]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/kern/sys_pipe.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / kern / sys_pipe.c
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  */
19
20 /*
21  * This file contains a high-performance replacement for the socket-based
22  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23  * all features of sockets, but does do everything that pipes normally
24  * do.
25  */
26
27 /*
28  * This code has two modes of operation, a small write mode and a large
29  * write mode.  The small write mode acts like conventional pipes with
30  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32  * and PIPE_SIZE in size, the sending process pins the underlying pages in
33  * memory, and the receiving process copies directly from these pinned pages
34  * in the sending process.
35  *
36  * If the sending process receives a signal, it is possible that it will
37  * go away, and certainly its address space can change, because control
38  * is returned back to the user-mode side.  In that case, the pipe code
39  * arranges to copy the buffer supplied by the user process, to a pageable
40  * kernel buffer, and the receiving process will grab the data from the
41  * pageable kernel buffer.  Since signals don't happen all that often,
42  * the copy operation is normally eliminated.
43  *
44  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45  * happen for small transfers so that the system will not spend all of
46  * its time context switching.
47  *
48  * In order to limit the resource use of pipes, two sysctls exist:
49  *
50  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51  * address space available to us in pipe_map. This value is normally
52  * autotuned, but may also be loader tuned.
53  *
54  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55  * memory in use by pipes.
56  *
57  * Based on how large pipekva is relative to maxpipekva, the following
58  * will happen:
59  *
60  * 0% - 50%:
61  *     New pipes are given 16K of memory backing, pipes may dynamically
62  *     grow to as large as 64K where needed.
63  * 50% - 75%:
64  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65  *     existing pipes may NOT grow.
66  * 75% - 100%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes will be shrunk down to 4K whenever possible.
69  *
70  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72  * resize which MUST occur for reverse-direction pipes when they are
73  * first used.
74  *
75  * Additional information about the current state of pipes may be obtained
76  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77  * and kern.ipc.piperesizefail.
78  *
79  * Locking rules:  There are two locks present here:  A mutex, used via
80  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81  * the flag, as mutexes can not persist over uiomove.  The mutex
82  * exists only to guard access to the flag, and is not in itself a
83  * locking mechanism.  Also note that there is only a single mutex for
84  * both directions of a pipe.
85  *
86  * As pipelock() may have to sleep before it can acquire the flag, it
87  * is important to reread all data after a call to pipelock(); everything
88  * in the structure may have changed.
89  */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/conf.h>
97 #include <sys/fcntl.h>
98 #include <sys/file.h>
99 #include <sys/filedesc.h>
100 #include <sys/filio.h>
101 #include <sys/kernel.h>
102 #include <sys/lock.h>
103 #include <sys/mutex.h>
104 #include <sys/ttycom.h>
105 #include <sys/stat.h>
106 #include <sys/malloc.h>
107 #include <sys/poll.h>
108 #include <sys/selinfo.h>
109 #include <sys/signalvar.h>
110 #include <sys/syscallsubr.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/event.h>
118
119 #include <security/mac/mac_framework.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
130
131 /* XXX */
132 int     do_pipe(struct thread *td, int fildes[2], int flags);
133
134 /*
135  * Use this define if you want to disable *fancy* VM things.  Expect an
136  * approx 30% decrease in transfer rate.  This could be useful for
137  * NetBSD or OpenBSD.
138  */
139 /* #define PIPE_NODIRECT */
140
141 /*
142  * interfaces to the outside world
143  */
144 static fo_rdwr_t        pipe_read;
145 static fo_rdwr_t        pipe_write;
146 static fo_truncate_t    pipe_truncate;
147 static fo_ioctl_t       pipe_ioctl;
148 static fo_poll_t        pipe_poll;
149 static fo_kqfilter_t    pipe_kqfilter;
150 static fo_stat_t        pipe_stat;
151 static fo_close_t       pipe_close;
152
153 static struct fileops pipeops = {
154         .fo_read = pipe_read,
155         .fo_write = pipe_write,
156         .fo_truncate = pipe_truncate,
157         .fo_ioctl = pipe_ioctl,
158         .fo_poll = pipe_poll,
159         .fo_kqfilter = pipe_kqfilter,
160         .fo_stat = pipe_stat,
161         .fo_close = pipe_close,
162         .fo_chmod = invfo_chmod,
163         .fo_chown = invfo_chown,
164         .fo_flags = DFLAG_PASSABLE
165 };
166
167 static void     filt_pipedetach(struct knote *kn);
168 static int      filt_piperead(struct knote *kn, long hint);
169 static int      filt_pipewrite(struct knote *kn, long hint);
170
171 static struct filterops pipe_rfiltops = {
172         .f_isfd = 1,
173         .f_detach = filt_pipedetach,
174         .f_event = filt_piperead
175 };
176 static struct filterops pipe_wfiltops = {
177         .f_isfd = 1,
178         .f_detach = filt_pipedetach,
179         .f_event = filt_pipewrite
180 };
181
182 /*
183  * Default pipe buffer size(s), this can be kind-of large now because pipe
184  * space is pageable.  The pipe code will try to maintain locality of
185  * reference for performance reasons, so small amounts of outstanding I/O
186  * will not wipe the cache.
187  */
188 #define MINPIPESIZE (PIPE_SIZE/3)
189 #define MAXPIPESIZE (2*PIPE_SIZE/3)
190
191 static long amountpipekva;
192 static int pipefragretry;
193 static int pipeallocfail;
194 static int piperesizefail;
195 static int piperesizeallowed = 1;
196
197 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
198            &maxpipekva, 0, "Pipe KVA limit");
199 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
200            &amountpipekva, 0, "Pipe KVA usage");
201 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
202           &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
203 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
204           &pipeallocfail, 0, "Pipe allocation failures");
205 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
206           &piperesizefail, 0, "Pipe resize failures");
207 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
208           &piperesizeallowed, 0, "Pipe resizing allowed");
209
210 static void pipeinit(void *dummy __unused);
211 static void pipeclose(struct pipe *cpipe);
212 static void pipe_free_kmem(struct pipe *cpipe);
213 static int pipe_create(struct pipe *pipe, int backing);
214 static __inline int pipelock(struct pipe *cpipe, int catch);
215 static __inline void pipeunlock(struct pipe *cpipe);
216 static __inline void pipeselwakeup(struct pipe *cpipe);
217 #ifndef PIPE_NODIRECT
218 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
219 static void pipe_destroy_write_buffer(struct pipe *wpipe);
220 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
221 static void pipe_clone_write_buffer(struct pipe *wpipe);
222 #endif
223 static int pipespace(struct pipe *cpipe, int size);
224 static int pipespace_new(struct pipe *cpipe, int size);
225
226 static int      pipe_zone_ctor(void *mem, int size, void *arg, int flags);
227 static int      pipe_zone_init(void *mem, int size, int flags);
228 static void     pipe_zone_fini(void *mem, int size);
229
230 static uma_zone_t pipe_zone;
231 static struct unrhdr *pipeino_unr;
232 static dev_t pipedev_ino;
233
234 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
235
236 static void
237 pipeinit(void *dummy __unused)
238 {
239
240         pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
241             pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
242             UMA_ALIGN_PTR, 0);
243         KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
244         pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
245         KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
246         pipedev_ino = devfs_alloc_cdp_inode();
247         KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
248 }
249
250 static int
251 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
252 {
253         struct pipepair *pp;
254         struct pipe *rpipe, *wpipe;
255
256         KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
257
258         pp = (struct pipepair *)mem;
259
260         /*
261          * We zero both pipe endpoints to make sure all the kmem pointers
262          * are NULL, flag fields are zero'd, etc.  We timestamp both
263          * endpoints with the same time.
