]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/dev/wpi/if_wpi.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106
107 #define WPI_DEBUG
108
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
112 #define WPI_DEBUG_SET   (wpi_debug != 0)
113
114 enum {
115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
127         WPI_DEBUG_ANY           = 0xffffffff
128 };
129
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET   0
138 #endif
139
140 struct wpi_ident {
141         uint16_t        vendor;
142         uint16_t        device;
143         uint16_t        subdevice;
144         const char      *name;
145 };
146
147 static const struct wpi_ident wpi_ident_table[] = {
148         /* The below entries support ABG regardless of the subid */
149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151         /* The below entries only support BG */
152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0, 0, 0, NULL }
157 };
158
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
161                     const uint8_t [IEEE80211_ADDR_LEN],
162                     const uint8_t [IEEE80211_ADDR_LEN]);
163 static void     wpi_vap_delete(struct ieee80211vap *);
164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165                     void **, bus_size_t, bus_size_t, int);
166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int      wpi_alloc_shared(struct wpi_softc *);
169 static void     wpi_free_shared(struct wpi_softc *);
170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174                     int, int);
175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178 static void     wpi_mem_lock(struct wpi_softc *);
179 static void     wpi_mem_unlock(struct wpi_softc *);
180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
181 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183                     const uint32_t *, int);
184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185 static int      wpi_alloc_fwmem(struct wpi_softc *);
186 static void     wpi_free_fwmem(struct wpi_softc *);
187 static int      wpi_load_firmware(struct wpi_softc *);
188 static void     wpi_unload_firmware(struct wpi_softc *);
189 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191                     struct wpi_rx_data *);
192 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void     wpi_notif_intr(struct wpi_softc *);
195 static void     wpi_intr(void *);
196 static uint8_t  wpi_plcp_signal(int);
197 static void     wpi_watchdog(void *);
198 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
199                     struct ieee80211_node *, int);
200 static void     wpi_start(struct ifnet *);
201 static void     wpi_start_locked(struct ifnet *);
202 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203                     const struct ieee80211_bpf_params *);
204 static void     wpi_scan_start(struct ieee80211com *);
205 static void     wpi_scan_end(struct ieee80211com *);
206 static void     wpi_set_channel(struct ieee80211com *);
207 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
209 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
210 static void     wpi_read_eeprom(struct wpi_softc *,
211                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
212 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
213 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
214 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215 static int      wpi_wme_update(struct ieee80211com *);
216 static int      wpi_mrr_setup(struct wpi_softc *);
217 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219 #if 0
220 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221 #endif
222 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
224 static int      wpi_scan(struct wpi_softc *);
225 static int      wpi_config(struct wpi_softc *);
226 static void     wpi_stop_master(struct wpi_softc *);
227 static int      wpi_power_up(struct wpi_softc *);
228 static int      wpi_reset(struct wpi_softc *);
229 static void     wpi_hwreset(void *, int);
230 static void     wpi_rfreset(void *, int);
231 static void     wpi_hw_config(struct wpi_softc *);
232 static void     wpi_init(void *);
233 static void     wpi_init_locked(struct wpi_softc *, int);
234 static void     wpi_stop(struct wpi_softc *);
235 static void     wpi_stop_locked(struct wpi_softc *);
236
237 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238                     int);
239 static void     wpi_calib_timeout(void *);
240 static void     wpi_power_calibration(struct wpi_softc *, int);
241 static int      wpi_get_power_index(struct wpi_softc *,
242                     struct wpi_power_group *, struct ieee80211_channel *, int);
243 #ifdef WPI_DEBUG
244 static const char *wpi_cmd_str(int);
245 #endif
246 static int wpi_probe(device_t);
247 static int wpi_attach(device_t);
248 static int wpi_detach(device_t);
249 static int wpi_shutdown(device_t);
250 static int wpi_suspend(device_t);
251 static int wpi_resume(device_t);
252
253
254 static device_method_t wpi_methods[] = {
255         /* Device interface */
256         DEVMETHOD(device_probe,         wpi_probe),
257         DEVMETHOD(device_attach,        wpi_attach),
258         DEVMETHOD(device_detach,        wpi_detach),
259         DEVMETHOD(device_shutdown,      wpi_shutdown),
260         DEVMETHOD(device_suspend,       wpi_suspend),
261         DEVMETHOD(device_resume,        wpi_resume),
262
263         { 0, 0 }
264 };
265
266 static driver_t wpi_driver = {
267         "wpi",
268         wpi_methods,
269         sizeof (struct wpi_softc)
270 };
271
272 static devclass_t wpi_devclass;
273
274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275
276 MODULE_VERSION(wpi, 1);
277
278 static const uint8_t wpi_ridx_to_plcp[] = {
279         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280         /* R1-R4 (ral/ural is R4-R1) */
281         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282         /* CCK: device-dependent */
283         10, 20, 55, 110
284 };
285 static const uint8_t wpi_ridx_to_rate[] = {
286         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287         2, 4, 11, 22 /*CCK */
288 };
289
290
291 static int
292 wpi_probe(device_t dev)
293 {
294         const struct wpi_ident *ident;
295
296         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297                 if (pci_get_vendor(dev) == ident->vendor &&
298                     pci_get_device(dev) == ident->device) {
299                         device_set_desc(dev, ident->name);
300                         return 0;
301                 }
302         }
303         return ENXIO;
304 }
305
306 /**
307  * Load the firmare image from disk to the allocated dma buffer.
308  * we also maintain the reference to the firmware pointer as there
309  * is times where we may need to reload the firmware but we are not
310  * in a context that can access the filesystem (ie taskq cause by restart)
311  *
312  * @return 0 on success, an errno on failure
313  */
314 static int
315 wpi_load_firmware(struct wpi_softc *sc)
316 {
317         const struct firmware *fp;
318         struct wpi_dma_info *dma = &sc->fw_dma;
319         const struct wpi_firmware_hdr *hdr;
320         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322         int error;
323
324         DPRINTFN(WPI_DEBUG_FIRMWARE,
325             ("Attempting Loading Firmware from wpi_fw module\n"));
326
327         WPI_UNLOCK(sc);
328
329         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330                 device_printf(sc->sc_dev,
331                     "could not load firmware image 'wpifw'\n");
332                 error = ENOENT;
333                 WPI_LOCK(sc);
334                 goto fail;
335         }
336
337         fp = sc->fw_fp;
338
339         WPI_LOCK(sc);
340
341         /* Validate the firmware is minimum a particular version */
342         if (fp->version < WPI_FW_MINVERSION) {
343             device_printf(sc->sc_dev,
344                            "firmware version is too old. Need %d, got %d\n",
345                            WPI_FW_MINVERSION,
346                            fp->version);
347             error = ENXIO;
348             goto fail;
349         }
350
351         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352                 device_printf(sc->sc_dev,
353                     "firmware file too short: %zu bytes\n", fp->datasize);
354                 error = ENXIO;
355                 goto fail;
356         }
357
358         hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363         rtextsz = le32toh(hdr->rtextsz);
364         rdatasz = le32toh(hdr->rdatasz);
365         itextsz = le32toh(hdr->itextsz);
366         idatasz = le32toh(hdr->idatasz);
367         btextsz = le32toh(hdr->btextsz);
368
369         /* check that all firmware segments are present */
370         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372                 device_printf(sc->sc_dev,
373                     "firmware file too short: %zu bytes\n", fp->datasize);
374                 error = ENXIO; /* XXX appropriate error code? */
375                 goto fail;
376         }
377
378         /* get pointers to firmware segments */
379         rtext = (const uint8_t *)(hdr + 1);
380         rdata = rtext + rtextsz;
381         itext = rdata + rdatasz;
382         idata = itext + itextsz;
383         btext = idata + idatasz;
384
385         DPRINTFN(WPI_DEBUG_FIRMWARE,
386             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388              (le32toh(hdr->version) & 0xff000000) >> 24,
389              (le32toh(hdr->version) & 0x00ff0000) >> 16,
390              (le32toh(hdr->version) & 0x0000ffff),
391              rtextsz, rdatasz,
392              itextsz, idatasz, btextsz));
393
394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400         /* sanity checks */
401         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406             (btextsz & 3) != 0) {
407                 device_printf(sc->sc_dev, "firmware invalid\n");
408                 error = EINVAL;
409                 goto fail;
410         }
411
412         /* copy initialization images into pre-allocated DMA-safe memory */
413         memcpy(dma->vaddr, idata, idatasz);
414         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418         /* tell adapter where to find initialization images */
419         wpi_mem_lock(sc);
420         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425         wpi_mem_unlock(sc);
426
427         /* load firmware boot code */
428         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429             device_printf(sc->sc_dev, "Failed to load microcode\n");
430             goto fail;
431         }
432
433         /* now press "execute" */
434         WPI_WRITE(sc, WPI_RESET, 0);
435
436         /* wait at most one second for the first alive notification */
437         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438                 device_printf(sc->sc_dev,
439                     "timeout waiting for adapter to initialize\n");
440                 goto fail;
441         }
442
443         /* copy runtime images into pre-allocated DMA-sage memory */
444         memcpy(dma->vaddr, rdata, rdatasz);
445         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448         /* tell adapter where to find runtime images */
449         wpi_mem_lock(sc);
450         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455         wpi_mem_unlock(sc);
456
457         /* wait at most one second for the first alive notification */
458         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459                 device_printf(sc->sc_dev,
460                     "timeout waiting for adapter to initialize2\n");
461                 goto fail;
462         }
463
464         DPRINTFN(WPI_DEBUG_FIRMWARE,
465             ("Firmware loaded to driver successfully\n"));
466         return error;
467 fail:
468         wpi_unload_firmware(sc);
469         return error;
470 }
471
472 /**
473  * Free the referenced firmware image
474  */
475 static void
476 wpi_unload_firmware(struct wpi_softc *sc)
477 {
478
479         if (sc->fw_fp) {
480                 WPI_UNLOCK(sc);
481                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482                 WPI_LOCK(sc);
483                 sc->fw_fp = NULL;
484         }
485 }
486
487 static int
488 wpi_attach(device_t dev)
489 {
490         struct wpi_softc *sc = device_get_softc(dev);
491         struct ifnet *ifp;
492         struct ieee80211com *ic;
493         int ac, error, supportsa = 1;
494         uint32_t tmp;
495         const struct wpi_ident *ident;
496         uint8_t macaddr[IEEE80211_ADDR_LEN];
497
498         sc->sc_dev = dev;
499
500         if (bootverbose || WPI_DEBUG_SET)
501             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502
503         /*
504          * Some card's only support 802.11b/g not a, check to see if
505          * this is one such card. A 0x0 in the subdevice table indicates
506          * the entire subdevice range is to be ignored.
507          */
508         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509                 if (ident->subdevice &&
510                     pci_get_subdevice(dev) == ident->subdevice) {
511                     supportsa = 0;
512                     break;
513                 }
514         }
515
516         /* Create the tasks that can be queued */
517         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519
520         WPI_LOCK_INIT(sc);
521
522         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524
525         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526                 device_printf(dev, "chip is in D%d power mode "
527                     "-- setting to D0\n", pci_get_powerstate(dev));
528                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529         }
530
531         /* disable the retry timeout register */
532         pci_write_config(dev, 0x41, 0, 1);
533
534         /* enable bus-mastering */
535         pci_enable_busmaster(dev);
536
537         sc->mem_rid = PCIR_BAR(0);
538         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539             RF_ACTIVE);
540         if (sc->mem == NULL) {
541                 device_printf(dev, "could not allocate memory resource\n");
542                 error = ENOMEM;
543                 goto fail;
544         }
545
546         sc->sc_st = rman_get_bustag(sc->mem);
547         sc->sc_sh = rman_get_bushandle(sc->mem);
548
549         sc->irq_rid = 0;
550         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551             RF_ACTIVE | RF_SHAREABLE);
552         if (sc->irq == NULL) {
553                 device_printf(dev, "could not allocate interrupt resource\n");
554                 error = ENOMEM;
555                 goto fail;
556         }
557
558         /*
559          * Allocate DMA memory for firmware transfers.
560          */
561         if ((error = wpi_alloc_fwmem(sc)) != 0) {
562                 printf(": could not allocate firmware memory\n");
563                 error = ENOMEM;
564                 goto fail;
565         }
566
567         /*
568          * Put adapter into a known state.
