]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/vm/vm_pageout.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212 #if !defined(NO_SWAPPING)
213 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
214 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
215 static void vm_req_vmdaemon(int req);
216 #endif
217 static void vm_pageout_page_stats(void);
218
219 /*
220  * Initialize a dummy page for marking the caller's place in the specified
221  * paging queue.  In principle, this function only needs to set the flag
222  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
223  * count to one as safety precautions.
224  */ 
225 static void
226 vm_pageout_init_marker(vm_page_t marker, u_short queue)
227 {
228
229         bzero(marker, sizeof(*marker));
230         marker->flags = PG_MARKER;
231         marker->oflags = VPO_BUSY;
232         marker->queue = queue;
233         marker->hold_count = 1;
234 }
235
236 /*
237  * vm_pageout_fallback_object_lock:
238  * 
239  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
240  * known to have failed and page queue must be either PQ_ACTIVE or
241  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
242  * while locking the vm object.  Use marker page to detect page queue
243  * changes and maintain notion of next page on page queue.  Return
244  * TRUE if no changes were detected, FALSE otherwise.  vm object is
245  * locked on return.
246  * 
247  * This function depends on both the lock portion of struct vm_object
248  * and normal struct vm_page being type stable.
249  */
250 boolean_t
251 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
252 {
253         struct vm_page marker;
254         boolean_t unchanged;
255         u_short queue;
256         vm_object_t object;
257
258         queue = m->queue;
259         vm_pageout_init_marker(&marker, queue);
260         object = m->object;
261         
262         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
263                            m, &marker, pageq);
264         vm_page_unlock_queues();
265         vm_page_unlock(m);
266         VM_OBJECT_LOCK(object);
267         vm_page_lock(m);
268         vm_page_lock_queues();
269
270         /* Page queue might have changed. */
271         *next = TAILQ_NEXT(&marker, pageq);
272         unchanged = (m->queue == queue &&
273                      m->object == object &&
274                      &marker == TAILQ_NEXT(m, pageq));
275         TAILQ_REMOVE(&vm_page_queues[queue].pl,
276                      &marker, pageq);
277         return (unchanged);
278 }
279
280 /*
281  * Lock the page while holding the page queue lock.  Use marker page
282  * to detect page queue changes and maintain notion of next page on
283  * page queue.  Return TRUE if no changes were detected, FALSE
284  * otherwise.  The page is locked on return. The page queue lock might
285  * be dropped and reacquired.
286  *
287  * This function depends on normal struct vm_page being type stable.
288  */
289 boolean_t
290 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
291 {
292         struct vm_page marker;
293         boolean_t unchanged;
294         u_short queue;
295
296         vm_page_lock_assert(m, MA_NOTOWNED);
297         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
298
299         if (vm_page_trylock(m))
300                 return (TRUE);
301
302         queue = m->queue;
303         vm_pageout_init_marker(&marker, queue);
304
305         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
306         vm_page_unlock_queues();
307         vm_page_lock(m);
308         vm_page_lock_queues();
309
310         /* Page queue might have changed. */
311         *next = TAILQ_NEXT(&marker, pageq);
312         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
313         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
314         return (unchanged);
315 }
316
317 /*
318  * vm_pageout_clean:
319  *
320  * Clean the page and remove it from the laundry.
321  * 
322  * We set the busy bit to cause potential page faults on this page to
323  * block.  Note the careful timing, however, the busy bit isn't set till
324  * late and we cannot do anything that will mess with the page.
325  */
326 static int
327 vm_pageout_clean(vm_page_t m)
328 {
329         vm_object_t object;
330         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
331         int pageout_count;
332         int ib, is, page_base;
333         vm_pindex_t pindex = m->pindex;
334
335         vm_page_lock_assert(m, MA_OWNED);
336         object = m->object;
337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338
339         /*
340          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
341          * with the new swapper, but we could have serious problems paging
342          * out other object types if there is insufficient memory.  
343          *
344          * Unfortunately, checking free memory here is far too late, so the
345          * check has been moved up a procedural level.
346          */
347
348         /*
349          * Can't clean the page if it's busy or held.
350          */
351         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
352             ("vm_pageout_clean: page %p is busy", m));
353         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
354         vm_page_unlock(m);
355
356         mc[vm_pageout_page_count] = pb = ps = m;
357         pageout_count = 1;
358         page_base = vm_pageout_page_count;
359         ib = 1;
360         is = 1;
361
362         /*
363          * Scan object for clusterable pages.
364          *
365          * We can cluster ONLY if: ->> the page is NOT
366          * clean, wired, busy, held, or mapped into a
367          * buffer, and one of the following:
368          * 1) The page is inactive, or a seldom used
369          *    active page.
370          * -or-
371          * 2) we force the issue.
372          *
373          * During heavy mmap/modification loads the pageout
374          * daemon can really fragment the underlying file
375          * due to flushing pages out of order and not trying
376          * align the clusters (which leave sporatic out-of-order
377          * holes).  To solve this problem we do the reverse scan
378          * first and attempt to align our cluster, then do a 
379          * forward scan if room remains.
380          */
381 more:
382         while (ib && pageout_count < vm_pageout_page_count) {
383                 vm_page_t p;
384
385                 if (ib > pindex) {
386                         ib = 0;
387                         break;
388                 }
389
390                 if ((p = vm_page_prev(pb)) == NULL ||
391                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
392                         ib = 0;
393                         break;
394                 }
395                 vm_page_lock(p);
396                 vm_page_test_dirty(p);
397                 if (p->dirty == 0 ||
398                     p->queue != PQ_INACTIVE ||
399                     p->hold_count != 0) {       /* may be undergoing I/O */
400                         vm_page_unlock(p);
401                         ib = 0;
402                         break;
403                 }
404                 vm_page_unlock(p);
405                 mc[--page_base] = pb = p;
406                 ++pageout_count;
407                 ++ib;
408                 /*
409                  * alignment boundry, stop here and switch directions.  Do
410                  * not clear ib.
411                  */
412                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
413                         break;
414         }
415
416         while (pageout_count < vm_pageout_page_count && 
417             pindex + is < object->size) {
418                 vm_page_t p;
419
420                 if ((p = vm_page_next(ps)) == NULL ||
421                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
422                         break;
423                 vm_page_lock(p);
424                 vm_page_test_dirty(p);
425                 if (p->dirty == 0 ||
426                     p->queue != PQ_INACTIVE ||
427                     p->hold_count != 0) {       /* may be undergoing I/O */
428                         vm_page_unlock(p);
429                         break;
430                 }
431                 vm_page_unlock(p);
432                 mc[page_base + pageout_count] = ps = p;
433                 ++pageout_count;
434                 ++is;
435         }
436
437         /*
438          * If we exhausted our forward scan, continue with the reverse scan
439          * when possible, even past a page boundry.  This catches boundry
440          * conditions.
