]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/geom/raid3/g_raid3.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / geom / raid3 / g_raid3.c
1 /*-
2  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid3/g_raid3.h>
48
49 FEATURE(geom_raid3, "GEOM RAID-3 functionality");
50
51 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
52
53 SYSCTL_DECL(_kern_geom);
54 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0,
55     "GEOM_RAID3 stuff");
56 u_int g_raid3_debug = 0;
57 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
58 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
59     "Debug level");
60 static u_int g_raid3_timeout = 4;
61 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
62 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
63     0, "Time to wait on all raid3 components");
64 static u_int g_raid3_idletime = 5;
65 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
67     &g_raid3_idletime, 0, "Mark components as clean when idling");
68 static u_int g_raid3_disconnect_on_failure = 1;
69 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
70     &g_raid3_disconnect_on_failure);
71 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
72     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
73 static u_int g_raid3_syncreqs = 2;
74 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
75 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
76     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
77 static u_int g_raid3_use_malloc = 0;
78 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
79 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
80     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
81
82 static u_int g_raid3_n64k = 50;
83 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
84 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
85     "Maximum number of 64kB allocations");
86 static u_int g_raid3_n16k = 200;
87 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
88 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
89     "Maximum number of 16kB allocations");
90 static u_int g_raid3_n4k = 1200;
91 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
92 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
93     "Maximum number of 4kB allocations");
94
95 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
96     "GEOM_RAID3 statistics");
97 static u_int g_raid3_parity_mismatch = 0;
98 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
99     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
100
101 #define MSLEEP(ident, mtx, priority, wmesg, timeout)    do {            \
102         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));        \
103         msleep((ident), (mtx), (priority), (wmesg), (timeout));         \
104         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));        \
105 } while (0)
106
107 static eventhandler_tag g_raid3_post_sync = NULL;
108 static int g_raid3_shutdown = 0;
109
110 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
111     struct g_geom *gp);
112 static g_taste_t g_raid3_taste;
113 static void g_raid3_init(struct g_class *mp);
114 static void g_raid3_fini(struct g_class *mp);
115
116 struct g_class g_raid3_class = {
117         .name = G_RAID3_CLASS_NAME,
118         .version = G_VERSION,
119         .ctlreq = g_raid3_config,
120         .taste = g_raid3_taste,
121         .destroy_geom = g_raid3_destroy_geom,
122         .init = g_raid3_init,
123         .fini = g_raid3_fini
124 };
125
126
127 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
128 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
129 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
130 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
131     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
132 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
133 static int g_raid3_register_request(struct bio *pbp);
134 static void g_raid3_sync_release(struct g_raid3_softc *sc);
135
136
137 static const char *
138 g_raid3_disk_state2str(int state)
139 {
140
141         switch (state) {
142         case G_RAID3_DISK_STATE_NODISK:
143                 return ("NODISK");
144         case G_RAID3_DISK_STATE_NONE:
145                 return ("NONE");
146         case G_RAID3_DISK_STATE_NEW:
147                 return ("NEW");
148         case G_RAID3_DISK_STATE_ACTIVE:
149                 return ("ACTIVE");
150         case G_RAID3_DISK_STATE_STALE:
151                 return ("STALE");
152         case G_RAID3_DISK_STATE_SYNCHRONIZING:
153                 return ("SYNCHRONIZING");
154         case G_RAID3_DISK_STATE_DISCONNECTED:
155                 return ("DISCONNECTED");
156         default:
157                 return ("INVALID");
158         }
159 }
160
161 static const char *
162 g_raid3_device_state2str(int state)
163 {
164
165         switch (state) {
166         case G_RAID3_DEVICE_STATE_STARTING:
167                 return ("STARTING");
168         case G_RAID3_DEVICE_STATE_DEGRADED:
169                 return ("DEGRADED");
170         case G_RAID3_DEVICE_STATE_COMPLETE:
171                 return ("COMPLETE");
172         default:
173                 return ("INVALID");
174         }
175 }
176
177 const char *
178 g_raid3_get_diskname(struct g_raid3_disk *disk)
179 {
180
181         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
182                 return ("[unknown]");
183         return (disk->d_name);
184 }
185
186 static void *
187 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
188 {
189         void *ptr;
190         enum g_raid3_zones zone;
191
192         if (g_raid3_use_malloc ||
193             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
194                 ptr = malloc(size, M_RAID3, flags);
195         else {
196                 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
197                    &sc->sc_zones[zone], flags);
198                 sc->sc_zones[zone].sz_requested++;
199                 if (ptr == NULL)
200                         sc->sc_zones[zone].sz_failed++;
201         }
202         return (ptr);
203 }
204
205 static void
206 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
207 {
208         enum g_raid3_zones zone;
209
210         if (g_raid3_use_malloc ||
211             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
212                 free(ptr, M_RAID3);
213         else {
214                 uma_zfree_arg(sc->sc_zones[zone].sz_zone,
215                     ptr, &sc->sc_zones[zone]);
216         }
217 }
218
219 static int
220 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
221 {
222         struct g_raid3_zone *sz = arg;
223
224         if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
225                 return (ENOMEM);
226         sz->sz_inuse++;
227         return (0);
228 }
229
230 static void
231 g_raid3_uma_dtor(void *mem, int size, void *arg)
232 {
233         struct g_raid3_zone *sz = arg;
234
235         sz->sz_inuse--;
236 }
237
238 #define g_raid3_xor(src, dst, size)                                     \
239         _g_raid3_xor((uint64_t *)(src),                                 \
240             (uint64_t *)(dst), (size_t)size)
241 static void
242 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
243 {
244
245         KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
246         for (; size > 0; size -= 128) {
247                 *dst++ ^= (*src++);
248                 *dst++ ^= (*src++);
249                 *dst++ ^= (*src++);
250                 *dst++ ^= (*src++);
251                 *dst++ ^= (*src++);
252                 *dst++ ^= (*src++);
253                 *dst++ ^= (*src++);
254                 *dst++ ^= (*src++);
255                 *dst++ ^= (*src++);
256                 *dst++ ^= (*src++);
257                 *dst++ ^= (*src++);
258                 *dst++ ^= (*src++);
259                 *dst++ ^= (*src++);
260                 *dst++ ^= (*src++);
261                 *dst++ ^= (*src++);
262                 *dst++ ^= (*src++);
263         }
264 }
265
266 static int
267 g_raid3_is_zero(struct bio *bp)
268 {
269         static const uint64_t zeros[] = {
270             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
271         };
272         u_char *addr;
273         ssize_t size;
274
275         size = bp->bio_length;
276         addr = (u_char *)bp->bio_data;
277         for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
278                 if (bcmp(addr, zeros, sizeof(zeros)) != 0)
279                         return (0);
280         }
281         return (1);
282 }
283
284 /*
285  * --- Events handling functions ---
286  * Events in geom_raid3 are used to maintain disks and device status
287  * from one thread to simplify locking.
288  */
289 static void
290 g_raid3_event_free(struct g_raid3_event *ep)
291 {
292
293         free(ep, M_RAID3);
294 }
295
296 int
297 g_raid3_event_send(void *arg, int state, int flags)
298 {
299         struct g_raid3_softc *sc;
300         struct g_raid3_disk *disk;
301         struct g_raid3_event *ep;
302         int error;
303
304         ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
305         G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
306         if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
307                 disk = NULL;
308                 sc = arg;
309         } else {
310                 disk = arg;
311                 sc = disk->d_softc;
312         }
313         ep->e_disk = disk;
314         ep->e_state = state;
315         ep->e_flags = flags;
316         ep->e_error = 0;
317         mtx_lock(&sc->sc_events_mtx);
318         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
319         mtx_unlock(&sc->sc_events_mtx);
320         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
321         mtx_lock(&sc->sc_queue_mtx);
322         wakeup(sc);
323         wakeup(&sc->sc_queue);
324         mtx_unlock(&sc->sc_queue_mtx);
325         if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
326                 return (0);
327         sx_assert(&sc->sc_lock, SX_XLOCKED);
328         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
329         sx_xunlock(&sc->sc_lock);
330         while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
331                 mtx_lock(&sc->sc_events_mtx);
332                 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
333                     hz * 5);
334         }
335         error = ep->e_error;
336         g_raid3_event_free(ep);
337         sx_xlock(&sc->sc_lock);
338         return (error);
339 }
340
341 static struct g_raid3_event *
342 g_raid3_event_get(struct g_raid3_softc *sc)
343 {
344         struct g_raid3_event *ep;
345
346         mtx_lock(&sc->sc_events_mtx);
347         ep = TAILQ_FIRST(&sc->sc_events);
348         mtx_unlock(&sc->sc_events_mtx);
349         return (ep);
350 }
351
352 static void
353 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
354 {
355
356         mtx_lock(&sc->sc_events_mtx);
357         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
358         mtx_unlock(&sc->sc_events_mtx);
359 }
360
361 static void
362 g_raid3_event_cancel(struct g_raid3_disk *disk)
363 {
364         struct g_raid3_softc *sc;
365         struct g_raid3_event *ep, *tmpep;
366
367         sc = disk->d_softc;
368         sx_assert(&sc->sc_lock, SX_XLOCKED);
369
370         mtx_lock(&sc->sc_events_mtx);
371         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
372                 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
373                         continue;
374                 if (ep->e_disk != disk)
375                         continue;
376                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
377                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
378                         g_raid3_event_free(ep);
379                 else {
380                         ep->e_error = ECANCELED;
381                         wakeup(ep);
382                 }
383         }
384         mtx_unlock(&sc->sc_events_mtx);
385 }
386
387 /*
388  * Return the number of disks in the given state.
389  * If state is equal to -1, count all connected disks.
390  */
391 u_int
392 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
393 {
394         struct g_raid3_disk *disk;
395         u_int n, ndisks;
396
397         sx_assert(&sc->sc_lock, SX_LOCKED);
398
399         for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
400                 disk = &sc->sc_disks[n];
401                 if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
402                         continue;
403                 if (state == -1 || disk->d_state == state)
404                         ndisks++;
405         }
406         return (ndisks);
407 }
408
409 static u_int
410 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
411 {
412         struct bio *bp;
413         u_int nreqs = 0;
414
415         mtx_lock(&sc->sc_queue_mtx);
416         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
417                 if (bp->bio_from == cp)
418                         nreqs++;
419         }
420         mtx_unlock(&sc->sc_queue_mtx);
421         return (nreqs);
422 }
423
424 static int
425 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
426 {
427
428         if (cp->index > 0) {
429                 G_RAID3_DEBUG(2,
430                     "I/O requests for %s exist, can't destroy it now.",
431                     cp->provider->name);
432                 return (1);
433         }
434         if (g_raid3_nrequests(sc, cp) > 0) {
435                 G_RAID3_DEBUG(2,
436                     "I/O requests for %s in queue, can't destroy it now.",
437                     cp->provider->name);
438                 return (1);
439         }
440         return (0);
441 }
442
443 static void
444 g_raid3_destroy_consumer(void *arg, int flags __unused)
445 {
446         struct g_consumer *cp;
447
448         g_topology_assert();
449
450         cp = arg;
451         G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
452         g_detach(cp);
453         g_destroy_consumer(cp);
454 }
455
456 static void
457 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
458 {
459         struct g_provider *pp;
460         int retaste_wait;
461
462         g_topology_assert();
463
464         cp->private = NULL;
465         if (g_raid3_is_busy(sc, cp))
466                 return;
467         G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
468         pp = cp->provider;
469         retaste_wait = 0;
470         if (cp->acw == 1) {
471                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
472                         retaste_wait = 1;
473         }
474         G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
475             -cp->acw, -cp->ace, 0);
476         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
477                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
478         if (retaste_wait) {
479                 /*
480                  * After retaste event was send (inside g_access()), we can send
481                  * event to detach and destroy consumer.
482                  * A class, which has consumer to the given provider connected
483                  * will not receive retaste event for the provider.
484                  * This is the way how I ignore retaste events when I close
485                  * consumers opened for write: I detach and destroy consumer
486                  * after retaste event is sent.
487                  */
488                 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
489                 return;
490         }
491         G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
492         g_detach(cp);
493         g_destroy_consumer(cp);
494 }
495
496 static int
497 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
498 {
499         struct g_consumer *cp;
500         int error;
501
502         g_topology_assert_not();
503         KASSERT(disk->d_consumer == NULL,
504             ("Disk already connected (device %s).", disk->d_softc->sc_name));
505
506         g_topology_lock();
507         cp = g_new_consumer(disk->d_softc->sc_geom);
508         error = g_attach(cp, pp);
509         if (error != 0) {
510                 g_destroy_consumer(cp);
511                 g_topology_unlock();
512                 return (error);
513         }
514         error = g_access(cp, 1, 1, 1);
515                 g_topology_unlock();
516         if (error != 0) {
517                 g_detach(cp);
518                 g_destroy_consumer(cp);
519                 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
520                     pp->name, error);
521                 return (error);
522         }
523         disk->d_consumer = cp;
524         disk->d_consumer->private = disk;
525         disk->d_consumer->index = 0;
526         G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
527         return (0);
528 }
529
530 static void
531 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
532 {
533
534         g_topology_assert();
535
536         if (cp == NULL)
537                 return;
538         if (cp->provider != NULL)
539                 g_raid3_kill_consumer(sc, cp);
540         else
541                 g_destroy_consumer(cp);
542 }
543
544 /*
545  * Initialize disk. This means allocate memory, create consumer, attach it
546  * to the provider and open access (r1w1e1) to it.
