]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/vm/vm_phys.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_ddb.h"
36 #include "opt_vm.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/queue.h>
45 #include <sys/sbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49
50 #include <ddb/ddb.h>
51
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_phys.h>
58 #include <vm/vm_reserv.h>
59
60 /*
61  * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each
62  * domain.  These extra lists are stored at the end of the regular
63  * free lists starting with VM_NFREELIST.
64  */
65 #define VM_RAW_NFREELIST        (VM_NFREELIST + VM_NDOMAIN - 1)
66
67 struct vm_freelist {
68         struct pglist pl;
69         int lcnt;
70 };
71
72 struct vm_phys_seg {
73         vm_paddr_t      start;
74         vm_paddr_t      end;
75         vm_page_t       first_page;
76         int             domain;
77         struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
78 };
79
80 struct mem_affinity *mem_affinity;
81
82 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
83
84 static int vm_phys_nsegs;
85
86 #define VM_PHYS_FICTITIOUS_NSEGS        8
87 static struct vm_phys_fictitious_seg {
88         vm_paddr_t      start;
89         vm_paddr_t      end;
90         vm_page_t       first_page;
91 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
92 static struct mtx vm_phys_fictitious_reg_mtx;
93 MALLOC_DEFINE(M_FICT_PAGES, "", "");
94
95 static struct vm_freelist
96     vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
97 static struct vm_freelist
98 (*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER];
99
100 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
101
102 static int cnt_prezero;
103 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
104     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
105
106 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
107 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
108     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
109
110 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
111 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
112     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
113
114 #if VM_NDOMAIN > 1
115 static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS);
116 SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD,
117     NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists");
118 #endif
119
120 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
121     int order);
122 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
123     int domain);
124 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
125 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
126 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
127     int order);
128
129 /*
130  * Outputs the state of the physical memory allocator, specifically,
131  * the amount of physical memory in each free list.
132  */
133 static int
134 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
135 {
136         struct sbuf sbuf;
137         struct vm_freelist *fl;
138         int error, flind, oind, pind;
139
140         error = sysctl_wire_old_buffer(req, 0);
141         if (error != 0)
142                 return (error);
143         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
144         for (flind = 0; flind < vm_nfreelists; flind++) {
145                 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
146                     "\n  ORDER (SIZE)  |  NUMBER"
147                     "\n              ", flind);
148                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
149                         sbuf_printf(&sbuf, "  |  POOL %d", pind);
150                 sbuf_printf(&sbuf, "\n--            ");
151                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
152                         sbuf_printf(&sbuf, "-- --      ");
153                 sbuf_printf(&sbuf, "--\n");
154                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
155                         sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
156                             1 << (PAGE_SHIFT - 10 + oind));
157                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
158                                 fl = vm_phys_free_queues[flind][pind];
159                                 sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
160                         }
161                         sbuf_printf(&sbuf, "\n");
162                 }
163         }
164         error = sbuf_finish(&sbuf);
165         sbuf_delete(&sbuf);
166         return (error);
167 }
168
169 /*
170  * Outputs the set of physical memory segments.
171  */
172 static int
173 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
174 {
175         struct sbuf sbuf;
176         struct vm_phys_seg *seg;
177         int error, segind;
178
179         error = sysctl_wire_old_buffer(req, 0);
180         if (error != 0)
181                 return (error);
182         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
183         for (segind = 0; segind < vm_phys_nsegs; segind++) {
184                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
185                 seg = &vm_phys_segs[segind];
186                 sbuf_printf(&sbuf, "start:     %#jx\n",
187                     (uintmax_t)seg->start);
188                 sbuf_printf(&sbuf, "end:       %#jx\n",
189                     (uintmax_t)seg->end);
190                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
191                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
192         }
193         error = sbuf_finish(&sbuf);
194         sbuf_delete(&sbuf);
195         return (error);
196 }
197
198 #if VM_NDOMAIN > 1
199 /*
200  * Outputs the set of free list lookup lists.
