]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - usr.sbin/nscd/cachelib.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / usr.sbin / nscd / cachelib.c
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/time.h>
32
33 #include <assert.h>
34 #include <stdlib.h>
35 #include <string.h>
36
37 #include "cachelib.h"
38 #include "debug.h"
39
40 #define INITIAL_ENTRIES_CAPACITY 32
41 #define ENTRIES_CAPACITY_STEP 32
42
43 #define STRING_SIMPLE_HASH_BODY(in_var, var, a, M)              \
44         for ((var) = 0; *(in_var) != '\0'; ++(in_var))          \
45                 (var) = ((a)*(var) + *(in_var)) % (M)
46
47 #define STRING_SIMPLE_MP2_HASH_BODY(in_var, var, a, M)          \
48         for ((var) = 0; *(in_var) != 0; ++(in_var))             \
49                 (var) = ((a)*(var) + *(in_var)) & (M - 1)
50
51 static int cache_elemsize_common_continue_func(struct cache_common_entry_ *,
52         struct cache_policy_item_ *);
53 static int cache_lifetime_common_continue_func(struct cache_common_entry_ *,
54         struct cache_policy_item_ *);
55 static void clear_cache_entry(struct cache_entry_ *);
56 static void destroy_cache_entry(struct cache_entry_ *);
57 static void destroy_cache_mp_read_session(struct cache_mp_read_session_ *);
58 static void destroy_cache_mp_write_session(struct cache_mp_write_session_ *);
59 static int entries_bsearch_cmp_func(const void *, const void *);
60 static int entries_qsort_cmp_func(const void *, const void *);
61 static struct cache_entry_ ** find_cache_entry_p(struct cache_ *,
62         const char *);
63 static void flush_cache_entry(struct cache_entry_ *);
64 static void flush_cache_policy(struct cache_common_entry_ *,
65         struct cache_policy_ *, struct cache_policy_ *,
66                 int (*)(struct cache_common_entry_ *,
67                 struct cache_policy_item_ *));
68 static int ht_items_cmp_func(const void *, const void *);
69 static int ht_items_fixed_size_left_cmp_func(const void *, const void *);
70 static hashtable_index_t ht_item_hash_func(const void *, size_t);
71
72 /*
73  * Hashing and comparing routines, that are used with the hash tables
74  */
75 static int
76 ht_items_cmp_func(const void *p1, const void *p2)
77 {
78         struct cache_ht_item_data_ *hp1, *hp2;
79         size_t min_size;
80         int result;
81
82         hp1 = (struct cache_ht_item_data_ *)p1;
83         hp2 = (struct cache_ht_item_data_ *)p2;
84
85         assert(hp1->key != NULL);
86         assert(hp2->key != NULL);
87
88         if (hp1->key_size != hp2->key_size) {
89                 min_size = (hp1->key_size < hp2->key_size) ? hp1->key_size :
90                         hp2->key_size;
91                 result = memcmp(hp1->key, hp2->key, min_size);
92
93                 if (result == 0)
94                         return ((hp1->key_size < hp2->key_size) ? -1 : 1);
95                 else
96                         return (result);
97         } else
98                 return (memcmp(hp1->key, hp2->key, hp1->key_size));
99 }
100
101 static int
102 ht_items_fixed_size_left_cmp_func(const void *p1, const void *p2)
103 {
104         struct cache_ht_item_data_ *hp1, *hp2;
105         size_t min_size;
106         int result;
107
108         hp1 = (struct cache_ht_item_data_ *)p1;
109         hp2 = (struct cache_ht_item_data_ *)p2;
110
111         assert(hp1->key != NULL);
112         assert(hp2->key != NULL);
113
114         if (hp1->key_size != hp2->key_size) {
115                 min_size = (hp1->key_size < hp2->key_size) ? hp1->key_size :
116                         hp2->key_size;
117                 result = memcmp(hp1->key, hp2->key, min_size);
118
119                 if (result == 0)
120                         if (min_size == hp1->key_size)
121                             return (0);
122                         else
123                             return ((hp1->key_size < hp2->key_size) ? -1 : 1);
124                 else
125                         return (result);
126         } else
127                 return (memcmp(hp1->key, hp2->key, hp1->key_size));
128 }
129
130 static hashtable_index_t
131 ht_item_hash_func(const void *p, size_t cache_entries_size)
132 {
133         struct cache_ht_item_data_ *hp;
134         size_t i;
135
136         hashtable_index_t retval;
137
138         hp = (struct cache_ht_item_data_ *)p;
139         assert(hp->key != NULL);
140
141         retval = 0;
142         for (i = 0; i < hp->key_size; ++i)
143             retval = (127 * retval + (unsigned char)hp->key[i]) %
144                 cache_entries_size;
145
146         return retval;
147 }
148
149 HASHTABLE_PROTOTYPE(cache_ht_, cache_ht_item_, struct cache_ht_item_data_);
150 HASHTABLE_GENERATE(cache_ht_, cache_ht_item_, struct cache_ht_item_data_, data,
151         ht_item_hash_func, ht_items_cmp_func);
152
153 /*
154  * Routines to sort and search the entries by name
155  */
156 static int
157 entries_bsearch_cmp_func(const void *key, const void *ent)
158 {
159
160         assert(key != NULL);
161         assert(ent != NULL);
162
163         return (strcmp((char const *)key,
164                 (*(struct cache_entry_ const **)ent)->name));
165 }
166
167 static int
168 entries_qsort_cmp_func(const void *e1, const void *e2)
169 {
170
171         assert(e1 != NULL);
172         assert(e2 != NULL);
173
174         return (strcmp((*(struct cache_entry_ const **)e1)->name,
175                 (*(struct cache_entry_ const **)e2)->name));
176 }
177
178 static struct cache_entry_ **
179 find_cache_entry_p(struct cache_ *the_cache, const char *entry_name)
180 {
181
182         return ((struct cache_entry_ **)(bsearch(entry_name, the_cache->entries,
183                 the_cache->entries_size, sizeof(struct cache_entry_ *),
184                 entries_bsearch_cmp_func)));
185 }
186
187 static void
188 destroy_cache_mp_write_session(struct cache_mp_write_session_ *ws)
189 {
190
191         struct cache_mp_data_item_      *data_item;
192
193         TRACE_IN(destroy_cache_mp_write_session);
194         assert(ws != NULL);
195         while (!TAILQ_EMPTY(&ws->items)) {
196                 data_item = TAILQ_FIRST(&ws->items);