569          */
570         if ((error = wpi_reset(sc)) != 0) {
571                 device_printf(dev, "could not reset adapter\n");
572                 goto fail;
573         }
574
575         wpi_mem_lock(sc);
576         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577         if (bootverbose || WPI_DEBUG_SET)
578             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579
580         wpi_mem_unlock(sc);
581
582         /* Allocate shared page */
583         if ((error = wpi_alloc_shared(sc)) != 0) {
584                 device_printf(dev, "could not allocate shared page\n");
585                 goto fail;
586         }
587
588         /* tx data queues  - 4 for QoS purposes */
589         for (ac = 0; ac < WME_NUM_AC; ac++) {
590                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591                 if (error != 0) {
592                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
593                     goto fail;
594                 }
595         }
596
597         /* command queue to talk to the card's firmware */
598         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599         if (error != 0) {
600                 device_printf(dev, "could not allocate command ring\n");
601                 goto fail;
602         }
603
604         /* receive data queue */
605         error = wpi_alloc_rx_ring(sc, &sc->rxq);
606         if (error != 0) {
607                 device_printf(dev, "could not allocate Rx ring\n");
608                 goto fail;
609         }
610
611         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612         if (ifp == NULL) {
613                 device_printf(dev, "can not if_alloc()\n");
614                 error = ENOMEM;
615                 goto fail;
616         }
617         ic = ifp->if_l2com;
618
619         ic->ic_ifp = ifp;
620         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
621         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
622
623         /* set device capabilities */
624         ic->ic_caps =
625                   IEEE80211_C_STA               /* station mode supported */
626                 | IEEE80211_C_MONITOR           /* monitor mode supported */
627                 | IEEE80211_C_TXPMGT            /* tx power management */
628                 | IEEE80211_C_SHSLOT            /* short slot time supported */
629                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
630                 | IEEE80211_C_WPA               /* 802.11i */
631 /* XXX looks like WME is partly supported? */
632 #if 0
633                 | IEEE80211_C_IBSS              /* IBSS mode support */
634                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
635                 | IEEE80211_C_WME               /* 802.11e */
636                 | IEEE80211_C_HOSTAP            /* Host access point mode */
637 #endif
638                 ;
639
640         /*
641          * Read in the eeprom and also setup the channels for
642          * net80211. We don't set the rates as net80211 does this for us
643          */
644         wpi_read_eeprom(sc, macaddr);
645
646         if (bootverbose || WPI_DEBUG_SET) {
647             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648             device_printf(sc->sc_dev, "Hardware Type: %c\n",
649                           sc->type > 1 ? 'B': '?');
650             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653                           supportsa ? "does" : "does not");
654
655             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656                what sc->rev really represents - benjsc 20070615 */
657         }
658
659         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660         ifp->if_softc = sc;
661         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662         ifp->if_init = wpi_init;
663         ifp->if_ioctl = wpi_ioctl;
664         ifp->if_start = wpi_start;
665         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
666         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
667         IFQ_SET_READY(&ifp->if_snd);
668
669         ieee80211_ifattach(ic, macaddr);
670         /* override default methods */
671         ic->ic_raw_xmit = wpi_raw_xmit;
672         ic->ic_wme.wme_update = wpi_wme_update;
673         ic->ic_scan_start = wpi_scan_start;
674         ic->ic_scan_end = wpi_scan_end;
675         ic->ic_set_channel = wpi_set_channel;
676         ic->ic_scan_curchan = wpi_scan_curchan;
677         ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679         ic->ic_vap_create = wpi_vap_create;
680         ic->ic_vap_delete = wpi_vap_delete;
681
682         ieee80211_radiotap_attach(ic,
683             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684                 WPI_TX_RADIOTAP_PRESENT,
685             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686                 WPI_RX_RADIOTAP_PRESENT);
687
688         /*
689          * Hook our interrupt after all initialization is complete.
690          */
691         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692             NULL, wpi_intr, sc, &sc->sc_ih);
693         if (error != 0) {
694                 device_printf(dev, "could not set up interrupt\n");
695                 goto fail;
696         }
697
698         if (bootverbose)
699                 ieee80211_announce(ic);
700 #ifdef XXX_DEBUG
701         ieee80211_announce_channels(ic);
702 #endif
703         return 0;
704
705 fail:   wpi_detach(dev);
706         return ENXIO;
707 }
708
709 static int
710 wpi_detach(device_t dev)
711 {
712         struct wpi_softc *sc = device_get_softc(dev);
713         struct ifnet *ifp = sc->sc_ifp;
714         struct ieee80211com *ic;
715         int ac;
716
717         if (ifp != NULL) {
718                 ic = ifp->if_l2com;
719
720                 ieee80211_draintask(ic, &sc->sc_restarttask);
721                 ieee80211_draintask(ic, &sc->sc_radiotask);
722                 wpi_stop(sc);
723                 callout_drain(&sc->watchdog_to);
724                 callout_drain(&sc->calib_to);
725                 ieee80211_ifdetach(ic);
726         }
727
728         WPI_LOCK(sc);
729         if (sc->txq[0].data_dmat) {
730                 for (ac = 0; ac < WME_NUM_AC; ac++)
731                         wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733                 wpi_free_tx_ring(sc, &sc->cmdq);
734                 wpi_free_rx_ring(sc, &sc->rxq);
735                 wpi_free_shared(sc);
736         }
737
738         if (sc->fw_fp != NULL) {
739                 wpi_unload_firmware(sc);
740         }
741
742         if (sc->fw_dma.tag)
743                 wpi_free_fwmem(sc);
744         WPI_UNLOCK(sc);
745
746         if (sc->irq != NULL) {
747                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749         }
750
751         if (sc->mem != NULL)
752                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754         if (ifp != NULL)
755                 if_free(ifp);
756
757         WPI_LOCK_DESTROY(sc);
758
759         return 0;
760 }
761
762 static struct ieee80211vap *
763 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
764     enum ieee80211_opmode opmode, int flags,
765     const uint8_t bssid[IEEE80211_ADDR_LEN],
766     const uint8_t mac[IEEE80211_ADDR_LEN])
767 {
768         struct wpi_vap *wvp;
769         struct ieee80211vap *vap;
770
771         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
772                 return NULL;
773         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774             M_80211_VAP, M_NOWAIT | M_ZERO);
775         if (wvp == NULL)
776                 return NULL;
777         vap = &wvp->vap;
778         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779         /* override with driver methods */
780         wvp->newstate = vap->iv_newstate;
781         vap->iv_newstate = wpi_newstate;
782
783         ieee80211_ratectl_init(vap);
784         /* complete setup */
785         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786         ic->ic_opmode = opmode;
787         return vap;
788 }
789
790 static void
791 wpi_vap_delete(struct ieee80211vap *vap)
792 {
793         struct wpi_vap *wvp = WPI_VAP(vap);
794
795         ieee80211_ratectl_deinit(vap);
796         ieee80211_vap_detach(vap);
797         free(wvp, M_80211_VAP);
798 }
799
800 static void
801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803         if (error != 0)
804                 return;
805
806         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808         *(bus_addr_t *)arg = segs[0].ds_addr;
809 }
810
811 /*
812  * Allocates a contiguous block of dma memory of the requested size and
813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814  * allocations greater than 4096 may fail. Hence if the requested alignment is
815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
816  * paddr after the dma load. This bypasses the problem at the cost of a little
817  * more memory.
818  */
819 static int
820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822 {
823         int error;
824         bus_size_t align;
825         bus_size_t reqsize;
826
827         DPRINTFN(WPI_DEBUG_DMA,
828             ("Size: %zd - alignment %zd\n", size, alignment));
829
830         dma->size = size;
831         dma->tag = NULL;
832
833         if (alignment > 4096) {
834                 align = PAGE_SIZE;
835                 reqsize = size + alignment;
836         } else {
837                 align = alignment;
838                 reqsize = size;
839         }
840         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842             NULL, NULL, reqsize,
843             1, reqsize, flags,
844             NULL, NULL, &dma->tag);
845         if (error != 0) {
846                 device_printf(sc->sc_dev,
847                     "could not create shared page DMA tag\n");
848                 goto fail;
849         }
850         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851             flags | BUS_DMA_ZERO, &dma->map);
852         if (error != 0) {
853                 device_printf(sc->sc_dev,
854                     "could not allocate shared page DMA memory\n");
855                 goto fail;
856         }
857
858         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861         /* Save the original pointers so we can free all the memory */
862         dma->paddr = dma->paddr_start;
863         dma->vaddr = dma->vaddr_start;
864
865         /*
866          * Check the alignment and increment by 4096 until we get the
867          * requested alignment. Fail if can't obtain the alignment
868          * we requested.
869          */
870         if ((dma->paddr & (alignment -1 )) != 0) {
871                 int i;
872
873                 for (i = 0; i < alignment / 4096; i++) {
874                         if ((dma->paddr & (alignment - 1 )) == 0)
875                                 break;
876                         dma->paddr += 4096;
877                         dma->vaddr += 4096;
878                 }
879                 if (i == alignment / 4096) {
880                         device_printf(sc->sc_dev,
881                             "alignment requirement was not satisfied\n");
882                         goto fail;
883                 }
884         }
885
886         if (error != 0) {
887                 device_printf(sc->sc_dev,
888                     "could not load shared page DMA map\n");
889                 goto fail;
890         }
891
892         if (kvap != NULL)
893                 *kvap = dma->vaddr;
894
895         return 0;
896
897 fail:
898         wpi_dma_contig_free(dma);
899         return error;
900 }
901
902 static void
903 wpi_dma_contig_free(struct wpi_dma_info *dma)
904 {
905         if (dma->tag) {
906                 if (dma->map != NULL) {
907                         if (dma->paddr_start != 0) {
908                                 bus_dmamap_sync(dma->tag, dma->map,
909                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910                                 bus_dmamap_unload(dma->tag, dma->map);
911                         }
912                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913                 }
914                 bus_dma_tag_destroy(dma->tag);
915         }
916 }
917
918 /*
919  * Allocate a shared page between host and NIC.
920  */
921 static int
922 wpi_alloc_shared(struct wpi_softc *sc)
923 {
924         int error;
925
926         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927             (void **)&sc->shared, sizeof (struct wpi_shared),
928             PAGE_SIZE,
929             BUS_DMA_NOWAIT);
930
931         if (error != 0) {
932                 device_printf(sc->sc_dev,
933                     "could not allocate shared area DMA memory\n");
934         }
935
936         return error;
937 }
938
939 static void
940 wpi_free_shared(struct wpi_softc *sc)
941 {
942         wpi_dma_contig_free(&sc->shared_dma);
943 }
944
945 static int
946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947 {
948
949         int i, error;
950
951         ring->cur = 0;
952
953         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957         if (error != 0) {
958                 device_printf(sc->sc_dev,
959                     "%s: could not allocate rx ring DMA memory, error %d\n",
960                     __func__, error);
961                 goto fail;
962         }
963
964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
965             BUS_SPACE_MAXADDR_32BIT,
966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970                     "%s: bus_dma_tag_create_failed, error %d\n",
971                     __func__, error);
972                 goto fail;
973         }
974
975         /*
976          * Setup Rx buffers.
