]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/vm/vm_reserv.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / vm / vm_reserv.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Superpage reservation management module
34  */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38
39 #include "opt_vm.h"
40
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_phys.h>
56 #include <vm/vm_reserv.h>
57
58 /*
59  * The reservation system supports the speculative allocation of large physical
60  * pages ("superpages").  Speculative allocation enables the fully-automatic
61  * utilization of superpages by the virtual memory system.  In other words, no
62  * programmatic directives are required to use superpages.
63  */
64
65 #if VM_NRESERVLEVEL > 0
66
67 /*
68  * The number of small pages that are contained in a level 0 reservation
69  */
70 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
71
72 /*
73  * The number of bits by which a physical address is shifted to obtain the
74  * reservation number
75  */
76 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
77
78 /*
79  * The size of a level 0 reservation in bytes
80  */
81 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
82
83 /*
84  * Computes the index of the small page underlying the given (object, pindex)
85  * within the reservation's array of small pages.
86  */
87 #define VM_RESERV_INDEX(object, pindex) \
88     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
89
90 /*
91  * The reservation structure
92  *
93  * A reservation structure is constructed whenever a large physical page is
94  * speculatively allocated to an object.  The reservation provides the small
95  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
96  * within that object.  The reservation's "popcnt" tracks the number of these
97  * small physical pages that are in use at any given time.  When and if the
98  * reservation is not fully utilized, it appears in the queue of partially-
99  * populated reservations.  The reservation always appears on the containing
100  * object's list of reservations.
101  *
102  * A partially-populated reservation can be broken and reclaimed at any time.
103  */
104 struct vm_reserv {
105         TAILQ_ENTRY(vm_reserv) partpopq;
106         LIST_ENTRY(vm_reserv) objq;
107         vm_object_t     object;                 /* containing object */
108         vm_pindex_t     pindex;                 /* offset within object */
109         vm_page_t       pages;                  /* first page of a superpage */
110         int             popcnt;                 /* # of pages in use */
111         char            inpartpopq;
112 };
113
114 /*
115  * The reservation array
116  *
117  * This array is analoguous in function to vm_page_array.  It differs in the
118  * respect that it may contain a greater number of useful reservation
119  * structures than there are (physical) superpages.  These "invalid"
120  * reservation structures exist to trade-off space for time in the
121  * implementation of vm_reserv_from_page().  Invalid reservation structures are
122  * distinguishable from "valid" reservation structures by inspecting the
123  * reservation's "pages" field.  Invalid reservation structures have a NULL
124  * "pages" field.
125  *
126  * vm_reserv_from_page() maps a small (physical) page to an element of this
127  * array by computing a physical reservation number from the page's physical
128  * address.  The physical reservation number is used as the array index.
129  *
130  * An "active" reservation is a valid reservation structure that has a non-NULL
131  * "object" field and a non-zero "popcnt" field.  In other words, every active
132  * reservation belongs to a particular object.  Moreover, every active
133  * reservation has an entry in the containing object's list of reservations.  
134  */
135 static vm_reserv_t vm_reserv_array;
136
137 /*
138  * The partially-populated reservation queue
139  *
140  * This queue enables the fast recovery of an unused cached or free small page
141  * from a partially-populated reservation.  The reservation at the head of
142  * this queue is the least-recently-changed, partially-populated reservation.
143  *
144  * Access to this queue is synchronized by the free page queue lock.
145  */
146 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
147                             TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
148
149 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
150
151 static long vm_reserv_broken;
152 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
153     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
154
155 static long vm_reserv_freed;
156 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
157     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
158
159 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
160
161 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
162     sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
163
164 static long vm_reserv_reclaimed;
165 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
166     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
167
168 static void             vm_reserv_depopulate(vm_reserv_t rv);
169 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
170 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
171                             vm_pindex_t pindex);
172 static void             vm_reserv_populate(vm_reserv_t rv);
173 static void             vm_reserv_reclaim(vm_reserv_t rv);
174
175 /*
176  * Describes the current state of the partially-populated reservation queue.
