]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/vm/vm_fault.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
106
107 #define PFBAK 4
108 #define PFFOR 4
109 #define PAGEORDER_SIZE (PFBAK+PFFOR)
110
111 static int prefault_pageorder[] = {
112         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
113         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
114         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
115         -4 * PAGE_SIZE, 4 * PAGE_SIZE
116 };
117
118 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
119 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
120
121 #define VM_FAULT_READ_BEHIND    8
122 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
123 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
124 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
125 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
126
127 struct faultstate {
128         vm_page_t m;
129         vm_object_t object;
130         vm_pindex_t pindex;
131         vm_page_t first_m;
132         vm_object_t     first_object;
133         vm_pindex_t first_pindex;
134         vm_map_t map;
135         vm_map_entry_t entry;
136         int lookup_still_valid;
137         struct vnode *vp;
138         int vfslocked;
139 };
140
141 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
142
143 static inline void
144 release_page(struct faultstate *fs)
145 {
146
147         vm_page_wakeup(fs->m);
148         vm_page_lock(fs->m);
149         vm_page_deactivate(fs->m);
150         vm_page_unlock(fs->m);
151         fs->m = NULL;
152 }
153
154 static inline void
155 unlock_map(struct faultstate *fs)
156 {
157
158         if (fs->lookup_still_valid) {
159                 vm_map_lookup_done(fs->map, fs->entry);
160                 fs->lookup_still_valid = FALSE;
161         }
162 }
163
164 static void
165 unlock_and_deallocate(struct faultstate *fs)
166 {
167
168         vm_object_pip_wakeup(fs->object);
169         VM_OBJECT_UNLOCK(fs->object);
170         if (fs->object != fs->first_object) {
171                 VM_OBJECT_LOCK(fs->first_object);
172                 vm_page_lock(fs->first_m);
173                 vm_page_free(fs->first_m);
174                 vm_page_unlock(fs->first_m);
175                 vm_object_pip_wakeup(fs->first_object);
176                 VM_OBJECT_UNLOCK(fs->first_object);
177                 fs->first_m = NULL;
178         }
179         vm_object_deallocate(fs->first_object);
180         unlock_map(fs); 
181         if (fs->vp != NULL) { 
182                 vput(fs->vp);
183                 fs->vp = NULL;
184         }
185         VFS_UNLOCK_GIANT(fs->vfslocked);
186         fs->vfslocked = 0;
187 }
188
189 /*
190  * TRYPAGER - used by vm_fault to calculate whether the pager for the
191  *            current object *might* contain the page.
192  *
193  *            default objects are zero-fill, there is no real pager.
194  */
195 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
196                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
197
198 /*
199  *      vm_fault:
200  *
201  *      Handle a page fault occurring at the given address,
202  *      requiring the given permissions, in the map specified.
203  *      If successful, the page is inserted into the
204  *      associated physical map.
205  *
206  *      NOTE: the given address should be truncated to the
207  *      proper page address.
208  *
209  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
210  *      a standard error specifying why the fault is fatal is returned.
211  *
212  *      The map in question must be referenced, and remains so.
213  *      Caller may hold no locks.
214  */
215 int
216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
217     int fault_flags)
218 {
219         struct thread *td;
220         int result;
221
222         td = curthread;
223         if ((td->td_pflags & TDP_NOFAULTING) != 0)
224                 return (KERN_PROTECTION_FAILURE);
225 #ifdef KTRACE
226         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
227                 ktrfault(vaddr, fault_type);
228 #endif
229         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
230             NULL);
231 #ifdef KTRACE
232         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
233                 ktrfaultend(result);
234 #endif
235         return (result);
236 }
237
238 int
239 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
240     int fault_flags, vm_page_t *m_hold)
241 {
242         vm_prot_t prot;
243         long ahead, behind;
244         int alloc_req, era, faultcount, nera, reqpage, result;
245         boolean_t growstack, is_first_object_locked, wired;
246         int map_generation;
247         vm_object_t next_object;
248         vm_page_t marray[VM_FAULT_READ_MAX];
249         int hardfault;
250         struct faultstate fs;
251         struct vnode *vp;
252         int locked, error;
253
254         hardfault = 0;
255         growstack = TRUE;
256         PCPU_INC(cnt.v_vm_faults);
257         fs.vp = NULL;
258         fs.vfslocked = 0;
259         faultcount = reqpage = 0;
260
261 RetryFault:;
262
263         /*
264          * Find the backing store object and offset into it to begin the
265          * search.
266          */
267         fs.map = map;
268         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
269             &fs.first_object, &fs.first_pindex, &prot, &wired);
270         if (result != KERN_SUCCESS) {
271                 if (growstack && result == KERN_INVALID_ADDRESS &&
272                     map != kernel_map) {
273                         result = vm_map_growstack(curproc, vaddr);
274                         if (result != KERN_SUCCESS)
275                                 return (KERN_FAILURE);
276                         growstack = FALSE;
277                         goto RetryFault;
278                 }
279                 return (result);
280         }
281
282         map_generation = fs.map->timestamp;
283
284         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
285                 panic("vm_fault: fault on nofault entry, addr: %lx",
286                     (u_long)vaddr);
287         }
288
289         /*
290          * Make a reference to this object to prevent its disposal while we
291          * are messing with it.  Once we have the reference, the map is free
292          * to be diddled.  Since objects reference their shadows (and copies),
293          * they will stay around as well.
294          *
295          * Bump the paging-in-progress count to prevent size changes (e.g. 
296          * truncation operations) during I/O.  This must be done after
297          * obtaining the vnode lock in order to avoid possible deadlocks.
298          */
299         VM_OBJECT_LOCK(fs.first_object);
300         vm_object_reference_locked(fs.first_object);
301         vm_object_pip_add(fs.first_object, 1);
302
303         fs.lookup_still_valid = TRUE;
304
305         if (wired)
306                 fault_type = prot | (fault_type & VM_PROT_COPY);
307
308         fs.first_m = NULL;
309
310         /*
311          * Search for the page at object/offset.
