]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/vm/vm_object.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102
103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104                     int pagerflags, int flags, boolean_t *clearobjflags,
105                     boolean_t *eio);
106 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
107                     boolean_t *clearobjflags);
108 static void     vm_object_qcollapse(vm_object_t object);
109 static void     vm_object_vndeallocate(vm_object_t object);
110
111 /*
112  *      Virtual memory objects maintain the actual data
113  *      associated with allocated virtual memory.  A given
114  *      page of memory exists within exactly one object.
115  *
116  *      An object is only deallocated when all "references"
117  *      are given up.  Only one "reference" to a given
118  *      region of an object should be writeable.
119  *
120  *      Associated with each object is a list of all resident
121  *      memory pages belonging to that object; this list is
122  *      maintained by the "vm_page" module, and locked by the object's
123  *      lock.
124  *
125  *      Each object also records a "pager" routine which is
126  *      used to retrieve (and store) pages to the proper backing
127  *      storage.  In addition, objects may be backed by other
128  *      objects from which they were virtual-copied.
129  *
130  *      The only items within the object structure which are
131  *      modified after time of creation are:
132  *              reference count         locked by object's lock
133  *              pager routine           locked by object's lock
134  *
135  */
136
137 struct object_q vm_object_list;
138 struct mtx vm_object_list_mtx;  /* lock for object list and count */
139
140 struct vm_object kernel_object_store;
141 struct vm_object kmem_object_store;
142
143 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
144     "VM object stats");
145
146 static long object_collapses;
147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
148     &object_collapses, 0, "VM object collapses");
149
150 static long object_bypasses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
152     &object_bypasses, 0, "VM object bypasses");
153
154 static uma_zone_t obj_zone;
155
156 static int vm_object_zinit(void *mem, int size, int flags);
157
158 #ifdef INVARIANTS
159 static void vm_object_zdtor(void *mem, int size, void *arg);
160
161 static void
162 vm_object_zdtor(void *mem, int size, void *arg)
163 {
164         vm_object_t object;
165
166         object = (vm_object_t)mem;
167         KASSERT(TAILQ_EMPTY(&object->memq),
168             ("object %p has resident pages",
169             object));
170 #if VM_NRESERVLEVEL > 0
171         KASSERT(LIST_EMPTY(&object->rvq),
172             ("object %p has reservations",
173             object));
174 #endif
175         KASSERT(object->cache == NULL,
176             ("object %p has cached pages",
177             object));
178         KASSERT(object->paging_in_progress == 0,
179             ("object %p paging_in_progress = %d",
180             object, object->paging_in_progress));
181         KASSERT(object->resident_page_count == 0,
182             ("object %p resident_page_count = %d",
183             object, object->resident_page_count));
184         KASSERT(object->shadow_count == 0,
185             ("object %p shadow_count = %d",
186             object, object->shadow_count));
187 }
188 #endif
189
190 static int
191 vm_object_zinit(void *mem, int size, int flags)
192 {
193         vm_object_t object;
194
195         object = (vm_object_t)mem;
196         bzero(&object->mtx, sizeof(object->mtx));
197         VM_OBJECT_LOCK_INIT(object, "standard object");
198
199         /* These are true for any object that has been freed */
200         object->paging_in_progress = 0;
201         object->resident_page_count = 0;
202         object->shadow_count = 0;
203         return (0);
204 }
205
206 void
207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
208 {
209
210         TAILQ_INIT(&object->memq);
211         LIST_INIT(&object->shadow_head);
212
213         object->root = NULL;
214         object->type = type;
215         object->size = size;
216         object->generation = 1;
217         object->ref_count = 1;
218         object->memattr = VM_MEMATTR_DEFAULT;
219         object->flags = 0;
220         object->cred = NULL;
221         object->charge = 0;
222         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
223                 object->flags = OBJ_ONEMAPPING;
224         object->pg_color = 0;
225         object->handle = NULL;
226         object->backing_object = NULL;
227         object->backing_object_offset = (vm_ooffset_t) 0;
228 #if VM_NRESERVLEVEL > 0
229         LIST_INIT(&object->rvq);
230 #endif
231         object->cache = NULL;
232
233         mtx_lock(&vm_object_list_mtx);
234         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
235         mtx_unlock(&vm_object_list_mtx);
236 }
237
238 /*
239  *      vm_object_init:
240  *
241  *      Initialize the VM objects module.
242  */
243 void
244 vm_object_init(void)
245 {
246         TAILQ_INIT(&vm_object_list);
247         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
248         
249         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
250         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251             kernel_object);
252 #if VM_NRESERVLEVEL > 0
253         kernel_object->flags |= OBJ_COLORED;
254         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
255 #endif
256
257         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
258         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
259             kmem_object);
260 #if VM_NRESERVLEVEL > 0
261         kmem_object->flags |= OBJ_COLORED;
262         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
263 #endif
264
265         /*
266          * The lock portion of struct vm_object must be type stable due
267          * to vm_pageout_fallback_object_lock locking a vm object
268          * without holding any references to it.
269          */
270         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
271 #ifdef INVARIANTS
272             vm_object_zdtor,
273 #else
274             NULL,
275 #endif
276             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
277 }
278
279 void
280 vm_object_clear_flag(vm_object_t object, u_short bits)
281 {
282
283         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284         object->flags &= ~bits;
285 }
286
287 /*
288  *      Sets the default memory attribute for the specified object.  Pages
289  *      that are allocated to this object are by default assigned this memory
290  *      attribute.
291  *
292  *      Presently, this function must be called before any pages are allocated
293  *      to the object.  In the future, this requirement may be relaxed for
294  *      "default" and "swap" objects.
295  */
296 int
297 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
298 {
299
300         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
301         switch (object->type) {
302         case OBJT_DEFAULT:
303         case OBJT_DEVICE:
304         case OBJT_PHYS:
305         case OBJT_SG:
306         case OBJT_SWAP:
307         case OBJT_VNODE:
308                 if (!TAILQ_EMPTY(&object->memq))
309                         return (KERN_FAILURE);
310                 break;
311         case OBJT_DEAD:
312                 return (KERN_INVALID_ARGUMENT);
313         }
314         object->memattr = memattr;
315         return (KERN_SUCCESS);
316 }
317
318 void
319 vm_object_pip_add(vm_object_t object, short i)
320 {
321
322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323         object->paging_in_progress += i;
324 }
325
326 void
327 vm_object_pip_subtract(vm_object_t object, short i)
328 {
329
330         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
331         object->paging_in_progress -= i;
332 }
333
334 void
335 vm_object_pip_wakeup(vm_object_t object)
336 {
337
338         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
339         object->paging_in_progress--;
340         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
341                 vm_object_clear_flag(object, OBJ_PIPWNT);
342                 wakeup(object);
343         }
344 }
345
346 void
347 vm_object_pip_wakeupn(vm_object_t object, short i)
348 {
349
350         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
351         if (i)
352                 object->paging_in_progress -= i;
353         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
354                 vm_object_clear_flag(object, OBJ_PIPWNT);
355                 wakeup(object);
356         }
357 }
358
359 void
360 vm_object_pip_wait(vm_object_t object, char *waitid)
361 {
362
363         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
364         while (object->paging_in_progress) {
365                 object->flags |= OBJ_PIPWNT;
366                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
367         }
368 }
369
370 /*
371  *      vm_object_allocate:
372  *
373  *      Returns a new object with the given size.
374  */
375 vm_object_t
376 vm_object_allocate(objtype_t type, vm_pindex_t size)
377 {
378         vm_object_t object;
379
380         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
381         _vm_object_allocate(type, size, object);
382         return (object);
383 }
384
385
386 /*
387  *      vm_object_reference:
388  *
389  *      Gets another reference to the given object.  Note: OBJ_DEAD
390  *      objects can be referenced during final cleaning.
391  */
392 void
393 vm_object_reference(vm_object_t object)
394 {
395         if (object == NULL)
396                 return;
397         VM_OBJECT_LOCK(object);
398         vm_object_reference_locked(object);
399         VM_OBJECT_UNLOCK(object);
400 }
401
402 /*
403  *      vm_object_reference_locked:
404  *
405  *      Gets another reference to the given object.
406  *
407  *      The object must be locked.
408  */
409 void
410 vm_object_reference_locked(vm_object_t object)
411 {
412         struct vnode *vp;
413
414         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
415         object->ref_count++;
416         if (object->type == OBJT_VNODE) {
417                 vp = object->handle;
418                 vref(vp);
419         }
420 }
421
422 /*
423  * Handle deallocating an object of type OBJT_VNODE.