547  */
548 static struct g_raid3_disk *
549 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
550     struct g_raid3_metadata *md, int *errorp)
551 {
552         struct g_raid3_disk *disk;
553         int error;
554
555         disk = &sc->sc_disks[md->md_no];
556         error = g_raid3_connect_disk(disk, pp);
557         if (error != 0) {
558                 if (errorp != NULL)
559                         *errorp = error;
560                 return (NULL);
561         }
562         disk->d_state = G_RAID3_DISK_STATE_NONE;
563         disk->d_flags = md->md_dflags;
564         if (md->md_provider[0] != '\0')
565                 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
566         disk->d_sync.ds_consumer = NULL;
567         disk->d_sync.ds_offset = md->md_sync_offset;
568         disk->d_sync.ds_offset_done = md->md_sync_offset;
569         disk->d_genid = md->md_genid;
570         disk->d_sync.ds_syncid = md->md_syncid;
571         if (errorp != NULL)
572                 *errorp = 0;
573         return (disk);
574 }
575
576 static void
577 g_raid3_destroy_disk(struct g_raid3_disk *disk)
578 {
579         struct g_raid3_softc *sc;
580
581         g_topology_assert_not();
582         sc = disk->d_softc;
583         sx_assert(&sc->sc_lock, SX_XLOCKED);
584
585         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
586                 return;
587         g_raid3_event_cancel(disk);
588         switch (disk->d_state) {
589         case G_RAID3_DISK_STATE_SYNCHRONIZING:
590                 if (sc->sc_syncdisk != NULL)
591                         g_raid3_sync_stop(sc, 1);
592                 /* FALLTHROUGH */
593         case G_RAID3_DISK_STATE_NEW:
594         case G_RAID3_DISK_STATE_STALE:
595         case G_RAID3_DISK_STATE_ACTIVE:
596                 g_topology_lock();
597                 g_raid3_disconnect_consumer(sc, disk->d_consumer);
598                 g_topology_unlock();
599                 disk->d_consumer = NULL;
600                 break;
601         default:
602                 KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
603                     g_raid3_get_diskname(disk),
604                     g_raid3_disk_state2str(disk->d_state)));
605         }
606         disk->d_state = G_RAID3_DISK_STATE_NODISK;
607 }
608
609 static void
610 g_raid3_destroy_device(struct g_raid3_softc *sc)
611 {
612         struct g_raid3_event *ep;
613         struct g_raid3_disk *disk;
614         struct g_geom *gp;
615         struct g_consumer *cp;
616         u_int n;
617
618         g_topology_assert_not();
619         sx_assert(&sc->sc_lock, SX_XLOCKED);
620
621         gp = sc->sc_geom;
622         if (sc->sc_provider != NULL)
623                 g_raid3_destroy_provider(sc);
624         for (n = 0; n < sc->sc_ndisks; n++) {
625                 disk = &sc->sc_disks[n];
626                 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
627                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
628                         g_raid3_update_metadata(disk);
629                         g_raid3_destroy_disk(disk);
630                 }
631         }
632         while ((ep = g_raid3_event_get(sc)) != NULL) {
633                 g_raid3_event_remove(sc, ep);
634                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
635                         g_raid3_event_free(ep);
636                 else {
637                         ep->e_error = ECANCELED;
638                         ep->e_flags |= G_RAID3_EVENT_DONE;
639                         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
640                         mtx_lock(&sc->sc_events_mtx);
641                         wakeup(ep);
642                         mtx_unlock(&sc->sc_events_mtx);
643                 }
644         }
645         callout_drain(&sc->sc_callout);
646         cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
647         g_topology_lock();
648         if (cp != NULL)
649                 g_raid3_disconnect_consumer(sc, cp);
650         g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
651         G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
652         g_wither_geom(gp, ENXIO);
653         g_topology_unlock();
654         if (!g_raid3_use_malloc) {
655                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
656                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
657                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
658         }
659         mtx_destroy(&sc->sc_queue_mtx);
660         mtx_destroy(&sc->sc_events_mtx);
661         sx_xunlock(&sc->sc_lock);
662         sx_destroy(&sc->sc_lock);
663 }
664
665 static void
666 g_raid3_orphan(struct g_consumer *cp)
667 {
668         struct g_raid3_disk *disk;
669
670         g_topology_assert();
671
672         disk = cp->private;
673         if (disk == NULL)
674                 return;
675         disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
676         g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
677             G_RAID3_EVENT_DONTWAIT);
678 }
679
680 static int
681 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
682 {
683         struct g_raid3_softc *sc;
684         struct g_consumer *cp;
685         off_t offset, length;
686         u_char *sector;
687         int error = 0;
688
689         g_topology_assert_not();
690         sc = disk->d_softc;
691         sx_assert(&sc->sc_lock, SX_LOCKED);
692
693         cp = disk->d_consumer;
694         KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
695         KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
696         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
697             ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
698             cp->acw, cp->ace));
699         length = cp->provider->sectorsize;
700         offset = cp->provider->mediasize - length;
701         sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
702         if (md != NULL)
703                 raid3_metadata_encode(md, sector);
704         error = g_write_data(cp, offset, sector, length);
705         free(sector, M_RAID3);
706         if (error != 0) {
707                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
708                         G_RAID3_DEBUG(0, "Cannot write metadata on %s "
709                             "(device=%s, error=%d).",
710                             g_raid3_get_diskname(disk), sc->sc_name, error);
711                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
712                 } else {
713                         G_RAID3_DEBUG(1, "Cannot write metadata on %s "
714                             "(device=%s, error=%d).",
715                             g_raid3_get_diskname(disk), sc->sc_name, error);
716                 }
717                 if (g_raid3_disconnect_on_failure &&
718                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
719                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
720                         g_raid3_event_send(disk,
721                             G_RAID3_DISK_STATE_DISCONNECTED,
722                             G_RAID3_EVENT_DONTWAIT);
723                 }
724         }
725         return (error);
726 }
727
728 int
729 g_raid3_clear_metadata(struct g_raid3_disk *disk)
730 {
731         int error;
732
733         g_topology_assert_not();
734         sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
735
736         error = g_raid3_write_metadata(disk, NULL);
737         if (error == 0) {
738                 G_RAID3_DEBUG(2, "Metadata on %s cleared.",
739                     g_raid3_get_diskname(disk));
740         } else {
741                 G_RAID3_DEBUG(0,
742                     "Cannot clear metadata on disk %s (error=%d).",
743                     g_raid3_get_diskname(disk), error);
744         }
745         return (error);
746 }
747
748 void
749 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
750 {
751         struct g_raid3_softc *sc;
752         struct g_provider *pp;
753
754         sc = disk->d_softc;
755         strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
756         md->md_version = G_RAID3_VERSION;
757         strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
758         md->md_id = sc->sc_id;
759         md->md_all = sc->sc_ndisks;
760         md->md_genid = sc->sc_genid;
761         md->md_mediasize = sc->sc_mediasize;
762         md->md_sectorsize = sc->sc_sectorsize;
763         md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
764         md->md_no = disk->d_no;
765         md->md_syncid = disk->d_sync.ds_syncid;
766         md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
767         if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
768                 md->md_sync_offset = 0;
769         else {
770                 md->md_sync_offset =
771                     disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
772         }
773         if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
774                 pp = disk->d_consumer->provider;
775         else
776                 pp = NULL;
777         if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
778                 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
779         else
780                 bzero(md->md_provider, sizeof(md->md_provider));
781         if (pp != NULL)
782                 md->md_provsize = pp->mediasize;
783         else
784                 md->md_provsize = 0;
785 }
786
787 void
788 g_raid3_update_metadata(struct g_raid3_disk *disk)
789 {
790         struct g_raid3_softc *sc;
791         struct g_raid3_metadata md;
792         int error;
793
794         g_topology_assert_not();
795         sc = disk->d_softc;
796         sx_assert(&sc->sc_lock, SX_LOCKED);
797
798         g_raid3_fill_metadata(disk, &md);
799         error = g_raid3_write_metadata(disk, &md);
800         if (error == 0) {
801                 G_RAID3_DEBUG(2, "Metadata on %s updated.",
802                     g_raid3_get_diskname(disk));
803         } else {
804                 G_RAID3_DEBUG(0,
805                     "Cannot update metadata on disk %s (error=%d).",
806                     g_raid3_get_diskname(disk), error);
807         }
808 }
809
810 static void
811 g_raid3_bump_syncid(struct g_raid3_softc *sc)
812 {
813         struct g_raid3_disk *disk;
814         u_int n;
815
816         g_topology_assert_not();
817         sx_assert(&sc->sc_lock, SX_XLOCKED);
818         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
819             ("%s called with no active disks (device=%s).", __func__,
820             sc->sc_name));
821
822         sc->sc_syncid++;
823         G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
824             sc->sc_syncid);
825         for (n = 0; n < sc->sc_ndisks; n++) {
826                 disk = &sc->sc_disks[n];
827                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
828                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
829                         disk->d_sync.ds_syncid = sc->sc_syncid;
830                         g_raid3_update_metadata(disk);
831                 }
832         }
833 }
834
835 static void
836 g_raid3_bump_genid(struct g_raid3_softc *sc)
837 {
838         struct g_raid3_disk *disk;
839         u_int n;
840
841         g_topology_assert_not();
842         sx_assert(&sc->sc_lock, SX_XLOCKED);
843         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
844             ("%s called with no active disks (device=%s).", __func__,
845             sc->sc_name));
846
847         sc->sc_genid++;
848         G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
849             sc->sc_genid);
850         for (n = 0; n < sc->sc_ndisks; n++) {
851                 disk = &sc->sc_disks[n];
852                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
853                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
854                         disk->d_genid = sc->sc_genid;
855                         g_raid3_update_metadata(disk);
856                 }
857         }
858 }
859
860 static int
861 g_raid3_idle(struct g_raid3_softc *sc, int acw)
862 {
863         struct g_raid3_disk *disk;
864         u_int i;
865         int timeout;
866
867         g_topology_assert_not();
868         sx_assert(&sc->sc_lock, SX_XLOCKED);
869
870         if (sc->sc_provider == NULL)
871                 return (0);
872         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
873                 return (0);
874         if (sc->sc_idle)
875                 return (0);
876         if (sc->sc_writes > 0)
877                 return (0);
878         if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
879                 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
880                 if (!g_raid3_shutdown && timeout > 0)
881                         return (timeout);
882         }
883         sc->sc_idle = 1;
884         for (i = 0; i < sc->sc_ndisks; i++) {
885                 disk = &sc->sc_disks[i];
886                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
887                         continue;
888                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
889                     g_raid3_get_diskname(disk), sc->sc_name);
890                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
891                 g_raid3_update_metadata(disk);
892         }
893         return (0);
894 }
895
896 static void
897 g_raid3_unidle(struct g_raid3_softc *sc)
898 {
899         struct g_raid3_disk *disk;
900         u_int i;
901
902         g_topology_assert_not();
903         sx_assert(&sc->sc_lock, SX_XLOCKED);
904
905         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
906                 return;
907         sc->sc_idle = 0;
908         sc->sc_last_write = time_uptime;
909         for (i = 0; i < sc->sc_ndisks; i++) {
910                 disk = &sc->sc_disks[i];
911                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
912                         continue;
913                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
914                     g_raid3_get_diskname(disk), sc->sc_name);
915                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
916                 g_raid3_update_metadata(disk);
917         }
918 }
919
920 /*
921  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
922  * in child bio as pointer to the next element on the list.
923  */
924 #define G_RAID3_HEAD_BIO(pbp)   (pbp)->bio_driver1
925
926 #define G_RAID3_NEXT_BIO(cbp)   (cbp)->bio_caller1
927
928 #define G_RAID3_FOREACH_BIO(pbp, bp)                                    \
929         for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;                \
930             (bp) = G_RAID3_NEXT_BIO(bp))
931
932 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)                        \
933         for ((bp) = G_RAID3_HEAD_BIO(pbp);                              \
934             (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);        \
935             (bp) = (tmpbp))
936
937 static void
938 g_raid3_init_bio(struct bio *pbp)
939 {
940
941         G_RAID3_HEAD_BIO(pbp) = NULL;
942 }
943
944 static void
945 g_raid3_remove_bio(struct bio *cbp)
946 {
947         struct bio *pbp, *bp;
948
949         pbp = cbp->bio_parent;
950         if (G_RAID3_HEAD_BIO(pbp) == cbp)
951                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
952         else {
953                 G_RAID3_FOREACH_BIO(pbp, bp) {
954                         if (G_RAID3_NEXT_BIO(bp) == cbp) {
955                                 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
956                                 break;
957                         }
958                 }
959         }
960         G_RAID3_NEXT_BIO(cbp) = NULL;
961 }
962
963 static void
964 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
965 {
966         struct bio *pbp, *bp;
967
968         g_raid3_remove_bio(sbp);
969         pbp = dbp->bio_parent;
970         G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
971         if (G_RAID3_HEAD_BIO(pbp) == dbp)
972                 G_RAID3_HEAD_BIO(pbp) = sbp;
973         else {
974                 G_RAID3_FOREACH_BIO(pbp, bp) {
975                         if (G_RAID3_NEXT_BIO(bp) == dbp) {
976                                 G_RAID3_NEXT_BIO(bp) = sbp;
977                                 break;
978                         }
979                 }
980         }
981         G_RAID3_NEXT_BIO(dbp) = NULL;
982 }
983
984 static void
985 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
986 {
987         struct bio *bp, *pbp;
988         size_t size;
989
990         pbp = cbp->bio_parent;
991         pbp->bio_children--;
992         KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
993         size = pbp->bio_length / (sc->sc_ndisks - 1);
994         g_raid3_free(sc, cbp->bio_data, size);
995         if (G_RAID3_HEAD_BIO(pbp) == cbp) {
996                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
997                 G_RAID3_NEXT_BIO(cbp) = NULL;
998                 g_destroy_bio(cbp);
999         } else {
1000                 G_RAID3_FOREACH_BIO(pbp, bp) {
1001                         if (G_RAID3_NEXT_BIO(bp) == cbp)
1002                                 break;
1003                 }
1004                 if (bp != NULL) {
1005                         KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
1006                             ("NULL bp->bio_driver1"));
1007                         G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1008                         G_RAID3_NEXT_BIO(cbp) = NULL;
1009                 }
1010                 g_destroy_bio(cbp);
1011         }
1012 }
1013
1014 static struct bio *
1015 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1016 {
1017         struct bio *bp, *cbp;
1018         size_t size;
1019         int memflag;
1020
1021         cbp = g_clone_bio(pbp);
1022         if (cbp == NULL)
1023                 return (NULL);
1024         size = pbp->bio_length / (sc->sc_ndisks - 1);
1025         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1026                 memflag = M_WAITOK;
1027         else
1028                 memflag = M_NOWAIT;
1029         cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1030         if (cbp->bio_data == NULL) {
1031                 pbp->bio_children--;
1032                 g_destroy_bio(cbp);
1033                 return (NULL);
1034         }
1035         G_RAID3_NEXT_BIO(cbp) = NULL;
1036         if (G_RAID3_HEAD_BIO(pbp) == NULL)
1037                 G_RAID3_HEAD_BIO(pbp) = cbp;
1038         else {
1039                 G_RAID3_FOREACH_BIO(pbp, bp) {
1040                         if (G_RAID3_NEXT_BIO(bp) == NULL) {
1041                                 G_RAID3_NEXT_BIO(bp) = cbp;
1042                                 break;
1043                         }
1044                 }
1045         }
1046         return (cbp);
1047 }
1048
1049 static void
1050 g_raid3_scatter(struct bio *pbp)
1051 {
1052         struct g_raid3_softc *sc;
1053         struct g_raid3_disk *disk;
1054         struct bio *bp, *cbp, *tmpbp;
1055         off_t atom, cadd, padd, left;
1056         int first;
1057
1058         sc = pbp->bio_to->geom->softc;
1059         bp = NULL;
1060         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1061                 /*
1062                  * Find bio for which we should calculate data.
