161         /* MII interface */
162         DEVMETHOD(miibus_readreg,       sge_miibus_readreg),
163         DEVMETHOD(miibus_writereg,      sge_miibus_writereg),
164         DEVMETHOD(miibus_statchg,       sge_miibus_statchg),
165
166         DEVMETHOD_END
167 };
168
169 static driver_t sge_driver = {
170         "sge", sge_methods, sizeof(struct sge_softc)
171 };
172
173 static devclass_t sge_devclass;
174
175 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
176 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
177
178 /*
179  * Register space access macros.
180  */
181 #define CSR_WRITE_4(sc, reg, val)       bus_write_4(sc->sge_res, reg, val)
182 #define CSR_WRITE_2(sc, reg, val)       bus_write_2(sc->sge_res, reg, val)
183 #define CSR_WRITE_1(cs, reg, val)       bus_write_1(sc->sge_res, reg, val)
184
185 #define CSR_READ_4(sc, reg)             bus_read_4(sc->sge_res, reg)
186 #define CSR_READ_2(sc, reg)             bus_read_2(sc->sge_res, reg)
187 #define CSR_READ_1(sc, reg)             bus_read_1(sc->sge_res, reg)
188
189 /* Define to show Tx/Rx error status. */
190 #undef SGE_SHOW_ERRORS
191
192 #define SGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
193
194 static void
195 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
196 {
197         bus_addr_t *p;
198
199         if (error != 0)
200                 return;
201         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
202         p  = arg;
203         *p = segs->ds_addr;
204 }
205
206 /*
207  * Read a sequence of words from the EEPROM.
208  */
209 static uint16_t
210 sge_read_eeprom(struct sge_softc *sc, int offset)
211 {
212         uint32_t val;
213         int i;
214
215         KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
216         CSR_WRITE_4(sc, ROMInterface,
217             EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
218         DELAY(500);
219         for (i = 0; i < SGE_TIMEOUT; i++) {
220                 val = CSR_READ_4(sc, ROMInterface);
221                 if ((val & EI_REQ) == 0)
222                         break;
223                 DELAY(100);
224         }
225         if (i == SGE_TIMEOUT) {
226                 device_printf(sc->sge_dev,
227                     "EEPROM read timeout : 0x%08x\n", val);
228                 return (0xffff);
229         }
230
231         return ((val & EI_DATA) >> EI_DATA_SHIFT);
232 }
233
234 static int
235 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
236 {
237         uint16_t val;
238         int i;
239
240         val = sge_read_eeprom(sc, EEPROMSignature);
241         if (val == 0xffff || val == 0) {
242                 device_printf(sc->sge_dev,
243                     "invalid EEPROM signature : 0x%04x\n", val);
244                 return (EINVAL);
245         }
246
247         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
248                 val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
249                 dest[i + 0] = (uint8_t)val;
250                 dest[i + 1] = (uint8_t)(val >> 8);
251         }
252
253         if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
254                 sc->sge_flags |= SGE_FLAG_RGMII;
255         return (0);
256 }
257
258 /*
259  * For SiS96x, APC CMOS RAM is used to store ethernet address.
260  * APC CMOS RAM is accessed through ISA bridge.
261  */
262 static int
263 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
264 {
265 #if defined(__amd64__) || defined(__i386__)
266         devclass_t pci;
267         device_t bus, dev = NULL;
268         device_t *kids;
269         struct apc_tbl {
270                 uint16_t vid;
271                 uint16_t did;
272         } *tp, apc_tbls[] = {
273                 { SIS_VENDORID, 0x0965 },
274                 { SIS_VENDORID, 0x0966 },
275                 { SIS_VENDORID, 0x0968 }
276         };
277         uint8_t reg;
278         int busnum, cnt, i, j, numkids;
279
280         cnt = sizeof(apc_tbls) / sizeof(apc_tbls[0]);
281         pci = devclass_find("pci");
282         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
283                 bus = devclass_get_device(pci, busnum);
284                 if (!bus)
285                         continue;
286                 if (device_get_children(bus, &kids, &numkids) != 0)
287                         continue;
288                 for (i = 0; i < numkids; i++) {
289                         dev = kids[i];
290                         if (pci_get_class(dev) == PCIC_BRIDGE &&
291                             pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
292                                 tp = apc_tbls;
293                                 for (j = 0; j < cnt; j++) {
294                                         if (pci_get_vendor(dev) == tp->vid &&
295                                             pci_get_device(dev) == tp->did) {
296                                                 free(kids, M_TEMP);
297                                                 goto apc_found;
298                                         }
299                                         tp++;
300                                 }
301                         }
302                 }
303                 free(kids, M_TEMP);
304         }
305         device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
306         return (EINVAL);
307 apc_found:
308         /* Enable port 0x78 and 0x79 to access APC registers. */
309         reg = pci_read_config(dev, 0x48, 1);
310         pci_write_config(dev, 0x48, reg & ~0x02, 1);
311         DELAY(50);
312         pci_read_config(dev, 0x48, 1);
313         /* Read stored ethernet address. */
314         for (i = 0; i < ETHER_ADDR_LEN; i++) {
315                 outb(0x78, 0x09 + i);
316                 dest[i] = inb(0x79);
317         }
318         outb(0x78, 0x12);
319         if ((inb(0x79) & 0x80) != 0)
320                 sc->sge_flags |= SGE_FLAG_RGMII;
321         /* Restore access to APC registers. */
322         pci_write_config(dev, 0x48, reg, 1);
323
324         return (0);
325 #else
326         return (EINVAL);
327 #endif
328 }
329
330 static int
331 sge_miibus_readreg(device_t dev, int phy, int reg)
332 {
333         struct sge_softc *sc;
334         uint32_t val;
335         int i;
336
337         sc = device_get_softc(dev);
338         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
339             (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
340         DELAY(10);
341         for (i = 0; i < SGE_TIMEOUT; i++) {
342                 val = CSR_READ_4(sc, GMIIControl);
343                 if ((val & GMI_REQ) == 0)
344                         break;
345                 DELAY(10);
346         }
347         if (i == SGE_TIMEOUT) {
348                 device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
349                 return (0);
350         }
351         return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
352 }
353
354 static int
355 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
356 {
357         struct sge_softc *sc;
358         uint32_t val;
359         int i;
360
361         sc = device_get_softc(dev);
362         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
363             (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
364             GMI_OP_WR | GMI_REQ);
365         DELAY(10);
366         for (i = 0; i < SGE_TIMEOUT; i++) {
367                 val = CSR_READ_4(sc, GMIIControl);
368                 if ((val & GMI_REQ) == 0)
369                         break;
370                 DELAY(10);
371         }
372         if (i == SGE_TIMEOUT)
373                 device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
374         return (0);
375 }
376
377 static void
378 sge_miibus_statchg(device_t dev)
379 {
380         struct sge_softc *sc;
381         struct mii_data *mii;
382         struct ifnet *ifp;
383         uint32_t ctl, speed;
384
385         sc = device_get_softc(dev);
386         mii = device_get_softc(sc->sge_miibus);
387         ifp = sc->sge_ifp;
388         if (mii == NULL || ifp == NULL ||
389             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
390                 return;
391         speed = 0;
392         sc->sge_flags &= ~SGE_FLAG_LINK;
393         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
394             (IFM_ACTIVE | IFM_AVALID)) {
395                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
396                 case IFM_10_T:
397                         sc->sge_flags |= SGE_FLAG_LINK;