424  */
425 static void
426 vm_object_vndeallocate(vm_object_t object)
427 {
428         struct vnode *vp = (struct vnode *) object->handle;
429
430         VFS_ASSERT_GIANT(vp->v_mount);
431         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
432         KASSERT(object->type == OBJT_VNODE,
433             ("vm_object_vndeallocate: not a vnode object"));
434         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
435 #ifdef INVARIANTS
436         if (object->ref_count == 0) {
437                 vprint("vm_object_vndeallocate", vp);
438                 panic("vm_object_vndeallocate: bad object reference count");
439         }
440 #endif
441
442         if (object->ref_count > 1) {
443                 object->ref_count--;
444                 VM_OBJECT_UNLOCK(object);
445                 /* vrele may need the vnode lock. */
446                 vrele(vp);
447         } else {
448                 vhold(vp);
449                 VM_OBJECT_UNLOCK(object);
450                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
451                 vdrop(vp);
452                 VM_OBJECT_LOCK(object);
453                 object->ref_count--;
454                 if (object->type == OBJT_DEAD) {
455                         VM_OBJECT_UNLOCK(object);
456                         VOP_UNLOCK(vp, 0);
457                 } else {
458                         if (object->ref_count == 0)
459                                 VOP_UNSET_TEXT(vp);
460                         VM_OBJECT_UNLOCK(object);
461                         vput(vp);
462                 }
463         }
464 }
465
466 /*
467  *      vm_object_deallocate:
468  *
469  *      Release a reference to the specified object,
470  *      gained either through a vm_object_allocate
471  *      or a vm_object_reference call.  When all references
472  *      are gone, storage associated with this object
473  *      may be relinquished.
474  *
475  *      No object may be locked.
476  */
477 void
478 vm_object_deallocate(vm_object_t object)
479 {
480         vm_object_t temp;
481
482         while (object != NULL) {
483                 int vfslocked;
484
485                 vfslocked = 0;
486         restart:
487                 VM_OBJECT_LOCK(object);
488                 if (object->type == OBJT_VNODE) {
489                         struct vnode *vp = (struct vnode *) object->handle;
490
491                         /*
492                          * Conditionally acquire Giant for a vnode-backed
493                          * object.  We have to be careful since the type of
494                          * a vnode object can change while the object is
495                          * unlocked.
496                          */
497                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
498                                 vfslocked = 1;
499                                 if (!mtx_trylock(&Giant)) {
500                                         VM_OBJECT_UNLOCK(object);
501                                         mtx_lock(&Giant);
502                                         goto restart;
503                                 }
504                         }
505                         vm_object_vndeallocate(object);
506                         VFS_UNLOCK_GIANT(vfslocked);
507                         return;
508                 } else
509                         /*
510                          * This is to handle the case that the object
511                          * changed type while we dropped its lock to
512                          * obtain Giant.
513                          */
514                         VFS_UNLOCK_GIANT(vfslocked);
515
516                 KASSERT(object->ref_count != 0,
517                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
518
519                 /*
520                  * If the reference count goes to 0 we start calling
521                  * vm_object_terminate() on the object chain.
522                  * A ref count of 1 may be a special case depending on the
523                  * shadow count being 0 or 1.
524                  */
525                 object->ref_count--;
526                 if (object->ref_count > 1) {
527                         VM_OBJECT_UNLOCK(object);
528                         return;
529                 } else if (object->ref_count == 1) {
530                         if (object->shadow_count == 0 &&
531                             object->handle == NULL &&
532                             (object->type == OBJT_DEFAULT ||
533                              object->type == OBJT_SWAP)) {
534                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
535                         } else if ((object->shadow_count == 1) &&
536                             (object->handle == NULL) &&
537                             (object->type == OBJT_DEFAULT ||
538                              object->type == OBJT_SWAP)) {
539                                 vm_object_t robject;
540
541                                 robject = LIST_FIRST(&object->shadow_head);
542                                 KASSERT(robject != NULL,
543                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
544                                          object->ref_count,
545                                          object->shadow_count));
546                                 if (!VM_OBJECT_TRYLOCK(robject)) {
547                                         /*
548                                          * Avoid a potential deadlock.
549                                          */
550                                         object->ref_count++;
551                                         VM_OBJECT_UNLOCK(object);
552                                         /*
553                                          * More likely than not the thread
554                                          * holding robject's lock has lower
555                                          * priority than the current thread.
556                                          * Let the lower priority thread run.
557                                          */
558                                         pause("vmo_de", 1);
559                                         continue;
560                                 }
561                                 /*
562                                  * Collapse object into its shadow unless its
563                                  * shadow is dead.  In that case, object will
564                                  * be deallocated by the thread that is
565                                  * deallocating its shadow.
566                                  */
567                                 if ((robject->flags & OBJ_DEAD) == 0 &&
568                                     (robject->handle == NULL) &&
569                                     (robject->type == OBJT_DEFAULT ||
570                                      robject->type == OBJT_SWAP)) {
571
572                                         robject->ref_count++;
573 retry:
574                                         if (robject->paging_in_progress) {
575                                                 VM_OBJECT_UNLOCK(object);
576                                                 vm_object_pip_wait(robject,
577                                                     "objde1");
578                                                 temp = robject->backing_object;
579                                                 if (object == temp) {
580                                                         VM_OBJECT_LOCK(object);
581                                                         goto retry;
582                                                 }
583                                         } else if (object->paging_in_progress) {
584                                                 VM_OBJECT_UNLOCK(robject);
585                                                 object->flags |= OBJ_PIPWNT;
586                                                 msleep(object,
587                                                     VM_OBJECT_MTX(object),
588                                                     PDROP | PVM, "objde2", 0);
589                                                 VM_OBJECT_LOCK(robject);
590                                                 temp = robject->backing_object;
591                                                 if (object == temp) {
592                                                         VM_OBJECT_LOCK(object);
593                                                         goto retry;
594                                                 }
595                                         } else
596                                                 VM_OBJECT_UNLOCK(object);
597
598                                         if (robject->ref_count == 1) {
599                                                 robject->ref_count--;
600                                                 object = robject;
601                                                 goto doterm;
602                                         }
603                                         object = robject;
604                                         vm_object_collapse(object);
605                                         VM_OBJECT_UNLOCK(object);
606                                         continue;
607                                 }
608                                 VM_OBJECT_UNLOCK(robject);
609                         }
610                         VM_OBJECT_UNLOCK(object);
611                         return;
612                 }
613 doterm:
614                 temp = object->backing_object;
615                 if (temp != NULL) {
616                         VM_OBJECT_LOCK(temp);
617                         LIST_REMOVE(object, shadow_list);
618                         temp->shadow_count--;
619                         VM_OBJECT_UNLOCK(temp);
620                         object->backing_object = NULL;
621                 }
622                 /*
623                  * Don't double-terminate, we could be in a termination
624                  * recursion due to the terminate having to sync data
625                  * to disk.
626                  */
627                 if ((object->flags & OBJ_DEAD) == 0)
628                         vm_object_terminate(object);
629                 else
630                         VM_OBJECT_UNLOCK(object);
631                 object = temp;
632         }
633 }
634
635 /*
636  *      vm_object_destroy removes the object from the global object list
637  *      and frees the space for the object.
638  */
639 void
640 vm_object_destroy(vm_object_t object)
641 {
642
643         /*
644          * Remove the object from the global object list.
645          */
646         mtx_lock(&vm_object_list_mtx);
647         TAILQ_REMOVE(&vm_object_list, object, object_list);
648         mtx_unlock(&vm_object_list_mtx);
649
650         /*
651          * Release the allocation charge.
652          */
653         if (object->cred != NULL) {
654                 KASSERT(object->type == OBJT_DEFAULT ||
655                     object->type == OBJT_SWAP,
656                     ("vm_object_terminate: non-swap obj %p has cred",
657                      object));
658                 swap_release_by_cred(object->charge, object->cred);
659                 object->charge = 0;
660                 crfree(object->cred);
661                 object->cred = NULL;
662         }
663
664         /*
665          * Free the space for the object.
666          */
667         uma_zfree(obj_zone, object);
668 }
669
670 /*
671  *      vm_object_terminate actually destroys the specified object, freeing
672  *      up all previously used resources.
673  *
674  *      The object must be locked.
675  *      This routine may block.
676  */
677 void
678 vm_object_terminate(vm_object_t object)
679 {
680         vm_page_t p, p_next;
681
682         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
683
684         /*
685          * Make sure no one uses us.
686          */
687         vm_object_set_flag(object, OBJ_DEAD);
688
689         /*
690          * wait for the pageout daemon to be done with the object
691          */
692         vm_object_pip_wait(object, "objtrm");
693
694         KASSERT(!object->paging_in_progress,
695                 ("vm_object_terminate: pageout in progress"));
696
697         /*
698          * Clean and free the pages, as appropriate. All references to the
699          * object are gone, so we don't need to lock it.
700          */
701         if (object->type == OBJT_VNODE) {
702                 struct vnode *vp = (struct vnode *)object->handle;
703
704                 /*
705                  * Clean pages and flush buffers.
