]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/geom/raid/g_raid.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / geom / raid / g_raid.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 int g_raid_enable = 1;
56 TUNABLE_INT("kern.geom.raid.enable", &g_raid_enable);
57 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RW,
58     &g_raid_enable, 0, "Enable on-disk metadata taste");
59 u_int g_raid_aggressive_spare = 0;
60 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
62     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
63 u_int g_raid_debug = 0;
64 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
66     "Debug level");
67 int g_raid_read_err_thresh = 10;
68 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
70     &g_raid_read_err_thresh, 0,
71     "Number of read errors equated to disk failure");
72 u_int g_raid_start_timeout = 30;
73 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
74 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
75     &g_raid_start_timeout, 0,
76     "Time to wait for all array components");
77 static u_int g_raid_clean_time = 5;
78 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
80     &g_raid_clean_time, 0, "Mark volume as clean when idling");
81 static u_int g_raid_disconnect_on_failure = 1;
82 TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
83     &g_raid_disconnect_on_failure);
84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
85     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
86 static u_int g_raid_name_format = 0;
87 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
89     &g_raid_name_format, 0, "Providers name format.");
90 static u_int g_raid_idle_threshold = 1000000;
91 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
92 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
93     &g_raid_idle_threshold, 1000000,
94     "Time in microseconds to consider a volume idle.");
95 static u_int ar_legacy_aliases = 1;
96 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RW,
97            &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style.");
98 TUNABLE_INT("kern.geom_raid.legacy_aliases", &ar_legacy_aliases);
99
100
101 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
102         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
103         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
104         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
105 } while (0)
106
107 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
108     LIST_HEAD_INITIALIZER(g_raid_md_classes);
109
110 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
111     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
112
113 LIST_HEAD(, g_raid_volume) g_raid_volumes =
114     LIST_HEAD_INITIALIZER(g_raid_volumes);
115
116 static eventhandler_tag g_raid_post_sync = NULL;
117 static int g_raid_started = 0;
118 static int g_raid_shutdown = 0;
119
120 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
121     struct g_geom *gp);
122 static g_taste_t g_raid_taste;
123 static void g_raid_init(struct g_class *mp);
124 static void g_raid_fini(struct g_class *mp);
125
126 struct g_class g_raid_class = {
127         .name = G_RAID_CLASS_NAME,
128         .version = G_VERSION,
129         .ctlreq = g_raid_ctl,
130         .taste = g_raid_taste,
131         .destroy_geom = g_raid_destroy_geom,
132         .init = g_raid_init,
133         .fini = g_raid_fini
134 };
135
136 static void g_raid_destroy_provider(struct g_raid_volume *vol);
137 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
138 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
139 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
140 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
141 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
142     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
143 static void g_raid_start(struct bio *bp);
144 static void g_raid_start_request(struct bio *bp);
145 static void g_raid_disk_done(struct bio *bp);
146 static void g_raid_poll(struct g_raid_softc *sc);
147
148 static const char *
149 g_raid_node_event2str(int event)
150 {
151
152         switch (event) {
153         case G_RAID_NODE_E_WAKE:
154                 return ("WAKE");
155         case G_RAID_NODE_E_START:
156                 return ("START");
157         default:
158                 return ("INVALID");
159         }
160 }
161
162 const char *
163 g_raid_disk_state2str(int state)
164 {
165
166         switch (state) {
167         case G_RAID_DISK_S_NONE:
168                 return ("NONE");
169         case G_RAID_DISK_S_OFFLINE:
170                 return ("OFFLINE");
171         case G_RAID_DISK_S_DISABLED:
172                 return ("DISABLED");
173         case G_RAID_DISK_S_FAILED:
174                 return ("FAILED");
175         case G_RAID_DISK_S_STALE_FAILED:
176                 return ("STALE_FAILED");
177         case G_RAID_DISK_S_SPARE:
178                 return ("SPARE");
179         case G_RAID_DISK_S_STALE:
180                 return ("STALE");
181         case G_RAID_DISK_S_ACTIVE:
182                 return ("ACTIVE");
183         default:
184                 return ("INVALID");
185         }
186 }
187
188 static const char *
189 g_raid_disk_event2str(int event)
190 {
191
192         switch (event) {
193         case G_RAID_DISK_E_DISCONNECTED:
194                 return ("DISCONNECTED");
195         default:
196                 return ("INVALID");
197         }
198 }
199
200 const char *
201 g_raid_subdisk_state2str(int state)
202 {
203
204         switch (state) {
205         case G_RAID_SUBDISK_S_NONE:
206                 return ("NONE");
207         case G_RAID_SUBDISK_S_FAILED:
208                 return ("FAILED");
209         case G_RAID_SUBDISK_S_NEW:
210                 return ("NEW");
211         case G_RAID_SUBDISK_S_REBUILD:
212                 return ("REBUILD");
213         case G_RAID_SUBDISK_S_UNINITIALIZED:
214                 return ("UNINITIALIZED");
215         case G_RAID_SUBDISK_S_STALE:
216                 return ("STALE");
217         case G_RAID_SUBDISK_S_RESYNC:
218                 return ("RESYNC");
219         case G_RAID_SUBDISK_S_ACTIVE:
220                 return ("ACTIVE");
221         default:
222                 return ("INVALID");
223         }
224 }
225
226 static const char *
227 g_raid_subdisk_event2str(int event)
228 {
229
230         switch (event) {
231         case G_RAID_SUBDISK_E_NEW:
232                 return ("NEW");
233         case G_RAID_SUBDISK_E_FAILED:
234                 return ("FAILED");
235         case G_RAID_SUBDISK_E_DISCONNECTED:
236                 return ("DISCONNECTED");
237         default:
238                 return ("INVALID");
239         }
240 }
241
242 const char *
243 g_raid_volume_state2str(int state)
244 {
245
246         switch (state) {
247         case G_RAID_VOLUME_S_STARTING:
248                 return ("STARTING");
249         case G_RAID_VOLUME_S_BROKEN:
250                 return ("BROKEN");
251         case G_RAID_VOLUME_S_DEGRADED:
252                 return ("DEGRADED");
253         case G_RAID_VOLUME_S_SUBOPTIMAL:
254                 return ("SUBOPTIMAL");
255         case G_RAID_VOLUME_S_OPTIMAL:
256                 return ("OPTIMAL");
257         case G_RAID_VOLUME_S_UNSUPPORTED:
258                 return ("UNSUPPORTED");
259         case G_RAID_VOLUME_S_STOPPED:
260                 return ("STOPPED");
261         default:
262                 return ("INVALID");
263         }
264 }
265
266 static const char *
267 g_raid_volume_event2str(int event)
268 {
269
270         switch (event) {
271         case G_RAID_VOLUME_E_UP:
272                 return ("UP");
273         case G_RAID_VOLUME_E_DOWN:
274                 return ("DOWN");
275         case G_RAID_VOLUME_E_START:
276                 return ("START");
277         case G_RAID_VOLUME_E_STARTMD:
278                 return ("STARTMD");
279         default:
280                 return ("INVALID");
281         }
282 }
283
284 const char *
285 g_raid_volume_level2str(int level, int qual)
286 {
287
288         switch (level) {
289         case G_RAID_VOLUME_RL_RAID0:
290                 return ("RAID0");
291         case G_RAID_VOLUME_RL_RAID1:
292                 return ("RAID1");
293         case G_RAID_VOLUME_RL_RAID3:
294                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
295                         return ("RAID3-P0");
296                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
297                         return ("RAID3-PN");
298                 return ("RAID3");
299         case G_RAID_VOLUME_RL_RAID4:
300                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
301                         return ("RAID4-P0");
302                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
303                         return ("RAID4-PN");
304                 return ("RAID4");
305         case G_RAID_VOLUME_RL_RAID5:
306                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
307                         return ("RAID5-RA");
308                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
309                         return ("RAID5-RS");
310                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
311                         return ("RAID5-LA");
312                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
313                         return ("RAID5-LS");
314                 return ("RAID5");
315         case G_RAID_VOLUME_RL_RAID6:
316                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
317                         return ("RAID6-RA");
318                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
319                         return ("RAID6-RS");
320                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
321                         return ("RAID6-LA");
322                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
323                         return ("RAID6-LS");
324                 return ("RAID6");
325         case G_RAID_VOLUME_RL_RAIDMDF:
326                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
327                         return ("RAIDMDF-RA");
328                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
329                         return ("RAIDMDF-RS");
330                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
331                         return ("RAIDMDF-LA");
332                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
333                         return ("RAIDMDF-LS");
334                 return ("RAIDMDF");
335         case G_RAID_VOLUME_RL_RAID1E:
336                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
337                         return ("RAID1E-A");
338                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
339                         return ("RAID1E-O");
340                 return ("RAID1E");
341         case G_RAID_VOLUME_RL_SINGLE:
342                 return ("SINGLE");
343         case G_RAID_VOLUME_RL_CONCAT:
344                 return ("CONCAT");
345         case G_RAID_VOLUME_RL_RAID5E:
346                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
347                         return ("RAID5E-RA");
348                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
349                         return ("RAID5E-RS");
350                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
351                         return ("RAID5E-LA");
352                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
353                         return ("RAID5E-LS");
354                 return ("RAID5E");
355         case G_RAID_VOLUME_RL_RAID5EE:
356                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
357                         return ("RAID5EE-RA");
358                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