197                 TAILQ_REMOVE(&ws->items, data_item, entries);
198                 free(data_item->value);
199                 free(data_item);
200         }
201
202         free(ws);
203         TRACE_OUT(destroy_cache_mp_write_session);
204 }
205
206 static void
207 destroy_cache_mp_read_session(struct cache_mp_read_session_ *rs)
208 {
209
210         TRACE_IN(destroy_cache_mp_read_session);
211         assert(rs != NULL);
212         free(rs);
213         TRACE_OUT(destroy_cache_mp_read_session);
214 }
215
216 static void
217 destroy_cache_entry(struct cache_entry_ *entry)
218 {
219         struct cache_common_entry_      *common_entry;
220         struct cache_mp_entry_          *mp_entry;
221         struct cache_mp_read_session_   *rs;
222         struct cache_mp_write_session_  *ws;
223         struct cache_ht_item_ *ht_item;
224         struct cache_ht_item_data_ *ht_item_data;
225
226         TRACE_IN(destroy_cache_entry);
227         assert(entry != NULL);
228
229         if (entry->params->entry_type == CET_COMMON) {
230                 common_entry = (struct cache_common_entry_ *)entry;
231
232                 HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
233                         HASHTABLE_ENTRY_FOREACH(ht_item, data, ht_item_data)
234                         {
235                                 free(ht_item_data->key);
236                                 free(ht_item_data->value);
237                         }
238                         HASHTABLE_ENTRY_CLEAR(ht_item, data);
239                 }
240
241                 HASHTABLE_DESTROY(&(common_entry->items), data);
242
243                 /* FIFO policy is always first */
244                 destroy_cache_fifo_policy(common_entry->policies[0]);
245                 switch (common_entry->common_params.policy) {
246                 case CPT_LRU:
247                         destroy_cache_lru_policy(common_entry->policies[1]);
248                         break;
249                 case CPT_LFU:
250                         destroy_cache_lfu_policy(common_entry->policies[1]);
251                         break;
252                 default:
253                 break;
254                 }
255                 free(common_entry->policies);
256         } else {
257                 mp_entry = (struct cache_mp_entry_ *)entry;
258
259                 while (!TAILQ_EMPTY(&mp_entry->ws_head)) {
260                         ws = TAILQ_FIRST(&mp_entry->ws_head);
261                         TAILQ_REMOVE(&mp_entry->ws_head, ws, entries);
262                         destroy_cache_mp_write_session(ws);
263                 }
264
265                 while (!TAILQ_EMPTY(&mp_entry->rs_head)) {
266                         rs = TAILQ_FIRST(&mp_entry->rs_head);
267                         TAILQ_REMOVE(&mp_entry->rs_head, rs, entries);
268                         destroy_cache_mp_read_session(rs);
269                 }
270
271                 if (mp_entry->completed_write_session != NULL)
272                         destroy_cache_mp_write_session(
273                                 mp_entry->completed_write_session);
274
275                 if (mp_entry->pending_write_session != NULL)
276                         destroy_cache_mp_write_session(
277                                 mp_entry->pending_write_session);
278         }
279
280         free(entry->name);
281         free(entry);
282         TRACE_OUT(destroy_cache_entry);
283 }
284
285 static void
286 clear_cache_entry(struct cache_entry_ *entry)
287 {
288         struct cache_mp_entry_          *mp_entry;
289         struct cache_common_entry_      *common_entry;
290         struct cache_ht_item_ *ht_item;
291         struct cache_ht_item_data_ *ht_item_data;
292         struct cache_policy_ *policy;
293         struct cache_policy_item_ *item, *next_item;
294         size_t entry_size;
295         unsigned int i;
296
297         if (entry->params->entry_type == CET_COMMON) {
298                 common_entry = (struct cache_common_entry_ *)entry;
299
300                 entry_size = 0;
301                 HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
302                         HASHTABLE_ENTRY_FOREACH(ht_item, data, ht_item_data)
303                         {
304                                 free(ht_item_data->key);
305                                 free(ht_item_data->value);
306                         }
307                         entry_size += HASHTABLE_ENTRY_SIZE(ht_item, data);
308                         HASHTABLE_ENTRY_CLEAR(ht_item, data);
309                 }
310
311                 common_entry->items_size -= entry_size;
312                 for (i = 0; i < common_entry->policies_size; ++i) {
313                         policy = common_entry->policies[i];
314
315                         next_item = NULL;
316                         item = policy->get_first_item_func(policy);
317                         while (item != NULL) {
318                                 next_item = policy->get_next_item_func(policy,
319                                         item);
320                                 policy->remove_item_func(policy, item);
321                                 policy->destroy_item_func(item);
322                                 item = next_item;
323                         }
324                 }
325         } else {
326                 mp_entry = (struct cache_mp_entry_ *)entry;
327
328                 if (mp_entry->rs_size == 0) {
329                         if (mp_entry->completed_write_session != NULL) {
330                                 destroy_cache_mp_write_session(
331                                         mp_entry->completed_write_session);
332                                 mp_entry->completed_write_session = NULL;
333                         }
334
335                         memset(&mp_entry->creation_time, 0,
336                                 sizeof(struct timeval));
337                         memset(&mp_entry->last_request_time, 0,
338                                 sizeof(struct timeval));
339                 }
340         }
341 }
342
343 /*
344  * When passed to the flush_cache_policy, ensures that all old elements are
345  * deleted.