706                  */
707                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
708                 VM_OBJECT_UNLOCK(object);
709
710                 vinvalbuf(vp, V_SAVE, 0, 0);
711
712                 VM_OBJECT_LOCK(object);
713         }
714
715         KASSERT(object->ref_count == 0, 
716                 ("vm_object_terminate: object with references, ref_count=%d",
717                 object->ref_count));
718
719         /*
720          * Free any remaining pageable pages.  This also removes them from the
721          * paging queues.  However, don't free wired pages, just remove them
722          * from the object.  Rather than incrementally removing each page from
723          * the object, the page and object are reset to any empty state. 
724          */
725         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
726                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
727                     ("vm_object_terminate: freeing busy page %p", p));
728                 vm_page_lock(p);
729                 /*
730                  * Optimize the page's removal from the object by resetting
731                  * its "object" field.  Specifically, if the page is not
732                  * wired, then the effect of this assignment is that
733                  * vm_page_free()'s call to vm_page_remove() will return
734                  * immediately without modifying the page or the object.
735                  */ 
736                 p->object = NULL;
737                 if (p->wire_count == 0) {
738                         vm_page_free(p);
739                         PCPU_INC(cnt.v_pfree);
740                 }
741                 vm_page_unlock(p);
742         }
743         /*
744          * If the object contained any pages, then reset it to an empty state.
745          * None of the object's fields, including "resident_page_count", were
746          * modified by the preceding loop.
747          */
748         if (object->resident_page_count != 0) {
749                 object->root = NULL;
750                 TAILQ_INIT(&object->memq);
751                 object->resident_page_count = 0;
752                 if (object->type == OBJT_VNODE)
753                         vdrop(object->handle);
754         }
755
756 #if VM_NRESERVLEVEL > 0
757         if (__predict_false(!LIST_EMPTY(&object->rvq)))
758                 vm_reserv_break_all(object);
759 #endif
760         if (__predict_false(object->cache != NULL))
761                 vm_page_cache_free(object, 0, 0);
762
763         /*
764          * Let the pager know object is dead.
765          */
766         vm_pager_deallocate(object);
767         VM_OBJECT_UNLOCK(object);
768
769         vm_object_destroy(object);
770 }
771
772 /*
773  * Make the page read-only so that we can clear the object flags.  However, if
774  * this is a nosync mmap then the object is likely to stay dirty so do not
775  * mess with the page and do not clear the object flags.  Returns TRUE if the
776  * page should be flushed, and FALSE otherwise.
777  */
778 static boolean_t
779 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
780 {
781
782         /*
783          * If we have been asked to skip nosync pages and this is a
784          * nosync page, skip it.  Note that the object flags were not
785          * cleared in this case so we do not have to set them.
786          */
787         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
788                 *clearobjflags = FALSE;
789                 return (FALSE);
790         } else {
791                 pmap_remove_write(p);
792                 return (p->dirty != 0);
793         }
794 }
795
796 /*
797  *      vm_object_page_clean
798  *
799  *      Clean all dirty pages in the specified range of object.  Leaves page 
800  *      on whatever queue it is currently on.   If NOSYNC is set then do not
801  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
802  *      leaving the object dirty.
803  *
804  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
805  *      synchronous clustering mode implementation.
806  *
807  *      Odd semantics: if start == end, we clean everything.
808  *
809  *      The object must be locked.
810  *
811  *      Returns FALSE if some page from the range was not written, as
812  *      reported by the pager, and TRUE otherwise.
813  */
814 boolean_t
815 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
816     int flags)
817 {
818         vm_page_t np, p;
819         vm_pindex_t pi, tend, tstart;
820         int curgeneration, n, pagerflags;
821         boolean_t clearobjflags, eio, res;
822
823         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
824         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
825         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
826         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
827             object->resident_page_count == 0)
828                 return (TRUE);
829
830         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
831             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
832         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
833
834         tstart = OFF_TO_IDX(start);
835         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
836         clearobjflags = tstart == 0 && tend >= object->size;
837         res = TRUE;
838
839 rescan:
840         curgeneration = object->generation;
841
842         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
843                 pi = p->pindex;
844                 if (pi >= tend)
845                         break;
846                 np = TAILQ_NEXT(p, listq);
847                 if (p->valid == 0)
848                         continue;
849                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
850                         if (object->generation != curgeneration) {
851                                 if ((flags & OBJPC_SYNC) != 0)
852                                         goto rescan;
853                                 else
854                                         clearobjflags = FALSE;
855                         }
856                         np = vm_page_find_least(object, pi);
857                         continue;
858                 }
859                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
860                         continue;
861
862                 n = vm_object_page_collect_flush(object, p, pagerflags,
863                     flags, &clearobjflags, &eio);
864                 if (eio) {
865                         res = FALSE;
866                         clearobjflags = FALSE;
867                 }
868                 if (object->generation != curgeneration) {
869                         if ((flags & OBJPC_SYNC) != 0)
870                                 goto rescan;
871                         else
872                                 clearobjflags = FALSE;
873                 }
874
875                 /*
876                  * If the VOP_PUTPAGES() did a truncated write, so
877                  * that even the first page of the run is not fully
878                  * written, vm_pageout_flush() returns 0 as the run
879                  * length.  Since the condition that caused truncated
880                  * write may be permanent, e.g. exhausted free space,
881                  * accepting n == 0 would cause an infinite loop.
882                  *
883                  * Forwarding the iterator leaves the unwritten page
884                  * behind, but there is not much we can do there if
885                  * filesystem refuses to write it.
886                  */
887                 if (n == 0) {
888                         n = 1;
889                         clearobjflags = FALSE;
890                 }
891                 np = vm_page_find_least(object, pi + n);
892         }
893 #if 0
894         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
895 #endif
896
897         if (clearobjflags)
898                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
899         return (res);
900 }
901
902 static int
903 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
904     int flags, boolean_t *clearobjflags, boolean_t *eio)
905 {
906         vm_page_t ma[vm_pageout_page_count], p_first, tp;
907         int count, i, mreq, runlen;
908
909         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
910         vm_page_lock_assert(p, MA_NOTOWNED);
911         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
912
913         count = 1;
914         mreq = 0;
915
916         for (tp = p; count < vm_pageout_page_count; count++) {
917                 tp = vm_page_next(tp);
918                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
919                         break;
920                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
921                         break;
922         }
923
924         for (p_first = p; count < vm_pageout_page_count; count++) {
925                 tp = vm_page_prev(p_first);
926                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
927                         break;
928                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
929                         break;
930                 p_first = tp;
931                 mreq++;
932         }
933
934         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
935                 ma[i] = tp;
936
937         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
938         return (runlen);
939 }
940
941 /*
942  * Note that there is absolutely no sense in writing out
943  * anonymous objects, so we track down the vnode object
944  * to write out.
945  * We invalidate (remove) all pages from the address space
946  * for semantic correctness.
947  *
948  * If the backing object is a device object with unmanaged pages, then any
949  * mappings to the specified range of pages must be removed before this
950  * function is called.
951  *
952  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
953  * may start out with a NULL object.
954  */
955 boolean_t
956 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
957     boolean_t syncio, boolean_t invalidate)
958 {
959         vm_object_t backing_object;
960         struct vnode *vp;
961         struct mount *mp;
962         int error, flags, fsync_after;
963         boolean_t res;
964
965         if (object == NULL)
966                 return (TRUE);
967         res = TRUE;
968         error = 0;
969         VM_OBJECT_LOCK(object);
970         while ((backing_object = object->backing_object) != NULL) {
971                 VM_OBJECT_LOCK(backing_object);
972                 offset += object->backing_object_offset;
973                 VM_OBJECT_UNLOCK(object);
974                 object = backing_object;
975                 if (object->size < OFF_TO_IDX(offset + size))
976                         size = IDX_TO_OFF(object->size) - offset;
977         }
978         /*
979          * Flush pages if writing is allowed, invalidate them
980          * if invalidation requested.  Pages undergoing I/O
981          * will be ignored by vm_object_page_remove().
982          *
983          * We cannot lock the vnode and then wait for paging
984          * to complete without deadlocking against vm_fault.
985          * Instead we simply call vm_object_page_remove() and
986          * allow it to block internally on a page-by-page
987          * basis when it encounters pages undergoing async
988          * I/O.
989          */
990         if (object->type == OBJT_VNODE &&
991             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
992                 int vfslocked;
993                 vp = object->handle;
994                 VM_OBJECT_UNLOCK(object);
995                 (void) vn_start_write(vp, &mp, V_WAIT);
996                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
997                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
998                 if (syncio && !invalidate && offset == 0 &&
999                     OFF_TO_IDX(size) == object->size) {
1000                         /*
1001                          * If syncing the whole mapping of the file,
1002                          * it is faster to schedule all the writes in
1003                          * async mode, also allowing the clustering,
1004                          * and then wait for i/o to complete.