441          */
442         if (ib && pageout_count < vm_pageout_page_count)
443                 goto more;
444
445         /*
446          * we allow reads during pageouts...
447          */
448         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
449             NULL));
450 }
451
452 /*
453  * vm_pageout_flush() - launder the given pages
454  *
455  *      The given pages are laundered.  Note that we setup for the start of
456  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
457  *      reference count all in here rather then in the parent.  If we want
458  *      the parent to do more sophisticated things we may have to change
459  *      the ordering.
460  *
461  *      Returned runlen is the count of pages between mreq and first
462  *      page after mreq with status VM_PAGER_AGAIN.
463  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
464  *      for any page in runlen set.
465  */
466 int
467 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
468     boolean_t *eio)
469 {
470         vm_object_t object = mc[0]->object;
471         int pageout_status[count];
472         int numpagedout = 0;
473         int i, runlen;
474
475         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
477
478         /*
479          * Initiate I/O.  Bump the vm_page_t->busy counter and
480          * mark the pages read-only.
481          *
482          * We do not have to fixup the clean/dirty bits here... we can
483          * allow the pager to do it after the I/O completes.
484          *
485          * NOTE! mc[i]->dirty may be partial or fragmented due to an
486          * edge case with file fragments.
487          */
488         for (i = 0; i < count; i++) {
489                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
490                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
491                         mc[i], i, count));
492                 vm_page_io_start(mc[i]);
493                 pmap_remove_write(mc[i]);
494         }
495         vm_object_pip_add(object, count);
496
497         vm_pager_put_pages(object, mc, count, flags, pageout_status);
498
499         runlen = count - mreq;
500         if (eio != NULL)
501                 *eio = FALSE;
502         for (i = 0; i < count; i++) {
503                 vm_page_t mt = mc[i];
504
505                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
506                     !pmap_page_is_write_mapped(mt),
507                     ("vm_pageout_flush: page %p is not write protected", mt));
508                 switch (pageout_status[i]) {
509                 case VM_PAGER_OK:
510                 case VM_PAGER_PEND:
511                         numpagedout++;
512                         break;
513                 case VM_PAGER_BAD:
514                         /*
515                          * Page outside of range of object. Right now we
516                          * essentially lose the changes by pretending it
517                          * worked.
518                          */
519                         vm_page_undirty(mt);
520                         break;
521                 case VM_PAGER_ERROR:
522                 case VM_PAGER_FAIL:
523                         /*
524                          * If page couldn't be paged out, then reactivate the
525                          * page so it doesn't clog the inactive list.  (We
526                          * will try paging out it again later).
527                          */
528                         vm_page_lock(mt);
529                         vm_page_activate(mt);
530                         vm_page_unlock(mt);
531                         if (eio != NULL && i >= mreq && i - mreq < runlen)
532                                 *eio = TRUE;
533                         break;
534                 case VM_PAGER_AGAIN:
535                         if (i >= mreq && i - mreq < runlen)
536                                 runlen = i - mreq;
537                         break;
538                 }
539
540                 /*
541                  * If the operation is still going, leave the page busy to
542                  * block all other accesses. Also, leave the paging in
543                  * progress indicator set so that we don't attempt an object
544                  * collapse.
545                  */
546                 if (pageout_status[i] != VM_PAGER_PEND) {
547                         vm_object_pip_wakeup(object);
548                         vm_page_io_finish(mt);
549                         if (vm_page_count_severe()) {
550                                 vm_page_lock(mt);
551                                 vm_page_try_to_cache(mt);
552                                 vm_page_unlock(mt);
553                         }
554                 }
555         }
556         if (prunlen != NULL)
557                 *prunlen = runlen;
558         return (numpagedout);
559 }
560
561 #if !defined(NO_SWAPPING)
562 /*
563  *      vm_pageout_object_deactivate_pages
564  *
565  *      Deactivate enough pages to satisfy the inactive target
566  *      requirements.
567  *
568  *      The object and map must be locked.
569  */
570 static void
571 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
572     long desired)
573 {
574         vm_object_t backing_object, object;
575         vm_page_t p;
576         int actcount, remove_mode;
577
578         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
579         if (first_object->type == OBJT_DEVICE ||
580             first_object->type == OBJT_SG)
581                 return;
582         for (object = first_object;; object = backing_object) {
583                 if (pmap_resident_count(pmap) <= desired)
584                         goto unlock_return;
585                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
586                 if (object->type == OBJT_PHYS || object->paging_in_progress)
587                         goto unlock_return;
588
589                 remove_mode = 0;
590                 if (object->shadow_count > 1)
591                         remove_mode = 1;
592                 /*
593                  * Scan the object's entire memory queue.
594                  */
595                 TAILQ_FOREACH(p, &object->memq, listq) {
596                         if (pmap_resident_count(pmap) <= desired)
597                                 goto unlock_return;
598                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
599                                 continue;
600                         PCPU_INC(cnt.v_pdpages);
601                         vm_page_lock(p);
602                         if (p->wire_count != 0 || p->hold_count != 0 ||
603                             !pmap_page_exists_quick(pmap, p)) {
604                                 vm_page_unlock(p);
605                                 continue;
606                         }
607                         actcount = pmap_ts_referenced(p);
608                         if ((p->aflags & PGA_REFERENCED) != 0) {
609                                 if (actcount == 0)
610                                         actcount = 1;
611                                 vm_page_aflag_clear(p, PGA_REFERENCED);
612                         }
613                         if (p->queue != PQ_ACTIVE && actcount != 0) {
614                                 vm_page_activate(p);
615                                 p->act_count += actcount;
616                         } else if (p->queue == PQ_ACTIVE) {
617                                 if (actcount == 0) {
618                                         p->act_count -= min(p->act_count,
619                                             ACT_DECLINE);
620                                         if (!remove_mode &&
621                                             (vm_pageout_algorithm ||
622                                             p->act_count == 0)) {
623                                                 pmap_remove_all(p);
624                                                 vm_page_deactivate(p);
625                                         } else {
626                                                 vm_page_lock_queues();
627                                                 vm_page_requeue(p);
628                                                 vm_page_unlock_queues();
629                                         }
630                                 } else {
631                                         vm_page_activate(p);
632                                         if (p->act_count < ACT_MAX -
633                                             ACT_ADVANCE)
634                                                 p->act_count += ACT_ADVANCE;
635                                         vm_page_lock_queues();
636                                         vm_page_requeue(p);
637                                         vm_page_unlock_queues();
638                                 }
639                         } else if (p->queue == PQ_INACTIVE)
640                                 pmap_remove_all(p);
641                         vm_page_unlock(p);
642                 }
643                 if ((backing_object = object->backing_object) == NULL)
644                         goto unlock_return;
645                 VM_OBJECT_LOCK(backing_object);
646                 if (object != first_object)
647                         VM_OBJECT_UNLOCK(object);
648         }
649 unlock_return:
650         if (object != first_object)
651                 VM_OBJECT_UNLOCK(object);
652 }
653
654 /*
655  * deactivate some number of pages in a map, try to do it fairly, but
656  * that is really hard to do.