264          */
265         rpipe = &pp->pp_rpipe;
266         bzero(rpipe, sizeof(*rpipe));
267         vfs_timestamp(&rpipe->pipe_ctime);
268         rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
269
270         wpipe = &pp->pp_wpipe;
271         bzero(wpipe, sizeof(*wpipe));
272         wpipe->pipe_ctime = rpipe->pipe_ctime;
273         wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
274
275         rpipe->pipe_peer = wpipe;
276         rpipe->pipe_pair = pp;
277         wpipe->pipe_peer = rpipe;
278         wpipe->pipe_pair = pp;
279
280         /*
281          * Mark both endpoints as present; they will later get free'd
282          * one at a time.  When both are free'd, then the whole pair
283          * is released.
284          */
285         rpipe->pipe_present = PIPE_ACTIVE;
286         wpipe->pipe_present = PIPE_ACTIVE;
287
288         /*
289          * Eventually, the MAC Framework may initialize the label
290          * in ctor or init, but for now we do it elswhere to avoid
291          * blocking in ctor or init.
292          */
293         pp->pp_label = NULL;
294
295         return (0);
296 }
297
298 static int
299 pipe_zone_init(void *mem, int size, int flags)
300 {
301         struct pipepair *pp;
302
303         KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
304
305         pp = (struct pipepair *)mem;
306
307         mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
308         return (0);
309 }
310
311 static void
312 pipe_zone_fini(void *mem, int size)
313 {
314         struct pipepair *pp;
315
316         KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
317
318         pp = (struct pipepair *)mem;
319
320         mtx_destroy(&pp->pp_mtx);
321 }
322
323 /*
324  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
325  * the zone pick up the pieces via pipeclose().
326  */
327 int
328 kern_pipe(struct thread *td, int fildes[2])
329 {
330
331         return (do_pipe(td, fildes, 0));
332 }
333
334 int
335 do_pipe(struct thread *td, int fildes[2], int flags)
336 {
337         struct filedesc *fdp = td->td_proc->p_fd;
338         struct file *rf, *wf;
339         struct pipepair *pp;
340         struct pipe *rpipe, *wpipe;
341         int fd, fflags, error;
342
343         pp = uma_zalloc(pipe_zone, M_WAITOK);
344 #ifdef MAC
345         /*
346          * The MAC label is shared between the connected endpoints.  As a
347          * result mac_pipe_init() and mac_pipe_create() are called once
348          * for the pair, and not on the endpoints.
349          */
350         mac_pipe_init(pp);
351         mac_pipe_create(td->td_ucred, pp);
352 #endif
353         rpipe = &pp->pp_rpipe;
354         wpipe = &pp->pp_wpipe;
355
356         knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
357         knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
358
359         /* Only the forward direction pipe is backed by default */
360         if ((error = pipe_create(rpipe, 1)) != 0 ||
361             (error = pipe_create(wpipe, 0)) != 0) {
362                 pipeclose(rpipe);
363                 pipeclose(wpipe);
364                 return (error);
365         }
366
367         rpipe->pipe_state |= PIPE_DIRECTOK;
368         wpipe->pipe_state |= PIPE_DIRECTOK;
369
370         error = falloc(td, &rf, &fd, flags);
371         if (error) {
372                 pipeclose(rpipe);
373                 pipeclose(wpipe);
374                 return (error);
375         }
376         /* An extra reference on `rf' has been held for us by falloc(). */
377         fildes[0] = fd;
378
379         fflags = FREAD | FWRITE;
380         if ((flags & O_NONBLOCK) != 0)
381                 fflags |= FNONBLOCK;
382
383         /*
384          * Warning: once we've gotten past allocation of the fd for the
385          * read-side, we can only drop the read side via fdrop() in order
386          * to avoid races against processes which manage to dup() the read
387          * side while we are blocked trying to allocate the write side.
388          */
389         finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
390         error = falloc(td, &wf, &fd, flags);
391         if (error) {
392                 fdclose(fdp, rf, fildes[0], td);
393                 fdrop(rf, td);
394                 /* rpipe has been closed by fdrop(). */
395                 pipeclose(wpipe);
396                 return (error);
397         }
398         /* An extra reference on `wf' has been held for us by falloc(). */
399         finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
400         fdrop(wf, td);
401         fildes[1] = fd;
402         fdrop(rf, td);
403
404         return (0);
405 }
406
407 /* ARGSUSED */
408 int
409 sys_pipe(struct thread *td, struct pipe_args *uap)
410 {
411         int error;
412         int fildes[2];
413
414         error = kern_pipe(td, fildes);
415         if (error)
416                 return (error);
417         
418         td->td_retval[0] = fildes[0];
419         td->td_retval[1] = fildes[1];
420
421         return (0);
422 }
423
424 /*
425  * Allocate kva for pipe circular buffer, the space is pageable
426  * This routine will 'realloc' the size of a pipe safely, if it fails
427  * it will retain the old buffer.
428  * If it fails it will return ENOMEM.
