]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/kern/kern_tc.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12
13 #include "opt_compat.h"
14 #include "opt_ntp.h"
15
16 #include <sys/param.h>
17 #include <sys/kernel.h>
18 #include <sys/sysctl.h>
19 #include <sys/syslog.h>
20 #include <sys/systm.h>
21 #include <sys/timepps.h>
22 #include <sys/timetc.h>
23 #include <sys/timex.h>
24 #include <sys/vdso.h>
25
26 /*
27  * A large step happens on boot.  This constant detects such steps.
28  * It is relatively small so that ntp_update_second gets called enough
29  * in the typical 'missed a couple of seconds' case, but doesn't loop
30  * forever when the time step is large.
31  */
32 #define LARGE_STEP      200
33
34 /*
35  * Implement a dummy timecounter which we can use until we get a real one
36  * in the air.  This allows the console and other early stuff to use
37  * time services.
38  */
39
40 static u_int
41 dummy_get_timecount(struct timecounter *tc)
42 {
43         static u_int now;
44
45         return (++now);
46 }
47
48 static struct timecounter dummy_timecounter = {
49         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
50 };
51
52 struct timehands {
53         /* These fields must be initialized by the driver. */
54         struct timecounter      *th_counter;
55         int64_t                 th_adjustment;
56         uint64_t                th_scale;
57         u_int                   th_offset_count;
58         struct bintime          th_offset;
59         struct timeval          th_microtime;
60         struct timespec         th_nanotime;
61         /* Fields not to be copied in tc_windup start with th_generation. */
62         volatile u_int          th_generation;
63         struct timehands        *th_next;
64 };
65
66 static struct timehands th0;
67 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
68 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
69 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
70 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
71 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
72 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
73 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
74 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
75 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
76 static struct timehands th0 = {
77         &dummy_timecounter,
78         0,
79         (uint64_t)-1 / 1000000,
80         0,
81         {1, 0},
82         {0, 0},
83         {0, 0},
84         1,
85         &th1
86 };
87
88 static struct timehands *volatile timehands = &th0;
89 struct timecounter *timecounter = &dummy_timecounter;
90 static struct timecounter *timecounters = &dummy_timecounter;
91
92 int tc_min_ticktock_freq = 1;
93
94 volatile time_t time_second = 1;
95 volatile time_t time_uptime = 1;
96
97 struct bintime boottimebin;
98 struct timeval boottime;
99 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
100 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
101     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
102
103 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
104 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
105
106 static int timestepwarnings;
107 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
108     &timestepwarnings, 0, "Log time steps");
109
110 static void tc_windup(void);
111 static void cpu_tick_calibrate(int);
112
113 void dtrace_getnanotime(struct timespec *tsp);
114
115 static int
116 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
117 {
118 #ifdef SCTL_MASK32
119         int tv[2];
120
121         if (req->flags & SCTL_MASK32) {
122                 tv[0] = boottime.tv_sec;
123                 tv[1] = boottime.tv_usec;
124                 return SYSCTL_OUT(req, tv, sizeof(tv));
125         } else
126 #endif
127                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
128 }
129
130 static int
131 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
132 {
133         u_int ncount;
134         struct timecounter *tc = arg1;
135
136         ncount = tc->tc_get_timecount(tc);
137         return sysctl_handle_int(oidp, &ncount, 0, req);
138 }
139
140 static int
141 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
142 {
143         uint64_t freq;
144         struct timecounter *tc = arg1;
145
146         freq = tc->tc_frequency;
147         return sysctl_handle_64(oidp, &freq, 0, req);
148 }
149
150 /*
151  * Return the difference between the timehands' counter value now and what
152  * was when we copied it to the timehands' offset_count.
153  */
154 static __inline u_int
155 tc_delta(struct timehands *th)
156 {
157         struct timecounter *tc;
158
159         tc = th->th_counter;
160         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
161             tc->tc_counter_mask);
162 }
163
164 /*
165  * Functions for reading the time.  We have to loop until we are sure that
166  * the timehands that we operated on was not updated under our feet.  See
167  * the comment in <sys/time.h> for a description of these 12 functions.