977          */
978         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979                 struct wpi_rx_data *data = &ring->data[i];
980                 struct mbuf *m;
981                 bus_addr_t paddr;
982
983                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984                 if (error != 0) {
985                         device_printf(sc->sc_dev,
986                             "%s: bus_dmamap_create failed, error %d\n",
987                             __func__, error);
988                         goto fail;
989                 }
990                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991                 if (m == NULL) {
992                         device_printf(sc->sc_dev,
993                            "%s: could not allocate rx mbuf\n", __func__);
994                         error = ENOMEM;
995                         goto fail;
996                 }
997                 /* map page */
998                 error = bus_dmamap_load(ring->data_dmat, data->map,
999                     mtod(m, caddr_t), MJUMPAGESIZE,
1000                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001                 if (error != 0 && error != EFBIG) {
1002                         device_printf(sc->sc_dev,
1003                             "%s: bus_dmamap_load failed, error %d\n",
1004                             __func__, error);
1005                         m_freem(m);
1006                         error = ENOMEM; /* XXX unique code */
1007                         goto fail;
1008                 }
1009                 bus_dmamap_sync(ring->data_dmat, data->map, 
1010                     BUS_DMASYNC_PREWRITE);
1011
1012                 data->m = m;
1013                 ring->desc[i] = htole32(paddr);
1014         }
1015         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016             BUS_DMASYNC_PREWRITE);
1017         return 0;
1018 fail:
1019         wpi_free_rx_ring(sc, ring);
1020         return error;
1021 }
1022
1023 static void
1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025 {
1026         int ntries;
1027
1028         wpi_mem_lock(sc);
1029
1030         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032         for (ntries = 0; ntries < 100; ntries++) {
1033                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034                         break;
1035                 DELAY(10);
1036         }
1037
1038         wpi_mem_unlock(sc);
1039
1040 #ifdef WPI_DEBUG
1041         if (ntries == 100 && wpi_debug > 0)
1042                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043 #endif
1044
1045         ring->cur = 0;
1046 }
1047
1048 static void
1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050 {
1051         int i;
1052
1053         wpi_dma_contig_free(&ring->desc_dma);
1054
1055         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1056                 struct wpi_rx_data *data = &ring->data[i];
1057
1058                 if (data->m != NULL) {
1059                         bus_dmamap_sync(ring->data_dmat, data->map,
1060                             BUS_DMASYNC_POSTREAD);
1061                         bus_dmamap_unload(ring->data_dmat, data->map);
1062                         m_freem(data->m);
1063                 }
1064                 if (data->map != NULL)
1065                         bus_dmamap_destroy(ring->data_dmat, data->map);
1066         }
1067 }
1068
1069 static int
1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1071         int qid)
1072 {
1073         struct wpi_tx_data *data;
1074         int i, error;
1075
1076         ring->qid = qid;
1077         ring->count = count;
1078         ring->queued = 0;
1079         ring->cur = 0;
1080         ring->data = NULL;
1081
1082         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1083                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1084                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1085
1086         if (error != 0) {
1087             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1088             goto fail;
1089         }
1090
1091         /* update shared page with ring's base address */
1092         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1093
1094         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1095                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1096                 BUS_DMA_NOWAIT);
1097
1098         if (error != 0) {
1099                 device_printf(sc->sc_dev,
1100                     "could not allocate tx command DMA memory\n");
1101                 goto fail;
1102         }
1103
1104         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1105             M_NOWAIT | M_ZERO);
1106         if (ring->data == NULL) {
1107                 device_printf(sc->sc_dev,
1108                     "could not allocate tx data slots\n");
1109                 goto fail;
1110         }
1111
1112         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1113             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1114             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1115             &ring->data_dmat);
1116         if (error != 0) {
1117                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1118                 goto fail;
1119         }
1120
1121         for (i = 0; i < count; i++) {
1122                 data = &ring->data[i];
1123
1124                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1125                 if (error != 0) {
1126                         device_printf(sc->sc_dev,
1127                             "could not create tx buf DMA map\n");
1128                         goto fail;
1129                 }
1130                 bus_dmamap_sync(ring->data_dmat, data->map,
1131                     BUS_DMASYNC_PREWRITE);
1132         }
1133
1134         return 0;
1135
1136 fail:
1137         wpi_free_tx_ring(sc, ring);
1138         return error;
1139 }
1140
1141 static void
1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1143 {
1144         struct wpi_tx_data *data;
1145         int i, ntries;
1146
1147         wpi_mem_lock(sc);
1148
1149         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1150         for (ntries = 0; ntries < 100; ntries++) {
1151                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1152                         break;
1153                 DELAY(10);
1154         }
1155 #ifdef WPI_DEBUG
1156         if (ntries == 100 && wpi_debug > 0)
1157                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1158                     ring->qid);
1159 #endif
1160         wpi_mem_unlock(sc);
1161
1162         for (i = 0; i < ring->count; i++) {
1163                 data = &ring->data[i];
1164
1165                 if (data->m != NULL) {
1166                         bus_dmamap_unload(ring->data_dmat, data->map);
1167                         m_freem(data->m);
1168                         data->m = NULL;
1169                 }
1170         }
1171
1172         ring->queued = 0;
1173         ring->cur = 0;
1174 }
1175
1176 static void
1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1178 {
1179         struct wpi_tx_data *data;
1180         int i;
1181
1182         wpi_dma_contig_free(&ring->desc_dma);
1183         wpi_dma_contig_free(&ring->cmd_dma);
1184
1185         if (ring->data != NULL) {
1186                 for (i = 0; i < ring->count; i++) {
1187                         data = &ring->data[i];
1188
1189                         if (data->m != NULL) {
1190                                 bus_dmamap_sync(ring->data_dmat, data->map,
1191                                     BUS_DMASYNC_POSTWRITE);
1192                                 bus_dmamap_unload(ring->data_dmat, data->map);
1193                                 m_freem(data->m);
1194                                 data->m = NULL;
1195                         }
1196                 }
1197                 free(ring->data, M_DEVBUF);
1198         }
1199
1200         if (ring->data_dmat != NULL)
1201                 bus_dma_tag_destroy(ring->data_dmat);
1202 }
1203
1204 static int
1205 wpi_shutdown(device_t dev)
1206 {
1207         struct wpi_softc *sc = device_get_softc(dev);
1208
1209         WPI_LOCK(sc);
1210         wpi_stop_locked(sc);
1211         wpi_unload_firmware(sc);
1212         WPI_UNLOCK(sc);
1213
1214         return 0;
1215 }
1216
1217 static int
1218 wpi_suspend(device_t dev)
1219 {
1220         struct wpi_softc *sc = device_get_softc(dev);
1221         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1222
1223         ieee80211_suspend_all(ic);
1224         return 0;
1225 }
1226
1227 static int
1228 wpi_resume(device_t dev)
1229 {
1230         struct wpi_softc *sc = device_get_softc(dev);
1231         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1232
1233         pci_write_config(dev, 0x41, 0, 1);
1234
1235         ieee80211_resume_all(ic);
1236         return 0;
1237 }
1238
1239 /**
1240  * Called by net80211 when ever there is a change to 80211 state machine
1241  */
1242 static int
1243 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1244 {
1245         struct wpi_vap *wvp = WPI_VAP(vap);
1246         struct ieee80211com *ic = vap->iv_ic;
1247         struct ifnet *ifp = ic->ic_ifp;
1248         struct wpi_softc *sc = ifp->if_softc;
1249         int error;
1250
1251         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1252                 ieee80211_state_name[vap->iv_state],
1253                 ieee80211_state_name[nstate], sc->flags));
1254
1255         IEEE80211_UNLOCK(ic);
1256         WPI_LOCK(sc);
1257         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1258                 /*
1259                  * On !INIT -> SCAN transitions, we need to clear any possible
1260                  * knowledge about associations.
1261                  */
1262                 error = wpi_config(sc);
1263                 if (error != 0) {
1264                         device_printf(sc->sc_dev,
1265                             "%s: device config failed, error %d\n",
1266                             __func__, error);
1267                 }
1268         }
1269         if (nstate == IEEE80211_S_AUTH ||
1270             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1271                 /*
1272                  * The node must be registered in the firmware before auth.
1273                  * Also the associd must be cleared on RUN -> ASSOC
1274                  * transitions.
1275                  */
1276                 error = wpi_auth(sc, vap);
1277                 if (error != 0) {
1278                         device_printf(sc->sc_dev,
1279                             "%s: could not move to auth state, error %d\n",
1280                             __func__, error);
1281                 }
1282         }
1283         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1284                 error = wpi_run(sc, vap);
1285                 if (error != 0) {
1286                         device_printf(sc->sc_dev,
1287                             "%s: could not move to run state, error %d\n",
1288                             __func__, error);
1289                 }
1290         }
1291         if (nstate == IEEE80211_S_RUN) {
1292                 /* RUN -> RUN transition; just restart the timers */
1293                 wpi_calib_timeout(sc);
1294                 /* XXX split out rate control timer */
1295         }
1296         WPI_UNLOCK(sc);
1297         IEEE80211_LOCK(ic);
1298         return wvp->newstate(vap, nstate, arg);
1299 }
1300
1301 /*
1302  * Grab exclusive access to NIC memory.
1303  */
1304 static void
1305 wpi_mem_lock(struct wpi_softc *sc)
1306 {
1307         int ntries;
1308         uint32_t tmp;
1309
1310         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1311         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1312
1313         /* spin until we actually get the lock */
1314         for (ntries = 0; ntries < 100; ntries++) {
1315                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1316                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1317                         break;
1318                 DELAY(10);
1319         }
1320         if (ntries == 100)
1321                 device_printf(sc->sc_dev, "could not lock memory\n");
1322 }
1323
1324 /*
1325  * Release lock on NIC memory.
1326  */
1327 static void
1328 wpi_mem_unlock(struct wpi_softc *sc)
1329 {
1330         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1331         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1332 }
1333
1334 static uint32_t
1335 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1336 {
1337         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1338         return WPI_READ(sc, WPI_READ_MEM_DATA);
1339 }
1340
1341 static void
1342 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1343 {
1344         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1345         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1346 }
1347
1348 static void
1349 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1350     const uint32_t *data, int wlen)
1351 {
1352         for (; wlen > 0; wlen--, data++, addr+=4)
1353                 wpi_mem_write(sc, addr, *data);
1354 }
1355
1356 /*
1357  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1358  * using the traditional bit-bang method. Data is read up until len bytes have
1359  * been obtained.
1360  */
1361 static uint16_t
1362 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1363 {
1364         int ntries;
1365         uint32_t val;
1366         uint8_t *out = data;
1367
1368         wpi_mem_lock(sc);
1369
1370         for (; len > 0; len -= 2, addr++) {
1371                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1372
1373                 for (ntries = 0; ntries < 10; ntries++) {
1374                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1375                                 break;
1376                         DELAY(5);
1377                 }
1378
1379                 if (ntries == 10) {
1380                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1381                         return ETIMEDOUT;
1382                 }
1383
1384                 *out++= val >> 16;
1385                 if (len > 1)
1386                         *out ++= val >> 24;
1387         }
1388
1389         wpi_mem_unlock(sc);
1390
1391         return 0;
1392 }
1393
1394 /*
1395  * The firmware text and data segments are transferred to the NIC using DMA.
1396  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1397  * where to find it.  Once the NIC has copied the firmware into its internal
1398  * memory, we can free our local copy in the driver.
1399  */
1400 static int
1401 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1402 {
1403         int error, ntries;
1404
1405         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1406
1407         size /= sizeof(uint32_t);
1408
1409         wpi_mem_lock(sc);
1410
1411         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1412             (const uint32_t *)fw, size);
1413
1414         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1415         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1416         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1417
1418         /* run microcode */
1419         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1420
1421         /* wait while the adapter is busy copying the firmware */
1422         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1423                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1424                 DPRINTFN(WPI_DEBUG_HW,
1425                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1426                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1427                 if (status & WPI_TX_IDLE(6)) {
1428                         DPRINTFN(WPI_DEBUG_HW,
1429                             ("Status Match! - ntries = %d\n", ntries));
1430                         break;
1431                 }
1432                 DELAY(10);
1433         }
1434         if (ntries == 1000) {
1435                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1436                 error = ETIMEDOUT;
1437         }
1438
1439         /* start the microcode executing */
1440         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1441
1442         wpi_mem_unlock(sc);
1443
1444         return (error);
1445 }
1446
1447 static void
1448 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1449         struct wpi_rx_data *data)
1450 {
1451         struct ifnet *ifp = sc->sc_ifp;
1452         struct ieee80211com *ic = ifp->if_l2com;
1453         struct wpi_rx_ring *ring = &sc->rxq;
1454         struct wpi_rx_stat *stat;
1455         struct wpi_rx_head *head;
1456         struct wpi_rx_tail *tail;
1457         struct ieee80211_node *ni;
1458         struct mbuf *m, *mnew;
1459         bus_addr_t paddr;
1460         int error;
1461
1462         stat = (struct wpi_rx_stat *)(desc + 1);
1463
1464         if (stat->len > WPI_STAT_MAXLEN) {
1465                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1466                 ifp->if_ierrors++;
1467                 return;
1468         }
1469
1470         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1471         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1472         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1473
1474         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1475             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1476             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1477             (uintmax_t)le64toh(tail->tstamp)));
1478
1479         /* discard Rx frames with bad CRC early */
1480         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1481                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1482                     le32toh(tail->flags)));
1483                 ifp->if_ierrors++;
1484                 return;
1485         }
1486         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1487                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1488                     le16toh(head->len)));
1489                 ifp->if_ierrors++;
1490                 return;
1491         }
1492
1493         /* XXX don't need mbuf, just dma buffer */
1494         mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1495         if (mnew == NULL) {
1496                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1497                     __func__));
1498                 ifp->if_ierrors++;
1499                 return;
1500         }
1501         bus_dmamap_unload(ring->data_dmat, data->map);
1502
1503         error = bus_dmamap_load(ring->data_dmat, data->map,
1504             mtod(mnew, caddr_t), MJUMPAGESIZE,
1505             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1506         if (error != 0 && error != EFBIG) {
1507                 device_printf(sc->sc_dev,
1508                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1509                 m_freem(mnew);
1510                 ifp->if_ierrors++;
1511                 return;
1512         }
1513         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1514
1515         /* finalize mbuf and swap in new one */
1516         m = data->m;
1517         m->m_pkthdr.rcvif = ifp;
1518         m->m_data = (caddr_t)(head + 1);
1519         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1520
1521         data->m = mnew;
1522         /* update Rx descriptor */
1523         ring->desc[ring->cur] = htole32(paddr);
1524
1525         if (ieee80211_radiotap_active(ic)) {
1526                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1527
1528                 tap->wr_flags = 0;
1529                 tap->wr_chan_freq =
1530                         htole16(ic->ic_channels[head->chan].ic_freq);
1531                 tap->wr_chan_flags =
1532                         htole16(ic->ic_channels[head->chan].ic_flags);
1533                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1534                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1535                 tap->wr_tsft = tail->tstamp;
1536                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1537                 switch (head->rate) {
1538                 /* CCK rates */
1539                 case  10: tap->wr_rate =   2; break;
1540                 case  20: tap->wr_rate =   4; break;
1541                 case  55: tap->wr_rate =  11; break;
1542                 case 110: tap->wr_rate =  22; break;
1543                 /* OFDM rates */
1544                 case 0xd: tap->wr_rate =  12; break;
1545                 case 0xf: tap->wr_rate =  18; break;
1546                 case 0x5: tap->wr_rate =  24; break;
1547                 case 0x7: tap->wr_rate =  36; break;
1548                 case 0x9: tap->wr_rate =  48; break;
1549                 case 0xb: tap->wr_rate =  72; break;
1550                 case 0x1: tap->wr_rate =  96; break;
1551                 case 0x3: tap->wr_rate = 108; break;
1552                 /* unknown rate: should not happen */
1553                 default:  tap->wr_rate =   0;
1554                 }
1555                 if (le16toh(head->flags) & 0x4)
1556                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1557         }
1558
1559         WPI_UNLOCK(sc);
1560
1561         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1562         if (ni != NULL) {
1563                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1564                 ieee80211_free_node(ni);
1565         } else
1566                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1567
1568         WPI_LOCK(sc);
1569 }
1570
1571 static void
1572 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1573 {
1574         struct ifnet *ifp = sc->sc_ifp;
1575         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1576         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1577         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1578         struct ieee80211_node *ni = txdata->ni;
1579         struct ieee80211vap *vap = ni->ni_vap;
1580         int retrycnt = 0;
1581
1582         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1583             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1584             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1585             le32toh(stat->status)));
1586
1587         /*
1588          * Update rate control statistics for the node.