398                         speed = SC_SPEED_10;
399                         break;
400                 case IFM_100_TX:
401                         sc->sge_flags |= SGE_FLAG_LINK;
402                         speed = SC_SPEED_100;
403                         break;
404                 case IFM_1000_T:
405                         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
406                                 sc->sge_flags |= SGE_FLAG_LINK;
407                                 speed = SC_SPEED_1000;
408                         }
409                         break;
410                 default:
411                         break;
412                 }
413         }
414         if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
415                 return;
416         /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
417         ctl = CSR_READ_4(sc, StationControl);
418         ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
419         if (speed == SC_SPEED_1000) {
420                 ctl |= 0x07000000;
421                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
422         } else {
423                 ctl |= 0x04000000;
424                 sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
425         }
426 #ifdef notyet
427         if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
428                 ctl |= 0x03000000;
429 #endif
430         ctl |= speed;
431         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
432                 ctl |= SC_FDX;
433                 sc->sge_flags |= SGE_FLAG_FDX;
434         } else
435                 sc->sge_flags &= ~SGE_FLAG_FDX;
436         CSR_WRITE_4(sc, StationControl, ctl);
437         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
438                 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
439                 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
440         }
441 }
442
443 static void
444 sge_rxfilter(struct sge_softc *sc)
445 {
446         struct ifnet *ifp;
447         struct ifmultiaddr *ifma;
448         uint32_t crc, hashes[2];
449         uint16_t rxfilt;
450
451         SGE_LOCK_ASSERT(sc);
452
453         ifp = sc->sge_ifp;
454         rxfilt = CSR_READ_2(sc, RxMacControl);
455         rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
456         rxfilt |= AcceptMyPhys;
457         if ((ifp->if_flags & IFF_BROADCAST) != 0)
458                 rxfilt |= AcceptBroadcast;
459         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
460                 if ((ifp->if_flags & IFF_PROMISC) != 0)
461                         rxfilt |= AcceptAllPhys;
462                 rxfilt |= AcceptMulticast;
463                 hashes[0] = 0xFFFFFFFF;
464                 hashes[1] = 0xFFFFFFFF;
465         } else {
466                 rxfilt |= AcceptMulticast;
467                 hashes[0] = hashes[1] = 0;
468                 /* Now program new ones. */
469                 if_maddr_rlock(ifp);
470                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
471                         if (ifma->ifma_addr->sa_family != AF_LINK)
472                                 continue;
473                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
474                             ifma->ifma_addr), ETHER_ADDR_LEN);
475                         hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
476                 }
477                 if_maddr_runlock(ifp);
478         }
479         CSR_WRITE_2(sc, RxMacControl, rxfilt);
480         CSR_WRITE_4(sc, RxHashTable, hashes[0]);
481         CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
482 }
483
484 static void
485 sge_setvlan(struct sge_softc *sc)
486 {
487         struct ifnet *ifp;
488         uint16_t rxfilt;
489
490         SGE_LOCK_ASSERT(sc);
491
492         ifp = sc->sge_ifp;
493         if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
494                 return;
495         rxfilt = CSR_READ_2(sc, RxMacControl);
496         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
497                 rxfilt |= RXMAC_STRIP_VLAN;
498         else
499                 rxfilt &= ~RXMAC_STRIP_VLAN;
500         CSR_WRITE_2(sc, RxMacControl, rxfilt);
501 }
502
503 static void
504 sge_reset(struct sge_softc *sc)
505 {
506
507         CSR_WRITE_4(sc, IntrMask, 0);
508         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
509
510         /* Soft reset. */
511         CSR_WRITE_4(sc, IntrControl, 0x8000);
512         CSR_READ_4(sc, IntrControl);
513         DELAY(100);
514         CSR_WRITE_4(sc, IntrControl, 0);
515         /* Stop MAC. */
516         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
517         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
518
519         CSR_WRITE_4(sc, IntrMask, 0);
520         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
521
522         CSR_WRITE_4(sc, GMIIControl, 0);
523 }
524
525 /*
526  * Probe for an SiS chip. Check the PCI vendor and device
527  * IDs against our list and return a device name if we find a match.
528  */
529 static int
530 sge_probe(device_t dev)
531 {
532         struct sge_type *t;
533
534         t = sge_devs;
535         while (t->sge_name != NULL) {
536                 if ((pci_get_vendor(dev) == t->sge_vid) &&
537                     (pci_get_device(dev) == t->sge_did)) {
538                         device_set_desc(dev, t->sge_name);
539                         return (BUS_PROBE_DEFAULT);
540                 }
541                 t++;
542         }
543
544         return (ENXIO);
545 }
546
547 /*
548  * Attach the interface.  Allocate softc structures, do ifmedia
549  * setup and ethernet/BPF attach.
550  */
551 static int
552 sge_attach(device_t dev)
553 {
554         struct sge_softc *sc;
555         struct ifnet *ifp;
556         uint8_t eaddr[ETHER_ADDR_LEN];
557         int error = 0, rid;
558
559         sc = device_get_softc(dev);
560         sc->sge_dev = dev;
561
562         mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
563             MTX_DEF);
564         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
565
566         /*
567          * Map control/status registers.
568          */
569         pci_enable_busmaster(dev);
570
571         /* Allocate resources. */
572         sc->sge_res_id = PCIR_BAR(0);
573         sc->sge_res_type = SYS_RES_MEMORY;
574         sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
575             &sc->sge_res_id, RF_ACTIVE);
576         if (sc->sge_res == NULL) {
577                 device_printf(dev, "couldn't allocate resource\n");
578                 error = ENXIO;
579                 goto fail;
580         }
581
582         rid = 0;
583         sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
584             RF_SHAREABLE | RF_ACTIVE);
585         if (sc->sge_irq == NULL) {
586                 device_printf(dev, "couldn't allocate IRQ resources\n");
587                 error = ENXIO;
588                 goto fail;
589         }
590         sc->sge_rev = pci_get_revid(dev);
591         if (pci_get_device(dev) == SIS_DEVICEID_190)
592                 sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
593         /* Reset the adapter. */
594         sge_reset(sc);
595
596         /* Get MAC address from the EEPROM. */
597         if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
598                 sge_get_mac_addr_apc(sc, eaddr);
599         else
600                 sge_get_mac_addr_eeprom(sc, eaddr);
601
602         if ((error = sge_dma_alloc(sc)) != 0)
603                 goto fail;
604
605         ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
606         if (ifp == NULL) {
607                 device_printf(dev, "cannot allocate ifnet structure.\n");
608                 error = ENOSPC;
609                 goto fail;
610         }
611         ifp->if_softc = sc;
612         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
613         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
614         ifp->if_ioctl = sge_ioctl;
615         ifp->if_start = sge_start;
616         ifp->if_init = sge_init;
617         ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
618         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
619         IFQ_SET_READY(&ifp->if_snd);
620         ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
621         ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
622         ifp->if_capenable = ifp->if_capabilities;
623         /*
624          * Do MII setup.