168  */
169
170 void
171 binuptime(struct bintime *bt)
172 {
173         struct timehands *th;
174         u_int gen;
175
176         do {
177                 th = timehands;
178                 gen = th->th_generation;
179                 *bt = th->th_offset;
180                 bintime_addx(bt, th->th_scale * tc_delta(th));
181         } while (gen == 0 || gen != th->th_generation);
182 }
183
184 void
185 nanouptime(struct timespec *tsp)
186 {
187         struct bintime bt;
188
189         binuptime(&bt);
190         bintime2timespec(&bt, tsp);
191 }
192
193 void
194 microuptime(struct timeval *tvp)
195 {
196         struct bintime bt;
197
198         binuptime(&bt);
199         bintime2timeval(&bt, tvp);
200 }
201
202 void
203 bintime(struct bintime *bt)
204 {
205
206         binuptime(bt);
207         bintime_add(bt, &boottimebin);
208 }
209
210 void
211 nanotime(struct timespec *tsp)
212 {
213         struct bintime bt;
214
215         bintime(&bt);
216         bintime2timespec(&bt, tsp);
217 }
218
219 void
220 microtime(struct timeval *tvp)
221 {
222         struct bintime bt;
223
224         bintime(&bt);
225         bintime2timeval(&bt, tvp);
226 }
227
228 void
229 getbinuptime(struct bintime *bt)
230 {
231         struct timehands *th;
232         u_int gen;
233
234         do {
235                 th = timehands;
236                 gen = th->th_generation;
237                 *bt = th->th_offset;
238         } while (gen == 0 || gen != th->th_generation);
239 }
240
241 void
242 getnanouptime(struct timespec *tsp)
243 {
244         struct timehands *th;
245         u_int gen;
246
247         do {
248                 th = timehands;
249                 gen = th->th_generation;
250                 bintime2timespec(&th->th_offset, tsp);
251         } while (gen == 0 || gen != th->th_generation);
252 }
253
254 void
255 getmicrouptime(struct timeval *tvp)
256 {
257         struct timehands *th;
258         u_int gen;
259
260         do {
261                 th = timehands;
262                 gen = th->th_generation;
263                 bintime2timeval(&th->th_offset, tvp);
264         } while (gen == 0 || gen != th->th_generation);
265 }
266
267 void
268 getbintime(struct bintime *bt)
269 {
270         struct timehands *th;
271         u_int gen;
272
273         do {
274                 th = timehands;
275                 gen = th->th_generation;
276                 *bt = th->th_offset;
277         } while (gen == 0 || gen != th->th_generation);
278         bintime_add(bt, &boottimebin);
279 }
280
281 void
282 getnanotime(struct timespec *tsp)
283 {
284         struct timehands *th;
285         u_int gen;
286
287         do {
288                 th = timehands;
289                 gen = th->th_generation;
290                 *tsp = th->th_nanotime;
291         } while (gen == 0 || gen != th->th_generation);
292 }
293
294 void
295 getmicrotime(struct timeval *tvp)
296 {
297         struct timehands *th;
298         u_int gen;
299
300         do {
301                 th = timehands;
302                 gen = th->th_generation;
303                 *tvp = th->th_microtime;
304         } while (gen == 0 || gen != th->th_generation);
305 }
306
307 /*
308  * This is a clone of getnanotime and used for walltimestamps.
309  * The dtrace_ prefix prevents fbt from creating probes for
310  * it so walltimestamp can be safely used in all fbt probes.
311  */
312 void
313 dtrace_getnanotime(struct timespec *tsp)
314 {
315         struct timehands *th;
316         u_int gen;
317
318         do {
319                 th = timehands;
320                 gen = th->th_generation;
321                 *tsp = th->th_nanotime;
322         } while (gen == 0 || gen != th->th_generation);
323 }
324
325 /*
326  * Initialize a new timecounter and possibly use it.
327  */
328 void
329 tc_init(struct timecounter *tc)
330 {
331         u_int u;
332         struct sysctl_oid *tc_root;
333
334         u = tc->tc_frequency / tc->tc_counter_mask;
335         /* XXX: We need some margin here, 10% is a guess */
336         u *= 11;
337         u /= 10;
338         if (u > hz && tc->tc_quality >= 0) {
339                 tc->tc_quality = -2000;
340                 if (bootverbose) {
341                         printf("Timecounter \"%s\" frequency %ju Hz",
342                             tc->tc_name, (uintmax_t)tc->tc_frequency);
343                         printf(" -- Insufficient hz, needs at least %u\n", u);
344                 }
345         } else if (tc->tc_quality >= 0 || bootverbose) {
346                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
347                     tc->tc_name, (uintmax_t)tc->tc_frequency,
348                     tc->tc_quality);
349         }
350
351         tc->tc_next = timecounters;
352         timecounters = tc;
353         /*
354          * Set up sysctl tree for this counter.
