]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/opencrypto/xform.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / opencrypto / xform.c
1 /*      $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $  */
2 /*-
3  * The authors of this code are John Ioannidis (ji@tla.org),
4  * Angelos D. Keromytis (kermit@csd.uch.gr) and
5  * Niels Provos (provos@physnet.uni-hamburg.de).
6  *
7  * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
8  * in November 1995.
9  *
10  * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
11  * by Angelos D. Keromytis.
12  *
13  * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
14  * and Niels Provos.
15  *
16  * Additional features in 1999 by Angelos D. Keromytis.
17  *
18  * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
19  * Angelos D. Keromytis and Niels Provos.
20  *
21  * Copyright (C) 2001, Angelos D. Keromytis.
22  *
23  * Permission to use, copy, and modify this software with or without fee
24  * is hereby granted, provided that this entire notice is included in
25  * all copies of any software which is or includes a copy or
26  * modification of this software.
27  * You may use this code under the GNU public license if you so wish. Please
28  * contribute changes back to the authors under this freer than GPL license
29  * so that we may further the use of strong encryption without limitations to
30  * all.
31  *
32  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
33  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
34  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
35  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
36  * PURPOSE.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/sysctl.h>
46 #include <sys/errno.h>
47 #include <sys/time.h>
48 #include <sys/kernel.h>
49 #include <machine/cpu.h>
50
51 #include <crypto/blowfish/blowfish.h>
52 #include <crypto/des/des.h>
53 #include <crypto/rijndael/rijndael.h>
54 #include <crypto/camellia/camellia.h>
55 #include <crypto/sha1.h>
56
57 #include <opencrypto/cast.h>
58 #include <opencrypto/deflate.h>
59 #include <opencrypto/rmd160.h>
60 #include <opencrypto/skipjack.h>
61
62 #include <sys/md5.h>
63
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66
67 static  int null_setkey(u_int8_t **, u_int8_t *, int);
68 static  int des1_setkey(u_int8_t **, u_int8_t *, int);
69 static  int des3_setkey(u_int8_t **, u_int8_t *, int);
70 static  int blf_setkey(u_int8_t **, u_int8_t *, int);
71 static  int cast5_setkey(u_int8_t **, u_int8_t *, int);
72 static  int skipjack_setkey(u_int8_t **, u_int8_t *, int);
73 static  int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
74 static  int aes_xts_setkey(u_int8_t **, u_int8_t *, int);
75 static  int cml_setkey(u_int8_t **, u_int8_t *, int);
76
77 static  void null_encrypt(caddr_t, u_int8_t *);
78 static  void des1_encrypt(caddr_t, u_int8_t *);
79 static  void des3_encrypt(caddr_t, u_int8_t *);
80 static  void blf_encrypt(caddr_t, u_int8_t *);
81 static  void cast5_encrypt(caddr_t, u_int8_t *);
82 static  void skipjack_encrypt(caddr_t, u_int8_t *);
83 static  void rijndael128_encrypt(caddr_t, u_int8_t *);
84 static  void aes_xts_encrypt(caddr_t, u_int8_t *);
85 static  void cml_encrypt(caddr_t, u_int8_t *);
86
87 static  void null_decrypt(caddr_t, u_int8_t *);
88 static  void des1_decrypt(caddr_t, u_int8_t *);
89 static  void des3_decrypt(caddr_t, u_int8_t *);
90 static  void blf_decrypt(caddr_t, u_int8_t *);
91 static  void cast5_decrypt(caddr_t, u_int8_t *);