625          */
626         error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
627             sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
628         if (error != 0) {
629                 device_printf(dev, "attaching PHYs failed\n");
630                 goto fail;
631         }
632
633         /*
634          * Call MI attach routine.
635          */
636         ether_ifattach(ifp, eaddr);
637
638         /* VLAN setup. */
639         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
640             IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
641         ifp->if_capenable = ifp->if_capabilities;
642         /* Tell the upper layer(s) we support long frames. */
643         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
644
645         /* Hook interrupt last to avoid having to lock softc */
646         error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
647             NULL, sge_intr, sc, &sc->sge_intrhand);
648         if (error) {
649                 device_printf(dev, "couldn't set up irq\n");
650                 ether_ifdetach(ifp);
651                 goto fail;
652         }
653
654 fail:
655         if (error)
656                 sge_detach(dev);
657
658         return (error);
659 }
660
661 /*
662  * Shutdown hardware and free up resources.  This can be called any
663  * time after the mutex has been initialized.  It is called in both
664  * the error case in attach and the normal detach case so it needs
665  * to be careful about only freeing resources that have actually been
666  * allocated.
667  */
668 static int
669 sge_detach(device_t dev)
670 {
671         struct sge_softc *sc;
672         struct ifnet *ifp;
673
674         sc = device_get_softc(dev);
675         ifp = sc->sge_ifp;
676         /* These should only be active if attach succeeded. */
677         if (device_is_attached(dev)) {
678                 ether_ifdetach(ifp);
679                 SGE_LOCK(sc);
680                 sge_stop(sc);
681                 SGE_UNLOCK(sc);
682                 callout_drain(&sc->sge_stat_ch);
683         }
684         if (sc->sge_miibus)
685                 device_delete_child(dev, sc->sge_miibus);
686         bus_generic_detach(dev);
687
688         if (sc->sge_intrhand)
689                 bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
690         if (sc->sge_irq)
691                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
692         if (sc->sge_res)
693                 bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
694                     sc->sge_res);
695         if (ifp)
696                 if_free(ifp);
697         sge_dma_free(sc);
698         mtx_destroy(&sc->sge_mtx);
699
700         return (0);
701 }
702
703 /*
704  * Stop all chip I/O so that the kernel's probe routines don't
705  * get confused by errant DMAs when rebooting.
706  */
707 static int
708 sge_shutdown(device_t dev)
709 {
710         struct sge_softc *sc;
711
712         sc = device_get_softc(dev);
713         SGE_LOCK(sc);
714         sge_stop(sc);
715         SGE_UNLOCK(sc);
716         return (0);
717 }
718
719 static int
720 sge_suspend(device_t dev)
721 {
722         struct sge_softc *sc;
723         struct ifnet *ifp;
724
725         sc = device_get_softc(dev);
726         SGE_LOCK(sc);
727         ifp = sc->sge_ifp;
728         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
729                 sge_stop(sc);
730         SGE_UNLOCK(sc);
731         return (0);
732 }
733
734 static int
735 sge_resume(device_t dev)
736 {
737         struct sge_softc *sc;
738         struct ifnet *ifp;
739
740         sc = device_get_softc(dev);
741         SGE_LOCK(sc);
742         ifp = sc->sge_ifp;
743         if ((ifp->if_flags & IFF_UP) != 0)
744                 sge_init_locked(sc);
745         SGE_UNLOCK(sc);
746         return (0);
747 }
748
749 static int
750 sge_dma_alloc(struct sge_softc *sc)
751 {
752         struct sge_chain_data *cd;
753         struct sge_list_data *ld;
754         struct sge_rxdesc *rxd;
755         struct sge_txdesc *txd;
756         int error, i;
757
758         cd = &sc->sge_cdata;
759         ld = &sc->sge_ldata;
760         error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
761             1, 0,                       /* alignment, boundary */
762             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
763             BUS_SPACE_MAXADDR,          /* highaddr */
764             NULL, NULL,                 /* filter, filterarg */
765             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
766             1,                          /* nsegments */
767             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
768             0,                          /* flags */
769             NULL,                       /* lockfunc */
770             NULL,                       /* lockarg */
771             &cd->sge_tag);
772         if (error != 0) {
773                 device_printf(sc->sge_dev,
774                     "could not create parent DMA tag.\n");
775                 goto fail;
776         }
777
778         /* RX descriptor ring */
779         error = bus_dma_tag_create(cd->sge_tag,
780             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
781             BUS_SPACE_MAXADDR,          /* lowaddr */
782             BUS_SPACE_MAXADDR,          /* highaddr */
783             NULL, NULL,                 /* filter, filterarg */
784             SGE_RX_RING_SZ, 1,          /* maxsize,nsegments */
785             SGE_RX_RING_SZ,             /* maxsegsize */
786             0,                          /* flags */
787             NULL,                       /* lockfunc */
788             NULL,                       /* lockarg */
789             &cd->sge_rx_tag);
790         if (error != 0) {
791                 device_printf(sc->sge_dev,
792                     "could not create Rx ring DMA tag.\n");
793                 goto fail;
794         }
795         /* Allocate DMA'able memory and load DMA map for RX ring. */
796         error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
797             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
798             &cd->sge_rx_dmamap);
799         if (error != 0) {
800                 device_printf(sc->sge_dev,
801                     "could not allocate DMA'able memory for Rx ring.\n");
802                 goto fail;
803         }
804         error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
805             ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
806             &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
807         if (error != 0) {
808                 device_printf(sc->sge_dev,
809                     "could not load DMA'able memory for Rx ring.\n");
810         }
811
812         /* TX descriptor ring */
813         error = bus_dma_tag_create(cd->sge_tag,
814             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
815             BUS_SPACE_MAXADDR,          /* lowaddr */
816             BUS_SPACE_MAXADDR,          /* highaddr */
817             NULL, NULL,                 /* filter, filterarg */
818             SGE_TX_RING_SZ, 1,          /* maxsize,nsegments */
819             SGE_TX_RING_SZ,             /* maxsegsize */
820             0,                          /* flags */
821             NULL,                       /* lockfunc */
822             NULL,                       /* lockarg */
823             &cd->sge_tx_tag);
824         if (error != 0) {
825                 device_printf(sc->sge_dev,
826                     "could not create Rx ring DMA tag.\n");
827                 goto fail;
828         }
829         /* Allocate DMA'able memory and load DMA map for TX ring. */
830         error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
831             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
832             &cd->sge_tx_dmamap);
833         if (error != 0) {