355          */
356         tc_root = SYSCTL_ADD_NODE(NULL,
357             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
358             CTLFLAG_RW, 0, "timecounter description");
359         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
360             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
361             "mask for implemented bits");
362         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
363             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
364             sysctl_kern_timecounter_get, "IU", "current timecounter value");
365         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
366             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
367              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
368         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
369             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
370             "goodness of time counter");
371         /*
372          * Never automatically use a timecounter with negative quality.
373          * Even though we run on the dummy counter, switching here may be
374          * worse since this timecounter may not be monotonous.
375          */
376         if (tc->tc_quality < 0)
377                 return;
378         if (tc->tc_quality < timecounter->tc_quality)
379                 return;
380         if (tc->tc_quality == timecounter->tc_quality &&
381             tc->tc_frequency < timecounter->tc_frequency)
382                 return;
383         (void)tc->tc_get_timecount(tc);
384         (void)tc->tc_get_timecount(tc);
385         timecounter = tc;
386 }
387
388 /* Report the frequency of the current timecounter. */
389 uint64_t
390 tc_getfrequency(void)
391 {
392
393         return (timehands->th_counter->tc_frequency);
394 }
395
396 /*
397  * Step our concept of UTC.  This is done by modifying our estimate of
398  * when we booted.
399  * XXX: not locked.
400  */
401 void
402 tc_setclock(struct timespec *ts)
403 {
404         struct timespec tbef, taft;
405         struct bintime bt, bt2;
406
407         cpu_tick_calibrate(1);
408         nanotime(&tbef);
409         timespec2bintime(ts, &bt);
410         binuptime(&bt2);
411         bintime_sub(&bt, &bt2);
412         bintime_add(&bt2, &boottimebin);
413         boottimebin = bt;
414         bintime2timeval(&bt, &boottime);
415
416         /* XXX fiddle all the little crinkly bits around the fiords... */
417         tc_windup();
418         nanotime(&taft);
419         if (timestepwarnings) {
420                 log(LOG_INFO,
421                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
422                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
423                     (intmax_t)taft.tv_sec, taft.tv_nsec,
424                     (intmax_t)ts->tv_sec, ts->tv_nsec);
425         }
426         cpu_tick_calibrate(1);
427 }
428
429 /*
430  * Initialize the next struct timehands in the ring and make
431  * it the active timehands.  Along the way we might switch to a different
432  * timecounter and/or do seconds processing in NTP.  Slightly magic.
433  */
434 static void
435 tc_windup(void)
436 {
437         struct bintime bt;
438         struct timehands *th, *tho;
439         uint64_t scale;
440         u_int delta, ncount, ogen;
441         int i;
442         time_t t;
443
444         /*
445          * Make the next timehands a copy of the current one, but do not
446          * overwrite the generation or next pointer.  While we update
447          * the contents, the generation must be zero.
448          */
449         tho = timehands;
450         th = tho->th_next;
451         ogen = th->th_generation;
452         th->th_generation = 0;
453         bcopy(tho, th, offsetof(struct timehands, th_generation));
454
455         /*
456          * Capture a timecounter delta on the current timecounter and if
457          * changing timecounters, a counter value from the new timecounter.
458          * Update the offset fields accordingly.
459          */
460         delta = tc_delta(th);
461         if (th->th_counter != timecounter)
462                 ncount = timecounter->tc_get_timecount(timecounter);
463         else
464                 ncount = 0;
465         th->th_offset_count += delta;
466         th->th_offset_count &= th->th_counter->tc_counter_mask;
467         while (delta > th->th_counter->tc_frequency) {
468                 /* Eat complete unadjusted seconds. */
469                 delta -= th->th_counter->tc_frequency;
470                 th->th_offset.sec++;
471         }
472         if ((delta > th->th_counter->tc_frequency / 2) &&
473             (th->th_scale * delta < ((uint64_t)1 << 63))) {
474                 /* The product th_scale * delta just barely overflows. */
475                 th->th_offset.sec++;
476         }
477         bintime_addx(&th->th_offset, th->th_scale * delta);
478
479         /*
480          * Hardware latching timecounters may not generate interrupts on
481          * PPS events, so instead we poll them.  There is a finite risk that
482          * the hardware might capture a count which is later than the one we
483          * got above, and therefore possibly in the next NTP second which might
484          * have a different rate than the current NTP second.  It doesn't
485          * matter in practice.