1005                          */
1006                         flags = 0;
1007                         fsync_after = TRUE;
1008                 } else {
1009                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1010                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1011                         fsync_after = FALSE;
1012                 }
1013                 VM_OBJECT_LOCK(object);
1014                 res = vm_object_page_clean(object, offset, offset + size,
1015                     flags);
1016                 VM_OBJECT_UNLOCK(object);
1017                 if (fsync_after)
1018                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1019                 VOP_UNLOCK(vp, 0);
1020                 VFS_UNLOCK_GIANT(vfslocked);
1021                 vn_finished_write(mp);
1022                 if (error != 0)
1023                         res = FALSE;
1024                 VM_OBJECT_LOCK(object);
1025         }
1026         if ((object->type == OBJT_VNODE ||
1027              object->type == OBJT_DEVICE) && invalidate) {
1028                 if (object->type == OBJT_DEVICE)
1029                         /*
1030                          * The option OBJPR_NOTMAPPED must be passed here
1031                          * because vm_object_page_remove() cannot remove
1032                          * unmanaged mappings.
1033                          */
1034                         flags = OBJPR_NOTMAPPED;
1035                 else if (old_msync)
1036                         flags = 0;
1037                 else
1038                         flags = OBJPR_CLEANONLY;
1039                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1040                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1041         }
1042         VM_OBJECT_UNLOCK(object);
1043         return (res);
1044 }
1045
1046 /*
1047  *      vm_object_madvise:
1048  *
1049  *      Implements the madvise function at the object/page level.
1050  *
1051  *      MADV_WILLNEED   (any object)
1052  *
1053  *          Activate the specified pages if they are resident.
1054  *
1055  *      MADV_DONTNEED   (any object)
1056  *
1057  *          Deactivate the specified pages if they are resident.
1058  *
1059  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1060  *                       OBJ_ONEMAPPING only)
1061  *
1062  *          Deactivate and clean the specified pages if they are
1063  *          resident.  This permits the process to reuse the pages
1064  *          without faulting or the kernel to reclaim the pages
1065  *          without I/O.
1066  */
1067 void
1068 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1069     int advise)
1070 {
1071         vm_pindex_t tpindex;
1072         vm_object_t backing_object, tobject;
1073         vm_page_t m;
1074
1075         if (object == NULL)
1076                 return;
1077         VM_OBJECT_LOCK(object);
1078         /*
1079          * Locate and adjust resident pages
1080          */
1081         for (; pindex < end; pindex += 1) {
1082 relookup:
1083                 tobject = object;
1084                 tpindex = pindex;
1085 shadowlookup:
1086                 /*
1087                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1088                  * and those pages must be OBJ_ONEMAPPING.
1089                  */
1090                 if (advise == MADV_FREE) {
1091                         if ((tobject->type != OBJT_DEFAULT &&
1092                              tobject->type != OBJT_SWAP) ||
1093                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1094                                 goto unlock_tobject;
1095                         }
1096                 } else if (tobject->type == OBJT_PHYS)
1097                         goto unlock_tobject;
1098                 m = vm_page_lookup(tobject, tpindex);
1099                 if (m == NULL && advise == MADV_WILLNEED) {
1100                         /*
1101                          * If the page is cached, reactivate it.
1102                          */
1103                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1104                             VM_ALLOC_NOBUSY);
1105                 }
1106                 if (m == NULL) {
1107                         /*
1108                          * There may be swap even if there is no backing page
1109                          */
1110                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1111                                 swap_pager_freespace(tobject, tpindex, 1);
1112                         /*
1113                          * next object
1114                          */
1115                         backing_object = tobject->backing_object;
1116                         if (backing_object == NULL)
1117                                 goto unlock_tobject;
1118                         VM_OBJECT_LOCK(backing_object);
1119                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1120                         if (tobject != object)
1121                                 VM_OBJECT_UNLOCK(tobject);
1122                         tobject = backing_object;
1123                         goto shadowlookup;
1124                 } else if (m->valid != VM_PAGE_BITS_ALL)
1125                         goto unlock_tobject;
1126                 /*
1127                  * If the page is not in a normal state, skip it.
1128                  */
1129                 vm_page_lock(m);
1130                 if (m->hold_count != 0 || m->wire_count != 0) {
1131                         vm_page_unlock(m);
1132                         goto unlock_tobject;
1133                 }
1134                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1135                     ("vm_object_madvise: page %p is fictitious", m));
1136                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1137                     ("vm_object_madvise: page %p is not managed", m));
1138                 if ((m->oflags & VPO_BUSY) || m->busy) {
1139                         if (advise == MADV_WILLNEED) {
1140                                 /*
1141                                  * Reference the page before unlocking and
1142                                  * sleeping so that the page daemon is less
1143                                  * likely to reclaim it. 
1144                                  */
1145                                 vm_page_aflag_set(m, PGA_REFERENCED);
1146                         }
1147                         vm_page_unlock(m);
1148                         if (object != tobject)
1149                                 VM_OBJECT_UNLOCK(object);
1150                         m->oflags |= VPO_WANTED;
1151                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1152                             0);
1153                         VM_OBJECT_LOCK(object);
1154                         goto relookup;
1155                 }
1156                 if (advise == MADV_WILLNEED) {
1157                         vm_page_activate(m);
1158                 } else if (advise == MADV_DONTNEED) {
1159                         vm_page_dontneed(m);
1160                 } else if (advise == MADV_FREE) {
1161                         /*
1162                          * Mark the page clean.  This will allow the page
1163                          * to be freed up by the system.  However, such pages
1164                          * are often reused quickly by malloc()/free()
1165                          * so we do not do anything that would cause
1166                          * a page fault if we can help it.
1167                          *
1168                          * Specifically, we do not try to actually free
1169                          * the page now nor do we try to put it in the
1170                          * cache (which would cause a page fault on reuse).
1171                          *
1172                          * But we do make the page is freeable as we
1173                          * can without actually taking the step of unmapping
1174                          * it.
1175                          */
1176                         pmap_clear_modify(m);
1177                         m->dirty = 0;
1178                         m->act_count = 0;
1179                         vm_page_dontneed(m);
1180                 }
1181                 vm_page_unlock(m);
1182                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1183                         swap_pager_freespace(tobject, tpindex, 1);
1184 unlock_tobject:
1185                 if (tobject != object)
1186                         VM_OBJECT_UNLOCK(tobject);
1187         }       
1188         VM_OBJECT_UNLOCK(object);
1189 }
1190
1191 /*
1192  *      vm_object_shadow:
1193  *
1194  *      Create a new object which is backed by the
1195  *      specified existing object range.  The source
1196  *      object reference is deallocated.
1197  *
1198  *      The new object and offset into that object
1199  *      are returned in the source parameters.
1200  */
1201 void
1202 vm_object_shadow(
1203         vm_object_t *object,    /* IN/OUT */
1204         vm_ooffset_t *offset,   /* IN/OUT */
1205         vm_size_t length)
1206 {
1207         vm_object_t source;
1208         vm_object_t result;
1209
1210         source = *object;
1211
1212         /*
1213          * Don't create the new object if the old object isn't shared.
1214          */
1215         if (source != NULL) {
1216                 VM_OBJECT_LOCK(source);
1217                 if (source->ref_count == 1 &&
1218                     source->handle == NULL &&
1219                     (source->type == OBJT_DEFAULT ||
1220                      source->type == OBJT_SWAP)) {
1221                         VM_OBJECT_UNLOCK(source);
1222                         return;
1223                 }
1224                 VM_OBJECT_UNLOCK(source);
1225         }
1226
1227         /*
1228          * Allocate a new object with the given length.
1229          */
1230         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1231
1232         /*
1233          * The new object shadows the source object, adding a reference to it.
1234          * Our caller changes his reference to point to the new object,
1235          * removing a reference to the source object.  Net result: no change
1236          * of reference count.
1237          *
1238          * Try to optimize the result object's page color when shadowing
1239          * in order to maintain page coloring consistency in the combined 
1240          * shadowed object.
1241          */
1242         result->backing_object = source;
1243         /*
1244          * Store the offset into the source object, and fix up the offset into
1245          * the new object.
1246          */
1247         result->backing_object_offset = *offset;
1248         if (source != NULL) {
1249                 VM_OBJECT_LOCK(source);
1250                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1251                 source->shadow_count++;
1252 #if VM_NRESERVLEVEL > 0
1253                 result->flags |= source->flags & OBJ_COLORED;
1254                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1255                     ((1 << (VM_NFREEORDER - 1)) - 1);
1256 #endif
1257                 VM_OBJECT_UNLOCK(source);
1258         }
1259
1260
1261         /*
1262          * Return the new things
1263          */
1264         *offset = 0;
1265         *object = result;
1266 }
1267
1268 /*
1269  *      vm_object_split:
1270  *
1271  * Split the pages in a map entry into a new object.  This affords
1272  * easier removal of unused pages, and keeps object inheritance from
1273  * being a negative impact on memory usage.