177  */
178 static int
179 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
180 {
181         struct sbuf sbuf;
182         vm_reserv_t rv;
183         int counter, error, level, unused_pages;
184
185         error = sysctl_wire_old_buffer(req, 0);
186         if (error != 0)
187                 return (error);
188         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
189         sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
190         for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
191                 counter = 0;
192                 unused_pages = 0;
193                 mtx_lock(&vm_page_queue_free_mtx);
194                 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
195                         counter++;
196                         unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
197                 }
198                 mtx_unlock(&vm_page_queue_free_mtx);
199                 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
200                     unused_pages * ((int)PAGE_SIZE / 1024), counter);
201         }
202         error = sbuf_finish(&sbuf);
203         sbuf_delete(&sbuf);
204         return (error);
205 }
206
207 /*
208  * Reduces the given reservation's population count.  If the population count
209  * becomes zero, the reservation is destroyed.  Additionally, moves the
210  * reservation to the tail of the partially-populated reservations queue if the
211  * population count is non-zero.
212  *
213  * The free page queue lock must be held.
214  */
215 static void
216 vm_reserv_depopulate(vm_reserv_t rv)
217 {
218
219         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
220         KASSERT(rv->object != NULL,
221             ("vm_reserv_depopulate: reserv %p is free", rv));
222         KASSERT(rv->popcnt > 0,
223             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
224         if (rv->inpartpopq) {
225                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
226                 rv->inpartpopq = FALSE;
227         }
228         rv->popcnt--;
229         if (rv->popcnt == 0) {
230                 LIST_REMOVE(rv, objq);
231                 rv->object = NULL;
232                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
233                 vm_reserv_freed++;
234         } else {
235                 rv->inpartpopq = TRUE;
236                 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
237         }
238 }
239
240 /*
241  * Returns the reservation to which the given page might belong.
242  */
243 static __inline vm_reserv_t
244 vm_reserv_from_page(vm_page_t m)
245 {
246
247         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
248 }
249
250 /*
251  * Returns TRUE if the given reservation contains the given page index and
252  * FALSE otherwise.
253  */
254 static __inline boolean_t
255 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
256 {
257
258         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
259 }
260
261 /*
262  * Increases the given reservation's population count.  Moves the reservation
263  * to the tail of the partially-populated reservation queue.
264  *
265  * The free page queue must be locked.
266  */
267 static void
268 vm_reserv_populate(vm_reserv_t rv)
269 {
270
271         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
272         KASSERT(rv->object != NULL,
273             ("vm_reserv_populate: reserv %p is free", rv));
274         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
275             ("vm_reserv_populate: reserv %p is already full", rv));
276         if (rv->inpartpopq) {
277                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
278                 rv->inpartpopq = FALSE;
279         }
280         rv->popcnt++;
281         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
282                 rv->inpartpopq = TRUE;
283                 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
284         }
285 }
286
287 /*
288  * Allocates a page from an existing or newly-created reservation.
289  *
290  * The object and free page queue must be locked.
291  */
292 vm_page_t
293 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
294 {
295         vm_page_t m, mpred, msucc;
296         vm_pindex_t first, leftcap, rightcap;
297         vm_reserv_t rv;
298
299         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
300
301         /*
302          * Is a reservation fundamentally not possible?
303          */
304         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
305         if (pindex < VM_RESERV_INDEX(object, pindex) ||
306             pindex >= object->size)
307                 return (NULL);
308
309         /*
310          * Look for an existing reservation.