1063                  */
1064                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1065                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1066                                 bp = cbp;
1067                                 break;
1068                         }
1069                 }
1070                 KASSERT(bp != NULL, ("NULL parity bio."));
1071         }
1072         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1073         cadd = padd = 0;
1074         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1075                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1076                         if (cbp == bp)
1077                                 continue;
1078                         bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1079                         padd += atom;
1080                 }
1081                 cadd += atom;
1082         }
1083         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1084                 /*
1085                  * Calculate parity.
1086                  */
1087                 first = 1;
1088                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1089                         if (cbp == bp)
1090                                 continue;
1091                         if (first) {
1092                                 bcopy(cbp->bio_data, bp->bio_data,
1093                                     bp->bio_length);
1094                                 first = 0;
1095                         } else {
1096                                 g_raid3_xor(cbp->bio_data, bp->bio_data,
1097                                     bp->bio_length);
1098                         }
1099                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1100                                 g_raid3_destroy_bio(sc, cbp);
1101                 }
1102         }
1103         G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1104                 struct g_consumer *cp;
1105
1106                 disk = cbp->bio_caller2;
1107                 cp = disk->d_consumer;
1108                 cbp->bio_to = cp->provider;
1109                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1110                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1111                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1112                     cp->acr, cp->acw, cp->ace));
1113                 cp->index++;
1114                 sc->sc_writes++;
1115                 g_io_request(cbp, cp);
1116         }
1117 }
1118
1119 static void
1120 g_raid3_gather(struct bio *pbp)
1121 {
1122         struct g_raid3_softc *sc;
1123         struct g_raid3_disk *disk;
1124         struct bio *xbp, *fbp, *cbp;
1125         off_t atom, cadd, padd, left;
1126
1127         sc = pbp->bio_to->geom->softc;
1128         /*
1129          * Find bio for which we have to calculate data.
1130          * While going through this path, check if all requests
1131          * succeeded, if not, deny whole request.
1132          * If we're in COMPLETE mode, we allow one request to fail,
1133          * so if we find one, we're sending it to the parity consumer.
1134          * If there are more failed requests, we deny whole request.
1135          */
1136         xbp = fbp = NULL;
1137         G_RAID3_FOREACH_BIO(pbp, cbp) {
1138                 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1139                         KASSERT(xbp == NULL, ("More than one parity bio."));
1140                         xbp = cbp;
1141                 }
1142                 if (cbp->bio_error == 0)
1143                         continue;
1144                 /*
1145                  * Found failed request.
1146                  */
1147                 if (fbp == NULL) {
1148                         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1149                                 /*
1150                                  * We are already in degraded mode, so we can't
1151                                  * accept any failures.
1152                                  */
1153                                 if (pbp->bio_error == 0)
1154                                         pbp->bio_error = cbp->bio_error;
1155                         } else {
1156                                 fbp = cbp;
1157                         }
1158                 } else {
1159                         /*
1160                          * Next failed request, that's too many.
1161                          */
1162                         if (pbp->bio_error == 0)
1163                                 pbp->bio_error = fbp->bio_error;
1164                 }
1165                 disk = cbp->bio_caller2;
1166                 if (disk == NULL)
1167                         continue;
1168                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1169                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1170                         G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1171                             cbp->bio_error);
1172                 } else {
1173                         G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1174                             cbp->bio_error);
1175                 }
1176                 if (g_raid3_disconnect_on_failure &&
1177                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1178                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1179                         g_raid3_event_send(disk,
1180                             G_RAID3_DISK_STATE_DISCONNECTED,
1181                             G_RAID3_EVENT_DONTWAIT);
1182                 }
1183         }
1184         if (pbp->bio_error != 0)
1185                 goto finish;
1186         if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1187                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1188                 if (xbp != fbp)
1189                         g_raid3_replace_bio(xbp, fbp);
1190                 g_raid3_destroy_bio(sc, fbp);
1191         } else if (fbp != NULL) {
1192                 struct g_consumer *cp;
1193
1194                 /*
1195                  * One request failed, so send the same request to
1196                  * the parity consumer.
1197                  */
1198                 disk = pbp->bio_driver2;
1199                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1200                         pbp->bio_error = fbp->bio_error;
1201                         goto finish;
1202                 }
1203                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1204                 pbp->bio_inbed--;
1205                 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1206                 if (disk->d_no == sc->sc_ndisks - 1)
1207                         fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1208                 fbp->bio_error = 0;
1209                 fbp->bio_completed = 0;
1210                 fbp->bio_children = 0;
1211                 fbp->bio_inbed = 0;
1212                 cp = disk->d_consumer;
1213                 fbp->bio_caller2 = disk;
1214                 fbp->bio_to = cp->provider;
1215                 G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1216                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1217                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1218                     cp->acr, cp->acw, cp->ace));
1219                 cp->index++;
1220                 g_io_request(fbp, cp);
1221                 return;
1222         }
1223         if (xbp != NULL) {
1224                 /*
1225                  * Calculate parity.
1226                  */
1227                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1228                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1229                                 continue;
1230                         g_raid3_xor(cbp->bio_data, xbp->bio_data,
1231                             xbp->bio_length);
1232                 }
1233                 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1234                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1235                         if (!g_raid3_is_zero(xbp)) {
1236                                 g_raid3_parity_mismatch++;
1237                                 pbp->bio_error = EIO;
1238                                 goto finish;
1239                         }
1240                         g_raid3_destroy_bio(sc, xbp);
1241                 }
1242         }
1243         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1244         cadd = padd = 0;
1245         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1246                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1247                         bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1248                         pbp->bio_completed += atom;
1249                         padd += atom;
1250                 }
1251                 cadd += atom;
1252         }
1253 finish:
1254         if (pbp->bio_error == 0)
1255                 G_RAID3_LOGREQ(3, pbp, "Request finished.");
1256         else {
1257                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1258                         G_RAID3_LOGREQ(1, pbp, "Verification error.");
1259                 else
1260                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1261         }
1262         pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1263         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1264                 g_raid3_destroy_bio(sc, cbp);
1265         g_io_deliver(pbp, pbp->bio_error);
1266 }
1267
1268 static void
1269 g_raid3_done(struct bio *bp)
1270 {
1271         struct g_raid3_softc *sc;
1272
1273         sc = bp->bio_from->geom->softc;
1274         bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1275         G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1276         mtx_lock(&sc->sc_queue_mtx);
1277         bioq_insert_head(&sc->sc_queue, bp);
1278         mtx_unlock(&sc->sc_queue_mtx);
1279         wakeup(sc);
1280         wakeup(&sc->sc_queue);
1281 }
1282
1283 static void
1284 g_raid3_regular_request(struct bio *cbp)
1285 {
1286         struct g_raid3_softc *sc;
1287         struct g_raid3_disk *disk;
1288         struct bio *pbp;
1289
1290         g_topology_assert_not();
1291
1292         pbp = cbp->bio_parent;
1293         sc = pbp->bio_to->geom->softc;
1294         cbp->bio_from->index--;
1295         if (cbp->bio_cmd == BIO_WRITE)
1296                 sc->sc_writes--;
1297         disk = cbp->bio_from->private;
1298         if (disk == NULL) {
1299                 g_topology_lock();
1300                 g_raid3_kill_consumer(sc, cbp->bio_from);
1301                 g_topology_unlock();
1302         }
1303
1304         G_RAID3_LOGREQ(3, cbp, "Request finished.");
1305         pbp->bio_inbed++;
1306         KASSERT(pbp->bio_inbed <= pbp->bio_children,
1307             ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1308             pbp->bio_children));
1309         if (pbp->bio_inbed != pbp->bio_children)
1310                 return;
1311         switch (pbp->bio_cmd) {
1312         case BIO_READ:
1313                 g_raid3_gather(pbp);
1314                 break;
1315         case BIO_WRITE:
1316         case BIO_DELETE:
1317             {
1318                 int error = 0;
1319
1320                 pbp->bio_completed = pbp->bio_length;
1321                 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1322                         if (cbp->bio_error == 0) {
1323                                 g_raid3_destroy_bio(sc, cbp);
1324                                 continue;
1325                         }
1326
1327                         if (error == 0)
1328                                 error = cbp->bio_error;
1329                         else if (pbp->bio_error == 0) {
1330                                 /*
1331                                  * Next failed request, that's too many.
1332                                  */
1333                                 pbp->bio_error = error;
1334                         }
1335
1336                         disk = cbp->bio_caller2;
1337                         if (disk == NULL) {
1338                                 g_raid3_destroy_bio(sc, cbp);
1339                                 continue;
1340                         }
1341
1342                         if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1343                                 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1344                                 G_RAID3_LOGREQ(0, cbp,
1345                                     "Request failed (error=%d).",
1346                                     cbp->bio_error);
1347                         } else {
1348                                 G_RAID3_LOGREQ(1, cbp,
1349                                     "Request failed (error=%d).",
1350                                     cbp->bio_error);
1351                         }
1352                         if (g_raid3_disconnect_on_failure &&
1353                             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1354                                 sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1355                                 g_raid3_event_send(disk,
1356                                     G_RAID3_DISK_STATE_DISCONNECTED,
1357                                     G_RAID3_EVENT_DONTWAIT);
1358                         }
1359                         g_raid3_destroy_bio(sc, cbp);
1360                 }
1361                 if (pbp->bio_error == 0)
1362                         G_RAID3_LOGREQ(3, pbp, "Request finished.");
1363                 else
1364                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1365                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1366                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1367                 bioq_remove(&sc->sc_inflight, pbp);
1368                 /* Release delayed sync requests if possible. */
1369                 g_raid3_sync_release(sc);
1370                 g_io_deliver(pbp, pbp->bio_error);
1371                 break;
1372             }
1373         }
1374 }
1375
1376 static void
1377 g_raid3_sync_done(struct bio *bp)
1378 {
1379         struct g_raid3_softc *sc;
1380
1381         G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1382         sc = bp->bio_from->geom->softc;
1383         bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1384         mtx_lock(&sc->sc_queue_mtx);
1385         bioq_insert_head(&sc->sc_queue, bp);
1386         mtx_unlock(&sc->sc_queue_mtx);
1387         wakeup(sc);
1388         wakeup(&sc->sc_queue);
1389 }
1390
1391 static void
1392 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1393 {
1394         struct bio_queue_head queue;
1395         struct g_raid3_disk *disk;
1396         struct g_consumer *cp;
1397         struct bio *cbp;
1398         u_int i;
1399
1400         bioq_init(&queue);
1401         for (i = 0; i < sc->sc_ndisks; i++) {
1402                 disk = &sc->sc_disks[i];
1403                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1404                         continue;
1405                 cbp = g_clone_bio(bp);
1406                 if (cbp == NULL) {
1407                         for (cbp = bioq_first(&queue); cbp != NULL;
1408                             cbp = bioq_first(&queue)) {
1409                                 bioq_remove(&queue, cbp);
1410                                 g_destroy_bio(cbp);
1411                         }
1412                         if (bp->bio_error == 0)
1413                                 bp->bio_error = ENOMEM;
1414                         g_io_deliver(bp, bp->bio_error);
1415                         return;
1416                 }
1417                 bioq_insert_tail(&queue, cbp);
1418                 cbp->bio_done = g_std_done;
1419                 cbp->bio_caller1 = disk;
1420                 cbp->bio_to = disk->d_consumer->provider;
1421         }
1422         for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1423                 bioq_remove(&queue, cbp);
1424                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1425                 disk = cbp->bio_caller1;
1426                 cbp->bio_caller1 = NULL;
1427                 cp = disk->d_consumer;
1428                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1429                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1430                     cp->acr, cp->acw, cp->ace));
1431                 g_io_request(cbp, disk->d_consumer);
1432         }
1433 }
1434
1435 static void
1436 g_raid3_start(struct bio *bp)
1437 {
1438         struct g_raid3_softc *sc;
1439
1440         sc = bp->bio_to->geom->softc;
1441         /*
1442          * If sc == NULL or there are no valid disks, provider's error
1443          * should be set and g_raid3_start() should not be called at all.