201  */
202 static int
203 sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS)
204 {
205         struct sbuf sbuf;
206         int domain, error, flind, ndomains;
207
208         error = sysctl_wire_old_buffer(req, 0);
209         if (error != 0)
210                 return (error);
211         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
212         ndomains = vm_nfreelists - VM_NFREELIST + 1;
213         for (domain = 0; domain < ndomains; domain++) {
214                 sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain);
215                 for (flind = 0; flind < vm_nfreelists; flind++)
216                         sbuf_printf(&sbuf, "  [%d]:\t%p\n", flind,
217                             vm_phys_lookup_lists[domain][flind]);
218         }
219         error = sbuf_finish(&sbuf);
220         sbuf_delete(&sbuf);
221         return (error);
222 }
223 #endif
224         
225 /*
226  * Create a physical memory segment.
227  */
228 static void
229 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
230 {
231         struct vm_phys_seg *seg;
232 #ifdef VM_PHYSSEG_SPARSE
233         long pages;
234         int segind;
235
236         pages = 0;
237         for (segind = 0; segind < vm_phys_nsegs; segind++) {
238                 seg = &vm_phys_segs[segind];
239                 pages += atop(seg->end - seg->start);
240         }
241 #endif
242         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
243             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
244         seg = &vm_phys_segs[vm_phys_nsegs++];
245         seg->start = start;
246         seg->end = end;
247         seg->domain = domain;
248 #ifdef VM_PHYSSEG_SPARSE
249         seg->first_page = &vm_page_array[pages];
250 #else
251         seg->first_page = PHYS_TO_VM_PAGE(start);
252 #endif
253 #if VM_NDOMAIN > 1
254         if (flind == VM_FREELIST_DEFAULT && domain != 0) {
255                 flind = VM_NFREELIST + (domain - 1);
256                 if (flind >= vm_nfreelists)
257                         vm_nfreelists = flind + 1;
258         }
259 #endif
260         seg->free_queues = &vm_phys_free_queues[flind];
261 }
262
263 static void
264 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
265 {
266         int i;
267
268         if (mem_affinity == NULL) {
269                 _vm_phys_create_seg(start, end, flind, 0);
270                 return;
271         }
272
273         for (i = 0;; i++) {
274                 if (mem_affinity[i].end == 0)
275                         panic("Reached end of affinity info");
276                 if (mem_affinity[i].end <= start)
277                         continue;
278                 if (mem_affinity[i].start > start)
279                         panic("No affinity info for start %jx",
280                             (uintmax_t)start);
281                 if (mem_affinity[i].end >= end) {
282                         _vm_phys_create_seg(start, end, flind,
283                             mem_affinity[i].domain);
284                         break;
285                 }
286                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
287                     mem_affinity[i].domain);
288                 start = mem_affinity[i].end;
289         }
290 }
291
292 /*
293  * Initialize the physical memory allocator.
294  */
295 void
296 vm_phys_init(void)
297 {
298         struct vm_freelist *fl;
299         int flind, i, oind, pind;
300 #if VM_NDOMAIN > 1
301         int ndomains, j;
302 #endif
303
304         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
305 #ifdef  VM_FREELIST_ISADMA
306                 if (phys_avail[i] < 16777216) {
307                         if (phys_avail[i + 1] > 16777216) {
308                                 vm_phys_create_seg(phys_avail[i], 16777216,
309                                     VM_FREELIST_ISADMA);
310                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
311                                     VM_FREELIST_DEFAULT);
312                         } else {
313                                 vm_phys_create_seg(phys_avail[i],
314                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
315                         }
316                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
317                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
318                 } else
319 #endif
320 #ifdef  VM_FREELIST_HIGHMEM
321                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
322                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
323                                 vm_phys_create_seg(phys_avail[i],
324                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
325                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
326                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
327                         } else {
328                                 vm_phys_create_seg(phys_avail[i],
329                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
330                         }
331                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
332                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
333                 } else
334 #endif
335                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
336                     VM_FREELIST_DEFAULT);
337         }
338         for (flind = 0; flind < vm_nfreelists; flind++) {
339                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
340                         fl = vm_phys_free_queues[flind][pind];
341                         for (oind = 0; oind < VM_NFREEORDER; oind++)
342                                 TAILQ_INIT(&fl[oind].pl);
343                 }
344         }
345 #if VM_NDOMAIN > 1
346         /*
347          * Build a free list lookup list for each domain.  All of the
348          * memory domain lists are inserted at the VM_FREELIST_DEFAULT
349          * index in a round-robin order starting with the current
350          * domain.