92 static  void skipjack_decrypt(caddr_t, u_int8_t *);
93 static  void rijndael128_decrypt(caddr_t, u_int8_t *);
94 static  void aes_xts_decrypt(caddr_t, u_int8_t *);
95 static  void cml_decrypt(caddr_t, u_int8_t *);
96
97 static  void null_zerokey(u_int8_t **);
98 static  void des1_zerokey(u_int8_t **);
99 static  void des3_zerokey(u_int8_t **);
100 static  void blf_zerokey(u_int8_t **);
101 static  void cast5_zerokey(u_int8_t **);
102 static  void skipjack_zerokey(u_int8_t **);
103 static  void rijndael128_zerokey(u_int8_t **);
104 static  void aes_xts_zerokey(u_int8_t **);
105 static  void cml_zerokey(u_int8_t **);
106
107 static  void aes_xts_reinit(caddr_t, u_int8_t *);
108
109 static  void null_init(void *);
110 static  int null_update(void *, u_int8_t *, u_int16_t);
111 static  void null_final(u_int8_t *, void *);
112 static  int MD5Update_int(void *, u_int8_t *, u_int16_t);
113 static  void SHA1Init_int(void *);
114 static  int SHA1Update_int(void *, u_int8_t *, u_int16_t);
115 static  void SHA1Final_int(u_int8_t *, void *);
116 static  int RMD160Update_int(void *, u_int8_t *, u_int16_t);
117 static  int SHA256Update_int(void *, u_int8_t *, u_int16_t);
118 static  int SHA384Update_int(void *, u_int8_t *, u_int16_t);
119 static  int SHA512Update_int(void *, u_int8_t *, u_int16_t);
120
121 static  u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
122 static  u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
123
124 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
125
126 /* Encryption instances */
127 struct enc_xform enc_xform_null = {
128         CRYPTO_NULL_CBC, "NULL",
129         /* NB: blocksize of 4 is to generate a properly aligned ESP header */
130         NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
131         null_encrypt,
132         null_decrypt,
133         null_setkey,
134         null_zerokey,
135         NULL
136 };
137
138 struct enc_xform enc_xform_des = {
139         CRYPTO_DES_CBC, "DES",
140         DES_BLOCK_LEN, 8, 8,
141         des1_encrypt,
142         des1_decrypt,
143         des1_setkey,
144         des1_zerokey,
145         NULL
146 };
147
148 struct enc_xform enc_xform_3des = {
149         CRYPTO_3DES_CBC, "3DES",
150         DES3_BLOCK_LEN, 24, 24,
151         des3_encrypt,
152         des3_decrypt,
153         des3_setkey,
154         des3_zerokey,
155         NULL
156 };
157
158 struct enc_xform enc_xform_blf = {
159         CRYPTO_BLF_CBC, "Blowfish",
160         BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
161         blf_encrypt,
162         blf_decrypt,
163         blf_setkey,
164         blf_zerokey,
165         NULL
166 };
167
168 struct enc_xform enc_xform_cast5 = {
169         CRYPTO_CAST_CBC, "CAST-128",
170         CAST128_BLOCK_LEN, 5, 16,
171         cast5_encrypt,
172         cast5_decrypt,
173         cast5_setkey,
174         cast5_zerokey,
175         NULL
176 };
177
178 struct enc_xform enc_xform_skipjack = {
179         CRYPTO_SKIPJACK_CBC, "Skipjack",
180         SKIPJACK_BLOCK_LEN, 10, 10,
181         skipjack_encrypt,
182         skipjack_decrypt,
183         skipjack_setkey,
184         skipjack_zerokey,
185         NULL
186 };
187
188 struct enc_xform enc_xform_rijndael128 = {
189         CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
190         RIJNDAEL128_BLOCK_LEN, 8, 32,
191         rijndael128_encrypt,
192         rijndael128_decrypt,
193         rijndael128_setkey,
194         rijndael128_zerokey,
195         NULL