657  */
658 static void
659 vm_pageout_map_deactivate_pages(map, desired)
660         vm_map_t map;
661         long desired;
662 {
663         vm_map_entry_t tmpe;
664         vm_object_t obj, bigobj;
665         int nothingwired;
666
667         if (!vm_map_trylock(map))
668                 return;
669
670         bigobj = NULL;
671         nothingwired = TRUE;
672
673         /*
674          * first, search out the biggest object, and try to free pages from
675          * that.
676          */
677         tmpe = map->header.next;
678         while (tmpe != &map->header) {
679                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
680                         obj = tmpe->object.vm_object;
681                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
682                                 if (obj->shadow_count <= 1 &&
683                                     (bigobj == NULL ||
684                                      bigobj->resident_page_count < obj->resident_page_count)) {
685                                         if (bigobj != NULL)
686                                                 VM_OBJECT_UNLOCK(bigobj);
687                                         bigobj = obj;
688                                 } else
689                                         VM_OBJECT_UNLOCK(obj);
690                         }
691                 }
692                 if (tmpe->wired_count > 0)
693                         nothingwired = FALSE;
694                 tmpe = tmpe->next;
695         }
696
697         if (bigobj != NULL) {
698                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
699                 VM_OBJECT_UNLOCK(bigobj);
700         }
701         /*
702          * Next, hunt around for other pages to deactivate.  We actually
703          * do this search sort of wrong -- .text first is not the best idea.
704          */
705         tmpe = map->header.next;
706         while (tmpe != &map->header) {
707                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
708                         break;
709                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
710                         obj = tmpe->object.vm_object;
711                         if (obj != NULL) {
712                                 VM_OBJECT_LOCK(obj);
713                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
714                                 VM_OBJECT_UNLOCK(obj);
715                         }
716                 }
717                 tmpe = tmpe->next;
718         }
719
720         /*
721          * Remove all mappings if a process is swapped out, this will free page
722          * table pages.
723          */
724         if (desired == 0 && nothingwired) {
725                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
726                     vm_map_max(map));
727         }
728         vm_map_unlock(map);
729 }
730 #endif          /* !defined(NO_SWAPPING) */
731
732 /*
733  *      vm_pageout_scan does the dirty work for the pageout daemon.
734  */
735 static void
736 vm_pageout_scan(int pass)
737 {
738         vm_page_t m, next;
739         struct vm_page marker;
740         int page_shortage, maxscan, pcount;
741         int addl_page_shortage;
742         vm_object_t object;
743         int actcount;
744         int vnodes_skipped = 0;
745         int maxlaunder;
746         boolean_t queues_locked;
747
748         /*
749          * Decrease registered cache sizes.
750          */
751         EVENTHANDLER_INVOKE(vm_lowmem, 0);
752         /*
753          * We do this explicitly after the caches have been drained above.
754          */
755         uma_reclaim();
756
757         /*
758          * The addl_page_shortage is the number of temporarily
759          * stuck pages in the inactive queue.  In other words, the
760          * number of pages from cnt.v_inactive_count that should be
761          * discounted in setting the target for the active queue scan.
762          */
763         addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
764
765         /*
766          * Calculate the number of pages we want to either free or move
767          * to the cache.
768          */
769         page_shortage = vm_paging_target() + addl_page_shortage;
770
771         vm_pageout_init_marker(&marker, PQ_INACTIVE);
772
773         /*
774          * Start scanning the inactive queue for pages we can move to the
775          * cache or free.  The scan will stop when the target is reached or
776          * we have scanned the entire inactive queue.  Note that m->act_count
777          * is not used to form decisions for the inactive queue, only for the
778          * active queue.
779          *
780          * maxlaunder limits the number of dirty pages we flush per scan.
781          * For most systems a smaller value (16 or 32) is more robust under
782          * extreme memory and disk pressure because any unnecessary writes
783          * to disk can result in extreme performance degredation.  However,
784          * systems with excessive dirty pages (especially when MAP_NOSYNC is
785          * used) will die horribly with limited laundering.  If the pageout
786          * daemon cannot clean enough pages in the first pass, we let it go
787          * all out in succeeding passes.
788          */
789         if ((maxlaunder = vm_max_launder) <= 1)
790                 maxlaunder = 1;
791         if (pass)
792                 maxlaunder = 10000;
793         vm_page_lock_queues();
794         queues_locked = TRUE;
795         maxscan = cnt.v_inactive_count;
796
797         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
798              m != NULL && maxscan-- > 0 && page_shortage > 0;
799              m = next) {
800                 KASSERT(queues_locked, ("unlocked queues"));
801                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
802                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
803
804                 cnt.v_pdpages++;
805                 next = TAILQ_NEXT(m, pageq);
806
807                 /*
808                  * skip marker pages
809                  */
810                 if (m->flags & PG_MARKER)
811                         continue;
812
813                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
814                     ("Fictitious page %p cannot be in inactive queue", m));
815                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
816                     ("Unmanaged page %p cannot be in inactive queue", m));
817
818                 /*
819                  * The page or object lock acquisitions fail if the
820                  * page was removed from the queue or moved to a
821                  * different position within the queue.  In either
822                  * case, addl_page_shortage should not be incremented.
823                  */
824                 if (!vm_pageout_page_lock(m, &next)) {
825                         vm_page_unlock(m);
826                         continue;
827                 }
828                 object = m->object;
829                 if (!VM_OBJECT_TRYLOCK(object) &&
830                     !vm_pageout_fallback_object_lock(m, &next)) {
831                         vm_page_unlock(m);
832                         VM_OBJECT_UNLOCK(object);
833                         continue;
834                 }
835
836                 /*
837                  * Don't mess with busy pages, keep them at at the
838                  * front of the queue, most likely they are being
839                  * paged out.  Increment addl_page_shortage for busy
840                  * pages, because they may leave the inactive queue
841                  * shortly after page scan is finished.
842                  */
843                 if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) {
844                         vm_page_unlock(m);
845                         VM_OBJECT_UNLOCK(object);
846                         addl_page_shortage++;
847                         continue;
848                 }
849
850                 /*
851                  * We unlock vm_page_queue_mtx, invalidating the
852                  * 'next' pointer.  Use our marker to remember our
853                  * place.