351          */
352         ndomains = vm_nfreelists - VM_NFREELIST + 1;
353         for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++)
354                 for (i = 0; i < ndomains; i++)
355                         vm_phys_lookup_lists[i][flind] =
356                             &vm_phys_free_queues[flind];
357         for (i = 0; i < ndomains; i++)
358                 for (j = 0; j < ndomains; j++) {
359                         flind = (i + j) % ndomains;
360                         if (flind == 0)
361                                 flind = VM_FREELIST_DEFAULT;
362                         else
363                                 flind += VM_NFREELIST - 1;
364                         vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] =
365                             &vm_phys_free_queues[flind];
366                 }
367         for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST;
368              flind++)
369                 for (i = 0; i < ndomains; i++)
370                         vm_phys_lookup_lists[i][flind + ndomains - 1] =
371                             &vm_phys_free_queues[flind];
372 #else
373         for (flind = 0; flind < vm_nfreelists; flind++)
374                 vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind];
375 #endif
376
377         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
378 }
379
380 /*
381  * Split a contiguous, power of two-sized set of physical pages.
382  */
383 static __inline void
384 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
385 {
386         vm_page_t m_buddy;
387
388         while (oind > order) {
389                 oind--;
390                 m_buddy = &m[1 << oind];
391                 KASSERT(m_buddy->order == VM_NFREEORDER,
392                     ("vm_phys_split_pages: page %p has unexpected order %d",
393                     m_buddy, m_buddy->order));
394                 m_buddy->order = oind;
395                 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
396                 fl[oind].lcnt++;
397         }
398 }
399
400 /*
401  * Initialize a physical page and add it to the free lists.
402  */
403 void
404 vm_phys_add_page(vm_paddr_t pa)
405 {
406         vm_page_t m;
407
408         cnt.v_page_count++;
409         m = vm_phys_paddr_to_vm_page(pa);
410         m->phys_addr = pa;
411         m->queue = PQ_NONE;
412         m->segind = vm_phys_paddr_to_segind(pa);
413         m->flags = PG_FREE;
414         KASSERT(m->order == VM_NFREEORDER,
415             ("vm_phys_add_page: page %p has unexpected order %d",
416             m, m->order));
417         m->pool = VM_FREEPOOL_DEFAULT;
418         pmap_page_init(m);
419         mtx_lock(&vm_page_queue_free_mtx);
420         cnt.v_free_count++;
421         vm_phys_free_pages(m, 0);
422         mtx_unlock(&vm_page_queue_free_mtx);
423 }
424
425 /*
426  * Allocate a contiguous, power of two-sized set of physical pages
427  * from the free lists.
428  *
429  * The free page queues must be locked.