834                 device_printf(sc->sge_dev,
835                     "could not allocate DMA'able memory for Tx ring.\n");
836                 goto fail;
837         }
838         error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
839             ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
840             &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
841         if (error != 0) {
842                 device_printf(sc->sge_dev,
843                     "could not load DMA'able memory for Rx ring.\n");
844                 goto fail;
845         }
846
847         /* Create DMA tag for Tx buffers. */
848         error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
849             BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
850             SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
851         if (error != 0) {
852                 device_printf(sc->sge_dev,
853                     "could not create Tx mbuf DMA tag.\n");
854                 goto fail;
855         }
856
857         /* Create DMA tag for Rx buffers. */
858         error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
859             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
860             MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
861         if (error != 0) {
862                 device_printf(sc->sge_dev,
863                     "could not create Rx mbuf DMA tag.\n");
864                 goto fail;
865         }
866
867         /* Create DMA maps for Tx buffers. */
868         for (i = 0; i < SGE_TX_RING_CNT; i++) {
869                 txd = &cd->sge_txdesc[i];
870                 txd->tx_m = NULL;
871                 txd->tx_dmamap = NULL;
872                 txd->tx_ndesc = 0;
873                 error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
874                     &txd->tx_dmamap);
875                 if (error != 0) {
876                         device_printf(sc->sge_dev,
877                             "could not create Tx DMA map.\n");
878                         goto fail;
879                 }
880         }
881         /* Create spare DMA map for Rx buffer. */
882         error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
883         if (error != 0) {
884                 device_printf(sc->sge_dev,
885                     "could not create spare Rx DMA map.\n");
886                 goto fail;
887         }
888         /* Create DMA maps for Rx buffers. */
889         for (i = 0; i < SGE_RX_RING_CNT; i++) {
890                 rxd = &cd->sge_rxdesc[i];
891                 rxd->rx_m = NULL;
892                 rxd->rx_dmamap = NULL;
893                 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
894                     &rxd->rx_dmamap);
895                 if (error) {
896                         device_printf(sc->sge_dev,
897                             "could not create Rx DMA map.\n");
898                         goto fail;
899                 }
900         }
901 fail:
902         return (error);
903 }
904
905 static void
906 sge_dma_free(struct sge_softc *sc)
907 {
908         struct sge_chain_data *cd;
909         struct sge_list_data *ld;
910         struct sge_rxdesc *rxd;
911         struct sge_txdesc *txd;
912         int i;
913
914         cd = &sc->sge_cdata;
915         ld = &sc->sge_ldata;
916         /* Rx ring. */
917         if (cd->sge_rx_tag != NULL) {
918                 if (cd->sge_rx_dmamap != NULL)
919                         bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
920                 if (cd->sge_rx_dmamap != NULL && ld->sge_rx_ring != NULL)
921                         bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
922                             cd->sge_rx_dmamap);
923                 ld->sge_rx_ring = NULL;
924                 cd->sge_rx_dmamap = NULL;
925                 bus_dma_tag_destroy(cd->sge_rx_tag);
926                 cd->sge_rx_tag = NULL;
927         }
928         /* Tx ring. */
929         if (cd->sge_tx_tag != NULL) {
930                 if (cd->sge_tx_dmamap != NULL)
931                         bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
932                 if (cd->sge_tx_dmamap != NULL && ld->sge_tx_ring != NULL)
933                         bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
934                             cd->sge_tx_dmamap);
935                 ld->sge_tx_ring = NULL;
936                 cd->sge_tx_dmamap = NULL;
937                 bus_dma_tag_destroy(cd->sge_tx_tag);
938                 cd->sge_tx_tag = NULL;
939         }
940         /* Rx buffers. */
941         if (cd->sge_rxmbuf_tag != NULL) {
942                 for (i = 0; i < SGE_RX_RING_CNT; i++) {
943                         rxd = &cd->sge_rxdesc[i];
944                         if (rxd->rx_dmamap != NULL) {
945                                 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
946                                     rxd->rx_dmamap);
947                                 rxd->rx_dmamap = NULL;
948                         }
949                 }
950                 if (cd->sge_rx_spare_map != NULL) {
951                         bus_dmamap_destroy(cd->sge_rxmbuf_tag,
952                             cd->sge_rx_spare_map);
953                         cd->sge_rx_spare_map = NULL;
954                 }
955                 bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
956                 cd->sge_rxmbuf_tag = NULL;
957         }
958         /* Tx buffers. */
959         if (cd->sge_txmbuf_tag != NULL) {
960                 for (i = 0; i < SGE_TX_RING_CNT; i++) {
961                         txd = &cd->sge_txdesc[i];
962                         if (txd->tx_dmamap != NULL) {
963                                 bus_dmamap_destroy(cd->sge_txmbuf_tag,
964                                     txd->tx_dmamap);
965                                 txd->tx_dmamap = NULL;
966                         }
967                 }
968                 bus_dma_tag_destroy(cd->sge_txmbuf_tag);
969                 cd->sge_txmbuf_tag = NULL;
970         }
971         if (cd->sge_tag != NULL)
972                 bus_dma_tag_destroy(cd->sge_tag);
973         cd->sge_tag = NULL;
974 }
975
976 /*
977  * Initialize the TX descriptors.
978  */
979 static int
980 sge_list_tx_init(struct sge_softc *sc)
981 {
982         struct sge_list_data *ld;
983         struct sge_chain_data *cd;
984
985         SGE_LOCK_ASSERT(sc);
986         ld = &sc->sge_ldata;
987         cd = &sc->sge_cdata;
988         bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
989         ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
990         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
991             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
992         cd->sge_tx_prod = 0;
993         cd->sge_tx_cons = 0;
994         cd->sge_tx_cnt = 0;
995         return (0);
996 }
997
998 static int
999 sge_list_tx_free(struct sge_softc *sc)
1000 {
1001         struct sge_chain_data *cd;
1002         struct sge_txdesc *txd;
1003         int i;
1004
1005         SGE_LOCK_ASSERT(sc);
1006         cd = &sc->sge_cdata;
1007         for (i = 0; i < SGE_TX_RING_CNT; i++) {
1008                 txd = &cd->sge_txdesc[i];
1009                 if (txd->tx_m != NULL) {
1010                         bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1011                             BUS_DMASYNC_POSTWRITE);
1012                         bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1013                         m_freem(txd->tx_m);
1014                         txd->tx_m = NULL;
1015                         txd->tx_ndesc = 0;
1016                 }
1017         }
1018
1019         return (0);
1020 }
1021
1022 /*
1023  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1024  * we arrange the descriptors in a closed ring, so that the last descriptor
1025  * has RING_END flag set.