1589          * XXX we should not count mgmt frames since they're always sent at
1590          * the lowest available bit-rate.
1591          * XXX frames w/o ACK shouldn't be used either
1592          */
1593         if (stat->ntries > 0) {
1594                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1595                 retrycnt = 1;
1596         }
1597         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1598             &retrycnt, NULL);
1599
1600         /* XXX oerrors should only count errors !maxtries */
1601         if ((le32toh(stat->status) & 0xff) != 1)
1602                 ifp->if_oerrors++;
1603         else
1604                 ifp->if_opackets++;
1605
1606         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1607         bus_dmamap_unload(ring->data_dmat, txdata->map);
1608         /* XXX handle M_TXCB? */
1609         m_freem(txdata->m);
1610         txdata->m = NULL;
1611         ieee80211_free_node(txdata->ni);
1612         txdata->ni = NULL;
1613
1614         ring->queued--;
1615
1616         sc->sc_tx_timer = 0;
1617         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1618         wpi_start_locked(ifp);
1619 }
1620
1621 static void
1622 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1623 {
1624         struct wpi_tx_ring *ring = &sc->cmdq;
1625         struct wpi_tx_data *data;
1626
1627         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1628                                  "type=%s len=%d\n", desc->qid, desc->idx,
1629                                  desc->flags, wpi_cmd_str(desc->type),
1630                                  le32toh(desc->len)));
1631
1632         if ((desc->qid & 7) != 4)
1633                 return; /* not a command ack */
1634
1635         data = &ring->data[desc->idx];
1636
1637         /* if the command was mapped in a mbuf, free it */
1638         if (data->m != NULL) {
1639                 bus_dmamap_unload(ring->data_dmat, data->map);
1640                 m_freem(data->m);
1641                 data->m = NULL;
1642         }
1643
1644         sc->flags &= ~WPI_FLAG_BUSY;
1645         wakeup(&ring->cmd[desc->idx]);
1646 }
1647
1648 static void
1649 wpi_notif_intr(struct wpi_softc *sc)
1650 {
1651         struct ifnet *ifp = sc->sc_ifp;
1652         struct ieee80211com *ic = ifp->if_l2com;
1653         struct wpi_rx_desc *desc;
1654         struct wpi_rx_data *data;
1655         uint32_t hw;
1656
1657         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1658             BUS_DMASYNC_POSTREAD);
1659
1660         hw = le32toh(sc->shared->next);
1661         while (sc->rxq.cur != hw) {
1662                 data = &sc->rxq.data[sc->rxq.cur];
1663
1664                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1665                     BUS_DMASYNC_POSTREAD);
1666                 desc = (void *)data->m->m_ext.ext_buf;
1667
1668                 DPRINTFN(WPI_DEBUG_NOTIFY,
1669                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1670                           desc->qid,
1671                           desc->idx,
1672                           desc->flags,
1673                           desc->type,
1674                           le32toh(desc->len)));
1675
1676                 if (!(desc->qid & 0x80))        /* reply to a command */
1677                         wpi_cmd_intr(sc, desc);
1678
1679                 switch (desc->type) {
1680                 case WPI_RX_DONE:
1681                         /* a 802.11 frame was received */
1682                         wpi_rx_intr(sc, desc, data);
1683                         break;
1684
1685                 case WPI_TX_DONE:
1686                         /* a 802.11 frame has been transmitted */
1687                         wpi_tx_intr(sc, desc);
1688                         break;
1689
1690                 case WPI_UC_READY:
1691                 {
1692                         struct wpi_ucode_info *uc =
1693                                 (struct wpi_ucode_info *)(desc + 1);
1694
1695                         /* the microcontroller is ready */
1696                         DPRINTF(("microcode alive notification version %x "
1697                                 "alive %x\n", le32toh(uc->version),
1698                                 le32toh(uc->valid)));
1699
1700                         if (le32toh(uc->valid) != 1) {
1701                                 device_printf(sc->sc_dev,
1702                                     "microcontroller initialization failed\n");
1703                                 wpi_stop_locked(sc);
1704                         }
1705                         break;
1706                 }
1707                 case WPI_STATE_CHANGED:
1708                 {
1709                         uint32_t *status = (uint32_t *)(desc + 1);
1710
1711                         /* enabled/disabled notification */
1712                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1713
1714                         if (le32toh(*status) & 1) {
1715                                 device_printf(sc->sc_dev,
1716                                     "Radio transmitter is switched off\n");
1717                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1718                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1719                                 /* Disable firmware commands */
1720                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1721                         }
1722                         break;
1723                 }
1724                 case WPI_START_SCAN:
1725                 {
1726 #ifdef WPI_DEBUG
1727                         struct wpi_start_scan *scan =
1728                                 (struct wpi_start_scan *)(desc + 1);
1729 #endif
1730
1731                         DPRINTFN(WPI_DEBUG_SCANNING,
1732                                  ("scanning channel %d status %x\n",
1733                             scan->chan, le32toh(scan->status)));
1734                         break;
1735                 }
1736                 case WPI_STOP_SCAN:
1737                 {
1738 #ifdef WPI_DEBUG
1739                         struct wpi_stop_scan *scan =
1740                                 (struct wpi_stop_scan *)(desc + 1);
1741 #endif
1742                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1743
1744                         DPRINTFN(WPI_DEBUG_SCANNING,
1745                             ("scan finished nchan=%d status=%d chan=%d\n",
1746                              scan->nchan, scan->status, scan->chan));
1747
1748                         sc->sc_scan_timer = 0;
1749                         ieee80211_scan_next(vap);
1750                         break;
1751                 }
1752                 case WPI_MISSED_BEACON:
1753                 {
1754                         struct wpi_missed_beacon *beacon =
1755                                 (struct wpi_missed_beacon *)(desc + 1);
1756                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1757
1758                         if (le32toh(beacon->consecutive) >=
1759                             vap->iv_bmissthreshold) {
1760                                 DPRINTF(("Beacon miss: %u >= %u\n",
1761                                          le32toh(beacon->consecutive),
1762                                          vap->iv_bmissthreshold));
1763                                 ieee80211_beacon_miss(ic);
1764                         }
1765                         break;
1766                 }
1767                 }
1768
1769                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1770         }
1771
1772         /* tell the firmware what we have processed */
1773         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1774         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1775 }
1776
1777 static void
1778 wpi_intr(void *arg)
1779 {
1780         struct wpi_softc *sc = arg;
1781         uint32_t r;
1782
1783         WPI_LOCK(sc);
1784
1785         r = WPI_READ(sc, WPI_INTR);
1786         if (r == 0 || r == 0xffffffff) {
1787                 WPI_UNLOCK(sc);
1788                 return;
1789         }
1790
1791         /* disable interrupts */
1792         WPI_WRITE(sc, WPI_MASK, 0);
1793         /* ack interrupts */
1794         WPI_WRITE(sc, WPI_INTR, r);
1795
1796         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1797                 struct ifnet *ifp = sc->sc_ifp;
1798                 struct ieee80211com *ic = ifp->if_l2com;
1799                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1800
1801                 device_printf(sc->sc_dev, "fatal firmware error\n");
1802                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1803                                 "(Hardware Error)"));
1804                 if (vap != NULL)
1805                         ieee80211_cancel_scan(vap);
1806                 ieee80211_runtask(ic, &sc->sc_restarttask);
1807                 sc->flags &= ~WPI_FLAG_BUSY;
1808                 WPI_UNLOCK(sc);
1809                 return;
1810         }
1811
1812         if (r & WPI_RX_INTR)
1813                 wpi_notif_intr(sc);
1814
1815         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1816                 wakeup(sc);
1817
1818         /* re-enable interrupts */
1819         if (sc->sc_ifp->if_flags & IFF_UP)
1820                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1821
1822         WPI_UNLOCK(sc);
1823 }
1824
1825 static uint8_t
1826 wpi_plcp_signal(int rate)
1827 {
1828         switch (rate) {
1829         /* CCK rates (returned values are device-dependent) */
1830         case 2:         return 10;
1831         case 4:         return 20;
1832         case 11:        return 55;
1833         case 22:        return 110;
1834
1835         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1836         /* R1-R4 (ral/ural is R4-R1) */
1837         case 12:        return 0xd;
1838         case 18:        return 0xf;
1839         case 24:        return 0x5;
1840         case 36:        return 0x7;
1841         case 48:        return 0x9;
1842         case 72:        return 0xb;
1843         case 96:        return 0x1;
1844         case 108:       return 0x3;
1845
1846         /* unsupported rates (should not get there) */
1847         default:        return 0;
1848         }
1849 }
1850
1851 /* quickly determine if a given rate is CCK or OFDM */
1852 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1853
1854 /*
1855  * Construct the data packet for a transmit buffer and acutally put
1856  * the buffer onto the transmit ring, kicking the card to process the
1857  * the buffer.