854                  */
855                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
856                     m, &marker, pageq);
857                 vm_page_unlock_queues();
858                 queues_locked = FALSE;
859
860                 /*
861                  * If the object is not being used, we ignore previous 
862                  * references.
863                  */
864                 if (object->ref_count == 0) {
865                         vm_page_aflag_clear(m, PGA_REFERENCED);
866                         KASSERT(!pmap_page_is_mapped(m),
867                             ("vm_pageout_scan: page %p is mapped", m));
868
869                 /*
870                  * Otherwise, if the page has been referenced while in the 
871                  * inactive queue, we bump the "activation count" upwards, 
872                  * making it less likely that the page will be added back to 
873                  * the inactive queue prematurely again.  Here we check the 
874                  * page tables (or emulated bits, if any), given the upper 
875                  * level VM system not knowing anything about existing 
876                  * references.
877                  */
878                 } else if ((m->aflags & PGA_REFERENCED) == 0 &&
879                     (actcount = pmap_ts_referenced(m)) != 0) {
880                         vm_page_activate(m);
881                         vm_page_unlock(m);
882                         m->act_count += actcount + ACT_ADVANCE;
883                         VM_OBJECT_UNLOCK(object);
884                         goto relock_queues;
885                 }
886
887                 /*
888                  * If the upper level VM system knows about any page 
889                  * references, we activate the page.  We also set the 
890                  * "activation count" higher than normal so that we will less 
891                  * likely place pages back onto the inactive queue again.
892                  */
893                 if ((m->aflags & PGA_REFERENCED) != 0) {
894                         vm_page_aflag_clear(m, PGA_REFERENCED);
895                         actcount = pmap_ts_referenced(m);
896                         vm_page_activate(m);
897                         vm_page_unlock(m);
898                         m->act_count += actcount + ACT_ADVANCE + 1;
899                         VM_OBJECT_UNLOCK(object);
900                         goto relock_queues;
901                 }
902
903                 if (m->hold_count != 0) {
904                         vm_page_unlock(m);
905                         VM_OBJECT_UNLOCK(object);
906
907                         /*
908                          * Held pages are essentially stuck in the
909                          * queue.  So, they ought to be discounted
910                          * from cnt.v_inactive_count.  See the
911                          * calculation of the page_shortage for the
912                          * loop over the active queue below.
913                          */
914                         addl_page_shortage++;
915                         goto relock_queues;
916                 }
917
918                 /*
919                  * If the upper level VM system does not believe that the page
920                  * is fully dirty, but it is mapped for write access, then we
921                  * consult the pmap to see if the page's dirty status should
922                  * be updated.
923                  */
924                 if (m->dirty != VM_PAGE_BITS_ALL &&
925                     pmap_page_is_write_mapped(m)) {
926                         /*
927                          * Avoid a race condition: Unless write access is
928                          * removed from the page, another processor could
929                          * modify it before all access is removed by the call
930                          * to vm_page_cache() below.  If vm_page_cache() finds
931                          * that the page has been modified when it removes all
932                          * access, it panics because it cannot cache dirty
933                          * pages.  In principle, we could eliminate just write
934                          * access here rather than all access.  In the expected
935                          * case, when there are no last instant modifications
936                          * to the page, removing all access will be cheaper
937                          * overall.
938                          */
939                         if (pmap_is_modified(m))
940                                 vm_page_dirty(m);
941                         else if (m->dirty == 0)
942                                 pmap_remove_all(m);
943                 }
944
945                 if (m->valid == 0) {
946                         /*
947                          * Invalid pages can be easily freed
948                          */
949                         vm_page_free(m);
950                         PCPU_INC(cnt.v_dfree);
951                         --page_shortage;
952                 } else if (m->dirty == 0) {
953                         /*
954                          * Clean pages can be placed onto the cache queue.
955                          * This effectively frees them.
956                          */
957                         vm_page_cache(m);
958                         --page_shortage;
959                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
960                         /*
961                          * Dirty pages need to be paged out, but flushing
962                          * a page is extremely expensive verses freeing
963                          * a clean page.  Rather then artificially limiting
964                          * the number of pages we can flush, we instead give
965                          * dirty pages extra priority on the inactive queue
966                          * by forcing them to be cycled through the queue
967                          * twice before being flushed, after which the
968                          * (now clean) page will cycle through once more
969                          * before being freed.  This significantly extends
970                          * the thrash point for a heavily loaded machine.
971                          */
972                         m->flags |= PG_WINATCFLS;
973                         vm_page_lock_queues();
974                         queues_locked = TRUE;
975                         vm_page_requeue(m);
976                 } else if (maxlaunder > 0) {
977                         /*
978                          * We always want to try to flush some dirty pages if
979                          * we encounter them, to keep the system stable.
980                          * Normally this number is small, but under extreme
981                          * pressure where there are insufficient clean pages
982                          * on the inactive queue, we may have to go all out.
983                          */
984                         int swap_pageouts_ok, vfslocked = 0;
985                         struct vnode *vp = NULL;
986                         struct mount *mp = NULL;
987
988                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
989                                 swap_pageouts_ok = 1;
990                         } else {
991                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
992                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
993                                 vm_page_count_min());
994                                                                                 
995                         }
996
997                         /*
998                          * We don't bother paging objects that are "dead".  
999                          * Those objects are in a "rundown" state.
1000                          */
1001                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1002                                 vm_page_lock_queues();
1003                                 vm_page_unlock(m);
1004                                 VM_OBJECT_UNLOCK(object);
1005                                 queues_locked = TRUE;
1006                                 vm_page_requeue(m);
1007                                 goto relock_queues;
1008                         }
1009
1010                         /*
1011                          * The object is already known NOT to be dead.   It
1012                          * is possible for the vget() to block the whole
1013                          * pageout daemon, but the new low-memory handling
1014                          * code should prevent it.
1015                          *
1016                          * The previous code skipped locked vnodes and, worse,
1017                          * reordered pages in the queue.  This results in
1018                          * completely non-deterministic operation and, on a
1019                          * busy system, can lead to extremely non-optimal
1020                          * pageouts.  For example, it can cause clean pages
1021                          * to be freed and dirty pages to be moved to the end
1022                          * of the queue.  Since dirty pages are also moved to
1023                          * the end of the queue once-cleaned, this gives
1024                          * way too large a weighting to defering the freeing
1025                          * of dirty pages.
1026                          *
1027                          * We can't wait forever for the vnode lock, we might
1028                          * deadlock due to a vn_read() getting stuck in
1029                          * vm_wait while holding this vnode.  We skip the 
1030                          * vnode if we can't get it in a reasonable amount
1031                          * of time.