1444          */
1445         KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1446             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1447             ("Provider's error should be set (error=%d)(device=%s).",
1448             bp->bio_to->error, bp->bio_to->name));
1449         G_RAID3_LOGREQ(3, bp, "Request received.");
1450
1451         switch (bp->bio_cmd) {
1452         case BIO_READ:
1453         case BIO_WRITE:
1454         case BIO_DELETE:
1455                 break;
1456         case BIO_FLUSH:
1457                 g_raid3_flush(sc, bp);
1458                 return;
1459         case BIO_GETATTR:
1460         default:
1461                 g_io_deliver(bp, EOPNOTSUPP);
1462                 return;
1463         }
1464         mtx_lock(&sc->sc_queue_mtx);
1465         bioq_insert_tail(&sc->sc_queue, bp);
1466         mtx_unlock(&sc->sc_queue_mtx);
1467         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1468         wakeup(sc);
1469 }
1470
1471 /*
1472  * Return TRUE if the given request is colliding with a in-progress
1473  * synchronization request.
1474  */
1475 static int
1476 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1477 {
1478         struct g_raid3_disk *disk;
1479         struct bio *sbp;
1480         off_t rstart, rend, sstart, send;
1481         int i;
1482
1483         disk = sc->sc_syncdisk;
1484         if (disk == NULL)
1485                 return (0);
1486         rstart = bp->bio_offset;
1487         rend = bp->bio_offset + bp->bio_length;
1488         for (i = 0; i < g_raid3_syncreqs; i++) {
1489                 sbp = disk->d_sync.ds_bios[i];
1490                 if (sbp == NULL)
1491                         continue;
1492                 sstart = sbp->bio_offset;
1493                 send = sbp->bio_length;
1494                 if (sbp->bio_cmd == BIO_WRITE) {
1495                         sstart *= sc->sc_ndisks - 1;
1496                         send *= sc->sc_ndisks - 1;
1497                 }
1498                 send += sstart;
1499                 if (rend > sstart && rstart < send)
1500                         return (1);
1501         }
1502         return (0);
1503 }
1504
1505 /*
1506  * Return TRUE if the given sync request is colliding with a in-progress regular
1507  * request.
1508  */
1509 static int
1510 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1511 {
1512         off_t rstart, rend, sstart, send;
1513         struct bio *bp;
1514
1515         if (sc->sc_syncdisk == NULL)
1516                 return (0);
1517         sstart = sbp->bio_offset;
1518         send = sstart + sbp->bio_length;
1519         TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1520                 rstart = bp->bio_offset;
1521                 rend = bp->bio_offset + bp->bio_length;
1522                 if (rend > sstart && rstart < send)
1523                         return (1);
1524         }
1525         return (0);
1526 }
1527
1528 /*
1529  * Puts request onto delayed queue.
1530  */
1531 static void
1532 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1533 {
1534
1535         G_RAID3_LOGREQ(2, bp, "Delaying request.");
1536         bioq_insert_head(&sc->sc_regular_delayed, bp);
1537 }
1538
1539 /*
1540  * Puts synchronization request onto delayed queue.
1541  */
1542 static void
1543 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1544 {
1545
1546         G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1547         bioq_insert_tail(&sc->sc_sync_delayed, bp);
1548 }
1549
1550 /*
1551  * Releases delayed regular requests which don't collide anymore with sync
1552  * requests.
1553  */
1554 static void
1555 g_raid3_regular_release(struct g_raid3_softc *sc)
1556 {
1557         struct bio *bp, *bp2;
1558
1559         TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1560                 if (g_raid3_sync_collision(sc, bp))
1561                         continue;
1562                 bioq_remove(&sc->sc_regular_delayed, bp);
1563                 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1564                 mtx_lock(&sc->sc_queue_mtx);
1565                 bioq_insert_head(&sc->sc_queue, bp);
1566 #if 0
1567                 /*
1568                  * wakeup() is not needed, because this function is called from
1569                  * the worker thread.
1570                  */
1571                 wakeup(&sc->sc_queue);
1572 #endif
1573                 mtx_unlock(&sc->sc_queue_mtx);
1574         }
1575 }
1576
1577 /*
1578  * Releases delayed sync requests which don't collide anymore with regular
1579  * requests.
1580  */
1581 static void
1582 g_raid3_sync_release(struct g_raid3_softc *sc)
1583 {
1584         struct bio *bp, *bp2;
1585
1586         TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1587                 if (g_raid3_regular_collision(sc, bp))
1588                         continue;
1589                 bioq_remove(&sc->sc_sync_delayed, bp);
1590                 G_RAID3_LOGREQ(2, bp,
1591                     "Releasing delayed synchronization request.");
1592                 g_io_request(bp, bp->bio_from);
1593         }
1594 }
1595
1596 /*
1597  * Handle synchronization requests.
1598  * Every synchronization request is two-steps process: first, READ request is
1599  * send to active provider and then WRITE request (with read data) to the provider
1600  * beeing synchronized. When WRITE is finished, new synchronization request is
1601  * send.
1602  */
1603 static void
1604 g_raid3_sync_request(struct bio *bp)
1605 {
1606         struct g_raid3_softc *sc;
1607         struct g_raid3_disk *disk;
1608
1609         bp->bio_from->index--;
1610         sc = bp->bio_from->geom->softc;
1611         disk = bp->bio_from->private;
1612         if (disk == NULL) {
1613                 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1614                 g_topology_lock();
1615                 g_raid3_kill_consumer(sc, bp->bio_from);
1616                 g_topology_unlock();
1617                 free(bp->bio_data, M_RAID3);
1618                 g_destroy_bio(bp);
1619                 sx_xlock(&sc->sc_lock);
1620                 return;
1621         }
1622
1623         /*
1624          * Synchronization request.
1625          */
1626         switch (bp->bio_cmd) {
1627         case BIO_READ:
1628             {
1629                 struct g_consumer *cp;
1630                 u_char *dst, *src;
1631                 off_t left;
1632                 u_int atom;
1633
1634                 if (bp->bio_error != 0) {
1635                         G_RAID3_LOGREQ(0, bp,
1636                             "Synchronization request failed (error=%d).",
1637                             bp->bio_error);
1638                         g_destroy_bio(bp);
1639                         return;
1640                 }
1641                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1642                 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1643                 dst = src = bp->bio_data;
1644                 if (disk->d_no == sc->sc_ndisks - 1) {
1645                         u_int n;
1646
1647                         /* Parity component. */
1648                         for (left = bp->bio_length; left > 0;
1649                             left -= sc->sc_sectorsize) {
1650                                 bcopy(src, dst, atom);
1651                                 src += atom;
1652                                 for (n = 1; n < sc->sc_ndisks - 1; n++) {
1653                                         g_raid3_xor(src, dst, atom);
1654                                         src += atom;
1655                                 }
1656                                 dst += atom;
1657                         }
1658                 } else {
1659                         /* Regular component. */
1660                         src += atom * disk->d_no;
1661                         for (left = bp->bio_length; left > 0;
1662                             left -= sc->sc_sectorsize) {
1663                                 bcopy(src, dst, atom);
1664                                 src += sc->sc_sectorsize;
1665                                 dst += atom;
1666                         }
1667                 }
1668                 bp->bio_driver1 = bp->bio_driver2 = NULL;
1669                 bp->bio_pflags = 0;
1670                 bp->bio_offset /= sc->sc_ndisks - 1;
1671                 bp->bio_length /= sc->sc_ndisks - 1;
1672                 bp->bio_cmd = BIO_WRITE;
1673                 bp->bio_cflags = 0;
1674                 bp->bio_children = bp->bio_inbed = 0;
1675                 cp = disk->d_consumer;
1676                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1677                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1678                     cp->acr, cp->acw, cp->ace));
1679                 cp->index++;
1680                 g_io_request(bp, cp);
1681                 return;
1682             }
1683         case BIO_WRITE:
1684             {
1685                 struct g_raid3_disk_sync *sync;
1686                 off_t boffset, moffset;
1687                 void *data;
1688                 int i;
1689
1690                 if (bp->bio_error != 0) {
1691                         G_RAID3_LOGREQ(0, bp,
1692                             "Synchronization request failed (error=%d).",
1693                             bp->bio_error);
1694                         g_destroy_bio(bp);
1695                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1696                         g_raid3_event_send(disk,
1697                             G_RAID3_DISK_STATE_DISCONNECTED,
1698                             G_RAID3_EVENT_DONTWAIT);
1699                         return;
1700                 }
1701                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1702                 sync = &disk->d_sync;
1703                 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1704                     sync->ds_consumer == NULL ||
1705                     (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1706                         /* Don't send more synchronization requests. */
1707                         sync->ds_inflight--;
1708                         if (sync->ds_bios != NULL) {
1709                                 i = (int)(uintptr_t)bp->bio_caller1;
1710                                 sync->ds_bios[i] = NULL;
1711                         }
1712                         free(bp->bio_data, M_RAID3);
1713                         g_destroy_bio(bp);
1714                         if (sync->ds_inflight > 0)
1715                                 return;
1716                         if (sync->ds_consumer == NULL ||
1717                             (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1718                                 return;
1719                         }
1720                         /*
1721                          * Disk up-to-date, activate it.
1722                          */
1723                         g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1724                             G_RAID3_EVENT_DONTWAIT);
1725                         return;
1726                 }
1727
1728                 /* Send next synchronization request. */
1729                 data = bp->bio_data;
1730                 bzero(bp, sizeof(*bp));
1731                 bp->bio_cmd = BIO_READ;
1732                 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1733                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
1734                 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1735                 bp->bio_done = g_raid3_sync_done;
1736                 bp->bio_data = data;
1737                 bp->bio_from = sync->ds_consumer;
1738                 bp->bio_to = sc->sc_provider;
1739                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1740                 sync->ds_consumer->index++;
1741                 /*
1742                  * Delay the request if it is colliding with a regular request.
1743                  */
1744                 if (g_raid3_regular_collision(sc, bp))
1745                         g_raid3_sync_delay(sc, bp);
1746                 else
1747                         g_io_request(bp, sync->ds_consumer);
1748
1749                 /* Release delayed requests if possible. */
1750                 g_raid3_regular_release(sc);
1751
1752                 /* Find the smallest offset. */
1753                 moffset = sc->sc_mediasize;
1754                 for (i = 0; i < g_raid3_syncreqs; i++) {
1755                         bp = sync->ds_bios[i];
1756                         boffset = bp->bio_offset;
1757                         if (bp->bio_cmd == BIO_WRITE)
1758                                 boffset *= sc->sc_ndisks - 1;
1759                         if (boffset < moffset)
1760                                 moffset = boffset;
1761                 }
1762                 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
1763                         /* Update offset_done on every 100 blocks. */
1764                         sync->ds_offset_done = moffset;
1765                         g_raid3_update_metadata(disk);
1766                 }
1767                 return;
1768             }
1769         default:
1770                 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1771                     bp->bio_cmd, sc->sc_name));
1772                 break;
1773         }
1774 }
1775
1776 static int
1777 g_raid3_register_request(struct bio *pbp)
1778 {
1779         struct g_raid3_softc *sc;
1780         struct g_raid3_disk *disk;
1781         struct g_consumer *cp;
1782         struct bio *cbp, *tmpbp;
1783         off_t offset, length;
1784         u_int n, ndisks;
1785         int round_robin, verify;
1786
1787         ndisks = 0;
1788         sc = pbp->bio_to->geom->softc;
1789         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1790             sc->sc_syncdisk == NULL) {
1791                 g_io_deliver(pbp, EIO);
1792                 return (0);
1793         }
1794         g_raid3_init_bio(pbp);
1795         length = pbp->bio_length / (sc->sc_ndisks - 1);
1796         offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1797         round_robin = verify = 0;
1798         switch (pbp->bio_cmd) {
1799         case BIO_READ:
1800                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1801                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1802                         pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1803                         verify = 1;
1804                         ndisks = sc->sc_ndisks;
1805                 } else {
1806                         verify = 0;
1807                         ndisks = sc->sc_ndisks - 1;
1808                 }
1809                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1810                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1811                         round_robin = 1;
1812                 } else {
1813                         round_robin = 0;
1814                 }
1815                 KASSERT(!round_robin || !verify,
1816                     ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1817                 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1818                 break;
1819         case BIO_WRITE:
1820         case BIO_DELETE:
1821                 /*
1822                  * Delay the request if it is colliding with a synchronization
1823                  * request.
1824                  */
1825                 if (g_raid3_sync_collision(sc, pbp)) {
1826                         g_raid3_regular_delay(sc, pbp);
1827                         return (0);
1828                 }
1829
1830                 if (sc->sc_idle)
1831                         g_raid3_unidle(sc);
1832                 else
1833                         sc->sc_last_write = time_uptime;
1834
1835                 ndisks = sc->sc_ndisks;
1836                 break;
1837         }
1838         for (n = 0; n < ndisks; n++) {
1839                 disk = &sc->sc_disks[n];
1840                 cbp = g_raid3_clone_bio(sc, pbp);
1841                 if (cbp == NULL) {
1842                         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1843                                 g_raid3_destroy_bio(sc, cbp);
1844                         /*
1845                          * To prevent deadlock, we must run back up
1846                          * with the ENOMEM for failed requests of any
1847                          * of our consumers.  Our own sync requests
1848                          * can stick around, as they are finite.
1849                          */
1850                         if ((pbp->bio_cflags &
1851                             G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1852                                 g_io_deliver(pbp, ENOMEM);
1853                                 return (0);
1854                         }
1855                         return (ENOMEM);
1856                 }
1857                 cbp->bio_offset = offset;
1858                 cbp->bio_length = length;
1859                 cbp->bio_done = g_raid3_done;
1860                 switch (pbp->bio_cmd) {
1861                 case BIO_READ:
1862                         if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1863                                 /*
1864                                  * Replace invalid component with the parity
1865                                  * component.
1866                                  */
1867                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1868                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1869                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1870                         } else if (round_robin &&
1871                             disk->d_no == sc->sc_round_robin) {
1872                                 /*
1873                                  * In round-robin mode skip one data component
1874                                  * and use parity component when reading.