486          */
487         if (tho->th_counter->tc_poll_pps)
488                 tho->th_counter->tc_poll_pps(tho->th_counter);
489
490         /*
491          * Deal with NTP second processing.  The for loop normally
492          * iterates at most once, but in extreme situations it might
493          * keep NTP sane if timeouts are not run for several seconds.
494          * At boot, the time step can be large when the TOD hardware
495          * has been read, so on really large steps, we call
496          * ntp_update_second only twice.  We need to call it twice in
497          * case we missed a leap second.
498          */
499         bt = th->th_offset;
500         bintime_add(&bt, &boottimebin);
501         i = bt.sec - tho->th_microtime.tv_sec;
502         if (i > LARGE_STEP)
503                 i = 2;
504         for (; i > 0; i--) {
505                 t = bt.sec;
506                 ntp_update_second(&th->th_adjustment, &bt.sec);
507                 if (bt.sec != t)
508                         boottimebin.sec += bt.sec - t;
509         }
510         /* Update the UTC timestamps used by the get*() functions. */
511         /* XXX shouldn't do this here.  Should force non-`get' versions. */
512         bintime2timeval(&bt, &th->th_microtime);
513         bintime2timespec(&bt, &th->th_nanotime);
514
515         /* Now is a good time to change timecounters. */
516         if (th->th_counter != timecounter) {
517 #ifndef __arm__
518                 if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
519                         cpu_disable_deep_sleep++;
520                 if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
521                         cpu_disable_deep_sleep--;
522 #endif
523                 th->th_counter = timecounter;
524                 th->th_offset_count = ncount;
525                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
526                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
527         }
528
529         /*-
530          * Recalculate the scaling factor.  We want the number of 1/2^64
531          * fractions of a second per period of the hardware counter, taking
532          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
533          * processing provides us with.
534          *
535          * The th_adjustment is nanoseconds per second with 32 bit binary
536          * fraction and we want 64 bit binary fraction of second:
537          *
538          *       x = a * 2^32 / 10^9 = a * 4.294967296
539          *
540          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
541          * we can only multiply by about 850 without overflowing, that
542          * leaves no suitably precise fractions for multiply before divide.
543          *
544          * Divide before multiply with a fraction of 2199/512 results in a
545          * systematic undercompensation of 10PPM of th_adjustment.  On a
546          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
547          *
548          * We happily sacrifice the lowest of the 64 bits of our result
549          * to the goddess of code clarity.
550          *
551          */
552         scale = (uint64_t)1 << 63;
553         scale += (th->th_adjustment / 1024) * 2199;
554         scale /= th->th_counter->tc_frequency;
555         th->th_scale = scale * 2;
556
557         /*
558          * Now that the struct timehands is again consistent, set the new
559          * generation number, making sure to not make it zero.
560          */
561         if (++ogen == 0)
562                 ogen = 1;
563         th->th_generation = ogen;
564
565         /* Go live with the new struct timehands. */
566         time_second = th->th_microtime.tv_sec;
567         time_uptime = th->th_offset.sec;
568         timehands = th;
569         timekeep_push_vdso();
570 }
571
572 /* Report or change the active timecounter hardware. */
573 static int
574 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
575 {
576         char newname[32];
577         struct timecounter *newtc, *tc;
578         int error;
579
580         tc = timecounter;
581         strlcpy(newname, tc->tc_name, sizeof(newname));
582
583         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
584         if (error != 0 || req->newptr == NULL ||
585             strcmp(newname, tc->tc_name) == 0)
586                 return (error);
587         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
588                 if (strcmp(newname, newtc->tc_name) != 0)
589                         continue;
590
591                 /* Warm up new timecounter. */
592                 (void)newtc->tc_get_timecount(newtc);
593                 (void)newtc->tc_get_timecount(newtc);
594
595                 timecounter = newtc;
596                 timekeep_push_vdso();
597                 return (0);
598         }
599         return (EINVAL);
600 }
601
602 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
603     0, 0, sysctl_kern_timecounter_hardware, "A",
604     "Timecounter hardware selected");
605
606
607 /* Report or change the active timecounter hardware. */
608 static int
609 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
610 {
611         char buf[32], *spc;
612         struct timecounter *tc;
613         int error;
614
615         spc = "";
616         error = 0;
617         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
618                 sprintf(buf, "%s%s(%d)",
619                     spc, tc->tc_name, tc->tc_quality);
620                 error = SYSCTL_OUT(req, buf, strlen(buf));
621                 spc = " ";
622         }
623         return (error);
624 }
625
626 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
627     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
628
629 /*
630  * RFC 2783 PPS-API implementation.