1032                          */
1033                         if (object->type == OBJT_VNODE) {
1034                                 vm_page_unlock(m);
1035                                 vp = object->handle;
1036                                 if (vp->v_type == VREG &&
1037                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1038                                         mp = NULL;
1039                                         ++pageout_lock_miss;
1040                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1041                                                 vnodes_skipped++;
1042                                         goto unlock_and_continue;
1043                                 }
1044                                 KASSERT(mp != NULL,
1045                                     ("vp %p with NULL v_mount", vp));
1046                                 vm_object_reference_locked(object);
1047                                 VM_OBJECT_UNLOCK(object);
1048                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1049                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1050                                     curthread)) {
1051                                         VM_OBJECT_LOCK(object);
1052                                         ++pageout_lock_miss;
1053                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1054                                                 vnodes_skipped++;
1055                                         vp = NULL;
1056                                         goto unlock_and_continue;
1057                                 }
1058                                 VM_OBJECT_LOCK(object);
1059                                 vm_page_lock(m);
1060                                 vm_page_lock_queues();
1061                                 queues_locked = TRUE;
1062                                 /*
1063                                  * The page might have been moved to another
1064                                  * queue during potential blocking in vget()
1065                                  * above.  The page might have been freed and
1066                                  * reused for another vnode.
1067                                  */
1068                                 if (m->queue != PQ_INACTIVE ||
1069                                     m->object != object ||
1070                                     TAILQ_NEXT(m, pageq) != &marker) {
1071                                         vm_page_unlock(m);
1072                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1073                                                 vnodes_skipped++;
1074                                         goto unlock_and_continue;
1075                                 }
1076         
1077                                 /*
1078                                  * The page may have been busied during the
1079                                  * blocking in vget().  We don't move the
1080                                  * page back onto the end of the queue so that
1081                                  * statistics are more correct if we don't.
1082                                  */
1083                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1084                                         vm_page_unlock(m);
1085                                         goto unlock_and_continue;
1086                                 }
1087
1088                                 /*
1089                                  * If the page has become held it might
1090                                  * be undergoing I/O, so skip it
1091                                  */
1092                                 if (m->hold_count) {
1093                                         vm_page_unlock(m);
1094                                         vm_page_requeue(m);
1095                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1096                                                 vnodes_skipped++;
1097                                         goto unlock_and_continue;
1098                                 }
1099                                 vm_page_unlock_queues();
1100                                 queues_locked = FALSE;
1101                         }
1102
1103                         /*
1104                          * If a page is dirty, then it is either being washed
1105                          * (but not yet cleaned) or it is still in the
1106                          * laundry.  If it is still in the laundry, then we
1107                          * start the cleaning operation. 
1108                          *
1109                          * decrement page_shortage on success to account for
1110                          * the (future) cleaned page.  Otherwise we could wind
1111                          * up laundering or cleaning too many pages.
1112                          */
1113                         if (vm_pageout_clean(m) != 0) {
1114                                 --page_shortage;
1115                                 --maxlaunder;
1116                         }
1117 unlock_and_continue:
1118                         vm_page_lock_assert(m, MA_NOTOWNED);
1119                         VM_OBJECT_UNLOCK(object);
1120                         if (mp != NULL) {
1121                                 if (queues_locked) {
1122                                         vm_page_unlock_queues();
1123                                         queues_locked = FALSE;
1124                                 }
1125                                 if (vp != NULL)
1126                                         vput(vp);
1127                                 VFS_UNLOCK_GIANT(vfslocked);
1128                                 vm_object_deallocate(object);
1129                                 vn_finished_write(mp);
1130                         }
1131                         vm_page_lock_assert(m, MA_NOTOWNED);
1132                         goto relock_queues;
1133                 }
1134                 vm_page_unlock(m);
1135                 VM_OBJECT_UNLOCK(object);
1136 relock_queues:
1137                 if (!queues_locked) {
1138                         vm_page_lock_queues();
1139                         queues_locked = TRUE;
1140                 }
1141                 next = TAILQ_NEXT(&marker, pageq);
1142                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1143                     &marker, pageq);
1144         }
1145
1146         /*
1147          * Compute the number of pages we want to try to move from the
1148          * active queue to the inactive queue.
1149          */
1150         page_shortage = vm_paging_target() +
1151                 cnt.v_inactive_target - cnt.v_inactive_count;
1152         page_shortage += addl_page_shortage;
1153
1154         /*
1155          * Scan the active queue for things we can deactivate. We nominally
1156          * track the per-page activity counter and use it to locate
1157          * deactivation candidates.
1158          */
1159         pcount = cnt.v_active_count;
1160         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1161         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1162
1163         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1164
1165                 KASSERT(m->queue == PQ_ACTIVE,
1166                     ("vm_pageout_scan: page %p isn't active", m));
1167
1168                 next = TAILQ_NEXT(m, pageq);
1169                 if ((m->flags & PG_MARKER) != 0) {
1170                         m = next;
1171                         continue;
1172                 }
1173                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1174                     ("Fictitious page %p cannot be in active queue", m));
1175                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1176                     ("Unmanaged page %p cannot be in active queue", m));
1177                 if (!vm_pageout_page_lock(m, &next)) {
1178                         vm_page_unlock(m);
1179                         m = next;
1180                         continue;
1181                 }
1182                 object = m->object;
1183                 if (!VM_OBJECT_TRYLOCK(object) &&
1184                     !vm_pageout_fallback_object_lock(m, &next)) {
1185                         VM_OBJECT_UNLOCK(object);
1186                         vm_page_unlock(m);
1187                         m = next;
1188                         continue;
1189                 }
1190
1191                 /*
1192                  * Don't deactivate pages that are busy.
1193                  */
1194                 if ((m->busy != 0) ||
1195                     (m->oflags & VPO_BUSY) ||
1196                     (m->hold_count != 0)) {
1197                         vm_page_unlock(m);
1198                         VM_OBJECT_UNLOCK(object);
1199                         vm_page_requeue(m);
1200                         m = next;
1201                         continue;
1202                 }
1203
1204                 /*
1205                  * The count for pagedaemon pages is done after checking the
1206                  * page for eligibility...
1207                  */
1208                 cnt.v_pdpages++;
1209
1210                 /*
1211                  * Check to see "how much" the page has been used.
1212                  */
1213                 actcount = 0;
1214                 if (object->ref_count != 0) {
1215                         if (m->aflags & PGA_REFERENCED) {
1216                                 actcount += 1;
1217                         }
1218                         actcount += pmap_ts_referenced(m);
1219                         if (actcount) {
1220                                 m->act_count += ACT_ADVANCE + actcount;
1221                                 if (m->act_count > ACT_MAX)
1222                                         m->act_count = ACT_MAX;
1223                         }
1224                 }
1225
1226                 /*
1227                  * Since we have "tested" this bit, we need to clear it now.