1875                                  */
1876                                 pbp->bio_driver2 = disk;
1877                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1878                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1879                                 sc->sc_round_robin++;
1880                                 round_robin = 0;
1881                         } else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1882                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1883                         }
1884                         break;
1885                 case BIO_WRITE:
1886                 case BIO_DELETE:
1887                         if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1888                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1889                                 if (n == ndisks - 1) {
1890                                         /*
1891                                          * Active parity component, mark it as such.
1892                                          */
1893                                         cbp->bio_cflags |=
1894                                             G_RAID3_BIO_CFLAG_PARITY;
1895                                 }
1896                         } else {
1897                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1898                                 if (n == ndisks - 1) {
1899                                         /*
1900                                          * Parity component is not connected,
1901                                          * so destroy its request.
1902                                          */
1903                                         pbp->bio_pflags |=
1904                                             G_RAID3_BIO_PFLAG_NOPARITY;
1905                                         g_raid3_destroy_bio(sc, cbp);
1906                                         cbp = NULL;
1907                                 } else {
1908                                         cbp->bio_cflags |=
1909                                             G_RAID3_BIO_CFLAG_NODISK;
1910                                         disk = NULL;
1911                                 }
1912                         }
1913                         break;
1914                 }
1915                 if (cbp != NULL)
1916                         cbp->bio_caller2 = disk;
1917         }
1918         switch (pbp->bio_cmd) {
1919         case BIO_READ:
1920                 if (round_robin) {
1921                         /*
1922                          * If we are in round-robin mode and 'round_robin' is
1923                          * still 1, it means, that we skipped parity component
1924                          * for this read and must reset sc_round_robin field.
1925                          */
1926                         sc->sc_round_robin = 0;
1927                 }
1928                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1929                         disk = cbp->bio_caller2;
1930                         cp = disk->d_consumer;
1931                         cbp->bio_to = cp->provider;
1932                         G_RAID3_LOGREQ(3, cbp, "Sending request.");
1933                         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1934                             ("Consumer %s not opened (r%dw%de%d).",
1935                             cp->provider->name, cp->acr, cp->acw, cp->ace));
1936                         cp->index++;
1937                         g_io_request(cbp, cp);
1938                 }
1939                 break;
1940         case BIO_WRITE:
1941         case BIO_DELETE:
1942                 /*
1943                  * Put request onto inflight queue, so we can check if new
1944                  * synchronization requests don't collide with it.
1945                  */
1946                 bioq_insert_tail(&sc->sc_inflight, pbp);
1947
1948                 /*
1949                  * Bump syncid on first write.
1950                  */
1951                 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1952                         sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1953                         g_raid3_bump_syncid(sc);
1954                 }
1955                 g_raid3_scatter(pbp);
1956                 break;
1957         }
1958         return (0);
1959 }
1960
1961 static int
1962 g_raid3_can_destroy(struct g_raid3_softc *sc)
1963 {
1964         struct g_geom *gp;
1965         struct g_consumer *cp;
1966
1967         g_topology_assert();
1968         gp = sc->sc_geom;
1969         if (gp->softc == NULL)
1970                 return (1);
1971         LIST_FOREACH(cp, &gp->consumer, consumer) {
1972                 if (g_raid3_is_busy(sc, cp))
1973                         return (0);
1974         }
1975         gp = sc->sc_sync.ds_geom;
1976         LIST_FOREACH(cp, &gp->consumer, consumer) {
1977                 if (g_raid3_is_busy(sc, cp))
1978                         return (0);
1979         }
1980         G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1981             sc->sc_name);
1982         return (1);
1983 }
1984
1985 static int
1986 g_raid3_try_destroy(struct g_raid3_softc *sc)
1987 {
1988
1989         g_topology_assert_not();
1990         sx_assert(&sc->sc_lock, SX_XLOCKED);
1991
1992         if (sc->sc_rootmount != NULL) {
1993                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1994                     sc->sc_rootmount);
1995                 root_mount_rel(sc->sc_rootmount);
1996                 sc->sc_rootmount = NULL;
1997         }
1998
1999         g_topology_lock();
2000         if (!g_raid3_can_destroy(sc)) {
2001                 g_topology_unlock();
2002                 return (0);
2003         }
2004         sc->sc_geom->softc = NULL;
2005         sc->sc_sync.ds_geom->softc = NULL;
2006         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2007                 g_topology_unlock();
2008                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2009                     &sc->sc_worker);
2010                 /* Unlock sc_lock here, as it can be destroyed after wakeup. */
2011                 sx_xunlock(&sc->sc_lock);
2012                 wakeup(&sc->sc_worker);
2013                 sc->sc_worker = NULL;
2014         } else {
2015                 g_topology_unlock();
2016                 g_raid3_destroy_device(sc);
2017                 free(sc->sc_disks, M_RAID3);
2018                 free(sc, M_RAID3);
2019         }
2020         return (1);
2021 }
2022
2023 /*
2024  * Worker thread.
2025  */
2026 static void
2027 g_raid3_worker(void *arg)
2028 {
2029         struct g_raid3_softc *sc;
2030         struct g_raid3_event *ep;
2031         struct bio *bp;
2032         int timeout;
2033
2034         sc = arg;
2035         thread_lock(curthread);
2036         sched_prio(curthread, PRIBIO);
2037         thread_unlock(curthread);
2038
2039         sx_xlock(&sc->sc_lock);
2040         for (;;) {
2041                 G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2042                 /*
2043                  * First take a look at events.
2044                  * This is important to handle events before any I/O requests.
2045                  */
2046                 ep = g_raid3_event_get(sc);
2047                 if (ep != NULL) {
2048                         g_raid3_event_remove(sc, ep);
2049                         if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2050                                 /* Update only device status. */
2051                                 G_RAID3_DEBUG(3,
2052                                     "Running event for device %s.",
2053                                     sc->sc_name);
2054                                 ep->e_error = 0;
2055                                 g_raid3_update_device(sc, 1);
2056                         } else {
2057                                 /* Update disk status. */
2058                                 G_RAID3_DEBUG(3, "Running event for disk %s.",
2059                                      g_raid3_get_diskname(ep->e_disk));
2060                                 ep->e_error = g_raid3_update_disk(ep->e_disk,
2061                                     ep->e_state);
2062                                 if (ep->e_error == 0)
2063                                         g_raid3_update_device(sc, 0);
2064                         }
2065                         if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2066                                 KASSERT(ep->e_error == 0,
2067                                     ("Error cannot be handled."));
2068                                 g_raid3_event_free(ep);
2069                         } else {
2070                                 ep->e_flags |= G_RAID3_EVENT_DONE;
2071                                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2072                                     ep);
2073                                 mtx_lock(&sc->sc_events_mtx);
2074                                 wakeup(ep);
2075                                 mtx_unlock(&sc->sc_events_mtx);
2076                         }
2077                         if ((sc->sc_flags &
2078                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2079                                 if (g_raid3_try_destroy(sc)) {
2080                                         curthread->td_pflags &= ~TDP_GEOM;
2081                                         G_RAID3_DEBUG(1, "Thread exiting.");
2082                                         kproc_exit(0);
2083                                 }
2084                         }
2085                         G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2086                         continue;
2087                 }
2088                 /*
2089                  * Check if we can mark array as CLEAN and if we can't take
2090                  * how much seconds should we wait.
2091                  */
2092                 timeout = g_raid3_idle(sc, -1);
2093                 /*
2094                  * Now I/O requests.
2095                  */
2096                 /* Get first request from the queue. */
2097                 mtx_lock(&sc->sc_queue_mtx);
2098                 bp = bioq_first(&sc->sc_queue);
2099                 if (bp == NULL) {
2100                         if ((sc->sc_flags &
2101                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2102                                 mtx_unlock(&sc->sc_queue_mtx);
2103                                 if (g_raid3_try_destroy(sc)) {
2104                                         curthread->td_pflags &= ~TDP_GEOM;
2105                                         G_RAID3_DEBUG(1, "Thread exiting.");
2106                                         kproc_exit(0);
2107                                 }
2108                                 mtx_lock(&sc->sc_queue_mtx);
2109                         }
2110                         sx_xunlock(&sc->sc_lock);
2111                         /*
2112                          * XXX: We can miss an event here, because an event
2113                          *      can be added without sx-device-lock and without
2114                          *      mtx-queue-lock. Maybe I should just stop using
2115                          *      dedicated mutex for events synchronization and
2116                          *      stick with the queue lock?
2117                          *      The event will hang here until next I/O request
2118                          *      or next event is received.
2119                          */
2120                         MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2121                             timeout * hz);
2122                         sx_xlock(&sc->sc_lock);
2123                         G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2124                         continue;
2125                 }
2126 process:
2127                 bioq_remove(&sc->sc_queue, bp);
2128                 mtx_unlock(&sc->sc_queue_mtx);
2129
2130                 if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2131                     (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2132                         g_raid3_sync_request(bp);       /* READ */
2133                 } else if (bp->bio_to != sc->sc_provider) {
2134                         if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2135                                 g_raid3_regular_request(bp);
2136                         else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2137                                 g_raid3_sync_request(bp);       /* WRITE */
2138                         else {
2139                                 KASSERT(0,
2140                                     ("Invalid request cflags=0x%hhx to=%s.",
2141                                     bp->bio_cflags, bp->bio_to->name));
2142                         }
2143                 } else if (g_raid3_register_request(bp) != 0) {
2144                         mtx_lock(&sc->sc_queue_mtx);
2145                         bioq_insert_head(&sc->sc_queue, bp);
2146                         /*
2147                          * We are short in memory, let see if there are finished
2148                          * request we can free.
2149                          */
2150                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2151                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2152                                         goto process;
2153                         }
2154                         /*
2155                          * No finished regular request, so at least keep
2156                          * synchronization running.
2157                          */
2158                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2159                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2160                                         goto process;
2161                         }
2162                         sx_xunlock(&sc->sc_lock);
2163                         MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2164                             "r3:lowmem", hz / 10);
2165                         sx_xlock(&sc->sc_lock);
2166                 }
2167                 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2168         }
2169 }
2170
2171 static void
2172 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2173 {
2174
2175         sx_assert(&sc->sc_lock, SX_LOCKED);
2176         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2177                 return;
2178         if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2179                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2180                     g_raid3_get_diskname(disk), sc->sc_name);
2181                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2182         } else if (sc->sc_idle &&
2183             (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2184                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2185                     g_raid3_get_diskname(disk), sc->sc_name);
2186                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2187         }
2188 }
2189
2190 static void
2191 g_raid3_sync_start(struct g_raid3_softc *sc)
2192 {
2193         struct g_raid3_disk *disk;
2194         struct g_consumer *cp;
2195         struct bio *bp;
2196         int error;
2197         u_int n;
2198
2199         g_topology_assert_not();
2200         sx_assert(&sc->sc_lock, SX_XLOCKED);
2201
2202         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2203             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2204             sc->sc_state));
2205         KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2206             sc->sc_name, sc->sc_state));
2207         disk = NULL;
2208         for (n = 0; n < sc->sc_ndisks; n++) {
2209                 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2210                         continue;
2211                 disk = &sc->sc_disks[n];
2212                 break;
2213         }
2214         if (disk == NULL)
2215                 return;
2216
2217         sx_xunlock(&sc->sc_lock);
2218         g_topology_lock();
2219         cp = g_new_consumer(sc->sc_sync.ds_geom);
2220         error = g_attach(cp, sc->sc_provider);
2221         KASSERT(error == 0,
2222             ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2223         error = g_access(cp, 1, 0, 0);
2224         KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2225         g_topology_unlock();
2226         sx_xlock(&sc->sc_lock);
2227
2228         G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2229             g_raid3_get_diskname(disk));
2230         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2231                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2232         KASSERT(disk->d_sync.ds_consumer == NULL,
2233             ("Sync consumer already exists (device=%s, disk=%s).",
2234             sc->sc_name, g_raid3_get_diskname(disk)));
2235
2236         disk->d_sync.ds_consumer = cp;
2237         disk->d_sync.ds_consumer->private = disk;
2238         disk->d_sync.ds_consumer->index = 0;
2239         sc->sc_syncdisk = disk;
2240
2241         /*
2242          * Allocate memory for synchronization bios and initialize them.
2243          */
2244         disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2245             M_RAID3, M_WAITOK);
2246         for (n = 0; n < g_raid3_syncreqs; n++) {
2247                 bp = g_alloc_bio();
2248                 disk->d_sync.ds_bios[n] = bp;
2249                 bp->bio_parent = NULL;
2250                 bp->bio_cmd = BIO_READ;
2251                 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
2252                 bp->bio_cflags = 0;
2253                 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2254                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
2255                 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2256                 bp->bio_done = g_raid3_sync_done;
2257                 bp->bio_from = disk->d_sync.ds_consumer;
2258                 bp->bio_to = sc->sc_provider;
2259                 bp->bio_caller1 = (void *)(uintptr_t)n;
2260         }
2261
2262         /* Set the number of in-flight synchronization requests. */
2263         disk->d_sync.ds_inflight = g_raid3_syncreqs;
2264
2265         /*
2266          * Fire off first synchronization requests.
2267          */
2268         for (n = 0; n < g_raid3_syncreqs; n++) {
2269                 bp = disk->d_sync.ds_bios[n];
2270                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2271                 disk->d_sync.ds_consumer->index++;
2272                 /*
2273                  * Delay the request if it is colliding with a regular request.
2274                  */
2275                 if (g_raid3_regular_collision(sc, bp))
2276                         g_raid3_sync_delay(sc, bp);
2277                 else
2278                         g_io_request(bp, disk->d_sync.ds_consumer);
2279         }
2280 }
2281
2282 /*
2283  * Stop synchronization process.