429  */
430 static int
431 pipespace_new(cpipe, size)
432         struct pipe *cpipe;
433         int size;
434 {
435         caddr_t buffer;
436         int error, cnt, firstseg;
437         static int curfail = 0;
438         static struct timeval lastfail;
439
440         KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
441         KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
442                 ("pipespace: resize of direct writes not allowed"));
443 retry:
444         cnt = cpipe->pipe_buffer.cnt;
445         if (cnt > size)
446                 size = cnt;
447
448         size = round_page(size);
449         buffer = (caddr_t) vm_map_min(pipe_map);
450
451         error = vm_map_find(pipe_map, NULL, 0,
452                 (vm_offset_t *) &buffer, size, 1,
453                 VM_PROT_ALL, VM_PROT_ALL, 0);
454         if (error != KERN_SUCCESS) {
455                 if ((cpipe->pipe_buffer.buffer == NULL) &&
456                         (size > SMALL_PIPE_SIZE)) {
457                         size = SMALL_PIPE_SIZE;
458                         pipefragretry++;
459                         goto retry;
460                 }
461                 if (cpipe->pipe_buffer.buffer == NULL) {
462                         pipeallocfail++;
463                         if (ppsratecheck(&lastfail, &curfail, 1))
464                                 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
465                 } else {
466                         piperesizefail++;
467                 }
468                 return (ENOMEM);
469         }
470
471         /* copy data, then free old resources if we're resizing */
472         if (cnt > 0) {
473                 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
474                         firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
475                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
476                                 buffer, firstseg);
477                         if ((cnt - firstseg) > 0)
478                                 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
479                                         cpipe->pipe_buffer.in);
480                 } else {
481                         bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
482                                 buffer, cnt);
483                 }
484         }
485         pipe_free_kmem(cpipe);
486         cpipe->pipe_buffer.buffer = buffer;
487         cpipe->pipe_buffer.size = size;
488         cpipe->pipe_buffer.in = cnt;
489         cpipe->pipe_buffer.out = 0;
490         cpipe->pipe_buffer.cnt = cnt;
491         atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
492         return (0);
493 }
494
495 /*
496  * Wrapper for pipespace_new() that performs locking assertions.
497  */
498 static int
499 pipespace(cpipe, size)
500         struct pipe *cpipe;
501         int size;
502 {
503
504         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
505                 ("Unlocked pipe passed to pipespace"));
506         return (pipespace_new(cpipe, size));
507 }
508
509 /*
510  * lock a pipe for I/O, blocking other access
511  */
512 static __inline int
513 pipelock(cpipe, catch)
514         struct pipe *cpipe;
515         int catch;
516 {
517         int error;
518
519         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
520         while (cpipe->pipe_state & PIPE_LOCKFL) {
521                 cpipe->pipe_state |= PIPE_LWANT;
522                 error = msleep(cpipe, PIPE_MTX(cpipe),
523                     catch ? (PRIBIO | PCATCH) : PRIBIO,
524                     "pipelk", 0);
525                 if (error != 0)
526                         return (error);
527         }
528         cpipe->pipe_state |= PIPE_LOCKFL;
529         return (0);
530 }
531
532 /*
533  * unlock a pipe I/O lock
534  */
535 static __inline void
536 pipeunlock(cpipe)
537         struct pipe *cpipe;
538 {
539
540         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
541         KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
542                 ("Unlocked pipe passed to pipeunlock"));
543         cpipe->pipe_state &= ~PIPE_LOCKFL;
544         if (cpipe->pipe_state & PIPE_LWANT) {
545                 cpipe->pipe_state &= ~PIPE_LWANT;
546                 wakeup(cpipe);
547         }
548 }
549
550 static __inline void
551 pipeselwakeup(cpipe)
552         struct pipe *cpipe;
553 {
554
555         PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
556         if (cpipe->pipe_state & PIPE_SEL) {
557                 selwakeuppri(&cpipe->pipe_sel, PSOCK);
558                 if (!SEL_WAITING(&cpipe->pipe_sel))
559                         cpipe->pipe_state &= ~PIPE_SEL;
560         }
561         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
562                 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
563         KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
564 }
565
566 /*
567  * Initialize and allocate VM and memory for pipe.  The structure
568  * will start out zero'd from the ctor, so we just manage the kmem.
569  */
570 static int
571 pipe_create(pipe, backing)
572         struct pipe *pipe;
573         int backing;
574 {
575         int error;
576
577         if (backing) {
578                 if (amountpipekva > maxpipekva / 2)
579                         error = pipespace_new(pipe, SMALL_PIPE_SIZE);
580                 else
581                         error = pipespace_new(pipe, PIPE_SIZE);
582         } else {
583                 /* If we're not backing this pipe, no need to do anything. */
584                 error = 0;
585         }
586         pipe->pipe_ino = -1;
587         return (error);
588 }
589
590 /* ARGSUSED */
591 static int
592 pipe_read(fp, uio, active_cred, flags, td)
593         struct file *fp;
594         struct uio *uio;
595         struct ucred *active_cred;
596         struct thread *td;
597         int flags;
598 {
599         struct pipe *rpipe = fp->f_data;
600         int error;
601         int nread = 0;
602         int size;
603
604         PIPE_LOCK(rpipe);
605         ++rpipe->pipe_busy;
606         error = pipelock(rpipe, 1);
607         if (error)
608                 goto unlocked_error;
609
610 #ifdef MAC
611         error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
612         if (error)
613                 goto locked_error;
614 #endif
615         if (amountpipekva > (3 * maxpipekva) / 4) {
616                 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
617                         (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
618                         (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
619                         (piperesizeallowed == 1)) {
620                         PIPE_UNLOCK(rpipe);
621                         pipespace(rpipe, SMALL_PIPE_SIZE);
622                         PIPE_LOCK(rpipe);
623                 }
624         }
625
626         while (uio->uio_resid) {
627                 /*
628                  * normal pipe buffer receive
629                  */
630                 if (rpipe->pipe_buffer.cnt > 0) {
631                         size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
632                         if (size > rpipe->pipe_buffer.cnt)
633                                 size = rpipe->pipe_buffer.cnt;
634                         if (size > uio->uio_resid)
635                                 size = uio->uio_resid;
636
637                         PIPE_UNLOCK(rpipe);
638                         error = uiomove(
639                             &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
640                             size, uio);
641                         PIPE_LOCK(rpipe);
642                         if (error)
643                                 break;
644
645                         rpipe->pipe_buffer.out += size;
646                         if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
647                                 rpipe->pipe_buffer.out = 0;
648
649                         rpipe->pipe_buffer.cnt -= size;
650
651                         /*
652                          * If there is no more to read in the pipe, reset
653                          * its pointers to the beginning.  This improves
654                          * cache hit stats.
655                          */
656                         if (rpipe->pipe_buffer.cnt == 0) {
657                                 rpipe->pipe_buffer.in = 0;
658                                 rpipe->pipe_buffer.out = 0;
659                         }
660                         nread += size;
661 #ifndef PIPE_NODIRECT
662                 /*
663                  * Direct copy, bypassing a kernel buffer.