359                         return ("RAID5EE-RS");
360                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
361                         return ("RAID5EE-LA");
362                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
363                         return ("RAID5EE-LS");
364                 return ("RAID5EE");
365         case G_RAID_VOLUME_RL_RAID5R:
366                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
367                         return ("RAID5R-RA");
368                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
369                         return ("RAID5R-RS");
370                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
371                         return ("RAID5R-LA");
372                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
373                         return ("RAID5R-LS");
374                 return ("RAID5E");
375         default:
376                 return ("UNKNOWN");
377         }
378 }
379
380 int
381 g_raid_volume_str2level(const char *str, int *level, int *qual)
382 {
383
384         *level = G_RAID_VOLUME_RL_UNKNOWN;
385         *qual = G_RAID_VOLUME_RLQ_NONE;
386         if (strcasecmp(str, "RAID0") == 0)
387                 *level = G_RAID_VOLUME_RL_RAID0;
388         else if (strcasecmp(str, "RAID1") == 0)
389                 *level = G_RAID_VOLUME_RL_RAID1;
390         else if (strcasecmp(str, "RAID3-P0") == 0) {
391                 *level = G_RAID_VOLUME_RL_RAID3;
392                 *qual = G_RAID_VOLUME_RLQ_R3P0;
393         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
394                    strcasecmp(str, "RAID3") == 0) {
395                 *level = G_RAID_VOLUME_RL_RAID3;
396                 *qual = G_RAID_VOLUME_RLQ_R3PN;
397         } else if (strcasecmp(str, "RAID4-P0") == 0) {
398                 *level = G_RAID_VOLUME_RL_RAID4;
399                 *qual = G_RAID_VOLUME_RLQ_R4P0;
400         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
401                    strcasecmp(str, "RAID4") == 0) {
402                 *level = G_RAID_VOLUME_RL_RAID4;
403                 *qual = G_RAID_VOLUME_RLQ_R4PN;
404         } else if (strcasecmp(str, "RAID5-RA") == 0) {
405                 *level = G_RAID_VOLUME_RL_RAID5;
406                 *qual = G_RAID_VOLUME_RLQ_R5RA;
407         } else if (strcasecmp(str, "RAID5-RS") == 0) {
408                 *level = G_RAID_VOLUME_RL_RAID5;
409                 *qual = G_RAID_VOLUME_RLQ_R5RS;
410         } else if (strcasecmp(str, "RAID5") == 0 ||
411                    strcasecmp(str, "RAID5-LA") == 0) {
412                 *level = G_RAID_VOLUME_RL_RAID5;
413                 *qual = G_RAID_VOLUME_RLQ_R5LA;
414         } else if (strcasecmp(str, "RAID5-LS") == 0) {
415                 *level = G_RAID_VOLUME_RL_RAID5;
416                 *qual = G_RAID_VOLUME_RLQ_R5LS;
417         } else if (strcasecmp(str, "RAID6-RA") == 0) {
418                 *level = G_RAID_VOLUME_RL_RAID6;
419                 *qual = G_RAID_VOLUME_RLQ_R6RA;
420         } else if (strcasecmp(str, "RAID6-RS") == 0) {
421                 *level = G_RAID_VOLUME_RL_RAID6;
422                 *qual = G_RAID_VOLUME_RLQ_R6RS;
423         } else if (strcasecmp(str, "RAID6") == 0 ||
424                    strcasecmp(str, "RAID6-LA") == 0) {
425                 *level = G_RAID_VOLUME_RL_RAID6;
426                 *qual = G_RAID_VOLUME_RLQ_R6LA;
427         } else if (strcasecmp(str, "RAID6-LS") == 0) {
428                 *level = G_RAID_VOLUME_RL_RAID6;
429                 *qual = G_RAID_VOLUME_RLQ_R6LS;
430         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
431                 *level = G_RAID_VOLUME_RL_RAIDMDF;
432                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
433         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
434                 *level = G_RAID_VOLUME_RL_RAIDMDF;
435                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
436         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
437                    strcasecmp(str, "RAIDMDF-LA") == 0) {
438                 *level = G_RAID_VOLUME_RL_RAIDMDF;
439                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
440         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
441                 *level = G_RAID_VOLUME_RL_RAIDMDF;
442                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
443         } else if (strcasecmp(str, "RAID10") == 0 ||
444                    strcasecmp(str, "RAID1E") == 0 ||
445                    strcasecmp(str, "RAID1E-A") == 0) {
446                 *level = G_RAID_VOLUME_RL_RAID1E;
447                 *qual = G_RAID_VOLUME_RLQ_R1EA;
448         } else if (strcasecmp(str, "RAID1E-O") == 0) {
449                 *level = G_RAID_VOLUME_RL_RAID1E;
450                 *qual = G_RAID_VOLUME_RLQ_R1EO;
451         } else if (strcasecmp(str, "SINGLE") == 0)
452                 *level = G_RAID_VOLUME_RL_SINGLE;
453         else if (strcasecmp(str, "CONCAT") == 0)
454                 *level = G_RAID_VOLUME_RL_CONCAT;
455         else if (strcasecmp(str, "RAID5E-RA") == 0) {
456                 *level = G_RAID_VOLUME_RL_RAID5E;
457                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
458         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
459                 *level = G_RAID_VOLUME_RL_RAID5E;
460                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
461         } else if (strcasecmp(str, "RAID5E") == 0 ||
462                    strcasecmp(str, "RAID5E-LA") == 0) {
463                 *level = G_RAID_VOLUME_RL_RAID5E;
464                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
465         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
466                 *level = G_RAID_VOLUME_RL_RAID5E;
467                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
468         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
469                 *level = G_RAID_VOLUME_RL_RAID5EE;
470                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
471         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
472                 *level = G_RAID_VOLUME_RL_RAID5EE;
473                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
474         } else if (strcasecmp(str, "RAID5EE") == 0 ||
475                    strcasecmp(str, "RAID5EE-LA") == 0) {
476                 *level = G_RAID_VOLUME_RL_RAID5EE;
477                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
478         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
479                 *level = G_RAID_VOLUME_RL_RAID5EE;
480                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
481         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
482                 *level = G_RAID_VOLUME_RL_RAID5R;
483                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
484         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
485                 *level = G_RAID_VOLUME_RL_RAID5R;
486                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
487         } else if (strcasecmp(str, "RAID5R") == 0 ||
488                    strcasecmp(str, "RAID5R-LA") == 0) {
489                 *level = G_RAID_VOLUME_RL_RAID5R;
490                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
491         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
492                 *level = G_RAID_VOLUME_RL_RAID5R;
493                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
494         } else
495                 return (-1);
496         return (0);
497 }
498
499 const char *
500 g_raid_get_diskname(struct g_raid_disk *disk)
501 {
502
503         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
504                 return ("[unknown]");
505         return (disk->d_consumer->provider->name);
506 }
507
508 void
509 g_raid_get_disk_info(struct g_raid_disk *disk)
510 {
511         struct g_consumer *cp = disk->d_consumer;
512         int error, len;
513
514         /* Read kernel dumping information. */
515         disk->d_kd.offset = 0;
516         disk->d_kd.length = OFF_MAX;
517         len = sizeof(disk->d_kd);
518         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
519         if (error)
520                 disk->d_kd.di.dumper = NULL;
521         if (disk->d_kd.di.dumper == NULL)
522                 G_RAID_DEBUG1(2, disk->d_softc,
523                     "Dumping not supported by %s: %d.", 
524                     cp->provider->name, error);
525
526         /* Read BIO_DELETE support. */
527         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
528         if (error)
529                 disk->d_candelete = 0;
530         if (!disk->d_candelete)
531                 G_RAID_DEBUG1(2, disk->d_softc,
532                     "BIO_DELETE not supported by %s: %d.", 
533                     cp->provider->name, error);
534 }
535
536 void
537 g_raid_report_disk_state(struct g_raid_disk *disk)
538 {
539         struct g_raid_subdisk *sd;
540         int len, state;
541         uint32_t s;
542
543         if (disk->d_consumer == NULL)
544                 return;
545         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
546                 s = G_STATE_ACTIVE; /* XXX */
547         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
548             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
549                 s = G_STATE_FAILED;
550         } else {
551                 state = G_RAID_SUBDISK_S_ACTIVE;
552                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
553                         if (sd->sd_state < state)
554                                 state = sd->sd_state;
555                 }
556                 if (state == G_RAID_SUBDISK_S_FAILED)
557                         s = G_STATE_FAILED;
558                 else if (state == G_RAID_SUBDISK_S_NEW ||
559                     state == G_RAID_SUBDISK_S_REBUILD)
560                         s = G_STATE_REBUILD;
561                 else if (state == G_RAID_SUBDISK_S_STALE ||
562                     state == G_RAID_SUBDISK_S_RESYNC)
563                         s = G_STATE_RESYNC;
564                 else
565                         s = G_STATE_ACTIVE;
566         }
567         len = sizeof(s);
568         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
569         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
570             g_raid_get_diskname(disk), s);
571 }
572
573 void
574 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
575 {
576
577         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
578             g_raid_get_diskname(disk),
579             g_raid_disk_state2str(disk->d_state),
580             g_raid_disk_state2str(state));
581         disk->d_state = state;
582         g_raid_report_disk_state(disk);
583 }
584
585 void
586 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
587 {
588
589         G_RAID_DEBUG1(0, sd->sd_softc,
590             "Subdisk %s:%d-%s state changed from %s to %s.",
591             sd->sd_volume->v_name, sd->sd_pos,
592             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
593             g_raid_subdisk_state2str(sd->sd_state),
594             g_raid_subdisk_state2str(state));
595         sd->sd_state = state;
596         if (sd->sd_disk)
597                 g_raid_report_disk_state(sd->sd_disk);
598 }
599
600 void
601 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
602 {
603
604         G_RAID_DEBUG1(0, vol->v_softc,
605             "Volume %s state changed from %s to %s.",
606             vol->v_name,
607             g_raid_volume_state2str(vol->v_state),
608             g_raid_volume_state2str(state));
609         vol->v_state = state;
610 }
611
612 /*
613  * --- Events handling functions ---
614  * Events in geom_raid are used to maintain subdisks and volumes status
615  * from one thread to simplify locking.