2284  * type: 0 - synchronization finished
2285  *       1 - synchronization stopped
2286  */
2287 static void
2288 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2289 {
2290         struct g_raid3_disk *disk;
2291         struct g_consumer *cp;
2292
2293         g_topology_assert_not();
2294         sx_assert(&sc->sc_lock, SX_LOCKED);
2295
2296         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2297             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2298             sc->sc_state));
2299         disk = sc->sc_syncdisk;
2300         sc->sc_syncdisk = NULL;
2301         KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2302         KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2303             ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2304             g_raid3_disk_state2str(disk->d_state)));
2305         if (disk->d_sync.ds_consumer == NULL)
2306                 return;
2307
2308         if (type == 0) {
2309                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2310                     sc->sc_name, g_raid3_get_diskname(disk));
2311         } else /* if (type == 1) */ {
2312                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2313                     sc->sc_name, g_raid3_get_diskname(disk));
2314         }
2315         free(disk->d_sync.ds_bios, M_RAID3);
2316         disk->d_sync.ds_bios = NULL;
2317         cp = disk->d_sync.ds_consumer;
2318         disk->d_sync.ds_consumer = NULL;
2319         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2320         sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2321         g_topology_lock();
2322         g_raid3_kill_consumer(sc, cp);
2323         g_topology_unlock();
2324         sx_xlock(&sc->sc_lock);
2325 }
2326
2327 static void
2328 g_raid3_launch_provider(struct g_raid3_softc *sc)
2329 {
2330         struct g_provider *pp;
2331         struct g_raid3_disk *disk;
2332         int n;
2333
2334         sx_assert(&sc->sc_lock, SX_LOCKED);
2335
2336         g_topology_lock();
2337         pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2338         pp->mediasize = sc->sc_mediasize;
2339         pp->sectorsize = sc->sc_sectorsize;
2340         pp->stripesize = 0;
2341         pp->stripeoffset = 0;
2342         for (n = 0; n < sc->sc_ndisks; n++) {
2343                 disk = &sc->sc_disks[n];
2344                 if (disk->d_consumer && disk->d_consumer->provider &&
2345                     disk->d_consumer->provider->stripesize > pp->stripesize) {
2346                         pp->stripesize = disk->d_consumer->provider->stripesize;
2347                         pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2348                 }
2349         }
2350         pp->stripesize *= sc->sc_ndisks - 1;
2351         pp->stripeoffset *= sc->sc_ndisks - 1;
2352         sc->sc_provider = pp;
2353         g_error_provider(pp, 0);
2354         g_topology_unlock();
2355         G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2356             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2357
2358         if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2359                 g_raid3_sync_start(sc);
2360 }
2361
2362 static void
2363 g_raid3_destroy_provider(struct g_raid3_softc *sc)
2364 {
2365         struct bio *bp;
2366
2367         g_topology_assert_not();
2368         KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2369             sc->sc_name));
2370
2371         g_topology_lock();
2372         g_error_provider(sc->sc_provider, ENXIO);
2373         mtx_lock(&sc->sc_queue_mtx);
2374         while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2375                 bioq_remove(&sc->sc_queue, bp);
2376                 g_io_deliver(bp, ENXIO);
2377         }
2378         mtx_unlock(&sc->sc_queue_mtx);
2379         G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2380             sc->sc_provider->name);
2381         sc->sc_provider->flags |= G_PF_WITHER;
2382         g_orphan_provider(sc->sc_provider, ENXIO);
2383         g_topology_unlock();
2384         sc->sc_provider = NULL;
2385         if (sc->sc_syncdisk != NULL)
2386                 g_raid3_sync_stop(sc, 1);
2387 }
2388
2389 static void
2390 g_raid3_go(void *arg)
2391 {
2392         struct g_raid3_softc *sc;
2393
2394         sc = arg;
2395         G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2396         g_raid3_event_send(sc, 0,
2397             G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2398 }
2399
2400 static u_int
2401 g_raid3_determine_state(struct g_raid3_disk *disk)
2402 {
2403         struct g_raid3_softc *sc;
2404         u_int state;
2405
2406         sc = disk->d_softc;
2407         if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2408                 if ((disk->d_flags &
2409                     G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2410                         /* Disk does not need synchronization. */
2411                         state = G_RAID3_DISK_STATE_ACTIVE;
2412                 } else {
2413                         if ((sc->sc_flags &
2414                              G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2415                             (disk->d_flags &
2416                              G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2417                                 /*
2418                                  * We can start synchronization from
2419                                  * the stored offset.
2420                                  */
2421                                 state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2422                         } else {
2423                                 state = G_RAID3_DISK_STATE_STALE;
2424                         }
2425                 }
2426         } else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2427                 /*
2428                  * Reset all synchronization data for this disk,
2429                  * because if it even was synchronized, it was
2430                  * synchronized to disks with different syncid.
2431                  */
2432                 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2433                 disk->d_sync.ds_offset = 0;
2434                 disk->d_sync.ds_offset_done = 0;
2435                 disk->d_sync.ds_syncid = sc->sc_syncid;
2436                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2437                     (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2438                         state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2439                 } else {
2440                         state = G_RAID3_DISK_STATE_STALE;
2441                 }
2442         } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2443                 /*
2444                  * Not good, NOT GOOD!
2445                  * It means that device was started on stale disks
2446                  * and more fresh disk just arrive.
2447                  * If there were writes, device is broken, sorry.
2448                  * I think the best choice here is don't touch
2449                  * this disk and inform the user loudly.
2450                  */
2451                 G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2452                     "disk (%s) arrives!! It will not be connected to the "
2453                     "running device.", sc->sc_name,
2454                     g_raid3_get_diskname(disk));
2455                 g_raid3_destroy_disk(disk);
2456                 state = G_RAID3_DISK_STATE_NONE;
2457                 /* Return immediately, because disk was destroyed. */
2458                 return (state);
2459         }
2460         G_RAID3_DEBUG(3, "State for %s disk: %s.",
2461             g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2462         return (state);
2463 }
2464
2465 /*
2466  * Update device state.
2467  */
2468 static void
2469 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2470 {
2471         struct g_raid3_disk *disk;
2472         u_int state;
2473
2474         sx_assert(&sc->sc_lock, SX_XLOCKED);
2475
2476         switch (sc->sc_state) {
2477         case G_RAID3_DEVICE_STATE_STARTING:
2478             {
2479                 u_int n, ndirty, ndisks, genid, syncid;
2480
2481                 KASSERT(sc->sc_provider == NULL,
2482                     ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2483                 /*
2484                  * Are we ready? We are, if all disks are connected or
2485                  * one disk is missing and 'force' is true.
2486                  */
2487                 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2488                         if (!force)
2489                                 callout_drain(&sc->sc_callout);
2490                 } else {
2491                         if (force) {
2492                                 /*
2493                                  * Timeout expired, so destroy device.
2494                                  */
2495                                 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2496                                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2497                                     __LINE__, sc->sc_rootmount);
2498                                 root_mount_rel(sc->sc_rootmount);
2499                                 sc->sc_rootmount = NULL;
2500                         }
2501                         return;
2502                 }
2503
2504                 /*
2505                  * Find the biggest genid.
2506                  */
2507                 genid = 0;
2508                 for (n = 0; n < sc->sc_ndisks; n++) {
2509                         disk = &sc->sc_disks[n];
2510                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2511                                 continue;
2512                         if (disk->d_genid > genid)
2513                                 genid = disk->d_genid;
2514                 }
2515                 sc->sc_genid = genid;
2516                 /*
2517                  * Remove all disks without the biggest genid.
2518                  */
2519                 for (n = 0; n < sc->sc_ndisks; n++) {
2520                         disk = &sc->sc_disks[n];
2521                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2522                                 continue;
2523                         if (disk->d_genid < genid) {
2524                                 G_RAID3_DEBUG(0,
2525                                     "Component %s (device %s) broken, skipping.",
2526                                     g_raid3_get_diskname(disk), sc->sc_name);
2527                                 g_raid3_destroy_disk(disk);
2528                         }
2529                 }
2530
2531                 /*
2532                  * There must be at least 'sc->sc_ndisks - 1' components
2533                  * with the same syncid and without SYNCHRONIZING flag.
2534                  */
2535
2536                 /*
2537                  * Find the biggest syncid, number of valid components and
2538                  * number of dirty components.
2539                  */
2540                 ndirty = ndisks = syncid = 0;
2541                 for (n = 0; n < sc->sc_ndisks; n++) {
2542                         disk = &sc->sc_disks[n];
2543                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2544                                 continue;
2545                         if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2546                                 ndirty++;
2547                         if (disk->d_sync.ds_syncid > syncid) {
2548                                 syncid = disk->d_sync.ds_syncid;
2549                                 ndisks = 0;
2550                         } else if (disk->d_sync.ds_syncid < syncid) {
2551                                 continue;
2552                         }
2553                         if ((disk->d_flags &
2554                             G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2555                                 continue;
2556                         }
2557                         ndisks++;
2558                 }
2559                 /*
2560                  * Do we have enough valid components?
2561                  */
2562                 if (ndisks + 1 < sc->sc_ndisks) {
2563                         G_RAID3_DEBUG(0,
2564                             "Device %s is broken, too few valid components.",
2565                             sc->sc_name);
2566                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2567                         return;
2568                 }
2569                 /*
2570                  * If there is one DIRTY component and all disks are present,
2571                  * mark it for synchronization. If there is more than one DIRTY
2572                  * component, mark parity component for synchronization.
2573                  */
2574                 if (ndisks == sc->sc_ndisks && ndirty == 1) {
2575                         for (n = 0; n < sc->sc_ndisks; n++) {
2576                                 disk = &sc->sc_disks[n];
2577                                 if ((disk->d_flags &
2578                                     G_RAID3_DISK_FLAG_DIRTY) == 0) {
2579                                         continue;
2580                                 }
2581                                 disk->d_flags |=
2582                                     G_RAID3_DISK_FLAG_SYNCHRONIZING;
2583                         }
2584                 } else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2585                         disk = &sc->sc_disks[sc->sc_ndisks - 1];
2586                         disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2587                 }
2588
2589                 sc->sc_syncid = syncid;
2590                 if (force) {
2591                         /* Remember to bump syncid on first write. */
2592                         sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2593                 }
2594                 if (ndisks == sc->sc_ndisks)
2595                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2596                 else /* if (ndisks == sc->sc_ndisks - 1) */
2597                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2598                 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2599                     sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2600                     g_raid3_device_state2str(state));
2601                 sc->sc_state = state;
2602                 for (n = 0; n < sc->sc_ndisks; n++) {
2603                         disk = &sc->sc_disks[n];
2604                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2605                                 continue;
2606                         state = g_raid3_determine_state(disk);
2607                         g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2608                         if (state == G_RAID3_DISK_STATE_STALE)
2609                                 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2610                 }
2611                 break;
2612             }
2613         case G_RAID3_DEVICE_STATE_DEGRADED:
2614                 /*
2615                  * Genid need to be bumped immediately, so do it here.
2616                  */
2617                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2618                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2619                         g_raid3_bump_genid(sc);
2620                 }
2621
2622                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2623                         return;
2624                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2625                     sc->sc_ndisks - 1) {
2626                         if (sc->sc_provider != NULL)
2627                                 g_raid3_destroy_provider(sc);
2628                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2629                         return;
2630                 }
2631                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2632                     sc->sc_ndisks) {
2633                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2634                         G_RAID3_DEBUG(1,
2635                             "Device %s state changed from %s to %s.",
2636                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2637                             g_raid3_device_state2str(state));
2638                         sc->sc_state = state;
2639                 }
2640                 if (sc->sc_provider == NULL)
2641                         g_raid3_launch_provider(sc);
2642                 if (sc->sc_rootmount != NULL) {
2643                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2644                             sc->sc_rootmount);
2645                         root_mount_rel(sc->sc_rootmount);
2646                         sc->sc_rootmount = NULL;
2647                 }
2648                 break;
2649         case G_RAID3_DEVICE_STATE_COMPLETE:
2650                 /*
2651                  * Genid need to be bumped immediately, so do it here.
2652                  */
2653                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2654                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2655                         g_raid3_bump_genid(sc);
2656                 }
2657
2658                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2659                         return;
2660                 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2661                     sc->sc_ndisks - 1,
2662                     ("Too few ACTIVE components in COMPLETE state (device %s).",
2663                     sc->sc_name));
2664                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2665                     sc->sc_ndisks - 1) {
2666                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2667                         G_RAID3_DEBUG(1,
2668                             "Device %s state changed from %s to %s.",
2669                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2670                             g_raid3_device_state2str(state));
2671                         sc->sc_state = state;
2672                 }
2673                 if (sc->sc_provider == NULL)
2674                         g_raid3_launch_provider(sc);
2675                 if (sc->sc_rootmount != NULL) {
2676                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2677                             sc->sc_rootmount);
2678                         root_mount_rel(sc->sc_rootmount);
2679                         sc->sc_rootmount = NULL;
2680                 }
2681                 break;
2682         default:
2683                 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2684                     g_raid3_device_state2str(sc->sc_state)));
2685                 break;
2686         }
2687 }
2688
2689 /*
2690  * Update disk state and device state if needed.
2691  */
2692 #define DISK_STATE_CHANGED()    G_RAID3_DEBUG(1,                        \
2693         "Disk %s state changed from %s to %s (device %s).",             \
2694         g_raid3_get_diskname(disk),                                     \
2695         g_raid3_disk_state2str(disk->d_state),                          \
2696         g_raid3_disk_state2str(state), sc->sc_name)
2697 static int
2698 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2699 {
2700         struct g_raid3_softc *sc;
2701
2702         sc = disk->d_softc;
2703         sx_assert(&sc->sc_lock, SX_XLOCKED);
2704
2705 again:
2706         G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2707             g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2708             g_raid3_disk_state2str(state));
2709         switch (state) {
2710         case G_RAID3_DISK_STATE_NEW:
2711                 /*
2712                  * Possible scenarios:
2713                  * 1. New disk arrive.