430  */
431 vm_page_t
432 vm_phys_alloc_pages(int pool, int order)
433 {
434         vm_page_t m;
435         int domain, flind;
436
437         KASSERT(pool < VM_NFREEPOOL,
438             ("vm_phys_alloc_pages: pool %d is out of range", pool));
439         KASSERT(order < VM_NFREEORDER,
440             ("vm_phys_alloc_pages: order %d is out of range", order));
441
442 #if VM_NDOMAIN > 1
443         domain = PCPU_GET(domain);
444 #else
445         domain = 0;
446 #endif
447         for (flind = 0; flind < vm_nfreelists; flind++) {
448                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
449                 if (m != NULL)
450                         return (m);
451         }
452         return (NULL);
453 }
454
455 /*
456  * Find and dequeue a free page on the given free list, with the 
457  * specified pool and order
458  */
459 vm_page_t
460 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
461 {
462 #if VM_NDOMAIN > 1
463         vm_page_t m;
464         int i, ndomains;
465 #endif
466         int domain;
467
468         KASSERT(flind < VM_NFREELIST,
469             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
470         KASSERT(pool < VM_NFREEPOOL,
471             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
472         KASSERT(order < VM_NFREEORDER,
473             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
474
475 #if VM_NDOMAIN > 1
476         /*
477          * This routine expects to be called with a VM_FREELIST_* constant.
478          * On a system with multiple domains we need to adjust the flind
479          * appropriately.  If it is for VM_FREELIST_DEFAULT we need to
480          * iterate over the per-domain lists.
481          */
482         domain = PCPU_GET(domain);
483         ndomains = vm_nfreelists - VM_NFREELIST + 1;
484         if (flind == VM_FREELIST_DEFAULT) {
485                 m = NULL;
486                 for (i = 0; i < ndomains; i++, flind++) {
487                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
488                             order);
489                         if (m != NULL)
490                                 break;
491                 }
492                 return (m);
493         } else if (flind > VM_FREELIST_DEFAULT)
494                 flind += ndomains - 1;
495 #else
496         domain = 0;
497 #endif
498         return (vm_phys_alloc_domain_pages(domain, flind, pool, order));
499 }
500
501 static vm_page_t
502 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
503 {       
504         struct vm_freelist *fl;
505         struct vm_freelist *alt;
506         int oind, pind;
507         vm_page_t m;
508
509         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
510         fl = (*vm_phys_lookup_lists[domain][flind])[pool];
511         for (oind = order; oind < VM_NFREEORDER; oind++) {
512                 m = TAILQ_FIRST(&fl[oind].pl);
513                 if (m != NULL) {
514                         TAILQ_REMOVE(&fl[oind].pl, m, pageq);
515                         fl[oind].lcnt--;
516                         m->order = VM_NFREEORDER;
517                         vm_phys_split_pages(m, oind, fl, order);
518                         return (m);
519                 }
520         }
521
522         /*
523          * The given pool was empty.  Find the largest
524          * contiguous, power-of-two-sized set of pages in any
525          * pool.  Transfer these pages to the given pool, and
526          * use them to satisfy the allocation.
527          */
528         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
529                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
530                         alt = (*vm_phys_lookup_lists[domain][flind])[pind];
531                         m = TAILQ_FIRST(&alt[oind].pl);
532                         if (m != NULL) {
533                                 TAILQ_REMOVE(&alt[oind].pl, m, pageq);
534                                 alt[oind].lcnt--;
535                                 m->order = VM_NFREEORDER;
536                                 vm_phys_set_pool(pool, m, oind);
537                                 vm_phys_split_pages(m, oind, fl, order);
538                                 return (m);
539                         }
540                 }
541         }
542         return (NULL);
543 }
544
545 /*
546  * Allocate physical memory from phys_avail[].
547  */
548 vm_paddr_t
549 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
550 {
551         vm_paddr_t pa;
552         int i;
553
554         size = round_page(size);
555         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
556                 if (phys_avail[i + 1] - phys_avail[i] < size)
557                         continue;
558                 pa = phys_avail[i];
559                 phys_avail[i] += size;
560                 return (pa);
561         }
562         panic("vm_phys_bootstrap_alloc");
563 }
564
565 /*
566  * Find the vm_page corresponding to the given physical address.