664                  */
665                 } else if ((size = rpipe->pipe_map.cnt) &&
666                            (rpipe->pipe_state & PIPE_DIRECTW)) {
667                         if (size > uio->uio_resid)
668                                 size = (u_int) uio->uio_resid;
669
670                         PIPE_UNLOCK(rpipe);
671                         error = uiomove_fromphys(rpipe->pipe_map.ms,
672                             rpipe->pipe_map.pos, size, uio);
673                         PIPE_LOCK(rpipe);
674                         if (error)
675                                 break;
676                         nread += size;
677                         rpipe->pipe_map.pos += size;
678                         rpipe->pipe_map.cnt -= size;
679                         if (rpipe->pipe_map.cnt == 0) {
680                                 rpipe->pipe_state &= ~PIPE_DIRECTW;
681                                 wakeup(rpipe);
682                         }
683 #endif
684                 } else {
685                         /*
686                          * detect EOF condition
687                          * read returns 0 on EOF, no need to set error
688                          */
689                         if (rpipe->pipe_state & PIPE_EOF)
690                                 break;
691
692                         /*
693                          * If the "write-side" has been blocked, wake it up now.
694                          */
695                         if (rpipe->pipe_state & PIPE_WANTW) {
696                                 rpipe->pipe_state &= ~PIPE_WANTW;
697                                 wakeup(rpipe);
698                         }
699
700                         /*
701                          * Break if some data was read.
702                          */
703                         if (nread > 0)
704                                 break;
705
706                         /*
707                          * Unlock the pipe buffer for our remaining processing.
708                          * We will either break out with an error or we will
709                          * sleep and relock to loop.
710                          */
711                         pipeunlock(rpipe);
712
713                         /*
714                          * Handle non-blocking mode operation or
715                          * wait for more data.
716                          */
717                         if (fp->f_flag & FNONBLOCK) {
718                                 error = EAGAIN;
719                         } else {
720                                 rpipe->pipe_state |= PIPE_WANTR;
721                                 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
722                                     PRIBIO | PCATCH,
723                                     "piperd", 0)) == 0)
724                                         error = pipelock(rpipe, 1);
725                         }
726                         if (error)
727                                 goto unlocked_error;
728                 }
729         }
730 #ifdef MAC
731 locked_error:
732 #endif
733         pipeunlock(rpipe);
734
735         /* XXX: should probably do this before getting any locks. */
736         if (error == 0)
737                 vfs_timestamp(&rpipe->pipe_atime);
738 unlocked_error:
739         --rpipe->pipe_busy;
740
741         /*
742          * PIPE_WANT processing only makes sense if pipe_busy is 0.
743          */
744         if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
745                 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
746                 wakeup(rpipe);
747         } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
748                 /*
749                  * Handle write blocking hysteresis.
750                  */
751                 if (rpipe->pipe_state & PIPE_WANTW) {
752                         rpipe->pipe_state &= ~PIPE_WANTW;
753                         wakeup(rpipe);
754                 }
755         }
756
757         if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
758                 pipeselwakeup(rpipe);
759
760         PIPE_UNLOCK(rpipe);
761         return (error);
762 }
763
764 #ifndef PIPE_NODIRECT
765 /*
766  * Map the sending processes' buffer into kernel space and wire it.
767  * This is similar to a physical write operation.
768  */
769 static int
770 pipe_build_write_buffer(wpipe, uio)
771         struct pipe *wpipe;
772         struct uio *uio;
773 {
774         u_int size;
775         int i;
776
777         PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
778         KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
779                 ("Clone attempt on non-direct write pipe!"));
780
781         if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
782                 size = wpipe->pipe_buffer.size;
783         else
784                 size = uio->uio_iov->iov_len;
785
786         if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
787             (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
788             wpipe->pipe_map.ms, PIPENPAGES)) < 0)
789                 return (EFAULT);
790
791 /*
792  * set up the control block
793  */
794         wpipe->pipe_map.npages = i;
795         wpipe->pipe_map.pos =
796             ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
797         wpipe->pipe_map.cnt = size;
798
799 /*
800  * and update the uio data
801  */
802
803         uio->uio_iov->iov_len -= size;
804         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
805         if (uio->uio_iov->iov_len == 0)
806                 uio->uio_iov++;
807         uio->uio_resid -= size;
808         uio->uio_offset += size;
809         return (0);
810 }
811
812 /*
813  * unmap and unwire the process buffer
814  */
815 static void
816 pipe_destroy_write_buffer(wpipe)
817         struct pipe *wpipe;
818 {
819
820         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
821         vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
822         wpipe->pipe_map.npages = 0;
823 }
824
825 /*
826  * In the case of a signal, the writing process might go away.  This
827  * code copies the data into the circular buffer so that the source
828  * pages can be freed without loss of data.
829  */
830 static void
831 pipe_clone_write_buffer(wpipe)
832         struct pipe *wpipe;
833 {
834         struct uio uio;
835         struct iovec iov;
836         int size;
837         int pos;
838
839         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
840         size = wpipe->pipe_map.cnt;
841         pos = wpipe->pipe_map.pos;
842
843         wpipe->pipe_buffer.in = size;
844         wpipe->pipe_buffer.out = 0;
845         wpipe->pipe_buffer.cnt = size;
846         wpipe->pipe_state &= ~PIPE_DIRECTW;
847
848         PIPE_UNLOCK(wpipe);
849         iov.iov_base = wpipe->pipe_buffer.buffer;
850         iov.iov_len = size;
851         uio.uio_iov = &iov;
852         uio.uio_iovcnt = 1;
853         uio.uio_offset = 0;
854         uio.uio_resid = size;
855         uio.uio_segflg = UIO_SYSSPACE;
856         uio.uio_rw = UIO_READ;
857         uio.uio_td = curthread;
858         uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
859         PIPE_LOCK(wpipe);
860         pipe_destroy_write_buffer(wpipe);
861 }
862
863 /*
864  * This implements the pipe buffer write mechanism.  Note that only
865  * a direct write OR a normal pipe write can be pending at any given time.
866  * If there are any characters in the pipe buffer, the direct write will
867  * be deferred until the receiving process grabs all of the bytes from
868  * the pipe buffer.  Then the direct mapping write is set-up.