1228                  */
1229                 vm_page_aflag_clear(m, PGA_REFERENCED);
1230
1231                 /*
1232                  * Only if an object is currently being used, do we use the
1233                  * page activation count stats.
1234                  */
1235                 if (actcount && (object->ref_count != 0)) {
1236                         vm_page_requeue(m);
1237                 } else {
1238                         m->act_count -= min(m->act_count, ACT_DECLINE);
1239                         if (vm_pageout_algorithm ||
1240                             object->ref_count == 0 ||
1241                             m->act_count == 0) {
1242                                 page_shortage--;
1243                                 if (object->ref_count == 0) {
1244                                         KASSERT(!pmap_page_is_mapped(m),
1245                                     ("vm_pageout_scan: page %p is mapped", m));
1246                                         if (m->dirty == 0)
1247                                                 vm_page_cache(m);
1248                                         else
1249                                                 vm_page_deactivate(m);
1250                                 } else {
1251                                         vm_page_deactivate(m);
1252                                 }
1253                         } else {
1254                                 vm_page_requeue(m);
1255                         }
1256                 }
1257                 vm_page_unlock(m);
1258                 VM_OBJECT_UNLOCK(object);
1259                 m = next;
1260         }
1261         vm_page_unlock_queues();
1262 #if !defined(NO_SWAPPING)
1263         /*
1264          * Idle process swapout -- run once per second.
1265          */
1266         if (vm_swap_idle_enabled) {
1267                 static long lsec;
1268                 if (time_second != lsec) {
1269                         vm_req_vmdaemon(VM_SWAP_IDLE);
1270                         lsec = time_second;
1271                 }
1272         }
1273 #endif
1274                 
1275         /*
1276          * If we didn't get enough free pages, and we have skipped a vnode
1277          * in a writeable object, wakeup the sync daemon.  And kick swapout
1278          * if we did not get enough free pages.
1279          */
1280         if (vm_paging_target() > 0) {
1281                 if (vnodes_skipped && vm_page_count_min())
1282                         (void) speedup_syncer();
1283 #if !defined(NO_SWAPPING)
1284                 if (vm_swap_enabled && vm_page_count_target())
1285                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1286 #endif
1287         }
1288
1289         /*
1290          * If we are critically low on one of RAM or swap and low on
1291          * the other, kill the largest process.  However, we avoid
1292          * doing this on the first pass in order to give ourselves a
1293          * chance to flush out dirty vnode-backed pages and to allow
1294          * active pages to be moved to the inactive queue and reclaimed.
1295          */
1296         if (pass != 0 &&
1297             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1298              (swap_pager_full && vm_paging_target() > 0)))
1299                 vm_pageout_oom(VM_OOM_MEM);
1300 }
1301
1302
1303 void
1304 vm_pageout_oom(int shortage)
1305 {
1306         struct proc *p, *bigproc;
1307         vm_offset_t size, bigsize;
1308         struct thread *td;
1309         struct vmspace *vm;
1310
1311         /*
1312          * We keep the process bigproc locked once we find it to keep anyone
1313          * from messing with it; however, there is a possibility of
1314          * deadlock if process B is bigproc and one of it's child processes
1315          * attempts to propagate a signal to B while we are waiting for A's
1316          * lock while walking this list.  To avoid this, we don't block on
1317          * the process lock but just skip a process if it is already locked.
1318          */
1319         bigproc = NULL;
1320         bigsize = 0;
1321         sx_slock(&allproc_lock);
1322         FOREACH_PROC_IN_SYSTEM(p) {
1323                 int breakout;
1324
1325                 if (PROC_TRYLOCK(p) == 0)
1326                         continue;
1327                 /*
1328                  * If this is a system, protected or killed process, skip it.
1329                  */
1330                 if (p->p_state != PRS_NORMAL ||
1331                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1332                     (p->p_pid == 1) || P_KILLED(p) ||
1333                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1334                         PROC_UNLOCK(p);
1335                         continue;
1336                 }
1337                 /*
1338                  * If the process is in a non-running type state,
1339                  * don't touch it.  Check all the threads individually.
1340                  */
1341                 breakout = 0;
1342                 FOREACH_THREAD_IN_PROC(p, td) {
1343                         thread_lock(td);
1344                         if (!TD_ON_RUNQ(td) &&
1345                             !TD_IS_RUNNING(td) &&
1346                             !TD_IS_SLEEPING(td) &&
1347                             !TD_IS_SUSPENDED(td)) {
1348                                 thread_unlock(td);
1349                                 breakout = 1;
1350                                 break;
1351                         }
1352                         thread_unlock(td);
1353                 }
1354                 if (breakout) {
1355                         PROC_UNLOCK(p);
1356                         continue;
1357                 }
1358                 /*
1359                  * get the process size
1360                  */
1361                 vm = vmspace_acquire_ref(p);
1362                 if (vm == NULL) {
1363                         PROC_UNLOCK(p);
1364                         continue;
1365                 }
1366                 if (!vm_map_trylock_read(&vm->vm_map)) {
1367                         vmspace_free(vm);
1368                         PROC_UNLOCK(p);
1369                         continue;
1370                 }
1371                 size = vmspace_swap_count(vm);
1372                 vm_map_unlock_read(&vm->vm_map);
1373                 if (shortage == VM_OOM_MEM)
1374                         size += vmspace_resident_count(vm);
1375                 vmspace_free(vm);
1376                 /*
1377                  * if the this process is bigger than the biggest one
1378                  * remember it.
1379                  */
1380                 if (size > bigsize) {
1381                         if (bigproc != NULL)
1382                                 PROC_UNLOCK(bigproc);
1383                         bigproc = p;
1384                         bigsize = size;
1385                 } else
1386                         PROC_UNLOCK(p);
1387         }
1388         sx_sunlock(&allproc_lock);
1389         if (bigproc != NULL) {
1390                 killproc(bigproc, "out of swap space");
1391                 sched_nice(bigproc, PRIO_MIN);
1392                 PROC_UNLOCK(bigproc);
1393                 wakeup(&cnt.v_free_count);
1394         }
1395 }
1396
1397 /*
1398  * This routine tries to maintain the pseudo LRU active queue,
1399  * so that during long periods of time where there is no paging,
1400  * that some statistic accumulation still occurs.  This code
1401  * helps the situation where paging just starts to occur.