616  */
617 static void
618 g_raid_event_free(struct g_raid_event *ep)
619 {
620
621         free(ep, M_RAID);
622 }
623
624 int
625 g_raid_event_send(void *arg, int event, int flags)
626 {
627         struct g_raid_softc *sc;
628         struct g_raid_event *ep;
629         int error;
630
631         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
632                 sc = ((struct g_raid_volume *)arg)->v_softc;
633         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
634                 sc = ((struct g_raid_disk *)arg)->d_softc;
635         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
636                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
637         } else {
638                 sc = arg;
639         }
640         ep = malloc(sizeof(*ep), M_RAID,
641             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
642         if (ep == NULL)
643                 return (ENOMEM);
644         ep->e_tgt = arg;
645         ep->e_event = event;
646         ep->e_flags = flags;
647         ep->e_error = 0;
648         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
649         mtx_lock(&sc->sc_queue_mtx);
650         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
651         mtx_unlock(&sc->sc_queue_mtx);
652         wakeup(sc);
653
654         if ((flags & G_RAID_EVENT_WAIT) == 0)
655                 return (0);
656
657         sx_assert(&sc->sc_lock, SX_XLOCKED);
658         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
659         sx_xunlock(&sc->sc_lock);
660         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
661                 mtx_lock(&sc->sc_queue_mtx);
662                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
663                     hz * 5);
664         }
665         error = ep->e_error;
666         g_raid_event_free(ep);
667         sx_xlock(&sc->sc_lock);
668         return (error);
669 }
670
671 static void
672 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
673 {
674         struct g_raid_event *ep, *tmpep;
675
676         sx_assert(&sc->sc_lock, SX_XLOCKED);
677
678         mtx_lock(&sc->sc_queue_mtx);
679         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
680                 if (ep->e_tgt != tgt)
681                         continue;
682                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
683                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
684                         g_raid_event_free(ep);
685                 else {
686                         ep->e_error = ECANCELED;
687                         wakeup(ep);
688                 }
689         }
690         mtx_unlock(&sc->sc_queue_mtx);
691 }
692
693 static int
694 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
695 {
696         struct g_raid_event *ep;
697         int     res = 0;
698
699         sx_assert(&sc->sc_lock, SX_XLOCKED);
700
701         mtx_lock(&sc->sc_queue_mtx);
702         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
703                 if (ep->e_tgt != tgt)
704                         continue;
705                 res = 1;
706                 break;
707         }
708         mtx_unlock(&sc->sc_queue_mtx);
709         return (res);
710 }
711
712 /*
713  * Return the number of disks in given state.
714  * If state is equal to -1, count all connected disks.
715  */
716 u_int
717 g_raid_ndisks(struct g_raid_softc *sc, int state)
718 {
719         struct g_raid_disk *disk;
720         u_int n;
721
722         sx_assert(&sc->sc_lock, SX_LOCKED);
723
724         n = 0;
725         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
726                 if (disk->d_state == state || state == -1)
727                         n++;
728         }
729         return (n);
730 }
731
732 /*
733  * Return the number of subdisks in given state.
734  * If state is equal to -1, count all connected disks.
735  */
736 u_int
737 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
738 {
739         struct g_raid_subdisk *subdisk;
740         struct g_raid_softc *sc;
741         u_int i, n ;
742
743         sc = vol->v_softc;
744         sx_assert(&sc->sc_lock, SX_LOCKED);
745
746         n = 0;
747         for (i = 0; i < vol->v_disks_count; i++) {
748                 subdisk = &vol->v_subdisks[i];
749                 if ((state == -1 &&
750                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
751                     subdisk->sd_state == state)
752                         n++;
753         }
754         return (n);
755 }
756
757 /*
758  * Return the first subdisk in given state.
759  * If state is equal to -1, then the first connected disks.
760  */
761 struct g_raid_subdisk *
762 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
763 {
764         struct g_raid_subdisk *sd;
765         struct g_raid_softc *sc;
766         u_int i;
767
768         sc = vol->v_softc;
769         sx_assert(&sc->sc_lock, SX_LOCKED);
770
771         for (i = 0; i < vol->v_disks_count; i++) {
772                 sd = &vol->v_subdisks[i];
773                 if ((state == -1 &&
774                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
775                     sd->sd_state == state)
776                         return (sd);
777         }
778         return (NULL);
779 }
780
781 struct g_consumer *
782 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
783 {
784         struct g_consumer *cp;
785         struct g_provider *pp;
786
787         g_topology_assert();
788
789         if (strncmp(name, "/dev/", 5) == 0)
790                 name += 5;
791         pp = g_provider_by_name(name);
792         if (pp == NULL)
793                 return (NULL);
794         cp = g_new_consumer(sc->sc_geom);
795         if (g_attach(cp, pp) != 0) {
796                 g_destroy_consumer(cp);
797                 return (NULL);
798         }
799         if (g_access(cp, 1, 1, 1) != 0) {
800                 g_detach(cp);
801                 g_destroy_consumer(cp);
802                 return (NULL);
803         }
804         return (cp);
805 }
806
807 static u_int
808 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
809 {
810         struct bio *bp;
811         u_int nreqs = 0;
812
813         mtx_lock(&sc->sc_queue_mtx);
814         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
815                 if (bp->bio_from == cp)
816                         nreqs++;
817         }
818         mtx_unlock(&sc->sc_queue_mtx);
819         return (nreqs);
820 }
821
822 u_int
823 g_raid_nopens(struct g_raid_softc *sc)
824 {
825         struct g_raid_volume *vol;
826         u_int opens;
827
828         opens = 0;
829         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
830                 if (vol->v_provider_open != 0)
831                         opens++;
832         }
833         return (opens);
834 }
835
836 static int
837 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
838 {
839
840         if (cp->index > 0) {
841                 G_RAID_DEBUG1(2, sc,
842                     "I/O requests for %s exist, can't destroy it now.",
843                     cp->provider->name);
844                 return (1);
845         }
846         if (g_raid_nrequests(sc, cp) > 0) {
847                 G_RAID_DEBUG1(2, sc,
848                     "I/O requests for %s in queue, can't destroy it now.",
849                     cp->provider->name);
850                 return (1);
851         }
852         return (0);
853 }
854
855 static void
856 g_raid_destroy_consumer(void *arg, int flags __unused)
857 {
858         struct g_consumer *cp;
859
860         g_topology_assert();
861
862         cp = arg;
863         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
864         g_detach(cp);
865         g_destroy_consumer(cp);
866 }
867
868 void
869 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
870 {
871         struct g_provider *pp;
872         int retaste_wait;
873
874         g_topology_assert_not();
875
876         g_topology_lock();
877         cp->private = NULL;
878         if (g_raid_consumer_is_busy(sc, cp))
879                 goto out;
880         pp = cp->provider;
881         retaste_wait = 0;
882         if (cp->acw == 1) {
883                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
884                         retaste_wait = 1;
885         }
886         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
887                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
888         if (retaste_wait) {
889                 /*
890                  * After retaste event was send (inside g_access()), we can send
891                  * event to detach and destroy consumer.
892                  * A class, which has consumer to the given provider connected
893                  * will not receive retaste event for the provider.
894                  * This is the way how I ignore retaste events when I close
895                  * consumers opened for write: I detach and destroy consumer
896                  * after retaste event is sent.
897                  */
898                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
899                 goto out;
900         }
901         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
902         g_detach(cp);
903         g_destroy_consumer(cp);
904 out:
905         g_topology_unlock();
906 }
907
908 static void
909 g_raid_orphan(struct g_consumer *cp)
910 {
911         struct g_raid_disk *disk;
912
913         g_topology_assert();
914
915         disk = cp->private;
916         if (disk == NULL)
917                 return;
918         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
919             G_RAID_EVENT_DISK);
920 }
921
922 static void
923 g_raid_clean(struct g_raid_volume *vol, int acw)
924 {
925         struct g_raid_softc *sc;
926         int timeout;
927
928         sc = vol->v_softc;
929         g_topology_assert_not();
930         sx_assert(&sc->sc_lock, SX_XLOCKED);
931
932 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
933 //              return;
934         if (!vol->v_dirty)
935                 return;
936         if (vol->v_writes > 0)
937                 return;
938         if (acw > 0 || (acw == -1 &&
939             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
940                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
941                 if (!g_raid_shutdown && timeout > 0)
942                         return;
943         }
944         vol->v_dirty = 0;
945         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
946             vol->v_name);
947         g_raid_write_metadata(sc, vol, NULL, NULL);
948 }
949
950 static void
951 g_raid_dirty(struct g_raid_volume *vol)
952 {
953         struct g_raid_softc *sc;
954
955         sc = vol->v_softc;
956         g_topology_assert_not();
957         sx_assert(&sc->sc_lock, SX_XLOCKED);
958
959 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
960 //              return;
961         vol->v_dirty = 1;
962         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
963             vol->v_name);
964         g_raid_write_metadata(sc, vol, NULL, NULL);
965 }
966
967 void
968 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
969 {
970         struct g_raid_softc *sc;
971         struct g_raid_volume *vol;
972         struct g_raid_subdisk *sd;
973         struct bio_queue_head queue;
974         struct bio *cbp;
975         int i;
976
977         vol = tr->tro_volume;
978         sc = vol->v_softc;
979
980         /*
981          * Allocate all bios before sending any request, so we can return
982          * ENOMEM in nice and clean way.