311          */
312         msucc = NULL;
313         mpred = object->root;
314         while (mpred != NULL) {
315                 KASSERT(mpred->pindex != pindex,
316                     ("vm_reserv_alloc_page: pindex already allocated"));
317                 rv = vm_reserv_from_page(mpred);
318                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
319                         m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
320                         /* Handle vm_page_rename(m, new_object, ...). */
321                         if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
322                                 return (NULL);
323                         vm_reserv_populate(rv);
324                         return (m);
325                 } else if (mpred->pindex < pindex) {
326                         if (msucc != NULL ||
327                             (msucc = TAILQ_NEXT(mpred, listq)) == NULL)
328                                 break;
329                         KASSERT(msucc->pindex != pindex,
330                             ("vm_reserv_alloc_page: pindex already allocated"));
331                         rv = vm_reserv_from_page(msucc);
332                         if (rv->object == object &&
333                             vm_reserv_has_pindex(rv, pindex)) {
334                                 m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
335                                 /* Handle vm_page_rename(m, new_object, ...). */
336                                 if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
337                                         return (NULL);
338                                 vm_reserv_populate(rv);
339                                 return (m);
340                         } else if (pindex < msucc->pindex)
341                                 break;
342                 } else if (msucc == NULL) {
343                         msucc = mpred;
344                         mpred = TAILQ_PREV(msucc, pglist, listq);
345                         continue;
346                 }
347                 msucc = NULL;
348                 mpred = object->root = vm_page_splay(pindex, object->root);
349         }
350
351         /*
352          * Determine the first index to the left that can be used.
353          */
354         if (mpred == NULL)
355                 leftcap = 0;
356         else if ((rv = vm_reserv_from_page(mpred))->object != object)
357                 leftcap = mpred->pindex + 1;
358         else
359                 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
360
361         /*
362          * Determine the first index to the right that cannot be used.
363          */
364         if (msucc == NULL)
365                 rightcap = pindex + VM_LEVEL_0_NPAGES;
366         else if ((rv = vm_reserv_from_page(msucc))->object != object)
367                 rightcap = msucc->pindex;
368         else
369                 rightcap = rv->pindex;
370
371         /*
372          * Determine if a reservation fits between the first index to
373          * the left that can be used and the first index to the right
374          * that cannot be used. 
375          */
376         first = pindex - VM_RESERV_INDEX(object, pindex);
377         if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
378                 return (NULL);
379
380         /*
381          * Would a new reservation extend past the end of the given object? 
382          */
383         if (object->size < first + VM_LEVEL_0_NPAGES) {
384                 /*
385                  * Don't allocate a new reservation if the object is a vnode or
386                  * backed by another object that is a vnode. 
387                  */
388                 if (object->type == OBJT_VNODE ||
389                     (object->backing_object != NULL &&
390                     object->backing_object->type == OBJT_VNODE))
391                         return (NULL);
392                 /* Speculate that the object may grow. */
393         }
394
395         /*
396          * Allocate a new reservation.
397          */
398         m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
399         if (m != NULL) {
400                 rv = vm_reserv_from_page(m);
401                 KASSERT(rv->pages == m,
402                     ("vm_reserv_alloc_page: reserv %p's pages is corrupted",
403                     rv));
404                 KASSERT(rv->object == NULL,
405                     ("vm_reserv_alloc_page: reserv %p isn't free", rv));
406                 LIST_INSERT_HEAD(&object->rvq, rv, objq);
407                 rv->object = object;
408                 rv->pindex = first;
409                 KASSERT(rv->popcnt == 0,
410                     ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
411                     rv));
412                 KASSERT(!rv->inpartpopq,
413                     ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
414                     rv));
415                 vm_reserv_populate(rv);
416                 m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
417         }
418         return (m);
419 }
420
421 /*
422  * Breaks all reservations belonging to the given object.
423  */
424 void
425 vm_reserv_break_all(vm_object_t object)
426 {
427         vm_reserv_t rv;
428         int i;
429
430         mtx_lock(&vm_page_queue_free_mtx);
431         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
432                 KASSERT(rv->object == object,
433                     ("vm_reserv_break_all: reserv %p is corrupted", rv));
434                 if (rv->inpartpopq) {
435                         TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
436                         rv->inpartpopq = FALSE;
437                 }
438                 LIST_REMOVE(rv, objq);
439                 rv->object = NULL;
440                 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
441                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
442                                 vm_phys_free_pages(&rv->pages[i], 0);
443                         else
444                                 rv->popcnt--;
445                 }
446                 KASSERT(rv->popcnt == 0,
447                     ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
448                     rv));
449                 vm_reserv_broken++;
450         }
451         mtx_unlock(&vm_page_queue_free_mtx);
452 }
453
454 /*
455  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
456  * page is freed and FALSE otherwise.