312          */
313         fs.object = fs.first_object;
314         fs.pindex = fs.first_pindex;
315         while (TRUE) {
316                 /*
317                  * If the object is dead, we stop here
318                  */
319                 if (fs.object->flags & OBJ_DEAD) {
320                         unlock_and_deallocate(&fs);
321                         return (KERN_PROTECTION_FAILURE);
322                 }
323
324                 /*
325                  * See if page is resident
326                  */
327                 fs.m = vm_page_lookup(fs.object, fs.pindex);
328                 if (fs.m != NULL) {
329                         /* 
330                          * check for page-based copy on write.
331                          * We check fs.object == fs.first_object so
332                          * as to ensure the legacy COW mechanism is
333                          * used when the page in question is part of
334                          * a shadow object.  Otherwise, vm_page_cowfault()
335                          * removes the page from the backing object, 
336                          * which is not what we want.
337                          */
338                         vm_page_lock(fs.m);
339                         if ((fs.m->cow) && 
340                             (fault_type & VM_PROT_WRITE) &&
341                             (fs.object == fs.first_object)) {
342                                 vm_page_cowfault(fs.m);
343                                 unlock_and_deallocate(&fs);
344                                 goto RetryFault;
345                         }
346
347                         /*
348                          * Wait/Retry if the page is busy.  We have to do this
349                          * if the page is busy via either VPO_BUSY or 
350                          * vm_page_t->busy because the vm_pager may be using
351                          * vm_page_t->busy for pageouts ( and even pageins if
352                          * it is the vnode pager ), and we could end up trying
353                          * to pagein and pageout the same page simultaneously.
354                          *
355                          * We can theoretically allow the busy case on a read
356                          * fault if the page is marked valid, but since such
357                          * pages are typically already pmap'd, putting that
358                          * special case in might be more effort then it is 
359                          * worth.  We cannot under any circumstances mess
360                          * around with a vm_page_t->busy page except, perhaps,
361                          * to pmap it.
362                          */
363                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
364                                 /*
365                                  * Reference the page before unlocking and
366                                  * sleeping so that the page daemon is less
367                                  * likely to reclaim it. 
368                                  */
369                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
370                                 vm_page_unlock(fs.m);
371                                 if (fs.object != fs.first_object) {
372                                         if (!VM_OBJECT_TRYLOCK(
373                                             fs.first_object)) {
374                                                 VM_OBJECT_UNLOCK(fs.object);
375                                                 VM_OBJECT_LOCK(fs.first_object);
376                                                 VM_OBJECT_LOCK(fs.object);
377                                         }
378                                         vm_page_lock(fs.first_m);
379                                         vm_page_free(fs.first_m);
380                                         vm_page_unlock(fs.first_m);
381                                         vm_object_pip_wakeup(fs.first_object);
382                                         VM_OBJECT_UNLOCK(fs.first_object);
383                                         fs.first_m = NULL;
384                                 }
385                                 unlock_map(&fs);
386                                 if (fs.m == vm_page_lookup(fs.object,
387                                     fs.pindex)) {
388                                         vm_page_sleep_if_busy(fs.m, TRUE,
389                                             "vmpfw");
390                                 }
391                                 vm_object_pip_wakeup(fs.object);
392                                 VM_OBJECT_UNLOCK(fs.object);
393                                 PCPU_INC(cnt.v_intrans);
394                                 vm_object_deallocate(fs.first_object);
395                                 goto RetryFault;
396                         }
397                         vm_pageq_remove(fs.m);
398                         vm_page_unlock(fs.m);
399
400                         /*
401                          * Mark page busy for other processes, and the 
402                          * pagedaemon.  If it still isn't completely valid
403                          * (readable), jump to readrest, else break-out ( we
404                          * found the page ).
405                          */
406                         vm_page_busy(fs.m);
407                         if (fs.m->valid != VM_PAGE_BITS_ALL)
408                                 goto readrest;
409                         break;
410                 }
411
412                 /*
413                  * Page is not resident, If this is the search termination
414                  * or the pager might contain the page, allocate a new page.
415                  */
416                 if (TRYPAGER || fs.object == fs.first_object) {
417                         if (fs.pindex >= fs.object->size) {
418                                 unlock_and_deallocate(&fs);
419                                 return (KERN_PROTECTION_FAILURE);
420                         }
421
422                         /*
423                          * Allocate a new page for this object/offset pair.
424                          *
425                          * Unlocked read of the p_flag is harmless. At
426                          * worst, the P_KILLED might be not observed
427                          * there, and allocation can fail, causing
428                          * restart and new reading of the p_flag.
429                          */
430                         fs.m = NULL;
431                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
432 #if VM_NRESERVLEVEL > 0
433                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
434                                         fs.object->flags |= OBJ_COLORED;
435                                         fs.object->pg_color = atop(vaddr) -
436                                             fs.pindex;
437                                 }
438 #endif
439                                 alloc_req = P_KILLED(curproc) ?
440                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
441                                 if (fs.object->type != OBJT_VNODE &&
442                                     fs.object->backing_object == NULL)
443                                         alloc_req |= VM_ALLOC_ZERO;
444                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
445                                     alloc_req);
446                         }
447                         if (fs.m == NULL) {
448                                 unlock_and_deallocate(&fs);
449                                 VM_WAITPFAULT;
450                                 goto RetryFault;
451                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
452                                 break;
453                 }
454
455 readrest:
456                 /*
457                  * We have found a valid page or we have allocated a new page.
458                  * The page thus may not be valid or may not be entirely 
459                  * valid.
460                  *
461                  * Attempt to fault-in the page if there is a chance that the
462                  * pager has it, and potentially fault in additional pages
463                  * at the same time.