983          */
984         bioq_init(&queue);
985         for (i = 0; i < vol->v_disks_count; i++) {
986                 sd = &vol->v_subdisks[i];
987                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
988                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
989                         continue;
990                 cbp = g_clone_bio(bp);
991                 if (cbp == NULL)
992                         goto failure;
993                 cbp->bio_caller1 = sd;
994                 bioq_insert_tail(&queue, cbp);
995         }
996         for (cbp = bioq_first(&queue); cbp != NULL;
997             cbp = bioq_first(&queue)) {
998                 bioq_remove(&queue, cbp);
999                 sd = cbp->bio_caller1;
1000                 cbp->bio_caller1 = NULL;
1001                 g_raid_subdisk_iostart(sd, cbp);
1002         }
1003         return;
1004 failure:
1005         for (cbp = bioq_first(&queue); cbp != NULL;
1006             cbp = bioq_first(&queue)) {
1007                 bioq_remove(&queue, cbp);
1008                 g_destroy_bio(cbp);
1009         }
1010         if (bp->bio_error == 0)
1011                 bp->bio_error = ENOMEM;
1012         g_raid_iodone(bp, bp->bio_error);
1013 }
1014
1015 static void
1016 g_raid_tr_kerneldump_common_done(struct bio *bp)
1017 {
1018
1019         bp->bio_flags |= BIO_DONE;
1020 }
1021
1022 int
1023 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1024     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1025 {
1026         struct g_raid_softc *sc;
1027         struct g_raid_volume *vol;
1028         struct bio bp;
1029
1030         vol = tr->tro_volume;
1031         sc = vol->v_softc;
1032
1033         bzero(&bp, sizeof(bp));
1034         bp.bio_cmd = BIO_WRITE;
1035         bp.bio_done = g_raid_tr_kerneldump_common_done;
1036         bp.bio_attribute = NULL;
1037         bp.bio_offset = offset;
1038         bp.bio_length = length;
1039         bp.bio_data = virtual;
1040         bp.bio_to = vol->v_provider;
1041
1042         g_raid_start(&bp);
1043         while (!(bp.bio_flags & BIO_DONE)) {
1044                 G_RAID_DEBUG1(4, sc, "Poll...");
1045                 g_raid_poll(sc);
1046                 DELAY(10);
1047         }
1048
1049         return (bp.bio_error != 0 ? EIO : 0);
1050 }
1051
1052 static int
1053 g_raid_dump(void *arg,
1054     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1055 {
1056         struct g_raid_volume *vol;
1057         int error;
1058
1059         vol = (struct g_raid_volume *)arg;
1060         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1061             (long long unsigned)offset, (long long unsigned)length);
1062
1063         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1064             virtual, physical, offset, length);
1065         return (error);
1066 }
1067
1068 static void
1069 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1070 {
1071         struct g_kerneldump *gkd;
1072         struct g_provider *pp;
1073         struct g_raid_volume *vol;
1074
1075         gkd = (struct g_kerneldump*)bp->bio_data;
1076         pp = bp->bio_to;
1077         vol = pp->private;
1078         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1079                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1080         gkd->di.dumper = g_raid_dump;
1081         gkd->di.priv = vol;
1082         gkd->di.blocksize = vol->v_sectorsize;
1083         gkd->di.maxiosize = DFLTPHYS;
1084         gkd->di.mediaoffset = gkd->offset;
1085         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1086                 gkd->length = vol->v_mediasize - gkd->offset;
1087         gkd->di.mediasize = gkd->length;
1088         g_io_deliver(bp, 0);
1089 }
1090
1091 static void
1092 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1093 {
1094         struct g_provider *pp;
1095         struct g_raid_volume *vol;
1096         struct g_raid_subdisk *sd;
1097         int *val;
1098         int i;
1099
1100         val = (int *)bp->bio_data;
1101         pp = bp->bio_to;
1102         vol = pp->private;
1103         *val = 0;
1104         for (i = 0; i < vol->v_disks_count; i++) {
1105                 sd = &vol->v_subdisks[i];
1106                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1107                         continue;
1108                 if (sd->sd_disk->d_candelete) {
1109                         *val = 1;
1110                         break;
1111                 }
1112         }
1113         g_io_deliver(bp, 0);
1114 }
1115
1116 static void
1117 g_raid_start(struct bio *bp)
1118 {
1119         struct g_raid_softc *sc;
1120
1121         sc = bp->bio_to->geom->softc;
1122         /*
1123          * If sc == NULL or there are no valid disks, provider's error
1124          * should be set and g_raid_start() should not be called at all.
1125          */
1126 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1127 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1128 //          bp->bio_to->error, bp->bio_to->name));
1129         G_RAID_LOGREQ(3, bp, "Request received.");
1130
1131         switch (bp->bio_cmd) {
1132         case BIO_READ:
1133         case BIO_WRITE:
1134         case BIO_DELETE:
1135         case BIO_FLUSH:
1136                 break;
1137         case BIO_GETATTR:
1138                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1139                         g_raid_candelete(sc, bp);
1140                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1141                         g_raid_kerneldump(sc, bp);
1142                 else
1143                         g_io_deliver(bp, EOPNOTSUPP);
1144                 return;
1145         default:
1146                 g_io_deliver(bp, EOPNOTSUPP);
1147                 return;
1148         }
1149         mtx_lock(&sc->sc_queue_mtx);
1150         bioq_disksort(&sc->sc_queue, bp);
1151         mtx_unlock(&sc->sc_queue_mtx);
1152         if (!dumping) {
1153                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1154                 wakeup(sc);
1155         }
1156 }
1157
1158 static int
1159 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1160 {
1161         /*
1162          * 5 cases:
1163          * (1) bp entirely below NO
1164          * (2) bp entirely above NO
1165          * (3) bp start below, but end in range YES
1166          * (4) bp entirely within YES
1167          * (5) bp starts within, ends above YES
1168          *
1169          * lock range 10-19 (offset 10 length 10)
1170          * (1) 1-5: first if kicks it out
1171          * (2) 30-35: second if kicks it out
1172          * (3) 5-15: passes both ifs
1173          * (4) 12-14: passes both ifs
1174          * (5) 19-20: passes both
1175          */
1176         off_t lend = lstart + len - 1;
1177         off_t bstart = bp->bio_offset;
1178         off_t bend = bp->bio_offset + bp->bio_length - 1;
1179
1180         if (bend < lstart)
1181                 return (0);
1182         if (lend < bstart)
1183                 return (0);
1184         return (1);
1185 }
1186
1187 static int
1188 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1189 {
1190         struct g_raid_lock *lp;
1191
1192         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1193
1194         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1195                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1196                         return (1);
1197         }
1198         return (0);
1199 }
1200
1201 static void
1202 g_raid_start_request(struct bio *bp)
1203 {
1204         struct g_raid_softc *sc;
1205         struct g_raid_volume *vol;
1206
1207         sc = bp->bio_to->geom->softc;
1208         sx_assert(&sc->sc_lock, SX_LOCKED);
1209         vol = bp->bio_to->private;
1210
1211         /*
1212          * Check to see if this item is in a locked range.  If so,
1213          * queue it to our locked queue and return.  We'll requeue
1214          * it when the range is unlocked.  Internal I/O for the
1215          * rebuild/rescan/recovery process is excluded from this
1216          * check so we can actually do the recovery.
1217          */
1218         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1219             g_raid_is_in_locked_range(vol, bp)) {
1220                 G_RAID_LOGREQ(3, bp, "Defer request.");
1221                 bioq_insert_tail(&vol->v_locked, bp);
1222                 return;
1223         }
1224
1225         /*
1226          * If we're actually going to do the write/delete, then
1227          * update the idle stats for the volume.
1228          */
1229         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1230                 if (!vol->v_dirty)
1231                         g_raid_dirty(vol);
1232                 vol->v_writes++;
1233         }
1234
1235         /*
1236          * Put request onto inflight queue, so we can check if new
1237          * synchronization requests don't collide with it.  Then tell
1238          * the transformation layer to start the I/O.
1239          */
1240         bioq_insert_tail(&vol->v_inflight, bp);
1241         G_RAID_LOGREQ(4, bp, "Request started");
1242         G_RAID_TR_IOSTART(vol->v_tr, bp);
1243 }
1244
1245 static void
1246 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1247 {
1248         off_t off, len;
1249         struct bio *nbp;
1250         struct g_raid_lock *lp;
1251
1252         vol->v_pending_lock = 0;
1253         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1254                 if (lp->l_pending) {
1255                         off = lp->l_offset;
1256                         len = lp->l_length;
1257                         lp->l_pending = 0;
1258                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1259                                 if (g_raid_bio_overlaps(nbp, off, len))
1260                                         lp->l_pending++;
1261                         }
1262                         if (lp->l_pending) {
1263                                 vol->v_pending_lock = 1;
1264                                 G_RAID_DEBUG1(4, vol->v_softc,
1265                                     "Deferred lock(%jd, %jd) has %d pending",
1266                                     (intmax_t)off, (intmax_t)(off + len),
1267                                     lp->l_pending);
1268                                 continue;
1269                         }
1270                         G_RAID_DEBUG1(4, vol->v_softc,
1271                             "Deferred lock of %jd to %jd completed",
1272                             (intmax_t)off, (intmax_t)(off + len));
1273                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1274                 }
1275         }
1276 }
1277
1278 void
1279 g_raid_iodone(struct bio *bp, int error)
1280 {
1281         struct g_raid_softc *sc;
1282         struct g_raid_volume *vol;
1283
1284         sc = bp->bio_to->geom->softc;
1285         sx_assert(&sc->sc_lock, SX_LOCKED);
1286         vol = bp->bio_to->private;
1287         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1288
1289         /* Update stats if we done write/delete. */
1290         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1291                 vol->v_writes--;
1292                 vol->v_last_write = time_uptime;
1293         }
1294
1295         bioq_remove(&vol->v_inflight, bp);
1296         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1297                 g_raid_finish_with_locked_ranges(vol, bp);
1298         getmicrouptime(&vol->v_last_done);
1299         g_io_deliver(bp, error);
1300 }
1301
1302 int
1303 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1304     struct bio *ignore, void *argp)
1305 {
1306         struct g_raid_softc *sc;
1307         struct g_raid_lock *lp;
1308         struct bio *bp;
1309
1310         sc = vol->v_softc;
1311         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1312         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1313         lp->l_offset = off;
1314         lp->l_length = len;
1315         lp->l_callback_arg = argp;
1316
1317         lp->l_pending = 0;
1318         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1319                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1320                         lp->l_pending++;
1321         }       
1322
1323         /*
1324          * If there are any writes that are pending, we return EBUSY.  All
1325          * callers will have to wait until all pending writes clear.