2714                  */
2715                 /* Previous state should be NONE. */
2716                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2717                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2718                     g_raid3_disk_state2str(disk->d_state)));
2719                 DISK_STATE_CHANGED();
2720
2721                 disk->d_state = state;
2722                 G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2723                     sc->sc_name, g_raid3_get_diskname(disk));
2724                 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2725                         break;
2726                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2727                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2728                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2729                     g_raid3_device_state2str(sc->sc_state),
2730                     g_raid3_get_diskname(disk),
2731                     g_raid3_disk_state2str(disk->d_state)));
2732                 state = g_raid3_determine_state(disk);
2733                 if (state != G_RAID3_DISK_STATE_NONE)
2734                         goto again;
2735                 break;
2736         case G_RAID3_DISK_STATE_ACTIVE:
2737                 /*
2738                  * Possible scenarios:
2739                  * 1. New disk does not need synchronization.
2740                  * 2. Synchronization process finished successfully.
2741                  */
2742                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2743                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2744                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2745                     g_raid3_device_state2str(sc->sc_state),
2746                     g_raid3_get_diskname(disk),
2747                     g_raid3_disk_state2str(disk->d_state)));
2748                 /* Previous state should be NEW or SYNCHRONIZING. */
2749                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2750                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2751                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2752                     g_raid3_disk_state2str(disk->d_state)));
2753                 DISK_STATE_CHANGED();
2754
2755                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2756                         disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2757                         disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2758                         g_raid3_sync_stop(sc, 0);
2759                 }
2760                 disk->d_state = state;
2761                 disk->d_sync.ds_offset = 0;
2762                 disk->d_sync.ds_offset_done = 0;
2763                 g_raid3_update_idle(sc, disk);
2764                 g_raid3_update_metadata(disk);
2765                 G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2766                     sc->sc_name, g_raid3_get_diskname(disk));
2767                 break;
2768         case G_RAID3_DISK_STATE_STALE:
2769                 /*
2770                  * Possible scenarios:
2771                  * 1. Stale disk was connected.
2772                  */
2773                 /* Previous state should be NEW. */
2774                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2775                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2776                     g_raid3_disk_state2str(disk->d_state)));
2777                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2778                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2779                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2780                     g_raid3_device_state2str(sc->sc_state),
2781                     g_raid3_get_diskname(disk),
2782                     g_raid3_disk_state2str(disk->d_state)));
2783                 /*
2784                  * STALE state is only possible if device is marked
2785                  * NOAUTOSYNC.
2786                  */
2787                 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2788                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2789                     g_raid3_device_state2str(sc->sc_state),
2790                     g_raid3_get_diskname(disk),
2791                     g_raid3_disk_state2str(disk->d_state)));
2792                 DISK_STATE_CHANGED();
2793
2794                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2795                 disk->d_state = state;
2796                 g_raid3_update_metadata(disk);
2797                 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2798                     sc->sc_name, g_raid3_get_diskname(disk));
2799                 break;
2800         case G_RAID3_DISK_STATE_SYNCHRONIZING:
2801                 /*
2802                  * Possible scenarios:
2803                  * 1. Disk which needs synchronization was connected.
2804                  */
2805                 /* Previous state should be NEW. */
2806                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2807                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2808                     g_raid3_disk_state2str(disk->d_state)));
2809                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2810                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2811                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2812                     g_raid3_device_state2str(sc->sc_state),
2813                     g_raid3_get_diskname(disk),
2814                     g_raid3_disk_state2str(disk->d_state)));
2815                 DISK_STATE_CHANGED();
2816
2817                 if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2818                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2819                 disk->d_state = state;
2820                 if (sc->sc_provider != NULL) {
2821                         g_raid3_sync_start(sc);
2822                         g_raid3_update_metadata(disk);
2823                 }
2824                 break;
2825         case G_RAID3_DISK_STATE_DISCONNECTED:
2826                 /*
2827                  * Possible scenarios:
2828                  * 1. Device wasn't running yet, but disk disappear.
2829                  * 2. Disk was active and disapppear.
2830                  * 3. Disk disappear during synchronization process.
2831                  */
2832                 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2833                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2834                         /*
2835                          * Previous state should be ACTIVE, STALE or
2836                          * SYNCHRONIZING.
2837                          */
2838                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2839                             disk->d_state == G_RAID3_DISK_STATE_STALE ||
2840                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2841                             ("Wrong disk state (%s, %s).",
2842                             g_raid3_get_diskname(disk),
2843                             g_raid3_disk_state2str(disk->d_state)));
2844                 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2845                         /* Previous state should be NEW. */
2846                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2847                             ("Wrong disk state (%s, %s).",
2848                             g_raid3_get_diskname(disk),
2849                             g_raid3_disk_state2str(disk->d_state)));
2850                         /*
2851                          * Reset bumping syncid if disk disappeared in STARTING
2852                          * state.
2853                          */
2854                         if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2855                                 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2856 #ifdef  INVARIANTS
2857                 } else {
2858                         KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2859                             sc->sc_name,
2860                             g_raid3_device_state2str(sc->sc_state),
2861                             g_raid3_get_diskname(disk),
2862                             g_raid3_disk_state2str(disk->d_state)));
2863 #endif
2864                 }
2865                 DISK_STATE_CHANGED();
2866                 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2867                     sc->sc_name, g_raid3_get_diskname(disk));
2868
2869                 g_raid3_destroy_disk(disk);
2870                 break;
2871         default:
2872                 KASSERT(1 == 0, ("Unknown state (%u).", state));
2873                 break;
2874         }
2875         return (0);
2876 }
2877 #undef  DISK_STATE_CHANGED
2878
2879 int
2880 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2881 {
2882         struct g_provider *pp;
2883         u_char *buf;
2884         int error;
2885
2886         g_topology_assert();
2887
2888         error = g_access(cp, 1, 0, 0);
2889         if (error != 0)
2890                 return (error);
2891         pp = cp->provider;
2892         g_topology_unlock();
2893         /* Metadata are stored on last sector. */
2894         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2895             &error);
2896         g_topology_lock();
2897         g_access(cp, -1, 0, 0);
2898         if (buf == NULL) {
2899                 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2900                     cp->provider->name, error);
2901                 return (error);
2902         }
2903
2904         /* Decode metadata. */
2905         error = raid3_metadata_decode(buf, md);
2906         g_free(buf);
2907         if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2908                 return (EINVAL);
2909         if (md->md_version > G_RAID3_VERSION) {
2910                 G_RAID3_DEBUG(0,
2911                     "Kernel module is too old to handle metadata from %s.",
2912                     cp->provider->name);
2913                 return (EINVAL);
2914         }
2915         if (error != 0) {
2916                 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2917                     cp->provider->name);
2918                 return (error);
2919         }
2920         if (md->md_sectorsize > MAXPHYS) {
2921                 G_RAID3_DEBUG(0, "The blocksize is too big.");
2922                 return (EINVAL);
2923         }
2924
2925         return (0);
2926 }
2927
2928 static int
2929 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2930     struct g_raid3_metadata *md)
2931 {
2932
2933         if (md->md_no >= sc->sc_ndisks) {
2934                 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2935                     pp->name, md->md_no);
2936                 return (EINVAL);
2937         }
2938         if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2939                 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2940                     pp->name, md->md_no);
2941                 return (EEXIST);
2942         }
2943         if (md->md_all != sc->sc_ndisks) {
2944                 G_RAID3_DEBUG(1,
2945                     "Invalid '%s' field on disk %s (device %s), skipping.",
2946                     "md_all", pp->name, sc->sc_name);
2947                 return (EINVAL);
2948         }
2949         if ((md->md_mediasize % md->md_sectorsize) != 0) {
2950                 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2951                     "0) on disk %s (device %s), skipping.", pp->name,
2952                     sc->sc_name);
2953                 return (EINVAL);
2954         }
2955         if (md->md_mediasize != sc->sc_mediasize) {
2956                 G_RAID3_DEBUG(1,
2957                     "Invalid '%s' field on disk %s (device %s), skipping.",
2958                     "md_mediasize", pp->name, sc->sc_name);
2959                 return (EINVAL);
2960         }
2961         if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2962                 G_RAID3_DEBUG(1,
2963                     "Invalid '%s' field on disk %s (device %s), skipping.",
2964                     "md_mediasize", pp->name, sc->sc_name);
2965                 return (EINVAL);
2966         }
2967         if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2968                 G_RAID3_DEBUG(1,
2969                     "Invalid size of disk %s (device %s), skipping.", pp->name,
2970                     sc->sc_name);
2971                 return (EINVAL);
2972         }
2973         if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2974                 G_RAID3_DEBUG(1,
2975                     "Invalid '%s' field on disk %s (device %s), skipping.",
2976                     "md_sectorsize", pp->name, sc->sc_name);
2977                 return (EINVAL);
2978         }
2979         if (md->md_sectorsize != sc->sc_sectorsize) {
2980                 G_RAID3_DEBUG(1,
2981                     "Invalid '%s' field on disk %s (device %s), skipping.",
2982                     "md_sectorsize", pp->name, sc->sc_name);
2983                 return (EINVAL);
2984         }
2985         if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2986                 G_RAID3_DEBUG(1,
2987                     "Invalid sector size of disk %s (device %s), skipping.",
2988                     pp->name, sc->sc_name);
2989                 return (EINVAL);
2990         }
2991         if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2992                 G_RAID3_DEBUG(1,
2993                     "Invalid device flags on disk %s (device %s), skipping.",
2994                     pp->name, sc->sc_name);
2995                 return (EINVAL);
2996         }
2997         if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2998             (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2999                 /*
3000                  * VERIFY and ROUND-ROBIN options are mutally exclusive.
3001                  */
3002                 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
3003                     "disk %s (device %s), skipping.", pp->name, sc->sc_name);
3004                 return (EINVAL);
3005         }
3006         if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
3007                 G_RAID3_DEBUG(1,
3008                     "Invalid disk flags on disk %s (device %s), skipping.",
3009                     pp->name, sc->sc_name);
3010                 return (EINVAL);
3011         }
3012         return (0);
3013 }
3014
3015 int
3016 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3017     struct g_raid3_metadata *md)
3018 {
3019         struct g_raid3_disk *disk;
3020         int error;
3021
3022         g_topology_assert_not();
3023         G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3024
3025         error = g_raid3_check_metadata(sc, pp, md);
3026         if (error != 0)
3027                 return (error);
3028         if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3029             md->md_genid < sc->sc_genid) {
3030                 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3031                     pp->name, sc->sc_name);
3032                 return (EINVAL);
3033         }
3034         disk = g_raid3_init_disk(sc, pp, md, &error);
3035         if (disk == NULL)
3036                 return (error);
3037         error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3038             G_RAID3_EVENT_WAIT);
3039         if (error != 0)
3040                 return (error);
3041         if (md->md_version < G_RAID3_VERSION) {
3042                 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3043                     pp->name, md->md_version, G_RAID3_VERSION);
3044                 g_raid3_update_metadata(disk);
3045         }
3046         return (0);
3047 }
3048
3049 static void
3050 g_raid3_destroy_delayed(void *arg, int flag)
3051 {
3052         struct g_raid3_softc *sc;
3053         int error;
3054
3055         if (flag == EV_CANCEL) {
3056                 G_RAID3_DEBUG(1, "Destroying canceled.");
3057                 return;
3058         }
3059         sc = arg;
3060         g_topology_unlock();
3061         sx_xlock(&sc->sc_lock);
3062         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3063             ("DESTROY flag set on %s.", sc->sc_name));
3064         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3065             ("DESTROYING flag not set on %s.", sc->sc_name));
3066         G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3067         error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3068         if (error != 0) {
3069                 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3070                 sx_xunlock(&sc->sc_lock);
3071         }
3072         g_topology_lock();
3073 }
3074
3075 static int
3076 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3077 {
3078         struct g_raid3_softc *sc;
3079         int dcr, dcw, dce, error = 0;
3080
3081         g_topology_assert();
3082         G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3083             acw, ace);
3084
3085         sc = pp->geom->softc;
3086         if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3087                 return (0);
3088         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3089
3090         dcr = pp->acr + acr;
3091         dcw = pp->acw + acw;
3092         dce = pp->ace + ace;
3093
3094         g_topology_unlock();
3095         sx_xlock(&sc->sc_lock);
3096         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3097             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3098                 if (acr > 0 || acw > 0 || ace > 0)
3099                         error = ENXIO;
3100                 goto end;
3101         }
3102         if (dcw == 0)
3103                 g_raid3_idle(sc, dcw);
3104         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3105                 if (acr > 0 || acw > 0 || ace > 0) {
3106                         error = ENXIO;
3107                         goto end;
3108                 }
3109                 if (dcr == 0 && dcw == 0 && dce == 0) {
3110                         g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3111                             sc, NULL);
3112                 }
3113         }
3114 end:
3115         sx_xunlock(&sc->sc_lock);
3116         g_topology_lock();
3117         return (error);
3118 }
3119
3120 static struct g_geom *
3121 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3122 {
3123         struct g_raid3_softc *sc;
3124         struct g_geom *gp;
3125         int error, timeout;
3126         u_int n;
3127
3128         g_topology_assert();
3129         G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3130
3131         /* One disk is minimum. */
3132         if (md->md_all < 1)
3133                 return (NULL);
3134         /*
3135          * Action geom.