1858  */
1859 static int
1860 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1861         int ac)
1862 {
1863         struct ieee80211vap *vap = ni->ni_vap;
1864         struct ifnet *ifp = sc->sc_ifp;
1865         struct ieee80211com *ic = ifp->if_l2com;
1866         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1867         struct wpi_tx_ring *ring = &sc->txq[ac];
1868         struct wpi_tx_desc *desc;
1869         struct wpi_tx_data *data;
1870         struct wpi_tx_cmd *cmd;
1871         struct wpi_cmd_data *tx;
1872         struct ieee80211_frame *wh;
1873         const struct ieee80211_txparam *tp;
1874         struct ieee80211_key *k;
1875         struct mbuf *mnew;
1876         int i, error, nsegs, rate, hdrlen, ismcast;
1877         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1878
1879         desc = &ring->desc[ring->cur];
1880         data = &ring->data[ring->cur];
1881
1882         wh = mtod(m0, struct ieee80211_frame *);
1883
1884         hdrlen = ieee80211_hdrsize(wh);
1885         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1886
1887         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1888                 k = ieee80211_crypto_encap(ni, m0);
1889                 if (k == NULL) {
1890                         m_freem(m0);
1891                         return ENOBUFS;
1892                 }
1893                 /* packet header may have moved, reset our local pointer */
1894                 wh = mtod(m0, struct ieee80211_frame *);
1895         }
1896
1897         cmd = &ring->cmd[ring->cur];
1898         cmd->code = WPI_CMD_TX_DATA;
1899         cmd->flags = 0;
1900         cmd->qid = ring->qid;
1901         cmd->idx = ring->cur;
1902
1903         tx = (struct wpi_cmd_data *)cmd->data;
1904         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1905         tx->timeout = htole16(0);
1906         tx->ofdm_mask = 0xff;
1907         tx->cck_mask = 0x0f;
1908         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1909         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1910         tx->len = htole16(m0->m_pkthdr.len);
1911
1912         if (!ismcast) {
1913                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1914                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1915                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1916                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1917                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1918                         tx->rts_ntries = 7;
1919                 }
1920         }
1921         /* pick a rate */
1922         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1923         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1924                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1925                 /* tell h/w to set timestamp in probe responses */
1926                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1927                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1928                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1929                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1930                         tx->timeout = htole16(3);
1931                 else
1932                         tx->timeout = htole16(2);
1933                 rate = tp->mgmtrate;
1934         } else if (ismcast) {
1935                 rate = tp->mcastrate;
1936         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1937                 rate = tp->ucastrate;
1938         } else {
1939                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1940                 rate = ni->ni_txrate;
1941         }
1942         tx->rate = wpi_plcp_signal(rate);
1943
1944         /* be very persistant at sending frames out */
1945 #if 0
1946         tx->data_ntries = tp->maxretry;
1947 #else
1948         tx->data_ntries = 15;           /* XXX way too high */
1949 #endif
1950
1951         if (ieee80211_radiotap_active_vap(vap)) {
1952                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1953                 tap->wt_flags = 0;
1954                 tap->wt_rate = rate;
1955                 tap->wt_hwqueue = ac;
1956                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1957                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1958
1959                 ieee80211_radiotap_tx(vap, m0);
1960         }
1961
1962         /* save and trim IEEE802.11 header */
1963         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1964         m_adj(m0, hdrlen);
1965
1966         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1967             &nsegs, BUS_DMA_NOWAIT);
1968         if (error != 0 && error != EFBIG) {
1969                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1970                     error);
1971                 m_freem(m0);
1972                 return error;
1973         }
1974         if (error != 0) {
1975                 /* XXX use m_collapse */
1976                 mnew = m_defrag(m0, M_NOWAIT);
1977                 if (mnew == NULL) {
1978                         device_printf(sc->sc_dev,
1979                             "could not defragment mbuf\n");
1980                         m_freem(m0);
1981                         return ENOBUFS;
1982                 }
1983                 m0 = mnew;
1984
1985                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1986                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1987                 if (error != 0) {
1988                         device_printf(sc->sc_dev,
1989                             "could not map mbuf (error %d)\n", error);
1990                         m_freem(m0);
1991                         return error;
1992                 }
1993         }
1994
1995         data->m = m0;
1996         data->ni = ni;
1997
1998         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1999             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2000
2001         /* first scatter/gather segment is used by the tx data command */
2002         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2003             (1 + nsegs) << 24);
2004         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2005             ring->cur * sizeof (struct wpi_tx_cmd));
2006         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2007         for (i = 1; i <= nsegs; i++) {
2008                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2009                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2010         }
2011
2012         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2013         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2014             BUS_DMASYNC_PREWRITE);
2015
2016         ring->queued++;
2017
2018         /* kick ring */
2019         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2020         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2021
2022         return 0;
2023 }
2024
2025 /**
2026  * Process data waiting to be sent on the IFNET output queue
2027  */
2028 static void
2029 wpi_start(struct ifnet *ifp)
2030 {
2031         struct wpi_softc *sc = ifp->if_softc;
2032
2033         WPI_LOCK(sc);
2034         wpi_start_locked(ifp);
2035         WPI_UNLOCK(sc);
2036 }
2037
2038 static void
2039 wpi_start_locked(struct ifnet *ifp)
2040 {
2041         struct wpi_softc *sc = ifp->if_softc;
2042         struct ieee80211_node *ni;
2043         struct mbuf *m;
2044         int ac;
2045
2046         WPI_LOCK_ASSERT(sc);
2047
2048         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2049                 return;
2050
2051         for (;;) {
2052                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2053                 if (m == NULL)
2054                         break;
2055                 ac = M_WME_GETAC(m);
2056                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2057                         /* there is no place left in this ring */
2058                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
2059                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2060                         break;
2061                 }
2062                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2063                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2064                         ieee80211_free_node(ni);
2065                         ifp->if_oerrors++;
2066                         break;
2067                 }
2068                 sc->sc_tx_timer = 5;
2069         }
2070 }
2071
2072 static int
2073 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2074         const struct ieee80211_bpf_params *params)
2075 {
2076         struct ieee80211com *ic = ni->ni_ic;
2077         struct ifnet *ifp = ic->ic_ifp;
2078         struct wpi_softc *sc = ifp->if_softc;
2079
2080         /* prevent management frames from being sent if we're not ready */
2081         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2082                 m_freem(m);
2083                 ieee80211_free_node(ni);
2084                 return ENETDOWN;
2085         }
2086         WPI_LOCK(sc);
2087
2088         /* management frames go into ring 0 */
2089         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2090                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2091                 m_freem(m);
2092                 WPI_UNLOCK(sc);
2093                 ieee80211_free_node(ni);
2094                 return ENOBUFS;         /* XXX */
2095         }
2096
2097         ifp->if_opackets++;
2098         if (wpi_tx_data(sc, m, ni, 0) != 0)
2099                 goto bad;
2100         sc->sc_tx_timer = 5;
2101         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2102
2103         WPI_UNLOCK(sc);
2104         return 0;
2105 bad:
2106         ifp->if_oerrors++;
2107         WPI_UNLOCK(sc);
2108         ieee80211_free_node(ni);
2109         return EIO;             /* XXX */
2110 }
2111
2112 static int
2113 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2114 {
2115         struct wpi_softc *sc = ifp->if_softc;
2116         struct ieee80211com *ic = ifp->if_l2com;
2117         struct ifreq *ifr = (struct ifreq *) data;
2118         int error = 0, startall = 0;
2119
2120         switch (cmd) {
2121         case SIOCSIFFLAGS:
2122                 WPI_LOCK(sc);
2123                 if ((ifp->if_flags & IFF_UP)) {
2124                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2125                                 wpi_init_locked(sc, 0);
2126                                 startall = 1;
2127                         }
2128                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2129                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2130                         wpi_stop_locked(sc);
2131                 WPI_UNLOCK(sc);
2132                 if (startall)
2133                         ieee80211_start_all(ic);
2134                 break;
2135         case SIOCGIFMEDIA:
2136                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2137                 break;
2138         case SIOCGIFADDR:
2139                 error = ether_ioctl(ifp, cmd, data);
2140                 break;
2141         default:
2142                 error = EINVAL;
2143                 break;
2144         }
2145         return error;
2146 }
2147
2148 /*
2149  * Extract various information from EEPROM.
2150  */
2151 static void
2152 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2153 {
2154         int i;
2155
2156         /* read the hardware capabilities, revision and SKU type */
2157         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2158         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2159         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2160
2161         /* read the regulatory domain */
2162         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2163
2164         /* read in the hw MAC address */
2165         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2166
2167         /* read the list of authorized channels */
2168         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2169                 wpi_read_eeprom_channels(sc,i);
2170
2171         /* read the power level calibration info for each group */
2172         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2173                 wpi_read_eeprom_group(sc,i);
2174 }
2175
2176 /*
2177  * Send a command to the firmware.
2178  */
2179 static int
2180 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2181 {
2182         struct wpi_tx_ring *ring = &sc->cmdq;
2183         struct wpi_tx_desc *desc;
2184         struct wpi_tx_cmd *cmd;
2185
2186 #ifdef WPI_DEBUG
2187         if (!async) {
2188                 WPI_LOCK_ASSERT(sc);
2189         }
2190 #endif
2191
2192         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2193                     async));
2194
2195         if (sc->flags & WPI_FLAG_BUSY) {
2196                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2197                     __func__, code);
2198                 return EAGAIN;
2199         }
2200         sc->flags|= WPI_FLAG_BUSY;
2201
2202         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2203             code, size));
2204
2205         desc = &ring->desc[ring->cur];
2206         cmd = &ring->cmd[ring->cur];
2207
2208         cmd->code = code;
2209         cmd->flags = 0;
2210         cmd->qid = ring->qid;
2211         cmd->idx = ring->cur;
2212         memcpy(cmd->data, buf, size);
2213
2214         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2215         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2216                 ring->cur * sizeof (struct wpi_tx_cmd));
2217         desc->segs[0].len  = htole32(4 + size);
2218
2219         /* kick cmd ring */
2220         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2221         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2222
2223         if (async) {
2224                 sc->flags &= ~ WPI_FLAG_BUSY;
2225                 return 0;
2226         }
2227
2228         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2229 }
2230
2231 static int
2232 wpi_wme_update(struct ieee80211com *ic)
2233 {
2234 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2235 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2236         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2237         const struct wmeParams *wmep;
2238         struct wpi_wme_setup wme;
2239         int ac;
2240
2241         /* don't override default WME values if WME is not actually enabled */
2242         if (!(ic->ic_flags & IEEE80211_F_WME))
2243                 return 0;
2244
2245         wme.flags = 0;
2246         for (ac = 0; ac < WME_NUM_AC; ac++) {
2247                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2248                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2249                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2250                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2251                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2252
2253                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2254                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2255                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2256         }
2257         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2258 #undef WPI_USEC
2259 #undef WPI_EXP2
2260 }
2261
2262 /*
2263  * Configure h/w multi-rate retries.
2264  */
2265 static int
2266 wpi_mrr_setup(struct wpi_softc *sc)
2267 {
2268         struct ifnet *ifp = sc->sc_ifp;
2269         struct ieee80211com *ic = ifp->if_l2com;
2270         struct wpi_mrr_setup mrr;
2271         int i, error;
2272
2273         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2274
2275         /* CCK rates (not used with 802.11a) */
2276         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2277                 mrr.rates[i].flags = 0;
2278                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2279                 /* fallback to the immediate lower CCK rate (if any) */
2280                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2281                 /* try one time at this rate before falling back to "next" */
2282                 mrr.rates[i].ntries = 1;
2283         }
2284
2285         /* OFDM rates (not used with 802.11b) */
2286         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2287                 mrr.rates[i].flags = 0;
2288                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2289                 /* fallback to the immediate lower OFDM rate (if any) */
2290                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2291                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2292                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2293                         WPI_OFDM6 : WPI_CCK2) :
2294                     i - 1;
2295                 /* try one time at this rate before falling back to "next" */
2296                 mrr.rates[i].ntries = 1;
2297         }
2298
2299         /* setup MRR for control frames */
2300         mrr.which = WPI_MRR_CTL;
2301         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2302         if (error != 0) {
2303                 device_printf(sc->sc_dev,
2304                     "could not setup MRR for control frames\n");
2305                 return error;
2306         }
2307
2308         /* setup MRR for data frames */
2309         mrr.which = WPI_MRR_DATA;
2310         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2311         if (error != 0) {
2312                 device_printf(sc->sc_dev,
2313                     "could not setup MRR for data frames\n");
2314                 return error;
2315         }
2316
2317         return 0;
2318 }
2319
2320 static void
2321 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2322 {
2323         struct wpi_cmd_led led;
2324
2325         led.which = which;
2326         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2327         led.off = off;
2328         led.on = on;
2329
2330         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2331 }
2332
2333 static void
2334 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2335 {
2336         struct wpi_cmd_tsf tsf;
2337         uint64_t val, mod;
2338
2339         memset(&tsf, 0, sizeof tsf);
2340         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2341         tsf.bintval = htole16(ni->ni_intval);
2342         tsf.lintval = htole16(10);
2343
2344         /* compute remaining time until next beacon */
2345         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2346         mod = le64toh(tsf.tstamp) % val;
2347         tsf.binitval = htole32((uint32_t)(val - mod));
2348
2349         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2350                 device_printf(sc->sc_dev, "could not enable TSF\n");
2351 }
2352
2353 #if 0
2354 /*
2355  * Build a beacon frame that the firmware will broadcast periodically in
2356  * IBSS or HostAP modes.