457  *
458  * The free page queue lock must be held.
459  */
460 boolean_t
461 vm_reserv_free_page(vm_page_t m)
462 {
463         vm_reserv_t rv;
464
465         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
466         rv = vm_reserv_from_page(m);
467         if (rv->object == NULL)
468                 return (FALSE);
469         if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE)
470                 vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages,
471                     VM_LEVEL_0_ORDER);
472         vm_reserv_depopulate(rv);
473         return (TRUE);
474 }
475
476 /*
477  * Initializes the reservation management system.  Specifically, initializes
478  * the reservation array.
479  *
480  * Requires that vm_page_array and first_page are initialized!
481  */
482 void
483 vm_reserv_init(void)
484 {
485         vm_paddr_t paddr;
486         int i;
487
488         /*
489          * Initialize the reservation array.  Specifically, initialize the
490          * "pages" field for every element that has an underlying superpage.
491          */
492         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
493                 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
494                 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
495                         vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
496                             PHYS_TO_VM_PAGE(paddr);
497                         paddr += VM_LEVEL_0_SIZE;
498                 }
499         }
500 }
501
502 /*
503  * Returns a reservation level if the given page belongs to a fully-populated
504  * reservation and -1 otherwise.
505  */
506 int
507 vm_reserv_level_iffullpop(vm_page_t m)
508 {
509         vm_reserv_t rv;
510
511         rv = vm_reserv_from_page(m);
512         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
513 }
514
515 /*
516  * Prepare for the reactivation of a cached page.
517  *
518  * First, suppose that the given page "m" was allocated individually, i.e., not
519  * as part of a reservation, and cached.  Then, suppose a reservation
520  * containing "m" is allocated by the same object.  Although "m" and the
521  * reservation belong to the same object, "m"'s pindex may not match the
522  * reservation's.
523  *
524  * The free page queue must be locked.
525  */
526 boolean_t
527 vm_reserv_reactivate_page(vm_page_t m)
528 {
529         vm_reserv_t rv;
530         int i, m_index;
531
532         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
533         rv = vm_reserv_from_page(m);
534         if (rv->object == NULL)
535                 return (FALSE);
536         KASSERT((m->flags & PG_CACHED) != 0,
537             ("vm_reserv_uncache_page: page %p is not cached", m));
538         if (m->object == rv->object &&
539             m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
540                 vm_reserv_populate(rv);
541         else {
542                 KASSERT(rv->inpartpopq,
543                     ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
544                     rv));
545                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
546                 rv->inpartpopq = FALSE;
547                 LIST_REMOVE(rv, objq);
548                 rv->object = NULL;
549                 /* Don't vm_phys_free_pages(m, 0). */
550                 m_index = m - rv->pages;
551                 for (i = 0; i < m_index; i++) {
552                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
553                                 vm_phys_free_pages(&rv->pages[i], 0);
554                         else
555                                 rv->popcnt--;
556                 }
557                 for (i++; i < VM_LEVEL_0_NPAGES; i++) {
558                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
559                                 vm_phys_free_pages(&rv->pages[i], 0);
560                         else
561                                 rv->popcnt--;
562                 }
563                 KASSERT(rv->popcnt == 0,
564                     ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
565                     rv));
566                 vm_reserv_broken++;
567         }
568         return (TRUE);
569 }
570
571 /*
572  * Breaks the given partially-populated reservation, releasing its cached and
573  * free pages to the physical memory allocator.
574  *
575  * The free page queue lock must be held.