346  */
347 static int
348 cache_lifetime_common_continue_func(struct cache_common_entry_ *entry,
349         struct cache_policy_item_ *item)
350 {
351
352         return ((item->last_request_time.tv_sec - item->creation_time.tv_sec >
353                 entry->common_params.max_lifetime.tv_sec) ? 1: 0);
354 }
355
356 /*
357  * When passed to the flush_cache_policy, ensures that all elements, that
358  * exceed the size limit, are deleted.
359  */
360 static int
361 cache_elemsize_common_continue_func(struct cache_common_entry_ *entry,
362         struct cache_policy_item_ *item)
363 {
364
365         return ((entry->items_size > entry->common_params.satisf_elemsize) ? 1
366                 : 0);
367 }
368
369 /*
370  * Removes the elements from the cache entry, while the continue_func returns 1.
371  */
372 static void
373 flush_cache_policy(struct cache_common_entry_ *entry,
374         struct cache_policy_ *policy,
375         struct cache_policy_ *connected_policy,
376         int (*continue_func)(struct cache_common_entry_ *,
377                 struct cache_policy_item_ *))
378 {
379         struct cache_policy_item_ *item, *next_item, *connected_item;
380         struct cache_ht_item_ *ht_item;
381         struct cache_ht_item_data_ *ht_item_data, ht_key;
382         hashtable_index_t hash;
383
384         assert(policy != NULL);
385
386         next_item = NULL;
387         item = policy->get_first_item_func(policy);
388         while ((item != NULL) && (continue_func(entry, item) == 1)) {
389                 next_item = policy->get_next_item_func(policy, item);
390
391                 connected_item = item->connected_item;
392                 policy->remove_item_func(policy, item);
393
394                 memset(&ht_key, 0, sizeof(struct cache_ht_item_data_));
395                 ht_key.key = item->key;
396                 ht_key.key_size = item->key_size;
397
398                 hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &entry->items,
399                         &ht_key);
400                 assert(hash < HASHTABLE_ENTRIES_COUNT(&entry->items));
401
402                 ht_item = HASHTABLE_GET_ENTRY(&(entry->items), hash);
403                 ht_item_data = HASHTABLE_ENTRY_FIND(cache_ht_, ht_item,
404                         &ht_key);
405                 assert(ht_item_data != NULL);
406                 free(ht_item_data->key);
407                 free(ht_item_data->value);
408                 HASHTABLE_ENTRY_REMOVE(cache_ht_, ht_item, ht_item_data);
409                 --entry->items_size;
410
411                 policy->destroy_item_func(item);
412
413                 if (connected_item != NULL) {
414                         connected_policy->remove_item_func(connected_policy,
415                                 connected_item);
416                         connected_policy->destroy_item_func(connected_item);
417                 }
418
419                 item = next_item;
420         }
421 }
422
423 static void
424 flush_cache_entry(struct cache_entry_ *entry)
425 {
426         struct cache_mp_entry_          *mp_entry;
427         struct cache_common_entry_      *common_entry;
428         struct cache_policy_ *policy, *connected_policy;
429
430         connected_policy = NULL;
431         if (entry->params->entry_type == CET_COMMON) {
432                 common_entry = (struct cache_common_entry_ *)entry;
433                 if ((common_entry->common_params.max_lifetime.tv_sec != 0) ||
434                     (common_entry->common_params.max_lifetime.tv_usec != 0)) {
435
436                         policy = common_entry->policies[0];
437                         if (common_entry->policies_size > 1)
438                                 connected_policy = common_entry->policies[1];
439
440                         flush_cache_policy(common_entry, policy,
441                                 connected_policy,
442                                 cache_lifetime_common_continue_func);
443                 }
444
445
446                 if ((common_entry->common_params.max_elemsize != 0) &&
447                         common_entry->items_size >
448                         common_entry->common_params.max_elemsize) {
449
450                         if (common_entry->policies_size > 1) {
451                                 policy = common_entry->policies[1];
452                                 connected_policy = common_entry->policies[0];
453                         } else {
454                                 policy = common_entry->policies[0];
455                                 connected_policy = NULL;
456                         }
457
458                         flush_cache_policy(common_entry, policy,
459                                 connected_policy,
460                                 cache_elemsize_common_continue_func);
461                 }
462         } else {
463                 mp_entry = (struct cache_mp_entry_ *)entry;
464
465                 if ((mp_entry->mp_params.max_lifetime.tv_sec != 0)
466                         || (mp_entry->mp_params.max_lifetime.tv_usec != 0)) {
467
468                         if (mp_entry->last_request_time.tv_sec -
469                                 mp_entry->last_request_time.tv_sec >
470                                 mp_entry->mp_params.max_lifetime.tv_sec)
471                                 clear_cache_entry(entry);
472                 }
473         }
474 }
475
476 struct cache_ *
477 init_cache(struct cache_params const *params)
478 {
479         struct cache_ *retval;
480
481         TRACE_IN(init_cache);
482         assert(params != NULL);
483
484         retval = calloc(1, sizeof(*retval));
485         assert(retval != NULL);
486
487         assert(params != NULL);
488         memcpy(&retval->params, params, sizeof(struct cache_params));
489
490         retval->entries = calloc(1,
491                 sizeof(*retval->entries) * INITIAL_ENTRIES_CAPACITY);
492         assert(retval->entries != NULL);
493
494         retval->entries_capacity = INITIAL_ENTRIES_CAPACITY;
495         retval->entries_size = 0;
496
497         TRACE_OUT(init_cache);