567  */
568 vm_page_t
569 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
570 {
571         struct vm_phys_seg *seg;
572         int segind;
573
574         for (segind = 0; segind < vm_phys_nsegs; segind++) {
575                 seg = &vm_phys_segs[segind];
576                 if (pa >= seg->start && pa < seg->end)
577                         return (&seg->first_page[atop(pa - seg->start)]);
578         }
579         return (NULL);
580 }
581
582 vm_page_t
583 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
584 {
585         struct vm_phys_fictitious_seg *seg;
586         vm_page_t m;
587         int segind;
588
589         m = NULL;
590         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
591                 seg = &vm_phys_fictitious_segs[segind];
592                 if (pa >= seg->start && pa < seg->end) {
593                         m = &seg->first_page[atop(pa - seg->start)];
594                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
595                             ("%p not fictitious", m));
596                         break;
597                 }
598         }
599         return (m);
600 }
601
602 int
603 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
604     vm_memattr_t memattr)
605 {
606         struct vm_phys_fictitious_seg *seg;
607         vm_page_t fp;
608         long i, page_count;
609         int segind;
610 #ifdef VM_PHYSSEG_DENSE
611         long pi;
612         boolean_t malloced;
613 #endif
614
615         page_count = (end - start) / PAGE_SIZE;
616
617 #ifdef VM_PHYSSEG_DENSE
618         pi = atop(start);
619         if (pi >= first_page && atop(end) < vm_page_array_size) {
620                 fp = &vm_page_array[pi - first_page];
621                 malloced = FALSE;
622         } else
623 #endif
624         {
625                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
626                     M_WAITOK | M_ZERO);
627 #ifdef VM_PHYSSEG_DENSE
628                 malloced = TRUE;
629 #endif
630         }
631         for (i = 0; i < page_count; i++) {
632                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
633                 pmap_page_init(&fp[i]);
634                 fp[i].oflags &= ~(VPO_BUSY | VPO_UNMANAGED);
635         }
636         mtx_lock(&vm_phys_fictitious_reg_mtx);
637         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
638                 seg = &vm_phys_fictitious_segs[segind];
639                 if (seg->start == 0 && seg->end == 0) {
640                         seg->start = start;
641                         seg->end = end;
642                         seg->first_page = fp;
643                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
644                         return (0);
645                 }
646         }
647         mtx_unlock(&vm_phys_fictitious_reg_mtx);
648 #ifdef VM_PHYSSEG_DENSE
649         if (malloced)
650 #endif
651                 free(fp, M_FICT_PAGES);
652         return (EBUSY);
653 }
654
655 void
656 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
657 {
658         struct vm_phys_fictitious_seg *seg;
659         vm_page_t fp;
660         int segind;
661 #ifdef VM_PHYSSEG_DENSE
662         long pi;
663 #endif
664
665 #ifdef VM_PHYSSEG_DENSE
666         pi = atop(start);
667 #endif
668
669         mtx_lock(&vm_phys_fictitious_reg_mtx);
670         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
671                 seg = &vm_phys_fictitious_segs[segind];
672                 if (seg->start == start && seg->end == end) {
673                         seg->start = seg->end = 0;
674                         fp = seg->first_page;
675                         seg->first_page = NULL;
676                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
677 #ifdef VM_PHYSSEG_DENSE
678                         if (pi < first_page || atop(end) >= vm_page_array_size)
679 #endif
680                                 free(fp, M_FICT_PAGES);
681                         return;
682                 }
683         }
684         mtx_unlock(&vm_phys_fictitious_reg_mtx);
685         KASSERT(0, ("Unregistering not registered fictitious range"));
686 }
687
688 /*
689  * Find the segment containing the given physical address.
690  */
691 static int
692 vm_phys_paddr_to_segind(vm_paddr_t pa)
693 {
694         struct vm_phys_seg *seg;
695         int segind;
696
697         for (segind = 0; segind < vm_phys_nsegs; segind++) {
698                 seg = &vm_phys_segs[segind];
699                 if (pa >= seg->start && pa < seg->end)
700                         return (segind);
701         }
702         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
703             (uintmax_t)pa);
704 }
705
706 /*
707  * Free a contiguous, power of two-sized set of physical pages.
708  *
709  * The free page queues must be locked.