869  */
870 static int
871 pipe_direct_write(wpipe, uio)
872         struct pipe *wpipe;
873         struct uio *uio;
874 {
875         int error;
876
877 retry:
878         PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
879         error = pipelock(wpipe, 1);
880         if (wpipe->pipe_state & PIPE_EOF)
881                 error = EPIPE;
882         if (error) {
883                 pipeunlock(wpipe);
884                 goto error1;
885         }
886         while (wpipe->pipe_state & PIPE_DIRECTW) {
887                 if (wpipe->pipe_state & PIPE_WANTR) {
888                         wpipe->pipe_state &= ~PIPE_WANTR;
889                         wakeup(wpipe);
890                 }
891                 pipeselwakeup(wpipe);
892                 wpipe->pipe_state |= PIPE_WANTW;
893                 pipeunlock(wpipe);
894                 error = msleep(wpipe, PIPE_MTX(wpipe),
895                     PRIBIO | PCATCH, "pipdww", 0);
896                 if (error)
897                         goto error1;
898                 else
899                         goto retry;
900         }
901         wpipe->pipe_map.cnt = 0;        /* transfer not ready yet */
902         if (wpipe->pipe_buffer.cnt > 0) {
903                 if (wpipe->pipe_state & PIPE_WANTR) {
904                         wpipe->pipe_state &= ~PIPE_WANTR;
905                         wakeup(wpipe);
906                 }
907                 pipeselwakeup(wpipe);
908                 wpipe->pipe_state |= PIPE_WANTW;
909                 pipeunlock(wpipe);
910                 error = msleep(wpipe, PIPE_MTX(wpipe),
911                     PRIBIO | PCATCH, "pipdwc", 0);
912                 if (error)
913                         goto error1;
914                 else
915                         goto retry;
916         }
917
918         wpipe->pipe_state |= PIPE_DIRECTW;
919
920         PIPE_UNLOCK(wpipe);
921         error = pipe_build_write_buffer(wpipe, uio);
922         PIPE_LOCK(wpipe);
923         if (error) {
924                 wpipe->pipe_state &= ~PIPE_DIRECTW;
925                 pipeunlock(wpipe);
926                 goto error1;
927         }
928
929         error = 0;
930         while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
931                 if (wpipe->pipe_state & PIPE_EOF) {
932                         pipe_destroy_write_buffer(wpipe);
933                         pipeselwakeup(wpipe);
934                         pipeunlock(wpipe);
935                         error = EPIPE;
936                         goto error1;
937                 }
938                 if (wpipe->pipe_state & PIPE_WANTR) {
939                         wpipe->pipe_state &= ~PIPE_WANTR;
940                         wakeup(wpipe);
941                 }
942                 pipeselwakeup(wpipe);
943                 pipeunlock(wpipe);
944                 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
945                     "pipdwt", 0);
946                 pipelock(wpipe, 0);
947         }
948
949         if (wpipe->pipe_state & PIPE_EOF)
950                 error = EPIPE;
951         if (wpipe->pipe_state & PIPE_DIRECTW) {
952                 /*
953                  * this bit of trickery substitutes a kernel buffer for
954                  * the process that might be going away.
955                  */
956                 pipe_clone_write_buffer(wpipe);
957         } else {
958                 pipe_destroy_write_buffer(wpipe);
959         }
960         pipeunlock(wpipe);
961         return (error);
962
963 error1:
964         wakeup(wpipe);
965         return (error);
966 }
967 #endif
968
969 static int
970 pipe_write(fp, uio, active_cred, flags, td)
971         struct file *fp;
972         struct uio *uio;
973         struct ucred *active_cred;
974         struct thread *td;
975         int flags;
976 {
977         int error = 0;
978         int desiredsize;
979         ssize_t orig_resid;
980         struct pipe *wpipe, *rpipe;
981
982         rpipe = fp->f_data;
983         wpipe = rpipe->pipe_peer;
984
985         PIPE_LOCK(rpipe);
986         error = pipelock(wpipe, 1);
987         if (error) {
988                 PIPE_UNLOCK(rpipe);
989                 return (error);
990         }
991         /*
992          * detect loss of pipe read side, issue SIGPIPE if lost.
993          */
994         if (wpipe->pipe_present != PIPE_ACTIVE ||
995             (wpipe->pipe_state & PIPE_EOF)) {
996                 pipeunlock(wpipe);
997                 PIPE_UNLOCK(rpipe);
998                 return (EPIPE);
999         }
1000 #ifdef MAC
1001         error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1002         if (error) {
1003                 pipeunlock(wpipe);
1004                 PIPE_UNLOCK(rpipe);
1005                 return (error);
1006         }
1007 #endif
1008         ++wpipe->pipe_busy;
1009
1010         /* Choose a larger size if it's advantageous */
1011         desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1012         while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1013                 if (piperesizeallowed != 1)
1014                         break;
1015                 if (amountpipekva > maxpipekva / 2)
1016                         break;
1017                 if (desiredsize == BIG_PIPE_SIZE)
1018                         break;
1019                 desiredsize = desiredsize * 2;
1020         }
1021
1022         /* Choose a smaller size if we're in a OOM situation */
1023         if ((amountpipekva > (3 * maxpipekva) / 4) &&
1024                 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1025                 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1026                 (piperesizeallowed == 1))
1027                 desiredsize = SMALL_PIPE_SIZE;
1028
1029         /* Resize if the above determined that a new size was necessary */
1030         if ((desiredsize != wpipe->pipe_buffer.size) &&
1031                 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1032                 PIPE_UNLOCK(wpipe);
1033                 pipespace(wpipe, desiredsize);
1034                 PIPE_LOCK(wpipe);
1035         }
1036         if (wpipe->pipe_buffer.size == 0) {
1037                 /*
1038                  * This can only happen for reverse direction use of pipes
1039                  * in a complete OOM situation.
1040                  */
1041                 error = ENOMEM;
1042                 --wpipe->pipe_busy;
1043                 pipeunlock(wpipe);
1044                 PIPE_UNLOCK(wpipe);
1045                 return (error);
1046         }
1047
1048         pipeunlock(wpipe);
1049
1050         orig_resid = uio->uio_resid;
1051
1052         while (uio->uio_resid) {
1053                 int space;
1054
1055                 pipelock(wpipe, 0);
1056                 if (wpipe->pipe_state & PIPE_EOF) {
1057                         pipeunlock(wpipe);
1058                         error = EPIPE;
1059                         break;
1060                 }
1061 #ifndef PIPE_NODIRECT
1062                 /*
1063                  * If the transfer is large, we can gain performance if
1064                  * we do process-to-process copies directly.
1065                  * If the write is non-blocking, we don't use the
1066                  * direct write mechanism.
1067                  *
1068                  * The direct write mechanism will detect the reader going
1069                  * away on us.
1070                  */
1071                 if (uio->uio_segflg == UIO_USERSPACE &&
1072                     uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1073                     wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1074                     (fp->f_flag & FNONBLOCK) == 0) {
1075                         pipeunlock(wpipe);
1076                         error = pipe_direct_write(wpipe, uio);
1077                         if (error)
1078                                 break;
1079                         continue;
1080                 }
1081 #endif
1082
1083                 /*
1084                  * Pipe buffered writes cannot be coincidental with
1085                  * direct writes.  We wait until the currently executing
1086                  * direct write is completed before we start filling the
1087                  * pipe buffer.  We break out if a signal occurs or the
1088                  * reader goes away.