464                  */
465                 if (TRYPAGER) {
466                         int rv;
467                         u_char behavior = vm_map_entry_behavior(fs.entry);
468
469                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
470                             P_KILLED(curproc)) {
471                                 behind = 0;
472                                 ahead = 0;
473                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
474                                 behind = 0;
475                                 ahead = atop(fs.entry->end - vaddr) - 1;
476                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
477                                         ahead = VM_FAULT_READ_AHEAD_MAX;
478                                 if (fs.pindex == fs.entry->next_read)
479                                         vm_fault_cache_behind(&fs,
480                                             VM_FAULT_READ_MAX);
481                         } else {
482                                 /*
483                                  * If this is a sequential page fault, then
484                                  * arithmetically increase the number of pages
485                                  * in the read-ahead window.  Otherwise, reset
486                                  * the read-ahead window to its smallest size.
487                                  */
488                                 behind = atop(vaddr - fs.entry->start);
489                                 if (behind > VM_FAULT_READ_BEHIND)
490                                         behind = VM_FAULT_READ_BEHIND;
491                                 ahead = atop(fs.entry->end - vaddr) - 1;
492                                 era = fs.entry->read_ahead;
493                                 if (fs.pindex == fs.entry->next_read) {
494                                         nera = era + behind;
495                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
496                                                 nera = VM_FAULT_READ_AHEAD_MAX;
497                                         behind = 0;
498                                         if (ahead > nera)
499                                                 ahead = nera;
500                                         if (era == VM_FAULT_READ_AHEAD_MAX)
501                                                 vm_fault_cache_behind(&fs,
502                                                     VM_FAULT_CACHE_BEHIND);
503                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
504                                         ahead = VM_FAULT_READ_AHEAD_MIN;
505                                 if (era != ahead)
506                                         fs.entry->read_ahead = ahead;
507                         }
508
509                         /*
510                          * Call the pager to retrieve the data, if any, after
511                          * releasing the lock on the map.  We hold a ref on
512                          * fs.object and the pages are VPO_BUSY'd.
513                          */
514                         unlock_map(&fs);
515
516 vnode_lock:
517                         if (fs.object->type == OBJT_VNODE) {
518                                 vp = fs.object->handle;
519                                 if (vp == fs.vp)
520                                         goto vnode_locked;
521                                 else if (fs.vp != NULL) {
522                                         vput(fs.vp);
523                                         fs.vp = NULL;
524                                 }
525                                 locked = VOP_ISLOCKED(vp);
526
527                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
528                                         fs.vfslocked = 1;
529                                         if (!mtx_trylock(&Giant)) {
530                                                 VM_OBJECT_UNLOCK(fs.object);
531                                                 mtx_lock(&Giant);
532                                                 VM_OBJECT_LOCK(fs.object);
533                                                 goto vnode_lock;
534                                         }
535                                 }
536                                 if (locked != LK_EXCLUSIVE)
537                                         locked = LK_SHARED;
538                                 /* Do not sleep for vnode lock while fs.m is busy */
539                                 error = vget(vp, locked | LK_CANRECURSE |
540                                     LK_NOWAIT, curthread);
541                                 if (error != 0) {
542                                         int vfslocked;
543
544                                         vfslocked = fs.vfslocked;
545                                         fs.vfslocked = 0; /* Keep Giant */
546                                         vhold(vp);
547                                         release_page(&fs);
548                                         unlock_and_deallocate(&fs);
549                                         error = vget(vp, locked | LK_RETRY |
550                                             LK_CANRECURSE, curthread);
551                                         vdrop(vp);
552                                         fs.vp = vp;
553                                         fs.vfslocked = vfslocked;
554                                         KASSERT(error == 0,
555                                             ("vm_fault: vget failed"));
556                                         goto RetryFault;
557                                 }
558                                 fs.vp = vp;
559                         }
560 vnode_locked:
561                         KASSERT(fs.vp == NULL || !fs.map->system_map,
562                             ("vm_fault: vnode-backed object mapped by system map"));
563
564                         /*
565                          * now we find out if any other pages should be paged
566                          * in at this time this routine checks to see if the
567                          * pages surrounding this fault reside in the same
568                          * object as the page for this fault.  If they do,
569                          * then they are faulted in also into the object.  The
570                          * array "marray" returned contains an array of
571                          * vm_page_t structs where one of them is the
572                          * vm_page_t passed to the routine.  The reqpage
573                          * return value is the index into the marray for the
574                          * vm_page_t passed to the routine.
575                          *
576                          * fs.m plus the additional pages are VPO_BUSY'd.
577                          */
578                         faultcount = vm_fault_additional_pages(
579                             fs.m, behind, ahead, marray, &reqpage);
580
581                         rv = faultcount ?
582                             vm_pager_get_pages(fs.object, marray, faultcount,
583                                 reqpage) : VM_PAGER_FAIL;
584
585                         if (rv == VM_PAGER_OK) {
586                                 /*
587                                  * Found the page. Leave it busy while we play
588                                  * with it.
589                                  */
590
591                                 /*
592                                  * Relookup in case pager changed page. Pager
593                                  * is responsible for disposition of old page
594                                  * if moved.
595                                  */
596                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
597                                 if (!fs.m) {
598                                         unlock_and_deallocate(&fs);
599                                         goto RetryFault;
600                                 }
601
602                                 hardfault++;
603                                 break; /* break to PAGE HAS BEEN FOUND */
604                         }
605                         /*
606                          * Remove the bogus page (which does not exist at this
607                          * object/offset); before doing so, we must get back
608                          * our object lock to preserve our invariant.
609                          *
610                          * Also wake up any other process that may want to bring
611                          * in this page.
612                          *
613                          * If this is the top-level object, we must leave the
614                          * busy page to prevent another process from rushing
615                          * past us, and inserting the page in that object at
616                          * the same time that we are.
617                          */
618                         if (rv == VM_PAGER_ERROR)
619                                 printf("vm_fault: pager read error, pid %d (%s)\n",
620                                     curproc->p_pid, curproc->p_comm);
621                         /*
622                          * Data outside the range of the pager or an I/O error
623                          */
624                         /*
625                          * XXX - the check for kernel_map is a kludge to work
626                          * around having the machine panic on a kernel space
627                          * fault w/ I/O error.
