]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/kern/subr_taskqueue.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45
46 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
47 static void     *taskqueue_giant_ih;
48 static void     *taskqueue_ih;
49
50 struct taskqueue_busy {
51         struct task     *tb_running;
52         TAILQ_ENTRY(taskqueue_busy) tb_link;
53 };
54
55 struct taskqueue {
56         STAILQ_HEAD(, task)     tq_queue;
57         taskqueue_enqueue_fn    tq_enqueue;
58         void                    *tq_context;
59         TAILQ_HEAD(, taskqueue_busy) tq_active;
60         struct mtx              tq_mutex;
61         struct thread           **tq_threads;
62         int                     tq_tcount;
63         int                     tq_spin;
64         int                     tq_flags;
65         int                     tq_callouts;
66 };
67
68 #define TQ_FLAGS_ACTIVE         (1 << 0)
69 #define TQ_FLAGS_BLOCKED        (1 << 1)
70 #define TQ_FLAGS_PENDING        (1 << 2)
71
72 #define DT_CALLOUT_ARMED        (1 << 0)
73
74 #define TQ_LOCK(tq)                                                     \
75         do {                                                            \
76                 if ((tq)->tq_spin)                                      \
77                         mtx_lock_spin(&(tq)->tq_mutex);                 \
78                 else                                                    \
79                         mtx_lock(&(tq)->tq_mutex);                      \
80         } while (0)
81
82 #define TQ_UNLOCK(tq)                                                   \
83         do {                                                            \
84                 if ((tq)->tq_spin)                                      \
85                         mtx_unlock_spin(&(tq)->tq_mutex);               \
86                 else                                                    \
87                         mtx_unlock(&(tq)->tq_mutex);                    \
88         } while (0)
89
90 void
91 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
92     int priority, task_fn_t func, void *context)
93 {
94
95         TASK_INIT(&timeout_task->t, priority, func, context);
96         callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 0);
97         timeout_task->q = queue;
98         timeout_task->f = 0;
99 }
100
101 static __inline int
102 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
103     int t)
104 {
105         if (tq->tq_spin)
106                 return (msleep_spin(p, m, wm, t));
107         return (msleep(p, m, pri, wm, t));
108 }
109
110 static struct taskqueue *
111 _taskqueue_create(const char *name __unused, int mflags,
112                  taskqueue_enqueue_fn enqueue, void *context,
113                  int mtxflags, const char *mtxname)
114 {
115         struct taskqueue *queue;
116
117         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
118         if (!queue)
119                 return NULL;
120
121         STAILQ_INIT(&queue->tq_queue);
122         TAILQ_INIT(&queue->tq_active);
123         queue->tq_enqueue = enqueue;
124         queue->tq_context = context;
125         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
126         queue->tq_flags |= TQ_FLAGS_ACTIVE;
127         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
128
129         return queue;
130 }
131
132 struct taskqueue *
133 taskqueue_create(const char *name, int mflags,
134                  taskqueue_enqueue_fn enqueue, void *context)
135 {
136         return _taskqueue_create(name, mflags, enqueue, context,
137                         MTX_DEF, "taskqueue");
138 }
139
140 /*
141  * Signal a taskqueue thread to terminate.
142  */
143 static void
144 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
145 {
146
147         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
148                 wakeup(tq);
149                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
150         }
151 }
152
153 void
154 taskqueue_free(struct taskqueue *queue)
155 {
156
157         TQ_LOCK(queue);
158         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
159         taskqueue_terminate(queue->tq_threads, queue);
160         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
161         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
162         mtx_destroy(&queue->tq_mutex);
163         free(queue->tq_threads, M_TASKQUEUE);
164         free(queue, M_TASKQUEUE);
165 }
166
167 static int
168 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
169 {
170         struct task *ins;
171         struct task *prev;
172
173         /*
174          * Count multiple enqueues.
175          */
176         if (task->ta_pending) {
177                 if (task->ta_pending < USHRT_MAX)
178                         task->ta_pending++;
179                 return (0);
180         }
181
182         /*
183          * Optimise the case when all tasks have the same priority.