1402  */
1403 static void
1404 vm_pageout_page_stats()
1405 {
1406         vm_object_t object;
1407         vm_page_t m,next;
1408         int pcount,tpcount;             /* Number of pages to check */
1409         static int fullintervalcount = 0;
1410         int page_shortage;
1411
1412         page_shortage = 
1413             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1414             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1415
1416         if (page_shortage <= 0)
1417                 return;
1418
1419         vm_page_lock_queues();
1420         pcount = cnt.v_active_count;
1421         fullintervalcount += vm_pageout_stats_interval;
1422         if (fullintervalcount < vm_pageout_full_stats_interval) {
1423                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1424                     cnt.v_page_count;
1425                 if (pcount > tpcount)
1426                         pcount = tpcount;
1427         } else {
1428                 fullintervalcount = 0;
1429         }
1430
1431         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1432         while ((m != NULL) && (pcount-- > 0)) {
1433                 int actcount;
1434
1435                 KASSERT(m->queue == PQ_ACTIVE,
1436                     ("vm_pageout_page_stats: page %p isn't active", m));
1437
1438                 next = TAILQ_NEXT(m, pageq);
1439                 if ((m->flags & PG_MARKER) != 0) {
1440                         m = next;
1441                         continue;
1442                 }
1443                 vm_page_lock_assert(m, MA_NOTOWNED);
1444                 if (!vm_pageout_page_lock(m, &next)) {
1445                         vm_page_unlock(m);
1446                         m = next;
1447                         continue;
1448                 }
1449                 object = m->object;
1450                 if (!VM_OBJECT_TRYLOCK(object) &&
1451                     !vm_pageout_fallback_object_lock(m, &next)) {
1452                         VM_OBJECT_UNLOCK(object);
1453                         vm_page_unlock(m);
1454                         m = next;
1455                         continue;
1456                 }
1457
1458                 /*
1459                  * Don't deactivate pages that are busy.
1460                  */
1461                 if ((m->busy != 0) ||
1462                     (m->oflags & VPO_BUSY) ||
1463                     (m->hold_count != 0)) {
1464                         vm_page_unlock(m);
1465                         VM_OBJECT_UNLOCK(object);
1466                         vm_page_requeue(m);
1467                         m = next;
1468                         continue;
1469                 }
1470
1471                 actcount = 0;
1472                 if (m->aflags & PGA_REFERENCED) {
1473                         vm_page_aflag_clear(m, PGA_REFERENCED);
1474                         actcount += 1;
1475                 }
1476
1477                 actcount += pmap_ts_referenced(m);
1478                 if (actcount) {
1479                         m->act_count += ACT_ADVANCE + actcount;
1480                         if (m->act_count > ACT_MAX)
1481                                 m->act_count = ACT_MAX;
1482                         vm_page_requeue(m);
1483                 } else {
1484                         if (m->act_count == 0) {
1485                                 /*
1486                                  * We turn off page access, so that we have
1487                                  * more accurate RSS stats.  We don't do this
1488                                  * in the normal page deactivation when the
1489                                  * system is loaded VM wise, because the
1490                                  * cost of the large number of page protect
1491                                  * operations would be higher than the value
1492                                  * of doing the operation.
1493                                  */
1494                                 pmap_remove_all(m);
1495                                 vm_page_deactivate(m);
1496                         } else {
1497                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1498                                 vm_page_requeue(m);
1499                         }
1500                 }
1501                 vm_page_unlock(m);
1502                 VM_OBJECT_UNLOCK(object);
1503                 m = next;
1504         }
1505         vm_page_unlock_queues();
1506 }
1507
1508 /*
1509  *      vm_pageout is the high level pageout daemon.
1510  */
1511 static void
1512 vm_pageout()
1513 {
1514         int error, pass;
1515
1516         /*
1517          * Initialize some paging parameters.
1518          */
1519         cnt.v_interrupt_free_min = 2;
1520         if (cnt.v_page_count < 2000)
1521                 vm_pageout_page_count = 8;
1522
1523         /*
1524          * v_free_reserved needs to include enough for the largest
1525          * swap pager structures plus enough for any pv_entry structs
1526          * when paging. 
1527          */
1528         if (cnt.v_page_count > 1024)
1529                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1530         else
1531                 cnt.v_free_min = 4;
1532         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1533             cnt.v_interrupt_free_min;
1534         cnt.v_free_reserved = vm_pageout_page_count +
1535             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1536         cnt.v_free_severe = cnt.v_free_min / 2;
1537         cnt.v_free_min += cnt.v_free_reserved;
1538         cnt.v_free_severe += cnt.v_free_reserved;
1539
1540         /*
1541          * v_free_target and v_cache_min control pageout hysteresis.  Note
1542          * that these are more a measure of the VM cache queue hysteresis
1543          * then the VM free queue.  Specifically, v_free_target is the
1544          * high water mark (free+cache pages).
1545          *
1546          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1547          * low water mark, while v_free_min is the stop.  v_cache_min must
1548          * be big enough to handle memory needs while the pageout daemon
1549          * is signalled and run to free more pages.
1550          */
1551         if (cnt.v_free_count > 6144)
1552                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1553         else
1554                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1555
1556         if (cnt.v_free_count > 2048) {
1557                 cnt.v_cache_min = cnt.v_free_target;
1558                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1559                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1560         } else {
1561                 cnt.v_cache_min = 0;
1562                 cnt.v_cache_max = 0;
1563                 cnt.v_inactive_target = cnt.v_free_count / 4;
1564         }
1565         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1566                 cnt.v_inactive_target = cnt.v_free_count / 3;
1567
1568         /* XXX does not really belong here */
1569         if (vm_page_max_wired == 0)
1570                 vm_page_max_wired = cnt.v_free_count / 3;
1571
1572         if (vm_pageout_stats_max == 0)
1573                 vm_pageout_stats_max = cnt.v_free_target;
1574
1575         /*
1576          * Set interval in seconds for stats scan.
1577          */
1578         if (vm_pageout_stats_interval == 0)
1579                 vm_pageout_stats_interval = 5;
1580         if (vm_pageout_full_stats_interval == 0)
1581                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1582
1583         swap_pager_swap_init();
1584         pass = 0;
1585         /*
1586          * The pageout daemon is never done, so loop forever.
1587          */
1588         while (TRUE) {
1589                 /*
1590                  * If we have enough free memory, wakeup waiters.  Do
1591                  * not clear vm_pages_needed until we reach our target,
1592                  * otherwise we may be woken up over and over again and
1593                  * waste a lot of cpu.
1594                  */
1595                 mtx_lock(&vm_page_queue_free_mtx);
1596                 if (vm_pages_needed && !vm_page_count_min()) {
1597                         if (!vm_paging_needed())
1598                                 vm_pages_needed = 0;
1599                         wakeup(&cnt.v_free_count);
1600                 }
1601                 if (vm_pages_needed) {
1602                         /*
1603                          * Still not done, take a second pass without waiting
1604                          * (unlimited dirty cleaning), otherwise sleep a bit
1605                          * and try again.