1274  */
1275 void
1276 vm_object_split(vm_map_entry_t entry)
1277 {
1278         vm_page_t m, m_next;
1279         vm_object_t orig_object, new_object, source;
1280         vm_pindex_t idx, offidxstart;
1281         vm_size_t size;
1282
1283         orig_object = entry->object.vm_object;
1284         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1285                 return;
1286         if (orig_object->ref_count <= 1)
1287                 return;
1288         VM_OBJECT_UNLOCK(orig_object);
1289
1290         offidxstart = OFF_TO_IDX(entry->offset);
1291         size = atop(entry->end - entry->start);
1292
1293         /*
1294          * If swap_pager_copy() is later called, it will convert new_object
1295          * into a swap object.
1296          */
1297         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1298
1299         /*
1300          * At this point, the new object is still private, so the order in
1301          * which the original and new objects are locked does not matter.
1302          */
1303         VM_OBJECT_LOCK(new_object);
1304         VM_OBJECT_LOCK(orig_object);
1305         source = orig_object->backing_object;
1306         if (source != NULL) {
1307                 VM_OBJECT_LOCK(source);
1308                 if ((source->flags & OBJ_DEAD) != 0) {
1309                         VM_OBJECT_UNLOCK(source);
1310                         VM_OBJECT_UNLOCK(orig_object);
1311                         VM_OBJECT_UNLOCK(new_object);
1312                         vm_object_deallocate(new_object);
1313                         VM_OBJECT_LOCK(orig_object);
1314                         return;
1315                 }
1316                 LIST_INSERT_HEAD(&source->shadow_head,
1317                                   new_object, shadow_list);
1318                 source->shadow_count++;
1319                 vm_object_reference_locked(source);     /* for new_object */
1320                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1321                 VM_OBJECT_UNLOCK(source);
1322                 new_object->backing_object_offset = 
1323                         orig_object->backing_object_offset + entry->offset;
1324                 new_object->backing_object = source;
1325         }
1326         if (orig_object->cred != NULL) {
1327                 new_object->cred = orig_object->cred;
1328                 crhold(orig_object->cred);
1329                 new_object->charge = ptoa(size);
1330                 KASSERT(orig_object->charge >= ptoa(size),
1331                     ("orig_object->charge < 0"));
1332                 orig_object->charge -= ptoa(size);
1333         }
1334 retry:
1335         m = vm_page_find_least(orig_object, offidxstart);
1336         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1337             m = m_next) {
1338                 m_next = TAILQ_NEXT(m, listq);
1339
1340                 /*
1341                  * We must wait for pending I/O to complete before we can
1342                  * rename the page.
1343                  *
1344                  * We do not have to VM_PROT_NONE the page as mappings should
1345                  * not be changed by this operation.
1346                  */
1347                 if ((m->oflags & VPO_BUSY) || m->busy) {
1348                         VM_OBJECT_UNLOCK(new_object);
1349                         m->oflags |= VPO_WANTED;
1350                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1351                         VM_OBJECT_LOCK(new_object);
1352                         goto retry;
1353                 }
1354                 vm_page_lock(m);
1355                 vm_page_rename(m, new_object, idx);
1356                 vm_page_unlock(m);
1357                 /* page automatically made dirty by rename and cache handled */
1358                 vm_page_busy(m);
1359         }
1360         if (orig_object->type == OBJT_SWAP) {
1361                 /*
1362                  * swap_pager_copy() can sleep, in which case the orig_object's
1363                  * and new_object's locks are released and reacquired. 
1364                  */
1365                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1366
1367                 /*
1368                  * Transfer any cached pages from orig_object to new_object.
1369                  */
1370                 if (__predict_false(orig_object->cache != NULL))
1371                         vm_page_cache_transfer(orig_object, offidxstart,
1372                             new_object);
1373         }
1374         VM_OBJECT_UNLOCK(orig_object);
1375         TAILQ_FOREACH(m, &new_object->memq, listq)
1376                 vm_page_wakeup(m);
1377         VM_OBJECT_UNLOCK(new_object);
1378         entry->object.vm_object = new_object;
1379         entry->offset = 0LL;
1380         vm_object_deallocate(orig_object);
1381         VM_OBJECT_LOCK(new_object);
1382 }
1383
1384 #define OBSC_TEST_ALL_SHADOWED  0x0001
1385 #define OBSC_COLLAPSE_NOWAIT    0x0002
1386 #define OBSC_COLLAPSE_WAIT      0x0004
1387
1388 static int
1389 vm_object_backing_scan(vm_object_t object, int op)
1390 {
1391         int r = 1;
1392         vm_page_t p;
1393         vm_object_t backing_object;
1394         vm_pindex_t backing_offset_index;
1395
1396         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1397         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1398
1399         backing_object = object->backing_object;
1400         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1401
1402         /*
1403          * Initial conditions
1404          */
1405         if (op & OBSC_TEST_ALL_SHADOWED) {
1406                 /*
1407                  * We do not want to have to test for the existence of cache
1408                  * or swap pages in the backing object.  XXX but with the
1409                  * new swapper this would be pretty easy to do.
1410                  *
1411                  * XXX what about anonymous MAP_SHARED memory that hasn't
1412                  * been ZFOD faulted yet?  If we do not test for this, the
1413                  * shadow test may succeed! XXX
1414                  */
1415                 if (backing_object->type != OBJT_DEFAULT) {
1416                         return (0);
1417                 }
1418         }
1419         if (op & OBSC_COLLAPSE_WAIT) {
1420                 vm_object_set_flag(backing_object, OBJ_DEAD);
1421         }
1422
1423         /*
1424          * Our scan
1425          */
1426         p = TAILQ_FIRST(&backing_object->memq);
1427         while (p) {
1428                 vm_page_t next = TAILQ_NEXT(p, listq);
1429                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1430
1431                 if (op & OBSC_TEST_ALL_SHADOWED) {
1432                         vm_page_t pp;
1433
1434                         /*
1435                          * Ignore pages outside the parent object's range
1436                          * and outside the parent object's mapping of the 
1437                          * backing object.
1438                          *
1439                          * note that we do not busy the backing object's
1440                          * page.
1441                          */
1442                         if (
1443                             p->pindex < backing_offset_index ||
1444                             new_pindex >= object->size
1445                         ) {
1446                                 p = next;
1447                                 continue;
1448                         }
1449
1450                         /*
1451                          * See if the parent has the page or if the parent's
1452                          * object pager has the page.  If the parent has the
1453                          * page but the page is not valid, the parent's
1454                          * object pager must have the page.
1455                          *
1456                          * If this fails, the parent does not completely shadow
1457                          * the object and we might as well give up now.
1458                          */
1459
1460                         pp = vm_page_lookup(object, new_pindex);
1461                         if (
1462                             (pp == NULL || pp->valid == 0) &&
1463                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1464                         ) {
1465                                 r = 0;
1466                                 break;
1467                         }
1468                 }
1469
1470                 /*
1471                  * Check for busy page
1472                  */
1473                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1474                         vm_page_t pp;
1475
1476                         if (op & OBSC_COLLAPSE_NOWAIT) {
1477                                 if ((p->oflags & VPO_BUSY) ||
1478                                     !p->valid || 
1479                                     p->busy) {
1480                                         p = next;
1481                                         continue;
1482                                 }
1483                         } else if (op & OBSC_COLLAPSE_WAIT) {
1484                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1485                                         VM_OBJECT_UNLOCK(object);
1486                                         p->oflags |= VPO_WANTED;
1487                                         msleep(p, VM_OBJECT_MTX(backing_object),
1488                                             PDROP | PVM, "vmocol", 0);
1489                                         VM_OBJECT_LOCK(object);
1490                                         VM_OBJECT_LOCK(backing_object);
1491                                         /*
1492                                          * If we slept, anything could have
1493                                          * happened.  Since the object is
1494                                          * marked dead, the backing offset
1495                                          * should not have changed so we
1496                                          * just restart our scan.
1497                                          */
1498                                         p = TAILQ_FIRST(&backing_object->memq);
1499                                         continue;
1500                                 }
1501                         }
1502
1503                         KASSERT(
1504                             p->object == backing_object,
1505                             ("vm_object_backing_scan: object mismatch")
1506                         );
1507
1508                         /*
1509                          * Destroy any associated swap
1510                          */
1511                         if (backing_object->type == OBJT_SWAP) {
1512                                 swap_pager_freespace(
1513                                     backing_object, 
1514                                     p->pindex,
1515                                     1
1516                                 );
1517                         }
1518
1519                         if (
1520                             p->pindex < backing_offset_index ||
1521                             new_pindex >= object->size
1522                         ) {
1523                                 /*
1524                                  * Page is out of the parent object's range, we 
1525                                  * can simply destroy it. 
1526                                  */
1527                                 vm_page_lock(p);
1528                                 KASSERT(!pmap_page_is_mapped(p),
1529                                     ("freeing mapped page %p", p));
1530                                 if (p->wire_count == 0)
1531                                         vm_page_free(p);
1532                                 else
1533                                         vm_page_remove(p);
1534                                 vm_page_unlock(p);
1535                                 p = next;
1536                                 continue;
1537                         }
1538
1539                         pp = vm_page_lookup(object, new_pindex);
1540                         if (
1541                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1542                             (pp != NULL && pp->valid == 0)
1543                         ) {
1544                                 /*
1545                                  * The page in the parent is not (yet) valid.