498         return (retval);
499 }
500
501 void
502 destroy_cache(struct cache_ *the_cache)
503 {
504
505         TRACE_IN(destroy_cache);
506         assert(the_cache != NULL);
507
508         if (the_cache->entries != NULL) {
509                 size_t i;
510                 for (i = 0; i < the_cache->entries_size; ++i)
511                         destroy_cache_entry(the_cache->entries[i]);
512
513                 free(the_cache->entries);
514         }
515
516         free(the_cache);
517         TRACE_OUT(destroy_cache);
518 }
519
520 int
521 register_cache_entry(struct cache_ *the_cache,
522         struct cache_entry_params const *params)
523 {
524         int policies_size;
525         size_t entry_name_size;
526         struct cache_common_entry_      *new_common_entry;
527         struct cache_mp_entry_          *new_mp_entry;
528
529         TRACE_IN(register_cache_entry);
530         assert(the_cache != NULL);
531
532         if (find_cache_entry(the_cache, params->entry_name) != NULL) {
533                 TRACE_OUT(register_cache_entry);
534                 return (-1);
535         }
536
537         if (the_cache->entries_size == the_cache->entries_capacity) {
538                 struct cache_entry_ **new_entries;
539                 size_t  new_capacity;
540
541                 new_capacity = the_cache->entries_capacity +
542                         ENTRIES_CAPACITY_STEP;
543                 new_entries = calloc(1,
544                         sizeof(*new_entries) * new_capacity);
545                 assert(new_entries != NULL);
546
547                 memcpy(new_entries, the_cache->entries,
548                         sizeof(struct cache_entry_ *)
549                         * the_cache->entries_size);
550
551                 free(the_cache->entries);
552                 the_cache->entries = new_entries;
553         }
554
555         entry_name_size = strlen(params->entry_name) + 1;
556         switch (params->entry_type)
557         {
558         case CET_COMMON:
559                 new_common_entry = calloc(1,
560                         sizeof(*new_common_entry));
561                 assert(new_common_entry != NULL);
562
563                 memcpy(&new_common_entry->common_params, params,
564                         sizeof(struct common_cache_entry_params));
565                 new_common_entry->params =
566                   (struct cache_entry_params *)&new_common_entry->common_params;
567
568                 new_common_entry->common_params.cep.entry_name = calloc(1,
569                         entry_name_size);
570                 assert(new_common_entry->common_params.cep.entry_name != NULL);
571                 strlcpy(new_common_entry->common_params.cep.entry_name,
572                         params->entry_name, entry_name_size);
573                 new_common_entry->name =
574                         new_common_entry->common_params.cep.entry_name;
575
576                 HASHTABLE_INIT(&(new_common_entry->items),
577                         struct cache_ht_item_data_, data,
578                         new_common_entry->common_params.cache_entries_size);
579
580                 if (new_common_entry->common_params.policy == CPT_FIFO)
581                         policies_size = 1;
582                 else
583                         policies_size = 2;
584
585                 new_common_entry->policies = calloc(1,
586                         sizeof(*new_common_entry->policies) * policies_size);
587                 assert(new_common_entry->policies != NULL);
588
589                 new_common_entry->policies_size = policies_size;
590                 new_common_entry->policies[0] = init_cache_fifo_policy();
591
592                 if (policies_size > 1) {
593                         switch (new_common_entry->common_params.policy) {
594                         case CPT_LRU:
595                                 new_common_entry->policies[1] =
596                                         init_cache_lru_policy();
597                         break;
598                         case CPT_LFU:
599                                 new_common_entry->policies[1] =
600                                         init_cache_lfu_policy();
601                         break;
602                         default:
603                         break;
604                         }
605                 }
606
607                 new_common_entry->get_time_func =
608                         the_cache->params.get_time_func;
609                 the_cache->entries[the_cache->entries_size++] =
610                         (struct cache_entry_ *)new_common_entry;
611                 break;
612         case CET_MULTIPART:
613                 new_mp_entry = calloc(1,
614                         sizeof(*new_mp_entry));
615                 assert(new_mp_entry != NULL);
616
617                 memcpy(&new_mp_entry->mp_params, params,
618                         sizeof(struct mp_cache_entry_params));
619                 new_mp_entry->params =
620                         (struct cache_entry_params *)&new_mp_entry->mp_params;
621
622                 new_mp_entry->mp_params.cep.entry_name = calloc(1,
623                         entry_name_size);
624                 assert(new_mp_entry->mp_params.cep.entry_name != NULL);
625                 strlcpy(new_mp_entry->mp_params.cep.entry_name, params->entry_name,
626                         entry_name_size);
627                 new_mp_entry->name = new_mp_entry->mp_params.cep.entry_name;
628
629                 TAILQ_INIT(&new_mp_entry->ws_head);
630                 TAILQ_INIT(&new_mp_entry->rs_head);
631
632                 new_mp_entry->get_time_func = the_cache->params.get_time_func;
633                 the_cache->entries[the_cache->entries_size++] =
634                         (struct cache_entry_ *)new_mp_entry;
635                 break;
636         }
637
638
639         qsort(the_cache->entries, the_cache->entries_size,
640                 sizeof(struct cache_entry_ *), entries_qsort_cmp_func);
641
642         TRACE_OUT(register_cache_entry);
643         return (0);
644 }