631  */
632
633 int
634 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
635 {
636         pps_params_t *app;
637         struct pps_fetch_args *fapi;
638 #ifdef PPS_SYNC
639         struct pps_kcbind_args *kapi;
640 #endif
641
642         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
643         switch (cmd) {
644         case PPS_IOC_CREATE:
645                 return (0);
646         case PPS_IOC_DESTROY:
647                 return (0);
648         case PPS_IOC_SETPARAMS:
649                 app = (pps_params_t *)data;
650                 if (app->mode & ~pps->ppscap)
651                         return (EINVAL);
652                 pps->ppsparam = *app;
653                 return (0);
654         case PPS_IOC_GETPARAMS:
655                 app = (pps_params_t *)data;
656                 *app = pps->ppsparam;
657                 app->api_version = PPS_API_VERS_1;
658                 return (0);
659         case PPS_IOC_GETCAP:
660                 *(int*)data = pps->ppscap;
661                 return (0);
662         case PPS_IOC_FETCH:
663                 fapi = (struct pps_fetch_args *)data;
664                 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
665                         return (EINVAL);
666                 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
667                         return (EOPNOTSUPP);
668                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
669                 fapi->pps_info_buf = pps->ppsinfo;
670                 return (0);
671         case PPS_IOC_KCBIND:
672 #ifdef PPS_SYNC
673                 kapi = (struct pps_kcbind_args *)data;
674                 /* XXX Only root should be able to do this */
675                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
676                         return (EINVAL);
677                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
678                         return (EINVAL);
679                 if (kapi->edge & ~pps->ppscap)
680                         return (EINVAL);
681                 pps->kcmode = kapi->edge;
682                 return (0);
683 #else
684                 return (EOPNOTSUPP);
685 #endif
686         default:
687                 return (ENOIOCTL);
688         }
689 }
690
691 void
692 pps_init(struct pps_state *pps)
693 {
694         pps->ppscap |= PPS_TSFMT_TSPEC;
695         if (pps->ppscap & PPS_CAPTUREASSERT)
696                 pps->ppscap |= PPS_OFFSETASSERT;
697         if (pps->ppscap & PPS_CAPTURECLEAR)
698                 pps->ppscap |= PPS_OFFSETCLEAR;
699 }
700
701 void
702 pps_capture(struct pps_state *pps)
703 {
704         struct timehands *th;
705
706         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
707         th = timehands;
708         pps->capgen = th->th_generation;
709         pps->capth = th;
710         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
711         if (pps->capgen != th->th_generation)
712                 pps->capgen = 0;
713 }
714
715 void
716 pps_event(struct pps_state *pps, int event)
717 {
718         struct bintime bt;
719         struct timespec ts, *tsp, *osp;
720         u_int tcount, *pcount;
721         int foff, fhard;
722         pps_seq_t *pseq;
723
724         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
725         /* If the timecounter was wound up underneath us, bail out. */
726         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
727                 return;
728
729         /* Things would be easier with arrays. */
730         if (event == PPS_CAPTUREASSERT) {
731                 tsp = &pps->ppsinfo.assert_timestamp;
732                 osp = &pps->ppsparam.assert_offset;
733                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
734                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
735                 pcount = &pps->ppscount[0];
736                 pseq = &pps->ppsinfo.assert_sequence;
737         } else {
738                 tsp = &pps->ppsinfo.clear_timestamp;
739                 osp = &pps->ppsparam.clear_offset;
740                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
741                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
742                 pcount = &pps->ppscount[1];
743                 pseq = &pps->ppsinfo.clear_sequence;
744         }
745
746         /*
747          * If the timecounter changed, we cannot compare the count values, so
748          * we have to drop the rest of the PPS-stuff until the next event.