196 };
197
198 struct enc_xform enc_xform_aes_xts = {
199         CRYPTO_AES_XTS, "AES-XTS",
200         RIJNDAEL128_BLOCK_LEN, 32, 64,
201         aes_xts_encrypt,
202         aes_xts_decrypt,
203         aes_xts_setkey,
204         aes_xts_zerokey,
205         aes_xts_reinit
206 };
207
208 struct enc_xform enc_xform_arc4 = {
209         CRYPTO_ARC4, "ARC4",
210         1, 1, 32,
211         NULL,
212         NULL,
213         NULL,
214         NULL,
215         NULL
216 };
217
218 struct enc_xform enc_xform_camellia = {
219         CRYPTO_CAMELLIA_CBC, "Camellia",
220         CAMELLIA_BLOCK_LEN, 8, 32,
221         cml_encrypt,
222         cml_decrypt,
223         cml_setkey,
224         cml_zerokey,
225         NULL
226 };
227
228 /* Authentication instances */
229 struct auth_hash auth_hash_null = {
230         CRYPTO_NULL_HMAC, "NULL-HMAC",
231         0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int),     /* NB: context isn't used */
232         null_init, null_update, null_final
233 };
234
235 struct auth_hash auth_hash_hmac_md5 = {
236         CRYPTO_MD5_HMAC, "HMAC-MD5",
237         16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
238         (void (*) (void *)) MD5Init, MD5Update_int,
239         (void (*) (u_int8_t *, void *)) MD5Final
240 };
241
242 struct auth_hash auth_hash_hmac_sha1 = {
243         CRYPTO_SHA1_HMAC, "HMAC-SHA1",
244         20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
245         SHA1Init_int, SHA1Update_int, SHA1Final_int
246 };
247
248 struct auth_hash auth_hash_hmac_ripemd_160 = {
249         CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
250         20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
251         (void (*)(void *)) RMD160Init, RMD160Update_int,
252         (void (*)(u_int8_t *, void *)) RMD160Final
253 };
254
255 struct auth_hash auth_hash_key_md5 = {
256         CRYPTO_MD5_KPDK, "Keyed MD5",
257         0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
258         (void (*)(void *)) MD5Init, MD5Update_int,
259         (void (*)(u_int8_t *, void *)) MD5Final
260 };
261
262 struct auth_hash auth_hash_key_sha1 = {
263         CRYPTO_SHA1_KPDK, "Keyed SHA1",
264         0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
265         SHA1Init_int, SHA1Update_int, SHA1Final_int
266 };
267
268 struct auth_hash auth_hash_hmac_sha2_256 = {
269         CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
270         32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
271         (void (*)(void *)) SHA256_Init, SHA256Update_int,
272         (void (*)(u_int8_t *, void *)) SHA256_Final
273 };
274
275 struct auth_hash auth_hash_hmac_sha2_384 = {
276         CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
277         48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
278         (void (*)(void *)) SHA384_Init, SHA384Update_int,
279         (void (*)(u_int8_t *, void *)) SHA384_Final
280 };
281
282 struct auth_hash auth_hash_hmac_sha2_512 = {
283         CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
284         64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
285         (void (*)(void *)) SHA512_Init, SHA512Update_int,
286         (void (*)(u_int8_t *, void *)) SHA512_Final
287 };
288
289 /* Compression instance */
290 struct comp_algo comp_algo_deflate = {
291         CRYPTO_DEFLATE_COMP, "Deflate",
292         90, deflate_compress,
293         deflate_decompress
294 };
295
296 /*
297  * Encryption wrapper routines.