2357  */
2358 static int
2359 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2360 {
2361         struct ifnet *ifp = sc->sc_ifp;
2362         struct ieee80211com *ic = ifp->if_l2com;
2363         struct wpi_tx_ring *ring = &sc->cmdq;
2364         struct wpi_tx_desc *desc;
2365         struct wpi_tx_data *data;
2366         struct wpi_tx_cmd *cmd;
2367         struct wpi_cmd_beacon *bcn;
2368         struct ieee80211_beacon_offsets bo;
2369         struct mbuf *m0;
2370         bus_addr_t physaddr;
2371         int error;
2372
2373         desc = &ring->desc[ring->cur];
2374         data = &ring->data[ring->cur];
2375
2376         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2377         if (m0 == NULL) {
2378                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2379                 return ENOMEM;
2380         }
2381
2382         cmd = &ring->cmd[ring->cur];
2383         cmd->code = WPI_CMD_SET_BEACON;
2384         cmd->flags = 0;
2385         cmd->qid = ring->qid;
2386         cmd->idx = ring->cur;
2387
2388         bcn = (struct wpi_cmd_beacon *)cmd->data;
2389         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2390         bcn->id = WPI_ID_BROADCAST;
2391         bcn->ofdm_mask = 0xff;
2392         bcn->cck_mask = 0x0f;
2393         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2394         bcn->len = htole16(m0->m_pkthdr.len);
2395         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2396                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2397         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2398
2399         /* save and trim IEEE802.11 header */
2400         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2401         m_adj(m0, sizeof (struct ieee80211_frame));
2402
2403         /* assume beacon frame is contiguous */
2404         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2405             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2406         if (error != 0) {
2407                 device_printf(sc->sc_dev, "could not map beacon\n");
2408                 m_freem(m0);
2409                 return error;
2410         }
2411
2412         data->m = m0;
2413
2414         /* first scatter/gather segment is used by the beacon command */
2415         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2416         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2417                 ring->cur * sizeof (struct wpi_tx_cmd));
2418         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2419         desc->segs[1].addr = htole32(physaddr);
2420         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2421
2422         /* kick cmd ring */
2423         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2424         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2425
2426         return 0;
2427 }
2428 #endif
2429
2430 static int
2431 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2432 {
2433         struct ieee80211com *ic = vap->iv_ic;
2434         struct ieee80211_node *ni = vap->iv_bss;
2435         struct wpi_node_info node;
2436         int error;
2437
2438
2439         /* update adapter's configuration */
2440         sc->config.associd = 0;
2441         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2442         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2443         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2444         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2445                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2446                     WPI_CONFIG_24GHZ);
2447         } else {
2448                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2449                     WPI_CONFIG_24GHZ);
2450         }
2451         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2452                 sc->config.cck_mask  = 0;
2453                 sc->config.ofdm_mask = 0x15;
2454         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2455                 sc->config.cck_mask  = 0x03;
2456                 sc->config.ofdm_mask = 0;
2457         } else {
2458                 /* XXX assume 802.11b/g */
2459                 sc->config.cck_mask  = 0x0f;
2460                 sc->config.ofdm_mask = 0x15;
2461         }
2462
2463         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2464                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2465         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2466                 sizeof (struct wpi_config), 1);
2467         if (error != 0) {
2468                 device_printf(sc->sc_dev, "could not configure\n");
2469                 return error;
2470         }
2471
2472         /* configuration has changed, set Tx power accordingly */
2473         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2474                 device_printf(sc->sc_dev, "could not set Tx power\n");
2475                 return error;
2476         }
2477
2478         /* add default node */
2479         memset(&node, 0, sizeof node);
2480         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2481         node.id = WPI_ID_BSS;
2482         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2483             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2484         node.action = htole32(WPI_ACTION_SET_RATE);
2485         node.antenna = WPI_ANTENNA_BOTH;
2486         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2487         if (error != 0)
2488                 device_printf(sc->sc_dev, "could not add BSS node\n");
2489
2490         return (error);
2491 }
2492
2493 static int
2494 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2495 {
2496         struct ieee80211com *ic = vap->iv_ic;
2497         struct ieee80211_node *ni = vap->iv_bss;
2498         int error;
2499
2500         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2501                 /* link LED blinks while monitoring */
2502                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2503                 return 0;
2504         }
2505
2506         wpi_enable_tsf(sc, ni);
2507
2508         /* update adapter's configuration */
2509         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2510         /* short preamble/slot time are negotiated when associating */
2511         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2512             WPI_CONFIG_SHSLOT);
2513         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2514                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2515         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2516                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2517         sc->config.filter |= htole32(WPI_FILTER_BSS);
2518
2519         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2520
2521         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2522                     sc->config.flags));
2523         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2524                     wpi_config), 1);
2525         if (error != 0) {
2526                 device_printf(sc->sc_dev, "could not update configuration\n");
2527                 return error;
2528         }
2529
2530         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2531         if (error != 0) {
2532                 device_printf(sc->sc_dev, "could set txpower\n");
2533                 return error;
2534         }
2535
2536         /* link LED always on while associated */
2537         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2538
2539         /* start automatic rate control timer */
2540         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2541
2542         return (error);
2543 }
2544
2545 /*
2546  * Send a scan request to the firmware.  Since this command is huge, we map it
2547  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2548  * much of this code is similar to that in wpi_cmd but because we must manually
2549  * construct the probe & channels, we duplicate what's needed here. XXX In the
2550  * future, this function should be modified to use wpi_cmd to help cleanup the
2551  * code base.
2552  */
2553 static int
2554 wpi_scan(struct wpi_softc *sc)
2555 {
2556         struct ifnet *ifp = sc->sc_ifp;
2557         struct ieee80211com *ic = ifp->if_l2com;
2558         struct ieee80211_scan_state *ss = ic->ic_scan;
2559         struct wpi_tx_ring *ring = &sc->cmdq;
2560         struct wpi_tx_desc *desc;
2561         struct wpi_tx_data *data;
2562         struct wpi_tx_cmd *cmd;
2563         struct wpi_scan_hdr *hdr;
2564         struct wpi_scan_chan *chan;
2565         struct ieee80211_frame *wh;
2566         struct ieee80211_rateset *rs;
2567         struct ieee80211_channel *c;
2568         enum ieee80211_phymode mode;
2569         uint8_t *frm;
2570         int nrates, pktlen, error, i, nssid;
2571         bus_addr_t physaddr;
2572
2573         desc = &ring->desc[ring->cur];
2574         data = &ring->data[ring->cur];
2575
2576         data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2577         if (data->m == NULL) {
2578                 device_printf(sc->sc_dev,
2579                     "could not allocate mbuf for scan command\n");
2580                 return ENOMEM;
2581         }
2582
2583         cmd = mtod(data->m, struct wpi_tx_cmd *);
2584         cmd->code = WPI_CMD_SCAN;
2585         cmd->flags = 0;
2586         cmd->qid = ring->qid;
2587         cmd->idx = ring->cur;
2588
2589         hdr = (struct wpi_scan_hdr *)cmd->data;
2590         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2591
2592         /*
2593          * Move to the next channel if no packets are received within 5 msecs
2594          * after sending the probe request (this helps to reduce the duration
2595          * of active scans).
2596          */
2597         hdr->quiet = htole16(5);
2598         hdr->threshold = htole16(1);
2599
2600         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2601                 /* send probe requests at 6Mbps */
2602                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2603
2604                 /* Enable crc checking */
2605                 hdr->promotion = htole16(1);
2606         } else {
2607                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2608                 /* send probe requests at 1Mbps */
2609                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2610         }
2611         hdr->tx.id = WPI_ID_BROADCAST;
2612         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2613         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2614
2615         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2616         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2617         for (i = 0; i < nssid; i++) {
2618                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2619                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2620                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2621                     hdr->scan_essids[i].esslen);
2622 #ifdef WPI_DEBUG
2623                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2624                         printf("Scanning Essid: ");
2625                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2626                             hdr->scan_essids[i].esslen);
2627                         printf("\n");
2628                 }
2629 #endif
2630         }
2631
2632         /*
2633          * Build a probe request frame.  Most of the following code is a
2634          * copy & paste of what is done in net80211.
2635          */
2636         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2637         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2638                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2639         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2640         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2641         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2642         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2643         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2644         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2645
2646         frm = (uint8_t *)(wh + 1);
2647
2648         /* add essid IE, the hardware will fill this in for us */
2649         *frm++ = IEEE80211_ELEMID_SSID;
2650         *frm++ = 0;
2651
2652         mode = ieee80211_chan2mode(ic->ic_curchan);
2653         rs = &ic->ic_sup_rates[mode];
2654
2655         /* add supported rates IE */
2656         *frm++ = IEEE80211_ELEMID_RATES;
2657         nrates = rs->rs_nrates;
2658         if (nrates > IEEE80211_RATE_SIZE)
2659                 nrates = IEEE80211_RATE_SIZE;
2660         *frm++ = nrates;
2661         memcpy(frm, rs->rs_rates, nrates);
2662         frm += nrates;
2663
2664         /* add supported xrates IE */
2665         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2666                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2667                 *frm++ = IEEE80211_ELEMID_XRATES;
2668                 *frm++ = nrates;
2669                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2670                 frm += nrates;
2671         }
2672
2673         /* setup length of probe request */
2674         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2675
2676         /*
2677          * Construct information about the channel that we
2678          * want to scan. The firmware expects this to be directly
2679          * after the scan probe request
2680          */
2681         c = ic->ic_curchan;
2682         chan = (struct wpi_scan_chan *)frm;
2683         chan->chan = ieee80211_chan2ieee(ic, c);
2684         chan->flags = 0;
2685         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2686                 chan->flags |= WPI_CHAN_ACTIVE;
2687                 if (nssid != 0)
2688                         chan->flags |= WPI_CHAN_DIRECT;
2689         }
2690         chan->gain_dsp = 0x6e; /* Default level */
2691         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2692                 chan->active = htole16(10);
2693                 chan->passive = htole16(ss->ss_maxdwell);
2694                 chan->gain_radio = 0x3b;
2695         } else {
2696                 chan->active = htole16(20);
2697                 chan->passive = htole16(ss->ss_maxdwell);
2698                 chan->gain_radio = 0x28;
2699         }
2700
2701         DPRINTFN(WPI_DEBUG_SCANNING,
2702             ("Scanning %u Passive: %d\n",
2703              chan->chan,
2704              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2705
2706         hdr->nchan++;
2707         chan++;
2708
2709         frm += sizeof (struct wpi_scan_chan);
2710 #if 0
2711         // XXX All Channels....
2712         for (c  = &ic->ic_channels[1];
2713              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2714                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2715                         continue;
2716
2717                 chan->chan = ieee80211_chan2ieee(ic, c);
2718                 chan->flags = 0;
2719                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2720                     chan->flags |= WPI_CHAN_ACTIVE;
2721                     if (ic->ic_des_ssid[0].len != 0)
2722                         chan->flags |= WPI_CHAN_DIRECT;
2723                 }
2724                 chan->gain_dsp = 0x6e; /* Default level */
2725                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2726                         chan->active = htole16(10);
2727                         chan->passive = htole16(110);
2728                         chan->gain_radio = 0x3b;
2729                 } else {
2730                         chan->active = htole16(20);
2731                         chan->passive = htole16(120);
2732                         chan->gain_radio = 0x28;
2733                 }
2734
2735                 DPRINTFN(WPI_DEBUG_SCANNING,
2736                          ("Scanning %u Passive: %d\n",
2737                           chan->chan,
2738                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2739
2740                 hdr->nchan++;
2741                 chan++;
2742
2743                 frm += sizeof (struct wpi_scan_chan);
2744         }
2745 #endif
2746
2747         hdr->len = htole16(frm - (uint8_t *)hdr);
2748         pktlen = frm - (uint8_t *)cmd;
2749
2750         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2751             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2752         if (error != 0) {
2753                 device_printf(sc->sc_dev, "could not map scan command\n");
2754                 m_freem(data->m);
2755                 data->m = NULL;
2756                 return error;
2757         }
2758
2759         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2760         desc->segs[0].addr = htole32(physaddr);
2761         desc->segs[0].len  = htole32(pktlen);
2762
2763         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2764             BUS_DMASYNC_PREWRITE);
2765         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2766
2767         /* kick cmd ring */
2768         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2769         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2770
2771         sc->sc_scan_timer = 5;
2772         return 0;       /* will be notified async. of failure/success */
2773 }
2774
2775 /**
2776  * Configure the card to listen to a particular channel, this transisions the
2777  * card in to being able to receive frames from remote devices.