1089                  */
1090                 if (wpipe->pipe_state & PIPE_DIRECTW) {
1091                         if (wpipe->pipe_state & PIPE_WANTR) {
1092                                 wpipe->pipe_state &= ~PIPE_WANTR;
1093                                 wakeup(wpipe);
1094                         }
1095                         pipeselwakeup(wpipe);
1096                         wpipe->pipe_state |= PIPE_WANTW;
1097                         pipeunlock(wpipe);
1098                         error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1099                             "pipbww", 0);
1100                         if (error)
1101                                 break;
1102                         else
1103                                 continue;
1104                 }
1105
1106                 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1107
1108                 /* Writes of size <= PIPE_BUF must be atomic. */
1109                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1110                         space = 0;
1111
1112                 if (space > 0) {
1113                         int size;       /* Transfer size */
1114                         int segsize;    /* first segment to transfer */
1115
1116                         /*
1117                          * Transfer size is minimum of uio transfer
1118                          * and free space in pipe buffer.
1119                          */
1120                         if (space > uio->uio_resid)
1121                                 size = uio->uio_resid;
1122                         else
1123                                 size = space;
1124                         /*
1125                          * First segment to transfer is minimum of
1126                          * transfer size and contiguous space in
1127                          * pipe buffer.  If first segment to transfer
1128                          * is less than the transfer size, we've got
1129                          * a wraparound in the buffer.
1130                          */
1131                         segsize = wpipe->pipe_buffer.size -
1132                                 wpipe->pipe_buffer.in;
1133                         if (segsize > size)
1134                                 segsize = size;
1135
1136                         /* Transfer first segment */
1137
1138                         PIPE_UNLOCK(rpipe);
1139                         error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1140                                         segsize, uio);
1141                         PIPE_LOCK(rpipe);
1142
1143                         if (error == 0 && segsize < size) {
1144                                 KASSERT(wpipe->pipe_buffer.in + segsize ==
1145                                         wpipe->pipe_buffer.size,
1146                                         ("Pipe buffer wraparound disappeared"));
1147                                 /*
1148                                  * Transfer remaining part now, to
1149                                  * support atomic writes.  Wraparound
1150                                  * happened.
1151                                  */
1152
1153                                 PIPE_UNLOCK(rpipe);
1154                                 error = uiomove(
1155                                     &wpipe->pipe_buffer.buffer[0],
1156                                     size - segsize, uio);
1157                                 PIPE_LOCK(rpipe);
1158                         }
1159                         if (error == 0) {
1160                                 wpipe->pipe_buffer.in += size;
1161                                 if (wpipe->pipe_buffer.in >=
1162                                     wpipe->pipe_buffer.size) {
1163                                         KASSERT(wpipe->pipe_buffer.in ==
1164                                                 size - segsize +
1165                                                 wpipe->pipe_buffer.size,
1166                                                 ("Expected wraparound bad"));
1167                                         wpipe->pipe_buffer.in = size - segsize;
1168                                 }
1169
1170                                 wpipe->pipe_buffer.cnt += size;
1171                                 KASSERT(wpipe->pipe_buffer.cnt <=
1172                                         wpipe->pipe_buffer.size,
1173                                         ("Pipe buffer overflow"));
1174                         }
1175                         pipeunlock(wpipe);
1176                         if (error != 0)
1177                                 break;
1178                 } else {
1179                         /*
1180                          * If the "read-side" has been blocked, wake it up now.
1181                          */
1182                         if (wpipe->pipe_state & PIPE_WANTR) {
1183                                 wpipe->pipe_state &= ~PIPE_WANTR;
1184                                 wakeup(wpipe);
1185                         }
1186
1187                         /*
1188                          * don't block on non-blocking I/O
1189                          */
1190                         if (fp->f_flag & FNONBLOCK) {
1191                                 error = EAGAIN;
1192                                 pipeunlock(wpipe);
1193                                 break;
1194                         }
1195
1196                         /*
1197                          * We have no more space and have something to offer,
1198                          * wake up select/poll.
1199                          */
1200                         pipeselwakeup(wpipe);
1201
1202                         wpipe->pipe_state |= PIPE_WANTW;
1203                         pipeunlock(wpipe);
1204                         error = msleep(wpipe, PIPE_MTX(rpipe),
1205                             PRIBIO | PCATCH, "pipewr", 0);
1206                         if (error != 0)
1207                                 break;
1208                 }
1209         }
1210
1211         pipelock(wpipe, 0);
1212         --wpipe->pipe_busy;
1213
1214         if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1215                 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1216                 wakeup(wpipe);
1217         } else if (wpipe->pipe_buffer.cnt > 0) {
1218                 /*
1219                  * If we have put any characters in the buffer, we wake up
1220                  * the reader.
1221                  */
1222                 if (wpipe->pipe_state & PIPE_WANTR) {
1223                         wpipe->pipe_state &= ~PIPE_WANTR;
1224                         wakeup(wpipe);
1225                 }
1226         }
1227
1228         /*
1229          * Don't return EPIPE if I/O was successful
1230          */
1231         if ((wpipe->pipe_buffer.cnt == 0) &&
1232             (uio->uio_resid == 0) &&
1233             (error == EPIPE)) {
1234                 error = 0;
1235         }
1236
1237         if (error == 0)
1238                 vfs_timestamp(&wpipe->pipe_mtime);
1239
1240         /*
1241          * We have something to offer,
1242          * wake up select/poll.
1243          */
1244         if (wpipe->pipe_buffer.cnt)
1245                 pipeselwakeup(wpipe);
1246
1247         pipeunlock(wpipe);
1248         PIPE_UNLOCK(rpipe);
1249         return (error);
1250 }
1251
1252 /* ARGSUSED */
1253 static int
1254 pipe_truncate(fp, length, active_cred, td)
1255         struct file *fp;
1256         off_t length;
1257         struct ucred *active_cred;
1258         struct thread *td;
1259 {
1260
1261         return (EINVAL);
1262 }
1263
1264 /*
1265  * we implement a very minimal set of ioctls for compatibility with sockets.