298  */
299 static void
300 null_encrypt(caddr_t key, u_int8_t *blk)
301 {
302 }
303 static void
304 null_decrypt(caddr_t key, u_int8_t *blk)
305 {
306 }
307 static int
308 null_setkey(u_int8_t **sched, u_int8_t *key, int len)
309 {
310         *sched = NULL;
311         return 0;
312 }
313 static void
314 null_zerokey(u_int8_t **sched)
315 {
316         *sched = NULL;
317 }
318
319 static void
320 des1_encrypt(caddr_t key, u_int8_t *blk)
321 {
322         des_cblock *cb = (des_cblock *) blk;
323         des_key_schedule *p = (des_key_schedule *) key;
324
325         des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
326 }
327
328 static void
329 des1_decrypt(caddr_t key, u_int8_t *blk)
330 {
331         des_cblock *cb = (des_cblock *) blk;
332         des_key_schedule *p = (des_key_schedule *) key;
333
334         des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
335 }
336
337 static int
338 des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
339 {
340         des_key_schedule *p;
341         int err;
342
343         p = malloc(sizeof (des_key_schedule),
344                 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
345         if (p != NULL) {
346                 des_set_key((des_cblock *) key, p[0]);
347                 err = 0;
348         } else
349                 err = ENOMEM;
350         *sched = (u_int8_t *) p;
351         return err;
352 }
353
354 static void
355 des1_zerokey(u_int8_t **sched)
356 {
357         bzero(*sched, sizeof (des_key_schedule));
358         free(*sched, M_CRYPTO_DATA);
359         *sched = NULL;
360 }
361
362 static void
363 des3_encrypt(caddr_t key, u_int8_t *blk)
364 {
365         des_cblock *cb = (des_cblock *) blk;
366         des_key_schedule *p = (des_key_schedule *) key;
367
368         des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
369 }
370
371 static void
372 des3_decrypt(caddr_t key, u_int8_t *blk)
373 {
374         des_cblock *cb = (des_cblock *) blk;
375         des_key_schedule *p = (des_key_schedule *) key;
376
377         des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
378 }
379
380 static int
381 des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
382 {
383         des_key_schedule *p;
384         int err;
385
386         p = malloc(3*sizeof (des_key_schedule),
387                 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
388         if (p != NULL) {
389                 des_set_key((des_cblock *)(key +  0), p[0]);
390                 des_set_key((des_cblock *)(key +  8), p[1]);
391                 des_set_key((des_cblock *)(key + 16), p[2]);
392                 err = 0;
393         } else
394                 err = ENOMEM;
395         *sched = (u_int8_t *) p;
396         return err;
397 }
398
399 static void
400 des3_zerokey(u_int8_t **sched)
401 {
402         bzero(*sched, 3*sizeof (des_key_schedule));
403         free(*sched, M_CRYPTO_DATA);
404         *sched = NULL;
405 }
406
407 static void
408 blf_encrypt(caddr_t key, u_int8_t *blk)
409 {
410         BF_LONG t[2];
411
412         memcpy(t, blk, sizeof (t));
413         t[0] = ntohl(t[0]);
414         t[1] = ntohl(t[1]);
415         /* NB: BF_encrypt expects the block in host order! */
416         BF_encrypt(t, (BF_KEY *) key);
417         t[0] = htonl(t[0]);
418         t[1] = htonl(t[1]);
419         memcpy(blk, t, sizeof (t));
420 }
421
422 static void
423 blf_decrypt(caddr_t key, u_int8_t *blk)
424 {
425         BF_LONG t[2];
426
427         memcpy(t, blk, sizeof (t));
428         t[0] = ntohl(t[0]);
429         t[1] = ntohl(t[1]);
430         /* NB: BF_decrypt expects the block in host order! */
431         BF_decrypt(t, (BF_KEY *) key);
432         t[0] = htonl(t[0]);
433         t[1] = htonl(t[1]);
434         memcpy(blk, t, sizeof (t));
435 }
436
437 static int
438 blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
439 {
440         int err;
441
442         *sched = malloc(sizeof(BF_KEY),
443                 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
444         if (*sched != NULL) {
445                 BF_set_key((BF_KEY *) *sched, len, key);
446                 err = 0;
447         } else