1026  */
1027 static int
1028 sge_list_rx_init(struct sge_softc *sc)
1029 {
1030         struct sge_chain_data *cd;
1031         int i;
1032
1033         SGE_LOCK_ASSERT(sc);
1034         cd = &sc->sge_cdata;
1035         cd->sge_rx_cons = 0;
1036         bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1037         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1038                 if (sge_newbuf(sc, i) != 0)
1039                         return (ENOBUFS);
1040         }
1041         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1042             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1043         return (0);
1044 }
1045
1046 static int
1047 sge_list_rx_free(struct sge_softc *sc)
1048 {
1049         struct sge_chain_data *cd;
1050         struct sge_rxdesc *rxd;
1051         int i;
1052
1053         SGE_LOCK_ASSERT(sc);
1054         cd = &sc->sge_cdata;
1055         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1056                 rxd = &cd->sge_rxdesc[i];
1057                 if (rxd->rx_m != NULL) {
1058                         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1059                             BUS_DMASYNC_POSTREAD);
1060                         bus_dmamap_unload(cd->sge_rxmbuf_tag,
1061                             rxd->rx_dmamap);
1062                         m_freem(rxd->rx_m);
1063                         rxd->rx_m = NULL;
1064                 }
1065         }
1066         return (0);
1067 }
1068
1069 /*
1070  * Initialize an RX descriptor and attach an MBUF cluster.
1071  */
1072 static int
1073 sge_newbuf(struct sge_softc *sc, int prod)
1074 {
1075         struct mbuf *m;
1076         struct sge_desc *desc;
1077         struct sge_chain_data *cd;
1078         struct sge_rxdesc *rxd;
1079         bus_dma_segment_t segs[1];
1080         bus_dmamap_t map;
1081         int error, nsegs;
1082
1083         SGE_LOCK_ASSERT(sc);
1084
1085         cd = &sc->sge_cdata;
1086         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1087         if (m == NULL)
1088                 return (ENOBUFS);
1089         m->m_len = m->m_pkthdr.len = MCLBYTES;
1090         m_adj(m, SGE_RX_BUF_ALIGN);
1091         error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1092             cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1093         if (error != 0) {
1094                 m_freem(m);
1095                 return (error);
1096         }
1097         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1098         rxd = &cd->sge_rxdesc[prod];
1099         if (rxd->rx_m != NULL) {
1100                 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1101                     BUS_DMASYNC_POSTREAD);
1102                 bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1103         }
1104         map = rxd->rx_dmamap;
1105         rxd->rx_dmamap = cd->sge_rx_spare_map;
1106         cd->sge_rx_spare_map = map;
1107         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1108             BUS_DMASYNC_PREREAD);
1109         rxd->rx_m = m;
1110
1111         desc = &sc->sge_ldata.sge_rx_ring[prod];
1112         desc->sge_sts_size = 0;
1113         desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1114         desc->sge_flags = htole32(segs[0].ds_len);
1115         if (prod == SGE_RX_RING_CNT - 1)
1116                 desc->sge_flags |= htole32(RING_END);
1117         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1118         return (0);
1119 }
1120
1121 static __inline void
1122 sge_discard_rxbuf(struct sge_softc *sc, int index)
1123 {
1124         struct sge_desc *desc;
1125
1126         desc = &sc->sge_ldata.sge_rx_ring[index];
1127         desc->sge_sts_size = 0;
1128         desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1129         if (index == SGE_RX_RING_CNT - 1)
1130                 desc->sge_flags |= htole32(RING_END);
1131         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1132 }
1133
1134 /*
1135  * A frame has been uploaded: pass the resulting mbuf chain up to
1136  * the higher level protocols.
1137  */
1138 static void
1139 sge_rxeof(struct sge_softc *sc)
1140 {
1141         struct ifnet *ifp;
1142         struct mbuf *m;
1143         struct sge_chain_data *cd;
1144         struct sge_desc *cur_rx;
1145         uint32_t rxinfo, rxstat;
1146         int cons, prog;
1147
1148         SGE_LOCK_ASSERT(sc);
1149
1150         ifp = sc->sge_ifp;
1151         cd = &sc->sge_cdata;
1152
1153         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1154             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1155         cons = cd->sge_rx_cons;
1156         for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1157             SGE_INC(cons, SGE_RX_RING_CNT)) {
1158                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1159                         break;
1160                 cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1161                 rxinfo = le32toh(cur_rx->sge_cmdsts);
1162                 if ((rxinfo & RDC_OWN) != 0)
1163                         break;
1164                 rxstat = le32toh(cur_rx->sge_sts_size);
1165                 if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1166                     SGE_RX_NSEGS(rxstat) != 1) {
1167                         /* XXX We don't support multi-segment frames yet. */
1168 #ifdef SGE_SHOW_ERRORS
1169                         device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1170                             RX_ERR_BITS);
1171 #endif
1172                         sge_discard_rxbuf(sc, cons);
1173                         ifp->if_ierrors++;
1174                         continue;
1175                 }
1176                 m = cd->sge_rxdesc[cons].rx_m;
1177                 if (sge_newbuf(sc, cons) != 0) {
1178                         sge_discard_rxbuf(sc, cons);
1179                         ifp->if_iqdrops++;
1180                         continue;
1181                 }
1182                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1183                         if ((rxinfo & RDC_IP_CSUM) != 0 &&
1184                             (rxinfo & RDC_IP_CSUM_OK) != 0)
1185                                 m->m_pkthdr.csum_flags |=
1186                                     CSUM_IP_CHECKED | CSUM_IP_VALID;
1187                         if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1188                             (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1189                             ((rxinfo & RDC_UDP_CSUM) != 0 &&
1190                             (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1191                                 m->m_pkthdr.csum_flags |=
1192                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1193                                 m->m_pkthdr.csum_data = 0xffff;
1194                         }
1195                 }
1196                 /* Check for VLAN tagged frame. */
1197                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1198                     (rxstat & RDS_VLAN) != 0) {
1199                         m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1200                         m->m_flags |= M_VLANTAG;
1201                 }
1202                 /*
1203                  * Account for 10bytes auto padding which is used
1204                  * to align IP header on 32bit boundary.  Also note,
1205                  * CRC bytes is automatically removed by the
1206                  * hardware.
1207                  */
1208                 m->m_data += SGE_RX_PAD_BYTES;
1209                 m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1210                     SGE_RX_PAD_BYTES;
1211                 m->m_pkthdr.rcvif = ifp;
1212                 ifp->if_ipackets++;
1213                 SGE_UNLOCK(sc);
1214                 (*ifp->if_input)(ifp, m);
1215                 SGE_LOCK(sc);
1216         }
1217
1218         if (prog > 0) {
1219                 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1220                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1221                 cd->sge_rx_cons = cons;
1222         }
1223 }
1224
1225 /*
1226  * A frame was downloaded to the chip.  It's safe for us to clean up
1227  * the list buffers.