1326          */
1327         if (lp->l_pending > 0) {
1328                 vol->v_pending_lock = 1;
1329                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1330                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1331                 return (EBUSY);
1332         }
1333         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1334             (intmax_t)off, (intmax_t)(off+len));
1335         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1336         return (0);
1337 }
1338
1339 int
1340 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1341 {
1342         struct g_raid_lock *lp;
1343         struct g_raid_softc *sc;
1344         struct bio *bp;
1345
1346         sc = vol->v_softc;
1347         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1348                 if (lp->l_offset == off && lp->l_length == len) {
1349                         LIST_REMOVE(lp, l_next);
1350                         /* XXX
1351                          * Right now we just put them all back on the queue
1352                          * and hope for the best.  We hope this because any
1353                          * locked ranges will go right back on this list
1354                          * when the worker thread runs.
1355                          * XXX
1356                          */
1357                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1358                             (intmax_t)lp->l_offset,
1359                             (intmax_t)(lp->l_offset+lp->l_length));
1360                         mtx_lock(&sc->sc_queue_mtx);
1361                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1362                                 bioq_disksort(&sc->sc_queue, bp);
1363                         mtx_unlock(&sc->sc_queue_mtx);
1364                         free(lp, M_RAID);
1365                         return (0);
1366                 }
1367         }
1368         return (EINVAL);
1369 }
1370
1371 void
1372 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1373 {
1374         struct g_consumer *cp;
1375         struct g_raid_disk *disk, *tdisk;
1376
1377         bp->bio_caller1 = sd;
1378
1379         /*
1380          * Make sure that the disk is present. Generally it is a task of
1381          * transformation layers to not send requests to absent disks, but
1382          * it is better to be safe and report situation then sorry.
1383          */
1384         if (sd->sd_disk == NULL) {
1385                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1386 nodisk:
1387                 bp->bio_from = NULL;
1388                 bp->bio_to = NULL;
1389                 bp->bio_error = ENXIO;
1390                 g_raid_disk_done(bp);
1391                 return;
1392         }
1393         disk = sd->sd_disk;
1394         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1395             disk->d_state != G_RAID_DISK_S_FAILED) {
1396                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1397                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1398                 goto nodisk;
1399         }
1400
1401         cp = disk->d_consumer;
1402         bp->bio_from = cp;
1403         bp->bio_to = cp->provider;
1404         cp->index++;
1405
1406         /* Update average disks load. */
1407         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1408                 if (tdisk->d_consumer == NULL)
1409                         tdisk->d_load = 0;
1410                 else
1411                         tdisk->d_load = (tdisk->d_consumer->index *
1412                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1413         }
1414
1415         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1416         if (dumping) {
1417                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1418                 if (bp->bio_cmd == BIO_WRITE) {
1419                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1420                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1421                 } else
1422                         bp->bio_error = EOPNOTSUPP;
1423                 g_raid_disk_done(bp);
1424         } else {
1425                 bp->bio_done = g_raid_disk_done;
1426                 bp->bio_offset += sd->sd_offset;
1427                 G_RAID_LOGREQ(3, bp, "Sending request.");
1428                 g_io_request(bp, cp);
1429         }
1430 }
1431
1432 int
1433 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1434     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1435 {
1436
1437         if (sd->sd_disk == NULL)
1438                 return (ENXIO);
1439         if (sd->sd_disk->d_kd.di.dumper == NULL)
1440                 return (EOPNOTSUPP);
1441         return (dump_write(&sd->sd_disk->d_kd.di,
1442             virtual, physical,
1443             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1444             length));
1445 }
1446
1447 static void
1448 g_raid_disk_done(struct bio *bp)
1449 {
1450         struct g_raid_softc *sc;
1451         struct g_raid_subdisk *sd;
1452
1453         sd = bp->bio_caller1;
1454         sc = sd->sd_softc;
1455         mtx_lock(&sc->sc_queue_mtx);
1456         bioq_disksort(&sc->sc_queue, bp);
1457         mtx_unlock(&sc->sc_queue_mtx);
1458         if (!dumping)
1459                 wakeup(sc);
1460 }
1461
1462 static void
1463 g_raid_disk_done_request(struct bio *bp)
1464 {
1465         struct g_raid_softc *sc;
1466         struct g_raid_disk *disk;
1467         struct g_raid_subdisk *sd;
1468         struct g_raid_volume *vol;
1469
1470         g_topology_assert_not();
1471
1472         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1473         sd = bp->bio_caller1;
1474         sc = sd->sd_softc;
1475         vol = sd->sd_volume;
1476         if (bp->bio_from != NULL) {
1477                 bp->bio_from->index--;
1478                 disk = bp->bio_from->private;
1479                 if (disk == NULL)
1480                         g_raid_kill_consumer(sc, bp->bio_from);
1481         }
1482         bp->bio_offset -= sd->sd_offset;
1483
1484         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1485 }
1486
1487 static void
1488 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1489 {
1490
1491         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1492                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1493         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1494                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1495         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1496                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1497         else
1498                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1499         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1500                 KASSERT(ep->e_error == 0,
1501                     ("Error cannot be handled."));
1502                 g_raid_event_free(ep);
1503         } else {
1504                 ep->e_flags |= G_RAID_EVENT_DONE;
1505                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1506                 mtx_lock(&sc->sc_queue_mtx);
1507                 wakeup(ep);
1508                 mtx_unlock(&sc->sc_queue_mtx);
1509         }
1510 }
1511
1512 /*
1513  * Worker thread.
1514  */
1515 static void
1516 g_raid_worker(void *arg)
1517 {
1518         struct g_raid_softc *sc;
1519         struct g_raid_event *ep;
1520         struct g_raid_volume *vol;
1521         struct bio *bp;
1522         struct timeval now, t;
1523         int timeout, rv;
1524
1525         sc = arg;
1526         thread_lock(curthread);
1527         sched_prio(curthread, PRIBIO);
1528         thread_unlock(curthread);
1529
1530         sx_xlock(&sc->sc_lock);
1531         for (;;) {
1532                 mtx_lock(&sc->sc_queue_mtx);
1533                 /*
1534                  * First take a look at events.
1535                  * This is important to handle events before any I/O requests.
1536                  */
1537                 bp = NULL;
1538                 vol = NULL;
1539                 rv = 0;
1540                 ep = TAILQ_FIRST(&sc->sc_events);
1541                 if (ep != NULL)
1542                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1543                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1544                         ;
1545                 else {
1546                         getmicrouptime(&now);
1547                         t = now;
1548                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1549                                 if (bioq_first(&vol->v_inflight) == NULL &&
1550                                     vol->v_tr &&
1551                                     timevalcmp(&vol->v_last_done, &t, < ))
1552                                         t = vol->v_last_done;
1553                         }
1554                         timevalsub(&t, &now);
1555                         timeout = g_raid_idle_threshold +
1556                             t.tv_sec * 1000000 + t.tv_usec;
1557                         if (timeout > 0) {
1558                                 /*
1559                                  * Two steps to avoid overflows at HZ=1000
1560                                  * and idle timeouts > 2.1s.  Some rounding
1561                                  * errors can occur, but they are < 1tick,
1562                                  * which is deemed to be close enough for
1563                                  * this purpose.
1564                                  */
1565                                 int micpertic = 1000000 / hz;
1566                                 timeout = (timeout + micpertic - 1) / micpertic;
1567                                 sx_xunlock(&sc->sc_lock);
1568                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1569                                     PRIBIO | PDROP, "-", timeout);
1570                                 sx_xlock(&sc->sc_lock);
1571                                 goto process;
1572                         } else
1573                                 rv = EWOULDBLOCK;
1574                 }
1575                 mtx_unlock(&sc->sc_queue_mtx);
1576 process:
1577                 if (ep != NULL) {
1578                         g_raid_handle_event(sc, ep);
1579                 } else if (bp != NULL) {
1580                         if (bp->bio_to != NULL &&
1581                             bp->bio_to->geom == sc->sc_geom)
1582                                 g_raid_start_request(bp);
1583                         else
1584                                 g_raid_disk_done_request(bp);
1585                 } else if (rv == EWOULDBLOCK) {
1586                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1587                                 g_raid_clean(vol, -1);
1588                                 if (bioq_first(&vol->v_inflight) == NULL &&
1589                                     vol->v_tr) {
1590                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1591                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1592                                         timevaladd(&t, &vol->v_last_done);
1593                                         getmicrouptime(&now);
1594                                         if (timevalcmp(&t, &now, <= )) {
1595                                                 G_RAID_TR_IDLE(vol->v_tr);
1596                                                 vol->v_last_done = now;
1597                                         }
1598                                 }
1599                         }
1600                 }
1601                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1602                         g_raid_destroy_node(sc, 1);     /* May not return. */
1603         }
1604 }
1605
1606 static void
1607 g_raid_poll(struct g_raid_softc *sc)
1608 {
1609         struct g_raid_event *ep;
1610         struct bio *bp;
1611
1612         sx_xlock(&sc->sc_lock);
1613         mtx_lock(&sc->sc_queue_mtx);
1614         /*
1615          * First take a look at events.
1616          * This is important to handle events before any I/O requests.