2778  */
2779 static int
2780 wpi_config(struct wpi_softc *sc)
2781 {
2782         struct ifnet *ifp = sc->sc_ifp;
2783         struct ieee80211com *ic = ifp->if_l2com;
2784         struct wpi_power power;
2785         struct wpi_bluetooth bluetooth;
2786         struct wpi_node_info node;
2787         int error;
2788
2789         /* set power mode */
2790         memset(&power, 0, sizeof power);
2791         power.flags = htole32(WPI_POWER_CAM|0x8);
2792         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2793         if (error != 0) {
2794                 device_printf(sc->sc_dev, "could not set power mode\n");
2795                 return error;
2796         }
2797
2798         /* configure bluetooth coexistence */
2799         memset(&bluetooth, 0, sizeof bluetooth);
2800         bluetooth.flags = 3;
2801         bluetooth.lead = 0xaa;
2802         bluetooth.kill = 1;
2803         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2804             0);
2805         if (error != 0) {
2806                 device_printf(sc->sc_dev,
2807                     "could not configure bluetooth coexistence\n");
2808                 return error;
2809         }
2810
2811         /* configure adapter */
2812         memset(&sc->config, 0, sizeof (struct wpi_config));
2813         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2814         /*set default channel*/
2815         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2816         sc->config.flags = htole32(WPI_CONFIG_TSF);
2817         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2818                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2819                     WPI_CONFIG_24GHZ);
2820         }
2821         sc->config.filter = 0;
2822         switch (ic->ic_opmode) {
2823         case IEEE80211_M_STA:
2824         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2825                 sc->config.mode = WPI_MODE_STA;
2826                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2827                 break;
2828         case IEEE80211_M_IBSS:
2829         case IEEE80211_M_AHDEMO:
2830                 sc->config.mode = WPI_MODE_IBSS;
2831                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2832                                              WPI_FILTER_MULTICAST);
2833                 break;
2834         case IEEE80211_M_HOSTAP:
2835                 sc->config.mode = WPI_MODE_HOSTAP;
2836                 break;
2837         case IEEE80211_M_MONITOR:
2838                 sc->config.mode = WPI_MODE_MONITOR;
2839                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2840                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2841                 break;
2842         default:
2843                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2844                 return EINVAL;
2845         }
2846         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2847         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2848         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2849                 sizeof (struct wpi_config), 0);
2850         if (error != 0) {
2851                 device_printf(sc->sc_dev, "configure command failed\n");
2852                 return error;
2853         }
2854
2855         /* configuration has changed, set Tx power accordingly */
2856         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2857             device_printf(sc->sc_dev, "could not set Tx power\n");
2858             return error;
2859         }
2860
2861         /* add broadcast node */
2862         memset(&node, 0, sizeof node);
2863         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2864         node.id = WPI_ID_BROADCAST;
2865         node.rate = wpi_plcp_signal(2);
2866         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2867         if (error != 0) {
2868                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2869                 return error;
2870         }
2871
2872         /* Setup rate scalling */
2873         error = wpi_mrr_setup(sc);
2874         if (error != 0) {
2875                 device_printf(sc->sc_dev, "could not setup MRR\n");
2876                 return error;
2877         }
2878
2879         return 0;
2880 }
2881
2882 static void
2883 wpi_stop_master(struct wpi_softc *sc)
2884 {
2885         uint32_t tmp;
2886         int ntries;
2887
2888         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2889
2890         tmp = WPI_READ(sc, WPI_RESET);
2891         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2892
2893         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2894         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2895                 return; /* already asleep */
2896
2897         for (ntries = 0; ntries < 100; ntries++) {
2898                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2899                         break;
2900                 DELAY(10);
2901         }
2902         if (ntries == 100) {
2903                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2904         }
2905 }
2906
2907 static int
2908 wpi_power_up(struct wpi_softc *sc)
2909 {
2910         uint32_t tmp;
2911         int ntries;
2912
2913         wpi_mem_lock(sc);
2914         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2915         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2916         wpi_mem_unlock(sc);
2917
2918         for (ntries = 0; ntries < 5000; ntries++) {
2919                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2920                         break;
2921                 DELAY(10);
2922         }
2923         if (ntries == 5000) {
2924                 device_printf(sc->sc_dev,
2925                     "timeout waiting for NIC to power up\n");
2926                 return ETIMEDOUT;
2927         }
2928         return 0;
2929 }
2930
2931 static int
2932 wpi_reset(struct wpi_softc *sc)
2933 {
2934         uint32_t tmp;
2935         int ntries;
2936
2937         DPRINTFN(WPI_DEBUG_HW,
2938             ("Resetting the card - clearing any uploaded firmware\n"));
2939
2940         /* clear any pending interrupts */
2941         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2942
2943         tmp = WPI_READ(sc, WPI_PLL_CTL);
2944         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2945
2946         tmp = WPI_READ(sc, WPI_CHICKEN);
2947         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2948
2949         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2950         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2951
2952         /* wait for clock stabilization */
2953         for (ntries = 0; ntries < 25000; ntries++) {
2954                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2955                         break;
2956                 DELAY(10);
2957         }
2958         if (ntries == 25000) {
2959                 device_printf(sc->sc_dev,
2960                     "timeout waiting for clock stabilization\n");
2961                 return ETIMEDOUT;
2962         }
2963
2964         /* initialize EEPROM */
2965         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2966
2967         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2968                 device_printf(sc->sc_dev, "EEPROM not found\n");
2969                 return EIO;
2970         }
2971         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2972
2973         return 0;
2974 }
2975
2976 static void
2977 wpi_hw_config(struct wpi_softc *sc)
2978 {
2979         uint32_t rev, hw;
2980
2981         /* voodoo from the Linux "driver".. */
2982         hw = WPI_READ(sc, WPI_HWCONFIG);
2983
2984         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2985         if ((rev & 0xc0) == 0x40)
2986                 hw |= WPI_HW_ALM_MB;
2987         else if (!(rev & 0x80))
2988                 hw |= WPI_HW_ALM_MM;
2989
2990         if (sc->cap == 0x80)
2991                 hw |= WPI_HW_SKU_MRC;
2992
2993         hw &= ~WPI_HW_REV_D;
2994         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2995                 hw |= WPI_HW_REV_D;
2996
2997         if (sc->type > 1)
2998                 hw |= WPI_HW_TYPE_B;
2999
3000         WPI_WRITE(sc, WPI_HWCONFIG, hw);
3001 }
3002
3003 static void
3004 wpi_rfkill_resume(struct wpi_softc *sc)
3005 {
3006         struct ifnet *ifp = sc->sc_ifp;
3007         struct ieee80211com *ic = ifp->if_l2com;
3008         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3009         int ntries;
3010
3011         /* enable firmware again */
3012         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3013         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3014
3015         /* wait for thermal sensors to calibrate */
3016         for (ntries = 0; ntries < 1000; ntries++) {
3017                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3018                         break;
3019                 DELAY(10);
3020         }
3021
3022         if (ntries == 1000) {
3023                 device_printf(sc->sc_dev,
3024                     "timeout waiting for thermal calibration\n");
3025                 return;
3026         }
3027         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3028
3029         if (wpi_config(sc) != 0) {
3030                 device_printf(sc->sc_dev, "device config failed\n");
3031                 return;
3032         }
3033
3034         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3035         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3036         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3037
3038         if (vap != NULL) {
3039                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3040                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3041                                 ieee80211_beacon_miss(ic);
3042                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3043                         } else
3044                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3045                 } else {
3046                         ieee80211_scan_next(vap);
3047                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3048                 }
3049         }
3050
3051         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3052 }
3053
3054 static void
3055 wpi_init_locked(struct wpi_softc *sc, int force)
3056 {
3057         struct ifnet *ifp = sc->sc_ifp;
3058         uint32_t tmp;
3059         int ntries, qid;
3060
3061         wpi_stop_locked(sc);
3062         (void)wpi_reset(sc);
3063
3064         wpi_mem_lock(sc);
3065         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3066         DELAY(20);
3067         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3068         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3069         wpi_mem_unlock(sc);
3070
3071         (void)wpi_power_up(sc);
3072         wpi_hw_config(sc);
3073
3074         /* init Rx ring */
3075         wpi_mem_lock(sc);
3076         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3077         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3078             offsetof(struct wpi_shared, next));
3079         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3080         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3081         wpi_mem_unlock(sc);
3082
3083         /* init Tx rings */
3084         wpi_mem_lock(sc);
3085         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3086         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3087         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3088         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3089         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3090         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3091         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3092
3093         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3094         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3095
3096         for (qid = 0; qid < 6; qid++) {
3097                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3098                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3099                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3100         }
3101         wpi_mem_unlock(sc);
3102
3103         /* clear "radio off" and "disable command" bits (reversed logic) */
3104         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3105         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3106         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3107
3108         /* clear any pending interrupts */
3109         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3110
3111         /* enable interrupts */
3112         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3113
3114         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3115         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3116
3117         if ((wpi_load_firmware(sc)) != 0) {
3118             device_printf(sc->sc_dev,
3119                 "A problem occurred loading the firmware to the driver\n");
3120             return;
3121         }
3122
3123         /* At this point the firmware is up and running. If the hardware
3124          * RF switch is turned off thermal calibration will fail, though
3125          * the card is still happy to continue to accept commands, catch
3126          * this case and schedule a task to watch for it to be turned on.
3127          */
3128         wpi_mem_lock(sc);
3129         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3130         wpi_mem_unlock(sc);
3131
3132         if (!(tmp & 0x1)) {
3133                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3134                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3135                 goto out;
3136         }
3137
3138         /* wait for thermal sensors to calibrate */
3139         for (ntries = 0; ntries < 1000; ntries++) {
3140                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3141                         break;
3142                 DELAY(10);
3143         }
3144
3145         if (ntries == 1000) {
3146                 device_printf(sc->sc_dev,
3147                     "timeout waiting for thermal sensors calibration\n");
3148                 return;
3149         }
3150         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3151
3152         if (wpi_config(sc) != 0) {
3153                 device_printf(sc->sc_dev, "device config failed\n");
3154                 return;
3155         }
3156
3157         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3158         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3159 out:
3160         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3161 }
3162
3163 static void
3164 wpi_init(void *arg)
3165 {
3166         struct wpi_softc *sc = arg;
3167         struct ifnet *ifp = sc->sc_ifp;
3168         struct ieee80211com *ic = ifp->if_l2com;
3169
3170         WPI_LOCK(sc);
3171         wpi_init_locked(sc, 0);
3172         WPI_UNLOCK(sc);
3173
3174         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3175                 ieee80211_start_all(ic);                /* start all vaps */
3176 }
3177
3178 static void
3179 wpi_stop_locked(struct wpi_softc *sc)
3180 {
3181         struct ifnet *ifp = sc->sc_ifp;
3182         uint32_t tmp;
3183         int ac;
3184
3185         sc->sc_tx_timer = 0;
3186         sc->sc_scan_timer = 0;
3187         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3188         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3189         callout_stop(&sc->watchdog_to);
3190         callout_stop(&sc->calib_to);
3191
3192
3193         /* disable interrupts */
3194         WPI_WRITE(sc, WPI_MASK, 0);
3195         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3196         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3197         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3198
3199         wpi_mem_lock(sc);
3200         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3201         wpi_mem_unlock(sc);
3202
3203         /* reset all Tx rings */
3204         for (ac = 0; ac < 4; ac++)
3205                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3206         wpi_reset_tx_ring(sc, &sc->cmdq);
3207
3208         /* reset Rx ring */
3209         wpi_reset_rx_ring(sc, &sc->rxq);
3210
3211         wpi_mem_lock(sc);
3212         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3213         wpi_mem_unlock(sc);
3214
3215         DELAY(5);
3216
3217         wpi_stop_master(sc);
3218
3219         tmp = WPI_READ(sc, WPI_RESET);
3220         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3221         sc->flags &= ~WPI_FLAG_BUSY;
3222 }
3223
3224 static void
3225 wpi_stop(struct wpi_softc *sc)
3226 {
3227         WPI_LOCK(sc);
3228         wpi_stop_locked(sc);
3229         WPI_UNLOCK(sc);
3230 }
3231
3232 static void
3233 wpi_calib_timeout(void *arg)
3234 {
3235         struct wpi_softc *sc = arg;
3236         struct ifnet *ifp = sc->sc_ifp;
3237         struct ieee80211com *ic = ifp->if_l2com;
3238         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3239         int temp;
3240
3241         if (vap->iv_state != IEEE80211_S_RUN)
3242                 return;
3243
3244         /* update sensor data */
3245         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3246         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3247
3248         wpi_power_calibration(sc, temp);
3249
3250         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3251 }
3252
3253 /*
3254  * This function is called periodically (every 60 seconds) to adjust output
3255  * power to temperature changes.
3256  */
3257 static void
3258 wpi_power_calibration(struct wpi_softc *sc, int temp)
3259 {
3260         struct ifnet *ifp = sc->sc_ifp;
3261         struct ieee80211com *ic = ifp->if_l2com;
3262         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3263
3264         /* sanity-check read value */
3265         if (temp < -260 || temp > 25) {
3266                 /* this can't be correct, ignore */
3267                 DPRINTFN(WPI_DEBUG_TEMP,
3268                     ("out-of-range temperature reported: %d\n", temp));
3269                 return;
3270         }
3271
3272         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3273
3274         /* adjust Tx power if need be */
3275         if (abs(temp - sc->temp) <= 6)
3276                 return;
3277
3278         sc->temp = temp;
3279
3280         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3281                 /* just warn, too bad for the automatic calibration... */
3282                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3283         }
3284 }
3285
3286 /**
3287  * Read the eeprom to find out what channels are valid for the given
3288  * band and update net80211 with what we find.