645
646 int
647 unregister_cache_entry(struct cache_ *the_cache, const char *entry_name)
648 {
649         struct cache_entry_ **del_ent;
650
651         TRACE_IN(unregister_cache_entry);
652         assert(the_cache != NULL);
653
654         del_ent = find_cache_entry_p(the_cache, entry_name);
655         if (del_ent != NULL) {
656                 destroy_cache_entry(*del_ent);
657                 --the_cache->entries_size;
658
659                 memmove(del_ent, del_ent + 1,
660                         (&(the_cache->entries[--the_cache->entries_size]) -
661                         del_ent) * sizeof(struct cache_entry_ *));
662
663                 TRACE_OUT(unregister_cache_entry);
664                 return (0);
665         } else {
666                 TRACE_OUT(unregister_cache_entry);
667                 return (-1);
668         }
669 }
670
671 struct cache_entry_ *
672 find_cache_entry(struct cache_ *the_cache, const char *entry_name)
673 {
674         struct cache_entry_ **result;
675
676         TRACE_IN(find_cache_entry);
677         result = find_cache_entry_p(the_cache, entry_name);
678
679         if (result == NULL) {
680                 TRACE_OUT(find_cache_entry);
681                 return (NULL);
682         } else {
683                 TRACE_OUT(find_cache_entry);
684                 return (*result);
685         }
686 }
687
688 /*
689  * Tries to read the element with the specified key from the cache. If the
690  * value_size is too small, it will be filled with the proper number, and
691  * the user will need to call cache_read again with the value buffer, that
692  * is large enough.
693  * Function returns 0 on success, -1 on error, and -2 if the value_size is too
694  * small.
695  */
696 int
697 cache_read(struct cache_entry_ *entry, const char *key, size_t key_size,
698         char *value, size_t *value_size)
699 {
700         struct cache_common_entry_      *common_entry;
701         struct cache_ht_item_data_      item_data, *find_res;
702         struct cache_ht_item_           *item;
703         hashtable_index_t       hash;
704         struct cache_policy_item_ *connected_item;
705
706         TRACE_IN(cache_read);
707         assert(entry != NULL);
708         assert(key != NULL);
709         assert(value_size != NULL);
710         assert(entry->params->entry_type == CET_COMMON);
711
712         common_entry = (struct cache_common_entry_ *)entry;
713
714         memset(&item_data, 0, sizeof(struct cache_ht_item_data_));
715         /* can't avoid the cast here */
716         item_data.key = (char *)key;
717         item_data.key_size = key_size;
718
719         hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &common_entry->items,
720                 &item_data);
721         assert(hash < HASHTABLE_ENTRIES_COUNT(&common_entry->items));
722
723         item = HASHTABLE_GET_ENTRY(&(common_entry->items), hash);
724         find_res = HASHTABLE_ENTRY_FIND(cache_ht_, item, &item_data);
725         if (find_res == NULL) {
726                 TRACE_OUT(cache_read);
727                 return (-1);
728         }
729
730         if ((common_entry->common_params.max_lifetime.tv_sec != 0) ||
731                 (common_entry->common_params.max_lifetime.tv_usec != 0)) {
732
733                 if (find_res->fifo_policy_item->last_request_time.tv_sec -
734                         find_res->fifo_policy_item->creation_time.tv_sec >
735                         common_entry->common_params.max_lifetime.tv_sec) {
736
737                         free(find_res->key);
738                         free(find_res->value);
739
740                         connected_item =
741                             find_res->fifo_policy_item->connected_item;
742                         if (connected_item != NULL) {
743                                 common_entry->policies[1]->remove_item_func(
744                                         common_entry->policies[1],
745                                         connected_item);
746                                 common_entry->policies[1]->destroy_item_func(
747                                         connected_item);
748                         }
749
750                         common_entry->policies[0]->remove_item_func(
751                                 common_entry->policies[0],
752                                         find_res->fifo_policy_item);
753                         common_entry->policies[0]->destroy_item_func(
754                                 find_res->fifo_policy_item);
755
756                         HASHTABLE_ENTRY_REMOVE(cache_ht_, item, find_res);
757                         --common_entry->items_size;
758                 }
759         }
760
761         if ((*value_size < find_res->value_size) || (value == NULL)) {
762                 *value_size = find_res->value_size;
763                 TRACE_OUT(cache_read);
764                 return (-2);
765         }
766
767         *value_size = find_res->value_size;
768         memcpy(value, find_res->value, find_res->value_size);
769
770         ++find_res->fifo_policy_item->request_count;
771         common_entry->get_time_func(
772                 &find_res->fifo_policy_item->last_request_time);
773         common_entry->policies[0]->update_item_func(common_entry->policies[0],
774                 find_res->fifo_policy_item);
775
776         if (find_res->fifo_policy_item->connected_item != NULL) {
777                 connected_item = find_res->fifo_policy_item->connected_item;
778                 memcpy(&connected_item->last_request_time,
779                         &find_res->fifo_policy_item->last_request_time,
780                         sizeof(struct timeval));
781                 connected_item->request_count =
782                         find_res->fifo_policy_item->request_count;
783
784                 common_entry->policies[1]->update_item_func(
785                         common_entry->policies[1], connected_item);
786         }
787
788         TRACE_OUT(cache_read);
789         return (0);
790 }
791
792 /*
793  * Writes the value with the specified key into the cache entry.