710  */
711 void
712 vm_phys_free_pages(vm_page_t m, int order)
713 {
714         struct vm_freelist *fl;
715         struct vm_phys_seg *seg;
716         vm_paddr_t pa, pa_buddy;
717         vm_page_t m_buddy;
718
719         KASSERT(m->order == VM_NFREEORDER,
720             ("vm_phys_free_pages: page %p has unexpected order %d",
721             m, m->order));
722         KASSERT(m->pool < VM_NFREEPOOL,
723             ("vm_phys_free_pages: page %p has unexpected pool %d",
724             m, m->pool));
725         KASSERT(order < VM_NFREEORDER,
726             ("vm_phys_free_pages: order %d is out of range", order));
727         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
728         pa = VM_PAGE_TO_PHYS(m);
729         seg = &vm_phys_segs[m->segind];
730         while (order < VM_NFREEORDER - 1) {
731                 pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
732                 if (pa_buddy < seg->start ||
733                     pa_buddy >= seg->end)
734                         break;
735                 m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
736                 if (m_buddy->order != order)
737                         break;
738                 fl = (*seg->free_queues)[m_buddy->pool];
739                 TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
740                 fl[m_buddy->order].lcnt--;
741                 m_buddy->order = VM_NFREEORDER;
742                 if (m_buddy->pool != m->pool)
743                         vm_phys_set_pool(m->pool, m_buddy, order);
744                 order++;
745                 pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
746                 m = &seg->first_page[atop(pa - seg->start)];
747         }
748         m->order = order;
749         fl = (*seg->free_queues)[m->pool];
750         TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
751         fl[order].lcnt++;
752 }
753
754 /*
755  * Set the pool for a contiguous, power of two-sized set of physical pages. 
756  */
757 void
758 vm_phys_set_pool(int pool, vm_page_t m, int order)
759 {
760         vm_page_t m_tmp;
761
762         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
763                 m_tmp->pool = pool;
764 }
765
766 /*
767  * Search for the given physical page "m" in the free lists.  If the search
768  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
769  * FALSE, indicating that "m" is not in the free lists.
770  *
771  * The free page queues must be locked.
772  */
773 boolean_t
774 vm_phys_unfree_page(vm_page_t m)
775 {
776         struct vm_freelist *fl;
777         struct vm_phys_seg *seg;
778         vm_paddr_t pa, pa_half;
779         vm_page_t m_set, m_tmp;
780         int order;
781
782         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
783
784         /*
785          * First, find the contiguous, power of two-sized set of free
786          * physical pages containing the given physical page "m" and
787          * assign it to "m_set".
788          */
789         seg = &vm_phys_segs[m->segind];
790         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
791             order < VM_NFREEORDER - 1; ) {
792                 order++;
793                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
794                 if (pa >= seg->start)
795                         m_set = &seg->first_page[atop(pa - seg->start)];
796                 else
797                         return (FALSE);
798         }
799         if (m_set->order < order)
800                 return (FALSE);
801         if (m_set->order == VM_NFREEORDER)
802                 return (FALSE);
803         KASSERT(m_set->order < VM_NFREEORDER,
804             ("vm_phys_unfree_page: page %p has unexpected order %d",
805             m_set, m_set->order));
806
807         /*
808          * Next, remove "m_set" from the free lists.  Finally, extract
809          * "m" from "m_set" using an iterative algorithm: While "m_set"
810          * is larger than a page, shrink "m_set" by returning the half
811          * of "m_set" that does not contain "m" to the free lists.
812          */
813         fl = (*seg->free_queues)[m_set->pool];
814         order = m_set->order;
815         TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
816         fl[order].lcnt--;
817         m_set->order = VM_NFREEORDER;
818         while (order > 0) {
819                 order--;
820                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
821                 if (m->phys_addr < pa_half)
822                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
823                 else {
824                         m_tmp = m_set;
825                         m_set = &seg->first_page[atop(pa_half - seg->start)];
826                 }
827                 m_tmp->order = order;
828                 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
829                 fl[order].lcnt++;
830         }
831         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
832         return (TRUE);
833 }
834
835 /*
836  * Try to zero one physical page.  Used by an idle priority thread.