3136          */
3137         gp = g_new_geomf(mp, "%s", md->md_name);
3138         sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3139         sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3140             M_WAITOK | M_ZERO);
3141         gp->start = g_raid3_start;
3142         gp->orphan = g_raid3_orphan;
3143         gp->access = g_raid3_access;
3144         gp->dumpconf = g_raid3_dumpconf;
3145
3146         sc->sc_id = md->md_id;
3147         sc->sc_mediasize = md->md_mediasize;
3148         sc->sc_sectorsize = md->md_sectorsize;
3149         sc->sc_ndisks = md->md_all;
3150         sc->sc_round_robin = 0;
3151         sc->sc_flags = md->md_mflags;
3152         sc->sc_bump_id = 0;
3153         sc->sc_idle = 1;
3154         sc->sc_last_write = time_uptime;
3155         sc->sc_writes = 0;
3156         for (n = 0; n < sc->sc_ndisks; n++) {
3157                 sc->sc_disks[n].d_softc = sc;
3158                 sc->sc_disks[n].d_no = n;
3159                 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3160         }
3161         sx_init(&sc->sc_lock, "graid3:lock");
3162         bioq_init(&sc->sc_queue);
3163         mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3164         bioq_init(&sc->sc_regular_delayed);
3165         bioq_init(&sc->sc_inflight);
3166         bioq_init(&sc->sc_sync_delayed);
3167         TAILQ_INIT(&sc->sc_events);
3168         mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3169         callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
3170         sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3171         gp->softc = sc;
3172         sc->sc_geom = gp;
3173         sc->sc_provider = NULL;
3174         /*
3175          * Synchronization geom.
3176          */
3177         gp = g_new_geomf(mp, "%s.sync", md->md_name);
3178         gp->softc = sc;
3179         gp->orphan = g_raid3_orphan;
3180         sc->sc_sync.ds_geom = gp;
3181
3182         if (!g_raid3_use_malloc) {
3183                 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3184                     65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3185                     UMA_ALIGN_PTR, 0);
3186                 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3187                 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3188                 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3189                     sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3190                 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3191                     16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3192                     UMA_ALIGN_PTR, 0);
3193                 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3194                 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3195                 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3196                     sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3197                 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3198                     4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3199                     UMA_ALIGN_PTR, 0);
3200                 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3201                 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3202                 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3203                     sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3204         }
3205
3206         error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3207             "g_raid3 %s", md->md_name);
3208         if (error != 0) {
3209                 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3210                     sc->sc_name);
3211                 if (!g_raid3_use_malloc) {
3212                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3213                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3214                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3215                 }
3216                 g_destroy_geom(sc->sc_sync.ds_geom);
3217                 mtx_destroy(&sc->sc_events_mtx);
3218                 mtx_destroy(&sc->sc_queue_mtx);
3219                 sx_destroy(&sc->sc_lock);
3220                 g_destroy_geom(sc->sc_geom);
3221                 free(sc->sc_disks, M_RAID3);
3222                 free(sc, M_RAID3);
3223                 return (NULL);
3224         }
3225
3226         G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3227             sc->sc_name, sc->sc_ndisks, sc->sc_id);
3228
3229         sc->sc_rootmount = root_mount_hold("GRAID3");
3230         G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3231
3232         /*
3233          * Run timeout.
3234          */
3235         timeout = atomic_load_acq_int(&g_raid3_timeout);
3236         callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3237         return (sc->sc_geom);
3238 }
3239
3240 int
3241 g_raid3_destroy(struct g_raid3_softc *sc, int how)
3242 {
3243         struct g_provider *pp;
3244
3245         g_topology_assert_not();
3246         if (sc == NULL)
3247                 return (ENXIO);
3248         sx_assert(&sc->sc_lock, SX_XLOCKED);
3249
3250         pp = sc->sc_provider;
3251         if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3252                 switch (how) {
3253                 case G_RAID3_DESTROY_SOFT:
3254                         G_RAID3_DEBUG(1,
3255                             "Device %s is still open (r%dw%de%d).", pp->name,
3256                             pp->acr, pp->acw, pp->ace);
3257                         return (EBUSY);
3258                 case G_RAID3_DESTROY_DELAYED:
3259                         G_RAID3_DEBUG(1,
3260                             "Device %s will be destroyed on last close.",
3261                             pp->name);
3262                         if (sc->sc_syncdisk != NULL)
3263                                 g_raid3_sync_stop(sc, 1);
3264                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3265                         return (EBUSY);
3266                 case G_RAID3_DESTROY_HARD:
3267                         G_RAID3_DEBUG(1, "Device %s is still open, so it "
3268                             "can't be definitely removed.", pp->name);
3269                         break;
3270                 }
3271         }
3272
3273         g_topology_lock();
3274         if (sc->sc_geom->softc == NULL) {
3275                 g_topology_unlock();
3276                 return (0);
3277         }
3278         sc->sc_geom->softc = NULL;
3279         sc->sc_sync.ds_geom->softc = NULL;
3280         g_topology_unlock();
3281
3282         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3283         sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3284         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3285         sx_xunlock(&sc->sc_lock);
3286         mtx_lock(&sc->sc_queue_mtx);
3287         wakeup(sc);
3288         wakeup(&sc->sc_queue);
3289         mtx_unlock(&sc->sc_queue_mtx);
3290         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3291         while (sc->sc_worker != NULL)
3292                 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3293         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3294         sx_xlock(&sc->sc_lock);
3295         g_raid3_destroy_device(sc);
3296         free(sc->sc_disks, M_RAID3);
3297         free(sc, M_RAID3);
3298         return (0);
3299 }
3300
3301 static void
3302 g_raid3_taste_orphan(struct g_consumer *cp)
3303 {
3304
3305         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3306             cp->provider->name));
3307 }
3308
3309 static struct g_geom *
3310 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3311 {
3312         struct g_raid3_metadata md;
3313         struct g_raid3_softc *sc;
3314         struct g_consumer *cp;
3315         struct g_geom *gp;
3316         int error;
3317
3318         g_topology_assert();
3319         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3320         G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3321
3322         gp = g_new_geomf(mp, "raid3:taste");
3323         /* This orphan function should be never called. */
3324         gp->orphan = g_raid3_taste_orphan;
3325         cp = g_new_consumer(gp);
3326         g_attach(cp, pp);
3327         error = g_raid3_read_metadata(cp, &md);
3328         g_detach(cp);
3329         g_destroy_consumer(cp);
3330         g_destroy_geom(gp);
3331         if (error != 0)
3332                 return (NULL);
3333         gp = NULL;
3334
3335         if (md.md_provider[0] != '\0' &&
3336             !g_compare_names(md.md_provider, pp->name))
3337                 return (NULL);
3338         if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3339                 return (NULL);
3340         if (g_raid3_debug >= 2)
3341                 raid3_metadata_dump(&md);
3342
3343         /*
3344          * Let's check if device already exists.
3345          */
3346         sc = NULL;
3347         LIST_FOREACH(gp, &mp->geom, geom) {
3348                 sc = gp->softc;
3349                 if (sc == NULL)
3350                         continue;
3351                 if (sc->sc_sync.ds_geom == gp)
3352                         continue;
3353                 if (strcmp(md.md_name, sc->sc_name) != 0)
3354                         continue;
3355                 if (md.md_id != sc->sc_id) {
3356                         G_RAID3_DEBUG(0, "Device %s already configured.",
3357                             sc->sc_name);
3358                         return (NULL);
3359                 }
3360                 break;
3361         }
3362         if (gp == NULL) {
3363                 gp = g_raid3_create(mp, &md);
3364                 if (gp == NULL) {
3365                         G_RAID3_DEBUG(0, "Cannot create device %s.",
3366                             md.md_name);
3367                         return (NULL);
3368                 }
3369                 sc = gp->softc;
3370         }
3371         G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3372         g_topology_unlock();
3373         sx_xlock(&sc->sc_lock);
3374         error = g_raid3_add_disk(sc, pp, &md);
3375         if (error != 0) {
3376                 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3377                     pp->name, gp->name, error);
3378                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3379                     sc->sc_ndisks) {
3380                         g_cancel_event(sc);
3381                         g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3382                         g_topology_lock();
3383                         return (NULL);
3384                 }
3385                 gp = NULL;
3386         }
3387         sx_xunlock(&sc->sc_lock);
3388         g_topology_lock();
3389         return (gp);
3390 }
3391
3392 static int
3393 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3394     struct g_geom *gp)
3395 {
3396         struct g_raid3_softc *sc;
3397         int error;
3398
3399         g_topology_unlock();
3400         sc = gp->softc;
3401         sx_xlock(&sc->sc_lock);
3402         g_cancel_event(sc);
3403         error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3404         if (error != 0)
3405                 sx_xunlock(&sc->sc_lock);
3406         g_topology_lock();
3407         return (error);
3408 }
3409
3410 static void
3411 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3412     struct g_consumer *cp, struct g_provider *pp)
3413 {
3414         struct g_raid3_softc *sc;
3415
3416         g_topology_assert();
3417
3418         sc = gp->softc;
3419         if (sc == NULL)
3420                 return;
3421         /* Skip synchronization geom. */
3422         if (gp == sc->sc_sync.ds_geom)
3423                 return;
3424         if (pp != NULL) {
3425                 /* Nothing here. */
3426         } else if (cp != NULL) {
3427                 struct g_raid3_disk *disk;
3428
3429                 disk = cp->private;
3430                 if (disk == NULL)
3431                         return;
3432                 g_topology_unlock();
3433                 sx_xlock(&sc->sc_lock);
3434                 sbuf_printf(sb, "%s<Type>", indent);
3435                 if (disk->d_no == sc->sc_ndisks - 1)
3436                         sbuf_printf(sb, "PARITY");
3437                 else
3438                         sbuf_printf(sb, "DATA");
3439                 sbuf_printf(sb, "</Type>\n");
3440                 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3441                     (u_int)disk->d_no);
3442                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3443                         sbuf_printf(sb, "%s<Synchronized>", indent);
3444                         if (disk->d_sync.ds_offset == 0)
3445                                 sbuf_printf(sb, "0%%");
3446                         else {
3447                                 sbuf_printf(sb, "%u%%",
3448                                     (u_int)((disk->d_sync.ds_offset * 100) /
3449                                     (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3450                         }
3451                         sbuf_printf(sb, "</Synchronized>\n");
3452                         if (disk->d_sync.ds_offset > 0) {
3453                                 sbuf_printf(sb, "%s<BytesSynced>%jd"
3454                                     "</BytesSynced>\n", indent,
3455                                     (intmax_t)disk->d_sync.ds_offset);
3456                         }
3457                 }
3458                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3459                     disk->d_sync.ds_syncid);
3460                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3461                 sbuf_printf(sb, "%s<Flags>", indent);
3462                 if (disk->d_flags == 0)
3463                         sbuf_printf(sb, "NONE");
3464                 else {
3465                         int first = 1;
3466
3467 #define ADD_FLAG(flag, name)    do {                                    \
3468         if ((disk->d_flags & (flag)) != 0) {                            \
3469                 if (!first)                                             \
3470                         sbuf_printf(sb, ", ");                          \
3471                 else                                                    \
3472                         first = 0;                                      \
3473                 sbuf_printf(sb, name);                                  \
3474         }                                                               \
3475 } while (0)
3476                         ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3477                         ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3478                         ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3479                             "SYNCHRONIZING");
3480                         ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3481                         ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3482 #undef  ADD_FLAG
3483                 }
3484                 sbuf_printf(sb, "</Flags>\n");
3485                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3486                     g_raid3_disk_state2str(disk->d_state));
3487                 sx_xunlock(&sc->sc_lock);
3488                 g_topology_lock();
3489         } else {
3490                 g_topology_unlock();
3491                 sx_xlock(&sc->sc_lock);
3492                 if (!g_raid3_use_malloc) {
3493                         sbuf_printf(sb,
3494                             "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3495                             sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3496                         sbuf_printf(sb,
3497                             "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3498                             sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3499                         sbuf_printf(sb,
3500                             "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3501                             sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3502                         sbuf_printf(sb,
3503                             "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3504                             sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3505                         sbuf_printf(sb,
3506                             "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3507                             sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3508                         sbuf_printf(sb,
3509                             "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3510                             sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3511                 }
3512                 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3513                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3514                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3515                 sbuf_printf(sb, "%s<Flags>", indent);
3516                 if (sc->sc_flags == 0)
3517                         sbuf_printf(sb, "NONE");
3518                 else {
3519                         int first = 1;
3520
3521 #define ADD_FLAG(flag, name)    do {                                    \
3522         if ((sc->sc_flags & (flag)) != 0) {                             \
3523                 if (!first)                                             \
3524                         sbuf_printf(sb, ", ");                          \
3525                 else                                                    \
3526                         first = 0;                                      \
3527                 sbuf_printf(sb, name);                                  \
3528         }                                                               \
3529 } while (0)
3530                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3531                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3532                         ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3533                             "ROUND-ROBIN");
3534                         ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3535 #undef  ADD_FLAG
3536                 }
3537                 sbuf_printf(sb, "</Flags>\n");
3538                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3539                     sc->sc_ndisks);
3540                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3541                     g_raid3_device_state2str(sc->sc_state));
3542                 sx_xunlock(&sc->sc_lock);
3543                 g_topology_lock();
3544         }
3545 }
3546
3547 static void
3548 g_raid3_shutdown_post_sync(void *arg, int howto)
3549 {
3550         struct g_class *mp;
3551         struct g_geom *gp, *gp2;
3552         struct g_raid3_softc *sc;
3553         int error;
3554
3555         mp = arg;
3556         DROP_GIANT();
3557         g_topology_lock();
3558         g_raid3_shutdown = 1;
3559         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3560                 if ((sc = gp->softc) == NULL)
3561                         continue;
3562                 /* Skip synchronization geom. */
3563                 if (gp == sc->sc_sync.ds_geom)
3564                         continue;
3565                 g_topology_unlock();
3566                 sx_xlock(&sc->sc_lock);
3567                 g_raid3_idle(sc, -1);
3568                 g_cancel_event(sc);
3569                 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3570                 if (error != 0)
3571                         sx_xunlock(&sc->sc_lock);
3572                 g_topology_lock();
3573         }
3574         g_topology_unlock();
3575         PICKUP_GIANT();
3576 }
3577
3578 static void
3579 g_raid3_init(struct g_class *mp)
3580 {
3581
3582         g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
3583             g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
3584         if (g_raid3_post_sync == NULL)
3585                 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3586 }
3587
3588 static void
3589 g_raid3_fini(struct g_class *mp)
3590 {
3591
3592         if (g_raid3_post_sync != NULL)
3593                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
3594 }
3595
3596 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);