1228  */
1229 static void
1230 sge_txeof(struct sge_softc *sc)
1231 {
1232         struct ifnet *ifp;
1233         struct sge_list_data *ld;
1234         struct sge_chain_data *cd;
1235         struct sge_txdesc *txd;
1236         uint32_t txstat;
1237         int cons, nsegs, prod;
1238
1239         SGE_LOCK_ASSERT(sc);
1240
1241         ifp = sc->sge_ifp;
1242         ld = &sc->sge_ldata;
1243         cd = &sc->sge_cdata;
1244
1245         if (cd->sge_tx_cnt == 0)
1246                 return;
1247         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1248             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1249         cons = cd->sge_tx_cons;
1250         prod = cd->sge_tx_prod;
1251         for (; cons != prod;) {
1252                 txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1253                 if ((txstat & TDC_OWN) != 0)
1254                         break;
1255                 /*
1256                  * Only the first descriptor of multi-descriptor transmission
1257                  * is updated by controller.  Driver should skip entire
1258                  * chained buffers for the transmitted frame. In other words
1259                  * TDC_OWN bit is valid only at the first descriptor of a
1260                  * multi-descriptor transmission.
1261                  */
1262                 if (SGE_TX_ERROR(txstat) != 0) {
1263 #ifdef SGE_SHOW_ERRORS
1264                         device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1265                             txstat, TX_ERR_BITS);
1266 #endif
1267                         ifp->if_oerrors++;
1268                 } else {
1269 #ifdef notyet
1270                         ifp->if_collisions += (txstat & 0xFFFF) - 1;
1271 #endif
1272                         ifp->if_opackets++;
1273                 }
1274                 txd = &cd->sge_txdesc[cons];
1275                 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1276                         ld->sge_tx_ring[cons].sge_cmdsts = 0;
1277                         SGE_INC(cons, SGE_TX_RING_CNT);
1278                 }
1279                 /* Reclaim transmitted mbuf. */
1280                 KASSERT(txd->tx_m != NULL,
1281                     ("%s: freeing NULL mbuf\n", __func__));
1282                 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1283                     BUS_DMASYNC_POSTWRITE);
1284                 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1285                 m_freem(txd->tx_m);
1286                 txd->tx_m = NULL;
1287                 cd->sge_tx_cnt -= txd->tx_ndesc;
1288                 KASSERT(cd->sge_tx_cnt >= 0,
1289                     ("%s: Active Tx desc counter was garbled\n", __func__));
1290                 txd->tx_ndesc = 0;
1291                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1292         }
1293         cd->sge_tx_cons = cons;
1294         if (cd->sge_tx_cnt == 0)
1295                 sc->sge_timer = 0;
1296 }
1297
1298 static void
1299 sge_tick(void *arg)
1300 {
1301         struct sge_softc *sc;
1302         struct mii_data *mii;
1303         struct ifnet *ifp;
1304
1305         sc = arg;
1306         SGE_LOCK_ASSERT(sc);
1307
1308         ifp = sc->sge_ifp;
1309         mii = device_get_softc(sc->sge_miibus);
1310         mii_tick(mii);
1311         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1312                 sge_miibus_statchg(sc->sge_dev);
1313                 if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1314                     !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1315                         sge_start_locked(ifp);
1316         }
1317         /*
1318          * Reclaim transmitted frames here as we do not request
1319          * Tx completion interrupt for every queued frames to
1320          * reduce excessive interrupts.
1321          */
1322         sge_txeof(sc);
1323         sge_watchdog(sc);
1324         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1325 }
1326
1327 static void
1328 sge_intr(void *arg)
1329 {
1330         struct sge_softc *sc;
1331         struct ifnet *ifp;
1332         uint32_t status;
1333
1334         sc = arg;
1335         SGE_LOCK(sc);
1336         ifp = sc->sge_ifp;
1337
1338         status = CSR_READ_4(sc, IntrStatus);
1339         if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1340                 /* Not ours. */
1341                 SGE_UNLOCK(sc);
1342                 return;
1343         }
1344         /* Acknowledge interrupts. */
1345         CSR_WRITE_4(sc, IntrStatus, status);
1346         /* Disable further interrupts. */
1347         CSR_WRITE_4(sc, IntrMask, 0);
1348         /*
1349          * It seems the controller supports some kind of interrupt
1350          * moderation mechanism but we still don't know how to
1351          * enable that.  To reduce number of generated interrupts
1352          * under load we check pending interrupts in a loop.  This
1353          * will increase number of register access and is not correct
1354          * way to handle interrupt moderation but there seems to be
1355          * no other way at this time.
1356          */
1357         for (;;) {
1358                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1359                         break;
1360                 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1361                         sge_rxeof(sc);
1362                         /* Wakeup Rx MAC. */
1363                         if ((status & INTR_RX_IDLE) != 0)
1364                                 CSR_WRITE_4(sc, RX_CTL,
1365                                     0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1366                 }
1367                 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1368                         sge_txeof(sc);
1369                 status = CSR_READ_4(sc, IntrStatus);
1370                 if ((status & SGE_INTRS) == 0)
1371                         break;
1372                 /* Acknowledge interrupts. */
1373                 CSR_WRITE_4(sc, IntrStatus, status);
1374         }
1375         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1376                 /* Re-enable interrupts */
1377                 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1378                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1379                         sge_start_locked(ifp);
1380         }
1381         SGE_UNLOCK(sc);
1382 }
1383
1384 /*
1385  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1386  * pointers to the fragment pointers.
1387  */
1388 static int
1389 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1390 {
1391         struct mbuf *m;
1392         struct sge_desc *desc;
1393         struct sge_txdesc *txd;
1394         bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1395         uint32_t cflags, mss;
1396         int error, i, nsegs, prod, si;
1397
1398         SGE_LOCK_ASSERT(sc);
1399
1400         si = prod = sc->sge_cdata.sge_tx_prod;
1401         txd = &sc->sge_cdata.sge_txdesc[prod];
1402         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1403                 struct ether_header *eh;
1404                 struct ip *ip;
1405                 struct tcphdr *tcp;
1406                 uint32_t ip_off, poff;
1407
1408                 if (M_WRITABLE(*m_head) == 0) {
1409                         /* Get a writable copy. */
1410                         m = m_dup(*m_head, M_NOWAIT);
1411                         m_freem(*m_head);
1412                         if (m == NULL) {
1413                                 *m_head = NULL;
1414                                 return (ENOBUFS);
1415                         }
1416                         *m_head = m;
1417                 }
1418                 ip_off = sizeof(struct ether_header);
1419                 m = m_pullup(*m_head, ip_off);
1420                 if (m == NULL) {
1421                         *m_head = NULL;
1422                         return (ENOBUFS);
1423                 }
1424                 eh = mtod(m, struct ether_header *);
1425                 /* Check the existence of VLAN tag. */
1426                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1427                         ip_off = sizeof(struct ether_vlan_header);
1428                         m = m_pullup(m, ip_off);
1429                         if (m == NULL) {
1430                                 *m_head = NULL;
1431                                 return (ENOBUFS);
1432                         }
1433                 }
1434                 m = m_pullup(m, ip_off + sizeof(struct ip));
1435                 if (m == NULL) {
1436                         *m_head = NULL;
1437                         return (ENOBUFS);
1438                 }
1439                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1440                 poff = ip_off + (ip->ip_hl << 2);
1441                 m = m_pullup(m, poff + sizeof(struct tcphdr));
1442                 if (m == NULL) {
1443                         *m_head = NULL;
1444                         return (ENOBUFS);
1445                 }
1446                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1447                 m = m_pullup(m, poff + (tcp->th_off << 2));
1448                 if (m == NULL) {
1449                         *m_head = NULL;
1450                         return (ENOBUFS);
1451                 }
1452                 /*
1453                  * Reset IP checksum and recompute TCP pseudo
1454                  * checksum that NDIS specification requires.