576  */
577 static void
578 vm_reserv_reclaim(vm_reserv_t rv)
579 {
580         int i;
581
582         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
583         KASSERT(rv->inpartpopq,
584             ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
585         TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
586         rv->inpartpopq = FALSE;
587         KASSERT(rv->object != NULL,
588             ("vm_reserv_reclaim: reserv %p is free", rv));
589         LIST_REMOVE(rv, objq);
590         rv->object = NULL;
591         for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
592                 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
593                         vm_phys_free_pages(&rv->pages[i], 0);
594                 else
595                         rv->popcnt--;
596         }
597         KASSERT(rv->popcnt == 0,
598             ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
599         vm_reserv_reclaimed++;
600 }
601
602 /*
603  * Breaks the reservation at the head of the partially-populated reservation
604  * queue, releasing its cached and free pages to the physical memory
605  * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
606  *
607  * The free page queue lock must be held.
608  */
609 boolean_t
610 vm_reserv_reclaim_inactive(void)
611 {
612         vm_reserv_t rv;
613
614         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
615         if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
616                 vm_reserv_reclaim(rv);
617                 return (TRUE);
618         }
619         return (FALSE);
620 }
621
622 /*
623  * Searches the partially-populated reservation queue for the least recently
624  * active reservation with unused pages, i.e., cached or free, that satisfy the
625  * given request for contiguous physical memory.  If a satisfactory reservation
626  * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
627  * otherwise.
628  *
629  * The free page queue lock must be held.
630  */
631 boolean_t
632 vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high,
633     unsigned long alignment, unsigned long boundary)
634 {
635         vm_paddr_t pa, pa_length;
636         vm_reserv_t rv;
637         int i;
638
639         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
640         if (size > VM_LEVEL_0_SIZE - PAGE_SIZE)
641                 return (FALSE);
642         TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
643                 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
644                 if (pa + PAGE_SIZE - size < low) {
645                         /* this entire reservation is too low; go to next */
646                         continue;
647                 }
648                 pa_length = 0;
649                 for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
650                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
651                                 pa_length += PAGE_SIZE;
652                                 if (pa_length == PAGE_SIZE) {
653                                         pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
654                                         if (pa + size > high) {
655                                                 /* skip to next reservation */
656                                                 break;
657                                         } else if (pa < low ||
658                                             (pa & (alignment - 1)) != 0 ||
659                                             ((pa ^ (pa + size - 1)) &
660                                             ~(boundary - 1)) != 0)
661                                                 pa_length = 0;
662                                 }
663                                 if (pa_length >= size) {
664                                         vm_reserv_reclaim(rv);
665                                         return (TRUE);
666                                 }
667                         } else
668                                 pa_length = 0;
669         }
670         return (FALSE);
671 }
672
673 /*
674  * Transfers the reservation underlying the given page to a new object.
675  *
676  * The object must be locked.
677  */
678 void
679 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
680     vm_pindex_t old_object_offset)
681 {
682         vm_reserv_t rv;
683
684         VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
685         rv = vm_reserv_from_page(m);
686         if (rv->object == old_object) {
687                 mtx_lock(&vm_page_queue_free_mtx);
688                 if (rv->object == old_object) {
689                         LIST_REMOVE(rv, objq);
690                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
691                         rv->object = new_object;
692                         rv->pindex -= old_object_offset;
693                 }
694                 mtx_unlock(&vm_page_queue_free_mtx);
695         }
696 }
697
698 /*
699  * Allocates the virtual and physical memory required by the reservation
700  * management system's data structures, in particular, the reservation array.
701  */
702 vm_paddr_t
703 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
704 {
705         vm_paddr_t new_end;
706         size_t size;
707
708         /*
709          * Calculate the size (in bytes) of the reservation array.  Round up
710          * from "high_water" because every small page is mapped to an element
711          * in the reservation array based on its physical address.  Thus, the
712          * number of elements in the reservation array can be greater than the
713          * number of superpages. 
714          */
715         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
716
717         /*
718          * Allocate and map the physical memory for the reservation array.  The
719          * next available virtual address is returned by reference.
720          */
721         new_end = end - round_page(size);
722         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
723             VM_PROT_READ | VM_PROT_WRITE);
724         bzero(vm_reserv_array, size);
725
726         /*
727          * Return the next available physical address.
728          */
729         return (new_end);
730 }
731
732 #endif  /* VM_NRESERVLEVEL > 0 */