628                          */
629                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
630                                 (rv == VM_PAGER_BAD)) {
631                                 vm_page_lock(fs.m);
632                                 vm_page_free(fs.m);
633                                 vm_page_unlock(fs.m);
634                                 fs.m = NULL;
635                                 unlock_and_deallocate(&fs);
636                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
637                         }
638                         if (fs.object != fs.first_object) {
639                                 vm_page_lock(fs.m);
640                                 vm_page_free(fs.m);
641                                 vm_page_unlock(fs.m);
642                                 fs.m = NULL;
643                                 /*
644                                  * XXX - we cannot just fall out at this
645                                  * point, m has been freed and is invalid!
646                                  */
647                         }
648                 }
649
650                 /*
651                  * We get here if the object has default pager (or unwiring) 
652                  * or the pager doesn't have the page.
653                  */
654                 if (fs.object == fs.first_object)
655                         fs.first_m = fs.m;
656
657                 /*
658                  * Move on to the next object.  Lock the next object before
659                  * unlocking the current one.
660                  */
661                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
662                 next_object = fs.object->backing_object;
663                 if (next_object == NULL) {
664                         /*
665                          * If there's no object left, fill the page in the top
666                          * object with zeros.
667                          */
668                         if (fs.object != fs.first_object) {
669                                 vm_object_pip_wakeup(fs.object);
670                                 VM_OBJECT_UNLOCK(fs.object);
671
672                                 fs.object = fs.first_object;
673                                 fs.pindex = fs.first_pindex;
674                                 fs.m = fs.first_m;
675                                 VM_OBJECT_LOCK(fs.object);
676                         }
677                         fs.first_m = NULL;
678
679                         /*
680                          * Zero the page if necessary and mark it valid.
681                          */
682                         if ((fs.m->flags & PG_ZERO) == 0) {
683                                 pmap_zero_page(fs.m);
684                         } else {
685                                 PCPU_INC(cnt.v_ozfod);
686                         }
687                         PCPU_INC(cnt.v_zfod);
688                         fs.m->valid = VM_PAGE_BITS_ALL;
689                         break;  /* break to PAGE HAS BEEN FOUND */
690                 } else {
691                         KASSERT(fs.object != next_object,
692                             ("object loop %p", next_object));
693                         VM_OBJECT_LOCK(next_object);
694                         vm_object_pip_add(next_object, 1);
695                         if (fs.object != fs.first_object)
696                                 vm_object_pip_wakeup(fs.object);
697                         VM_OBJECT_UNLOCK(fs.object);
698                         fs.object = next_object;
699                 }
700         }
701
702         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
703             ("vm_fault: not busy after main loop"));
704
705         /*
706          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
707          * is held.]
708          */
709
710         /*
711          * If the page is being written, but isn't already owned by the
712          * top-level object, we have to copy it into a new page owned by the
713          * top-level object.
714          */
715         if (fs.object != fs.first_object) {
716                 /*
717                  * We only really need to copy if we want to write it.
718                  */
719                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
720                         /*
721                          * This allows pages to be virtually copied from a 
722                          * backing_object into the first_object, where the 
723                          * backing object has no other refs to it, and cannot
724                          * gain any more refs.  Instead of a bcopy, we just 
725                          * move the page from the backing object to the 
726                          * first object.  Note that we must mark the page 
727                          * dirty in the first object so that it will go out 
728                          * to swap when needed.
729                          */
730                         is_first_object_locked = FALSE;
731                         if (
732                                 /*
733                                  * Only one shadow object
734                                  */
735                                 (fs.object->shadow_count == 1) &&
736                                 /*
737                                  * No COW refs, except us
738                                  */
739                                 (fs.object->ref_count == 1) &&
740                                 /*
741                                  * No one else can look this object up
742                                  */
743                                 (fs.object->handle == NULL) &&
744                                 /*
745                                  * No other ways to look the object up
746                                  */
747                                 ((fs.object->type == OBJT_DEFAULT) ||
748                                  (fs.object->type == OBJT_SWAP)) &&
749                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
750                                 /*
751                                  * We don't chase down the shadow chain
752                                  */
753                             fs.object == fs.first_object->backing_object) {
754                                 /*
755                                  * get rid of the unnecessary page
756                                  */
757                                 vm_page_lock(fs.first_m);
758                                 vm_page_free(fs.first_m);
759                                 vm_page_unlock(fs.first_m);
760                                 /*
761                                  * grab the page and put it into the 
762                                  * process'es object.  The page is 
763                                  * automatically made dirty.
764                                  */
765                                 vm_page_lock(fs.m);
766                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
767                                 vm_page_unlock(fs.m);
768                                 vm_page_busy(fs.m);
769                                 fs.first_m = fs.m;
770                                 fs.m = NULL;
771                                 PCPU_INC(cnt.v_cow_optim);
772                         } else {
773                                 /*
774                                  * Oh, well, lets copy it.
775                                  */
776                                 pmap_copy_page(fs.m, fs.first_m);
777                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
778                                 if (wired && (fault_flags &
779                                     VM_FAULT_CHANGE_WIRING) == 0) {
780                                         vm_page_lock(fs.first_m);
781                                         vm_page_wire(fs.first_m);
782                                         vm_page_unlock(fs.first_m);
783                                         
784                                         vm_page_lock(fs.m);
785                                         vm_page_unwire(fs.m, FALSE);
786                                         vm_page_unlock(fs.m);
787                                 }
788                                 /*
789                                  * We no longer need the old page or object.
790                                  */
791                                 release_page(&fs);
792                         }
793                         /*
794                          * fs.object != fs.first_object due to above 
795                          * conditional
796                          */
797                         vm_object_pip_wakeup(fs.object);
798                         VM_OBJECT_UNLOCK(fs.object);
799                         /*
800                          * Only use the new page below...