1455                  */
1456                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1457                 ip->ip_sum = 0;
1458                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1459                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1460                     htons(IPPROTO_TCP));
1461                 *m_head = m;
1462         }
1463
1464         error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1465             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1466         if (error == EFBIG) {
1467                 m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1468                 if (m == NULL) {
1469                         m_freem(*m_head);
1470                         *m_head = NULL;
1471                         return (ENOBUFS);
1472                 }
1473                 *m_head = m;
1474                 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1475                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1476                 if (error != 0) {
1477                         m_freem(*m_head);
1478                         *m_head = NULL;
1479                         return (error);
1480                 }
1481         } else if (error != 0)
1482                 return (error);
1483
1484         KASSERT(nsegs != 0, ("zero segment returned"));
1485         /* Check descriptor overrun. */
1486         if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1487                 bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1488                 return (ENOBUFS);
1489         }
1490         bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1491             BUS_DMASYNC_PREWRITE);
1492
1493         m = *m_head;
1494         cflags = 0;
1495         mss = 0;
1496         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1497                 cflags |= TDC_LS;
1498                 mss = (uint32_t)m->m_pkthdr.tso_segsz;
1499                 mss <<= 16;
1500         } else {
1501                 if (m->m_pkthdr.csum_flags & CSUM_IP)
1502                         cflags |= TDC_IP_CSUM;
1503                 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1504                         cflags |= TDC_TCP_CSUM;
1505                 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1506                         cflags |= TDC_UDP_CSUM;
1507         }
1508         for (i = 0; i < nsegs; i++) {
1509                 desc = &sc->sge_ldata.sge_tx_ring[prod];
1510                 if (i == 0) {
1511                         desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1512                         desc->sge_cmdsts = 0;
1513                 } else {
1514                         desc->sge_sts_size = 0;
1515                         desc->sge_cmdsts = htole32(TDC_OWN);
1516                 }
1517                 desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1518                 desc->sge_flags = htole32(txsegs[i].ds_len);
1519                 if (prod == SGE_TX_RING_CNT - 1)
1520                         desc->sge_flags |= htole32(RING_END);
1521                 sc->sge_cdata.sge_tx_cnt++;
1522                 SGE_INC(prod, SGE_TX_RING_CNT);
1523         }
1524         /* Update producer index. */
1525         sc->sge_cdata.sge_tx_prod = prod;
1526
1527         desc = &sc->sge_ldata.sge_tx_ring[si];
1528         /* Configure VLAN. */
1529         if((m->m_flags & M_VLANTAG) != 0) {
1530                 cflags |= m->m_pkthdr.ether_vtag;
1531                 desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1532         }
1533         desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1534 #if 1
1535         if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1536                 desc->sge_cmdsts |= htole32(TDC_BST);
1537 #else
1538         if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1539                 desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1540                 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1541                         desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1542         }
1543 #endif
1544         /* Request interrupt and give ownership to controller. */
1545         desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1546         txd->tx_m = m;
1547         txd->tx_ndesc = nsegs;
1548         return (0);
1549 }
1550
1551 static void
1552 sge_start(struct ifnet *ifp)
1553 {
1554         struct sge_softc *sc;
1555
1556         sc = ifp->if_softc;
1557         SGE_LOCK(sc);
1558         sge_start_locked(ifp);
1559         SGE_UNLOCK(sc);
1560 }
1561
1562 static void
1563 sge_start_locked(struct ifnet *ifp)
1564 {
1565         struct sge_softc *sc;
1566         struct mbuf *m_head;
1567         int queued = 0;
1568
1569         sc = ifp->if_softc;
1570         SGE_LOCK_ASSERT(sc);
1571
1572         if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1573             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1574             IFF_DRV_RUNNING)
1575                 return;
1576
1577         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1578                 if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1579                     SGE_MAXTXSEGS)) {
1580                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1581                         break;
1582                 }
1583                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1584                 if (m_head == NULL)
1585                         break;
1586                 if (sge_encap(sc, &m_head)) {
1587                         if (m_head == NULL)
1588                                 break;
1589                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1590                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1591                         break;
1592                 }
1593                 queued++;
1594                 /*
1595                  * If there's a BPF listener, bounce a copy of this frame
1596                  * to him.
1597                  */
1598                 BPF_MTAP(ifp, m_head);
1599         }
1600
1601         if (queued > 0) {
1602                 bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1603                     sc->sge_cdata.sge_tx_dmamap,
1604                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1605                 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1606                 sc->sge_timer = 5;
1607         }
1608 }
1609
1610 static void
1611 sge_init(void *arg)
1612 {
1613         struct sge_softc *sc;
1614
1615         sc = arg;
1616         SGE_LOCK(sc);
1617         sge_init_locked(sc);
1618         SGE_UNLOCK(sc);
1619 }
1620
1621 static void
1622 sge_init_locked(struct sge_softc *sc)
1623 {
1624         struct ifnet *ifp;
1625         struct mii_data *mii;
1626         uint16_t rxfilt;
1627         int i;
1628
1629         SGE_LOCK_ASSERT(sc);
1630         ifp = sc->sge_ifp;
1631         mii = device_get_softc(sc->sge_miibus);
1632         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1633                 return;
1634         /*
1635          * Cancel pending I/O and free all RX/TX buffers.
1636          */
1637         sge_stop(sc);
1638         sge_reset(sc);
1639
1640         /* Init circular RX list. */
1641         if (sge_list_rx_init(sc) == ENOBUFS) {
1642                 device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1643                 sge_stop(sc);
1644                 return;
1645         }
1646         /* Init TX descriptors. */
1647         sge_list_tx_init(sc);
1648         /*
1649          * Load the address of the RX and TX lists.
1650          */
1651         CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1652         CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1653
1654         CSR_WRITE_4(sc, TxMacControl, 0x60);
1655         CSR_WRITE_4(sc, RxWakeOnLan, 0);
1656         CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1657         /* Allow receiving VLAN frames. */
1658         CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1659             SGE_RX_PAD_BYTES);
1660
1661         for (i = 0; i < ETHER_ADDR_LEN; i++)
1662                 CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1663         /* Configure RX MAC. */
1664         rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1665         CSR_WRITE_2(sc, RxMacControl, rxfilt);
1666         sge_rxfilter(sc);
1667         sge_setvlan(sc);
1668
1669         /* Initialize default speed/duplex information. */
1670         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1671                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
1672         sc->sge_flags |= SGE_FLAG_FDX;
1673         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1674                 CSR_WRITE_4(sc, StationControl, 0x04008001);
1675         else
1676                 CSR_WRITE_4(sc, StationControl, 0x04000001);
1677         /*
1678          * XXX Try to mitigate interrupts.