1546                                  * We don't know anything about the state of
1547                                  * the original page.  It might be mapped,
1548                                  * so we must avoid the next if here.
1549                                  *
1550                                  * This is due to a race in vm_fault() where
1551                                  * we must unbusy the original (backing_obj)
1552                                  * page before we can (re)lock the parent.
1553                                  * Hence we can get here.
1554                                  */
1555                                 p = next;
1556                                 continue;
1557                         }
1558                         if (
1559                             pp != NULL ||
1560                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1561                         ) {
1562                                 /*
1563                                  * page already exists in parent OR swap exists
1564                                  * for this location in the parent.  Destroy 
1565                                  * the original page from the backing object.
1566                                  *
1567                                  * Leave the parent's page alone
1568                                  */
1569                                 vm_page_lock(p);
1570                                 KASSERT(!pmap_page_is_mapped(p),
1571                                     ("freeing mapped page %p", p));
1572                                 if (p->wire_count == 0)
1573                                         vm_page_free(p);
1574                                 else
1575                                         vm_page_remove(p);
1576                                 vm_page_unlock(p);
1577                                 p = next;
1578                                 continue;
1579                         }
1580
1581 #if VM_NRESERVLEVEL > 0
1582                         /*
1583                          * Rename the reservation.
1584                          */
1585                         vm_reserv_rename(p, object, backing_object,
1586                             backing_offset_index);
1587 #endif
1588
1589                         /*
1590                          * Page does not exist in parent, rename the
1591                          * page from the backing object to the main object. 
1592                          *
1593                          * If the page was mapped to a process, it can remain 
1594                          * mapped through the rename.
1595                          */
1596                         vm_page_lock(p);
1597                         vm_page_rename(p, object, new_pindex);
1598                         vm_page_unlock(p);
1599                         /* page automatically made dirty by rename */
1600                 }
1601                 p = next;
1602         }
1603         return (r);
1604 }
1605
1606
1607 /*
1608  * this version of collapse allows the operation to occur earlier and
1609  * when paging_in_progress is true for an object...  This is not a complete
1610  * operation, but should plug 99.9% of the rest of the leaks.
1611  */
1612 static void
1613 vm_object_qcollapse(vm_object_t object)
1614 {
1615         vm_object_t backing_object = object->backing_object;
1616
1617         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1618         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1619
1620         if (backing_object->ref_count != 1)
1621                 return;
1622
1623         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1624 }
1625
1626 /*
1627  *      vm_object_collapse:
1628  *
1629  *      Collapse an object with the object backing it.
1630  *      Pages in the backing object are moved into the
1631  *      parent, and the backing object is deallocated.
1632  */
1633 void
1634 vm_object_collapse(vm_object_t object)
1635 {
1636         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1637         
1638         while (TRUE) {
1639                 vm_object_t backing_object;
1640
1641                 /*
1642                  * Verify that the conditions are right for collapse:
1643                  *
1644                  * The object exists and the backing object exists.
1645                  */
1646                 if ((backing_object = object->backing_object) == NULL)
1647                         break;
1648
1649                 /*
1650                  * we check the backing object first, because it is most likely
1651                  * not collapsable.
1652                  */
1653                 VM_OBJECT_LOCK(backing_object);
1654                 if (backing_object->handle != NULL ||
1655                     (backing_object->type != OBJT_DEFAULT &&
1656                      backing_object->type != OBJT_SWAP) ||
1657                     (backing_object->flags & OBJ_DEAD) ||
1658                     object->handle != NULL ||
1659                     (object->type != OBJT_DEFAULT &&
1660                      object->type != OBJT_SWAP) ||
1661                     (object->flags & OBJ_DEAD)) {
1662                         VM_OBJECT_UNLOCK(backing_object);
1663                         break;
1664                 }
1665
1666                 if (
1667                     object->paging_in_progress != 0 ||
1668                     backing_object->paging_in_progress != 0
1669                 ) {
1670                         vm_object_qcollapse(object);
1671                         VM_OBJECT_UNLOCK(backing_object);
1672                         break;
1673                 }
1674                 /*
1675                  * We know that we can either collapse the backing object (if
1676                  * the parent is the only reference to it) or (perhaps) have
1677                  * the parent bypass the object if the parent happens to shadow
1678                  * all the resident pages in the entire backing object.
1679                  *
1680                  * This is ignoring pager-backed pages such as swap pages.
1681                  * vm_object_backing_scan fails the shadowing test in this
1682                  * case.
1683                  */
1684                 if (backing_object->ref_count == 1) {
1685                         /*
1686                          * If there is exactly one reference to the backing
1687                          * object, we can collapse it into the parent.  
1688                          */
1689                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1690
1691 #if VM_NRESERVLEVEL > 0
1692                         /*
1693                          * Break any reservations from backing_object.
1694                          */
1695                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1696                                 vm_reserv_break_all(backing_object);
1697 #endif
1698
1699                         /*
1700                          * Move the pager from backing_object to object.
1701                          */
1702                         if (backing_object->type == OBJT_SWAP) {
1703                                 /*
1704                                  * swap_pager_copy() can sleep, in which case
1705                                  * the backing_object's and object's locks are
1706                                  * released and reacquired.
1707                                  */
1708                                 swap_pager_copy(
1709                                     backing_object,
1710                                     object,
1711                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1712
1713                                 /*
1714                                  * Free any cached pages from backing_object.
1715                                  */
1716                                 if (__predict_false(backing_object->cache != NULL))
1717                                         vm_page_cache_free(backing_object, 0, 0);
1718                         }
1719                         /*
1720                          * Object now shadows whatever backing_object did.
1721                          * Note that the reference to 
1722                          * backing_object->backing_object moves from within 
1723                          * backing_object to within object.
1724                          */
1725                         LIST_REMOVE(object, shadow_list);
1726                         backing_object->shadow_count--;
1727                         if (backing_object->backing_object) {
1728                                 VM_OBJECT_LOCK(backing_object->backing_object);
1729                                 LIST_REMOVE(backing_object, shadow_list);
1730                                 LIST_INSERT_HEAD(
1731                                     &backing_object->backing_object->shadow_head,
1732                                     object, shadow_list);
1733                                 /*
1734                                  * The shadow_count has not changed.
1735                                  */
1736                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1737                         }
1738                         object->backing_object = backing_object->backing_object;
1739                         object->backing_object_offset +=
1740                             backing_object->backing_object_offset;
1741
1742                         /*
1743                          * Discard backing_object.
1744                          *
1745                          * Since the backing object has no pages, no pager left,
1746                          * and no object references within it, all that is
1747                          * necessary is to dispose of it.
1748                          */
1749                         KASSERT(backing_object->ref_count == 1, (
1750 "backing_object %p was somehow re-referenced during collapse!",
1751                             backing_object));
1752                         VM_OBJECT_UNLOCK(backing_object);
1753                         vm_object_destroy(backing_object);
1754
1755                         object_collapses++;
1756                 } else {
1757                         vm_object_t new_backing_object;
1758
1759                         /*
1760                          * If we do not entirely shadow the backing object,
1761                          * there is nothing we can do so we give up.
1762                          */
1763                         if (object->resident_page_count != object->size &&
1764                             vm_object_backing_scan(object,
1765                             OBSC_TEST_ALL_SHADOWED) == 0) {
1766                                 VM_OBJECT_UNLOCK(backing_object);
1767                                 break;
1768                         }
1769
1770                         /*
1771                          * Make the parent shadow the next object in the
1772                          * chain.  Deallocating backing_object will not remove
1773                          * it, since its reference count is at least 2.
1774                          */
1775                         LIST_REMOVE(object, shadow_list);
1776                         backing_object->shadow_count--;
1777
1778                         new_backing_object = backing_object->backing_object;
1779                         if ((object->backing_object = new_backing_object) != NULL) {
1780                                 VM_OBJECT_LOCK(new_backing_object);
1781                                 LIST_INSERT_HEAD(
1782                                     &new_backing_object->shadow_head,
1783                                     object,
1784                                     shadow_list
1785                                 );
1786                                 new_backing_object->shadow_count++;
1787                                 vm_object_reference_locked(new_backing_object);
1788                                 VM_OBJECT_UNLOCK(new_backing_object);
1789                                 object->backing_object_offset +=
1790                                         backing_object->backing_object_offset;
1791                         }
1792
1793                         /*
1794                          * Drop the reference count on backing_object. Since
1795                          * its ref_count was at least 2, it will not vanish.
1796                          */
1797                         backing_object->ref_count--;
1798                         VM_OBJECT_UNLOCK(backing_object);
1799                         object_bypasses++;
1800                 }
1801
1802                 /*
1803                  * Try again with this object's new backing object.