448                 err = ENOMEM;
449         return err;
450 }
451
452 static void
453 blf_zerokey(u_int8_t **sched)
454 {
455         bzero(*sched, sizeof(BF_KEY));
456         free(*sched, M_CRYPTO_DATA);
457         *sched = NULL;
458 }
459
460 static void
461 cast5_encrypt(caddr_t key, u_int8_t *blk)
462 {
463         cast_encrypt((cast_key *) key, blk, blk);
464 }
465
466 static void
467 cast5_decrypt(caddr_t key, u_int8_t *blk)
468 {
469         cast_decrypt((cast_key *) key, blk, blk);
470 }
471
472 static int
473 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
474 {
475         int err;
476
477         *sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
478         if (*sched != NULL) {
479                 cast_setkey((cast_key *)*sched, key, len);
480                 err = 0;
481         } else
482                 err = ENOMEM;
483         return err;
484 }
485
486 static void
487 cast5_zerokey(u_int8_t **sched)
488 {
489         bzero(*sched, sizeof(cast_key));
490         free(*sched, M_CRYPTO_DATA);
491         *sched = NULL;
492 }
493
494 static void
495 skipjack_encrypt(caddr_t key, u_int8_t *blk)
496 {
497         skipjack_forwards(blk, blk, (u_int8_t **) key);
498 }
499
500 static void
501 skipjack_decrypt(caddr_t key, u_int8_t *blk)
502 {
503         skipjack_backwards(blk, blk, (u_int8_t **) key);
504 }
505
506 static int
507 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
508 {
509         int err;
510
511         /* NB: allocate all the memory that's needed at once */
512         *sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
513                 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
514         if (*sched != NULL) {
515                 u_int8_t** key_tables = (u_int8_t**) *sched;
516                 u_int8_t* table = (u_int8_t*) &key_tables[10];
517                 int k;
518
519                 for (k = 0; k < 10; k++) {
520                         key_tables[k] = table;
521                         table += 0x100;
522                 }
523                 subkey_table_gen(key, (u_int8_t **) *sched);
524                 err = 0;
525         } else
526                 err = ENOMEM;
527         return err;
528 }
529
530 static void
531 skipjack_zerokey(u_int8_t **sched)
532 {
533         bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
534         free(*sched, M_CRYPTO_DATA);
535         *sched = NULL;
536 }
537
538 static void
539 rijndael128_encrypt(caddr_t key, u_int8_t *blk)
540 {
541         rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
542 }
543
544 static void
545 rijndael128_decrypt(caddr_t key, u_int8_t *blk)
546 {
547         rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
548             (u_char *) blk);
549 }
550
551 static int
552 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
553 {
554         int err;
555
556         if (len != 16 && len != 24 && len != 32)
557                 return (EINVAL);
558         *sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
559             M_NOWAIT|M_ZERO);
560         if (*sched != NULL) {
561                 rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
562                     len * 8);
563                 err = 0;
564         } else
565                 err = ENOMEM;
566         return err;
567 }
568
569 static void
570 rijndael128_zerokey(u_int8_t **sched)
571 {
572         bzero(*sched, sizeof(rijndael_ctx));
573         free(*sched, M_CRYPTO_DATA);
574         *sched = NULL;
575 }
576
577 #define AES_XTS_BLOCKSIZE       16
578 #define AES_XTS_IVSIZE          8
579 #define AES_XTS_ALPHA           0x87    /* GF(2^128) generator polynomial */
580
581 struct aes_xts_ctx {
582         rijndael_ctx key1;
583         rijndael_ctx key2;
584         u_int8_t tweak[AES_XTS_BLOCKSIZE];
585 };
586
587 void
588 aes_xts_reinit(caddr_t key, u_int8_t *iv)
589 {
590         struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
591         u_int64_t blocknum;
592         u_int i;
593
594         /*
595          * Prepare tweak as E_k2(IV). IV is specified as LE representation
596          * of a 64-bit block number which we allow to be passed in directly.