1266  */
1267 static int
1268 pipe_ioctl(fp, cmd, data, active_cred, td)
1269         struct file *fp;
1270         u_long cmd;
1271         void *data;
1272         struct ucred *active_cred;
1273         struct thread *td;
1274 {
1275         struct pipe *mpipe = fp->f_data;
1276         int error;
1277
1278         PIPE_LOCK(mpipe);
1279
1280 #ifdef MAC
1281         error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1282         if (error) {
1283                 PIPE_UNLOCK(mpipe);
1284                 return (error);
1285         }
1286 #endif
1287
1288         error = 0;
1289         switch (cmd) {
1290
1291         case FIONBIO:
1292                 break;
1293
1294         case FIOASYNC:
1295                 if (*(int *)data) {
1296                         mpipe->pipe_state |= PIPE_ASYNC;
1297                 } else {
1298                         mpipe->pipe_state &= ~PIPE_ASYNC;
1299                 }
1300                 break;
1301
1302         case FIONREAD:
1303                 if (mpipe->pipe_state & PIPE_DIRECTW)
1304                         *(int *)data = mpipe->pipe_map.cnt;
1305                 else
1306                         *(int *)data = mpipe->pipe_buffer.cnt;
1307                 break;
1308
1309         case FIOSETOWN:
1310                 PIPE_UNLOCK(mpipe);
1311                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1312                 goto out_unlocked;
1313
1314         case FIOGETOWN:
1315                 *(int *)data = fgetown(&mpipe->pipe_sigio);
1316                 break;
1317
1318         /* This is deprecated, FIOSETOWN should be used instead. */
1319         case TIOCSPGRP:
1320                 PIPE_UNLOCK(mpipe);
1321                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1322                 goto out_unlocked;
1323
1324         /* This is deprecated, FIOGETOWN should be used instead. */
1325         case TIOCGPGRP:
1326                 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1327                 break;
1328
1329         default:
1330                 error = ENOTTY;
1331                 break;
1332         }
1333         PIPE_UNLOCK(mpipe);
1334 out_unlocked:
1335         return (error);
1336 }
1337
1338 static int
1339 pipe_poll(fp, events, active_cred, td)
1340         struct file *fp;
1341         int events;
1342         struct ucred *active_cred;
1343         struct thread *td;
1344 {
1345         struct pipe *rpipe = fp->f_data;
1346         struct pipe *wpipe;
1347         int revents = 0;
1348 #ifdef MAC
1349         int error;
1350 #endif
1351
1352         wpipe = rpipe->pipe_peer;
1353         PIPE_LOCK(rpipe);
1354 #ifdef MAC
1355         error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1356         if (error)
1357                 goto locked_error;
1358 #endif
1359         if (events & (POLLIN | POLLRDNORM))
1360                 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1361                     (rpipe->pipe_buffer.cnt > 0))
1362                         revents |= events & (POLLIN | POLLRDNORM);
1363
1364         if (events & (POLLOUT | POLLWRNORM))
1365                 if (wpipe->pipe_present != PIPE_ACTIVE ||
1366                     (wpipe->pipe_state & PIPE_EOF) ||
1367                     (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1368                      ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1369                          wpipe->pipe_buffer.size == 0)))
1370                         revents |= events & (POLLOUT | POLLWRNORM);
1371
1372         if ((events & POLLINIGNEOF) == 0) {
1373                 if (rpipe->pipe_state & PIPE_EOF) {
1374                         revents |= (events & (POLLIN | POLLRDNORM));
1375                         if (wpipe->pipe_present != PIPE_ACTIVE ||
1376                             (wpipe->pipe_state & PIPE_EOF))
1377                                 revents |= POLLHUP;
1378                 }
1379         }
1380
1381         if (revents == 0) {
1382                 if (events & (POLLIN | POLLRDNORM)) {
1383                         selrecord(td, &rpipe->pipe_sel);
1384                         if (SEL_WAITING(&rpipe->pipe_sel))
1385                                 rpipe->pipe_state |= PIPE_SEL;
1386                 }
1387
1388                 if (events & (POLLOUT | POLLWRNORM)) {
1389                         selrecord(td, &wpipe->pipe_sel);
1390                         if (SEL_WAITING(&wpipe->pipe_sel))
1391                                 wpipe->pipe_state |= PIPE_SEL;
1392                 }
1393         }
1394 #ifdef MAC
1395 locked_error:
1396 #endif
1397         PIPE_UNLOCK(rpipe);
1398
1399         return (revents);
1400 }
1401
1402 /*
1403  * We shouldn't need locks here as we're doing a read and this should
1404  * be a natural race.
1405  */
1406 static int
1407 pipe_stat(fp, ub, active_cred, td)
1408         struct file *fp;
1409         struct stat *ub;
1410         struct ucred *active_cred;
1411         struct thread *td;
1412 {
1413         struct pipe *pipe;
1414         int new_unr;
1415 #ifdef MAC
1416         int error;
1417 #endif
1418
1419         pipe = fp->f_data;
1420         PIPE_LOCK(pipe);
1421 #ifdef MAC
1422         error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1423         if (error) {
1424                 PIPE_UNLOCK(pipe);
1425                 return (error);
1426         }
1427 #endif
1428         /*
1429          * Lazily allocate an inode number for the pipe.  Most pipe
1430          * users do not call fstat(2) on the pipe, which means that
1431          * postponing the inode allocation until it is must be
1432          * returned to userland is useful.  If alloc_unr failed,
1433          * assign st_ino zero instead of returning an error.
1434          * Special pipe_ino values:
1435          *  -1 - not yet initialized;
1436          *  0  - alloc_unr failed, return 0 as st_ino forever.
1437          */
1438         if (pipe->pipe_ino == (ino_t)-1) {
1439                 new_unr = alloc_unr(pipeino_unr);
1440                 if (new_unr != -1)
1441                         pipe->pipe_ino = new_unr;
1442                 else
1443                         pipe->pipe_ino = 0;
1444         }
1445         PIPE_UNLOCK(pipe);
1446
1447         bzero(ub, sizeof(*ub));
1448         ub->st_mode = S_IFIFO;
1449         ub->st_blksize = PAGE_SIZE;
1450         if (pipe->pipe_state & PIPE_DIRECTW)
1451                 ub->st_size = pipe->pipe_map.cnt;
1452         else
1453                 ub->st_size = pipe->pipe_buffer.cnt;
1454         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1455         ub->st_atim = pipe->pipe_atime;
1456         ub->st_mtim = pipe->pipe_mtime;
1457         ub->st_ctim = pipe->pipe_ctime;
1458         ub->st_uid = fp->f_cred->cr_uid;
1459         ub->st_gid = fp->f_cred->cr_gid;
1460         ub->st_dev = pipedev_ino;
1461         ub->st_ino = pipe->pipe_ino;
1462         /*
1463          * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1464          */
1465         return (0);
1466 }
1467
1468 /* ARGSUSED */
1469 static int
1470 pipe_close(fp, td)
1471         struct file *fp;
1472         struct thread *td;
1473 {
1474         struct pipe *cpipe = fp->f_data;
1475
1476         fp->f_ops = &badfileops;
1477         fp->f_data = NULL;
1478         funsetown(&cpipe->pipe_sigio);
1479         pipeclose(cpipe);
1480         return (0);
1481 }
1482
1483 static void
1484 pipe_free_kmem(cpipe)
1485         struct pipe *cpipe;
1486 {
1487
1488         KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1489             ("pipe_free_kmem: pipe mutex locked"));
1490
1491         if (cpipe->pipe_buffer.buffer != NULL) {
1492                 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1493                 vm_map_remove(pipe_map,
1494                     (vm_offset_t)cpipe->pipe_buffer.buffer,
1495                     (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1496                 cpipe->pipe_buffer.buffer = NULL;
1497         }
1498 #ifndef PIPE_NODIRECT
1499         {
1500                 cpipe->pipe_map.cnt = 0;
1501                 cpipe->pipe_map.pos = 0;
1502                 cpipe->pipe_map.npages = 0;
1503         }
1504 #endif
1505 }
1506
1507 /*
1508  * shutdown the pipe
1509  */
1510 static void
1511 pipeclose(cpipe)
1512         struct pipe *cpipe;
1513 {
1514         struct pipepair *pp;
1515         struct pipe *ppipe;
1516         ino_t ino;
1517
1518         KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1519
1520         PIPE_LOCK(cpipe);
1521         pipelock(cpipe, 0);
1522         pp = cpipe->pipe_pair;
1523
1524         pipeselwakeup(cpipe);
1525
1526         /*
1527          * If the other side is blocked, wake it up saying that
1528          * we want to close it down.