794  * Functions returns 0 on success, and -1 on error.
795  */
796 int
797 cache_write(struct cache_entry_ *entry, const char *key, size_t key_size,
798         char const *value, size_t value_size)
799 {
800         struct cache_common_entry_      *common_entry;
801         struct cache_ht_item_data_      item_data, *find_res;
802         struct cache_ht_item_           *item;
803         hashtable_index_t       hash;
804
805         struct cache_policy_            *policy, *connected_policy;
806         struct cache_policy_item_       *policy_item;
807         struct cache_policy_item_       *connected_policy_item;
808
809         TRACE_IN(cache_write);
810         assert(entry != NULL);
811         assert(key != NULL);
812         assert(value != NULL);
813         assert(entry->params->entry_type == CET_COMMON);
814
815         common_entry = (struct cache_common_entry_ *)entry;
816
817         memset(&item_data, 0, sizeof(struct cache_ht_item_data_));
818         /* can't avoid the cast here */
819         item_data.key = (char *)key;
820         item_data.key_size = key_size;
821
822         hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &common_entry->items,
823                 &item_data);
824         assert(hash < HASHTABLE_ENTRIES_COUNT(&common_entry->items));
825
826         item = HASHTABLE_GET_ENTRY(&(common_entry->items), hash);
827         find_res = HASHTABLE_ENTRY_FIND(cache_ht_, item, &item_data);
828         if (find_res != NULL) {
829                 TRACE_OUT(cache_write);
830                 return (-1);
831         }
832
833         item_data.key = malloc(key_size);
834         memcpy(item_data.key, key, key_size);
835
836         item_data.value = malloc(value_size);
837         assert(item_data.value != NULL);
838
839         memcpy(item_data.value, value, value_size);
840         item_data.value_size = value_size;
841
842         policy_item = common_entry->policies[0]->create_item_func();
843         policy_item->key = item_data.key;
844         policy_item->key_size = item_data.key_size;
845         common_entry->get_time_func(&policy_item->creation_time);
846
847         if (common_entry->policies_size > 1) {
848                 connected_policy_item =
849                         common_entry->policies[1]->create_item_func();
850                 memcpy(&connected_policy_item->creation_time,
851                         &policy_item->creation_time,
852                         sizeof(struct timeval));
853                 connected_policy_item->key = policy_item->key;
854                 connected_policy_item->key_size = policy_item->key_size;
855
856                 connected_policy_item->connected_item = policy_item;
857                 policy_item->connected_item = connected_policy_item;
858         }
859
860         item_data.fifo_policy_item = policy_item;
861
862         common_entry->policies[0]->add_item_func(common_entry->policies[0],
863                 policy_item);
864         if (common_entry->policies_size > 1)
865                 common_entry->policies[1]->add_item_func(
866                         common_entry->policies[1], connected_policy_item);
867
868         HASHTABLE_ENTRY_STORE(cache_ht_, item, &item_data);
869         ++common_entry->items_size;
870
871         if ((common_entry->common_params.max_elemsize != 0) &&
872                 (common_entry->items_size >
873                 common_entry->common_params.max_elemsize)) {
874                 if (common_entry->policies_size > 1) {
875                         policy = common_entry->policies[1];
876                         connected_policy = common_entry->policies[0];
877                 } else {
878                         policy = common_entry->policies[0];
879                         connected_policy = NULL;
880                 }
881
882                 flush_cache_policy(common_entry, policy, connected_policy,
883                         cache_elemsize_common_continue_func);
884         }
885
886         TRACE_OUT(cache_write);
887         return (0);
888 }
889
890 /*
891  * Initializes the write session for the specified multipart entry. This
892  * session then should be filled with data either committed or abandoned by
893  * using close_cache_mp_write_session or abandon_cache_mp_write_session
894  * respectively.
895  * Returns NULL on errors (when there are too many opened write sessions for
896  * the entry).
897  */
898 struct cache_mp_write_session_ *
899 open_cache_mp_write_session(struct cache_entry_ *entry)
900 {
901         struct cache_mp_entry_  *mp_entry;
902         struct cache_mp_write_session_  *retval;
903
904         TRACE_IN(open_cache_mp_write_session);
905         assert(entry != NULL);
906         assert(entry->params->entry_type == CET_MULTIPART);
907         mp_entry = (struct cache_mp_entry_ *)entry;
908
909         if ((mp_entry->mp_params.max_sessions > 0) &&
910                 (mp_entry->ws_size == mp_entry->mp_params.max_sessions)) {
911                 TRACE_OUT(open_cache_mp_write_session);
912                 return (NULL);
913         }
914
915         retval = calloc(1,
916                 sizeof(*retval));
917         assert(retval != NULL);
918
919         TAILQ_INIT(&retval->items);
920         retval->parent_entry = mp_entry;
921
922         TAILQ_INSERT_HEAD(&mp_entry->ws_head, retval, entries);
923         ++mp_entry->ws_size;
924
925         TRACE_OUT(open_cache_mp_write_session);
926         return (retval);
927 }
928
929 /*
930  * Writes data to the specified session. Return 0 on success and -1 on errors
931  * (when write session size limit is exceeded).