1617          */
1618         ep = TAILQ_FIRST(&sc->sc_events);
1619         if (ep != NULL) {
1620                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1621                 mtx_unlock(&sc->sc_queue_mtx);
1622                 g_raid_handle_event(sc, ep);
1623                 goto out;
1624         }
1625         bp = bioq_takefirst(&sc->sc_queue);
1626         if (bp != NULL) {
1627                 mtx_unlock(&sc->sc_queue_mtx);
1628                 if (bp->bio_from == NULL ||
1629                     bp->bio_from->geom != sc->sc_geom)
1630                         g_raid_start_request(bp);
1631                 else
1632                         g_raid_disk_done_request(bp);
1633         }
1634 out:
1635         sx_xunlock(&sc->sc_lock);
1636 }
1637
1638 static void
1639 g_raid_launch_provider(struct g_raid_volume *vol)
1640 {
1641         struct g_raid_disk *disk;
1642         struct g_raid_softc *sc;
1643         struct g_provider *pp;
1644         char name[G_RAID_MAX_VOLUMENAME];
1645         char   announce_buf[80], buf1[32];
1646         off_t off;
1647
1648         sc = vol->v_softc;
1649         sx_assert(&sc->sc_lock, SX_LOCKED);
1650
1651         g_topology_lock();
1652         /* Try to name provider with volume name. */
1653         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1654         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1655             g_provider_by_name(name) != NULL) {
1656                 /* Otherwise use sequential volume number. */
1657                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1658         }
1659
1660         /*
1661          * Create a /dev/ar%d that the old ataraid(4) stack once
1662          * created as an alias for /dev/raid/r%d if requested.
1663          * This helps going from stable/7 ataraid devices to newer
1664          * FreeBSD releases. sbruno 07 MAY 2013
1665          */
1666
1667         if (ar_legacy_aliases) {
1668                 snprintf(announce_buf, sizeof(announce_buf),
1669                         "kern.devalias.%s", name);
1670                 snprintf(buf1, sizeof(buf1),
1671                         "ar%d", vol->v_global_id);
1672                 setenv(announce_buf, buf1);
1673         }
1674
1675         pp = g_new_providerf(sc->sc_geom, "%s", name);
1676         pp->private = vol;
1677         pp->mediasize = vol->v_mediasize;
1678         pp->sectorsize = vol->v_sectorsize;
1679         pp->stripesize = 0;
1680         pp->stripeoffset = 0;
1681         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1682             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1683             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1684             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1685                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1686                     disk->d_consumer != NULL &&
1687                     disk->d_consumer->provider != NULL) {
1688                         pp->stripesize = disk->d_consumer->provider->stripesize;
1689                         off = disk->d_consumer->provider->stripeoffset;
1690                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1691                         if (off > 0)
1692                                 pp->stripeoffset %= off;
1693                 }
1694                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1695                         pp->stripesize *= (vol->v_disks_count - 1);
1696                         pp->stripeoffset *= (vol->v_disks_count - 1);
1697                 }
1698         } else
1699                 pp->stripesize = vol->v_strip_size;
1700         vol->v_provider = pp;
1701         g_error_provider(pp, 0);
1702         g_topology_unlock();
1703         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1704             pp->name, vol->v_name);
1705 }
1706
1707 static void
1708 g_raid_destroy_provider(struct g_raid_volume *vol)
1709 {
1710         struct g_raid_softc *sc;
1711         struct g_provider *pp;
1712         struct bio *bp, *tmp;
1713
1714         g_topology_assert_not();
1715         sc = vol->v_softc;
1716         pp = vol->v_provider;
1717         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1718
1719         g_topology_lock();
1720         g_error_provider(pp, ENXIO);
1721         mtx_lock(&sc->sc_queue_mtx);
1722         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1723                 if (bp->bio_to != pp)
1724                         continue;
1725                 bioq_remove(&sc->sc_queue, bp);
1726                 g_io_deliver(bp, ENXIO);
1727         }
1728         mtx_unlock(&sc->sc_queue_mtx);
1729         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1730             pp->name, vol->v_name);
1731         g_wither_provider(pp, ENXIO);
1732         g_topology_unlock();
1733         vol->v_provider = NULL;
1734 }
1735
1736 /*
1737  * Update device state.
1738  */
1739 static int
1740 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1741 {
1742         struct g_raid_softc *sc;
1743
1744         sc = vol->v_softc;
1745         sx_assert(&sc->sc_lock, SX_XLOCKED);
1746
1747         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1748             g_raid_volume_event2str(event),
1749             vol->v_name);
1750         switch (event) {
1751         case G_RAID_VOLUME_E_DOWN:
1752                 if (vol->v_provider != NULL)
1753                         g_raid_destroy_provider(vol);
1754                 break;
1755         case G_RAID_VOLUME_E_UP:
1756                 if (vol->v_provider == NULL)
1757                         g_raid_launch_provider(vol);
1758                 break;
1759         case G_RAID_VOLUME_E_START:
1760                 if (vol->v_tr)
1761                         G_RAID_TR_START(vol->v_tr);
1762                 return (0);
1763         default:
1764                 if (sc->sc_md)
1765                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1766                 return (0);
1767         }
1768
1769         /* Manage root mount release. */
1770         if (vol->v_starting) {
1771                 vol->v_starting = 0;
1772                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1773                 root_mount_rel(vol->v_rootmount);
1774                 vol->v_rootmount = NULL;
1775         }
1776         if (vol->v_stopping && vol->v_provider_open == 0)
1777                 g_raid_destroy_volume(vol);
1778         return (0);
1779 }
1780
1781 /*
1782  * Update subdisk state.
1783  */
1784 static int
1785 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1786 {
1787         struct g_raid_softc *sc;
1788         struct g_raid_volume *vol;
1789
1790         sc = sd->sd_softc;
1791         vol = sd->sd_volume;
1792         sx_assert(&sc->sc_lock, SX_XLOCKED);
1793
1794         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1795             g_raid_subdisk_event2str(event),
1796             vol->v_name, sd->sd_pos,
1797             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1798         if (vol->v_tr)
1799                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1800
1801         return (0);
1802 }
1803
1804 /*
1805  * Update disk state.
1806  */
1807 static int
1808 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1809 {
1810         struct g_raid_softc *sc;
1811
1812         sc = disk->d_softc;
1813         sx_assert(&sc->sc_lock, SX_XLOCKED);
1814
1815         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1816             g_raid_disk_event2str(event),
1817             g_raid_get_diskname(disk));
1818
1819         if (sc->sc_md)
1820                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1821         return (0);
1822 }
1823
1824 /*
1825  * Node event.
1826  */
1827 static int
1828 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1829 {
1830         sx_assert(&sc->sc_lock, SX_XLOCKED);
1831
1832         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1833             g_raid_node_event2str(event));
1834
1835         if (event == G_RAID_NODE_E_WAKE)
1836                 return (0);
1837         if (sc->sc_md)
1838                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1839         return (0);
1840 }
1841
1842 static int
1843 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1844 {
1845         struct g_raid_volume *vol;
1846         struct g_raid_softc *sc;
1847         int dcw, opens, error = 0;
1848
1849         g_topology_assert();
1850         sc = pp->geom->softc;
1851         vol = pp->private;
1852         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1853         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1854
1855         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1856             acr, acw, ace);
1857         dcw = pp->acw + acw;
1858
1859         g_topology_unlock();
1860         sx_xlock(&sc->sc_lock);
1861         /* Deny new opens while dying. */
1862         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1863                 error = ENXIO;
1864                 goto out;
1865         }
1866         if (dcw == 0)
1867                 g_raid_clean(vol, dcw);
1868         vol->v_provider_open += acr + acw + ace;
1869         /* Handle delayed node destruction. */
1870         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1871             vol->v_provider_open == 0) {
1872                 /* Count open volumes. */
1873                 opens = g_raid_nopens(sc);
1874                 if (opens == 0) {
1875                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1876                         /* Wake up worker to make it selfdestruct. */
1877                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1878                 }
1879         }
1880         /* Handle open volume destruction. */
1881         if (vol->v_stopping && vol->v_provider_open == 0)
1882                 g_raid_destroy_volume(vol);
1883 out:
1884         sx_xunlock(&sc->sc_lock);
1885         g_topology_lock();
1886         return (error);
1887 }
1888
1889 struct g_raid_softc *
1890 g_raid_create_node(struct g_class *mp,
1891     const char *name, struct g_raid_md_object *md)
1892 {
1893         struct g_raid_softc *sc;
1894         struct g_geom *gp;
1895         int error;
1896
1897         g_topology_assert();
1898         G_RAID_DEBUG(1, "Creating array %s.", name);
1899
1900         gp = g_new_geomf(mp, "%s", name);
1901         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1902         gp->start = g_raid_start;
1903         gp->orphan = g_raid_orphan;
1904         gp->access = g_raid_access;
1905         gp->dumpconf = g_raid_dumpconf;
1906
1907         sc->sc_md = md;
1908         sc->sc_geom = gp;
1909         sc->sc_flags = 0;
1910         TAILQ_INIT(&sc->sc_volumes);
1911         TAILQ_INIT(&sc->sc_disks);
1912         sx_init(&sc->sc_lock, "graid:lock");
1913         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1914         TAILQ_INIT(&sc->sc_events);
1915         bioq_init(&sc->sc_queue);
1916         gp->softc = sc;
1917         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1918             "g_raid %s", name);
1919         if (error != 0) {
1920                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1921                 mtx_destroy(&sc->sc_queue_mtx);
1922                 sx_destroy(&sc->sc_lock);
1923                 g_destroy_geom(sc->sc_geom);
1924                 free(sc, M_RAID);
1925                 return (NULL);
1926         }
1927
1928         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1929         return (sc);
1930 }
1931
1932 struct g_raid_volume *
1933 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1934 {
1935         struct g_raid_volume    *vol, *vol1;
1936         int i;
1937
1938         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1939         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1940         vol->v_softc = sc;