801                          */
802                         fs.object = fs.first_object;
803                         fs.pindex = fs.first_pindex;
804                         fs.m = fs.first_m;
805                         if (!is_first_object_locked)
806                                 VM_OBJECT_LOCK(fs.object);
807                         PCPU_INC(cnt.v_cow_faults);
808                         curthread->td_cow++;
809                 } else {
810                         prot &= ~VM_PROT_WRITE;
811                 }
812         }
813
814         /*
815          * We must verify that the maps have not changed since our last
816          * lookup.
817          */
818         if (!fs.lookup_still_valid) {
819                 vm_object_t retry_object;
820                 vm_pindex_t retry_pindex;
821                 vm_prot_t retry_prot;
822
823                 if (!vm_map_trylock_read(fs.map)) {
824                         release_page(&fs);
825                         unlock_and_deallocate(&fs);
826                         goto RetryFault;
827                 }
828                 fs.lookup_still_valid = TRUE;
829                 if (fs.map->timestamp != map_generation) {
830                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
831                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
832
833                         /*
834                          * If we don't need the page any longer, put it on the inactive
835                          * list (the easiest thing to do here).  If no one needs it,
836                          * pageout will grab it eventually.
837                          */
838                         if (result != KERN_SUCCESS) {
839                                 release_page(&fs);
840                                 unlock_and_deallocate(&fs);
841
842                                 /*
843                                  * If retry of map lookup would have blocked then
844                                  * retry fault from start.
845                                  */
846                                 if (result == KERN_FAILURE)
847                                         goto RetryFault;
848                                 return (result);
849                         }
850                         if ((retry_object != fs.first_object) ||
851                             (retry_pindex != fs.first_pindex)) {
852                                 release_page(&fs);
853                                 unlock_and_deallocate(&fs);
854                                 goto RetryFault;
855                         }
856
857                         /*
858                          * Check whether the protection has changed or the object has
859                          * been copied while we left the map unlocked. Changing from
860                          * read to write permission is OK - we leave the page
861                          * write-protected, and catch the write fault. Changing from
862                          * write to read permission means that we can't mark the page
863                          * write-enabled after all.
864                          */
865                         prot &= retry_prot;
866                 }
867         }
868         /*
869          * If the page was filled by a pager, update the map entry's
870          * last read offset.  Since the pager does not return the
871          * actual set of pages that it read, this update is based on
872          * the requested set.  Typically, the requested and actual
873          * sets are the same.
874          *
875          * XXX The following assignment modifies the map
876          * without holding a write lock on it.
877          */
878         if (hardfault)
879                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
880
881         if ((prot & VM_PROT_WRITE) != 0 ||
882             (fault_flags & VM_FAULT_DIRTY) != 0) {
883                 vm_object_set_writeable_dirty(fs.object);
884
885                 /*
886                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
887                  * if the page is already dirty to prevent data written with
888                  * the expectation of being synced from not being synced.
889                  * Likewise if this entry does not request NOSYNC then make
890                  * sure the page isn't marked NOSYNC.  Applications sharing
891                  * data should use the same flags to avoid ping ponging.
892                  */
893                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
894                         if (fs.m->dirty == 0)
895                                 fs.m->oflags |= VPO_NOSYNC;
896                 } else {
897                         fs.m->oflags &= ~VPO_NOSYNC;
898                 }
899
900                 /*
901                  * If the fault is a write, we know that this page is being
902                  * written NOW so dirty it explicitly to save on 
903                  * pmap_is_modified() calls later.
904                  *
905                  * Also tell the backing pager, if any, that it should remove
906                  * any swap backing since the page is now dirty.
907                  */
908                 if (((fault_type & VM_PROT_WRITE) != 0 &&
909                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
910                     (fault_flags & VM_FAULT_DIRTY) != 0) {
911                         vm_page_dirty(fs.m);
912                         vm_pager_page_unswapped(fs.m);
913                 }
914         }
915
916         /*
917          * Page had better still be busy
918          */
919         KASSERT(fs.m->oflags & VPO_BUSY,
920                 ("vm_fault: page %p not busy!", fs.m));
921         /*
922          * Page must be completely valid or it is not fit to
923          * map into user space.  vm_pager_get_pages() ensures this.
924          */
925         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
926             ("vm_fault: page %p partially invalid", fs.m));
927         VM_OBJECT_UNLOCK(fs.object);
928
929         /*
930          * Put this page into the physical map.  We had to do the unlock above
931          * because pmap_enter() may sleep.  We don't put the page
932          * back on the active queue until later so that the pageout daemon
933          * won't find it (yet).
934          */
935         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
936         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
937                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
938         VM_OBJECT_LOCK(fs.object);
939         vm_page_lock(fs.m);
940
941         /*
942          * If the page is not wired down, then put it where the pageout daemon
943          * can find it.
944          */
945         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
946                 if (wired)
947                         vm_page_wire(fs.m);
948                 else
949                         vm_page_unwire(fs.m, 1);
950         } else
951                 vm_page_activate(fs.m);
952         if (m_hold != NULL) {
953                 *m_hold = fs.m;
954                 vm_page_hold(fs.m);
955         }
956         vm_page_unlock(fs.m);
957         vm_page_wakeup(fs.m);
958
959         /*
960          * Unlock everything, and return
961          */
962         unlock_and_deallocate(&fs);
963         if (hardfault)
964                 curthread->td_ru.ru_majflt++;
965         else
966                 curthread->td_ru.ru_minflt++;
967
968         return (KERN_SUCCESS);
969 }
970
971 /*
972  * Speed up the reclamation of up to "distance" pages that precede the
973  * faulting pindex within the first object of the shadow chain.