932  */
933 int
934 cache_mp_write(struct cache_mp_write_session_ *ws, char *data,
935         size_t data_size)
936 {
937         struct cache_mp_data_item_      *new_item;
938
939         TRACE_IN(cache_mp_write);
940         assert(ws != NULL);
941         assert(ws->parent_entry != NULL);
942         assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
943
944         if ((ws->parent_entry->mp_params.max_elemsize > 0) &&
945                 (ws->parent_entry->mp_params.max_elemsize == ws->items_size)) {
946                 TRACE_OUT(cache_mp_write);
947                 return (-1);
948         }
949
950         new_item = calloc(1,
951                 sizeof(*new_item));
952         assert(new_item != NULL);
953
954         new_item->value = malloc(data_size);
955         assert(new_item->value != NULL);
956         memcpy(new_item->value, data, data_size);
957         new_item->value_size = data_size;
958
959         TAILQ_INSERT_TAIL(&ws->items, new_item, entries);
960         ++ws->items_size;
961
962         TRACE_OUT(cache_mp_write);
963         return (0);
964 }
965
966 /*
967  * Abandons the write session and frees all the connected resources.
968  */
969 void
970 abandon_cache_mp_write_session(struct cache_mp_write_session_ *ws)
971 {
972
973         TRACE_IN(abandon_cache_mp_write_session);
974         assert(ws != NULL);
975         assert(ws->parent_entry != NULL);
976         assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
977
978         TAILQ_REMOVE(&ws->parent_entry->ws_head, ws, entries);
979         --ws->parent_entry->ws_size;
980
981         destroy_cache_mp_write_session(ws);
982         TRACE_OUT(abandon_cache_mp_write_session);
983 }
984
985 /*
986  * Commits the session to the entry, for which it was created.
987  */
988 void
989 close_cache_mp_write_session(struct cache_mp_write_session_ *ws)
990 {
991
992         TRACE_IN(close_cache_mp_write_session);
993         assert(ws != NULL);
994         assert(ws->parent_entry != NULL);
995         assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
996
997         TAILQ_REMOVE(&ws->parent_entry->ws_head, ws, entries);
998         --ws->parent_entry->ws_size;
999
1000         if (ws->parent_entry->completed_write_session == NULL) {
1001                 /*
1002                  * If there is no completed session yet, this will be the one
1003                  */
1004                 ws->parent_entry->get_time_func(
1005                         &ws->parent_entry->creation_time);
1006                 ws->parent_entry->completed_write_session = ws;
1007         } else {
1008                 /*
1009                  * If there is a completed session, then we'll save our session
1010                  * as a pending session. If there is already a pending session,
1011                  * it would be destroyed.
1012                  */
1013                 if (ws->parent_entry->pending_write_session != NULL)
1014                         destroy_cache_mp_write_session(
1015                                 ws->parent_entry->pending_write_session);
1016
1017                 ws->parent_entry->pending_write_session = ws;
1018         }
1019         TRACE_OUT(close_cache_mp_write_session);
1020 }
1021
1022 /*
1023  * Opens read session for the specified entry. Returns NULL on errors (when
1024  * there are no data in the entry, or the data are obsolete).
1025  */
1026 struct cache_mp_read_session_ *
1027 open_cache_mp_read_session(struct cache_entry_ *entry)
1028 {
1029         struct cache_mp_entry_                  *mp_entry;
1030         struct cache_mp_read_session_   *retval;
1031
1032         TRACE_IN(open_cache_mp_read_session);
1033         assert(entry != NULL);
1034         assert(entry->params->entry_type == CET_MULTIPART);
1035         mp_entry = (struct cache_mp_entry_ *)entry;
1036
1037         if (mp_entry->completed_write_session == NULL) {
1038                 TRACE_OUT(open_cache_mp_read_session);
1039                 return (NULL);
1040         }
1041
1042         if ((mp_entry->mp_params.max_lifetime.tv_sec != 0)
1043                 || (mp_entry->mp_params.max_lifetime.tv_usec != 0)) {
1044                 if (mp_entry->last_request_time.tv_sec -
1045                         mp_entry->last_request_time.tv_sec >
1046                         mp_entry->mp_params.max_lifetime.tv_sec) {
1047                         flush_cache_entry(entry);
1048                         TRACE_OUT(open_cache_mp_read_session);
1049                         return (NULL);
1050                 }
1051         }
1052
1053         retval = calloc(1,
1054                 sizeof(*retval));
1055         assert(retval != NULL);
1056
1057         retval->parent_entry = mp_entry;
1058         retval->current_item = TAILQ_FIRST(
1059                 &mp_entry->completed_write_session->items);
1060
1061         TAILQ_INSERT_HEAD(&mp_entry->rs_head, retval, entries);
1062         ++mp_entry->rs_size;
1063
1064         mp_entry->get_time_func(&mp_entry->last_request_time);
1065         TRACE_OUT(open_cache_mp_read_session);
1066         return (retval);
1067 }
1068
1069 /*
1070  * Reads the data from the read session - step by step.