1804                  */
1805         }
1806 }
1807
1808 /*
1809  *      vm_object_page_remove:
1810  *
1811  *      For the given object, either frees or invalidates each of the
1812  *      specified pages.  In general, a page is freed.  However, if a page is
1813  *      wired for any reason other than the existence of a managed, wired
1814  *      mapping, then it may be invalidated but not removed from the object.
1815  *      Pages are specified by the given range ["start", "end") and the option
1816  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1817  *      extends from "start" to the end of the object.  If the option
1818  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1819  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1820  *      specified, then the pages within the specified range must have no
1821  *      mappings.  Otherwise, if this option is not specified, any mappings to
1822  *      the specified pages are removed before the pages are freed or
1823  *      invalidated.
1824  *
1825  *      In general, this operation should only be performed on objects that
1826  *      contain managed pages.  There are, however, two exceptions.  First, it
1827  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1828  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1829  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1830  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1831  *
1832  *      The object must be locked.
1833  */
1834 void
1835 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1836     int options)
1837 {
1838         vm_page_t p, next;
1839         int wirings;
1840
1841         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1842         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
1843             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1844             ("vm_object_page_remove: illegal options for object %p", object));
1845         if (object->resident_page_count == 0)
1846                 goto skipmemq;
1847         vm_object_pip_add(object, 1);
1848 again:
1849         p = vm_page_find_least(object, start);
1850
1851         /*
1852          * Here, the variable "p" is either (1) the page with the least pindex
1853          * greater than or equal to the parameter "start" or (2) NULL. 
1854          */
1855         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1856                 next = TAILQ_NEXT(p, listq);
1857
1858                 /*
1859                  * If the page is wired for any reason besides the existence
1860                  * of managed, wired mappings, then it cannot be freed.  For
1861                  * example, fictitious pages, which represent device memory,
1862                  * are inherently wired and cannot be freed.  They can,
1863                  * however, be invalidated if the option OBJPR_CLEANONLY is
1864                  * not specified.
1865                  */
1866                 vm_page_lock(p);
1867                 if ((wirings = p->wire_count) != 0 &&
1868                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1869                         if ((options & OBJPR_NOTMAPPED) == 0) {
1870                                 pmap_remove_all(p);
1871                                 /* Account for removal of wired mappings. */
1872                                 if (wirings != 0)
1873                                         p->wire_count -= wirings;
1874                         }
1875                         if ((options & OBJPR_CLEANONLY) == 0) {
1876                                 p->valid = 0;
1877                                 vm_page_undirty(p);
1878                         }
1879                         vm_page_unlock(p);
1880                         continue;
1881                 }
1882                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1883                         goto again;
1884                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1885                     ("vm_object_page_remove: page %p is fictitious", p));
1886                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1887                         if ((options & OBJPR_NOTMAPPED) == 0)
1888                                 pmap_remove_write(p);
1889                         if (p->dirty) {
1890                                 vm_page_unlock(p);
1891                                 continue;
1892                         }
1893                 }
1894                 if ((options & OBJPR_NOTMAPPED) == 0) {
1895                         pmap_remove_all(p);
1896                         /* Account for removal of wired mappings. */
1897                         if (wirings != 0) {
1898                                 KASSERT(p->wire_count == wirings,
1899                                     ("inconsistent wire count %d %d %p",
1900                                     p->wire_count, wirings, p));
1901                                 p->wire_count = 0;
1902                                 atomic_subtract_int(&cnt.v_wire_count, 1);
1903                         }
1904                 }
1905                 vm_page_free(p);
1906                 vm_page_unlock(p);
1907         }
1908         vm_object_pip_wakeup(object);
1909 skipmemq:
1910         if (__predict_false(object->cache != NULL))
1911                 vm_page_cache_free(object, start, end);
1912 }
1913
1914 /*
1915  *      vm_object_page_cache:
1916  *
1917  *      For the given object, attempt to move the specified clean
1918  *      pages to the cache queue.  If a page is wired for any reason,
1919  *      then it will not be changed.  Pages are specified by the given
1920  *      range ["start", "end").  As a special case, if "end" is zero,
1921  *      then the range extends from "start" to the end of the object.
1922  *      Any mappings to the specified pages are removed before the
1923  *      pages are moved to the cache queue.
1924  *
1925  *      This operation should only be performed on objects that
1926  *      contain managed pages.
1927  *
1928  *      The object must be locked.
1929  */
1930 void
1931 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1932 {
1933         struct mtx *mtx, *new_mtx;
1934         vm_page_t p, next;
1935
1936         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1937         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
1938             object->type != OBJT_PHYS),
1939             ("vm_object_page_cache: illegal object %p", object));
1940         if (object->resident_page_count == 0)
1941                 return;
1942         p = vm_page_find_least(object, start);
1943
1944         /*
1945          * Here, the variable "p" is either (1) the page with the least pindex
1946          * greater than or equal to the parameter "start" or (2) NULL. 
1947          */
1948         mtx = NULL;
1949         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1950                 next = TAILQ_NEXT(p, listq);
1951
1952                 /*
1953                  * Avoid releasing and reacquiring the same page lock.
1954                  */
1955                 new_mtx = vm_page_lockptr(p);
1956                 if (mtx != new_mtx) {
1957                         if (mtx != NULL)
1958                                 mtx_unlock(mtx);
1959                         mtx = new_mtx;
1960                         mtx_lock(mtx);
1961                 }
1962                 vm_page_try_to_cache(p);
1963         }
1964         if (mtx != NULL)
1965                 mtx_unlock(mtx);
1966 }
1967
1968 /*
1969  *      Populate the specified range of the object with valid pages.  Returns
1970  *      TRUE if the range is successfully populated and FALSE otherwise.
1971  *
1972  *      Note: This function should be optimized to pass a larger array of
1973  *      pages to vm_pager_get_pages() before it is applied to a non-
1974  *      OBJT_DEVICE object.
1975  *
1976  *      The object must be locked.
1977  */
1978 boolean_t
1979 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1980 {
1981         vm_page_t m, ma[1];
1982         vm_pindex_t pindex;
1983         int rv;
1984
1985         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1986         for (pindex = start; pindex < end; pindex++) {
1987                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1988                     VM_ALLOC_RETRY);
1989                 if (m->valid != VM_PAGE_BITS_ALL) {
1990                         ma[0] = m;
1991                         rv = vm_pager_get_pages(object, ma, 1, 0);
1992                         m = vm_page_lookup(object, pindex);
1993                         if (m == NULL)
1994                                 break;
1995                         if (rv != VM_PAGER_OK) {
1996                                 vm_page_lock(m);
1997                                 vm_page_free(m);
1998                                 vm_page_unlock(m);
1999                                 break;
2000                         }
2001                 }
2002                 /*
2003                  * Keep "m" busy because a subsequent iteration may unlock
2004                  * the object.
2005                  */
2006         }
2007         if (pindex > start) {
2008                 m = vm_page_lookup(object, start);
2009                 while (m != NULL && m->pindex < pindex) {
2010                         vm_page_wakeup(m);
2011                         m = TAILQ_NEXT(m, listq);
2012                 }
2013         }
2014         return (pindex == end);
2015 }
2016
2017 /*
2018  *      Routine:        vm_object_coalesce
2019  *      Function:       Coalesces two objects backing up adjoining
2020  *                      regions of memory into a single object.
2021  *
2022  *      returns TRUE if objects were combined.
2023  *
2024  *      NOTE:   Only works at the moment if the second object is NULL -
2025  *              if it's not, which object do we lock first?
2026  *
2027  *      Parameters:
2028  *              prev_object     First object to coalesce
2029  *              prev_offset     Offset into prev_object
2030  *              prev_size       Size of reference to prev_object
2031  *              next_size       Size of reference to the second object
2032  *              reserved        Indicator that extension region has
2033  *                              swap accounted for
2034  *
2035  *      Conditions:
2036  *      The object must *not* be locked.
2037  */
2038 boolean_t
2039 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2040     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2041 {
2042         vm_pindex_t next_pindex;
2043
2044         if (prev_object == NULL)
2045                 return (TRUE);
2046         VM_OBJECT_LOCK(prev_object);
2047         if (prev_object->type != OBJT_DEFAULT &&
2048             prev_object->type != OBJT_SWAP) {
2049                 VM_OBJECT_UNLOCK(prev_object);
2050                 return (FALSE);
2051         }
2052
2053         /*
2054          * Try to collapse the object first
2055          */
2056         vm_object_collapse(prev_object);
2057
2058         /*
2059          * Can't coalesce if: . more than one reference . paged out . shadows
2060          * another object . has a copy elsewhere (any of which mean that the
2061          * pages not mapped to prev_entry may be in use anyway)
2062          */
2063         if (prev_object->backing_object != NULL) {
2064                 VM_OBJECT_UNLOCK(prev_object);
2065                 return (FALSE);
2066         }
2067
2068         prev_size >>= PAGE_SHIFT;
2069         next_size >>= PAGE_SHIFT;
2070         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2071
2072         if ((prev_object->ref_count > 1) &&
2073             (prev_object->size != next_pindex)) {
2074                 VM_OBJECT_UNLOCK(prev_object);
2075                 return (FALSE);
2076         }
2077
2078         /*
2079          * Account for the charge.