597          */
598         bcopy(iv, &blocknum, AES_XTS_IVSIZE);
599         for (i = 0; i < AES_XTS_IVSIZE; i++) {
600                 ctx->tweak[i] = blocknum & 0xff;
601                 blocknum >>= 8;
602         }
603         /* Last 64 bits of IV are always zero */
604         bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
605
606         rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
607 }
608
609 static void
610 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
611 {
612         u_int8_t block[AES_XTS_BLOCKSIZE];
613         u_int i, carry_in, carry_out;
614
615         for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
616                 block[i] = data[i] ^ ctx->tweak[i];
617
618         if (do_encrypt)
619                 rijndael_encrypt(&ctx->key1, block, data);
620         else
621                 rijndael_decrypt(&ctx->key1, block, data);
622
623         for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
624                 data[i] ^= ctx->tweak[i];
625
626         /* Exponentiate tweak */
627         carry_in = 0;
628         for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
629                 carry_out = ctx->tweak[i] & 0x80;
630                 ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
631                 carry_in = carry_out;
632         }
633         if (carry_in)
634                 ctx->tweak[0] ^= AES_XTS_ALPHA;
635         bzero(block, sizeof(block));
636 }
637
638 void
639 aes_xts_encrypt(caddr_t key, u_int8_t *data)
640 {
641         aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
642 }
643
644 void
645 aes_xts_decrypt(caddr_t key, u_int8_t *data)
646 {
647         aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
648 }
649
650 int
651 aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
652 {
653         struct aes_xts_ctx *ctx;
654
655         if (len != 32 && len != 64)
656                 return EINVAL;
657
658         *sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
659             M_NOWAIT | M_ZERO);
660         if (*sched == NULL)
661                 return ENOMEM;
662         ctx = (struct aes_xts_ctx *)*sched;
663
664         rijndael_set_key(&ctx->key1, key, len * 4);
665         rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
666
667         return 0;
668 }
669
670 void
671 aes_xts_zerokey(u_int8_t **sched)
672 {
673         bzero(*sched, sizeof(struct aes_xts_ctx));
674         free(*sched, M_CRYPTO_DATA);
675         *sched = NULL;
676 }
677
678 static void
679 cml_encrypt(caddr_t key, u_int8_t *blk)
680 {
681         camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
682 }
683
684 static void
685 cml_decrypt(caddr_t key, u_int8_t *blk)
686 {
687         camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
688             (u_char *) blk);
689 }
690
691 static int
692 cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
693 {
694         int err;
695
696         if (len != 16 && len != 24 && len != 32)
697                 return (EINVAL);
698         *sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
699             M_NOWAIT|M_ZERO);
700         if (*sched != NULL) {
701                 camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
702                     len * 8);
703                 err = 0;
704         } else
705                 err = ENOMEM;
706         return err;
707 }
708
709 static void
710 cml_zerokey(u_int8_t **sched)
711 {
712         bzero(*sched, sizeof(camellia_ctx));
713         free(*sched, M_CRYPTO_DATA);
714         *sched = NULL;
715 }
716
717 /*
718  * And now for auth.
719  */
720
721 static void
722 null_init(void *ctx)
723 {
724 }
725
726 static int
727 null_update(void *ctx, u_int8_t *buf, u_int16_t len)
728 {
729         return 0;
730 }
731
732 static void
733 null_final(u_int8_t *buf, void *ctx)
734 {
735         if (buf != (u_int8_t *) 0)
736                 bzero(buf, 12);
737 }
738
739 static int
740 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
741 {
742         RMD160Update(ctx, buf, len);
743         return 0;
744 }
745
746 static int
747 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
748 {
749         MD5Update(ctx, buf, len);
750         return 0;
751 }
752
753 static void
754 SHA1Init_int(void *ctx)
755 {
756         SHA1Init(ctx);
757 }
758
759 static int
760 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
761 {
762         SHA1Update(ctx, buf, len);
763         return 0;
764 }
765
766 static void
767 SHA1Final_int(u_int8_t *blk, void *ctx)
768 {
769         SHA1Final(blk, ctx);
770 }
771
772 static int
773 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
774 {
775         SHA256_Update(ctx, buf, len);
776         return 0;
777 }
778
779 static int
780 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
781 {
782         SHA384_Update(ctx, buf, len);
783         return 0;
784 }
785
786 static int
787 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
788 {
789         SHA512_Update(ctx, buf, len);
790         return 0;
791 }
792
793 /*
794  * And compression
795  */
796
797 static u_int32_t
798 deflate_compress(data, size, out)
799         u_int8_t *data;
800         u_int32_t size;
801         u_int8_t **out;
802 {
803         return deflate_global(data, size, 0, out);
804 }
805
806 static u_int32_t
807 deflate_decompress(data, size, out)
808         u_int8_t *data;
809         u_int32_t size;
810         u_int8_t **out;
811 {
812         return deflate_global(data, size, 1, out);
813 }