974  */
975 static void
976 vm_fault_cache_behind(const struct faultstate *fs, int distance)
977 {
978         vm_object_t first_object, object;
979         vm_page_t m, m_prev;
980         vm_pindex_t pindex;
981
982         object = fs->object;
983         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
984         first_object = fs->first_object;
985         if (first_object != object) {
986                 if (!VM_OBJECT_TRYLOCK(first_object)) {
987                         VM_OBJECT_UNLOCK(object);
988                         VM_OBJECT_LOCK(first_object);
989                         VM_OBJECT_LOCK(object);
990                 }
991         }
992         if (first_object->type != OBJT_DEVICE &&
993             first_object->type != OBJT_PHYS && first_object->type != OBJT_SG) {
994                 if (fs->first_pindex < distance)
995                         pindex = 0;
996                 else
997                         pindex = fs->first_pindex - distance;
998                 if (pindex < OFF_TO_IDX(fs->entry->offset))
999                         pindex = OFF_TO_IDX(fs->entry->offset);
1000                 m = first_object != object ? fs->first_m : fs->m;
1001                 KASSERT((m->oflags & VPO_BUSY) != 0,
1002                     ("vm_fault_cache_behind: page %p is not busy", m));
1003                 m_prev = vm_page_prev(m);
1004                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1005                     m->valid == VM_PAGE_BITS_ALL) {
1006                         m_prev = vm_page_prev(m);
1007                         if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0)
1008                                 continue;
1009                         vm_page_lock(m);
1010                         if (m->hold_count == 0 && m->wire_count == 0) {
1011                                 pmap_remove_all(m);
1012                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1013                                 if (m->dirty != 0)
1014                                         vm_page_deactivate(m);
1015                                 else
1016                                         vm_page_cache(m);
1017                         }
1018                         vm_page_unlock(m);
1019                 }
1020         }
1021         if (first_object != object)
1022                 VM_OBJECT_UNLOCK(first_object);
1023 }
1024
1025 /*
1026  * vm_fault_prefault provides a quick way of clustering
1027  * pagefaults into a processes address space.  It is a "cousin"
1028  * of vm_map_pmap_enter, except it runs at page fault time instead
1029  * of mmap time.
1030  */
1031 static void
1032 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1033 {
1034         int i;
1035         vm_offset_t addr, starta;
1036         vm_pindex_t pindex;
1037         vm_page_t m;
1038         vm_object_t object;
1039
1040         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1041                 return;
1042
1043         object = entry->object.vm_object;
1044
1045         starta = addra - PFBAK * PAGE_SIZE;
1046         if (starta < entry->start) {
1047                 starta = entry->start;
1048         } else if (starta > addra) {
1049                 starta = 0;
1050         }
1051
1052         for (i = 0; i < PAGEORDER_SIZE; i++) {
1053                 vm_object_t backing_object, lobject;
1054
1055                 addr = addra + prefault_pageorder[i];
1056                 if (addr > addra + (PFFOR * PAGE_SIZE))
1057                         addr = 0;
1058
1059                 if (addr < starta || addr >= entry->end)
1060                         continue;
1061
1062                 if (!pmap_is_prefaultable(pmap, addr))
1063                         continue;
1064
1065                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1066                 lobject = object;
1067                 VM_OBJECT_LOCK(lobject);
1068                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1069                     lobject->type == OBJT_DEFAULT &&
1070                     (backing_object = lobject->backing_object) != NULL) {
1071                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1072                             0, ("vm_fault_prefault: unaligned object offset"));
1073                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1074                         VM_OBJECT_LOCK(backing_object);
1075                         VM_OBJECT_UNLOCK(lobject);
1076                         lobject = backing_object;
1077                 }
1078                 /*
1079                  * give-up when a page is not in memory
1080                  */
1081                 if (m == NULL) {
1082                         VM_OBJECT_UNLOCK(lobject);
1083                         break;
1084                 }
1085                 if (m->valid == VM_PAGE_BITS_ALL &&
1086                     (m->flags & PG_FICTITIOUS) == 0)
1087                         pmap_enter_quick(pmap, addr, m, entry->protection);
1088                 VM_OBJECT_UNLOCK(lobject);
1089         }
1090 }
1091
1092 /*
1093  * Hold each of the physical pages that are mapped by the specified range of
1094  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1095  * and allow the specified types of access, "prot".  If all of the implied
1096  * pages are successfully held, then the number of held pages is returned
1097  * together with pointers to those pages in the array "ma".  However, if any
1098  * of the pages cannot be held, -1 is returned.
1099  */
1100 int
1101 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1102     vm_prot_t prot, vm_page_t *ma, int max_count)
1103 {
1104         vm_offset_t end, va;
1105         vm_page_t *mp;
1106         int count;
1107         boolean_t pmap_failed;
1108
1109         if (len == 0)
1110                 return (0);
1111         end = round_page(addr + len);   
1112         addr = trunc_page(addr);
1113
1114         /*
1115          * Check for illegal addresses.
1116          */
1117         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1118                 return (-1);
1119
1120         count = howmany(end - addr, PAGE_SIZE);
1121         if (count > max_count)
1122                 panic("vm_fault_quick_hold_pages: count > max_count");
1123
1124         /*
1125          * Most likely, the physical pages are resident in the pmap, so it is
1126          * faster to try pmap_extract_and_hold() first.
1127          */
1128         pmap_failed = FALSE;
1129         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1130                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1131                 if (*mp == NULL)
1132                         pmap_failed = TRUE;
1133                 else if ((prot & VM_PROT_WRITE) != 0 &&
1134                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1135                         /*
1136                          * Explicitly dirty the physical page.  Otherwise, the
1137                          * caller's changes may go unnoticed because they are
1138                          * performed through an unmanaged mapping or by a DMA
1139                          * operation.
1140                          *
1141                          * The object lock is not held here.
1142                          * See vm_page_clear_dirty_mask().
1143                          */
1144                         vm_page_dirty(*mp);
1145                 }
1146         }
1147         if (pmap_failed) {
1148                 /*
1149                  * One or more pages could not be held by the pmap.  Either no
1150                  * page was mapped at the specified virtual address or that
1151                  * mapping had insufficient permissions.  Attempt to fault in
1152                  * and hold these pages.