749          */
750         if (pps->ppstc != pps->capth->th_counter) {
751                 pps->ppstc = pps->capth->th_counter;
752                 *pcount = pps->capcount;
753                 pps->ppscount[2] = pps->capcount;
754                 return;
755         }
756
757         /* Convert the count to a timespec. */
758         tcount = pps->capcount - pps->capth->th_offset_count;
759         tcount &= pps->capth->th_counter->tc_counter_mask;
760         bt = pps->capth->th_offset;
761         bintime_addx(&bt, pps->capth->th_scale * tcount);
762         bintime_add(&bt, &boottimebin);
763         bintime2timespec(&bt, &ts);
764
765         /* If the timecounter was wound up underneath us, bail out. */
766         if (pps->capgen != pps->capth->th_generation)
767                 return;
768
769         *pcount = pps->capcount;
770         (*pseq)++;
771         *tsp = ts;
772
773         if (foff) {
774                 timespecadd(tsp, osp);
775                 if (tsp->tv_nsec < 0) {
776                         tsp->tv_nsec += 1000000000;
777                         tsp->tv_sec -= 1;
778                 }
779         }
780 #ifdef PPS_SYNC
781         if (fhard) {
782                 uint64_t scale;
783
784                 /*
785                  * Feed the NTP PLL/FLL.
786                  * The FLL wants to know how many (hardware) nanoseconds
787                  * elapsed since the previous event.
788                  */
789                 tcount = pps->capcount - pps->ppscount[2];
790                 pps->ppscount[2] = pps->capcount;
791                 tcount &= pps->capth->th_counter->tc_counter_mask;
792                 scale = (uint64_t)1 << 63;
793                 scale /= pps->capth->th_counter->tc_frequency;
794                 scale *= 2;
795                 bt.sec = 0;
796                 bt.frac = 0;
797                 bintime_addx(&bt, scale * tcount);
798                 bintime2timespec(&bt, &ts);
799                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
800         }
801 #endif
802 }
803
804 /*
805  * Timecounters need to be updated every so often to prevent the hardware
806  * counter from overflowing.  Updating also recalculates the cached values
807  * used by the get*() family of functions, so their precision depends on
808  * the update frequency.
809  */
810
811 static int tc_tick;
812 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
813     "Approximate number of hardclock ticks in a millisecond");
814
815 void
816 tc_ticktock(int cnt)
817 {
818         static int count;
819
820         count += cnt;
821         if (count < tc_tick)
822                 return;
823         count = 0;
824         tc_windup();
825 }
826
827 static void
828 inittimecounter(void *dummy)
829 {
830         u_int p;
831
832         /*
833          * Set the initial timeout to
834          * max(1, <approx. number of hardclock ticks in a millisecond>).
835          * People should probably not use the sysctl to set the timeout
836          * to smaller than its inital value, since that value is the
837          * smallest reasonable one.  If they want better timestamps they
838          * should use the non-"get"* functions.
839          */
840         if (hz > 1000)
841                 tc_tick = (hz + 500) / 1000;
842         else
843                 tc_tick = 1;
844         p = (tc_tick * 1000000) / hz;
845         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
846
847         /* warm up new timecounter (again) and get rolling. */
848         (void)timecounter->tc_get_timecount(timecounter);
849         (void)timecounter->tc_get_timecount(timecounter);
850         tc_windup();
851 }
852
853 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
854
855 /* Cpu tick handling -------------------------------------------------*/
856
857 static int cpu_tick_variable;
858 static uint64_t cpu_tick_frequency;
859
860 static uint64_t
861 tc_cpu_ticks(void)
862 {
863         static uint64_t base;
864         static unsigned last;
865         unsigned u;
866         struct timecounter *tc;
867
868         tc = timehands->th_counter;
869         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
870         if (u < last)
871                 base += (uint64_t)tc->tc_counter_mask + 1;
872         last = u;
873         return (u + base);
874 }
875
876 void
877 cpu_tick_calibration(void)
878 {
879         static time_t last_calib;
880
881         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
882                 cpu_tick_calibrate(0);
883                 last_calib = time_uptime;
884         }
885 }
886
887 /*
888  * This function gets called every 16 seconds on only one designated
889  * CPU in the system from hardclock() via cpu_tick_calibration()().
890  *
891  * Whenever the real time clock is stepped we get called with reset=1
892  * to make sure we handle suspend/resume and similar events correctly.