1529          */
1530         cpipe->pipe_state |= PIPE_EOF;
1531         while (cpipe->pipe_busy) {
1532                 wakeup(cpipe);
1533                 cpipe->pipe_state |= PIPE_WANT;
1534                 pipeunlock(cpipe);
1535                 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1536                 pipelock(cpipe, 0);
1537         }
1538
1539
1540         /*
1541          * Disconnect from peer, if any.
1542          */
1543         ppipe = cpipe->pipe_peer;
1544         if (ppipe->pipe_present == PIPE_ACTIVE) {
1545                 pipeselwakeup(ppipe);
1546
1547                 ppipe->pipe_state |= PIPE_EOF;
1548                 wakeup(ppipe);
1549                 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1550         }
1551
1552         /*
1553          * Mark this endpoint as free.  Release kmem resources.  We
1554          * don't mark this endpoint as unused until we've finished
1555          * doing that, or the pipe might disappear out from under
1556          * us.
1557          */
1558         PIPE_UNLOCK(cpipe);
1559         pipe_free_kmem(cpipe);
1560         PIPE_LOCK(cpipe);
1561         cpipe->pipe_present = PIPE_CLOSING;
1562         pipeunlock(cpipe);
1563
1564         /*
1565          * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1566          * PIPE_FINALIZED, that allows other end to free the
1567          * pipe_pair, only after the knotes are completely dismantled.
1568          */
1569         knlist_clear(&cpipe->pipe_sel.si_note, 1);
1570         cpipe->pipe_present = PIPE_FINALIZED;
1571         seldrain(&cpipe->pipe_sel);
1572         knlist_destroy(&cpipe->pipe_sel.si_note);
1573
1574         /*
1575          * Postpone the destroy of the fake inode number allocated for
1576          * our end, until pipe mtx is unlocked.
1577          */
1578         ino = cpipe->pipe_ino;
1579
1580         /*
1581          * If both endpoints are now closed, release the memory for the
1582          * pipe pair.  If not, unlock.
1583          */
1584         if (ppipe->pipe_present == PIPE_FINALIZED) {
1585                 PIPE_UNLOCK(cpipe);
1586 #ifdef MAC
1587                 mac_pipe_destroy(pp);
1588 #endif
1589                 uma_zfree(pipe_zone, cpipe->pipe_pair);
1590         } else
1591                 PIPE_UNLOCK(cpipe);
1592
1593         if (ino != 0 && ino != (ino_t)-1)
1594                 free_unr(pipeino_unr, ino);
1595 }
1596
1597 /*ARGSUSED*/
1598 static int
1599 pipe_kqfilter(struct file *fp, struct knote *kn)
1600 {
1601         struct pipe *cpipe;
1602
1603         cpipe = kn->kn_fp->f_data;
1604         PIPE_LOCK(cpipe);
1605         switch (kn->kn_filter) {
1606         case EVFILT_READ:
1607                 kn->kn_fop = &pipe_rfiltops;
1608                 break;
1609         case EVFILT_WRITE:
1610                 kn->kn_fop = &pipe_wfiltops;
1611                 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1612                         /* other end of pipe has been closed */
1613                         PIPE_UNLOCK(cpipe);
1614                         return (EPIPE);
1615                 }
1616                 cpipe = cpipe->pipe_peer;
1617                 break;
1618         default:
1619                 PIPE_UNLOCK(cpipe);
1620                 return (EINVAL);
1621         }
1622
1623         knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1624         PIPE_UNLOCK(cpipe);
1625         return (0);
1626 }
1627
1628 static void
1629 filt_pipedetach(struct knote *kn)
1630 {
1631         struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1632
1633         PIPE_LOCK(cpipe);
1634         if (kn->kn_filter == EVFILT_WRITE)
1635                 cpipe = cpipe->pipe_peer;
1636         knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1637         PIPE_UNLOCK(cpipe);
1638 }
1639
1640 /*ARGSUSED*/
1641 static int
1642 filt_piperead(struct knote *kn, long hint)
1643 {
1644         struct pipe *rpipe = kn->kn_fp->f_data;
1645         struct pipe *wpipe = rpipe->pipe_peer;
1646         int ret;
1647
1648         PIPE_LOCK(rpipe);
1649         kn->kn_data = rpipe->pipe_buffer.cnt;
1650         if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1651                 kn->kn_data = rpipe->pipe_map.cnt;
1652
1653         if ((rpipe->pipe_state & PIPE_EOF) ||
1654             wpipe->pipe_present != PIPE_ACTIVE ||
1655             (wpipe->pipe_state & PIPE_EOF)) {
1656                 kn->kn_flags |= EV_EOF;
1657                 PIPE_UNLOCK(rpipe);
1658                 return (1);
1659         }
1660         ret = kn->kn_data > 0;
1661         PIPE_UNLOCK(rpipe);
1662         return ret;
1663 }
1664
1665 /*ARGSUSED*/
1666 static int
1667 filt_pipewrite(struct knote *kn, long hint)
1668 {
1669         struct pipe *rpipe = kn->kn_fp->f_data;
1670         struct pipe *wpipe = rpipe->pipe_peer;
1671
1672         PIPE_LOCK(rpipe);
1673         if (wpipe->pipe_present != PIPE_ACTIVE ||
1674             (wpipe->pipe_state & PIPE_EOF)) {
1675                 kn->kn_data = 0;
1676                 kn->kn_flags |= EV_EOF;
1677                 PIPE_UNLOCK(rpipe);
1678                 return (1);
1679         }
1680         kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1681             (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1682         if (wpipe->pipe_state & PIPE_DIRECTW)
1683                 kn->kn_data = 0;
1684
1685         PIPE_UNLOCK(rpipe);
1686         return (kn->kn_data >= PIPE_BUF);
1687 }