837  */
838 boolean_t
839 vm_phys_zero_pages_idle(void)
840 {
841         static struct vm_freelist *fl = vm_phys_free_queues[0][0];
842         static int flind, oind, pind;
843         vm_page_t m, m_tmp;
844
845         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
846         for (;;) {
847                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
848                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
849                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
850                                         vm_phys_unfree_page(m_tmp);
851                                         cnt.v_free_count--;
852                                         mtx_unlock(&vm_page_queue_free_mtx);
853                                         pmap_zero_page_idle(m_tmp);
854                                         m_tmp->flags |= PG_ZERO;
855                                         mtx_lock(&vm_page_queue_free_mtx);
856                                         cnt.v_free_count++;
857                                         vm_phys_free_pages(m_tmp, 0);
858                                         vm_page_zero_count++;
859                                         cnt_prezero++;
860                                         return (TRUE);
861                                 }
862                         }
863                 }
864                 oind++;
865                 if (oind == VM_NFREEORDER) {
866                         oind = 0;
867                         pind++;
868                         if (pind == VM_NFREEPOOL) {
869                                 pind = 0;
870                                 flind++;
871                                 if (flind == vm_nfreelists)
872                                         flind = 0;
873                         }
874                         fl = vm_phys_free_queues[flind][pind];
875                 }
876         }
877 }
878
879 /*
880  * Allocate a contiguous set of physical pages of the given size
881  * "npages" from the free lists.  All of the physical pages must be at
882  * or above the given physical address "low" and below the given
883  * physical address "high".  The given value "alignment" determines the
884  * alignment of the first physical page in the set.  If the given value
885  * "boundary" is non-zero, then the set of physical pages cannot cross
886  * any physical address boundary that is a multiple of that value.  Both
887  * "alignment" and "boundary" must be a power of two.
888  */
889 vm_page_t
890 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
891     unsigned long alignment, unsigned long boundary)
892 {
893         struct vm_freelist *fl;
894         struct vm_phys_seg *seg;
895         struct vnode *vp;
896         vm_paddr_t pa, pa_last, size;
897         vm_page_t deferred_vdrop_list, m, m_ret;
898         int domain, flind, i, oind, order, pind;
899
900 #if VM_NDOMAIN > 1
901         domain = PCPU_GET(domain);
902 #else
903         domain = 0;
904 #endif
905         size = npages << PAGE_SHIFT;
906         KASSERT(size != 0,
907             ("vm_phys_alloc_contig: size must not be 0"));
908         KASSERT((alignment & (alignment - 1)) == 0,
909             ("vm_phys_alloc_contig: alignment must be a power of 2"));
910         KASSERT((boundary & (boundary - 1)) == 0,
911             ("vm_phys_alloc_contig: boundary must be a power of 2"));
912         deferred_vdrop_list = NULL;
913         /* Compute the queue that is the best fit for npages. */
914         for (order = 0; (1 << order) < npages; order++);
915         mtx_lock(&vm_page_queue_free_mtx);
916 #if VM_NRESERVLEVEL > 0
917 retry:
918 #endif
919         for (flind = 0; flind < vm_nfreelists; flind++) {
920                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
921                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
922                                 fl = (*vm_phys_lookup_lists[domain][flind])
923                                     [pind];
924                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
925                                         /*
926                                          * A free list may contain physical pages
927                                          * from one or more segments.
928                                          */
929                                         seg = &vm_phys_segs[m_ret->segind];
930                                         if (seg->start > high ||
931                                             low >= seg->end)
932                                                 continue;
933
934                                         /*
935                                          * Is the size of this allocation request
936                                          * larger than the largest block size?
937                                          */
938                                         if (order >= VM_NFREEORDER) {
939                                                 /*
940                                                  * Determine if a sufficient number
941                                                  * of subsequent blocks to satisfy
942                                                  * the allocation request are free.