1153                  */
1154                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1155                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1156                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1157                                 goto error;
1158         }
1159         return (count);
1160 error:  
1161         for (mp = ma; mp < ma + count; mp++)
1162                 if (*mp != NULL) {
1163                         vm_page_lock(*mp);
1164                         vm_page_unhold(*mp);
1165                         vm_page_unlock(*mp);
1166                 }
1167         return (-1);
1168 }
1169
1170 /*
1171  *      vm_fault_wire:
1172  *
1173  *      Wire down a range of virtual addresses in a map.
1174  */
1175 int
1176 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1177     boolean_t fictitious)
1178 {
1179         vm_offset_t va;
1180         int rv;
1181
1182         /*
1183          * We simulate a fault to get the page and enter it in the physical
1184          * map.  For user wiring, we only ask for read access on currently
1185          * read-only sections.
1186          */
1187         for (va = start; va < end; va += PAGE_SIZE) {
1188                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1189                 if (rv) {
1190                         if (va != start)
1191                                 vm_fault_unwire(map, start, va, fictitious);
1192                         return (rv);
1193                 }
1194         }
1195         return (KERN_SUCCESS);
1196 }
1197
1198 /*
1199  *      vm_fault_unwire:
1200  *
1201  *      Unwire a range of virtual addresses in a map.
1202  */
1203 void
1204 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1205     boolean_t fictitious)
1206 {
1207         vm_paddr_t pa;
1208         vm_offset_t va;
1209         vm_page_t m;
1210         pmap_t pmap;
1211
1212         pmap = vm_map_pmap(map);
1213
1214         /*
1215          * Since the pages are wired down, we must be able to get their
1216          * mappings from the physical map system.
1217          */
1218         for (va = start; va < end; va += PAGE_SIZE) {
1219                 pa = pmap_extract(pmap, va);
1220                 if (pa != 0) {
1221                         pmap_change_wiring(pmap, va, FALSE);
1222                         if (!fictitious) {
1223                                 m = PHYS_TO_VM_PAGE(pa);
1224                                 vm_page_lock(m);
1225                                 vm_page_unwire(m, TRUE);
1226                                 vm_page_unlock(m);
1227                         }
1228                 }
1229         }
1230 }
1231
1232 /*
1233  *      Routine:
1234  *              vm_fault_copy_entry
1235  *      Function:
1236  *              Create new shadow object backing dst_entry with private copy of
1237  *              all underlying pages. When src_entry is equal to dst_entry,
1238  *              function implements COW for wired-down map entry. Otherwise,
1239  *              it forks wired entry into dst_map.
1240  *
1241  *      In/out conditions:
1242  *              The source and destination maps must be locked for write.
1243  *              The source map entry must be wired down (or be a sharing map
1244  *              entry corresponding to a main map entry that is wired down).
1245  */
1246 void
1247 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1248     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1249     vm_ooffset_t *fork_charge)
1250 {
1251         vm_object_t backing_object, dst_object, object, src_object;
1252         vm_pindex_t dst_pindex, pindex, src_pindex;
1253         vm_prot_t access, prot;
1254         vm_offset_t vaddr;
1255         vm_page_t dst_m;
1256         vm_page_t src_m;
1257         boolean_t src_readonly, upgrade;
1258
1259 #ifdef  lint
1260         src_map++;
1261 #endif  /* lint */
1262
1263         upgrade = src_entry == dst_entry;
1264
1265         src_object = src_entry->object.vm_object;
1266         src_pindex = OFF_TO_IDX(src_entry->offset);
1267         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1268
1269         /*
1270          * Create the top-level object for the destination entry. (Doesn't
1271          * actually shadow anything - we copy the pages directly.)
1272          */
1273         dst_object = vm_object_allocate(OBJT_DEFAULT,
1274             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1275 #if VM_NRESERVLEVEL > 0
1276         dst_object->flags |= OBJ_COLORED;
1277         dst_object->pg_color = atop(dst_entry->start);
1278 #endif
1279
1280         VM_OBJECT_LOCK(dst_object);
1281         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1282             ("vm_fault_copy_entry: vm_object not NULL"));
1283         dst_entry->object.vm_object = dst_object;
1284         dst_entry->offset = 0;
1285         dst_object->charge = dst_entry->end - dst_entry->start;
1286         if (fork_charge != NULL) {
1287                 KASSERT(dst_entry->cred == NULL,
1288                     ("vm_fault_copy_entry: leaked swp charge"));
1289                 dst_object->cred = curthread->td_ucred;
1290                 crhold(dst_object->cred);
1291                 *fork_charge += dst_object->charge;
1292         } else {
1293                 dst_object->cred = dst_entry->cred;
1294                 dst_entry->cred = NULL;
1295         }
1296         access = prot = dst_entry->protection;
1297         /*
1298          * If not an upgrade, then enter the mappings in the pmap as
1299          * read and/or execute accesses.  Otherwise, enter them as
1300          * write accesses.
1301          *
1302          * A writeable large page mapping is only created if all of
1303          * the constituent small page mappings are modified. Marking
1304          * PTEs as modified on inception allows promotion to happen
1305          * without taking potentially large number of soft faults.
1306          */
1307         if (!upgrade)
1308                 access &= ~VM_PROT_WRITE;
1309
1310         /*
1311          * Loop through all of the virtual pages within the entry's
1312          * range, copying each page from the source object to the
1313          * destination object.  Since the source is wired, those pages
1314          * must exist.  In contrast, the destination is pageable.
1315          * Since the destination object does share any backing storage
1316          * with the source object, all of its pages must be dirtied,
1317          * regardless of whether they can be written.
1318          */
1319         for (vaddr = dst_entry->start, dst_pindex = 0;
1320             vaddr < dst_entry->end;
1321             vaddr += PAGE_SIZE, dst_pindex++) {
1322
1323                 /*
1324                  * Allocate a page in the destination object.
1325                  */
1326                 do {
1327                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1328                             VM_ALLOC_NORMAL);
1329                         if (dst_m == NULL) {
1330                                 VM_OBJECT_UNLOCK(dst_object);
1331                                 VM_WAIT;
1332                                 VM_OBJECT_LOCK(dst_object);
1333                         }
1334                 } while (dst_m == NULL);
1335
1336                 /*
1337                  * Find the page in the source object, and copy it in.