893  */
894
895 static void
896 cpu_tick_calibrate(int reset)
897 {
898         static uint64_t c_last;
899         uint64_t c_this, c_delta;
900         static struct bintime  t_last;
901         struct bintime t_this, t_delta;
902         uint32_t divi;
903
904         if (reset) {
905                 /* The clock was stepped, abort & reset */
906                 t_last.sec = 0;
907                 return;
908         }
909
910         /* we don't calibrate fixed rate cputicks */
911         if (!cpu_tick_variable)
912                 return;
913
914         getbinuptime(&t_this);
915         c_this = cpu_ticks();
916         if (t_last.sec != 0) {
917                 c_delta = c_this - c_last;
918                 t_delta = t_this;
919                 bintime_sub(&t_delta, &t_last);
920                 /*
921                  * Headroom:
922                  *      2^(64-20) / 16[s] =
923                  *      2^(44) / 16[s] =
924                  *      17.592.186.044.416 / 16 =
925                  *      1.099.511.627.776 [Hz]
926                  */
927                 divi = t_delta.sec << 20;
928                 divi |= t_delta.frac >> (64 - 20);
929                 c_delta <<= 20;
930                 c_delta /= divi;
931                 if (c_delta > cpu_tick_frequency) {
932                         if (0 && bootverbose)
933                                 printf("cpu_tick increased to %ju Hz\n",
934                                     c_delta);
935                         cpu_tick_frequency = c_delta;
936                 }
937         }
938         c_last = c_this;
939         t_last = t_this;
940 }
941
942 void
943 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
944 {
945
946         if (func == NULL) {
947                 cpu_ticks = tc_cpu_ticks;
948         } else {
949                 cpu_tick_frequency = freq;
950                 cpu_tick_variable = var;
951                 cpu_ticks = func;
952         }
953 }
954
955 uint64_t
956 cpu_tickrate(void)
957 {
958
959         if (cpu_ticks == tc_cpu_ticks) 
960                 return (tc_getfrequency());
961         return (cpu_tick_frequency);
962 }
963
964 /*
965  * We need to be slightly careful converting cputicks to microseconds.
966  * There is plenty of margin in 64 bits of microseconds (half a million
967  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
968  * before divide conversion (to retain precision) we find that the
969  * margin shrinks to 1.5 hours (one millionth of 146y).
970  * With a three prong approach we never lose significant bits, no
971  * matter what the cputick rate and length of timeinterval is.
972  */
973
974 uint64_t
975 cputick2usec(uint64_t tick)
976 {
977
978         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
979                 return (tick / (cpu_tickrate() / 1000000LL));
980         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
981                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
982         else
983                 return ((tick * 1000000LL) / cpu_tickrate());
984 }
985
986 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
987
988 static int vdso_th_enable = 1;
989 static int
990 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
991 {
992         int old_vdso_th_enable, error;
993
994         old_vdso_th_enable = vdso_th_enable;
995         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
996         if (error != 0)
997                 return (error);
998         vdso_th_enable = old_vdso_th_enable;
999         timekeep_push_vdso();
1000         return (0);
1001 }
1002 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1003     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1004     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1005
1006 uint32_t
1007 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
1008 {
1009         struct timehands *th;
1010         uint32_t enabled;
1011
1012         th = timehands;
1013         vdso_th->th_algo = VDSO_TH_ALGO_1;
1014         vdso_th->th_scale = th->th_scale;
1015         vdso_th->th_offset_count = th->th_offset_count;
1016         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
1017         vdso_th->th_offset = th->th_offset;
1018         vdso_th->th_boottime = boottimebin;
1019         enabled = cpu_fill_vdso_timehands(vdso_th);
1020         if (!vdso_th_enable)
1021                 enabled = 0;
1022         return (enabled);
1023 }
1024
1025 #ifdef COMPAT_FREEBSD32
1026 uint32_t
1027 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
1028 {
1029         struct timehands *th;
1030         uint32_t enabled;
1031
1032         th = timehands;
1033         vdso_th32->th_algo = VDSO_TH_ALGO_1;
1034         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
1035         vdso_th32->th_offset_count = th->th_offset_count;
1036         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
1037         vdso_th32->th_offset.sec = th->th_offset.sec;
1038         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
1039         vdso_th32->th_boottime.sec = boottimebin.sec;
1040         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
1041         enabled = cpu_fill_vdso_timehands32(vdso_th32);
1042         if (!vdso_th_enable)
1043                 enabled = 0;
1044         return (enabled);
1045 }
1046 #endif