1941         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1942         vol->v_state = G_RAID_VOLUME_S_STARTING;
1943         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1944         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1945         vol->v_rotate_parity = 1;
1946         bioq_init(&vol->v_inflight);
1947         bioq_init(&vol->v_locked);
1948         LIST_INIT(&vol->v_locks);
1949         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1950                 vol->v_subdisks[i].sd_softc = sc;
1951                 vol->v_subdisks[i].sd_volume = vol;
1952                 vol->v_subdisks[i].sd_pos = i;
1953                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1954         }
1955
1956         /* Find free ID for this volume. */
1957         g_topology_lock();
1958         vol1 = vol;
1959         if (id >= 0) {
1960                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1961                         if (vol1->v_global_id == id)
1962                                 break;
1963                 }
1964         }
1965         if (vol1 != NULL) {
1966                 for (id = 0; ; id++) {
1967                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1968                                 if (vol1->v_global_id == id)
1969                                         break;
1970                         }
1971                         if (vol1 == NULL)
1972                                 break;
1973                 }
1974         }
1975         vol->v_global_id = id;
1976         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1977         g_topology_unlock();
1978
1979         /* Delay root mounting. */
1980         vol->v_rootmount = root_mount_hold("GRAID");
1981         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1982         vol->v_starting = 1;
1983         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1984         return (vol);
1985 }
1986
1987 struct g_raid_disk *
1988 g_raid_create_disk(struct g_raid_softc *sc)
1989 {
1990         struct g_raid_disk      *disk;
1991
1992         G_RAID_DEBUG1(1, sc, "Creating disk.");
1993         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1994         disk->d_softc = sc;
1995         disk->d_state = G_RAID_DISK_S_NONE;
1996         TAILQ_INIT(&disk->d_subdisks);
1997         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1998         return (disk);
1999 }
2000
2001 int g_raid_start_volume(struct g_raid_volume *vol)
2002 {
2003         struct g_raid_tr_class *class;
2004         struct g_raid_tr_object *obj;
2005         int status;
2006
2007         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
2008         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
2009                 if (!class->trc_enable)
2010                         continue;
2011                 G_RAID_DEBUG1(2, vol->v_softc,
2012                     "Tasting volume %s for %s transformation.",
2013                     vol->v_name, class->name);
2014                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2015                     M_WAITOK);
2016                 obj->tro_class = class;
2017                 obj->tro_volume = vol;
2018                 status = G_RAID_TR_TASTE(obj, vol);
2019                 if (status != G_RAID_TR_TASTE_FAIL)
2020                         break;
2021                 kobj_delete((kobj_t)obj, M_RAID);
2022         }
2023         if (class == NULL) {
2024                 G_RAID_DEBUG1(0, vol->v_softc,
2025                     "No transformation module found for %s.",
2026                     vol->v_name);
2027                 vol->v_tr = NULL;
2028                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2029                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2030                     G_RAID_EVENT_VOLUME);
2031                 return (-1);
2032         }
2033         G_RAID_DEBUG1(2, vol->v_softc,
2034             "Transformation module %s chosen for %s.",
2035             class->name, vol->v_name);
2036         vol->v_tr = obj;
2037         return (0);
2038 }
2039
2040 int
2041 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2042 {
2043         struct g_raid_volume *vol, *tmpv;
2044         struct g_raid_disk *disk, *tmpd;
2045         int error = 0;
2046
2047         sc->sc_stopping = G_RAID_DESTROY_HARD;
2048         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2049                 if (g_raid_destroy_volume(vol))
2050                         error = EBUSY;
2051         }
2052         if (error)
2053                 return (error);
2054         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2055                 if (g_raid_destroy_disk(disk))
2056                         error = EBUSY;
2057         }
2058         if (error)
2059                 return (error);
2060         if (sc->sc_md) {
2061                 G_RAID_MD_FREE(sc->sc_md);
2062                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2063                 sc->sc_md = NULL;
2064         }
2065         if (sc->sc_geom != NULL) {
2066                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2067                 g_topology_lock();
2068                 sc->sc_geom->softc = NULL;
2069                 g_wither_geom(sc->sc_geom, ENXIO);
2070                 g_topology_unlock();
2071                 sc->sc_geom = NULL;
2072         } else
2073                 G_RAID_DEBUG(1, "Array destroyed.");
2074         if (worker) {
2075                 g_raid_event_cancel(sc, sc);
2076                 mtx_destroy(&sc->sc_queue_mtx);
2077                 sx_xunlock(&sc->sc_lock);
2078                 sx_destroy(&sc->sc_lock);
2079                 wakeup(&sc->sc_stopping);
2080                 free(sc, M_RAID);
2081                 curthread->td_pflags &= ~TDP_GEOM;
2082                 G_RAID_DEBUG(1, "Thread exiting.");
2083                 kproc_exit(0);
2084         } else {
2085                 /* Wake up worker to make it selfdestruct. */
2086                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2087         }
2088         return (0);
2089 }
2090
2091 int
2092 g_raid_destroy_volume(struct g_raid_volume *vol)
2093 {
2094         struct g_raid_softc *sc;
2095         struct g_raid_disk *disk;
2096         int i;
2097
2098         sc = vol->v_softc;
2099         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2100         vol->v_stopping = 1;
2101         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2102                 if (vol->v_tr) {
2103                         G_RAID_TR_STOP(vol->v_tr);
2104                         return (EBUSY);
2105                 } else
2106                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2107         }
2108         if (g_raid_event_check(sc, vol) != 0)
2109                 return (EBUSY);
2110         if (vol->v_provider != NULL)
2111                 return (EBUSY);
2112         if (vol->v_provider_open != 0)
2113                 return (EBUSY);
2114         if (vol->v_tr) {
2115                 G_RAID_TR_FREE(vol->v_tr);
2116                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2117                 vol->v_tr = NULL;
2118         }
2119         if (vol->v_rootmount)
2120                 root_mount_rel(vol->v_rootmount);
2121         g_topology_lock();
2122         LIST_REMOVE(vol, v_global_next);
2123         g_topology_unlock();
2124         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2125         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2126                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2127                 disk = vol->v_subdisks[i].sd_disk;
2128                 if (disk == NULL)
2129                         continue;
2130                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2131         }
2132         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2133         if (sc->sc_md)
2134                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2135         g_raid_event_cancel(sc, vol);
2136         free(vol, M_RAID);
2137         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2138                 /* Wake up worker to let it selfdestruct. */
2139                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2140         }
2141         return (0);
2142 }
2143
2144 int
2145 g_raid_destroy_disk(struct g_raid_disk *disk)
2146 {
2147         struct g_raid_softc *sc;
2148         struct g_raid_subdisk *sd, *tmp;
2149
2150         sc = disk->d_softc;
2151         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2152         if (disk->d_consumer) {
2153                 g_raid_kill_consumer(sc, disk->d_consumer);
2154                 disk->d_consumer = NULL;
2155         }
2156         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2157                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2158                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2159                     G_RAID_EVENT_SUBDISK);
2160                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2161                 sd->sd_disk = NULL;
2162         }
2163         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2164         if (sc->sc_md)
2165                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2166         g_raid_event_cancel(sc, disk);
2167         free(disk, M_RAID);
2168         return (0);
2169 }
2170
2171 int
2172 g_raid_destroy(struct g_raid_softc *sc, int how)
2173 {
2174         int opens;
2175
2176         g_topology_assert_not();
2177         if (sc == NULL)
2178                 return (ENXIO);
2179         sx_assert(&sc->sc_lock, SX_XLOCKED);
2180
2181         /* Count open volumes. */
2182         opens = g_raid_nopens(sc);
2183
2184         /* React on some opened volumes. */
2185         if (opens > 0) {
2186                 switch (how) {
2187                 case G_RAID_DESTROY_SOFT:
2188                         G_RAID_DEBUG1(1, sc,
2189                             "%d volumes are still open.",
2190                             opens);
2191                         return (EBUSY);
2192                 case G_RAID_DESTROY_DELAYED:
2193                         G_RAID_DEBUG1(1, sc,
2194                             "Array will be destroyed on last close.");
2195                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2196                         return (EBUSY);
2197                 case G_RAID_DESTROY_HARD:
2198                         G_RAID_DEBUG1(1, sc,
2199                             "%d volumes are still open.",
2200                             opens);
2201                 }
2202         }
2203
2204         /* Mark node for destruction. */
2205         sc->sc_stopping = G_RAID_DESTROY_HARD;
2206         /* Wake up worker to let it selfdestruct. */
2207         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2208         /* Sleep until node destroyed. */
2209         sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2210             PRIBIO | PDROP, "r:destroy", 0);
2211         return (0);
2212 }
2213
2214 static void
2215 g_raid_taste_orphan(struct g_consumer *cp)
2216 {
2217
2218         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2219             cp->provider->name));
2220 }
2221
2222 static struct g_geom *
2223 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2224 {
2225         struct g_consumer *cp;
2226         struct g_geom *gp, *geom;
2227         struct g_raid_md_class *class;
2228         struct g_raid_md_object *obj;
2229         int status;
2230
2231         g_topology_assert();
2232         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2233         if (!g_raid_enable)
2234                 return (NULL);
2235         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2236
2237         gp = g_new_geomf(mp, "raid:taste");
2238         /*
2239          * This orphan function should be never called.