1071  * Returns 0 on success, -1 on error (when there are no more data), and -2 if
1072  * the data_size is too small.  In the last case, data_size would be filled
1073  * the proper value.
1074  */
1075 int
1076 cache_mp_read(struct cache_mp_read_session_ *rs, char *data, size_t *data_size)
1077 {
1078
1079         TRACE_IN(cache_mp_read);
1080         assert(rs != NULL);
1081
1082         if (rs->current_item == NULL) {
1083                 TRACE_OUT(cache_mp_read);
1084                 return (-1);
1085         }
1086
1087         if (rs->current_item->value_size > *data_size) {
1088                 *data_size = rs->current_item->value_size;
1089                 if (data == NULL) {
1090                         TRACE_OUT(cache_mp_read);
1091                         return (0);
1092                 }
1093
1094                 TRACE_OUT(cache_mp_read);
1095                 return (-2);
1096         }
1097
1098         *data_size = rs->current_item->value_size;
1099         memcpy(data, rs->current_item->value, rs->current_item->value_size);
1100         rs->current_item = TAILQ_NEXT(rs->current_item, entries);
1101
1102         TRACE_OUT(cache_mp_read);
1103         return (0);
1104 }
1105
1106 /*
1107  * Closes the read session. If there are no more read sessions and there is
1108  * a pending write session, it will be committed and old
1109  * completed_write_session will be destroyed.
1110  */
1111 void
1112 close_cache_mp_read_session(struct cache_mp_read_session_ *rs)
1113 {
1114
1115         TRACE_IN(close_cache_mp_read_session);
1116         assert(rs != NULL);
1117         assert(rs->parent_entry != NULL);
1118
1119         TAILQ_REMOVE(&rs->parent_entry->rs_head, rs, entries);
1120         --rs->parent_entry->rs_size;
1121
1122         if ((rs->parent_entry->rs_size == 0) &&
1123                 (rs->parent_entry->pending_write_session != NULL)) {
1124                 destroy_cache_mp_write_session(
1125                         rs->parent_entry->completed_write_session);
1126                 rs->parent_entry->completed_write_session =
1127                         rs->parent_entry->pending_write_session;
1128                 rs->parent_entry->pending_write_session = NULL;
1129         }
1130
1131         destroy_cache_mp_read_session(rs);
1132         TRACE_OUT(close_cache_mp_read_session);
1133 }
1134
1135 int
1136 transform_cache_entry(struct cache_entry_ *entry,
1137         enum cache_transformation_t transformation)
1138 {
1139
1140         TRACE_IN(transform_cache_entry);
1141         switch (transformation) {
1142         case CTT_CLEAR:
1143                 clear_cache_entry(entry);
1144                 TRACE_OUT(transform_cache_entry);
1145                 return (0);
1146         case CTT_FLUSH:
1147                 flush_cache_entry(entry);
1148                 TRACE_OUT(transform_cache_entry);
1149                 return (0);
1150         default:
1151                 TRACE_OUT(transform_cache_entry);
1152                 return (-1);
1153         }
1154 }
1155
1156 int
1157 transform_cache_entry_part(struct cache_entry_ *entry,
1158         enum cache_transformation_t transformation, const char *key_part,
1159         size_t key_part_size, enum part_position_t part_position)
1160 {
1161         struct cache_common_entry_ *common_entry;
1162         struct cache_ht_item_ *ht_item;
1163         struct cache_ht_item_data_ *ht_item_data, ht_key;
1164
1165         struct cache_policy_item_ *item, *connected_item;
1166
1167         TRACE_IN(transform_cache_entry_part);
1168         if (entry->params->entry_type != CET_COMMON) {
1169                 TRACE_OUT(transform_cache_entry_part);
1170                 return (-1);
1171         }
1172
1173         if (transformation != CTT_CLEAR) {
1174                 TRACE_OUT(transform_cache_entry_part);
1175                 return (-1);
1176         }
1177
1178         memset(&ht_key, 0, sizeof(struct cache_ht_item_data_));
1179         ht_key.key = (char *)key_part;  /* can't avoid casting here */
1180         ht_key.key_size = key_part_size;
1181
1182         common_entry = (struct cache_common_entry_ *)entry;
1183         HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
1184                 do {
1185                         ht_item_data = HASHTABLE_ENTRY_FIND_SPECIAL(cache_ht_,
1186                                 ht_item, &ht_key,
1187                                 ht_items_fixed_size_left_cmp_func);
1188
1189                         if (ht_item_data != NULL) {
1190                             item = ht_item_data->fifo_policy_item;
1191                             connected_item = item->connected_item;
1192
1193                             common_entry->policies[0]->remove_item_func(
1194                                 common_entry->policies[0],
1195                                 item);
1196
1197                             free(ht_item_data->key);
1198                             free(ht_item_data->value);
1199                             HASHTABLE_ENTRY_REMOVE(cache_ht_, ht_item,
1200                                 ht_item_data);
1201                             --common_entry->items_size;
1202
1203                             common_entry->policies[0]->destroy_item_func(
1204                                 item);
1205                             if (common_entry->policies_size == 2) {
1206                                 common_entry->policies[1]->remove_item_func(
1207                                     common_entry->policies[1],
1208                                     connected_item);
1209                                 common_entry->policies[1]->destroy_item_func(
1210                                     connected_item);
1211                             }
1212                         }
1213                 } while (ht_item_data != NULL);
1214         }
1215
1216         TRACE_OUT(transform_cache_entry_part);
1217         return (0);
1218 }