2080          */
2081         if (prev_object->cred != NULL) {
2082
2083                 /*
2084                  * If prev_object was charged, then this mapping,
2085                  * althought not charged now, may become writable
2086                  * later. Non-NULL cred in the object would prevent
2087                  * swap reservation during enabling of the write
2088                  * access, so reserve swap now. Failed reservation
2089                  * cause allocation of the separate object for the map
2090                  * entry, and swap reservation for this entry is
2091                  * managed in appropriate time.
2092                  */
2093                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2094                     prev_object->cred)) {
2095                         return (FALSE);
2096                 }
2097                 prev_object->charge += ptoa(next_size);
2098         }
2099
2100         /*
2101          * Remove any pages that may still be in the object from a previous
2102          * deallocation.
2103          */
2104         if (next_pindex < prev_object->size) {
2105                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2106                     next_size, 0);
2107                 if (prev_object->type == OBJT_SWAP)
2108                         swap_pager_freespace(prev_object,
2109                                              next_pindex, next_size);
2110 #if 0
2111                 if (prev_object->cred != NULL) {
2112                         KASSERT(prev_object->charge >=
2113                             ptoa(prev_object->size - next_pindex),
2114                             ("object %p overcharged 1 %jx %jx", prev_object,
2115                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2116                         prev_object->charge -= ptoa(prev_object->size -
2117                             next_pindex);
2118                 }
2119 #endif
2120         }
2121
2122         /*
2123          * Extend the object if necessary.
2124          */
2125         if (next_pindex + next_size > prev_object->size)
2126                 prev_object->size = next_pindex + next_size;
2127
2128         VM_OBJECT_UNLOCK(prev_object);
2129         return (TRUE);
2130 }
2131
2132 void
2133 vm_object_set_writeable_dirty(vm_object_t object)
2134 {
2135
2136         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2137         if (object->type != OBJT_VNODE)
2138                 return;
2139         object->generation++;
2140         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2141                 return;
2142         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2143 }
2144
2145 #include "opt_ddb.h"
2146 #ifdef DDB
2147 #include <sys/kernel.h>
2148
2149 #include <sys/cons.h>
2150
2151 #include <ddb/ddb.h>
2152
2153 static int
2154 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2155 {
2156         vm_map_t tmpm;
2157         vm_map_entry_t tmpe;
2158         vm_object_t obj;
2159         int entcount;
2160
2161         if (map == 0)
2162                 return 0;
2163
2164         if (entry == 0) {
2165                 tmpe = map->header.next;
2166                 entcount = map->nentries;
2167                 while (entcount-- && (tmpe != &map->header)) {
2168                         if (_vm_object_in_map(map, object, tmpe)) {
2169                                 return 1;
2170                         }
2171                         tmpe = tmpe->next;
2172                 }
2173         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2174                 tmpm = entry->object.sub_map;
2175                 tmpe = tmpm->header.next;
2176                 entcount = tmpm->nentries;
2177                 while (entcount-- && tmpe != &tmpm->header) {
2178                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2179                                 return 1;
2180                         }
2181                         tmpe = tmpe->next;
2182                 }
2183         } else if ((obj = entry->object.vm_object) != NULL) {
2184                 for (; obj; obj = obj->backing_object)
2185                         if (obj == object) {
2186                                 return 1;
2187                         }
2188         }
2189         return 0;
2190 }
2191
2192 static int
2193 vm_object_in_map(vm_object_t object)
2194 {
2195         struct proc *p;
2196
2197         /* sx_slock(&allproc_lock); */
2198         FOREACH_PROC_IN_SYSTEM(p) {
2199                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2200                         continue;
2201                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2202                         /* sx_sunlock(&allproc_lock); */
2203                         return 1;
2204                 }
2205         }
2206         /* sx_sunlock(&allproc_lock); */
2207         if (_vm_object_in_map(kernel_map, object, 0))
2208                 return 1;
2209         if (_vm_object_in_map(kmem_map, object, 0))
2210                 return 1;
2211         if (_vm_object_in_map(pager_map, object, 0))
2212                 return 1;
2213         if (_vm_object_in_map(buffer_map, object, 0))
2214                 return 1;
2215         return 0;
2216 }
2217
2218 DB_SHOW_COMMAND(vmochk, vm_object_check)
2219 {
2220         vm_object_t object;
2221
2222         /*
2223          * make sure that internal objs are in a map somewhere
2224          * and none have zero ref counts.
2225          */
2226         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2227                 if (object->handle == NULL &&
2228                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2229                         if (object->ref_count == 0) {
2230                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2231                                         (long)object->size);
2232                         }
2233                         if (!vm_object_in_map(object)) {
2234                                 db_printf(
2235                         "vmochk: internal obj is not in a map: "
2236                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2237                                     object->ref_count, (u_long)object->size, 
2238                                     (u_long)object->size,
2239                                     (void *)object->backing_object);
2240                         }
2241                 }
2242         }
2243 }
2244
2245 /*
2246  *      vm_object_print:        [ debug ]
2247  */
2248 DB_SHOW_COMMAND(object, vm_object_print_static)
2249 {
2250         /* XXX convert args. */
2251         vm_object_t object = (vm_object_t)addr;
2252         boolean_t full = have_addr;
2253
2254         vm_page_t p;
2255
2256         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2257 #define count   was_count
2258
2259         int count;
2260
2261         if (object == NULL)
2262                 return;
2263
2264         db_iprintf(
2265             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2266             object, (int)object->type, (uintmax_t)object->size,
2267             object->resident_page_count, object->ref_count, object->flags,
2268             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2269         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2270             object->shadow_count, 
2271             object->backing_object ? object->backing_object->ref_count : 0,
2272             object->backing_object, (uintmax_t)object->backing_object_offset);
2273
2274         if (!full)
2275                 return;
2276
2277         db_indent += 2;
2278         count = 0;
2279         TAILQ_FOREACH(p, &object->memq, listq) {
2280                 if (count == 0)
2281                         db_iprintf("memory:=");
2282                 else if (count == 6) {
2283                         db_printf("\n");
2284                         db_iprintf(" ...");
2285                         count = 0;
2286                 } else
2287                         db_printf(",");
2288                 count++;
2289
2290                 db_printf("(off=0x%jx,page=0x%jx)",
2291                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2292         }
2293         if (count != 0)
2294                 db_printf("\n");
2295         db_indent -= 2;
2296 }
2297
2298 /* XXX. */
2299 #undef count
2300
2301 /* XXX need this non-static entry for calling from vm_map_print. */
2302 void
2303 vm_object_print(
2304         /* db_expr_t */ long addr,
2305         boolean_t have_addr,
2306         /* db_expr_t */ long count,
2307         char *modif)
2308 {
2309         vm_object_print_static(addr, have_addr, count, modif);
2310 }
2311
2312 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2313 {
2314         vm_object_t object;
2315         vm_pindex_t fidx;
2316         vm_paddr_t pa;
2317         vm_page_t m, prev_m;
2318         int rcount, nl, c;
2319
2320         nl = 0;
2321         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2322                 db_printf("new object: %p\n", (void *)object);
2323                 if (nl > 18) {
2324                         c = cngetc();
2325                         if (c != ' ')
2326                                 return;
2327                         nl = 0;
2328                 }
2329                 nl++;
2330                 rcount = 0;
2331                 fidx = 0;
2332                 pa = -1;
2333                 TAILQ_FOREACH(m, &object->memq, listq) {
2334                         if (m->pindex > 128)
2335                                 break;
2336                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2337                             prev_m->pindex + 1 != m->pindex) {
2338                                 if (rcount) {
2339                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2340                                                 (long)fidx, rcount, (long)pa);
2341                                         if (nl > 18) {
2342                                                 c = cngetc();
2343                                                 if (c != ' ')
2344                                                         return;
2345                                                 nl = 0;
2346                                         }
2347                                         nl++;
2348                                         rcount = 0;
2349                                 }
2350                         }                               
2351                         if (rcount &&
2352                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2353                                 ++rcount;
2354                                 continue;
2355                         }
2356                         if (rcount) {
2357                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2358                                         (long)fidx, rcount, (long)pa);
2359                                 if (nl > 18) {
2360                                         c = cngetc();
2361                                         if (c != ' ')
2362                                                 return;
2363                                         nl = 0;
2364                                 }
2365                                 nl++;
2366                         }
2367                         fidx = m->pindex;
2368                         pa = VM_PAGE_TO_PHYS(m);
2369                         rcount = 1;
2370                 }
2371                 if (rcount) {
2372                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2373                                 (long)fidx, rcount, (long)pa);
2374                         if (nl > 18) {
2375                                 c = cngetc();
2376                                 if (c != ' ')
2377                                         return;
2378                                 nl = 0;
2379                         }
2380                         nl++;
2381                 }
2382         }
2383 }
2384 #endif /* DDB */