2240          */
2241         gp->orphan = g_raid_taste_orphan;
2242         cp = g_new_consumer(gp);
2243         g_attach(cp, pp);
2244
2245         geom = NULL;
2246         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2247                 if (!class->mdc_enable)
2248                         continue;
2249                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2250                     pp->name, class->name);
2251                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2252                     M_WAITOK);
2253                 obj->mdo_class = class;
2254                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2255                 if (status != G_RAID_MD_TASTE_NEW)
2256                         kobj_delete((kobj_t)obj, M_RAID);
2257                 if (status != G_RAID_MD_TASTE_FAIL)
2258                         break;
2259         }
2260
2261         g_detach(cp);
2262         g_destroy_consumer(cp);
2263         g_destroy_geom(gp);
2264         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2265         return (geom);
2266 }
2267
2268 int
2269 g_raid_create_node_format(const char *format, struct gctl_req *req,
2270     struct g_geom **gp)
2271 {
2272         struct g_raid_md_class *class;
2273         struct g_raid_md_object *obj;
2274         int status;
2275
2276         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2277         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2278                 if (strcasecmp(class->name, format) == 0)
2279                         break;
2280         }
2281         if (class == NULL) {
2282                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2283                 return (G_RAID_MD_TASTE_FAIL);
2284         }
2285         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2286             M_WAITOK);
2287         obj->mdo_class = class;
2288         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2289         if (status != G_RAID_MD_TASTE_NEW)
2290                 kobj_delete((kobj_t)obj, M_RAID);
2291         return (status);
2292 }
2293
2294 static int
2295 g_raid_destroy_geom(struct gctl_req *req __unused,
2296     struct g_class *mp __unused, struct g_geom *gp)
2297 {
2298         struct g_raid_softc *sc;
2299         int error;
2300
2301         g_topology_unlock();
2302         sc = gp->softc;
2303         sx_xlock(&sc->sc_lock);
2304         g_cancel_event(sc);
2305         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2306         if (error != 0)
2307                 sx_xunlock(&sc->sc_lock);
2308         g_topology_lock();
2309         return (error);
2310 }
2311
2312 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2313     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2314 {
2315
2316         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2317                 return;
2318         if (sc->sc_md)
2319                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2320 }
2321
2322 void g_raid_fail_disk(struct g_raid_softc *sc,
2323     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2324 {
2325
2326         if (disk == NULL)
2327                 disk = sd->sd_disk;
2328         if (disk == NULL) {
2329                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2330                 return;
2331         }
2332         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2333                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2334                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2335                 return;
2336         }
2337         if (sc->sc_md)
2338                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2339 }
2340
2341 static void
2342 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2343     struct g_consumer *cp, struct g_provider *pp)
2344 {
2345         struct g_raid_softc *sc;
2346         struct g_raid_volume *vol;
2347         struct g_raid_subdisk *sd;
2348         struct g_raid_disk *disk;
2349         int i, s;
2350
2351         g_topology_assert();
2352
2353         sc = gp->softc;
2354         if (sc == NULL)
2355                 return;
2356         if (pp != NULL) {
2357                 vol = pp->private;
2358                 g_topology_unlock();
2359                 sx_xlock(&sc->sc_lock);
2360                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2361                     sc->sc_md->mdo_class->name,
2362                     g_raid_volume_level2str(vol->v_raid_level,
2363                     vol->v_raid_level_qualifier));
2364                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2365                     vol->v_name);
2366                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2367                     g_raid_volume_level2str(vol->v_raid_level,
2368                     vol->v_raid_level_qualifier));
2369                 sbuf_printf(sb,
2370                     "%s<Transformation>%s</Transformation>\n", indent,
2371                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2372                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2373                     vol->v_disks_count);
2374                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2375                     vol->v_strip_size);
2376                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2377                     g_raid_volume_state2str(vol->v_state));
2378                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2379                     vol->v_dirty ? "Yes" : "No");
2380                 sbuf_printf(sb, "%s<Subdisks>", indent);
2381                 for (i = 0; i < vol->v_disks_count; i++) {
2382                         sd = &vol->v_subdisks[i];
2383                         if (sd->sd_disk != NULL &&
2384                             sd->sd_disk->d_consumer != NULL) {
2385                                 sbuf_printf(sb, "%s ",
2386                                     g_raid_get_diskname(sd->sd_disk));
2387                         } else {
2388                                 sbuf_printf(sb, "NONE ");
2389                         }
2390                         sbuf_printf(sb, "(%s",
2391                             g_raid_subdisk_state2str(sd->sd_state));
2392                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2393                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2394                                 sbuf_printf(sb, " %d%%",
2395                                     (int)(sd->sd_rebuild_pos * 100 /
2396                                      sd->sd_size));
2397                         }
2398                         sbuf_printf(sb, ")");
2399                         if (i + 1 < vol->v_disks_count)
2400                                 sbuf_printf(sb, ", ");
2401                 }
2402                 sbuf_printf(sb, "</Subdisks>\n");
2403                 sx_xunlock(&sc->sc_lock);
2404                 g_topology_lock();
2405         } else if (cp != NULL) {
2406                 disk = cp->private;
2407                 if (disk == NULL)
2408                         return;
2409                 g_topology_unlock();
2410                 sx_xlock(&sc->sc_lock);
2411                 sbuf_printf(sb, "%s<State>%s", indent,
2412                     g_raid_disk_state2str(disk->d_state));
2413                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2414                         sbuf_printf(sb, " (");
2415                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2416                                 sbuf_printf(sb, "%s",
2417                                     g_raid_subdisk_state2str(sd->sd_state));
2418                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2419                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2420                                         sbuf_printf(sb, " %d%%",
2421                                             (int)(sd->sd_rebuild_pos * 100 /
2422                                              sd->sd_size));
2423                                 }
2424                                 if (TAILQ_NEXT(sd, sd_next))
2425                                         sbuf_printf(sb, ", ");
2426                         }
2427                         sbuf_printf(sb, ")");
2428                 }
2429                 sbuf_printf(sb, "</State>\n");
2430                 sbuf_printf(sb, "%s<Subdisks>", indent);
2431                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2432                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2433                             sd->sd_volume->v_global_id,
2434                             sd->sd_volume->v_name,
2435                             sd->sd_pos, sd->sd_offset);
2436                         if (TAILQ_NEXT(sd, sd_next))
2437                                 sbuf_printf(sb, ", ");
2438                 }
2439                 sbuf_printf(sb, "</Subdisks>\n");
2440                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2441                     disk->d_read_errs);
2442                 sx_xunlock(&sc->sc_lock);
2443                 g_topology_lock();
2444         } else {
2445                 g_topology_unlock();
2446                 sx_xlock(&sc->sc_lock);
2447                 if (sc->sc_md) {
2448                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2449                             sc->sc_md->mdo_class->name);
2450                 }
2451                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2452                         s = 0xff;
2453                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2454                                 if (vol->v_state < s)
2455                                         s = vol->v_state;
2456                         }
2457                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2458                             g_raid_volume_state2str(s));
2459                 }
2460                 sx_xunlock(&sc->sc_lock);
2461                 g_topology_lock();
2462         }
2463 }
2464
2465 static void
2466 g_raid_shutdown_post_sync(void *arg, int howto)
2467 {
2468         struct g_class *mp;
2469         struct g_geom *gp, *gp2;
2470         struct g_raid_softc *sc;
2471         struct g_raid_volume *vol;
2472         int error;
2473
2474         mp = arg;
2475         DROP_GIANT();
2476         g_topology_lock();
2477         g_raid_shutdown = 1;
2478         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2479                 if ((sc = gp->softc) == NULL)
2480                         continue;
2481                 g_topology_unlock();
2482                 sx_xlock(&sc->sc_lock);
2483                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2484                         g_raid_clean(vol, -1);
2485                 g_cancel_event(sc);
2486                 error = g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2487                 if (error != 0)
2488                         sx_xunlock(&sc->sc_lock);
2489                 g_topology_lock();
2490         }
2491         g_topology_unlock();
2492         PICKUP_GIANT();
2493 }
2494
2495 static void
2496 g_raid_init(struct g_class *mp)
2497 {
2498
2499         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2500             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2501         if (g_raid_post_sync == NULL)
2502                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2503         g_raid_started = 1;
2504 }
2505
2506 static void
2507 g_raid_fini(struct g_class *mp)
2508 {
2509
2510         if (g_raid_post_sync != NULL)
2511                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2512         g_raid_started = 0;
2513 }
2514
2515 int
2516 g_raid_md_modevent(module_t mod, int type, void *arg)
2517 {
2518         struct g_raid_md_class *class, *c, *nc;
2519         int error;
2520
2521         error = 0;
2522         class = arg;
2523         switch (type) {
2524         case MOD_LOAD:
2525                 c = LIST_FIRST(&g_raid_md_classes);
2526                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2527                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2528                 else {
2529                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2530                             nc->mdc_priority < class->mdc_priority)
2531                                 c = nc;
2532                         LIST_INSERT_AFTER(c, class, mdc_list);
2533                 }
2534                 if (g_raid_started)
2535                         g_retaste(&g_raid_class);
2536                 break;
2537         case MOD_UNLOAD:
2538                 LIST_REMOVE(class, mdc_list);
2539                 break;
2540         default:
2541                 error = EOPNOTSUPP;
2542                 break;
2543         }
2544
2545         return (error);
2546 }
2547
2548 int
2549 g_raid_tr_modevent(module_t mod, int type, void *arg)
2550 {
2551         struct g_raid_tr_class *class, *c, *nc;
2552         int error;
2553
2554         error = 0;
2555         class = arg;
2556         switch (type) {
2557         case MOD_LOAD:
2558                 c = LIST_FIRST(&g_raid_tr_classes);
2559                 if (c == NULL || c->trc_priority > class->trc_priority)
2560                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2561                 else {
2562                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2563                             nc->trc_priority < class->trc_priority)
2564                                 c = nc;
2565                         LIST_INSERT_AFTER(c, class, trc_list);
2566                 }
2567                 break;
2568         case MOD_UNLOAD:
2569                 LIST_REMOVE(class, trc_list);
2570                 break;
2571         default:
2572                 error = EOPNOTSUPP;
2573                 break;
2574         }
2575
2576         return (error);
2577 }
2578
2579 /*
2580  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2581  * to reduce module priority, allowing submodules to register them first.
2582  */
2583 static moduledata_t g_raid_mod = {
2584         "g_raid",
2585         g_modevent,
2586         &g_raid_class
2587 };
2588 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2589 MODULE_VERSION(geom_raid, 0);