184          */
185         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
186         if (!prev || prev->ta_priority >= task->ta_priority) {
187                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
188         } else {
189                 prev = NULL;
190                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
191                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
192                         if (ins->ta_priority < task->ta_priority)
193                                 break;
194
195                 if (prev)
196                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
197                 else
198                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
199         }
200
201         task->ta_pending = 1;
202         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
203                 queue->tq_enqueue(queue->tq_context);
204         else
205                 queue->tq_flags |= TQ_FLAGS_PENDING;
206
207         return (0);
208 }
209 int
210 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
211 {
212         int res;
213
214         TQ_LOCK(queue);
215         res = taskqueue_enqueue_locked(queue, task);
216         TQ_UNLOCK(queue);
217
218         return (res);
219 }
220
221 static void
222 taskqueue_timeout_func(void *arg)
223 {
224         struct taskqueue *queue;
225         struct timeout_task *timeout_task;
226
227         timeout_task = arg;
228         queue = timeout_task->q;
229         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
230         timeout_task->f &= ~DT_CALLOUT_ARMED;
231         queue->tq_callouts--;
232         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
233 }
234
235 int
236 taskqueue_enqueue_timeout(struct taskqueue *queue,
237     struct timeout_task *timeout_task, int ticks)
238 {
239         int res;
240
241         TQ_LOCK(queue);
242         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
243             ("Migrated queue"));
244         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
245         timeout_task->q = queue;
246         res = timeout_task->t.ta_pending;
247         if (ticks == 0) {
248                 taskqueue_enqueue_locked(queue, &timeout_task->t);
249         } else {
250                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
251                         res++;
252                 } else {
253                         queue->tq_callouts++;
254                         timeout_task->f |= DT_CALLOUT_ARMED;
255                         if (ticks < 0)
256                                 ticks = -ticks; /* Ignore overflow. */
257                 }
258                 if (ticks > 0) {
259                         callout_reset(&timeout_task->c, ticks,
260                             taskqueue_timeout_func, timeout_task);
261                 }
262         }
263         TQ_UNLOCK(queue);
264         return (res);
265 }
266
267 void
268 taskqueue_block(struct taskqueue *queue)
269 {
270
271         TQ_LOCK(queue);
272         queue->tq_flags |= TQ_FLAGS_BLOCKED;
273         TQ_UNLOCK(queue);
274 }
275
276 void
277 taskqueue_unblock(struct taskqueue *queue)
278 {
279
280         TQ_LOCK(queue);
281         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
282         if (queue->tq_flags & TQ_FLAGS_PENDING) {
283                 queue->tq_flags &= ~TQ_FLAGS_PENDING;
284                 queue->tq_enqueue(queue->tq_context);
285         }
286         TQ_UNLOCK(queue);
287 }
288
289 static void
290 taskqueue_run_locked(struct taskqueue *queue)
291 {
292         struct taskqueue_busy tb;
293         struct task *task;
294         int pending;
295
296         mtx_assert(&queue->tq_mutex, MA_OWNED);
297         tb.tb_running = NULL;
298         TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
299
300         while (STAILQ_FIRST(&queue->tq_queue)) {
301                 /*
302                  * Carefully remove the first task from the queue and
303                  * zero its pending count.
304                  */
305                 task = STAILQ_FIRST(&queue->tq_queue);
306                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
307                 pending = task->ta_pending;
308                 task->ta_pending = 0;
309                 tb.tb_running = task;
310                 TQ_UNLOCK(queue);
311
312                 task->ta_func(task->ta_context, pending);
313
314                 TQ_LOCK(queue);
315                 tb.tb_running = NULL;
316                 wakeup(task);
317         }
318         TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
319 }
320
321 void
322 taskqueue_run(struct taskqueue *queue)
323 {
324
325         TQ_LOCK(queue);
326         taskqueue_run_locked(queue);
327         TQ_UNLOCK(queue);
328 }
329
330 static int
331 task_is_running(struct taskqueue *queue, struct task *task)
332 {
333         struct taskqueue_busy *tb;
334
335         mtx_assert(&queue->tq_mutex, MA_OWNED);
336         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
337                 if (tb->tb_running == task)
338                         return (1);
339         }
340         return (0);
341 }
342
343 static int
344 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
345     u_int *pendp)
346 {
347
348         if (task->ta_pending > 0)
349                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
350         if (pendp != NULL)
351                 *pendp = task->ta_pending;
352         task->ta_pending = 0;
353         return (task_is_running(queue, task) ? EBUSY : 0);
354 }
355
356 int
357 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
358 {
359         u_int pending;
360         int error;
361
362         TQ_LOCK(queue);
363         pending = task->ta_pending;
364         error = taskqueue_cancel_locked(queue, task, pendp);
365         TQ_UNLOCK(queue);
366
367         return (error);
368 }
369
370 int
371 taskqueue_cancel_timeout(struct taskqueue *queue,
372     struct timeout_task *timeout_task, u_int *pendp)
373 {
374         u_int pending, pending1;
375         int error;
376
377         TQ_LOCK(queue);
378         pending = !!callout_stop(&timeout_task->c);
379         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
380         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
381                 timeout_task->f &= ~DT_CALLOUT_ARMED;
382                 queue->tq_callouts--;
383         }
384         TQ_UNLOCK(queue);
385
386         if (pendp != NULL)
387                 *pendp = pending + pending1;
388         return (error);
389 }
390
391 void
392 taskqueue_drain(struct taskqueue *queue, struct task *task)
393 {
394
395         if (!queue->tq_spin)
396                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
397
398         TQ_LOCK(queue);
399         while (task->ta_pending != 0 || task_is_running(queue, task))
400                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
401         TQ_UNLOCK(queue);
402 }
403
404 void
405 taskqueue_drain_timeout(struct taskqueue *queue,
406     struct timeout_task *timeout_task)
407 {
408
409         callout_drain(&timeout_task->c);
410         taskqueue_drain(queue, &timeout_task->t);
411 }
412
413 static void
414 taskqueue_swi_enqueue(void *context)
415 {
416         swi_sched(taskqueue_ih, 0);
417 }
418
419 static void
420 taskqueue_swi_run(void *dummy)
421 {
422         taskqueue_run(taskqueue_swi);
423 }
424
425 static void
426 taskqueue_swi_giant_enqueue(void *context)
427 {
428         swi_sched(taskqueue_giant_ih, 0);
429 }
430
431 static void
432 taskqueue_swi_giant_run(void *dummy)
433 {
434         taskqueue_run(taskqueue_swi_giant);
435 }
436
437 int
438 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
439                         const char *name, ...)