3289  */
3290 static void
3291 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3292 {
3293         struct ifnet *ifp = sc->sc_ifp;
3294         struct ieee80211com *ic = ifp->if_l2com;
3295         const struct wpi_chan_band *band = &wpi_bands[n];
3296         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3297         struct ieee80211_channel *c;
3298         int chan, i, passive;
3299
3300         wpi_read_prom_data(sc, band->addr, channels,
3301             band->nchan * sizeof (struct wpi_eeprom_chan));
3302
3303         for (i = 0; i < band->nchan; i++) {
3304                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3305                         DPRINTFN(WPI_DEBUG_HW,
3306                             ("Channel Not Valid: %d, band %d\n",
3307                              band->chan[i],n));
3308                         continue;
3309                 }
3310
3311                 passive = 0;
3312                 chan = band->chan[i];
3313                 c = &ic->ic_channels[ic->ic_nchans++];
3314
3315                 /* is active scan allowed on this channel? */
3316                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3317                         passive = IEEE80211_CHAN_PASSIVE;
3318                 }
3319
3320                 if (n == 0) {   /* 2GHz band */
3321                         c->ic_ieee = chan;
3322                         c->ic_freq = ieee80211_ieee2mhz(chan,
3323                             IEEE80211_CHAN_2GHZ);
3324                         c->ic_flags = IEEE80211_CHAN_B | passive;
3325
3326                         c = &ic->ic_channels[ic->ic_nchans++];
3327                         c->ic_ieee = chan;
3328                         c->ic_freq = ieee80211_ieee2mhz(chan,
3329                             IEEE80211_CHAN_2GHZ);
3330                         c->ic_flags = IEEE80211_CHAN_G | passive;
3331
3332                 } else {        /* 5GHz band */
3333                         /*
3334                          * Some 3945ABG adapters support channels 7, 8, 11
3335                          * and 12 in the 2GHz *and* 5GHz bands.
3336                          * Because of limitations in our net80211(9) stack,
3337                          * we can't support these channels in 5GHz band.
3338                          * XXX not true; just need to map to proper frequency
3339                          */
3340                         if (chan <= 14)
3341                                 continue;
3342
3343                         c->ic_ieee = chan;
3344                         c->ic_freq = ieee80211_ieee2mhz(chan,
3345                             IEEE80211_CHAN_5GHZ);
3346                         c->ic_flags = IEEE80211_CHAN_A | passive;
3347                 }
3348
3349                 /* save maximum allowed power for this channel */
3350                 sc->maxpwr[chan] = channels[i].maxpwr;
3351
3352 #if 0
3353                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3354                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3355                 //ic->ic_channels[chan].ic_minpower...
3356                 //ic->ic_channels[chan].ic_maxregtxpower...
3357 #endif
3358
3359                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3360                     " passive=%d, offset %d\n", chan, c->ic_freq,
3361                     channels[i].flags, sc->maxpwr[chan],
3362                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3363                     ic->ic_nchans));
3364         }
3365 }
3366
3367 static void
3368 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3369 {
3370         struct wpi_power_group *group = &sc->groups[n];
3371         struct wpi_eeprom_group rgroup;
3372         int i;
3373
3374         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3375             sizeof rgroup);
3376
3377         /* save power group information */
3378         group->chan   = rgroup.chan;
3379         group->maxpwr = rgroup.maxpwr;
3380         /* temperature at which the samples were taken */
3381         group->temp   = (int16_t)le16toh(rgroup.temp);
3382
3383         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3384                     group->chan, group->maxpwr, group->temp));
3385
3386         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3387                 group->samples[i].index = rgroup.samples[i].index;
3388                 group->samples[i].power = rgroup.samples[i].power;
3389
3390                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3391                             group->samples[i].index, group->samples[i].power));
3392         }
3393 }
3394
3395 /*
3396  * Update Tx power to match what is defined for channel `c'.
3397  */
3398 static int
3399 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3400 {
3401         struct ifnet *ifp = sc->sc_ifp;
3402         struct ieee80211com *ic = ifp->if_l2com;
3403         struct wpi_power_group *group;
3404         struct wpi_cmd_txpower txpower;
3405         u_int chan;
3406         int i;
3407
3408         /* get channel number */
3409         chan = ieee80211_chan2ieee(ic, c);
3410
3411         /* find the power group to which this channel belongs */
3412         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3413                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3414                         if (chan <= group->chan)
3415                                 break;
3416         } else
3417                 group = &sc->groups[0];
3418
3419         memset(&txpower, 0, sizeof txpower);
3420         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3421         txpower.channel = htole16(chan);
3422
3423         /* set Tx power for all OFDM and CCK rates */
3424         for (i = 0; i <= 11 ; i++) {
3425                 /* retrieve Tx power for this channel/rate combination */
3426                 int idx = wpi_get_power_index(sc, group, c,
3427                     wpi_ridx_to_rate[i]);
3428
3429                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3430
3431                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3432                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3433                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3434                 } else {
3435                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3436                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3437                 }
3438                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3439                             chan, wpi_ridx_to_rate[i], idx));
3440         }
3441
3442         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3443 }
3444
3445 /*
3446  * Determine Tx power index for a given channel/rate combination.
3447  * This takes into account the regulatory information from EEPROM and the
3448  * current temperature.
3449  */
3450 static int
3451 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3452     struct ieee80211_channel *c, int rate)
3453 {
3454 /* fixed-point arithmetic division using a n-bit fractional part */
3455 #define fdivround(a, b, n)      \
3456         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3457
3458 /* linear interpolation */
3459 #define interpolate(x, x1, y1, x2, y2, n)       \
3460         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3461
3462         struct ifnet *ifp = sc->sc_ifp;
3463         struct ieee80211com *ic = ifp->if_l2com;
3464         struct wpi_power_sample *sample;
3465         int pwr, idx;
3466         u_int chan;
3467
3468         /* get channel number */
3469         chan = ieee80211_chan2ieee(ic, c);
3470
3471         /* default power is group's maximum power - 3dB */
3472         pwr = group->maxpwr / 2;
3473
3474         /* decrease power for highest OFDM rates to reduce distortion */
3475         switch (rate) {
3476                 case 72:        /* 36Mb/s */
3477                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3478                         break;
3479                 case 96:        /* 48Mb/s */
3480                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3481                         break;
3482                 case 108:       /* 54Mb/s */
3483                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3484                         break;
3485         }
3486
3487         /* never exceed channel's maximum allowed Tx power */
3488         pwr = min(pwr, sc->maxpwr[chan]);
3489
3490         /* retrieve power index into gain tables from samples */
3491         for (sample = group->samples; sample < &group->samples[3]; sample++)
3492                 if (pwr > sample[1].power)
3493                         break;
3494         /* fixed-point linear interpolation using a 19-bit fractional part */
3495         idx = interpolate(pwr, sample[0].power, sample[0].index,
3496             sample[1].power, sample[1].index, 19);
3497
3498         /*
3499          *  Adjust power index based on current temperature
3500          *      - if colder than factory-calibrated: decreate output power
3501          *      - if warmer than factory-calibrated: increase output power
3502          */
3503         idx -= (sc->temp - group->temp) * 11 / 100;
3504
3505         /* decrease power for CCK rates (-5dB) */
3506         if (!WPI_RATE_IS_OFDM(rate))
3507                 idx += 10;
3508
3509         /* keep power index in a valid range */
3510         if (idx < 0)
3511                 return 0;
3512         if (idx > WPI_MAX_PWR_INDEX)
3513                 return WPI_MAX_PWR_INDEX;
3514         return idx;
3515
3516 #undef interpolate
3517 #undef fdivround
3518 }
3519
3520 /**
3521  * Called by net80211 framework to indicate that a scan
3522  * is starting. This function doesn't actually do the scan,
3523  * wpi_scan_curchan starts things off. This function is more
3524  * of an early warning from the framework we should get ready
3525  * for the scan.
3526  */
3527 static void
3528 wpi_scan_start(struct ieee80211com *ic)
3529 {
3530         struct ifnet *ifp = ic->ic_ifp;
3531         struct wpi_softc *sc = ifp->if_softc;
3532
3533         WPI_LOCK(sc);
3534         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3535         WPI_UNLOCK(sc);
3536 }
3537
3538 /**
3539  * Called by the net80211 framework, indicates that the
3540  * scan has ended. If there is a scan in progress on the card
3541  * then it should be aborted.
3542  */
3543 static void
3544 wpi_scan_end(struct ieee80211com *ic)
3545 {
3546         /* XXX ignore */
3547 }
3548
3549 /**
3550  * Called by the net80211 framework to indicate to the driver
3551  * that the channel should be changed
3552  */
3553 static void
3554 wpi_set_channel(struct ieee80211com *ic)
3555 {
3556         struct ifnet *ifp = ic->ic_ifp;
3557         struct wpi_softc *sc = ifp->if_softc;
3558         int error;
3559
3560         /*
3561          * Only need to set the channel in Monitor mode. AP scanning and auth
3562          * are already taken care of by their respective firmware commands.
3563          */
3564         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3565                 WPI_LOCK(sc);
3566                 error = wpi_config(sc);
3567                 WPI_UNLOCK(sc);
3568                 if (error != 0)
3569                         device_printf(sc->sc_dev,
3570                             "error %d settting channel\n", error);
3571         }
3572 }
3573
3574 /**
3575  * Called by net80211 to indicate that we need to scan the current
3576  * channel. The channel is previously be set via the wpi_set_channel
3577  * callback.
3578  */
3579 static void
3580 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3581 {
3582         struct ieee80211vap *vap = ss->ss_vap;
3583         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3584         struct wpi_softc *sc = ifp->if_softc;
3585
3586         WPI_LOCK(sc);
3587         if (wpi_scan(sc))
3588                 ieee80211_cancel_scan(vap);
3589         WPI_UNLOCK(sc);
3590 }
3591
3592 /**
3593  * Called by the net80211 framework to indicate
3594  * the minimum dwell time has been met, terminate the scan.
3595  * We don't actually terminate the scan as the firmware will notify
3596  * us when it's finished and we have no way to interrupt it.
3597  */
3598 static void
3599 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3600 {
3601         /* NB: don't try to abort scan; wait for firmware to finish */
3602 }
3603
3604 static void
3605 wpi_hwreset(void *arg, int pending)
3606 {
3607         struct wpi_softc *sc = arg;
3608
3609         WPI_LOCK(sc);
3610         wpi_init_locked(sc, 0);
3611         WPI_UNLOCK(sc);
3612 }
3613
3614 static void
3615 wpi_rfreset(void *arg, int pending)
3616 {
3617         struct wpi_softc *sc = arg;
3618
3619         WPI_LOCK(sc);
3620         wpi_rfkill_resume(sc);
3621         WPI_UNLOCK(sc);
3622 }
3623
3624 /*
3625  * Allocate DMA-safe memory for firmware transfer.
3626  */
3627 static int
3628 wpi_alloc_fwmem(struct wpi_softc *sc)
3629 {
3630         /* allocate enough contiguous space to store text and data */
3631         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3632             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3633             BUS_DMA_NOWAIT);
3634 }
3635
3636 static void
3637 wpi_free_fwmem(struct wpi_softc *sc)
3638 {
3639         wpi_dma_contig_free(&sc->fw_dma);
3640 }
3641
3642 /**
3643  * Called every second, wpi_watchdog used by the watch dog timer
3644  * to check that the card is still alive
3645  */
3646 static void
3647 wpi_watchdog(void *arg)
3648 {
3649         struct wpi_softc *sc = arg;
3650         struct ifnet *ifp = sc->sc_ifp;
3651         struct ieee80211com *ic = ifp->if_l2com;
3652         uint32_t tmp;
3653
3654         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3655
3656         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3657                 /* No need to lock firmware memory */
3658                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3659
3660                 if ((tmp & 0x1) == 0) {
3661                         /* Radio kill switch is still off */
3662                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3663                         return;
3664                 }
3665
3666                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3667                 ieee80211_runtask(ic, &sc->sc_radiotask);
3668                 return;
3669         }
3670
3671         if (sc->sc_tx_timer > 0) {
3672                 if (--sc->sc_tx_timer == 0) {
3673                         device_printf(sc->sc_dev,"device timeout\n");
3674                         ifp->if_oerrors++;
3675                         ieee80211_runtask(ic, &sc->sc_restarttask);
3676                 }
3677         }
3678         if (sc->sc_scan_timer > 0) {
3679                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3680                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3681                         device_printf(sc->sc_dev,"scan timeout\n");
3682                         ieee80211_cancel_scan(vap);
3683                         ieee80211_runtask(ic, &sc->sc_restarttask);
3684                 }
3685         }
3686
3687         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3688                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3689 }
3690
3691 #ifdef WPI_DEBUG
3692 static const char *wpi_cmd_str(int cmd)
3693 {
3694         switch (cmd) {
3695         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3696         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3697         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3698         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3699         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3700         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3701         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3702         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3703         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3704         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3705         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3706         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3707         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3708         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3709
3710         default:
3711                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3712                 return "UNKNOWN CMD";   /* Make the compiler happy */
3713         }
3714 }
3715 #endif
3716
3717 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3718 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3719 MODULE_DEPEND(wpi, firmware, 1, 1, 1);