943                                                  */
944                                                 pa = VM_PAGE_TO_PHYS(m_ret);
945                                                 pa_last = pa + size;
946                                                 for (;;) {
947                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
948                                                         if (pa >= pa_last)
949                                                                 break;
950                                                         if (pa < seg->start ||
951                                                             pa >= seg->end)
952                                                                 break;
953                                                         m = &seg->first_page[atop(pa - seg->start)];
954                                                         if (m->order != VM_NFREEORDER - 1)
955                                                                 break;
956                                                 }
957                                                 /* If not, continue to the next block. */
958                                                 if (pa < pa_last)
959                                                         continue;
960                                         }
961
962                                         /*
963                                          * Determine if the blocks are within the given range,
964                                          * satisfy the given alignment, and do not cross the
965                                          * given boundary.
966                                          */
967                                         pa = VM_PAGE_TO_PHYS(m_ret);
968                                         if (pa >= low &&
969                                             pa + size <= high &&
970                                             (pa & (alignment - 1)) == 0 &&
971                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
972                                                 goto done;
973                                 }
974                         }
975                 }
976         }
977 #if VM_NRESERVLEVEL > 0
978         if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary))
979                 goto retry;
980 #endif
981         mtx_unlock(&vm_page_queue_free_mtx);
982         return (NULL);
983 done:
984         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
985                 fl = (*seg->free_queues)[m->pool];
986                 TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
987                 fl[m->order].lcnt--;
988                 m->order = VM_NFREEORDER;
989         }
990         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
991                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
992         fl = (*seg->free_queues)[m_ret->pool];
993         vm_phys_split_pages(m_ret, oind, fl, order);
994         for (i = 0; i < npages; i++) {
995                 m = &m_ret[i];
996                 vp = vm_page_alloc_init(m);
997                 if (vp != NULL) {
998                         /*
999                          * Enqueue the vnode for deferred vdrop().
1000                          *
1001                          * Unmanaged pages don't use "pageq", so it
1002                          * can be safely abused to construct a short-
1003                          * lived queue of vnodes.
1004                          */
1005                         m->pageq.tqe_prev = (void *)vp;
1006                         m->pageq.tqe_next = deferred_vdrop_list;
1007                         deferred_vdrop_list = m;
1008                 }
1009         }
1010         for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
1011                 m = &m_ret[i];
1012                 KASSERT(m->order == VM_NFREEORDER,
1013                     ("vm_phys_alloc_contig: page %p has unexpected order %d",
1014                     m, m->order));
1015                 vm_phys_free_pages(m, 0);
1016         }
1017         mtx_unlock(&vm_page_queue_free_mtx);
1018         while (deferred_vdrop_list != NULL) {
1019                 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1020                 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1021         }
1022         return (m_ret);
1023 }
1024
1025 #ifdef DDB
1026 /*
1027  * Show the number of physical pages in each of the free lists.
1028  */
1029 DB_SHOW_COMMAND(freepages, db_show_freepages)
1030 {
1031         struct vm_freelist *fl;
1032         int flind, oind, pind;
1033
1034         for (flind = 0; flind < vm_nfreelists; flind++) {
1035                 db_printf("FREE LIST %d:\n"
1036                     "\n  ORDER (SIZE)  |  NUMBER"
1037                     "\n              ", flind);
1038                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1039                         db_printf("  |  POOL %d", pind);
1040                 db_printf("\n--            ");
1041                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1042                         db_printf("-- --      ");
1043                 db_printf("--\n");
1044                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1045                         db_printf("  %2.2d (%6.6dK)", oind,
1046                             1 << (PAGE_SHIFT - 10 + oind));
1047                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1048                                 fl = vm_phys_free_queues[flind][pind];
1049                                 db_printf("  |  %6.6d", fl[oind].lcnt);
1050                         }
1051                         db_printf("\n");
1052                 }
1053                 db_printf("\n");
1054         }
1055 }
1056 #endif