440 {
441         va_list ap;
442         struct thread *td;
443         struct taskqueue *tq;
444         int i, error;
445         char ktname[MAXCOMLEN + 1];
446
447         if (count <= 0)
448                 return (EINVAL);
449
450         tq = *tqp;
451
452         va_start(ap, name);
453         vsnprintf(ktname, sizeof(ktname), name, ap);
454         va_end(ap);
455
456         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
457             M_NOWAIT | M_ZERO);
458         if (tq->tq_threads == NULL) {
459                 printf("%s: no memory for %s threads\n", __func__, ktname);
460                 return (ENOMEM);
461         }
462
463         for (i = 0; i < count; i++) {
464                 if (count == 1)
465                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
466                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
467                 else
468                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
469                             &tq->tq_threads[i], RFSTOPPED, 0,
470                             "%s_%d", ktname, i);
471                 if (error) {
472                         /* should be ok to continue, taskqueue_free will dtrt */
473                         printf("%s: kthread_add(%s): error %d", __func__,
474                             ktname, error);
475                         tq->tq_threads[i] = NULL;               /* paranoid */
476                 } else
477                         tq->tq_tcount++;
478         }
479         for (i = 0; i < count; i++) {
480                 if (tq->tq_threads[i] == NULL)
481                         continue;
482                 td = tq->tq_threads[i];
483                 thread_lock(td);
484                 sched_prio(td, pri);
485                 sched_add(td, SRQ_BORING);
486                 thread_unlock(td);
487         }
488
489         return (0);
490 }
491
492 void
493 taskqueue_thread_loop(void *arg)
494 {
495         struct taskqueue **tqp, *tq;
496
497         tqp = arg;
498         tq = *tqp;
499         TQ_LOCK(tq);
500         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
501                 taskqueue_run_locked(tq);
502                 /*
503                  * Because taskqueue_run() can drop tq_mutex, we need to
504                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
505                  * meantime, which means we missed a wakeup.
506                  */
507                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
508                         break;
509                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
510         }
511         taskqueue_run_locked(tq);
512
513         /* rendezvous with thread that asked us to terminate */
514         tq->tq_tcount--;
515         wakeup_one(tq->tq_threads);
516         TQ_UNLOCK(tq);
517         kthread_exit();
518 }
519
520 void
521 taskqueue_thread_enqueue(void *context)
522 {
523         struct taskqueue **tqp, *tq;
524
525         tqp = context;
526         tq = *tqp;
527
528         mtx_assert(&tq->tq_mutex, MA_OWNED);
529         wakeup_one(tq);
530 }
531
532 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
533                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
534                      INTR_MPSAFE, &taskqueue_ih)); 
535
536 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
537                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
538                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 
539
540 TASKQUEUE_DEFINE_THREAD(thread);
541
542 struct taskqueue *
543 taskqueue_create_fast(const char *name, int mflags,
544                  taskqueue_enqueue_fn enqueue, void *context)
545 {
546         return _taskqueue_create(name, mflags, enqueue, context,
547                         MTX_SPIN, "fast_taskqueue");
548 }
549
550 /* NB: for backwards compatibility */
551 int
552 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
553 {
554         return taskqueue_enqueue(queue, task);
555 }
556
557 static void     *taskqueue_fast_ih;
558
559 static void
560 taskqueue_fast_enqueue(void *context)
561 {
562         swi_sched(taskqueue_fast_ih, 0);
563 }
564
565 static void
566 taskqueue_fast_run(void *dummy)
567 {
568         taskqueue_run(taskqueue_fast);
569 }
570
571 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
572         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
573         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
574
575 int
576 taskqueue_member(struct taskqueue *queue, struct thread *td)
577 {
578         int i, j, ret = 0;
579
580         TQ_LOCK(queue);
581         for (i = 0, j = 0; ; i++) {
582                 if (queue->tq_threads[i] == NULL)
583                         continue;
584                 if (queue->tq_threads[i] == td) {
585                         ret = 1;
586                         break;
587                 }
588                 if (++j >= queue->tq_tcount)
589                         break;
590         }
591         TQ_UNLOCK(queue);
592         return (ret);
593 }