1338                  * (Because the source is wired down, the page will be in
1339                  * memory.)
1340                  */
1341                 VM_OBJECT_LOCK(src_object);
1342                 object = src_object;
1343                 pindex = src_pindex + dst_pindex;
1344                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1345                     src_readonly &&
1346                     (backing_object = object->backing_object) != NULL) {
1347                         /*
1348                          * Allow fallback to backing objects if we are reading.
1349                          */
1350                         VM_OBJECT_LOCK(backing_object);
1351                         pindex += OFF_TO_IDX(object->backing_object_offset);
1352                         VM_OBJECT_UNLOCK(object);
1353                         object = backing_object;
1354                 }
1355                 if (src_m == NULL)
1356                         panic("vm_fault_copy_wired: page missing");
1357                 pmap_copy_page(src_m, dst_m);
1358                 VM_OBJECT_UNLOCK(object);
1359                 dst_m->valid = VM_PAGE_BITS_ALL;
1360                 dst_m->dirty = VM_PAGE_BITS_ALL;
1361                 VM_OBJECT_UNLOCK(dst_object);
1362
1363                 /*
1364                  * Enter it in the pmap. If a wired, copy-on-write
1365                  * mapping is being replaced by a write-enabled
1366                  * mapping, then wire that new mapping.
1367                  */
1368                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1369
1370                 /*
1371                  * Mark it no longer busy, and put it on the active list.
1372                  */
1373                 VM_OBJECT_LOCK(dst_object);
1374                 
1375                 if (upgrade) {
1376                         vm_page_lock(src_m);
1377                         vm_page_unwire(src_m, 0);
1378                         vm_page_unlock(src_m);
1379
1380                         vm_page_lock(dst_m);
1381                         vm_page_wire(dst_m);
1382                         vm_page_unlock(dst_m);
1383                 } else {
1384                         vm_page_lock(dst_m);
1385                         vm_page_activate(dst_m);
1386                         vm_page_unlock(dst_m);
1387                 }
1388                 vm_page_wakeup(dst_m);
1389         }
1390         VM_OBJECT_UNLOCK(dst_object);
1391         if (upgrade) {
1392                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1393                 vm_object_deallocate(src_object);
1394         }
1395 }
1396
1397
1398 /*
1399  * This routine checks around the requested page for other pages that
1400  * might be able to be faulted in.  This routine brackets the viable
1401  * pages for the pages to be paged in.
1402  *
1403  * Inputs:
1404  *      m, rbehind, rahead
1405  *
1406  * Outputs:
1407  *  marray (array of vm_page_t), reqpage (index of requested page)
1408  *
1409  * Return value:
1410  *  number of pages in marray
1411  */
1412 static int
1413 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1414         vm_page_t m;
1415         int rbehind;
1416         int rahead;
1417         vm_page_t *marray;
1418         int *reqpage;
1419 {
1420         int i,j;
1421         vm_object_t object;
1422         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1423         vm_page_t rtm;
1424         int cbehind, cahead;
1425
1426         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1427
1428         object = m->object;
1429         pindex = m->pindex;
1430         cbehind = cahead = 0;
1431
1432         /*
1433          * if the requested page is not available, then give up now
1434          */
1435         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1436                 return 0;
1437         }
1438
1439         if ((cbehind == 0) && (cahead == 0)) {
1440                 *reqpage = 0;
1441                 marray[0] = m;
1442                 return 1;
1443         }
1444
1445         if (rahead > cahead) {
1446                 rahead = cahead;
1447         }
1448
1449         if (rbehind > cbehind) {
1450                 rbehind = cbehind;
1451         }
1452
1453         /*
1454          * scan backward for the read behind pages -- in memory 
1455          */
1456         if (pindex > 0) {
1457                 if (rbehind > pindex) {
1458                         rbehind = pindex;
1459                         startpindex = 0;
1460                 } else {
1461                         startpindex = pindex - rbehind;
1462                 }
1463
1464                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1465                     rtm->pindex >= startpindex)
1466                         startpindex = rtm->pindex + 1;
1467
1468                 /* tpindex is unsigned; beware of numeric underflow. */
1469                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1470                     tpindex < pindex; i++, tpindex--) {
1471
1472                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1473                             VM_ALLOC_IFNOTCACHED);
1474                         if (rtm == NULL) {
1475                                 /*
1476                                  * Shift the allocated pages to the
1477                                  * beginning of the array.
1478                                  */
1479                                 for (j = 0; j < i; j++) {
1480                                         marray[j] = marray[j + tpindex + 1 -
1481                                             startpindex];
1482                                 }
1483                                 break;
1484                         }
1485
1486                         marray[tpindex - startpindex] = rtm;
1487                 }
1488         } else {
1489                 startpindex = 0;
1490                 i = 0;
1491         }
1492
1493         marray[i] = m;
1494         /* page offset of the required page */
1495         *reqpage = i;
1496
1497         tpindex = pindex + 1;
1498         i++;
1499
1500         /*
1501          * scan forward for the read ahead pages
1502          */
1503         endpindex = tpindex + rahead;
1504         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1505                 endpindex = rtm->pindex;
1506         if (endpindex > object->size)
1507                 endpindex = object->size;
1508
1509         for (; tpindex < endpindex; i++, tpindex++) {
1510
1511                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1512                     VM_ALLOC_IFNOTCACHED);
1513                 if (rtm == NULL) {
1514                         break;
1515                 }
1516
1517                 marray[i] = rtm;
1518         }
1519
1520         /* return number of pages */
1521         return i;
1522 }
1523
1524 /*
1525  * Block entry into the machine-independent layer's page fault handler by
1526  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1527  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1528  * spurious page faults. 
1529  */
1530 int
1531 vm_fault_disable_pagefaults(void)
1532 {
1533
1534         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1535 }
1536
1537 void
1538 vm_fault_enable_pagefaults(int save)
1539 {
1540
1541         curthread_pflags_restore(save);
1542 }