1606                          */
1607                         ++pass;
1608                         if (pass > 1)
1609                                 msleep(&vm_pages_needed,
1610                                     &vm_page_queue_free_mtx, PVM, "psleep",
1611                                     hz / 2);
1612                 } else {
1613                         /*
1614                          * Good enough, sleep & handle stats.  Prime the pass
1615                          * for the next run.
1616                          */
1617                         if (pass > 1)
1618                                 pass = 1;
1619                         else
1620                                 pass = 0;
1621                         error = msleep(&vm_pages_needed,
1622                             &vm_page_queue_free_mtx, PVM, "psleep",
1623                             vm_pageout_stats_interval * hz);
1624                         if (error && !vm_pages_needed) {
1625                                 mtx_unlock(&vm_page_queue_free_mtx);
1626                                 pass = 0;
1627                                 vm_pageout_page_stats();
1628                                 continue;
1629                         }
1630                 }
1631                 if (vm_pages_needed)
1632                         cnt.v_pdwakeups++;
1633                 mtx_unlock(&vm_page_queue_free_mtx);
1634                 vm_pageout_scan(pass);
1635         }
1636 }
1637
1638 /*
1639  * Unless the free page queue lock is held by the caller, this function
1640  * should be regarded as advisory.  Specifically, the caller should
1641  * not msleep() on &cnt.v_free_count following this function unless
1642  * the free page queue lock is held until the msleep() is performed.
1643  */
1644 void
1645 pagedaemon_wakeup()
1646 {
1647
1648         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1649                 vm_pages_needed = 1;
1650                 wakeup(&vm_pages_needed);
1651         }
1652 }
1653
1654 #if !defined(NO_SWAPPING)
1655 static void
1656 vm_req_vmdaemon(int req)
1657 {
1658         static int lastrun = 0;
1659
1660         mtx_lock(&vm_daemon_mtx);
1661         vm_pageout_req_swapout |= req;
1662         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1663                 wakeup(&vm_daemon_needed);
1664                 lastrun = ticks;
1665         }
1666         mtx_unlock(&vm_daemon_mtx);
1667 }
1668
1669 static void
1670 vm_daemon()
1671 {
1672         struct rlimit rsslim;
1673         struct proc *p;
1674         struct thread *td;
1675         struct vmspace *vm;
1676         int breakout, swapout_flags, tryagain, attempts;
1677 #ifdef RACCT
1678         uint64_t rsize, ravailable;
1679 #endif
1680
1681         while (TRUE) {
1682                 mtx_lock(&vm_daemon_mtx);
1683 #ifdef RACCT
1684                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1685 #else
1686                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1687 #endif
1688                 swapout_flags = vm_pageout_req_swapout;
1689                 vm_pageout_req_swapout = 0;
1690                 mtx_unlock(&vm_daemon_mtx);
1691                 if (swapout_flags)
1692                         swapout_procs(swapout_flags);
1693
1694                 /*
1695                  * scan the processes for exceeding their rlimits or if
1696                  * process is swapped out -- deactivate pages
1697                  */
1698                 tryagain = 0;
1699                 attempts = 0;
1700 again:
1701                 attempts++;
1702                 sx_slock(&allproc_lock);
1703                 FOREACH_PROC_IN_SYSTEM(p) {
1704                         vm_pindex_t limit, size;
1705
1706                         /*
1707                          * if this is a system process or if we have already
1708                          * looked at this process, skip it.
1709                          */
1710                         PROC_LOCK(p);
1711                         if (p->p_state != PRS_NORMAL ||
1712                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1713                                 PROC_UNLOCK(p);
1714                                 continue;
1715                         }
1716                         /*
1717                          * if the process is in a non-running type state,
1718                          * don't touch it.
1719                          */
1720                         breakout = 0;
1721                         FOREACH_THREAD_IN_PROC(p, td) {
1722                                 thread_lock(td);
1723                                 if (!TD_ON_RUNQ(td) &&
1724                                     !TD_IS_RUNNING(td) &&
1725                                     !TD_IS_SLEEPING(td) &&
1726                                     !TD_IS_SUSPENDED(td)) {
1727                                         thread_unlock(td);
1728                                         breakout = 1;
1729                                         break;
1730                                 }
1731                                 thread_unlock(td);
1732                         }
1733                         if (breakout) {
1734                                 PROC_UNLOCK(p);
1735                                 continue;
1736                         }
1737                         /*
1738                          * get a limit
1739                          */
1740                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1741                         limit = OFF_TO_IDX(
1742                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1743
1744                         /*
1745                          * let processes that are swapped out really be
1746                          * swapped out set the limit to nothing (will force a
1747                          * swap-out.)
1748                          */
1749                         if ((p->p_flag & P_INMEM) == 0)
1750                                 limit = 0;      /* XXX */
1751                         vm = vmspace_acquire_ref(p);
1752                         PROC_UNLOCK(p);
1753                         if (vm == NULL)
1754                                 continue;
1755
1756                         size = vmspace_resident_count(vm);
1757                         if (limit >= 0 && size >= limit) {
1758                                 vm_pageout_map_deactivate_pages(
1759                                     &vm->vm_map, limit);
1760                         }
1761 #ifdef RACCT
1762                         rsize = IDX_TO_OFF(size);
1763                         PROC_LOCK(p);
1764                         racct_set(p, RACCT_RSS, rsize);
1765                         ravailable = racct_get_available(p, RACCT_RSS);
1766                         PROC_UNLOCK(p);
1767                         if (rsize > ravailable) {
1768                                 /*
1769                                  * Don't be overly aggressive; this might be
1770                                  * an innocent process, and the limit could've
1771                                  * been exceeded by some memory hog.  Don't
1772                                  * try to deactivate more than 1/4th of process'
1773                                  * resident set size.
1774                                  */
1775                                 if (attempts <= 8) {
1776                                         if (ravailable < rsize - (rsize / 4))
1777                                                 ravailable = rsize - (rsize / 4);
1778                                 }
1779                                 vm_pageout_map_deactivate_pages(
1780                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1781                                 /* Update RSS usage after paging out. */
1782                                 size = vmspace_resident_count(vm);
1783                                 rsize = IDX_TO_OFF(size);
1784                                 PROC_LOCK(p);
1785                                 racct_set(p, RACCT_RSS, rsize);
1786                                 PROC_UNLOCK(p);
1787                                 if (rsize > ravailable)
1788                                         tryagain = 1;
1789                         }
1790 #endif
1791                         vmspace_free(vm);
1792                 }
1793                 sx_sunlock(&allproc_lock);
1794                 if (tryagain != 0 && attempts <= 10)
1795                         goto again;
1796         }
1797 }
1798 #endif                  /* !defined(NO_SWAPPING) */