1679          */
1680         CSR_WRITE_4(sc, IntrControl, 0x08880000);
1681 #ifdef notyet
1682         if (sc->sge_intrcontrol != 0)
1683                 CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1684         if (sc->sge_intrtimer != 0)
1685                 CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1686 #endif
1687
1688         /*
1689          * Clear and enable interrupts.
1690          */
1691         CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1692         CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1693
1694         /* Enable receiver and transmitter. */
1695         CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1696         CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1697
1698         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1699         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1700
1701         sc->sge_flags &= ~SGE_FLAG_LINK;
1702         mii_mediachg(mii);
1703         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1704 }
1705
1706 /*
1707  * Set media options.
1708  */
1709 static int
1710 sge_ifmedia_upd(struct ifnet *ifp)
1711 {
1712         struct sge_softc *sc;
1713         struct mii_data *mii;
1714                 struct mii_softc *miisc;
1715         int error;
1716
1717         sc = ifp->if_softc;
1718         SGE_LOCK(sc);
1719         mii = device_get_softc(sc->sge_miibus);
1720         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1721                 PHY_RESET(miisc);
1722         error = mii_mediachg(mii);
1723         SGE_UNLOCK(sc);
1724
1725         return (error);
1726 }
1727
1728 /*
1729  * Report current media status.
1730  */
1731 static void
1732 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1733 {
1734         struct sge_softc *sc;
1735         struct mii_data *mii;
1736
1737         sc = ifp->if_softc;
1738         SGE_LOCK(sc);
1739         mii = device_get_softc(sc->sge_miibus);
1740         if ((ifp->if_flags & IFF_UP) == 0) {
1741                 SGE_UNLOCK(sc);
1742                 return;
1743         }
1744         mii_pollstat(mii);
1745         ifmr->ifm_active = mii->mii_media_active;
1746         ifmr->ifm_status = mii->mii_media_status;
1747         SGE_UNLOCK(sc);
1748 }
1749
1750 static int
1751 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1752 {
1753         struct sge_softc *sc;
1754         struct ifreq *ifr;
1755         struct mii_data *mii;
1756         int error = 0, mask, reinit;
1757
1758         sc = ifp->if_softc;
1759         ifr = (struct ifreq *)data;
1760
1761         switch(command) {
1762         case SIOCSIFFLAGS:
1763                 SGE_LOCK(sc);
1764                 if ((ifp->if_flags & IFF_UP) != 0) {
1765                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1766                             ((ifp->if_flags ^ sc->sge_if_flags) &
1767                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1768                                 sge_rxfilter(sc);
1769                         else
1770                                 sge_init_locked(sc);
1771                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1772                         sge_stop(sc);
1773                 sc->sge_if_flags = ifp->if_flags;
1774                 SGE_UNLOCK(sc);
1775                 break;
1776         case SIOCSIFCAP:
1777                 SGE_LOCK(sc);
1778                 reinit = 0;
1779                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1780                 if ((mask & IFCAP_TXCSUM) != 0 &&
1781                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1782                         ifp->if_capenable ^= IFCAP_TXCSUM;
1783                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1784                                 ifp->if_hwassist |= SGE_CSUM_FEATURES;
1785                         else
1786                                 ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1787                 }
1788                 if ((mask & IFCAP_RXCSUM) != 0 &&
1789                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1790                         ifp->if_capenable ^= IFCAP_RXCSUM;
1791                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1792                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1793                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1794                 if ((mask & IFCAP_TSO4) != 0 &&
1795                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1796                         ifp->if_capenable ^= IFCAP_TSO4;
1797                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1798                                 ifp->if_hwassist |= CSUM_TSO;
1799                         else
1800                                 ifp->if_hwassist &= ~CSUM_TSO;
1801                 }
1802                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1803                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1804                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1805                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1806                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1807                         /*
1808                          * Due to unknown reason, toggling VLAN hardware
1809                          * tagging require interface reinitialization.
1810                          */
1811                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1812                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1813                                 ifp->if_capenable &=
1814                                     ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1815                         reinit = 1;
1816                 }
1817                 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1818                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1819                         sge_init_locked(sc);
1820                 }
1821                 SGE_UNLOCK(sc);
1822                 VLAN_CAPABILITIES(ifp);
1823                 break;
1824         case SIOCADDMULTI:
1825         case SIOCDELMULTI:
1826                 SGE_LOCK(sc);
1827                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1828                         sge_rxfilter(sc);
1829                 SGE_UNLOCK(sc);
1830                 break;
1831         case SIOCGIFMEDIA:
1832         case SIOCSIFMEDIA:
1833                 mii = device_get_softc(sc->sge_miibus);
1834                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1835                 break;
1836         default:
1837                 error = ether_ioctl(ifp, command, data);
1838                 break;
1839         }
1840
1841         return (error);
1842 }
1843
1844 static void
1845 sge_watchdog(struct sge_softc *sc)
1846 {
1847         struct ifnet *ifp;
1848
1849         SGE_LOCK_ASSERT(sc);
1850         if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1851                 return;
1852
1853         ifp = sc->sge_ifp;
1854         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1855                 if (1 || bootverbose)
1856                         device_printf(sc->sge_dev,
1857                             "watchdog timeout (lost link)\n");
1858                 ifp->if_oerrors++;
1859                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1860                 sge_init_locked(sc);
1861                 return;
1862         }
1863         device_printf(sc->sge_dev, "watchdog timeout\n");
1864         ifp->if_oerrors++;
1865
1866         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1867         sge_init_locked(sc);
1868         if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1869                 sge_start_locked(ifp);
1870 }
1871
1872 /*
1873  * Stop the adapter and free any mbufs allocated to the
1874  * RX and TX lists.
1875  */
1876 static void
1877 sge_stop(struct sge_softc *sc)
1878 {
1879         struct ifnet *ifp;
1880
1881         ifp = sc->sge_ifp;
1882
1883         SGE_LOCK_ASSERT(sc);
1884
1885         sc->sge_timer = 0;
1886         callout_stop(&sc->sge_stat_ch);
1887         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1888
1889         CSR_WRITE_4(sc, IntrMask, 0);
1890         CSR_READ_4(sc, IntrMask);
1891         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1892         /* Stop TX/RX MAC. */
1893         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1894         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1895         /* XXX Can we assume active DMA cycles gone? */
1896         DELAY(2000);
1897         CSR_WRITE_4(sc, IntrMask, 0);
1898         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1899
1900         sc->sge_flags &= ~SGE_FLAG_LINK;
1901         sge_list_rx_free(sc);
1902         sge_list_tx_free(sc);
1903 }