]> CyberLeo.Net >> Repos - FreeBSD/releng/9.3.git/blob - crypto/openssl/crypto/x509v3/v3_addr.c
Fix multiple OpenSSL vulnerabilities.
[FreeBSD/releng/9.3.git] / crypto / openssl / crypto / x509v3 / v3_addr.c
1 /*
2  * Contributed to the OpenSSL Project by the American Registry for
3  * Internet Numbers ("ARIN").
4  */
5 /* ====================================================================
6  * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    licensing@OpenSSL.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  */
57
58 /*
59  * Implementation of RFC 3779 section 2.2.
60  */
61
62 #include <stdio.h>
63 #include <stdlib.h>
64
65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
71
72 #ifndef OPENSSL_NO_RFC3779
73
74 /*
75  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76  */
77
78 ASN1_SEQUENCE(IPAddressRange) = {
79   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)
82
83 ASN1_CHOICE(IPAddressOrRange) = {
84   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)
87
88 ASN1_CHOICE(IPAddressChoice) = {
89   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)
92
93 ASN1_SEQUENCE(IPAddressFamily) = {
94   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)
97
98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100                         IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108 /*
109  * How much buffer space do we need for a raw address?
110  */
111 # define ADDR_RAW_BUF_LEN        16
112
113 /*
114  * What's the address length associated with this AFI?
115  */
116 static int length_from_afi(const unsigned afi)
117 {
118     switch (afi) {
119     case IANA_AFI_IPV4:
120         return 4;
121     case IANA_AFI_IPV6:
122         return 16;
123     default:
124         return 0;
125     }
126 }
127
128 /*
129  * Extract the AFI from an IPAddressFamily.
130  */
131 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132 {
133     return ((f != NULL &&
134              f->addressFamily != NULL && f->addressFamily->data != NULL)
135             ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
136             : 0);
137 }
138
139 /*
140  * Expand the bitstring form of an address into a raw byte array.
141  * At the moment this is coded for simplicity, not speed.
142  */
143 static int addr_expand(unsigned char *addr,
144                        const ASN1_BIT_STRING *bs,
145                        const int length, const unsigned char fill)
146 {
147     if (bs->length < 0 || bs->length > length)
148         return 0;
149     if (bs->length > 0) {
150         memcpy(addr, bs->data, bs->length);
151         if ((bs->flags & 7) != 0) {
152             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
153             if (fill == 0)
154                 addr[bs->length - 1] &= ~mask;
155             else
156                 addr[bs->length - 1] |= mask;
157         }
158     }
159     memset(addr + bs->length, fill, length - bs->length);
160     return 1;
161 }
162
163 /*
164  * Extract the prefix length from a bitstring.
165  */
166 # define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
167
168 /*
169  * i2r handler for one address bitstring.
170  */
171 static int i2r_address(BIO *out,
172                        const unsigned afi,
173                        const unsigned char fill, const ASN1_BIT_STRING *bs)
174 {
175     unsigned char addr[ADDR_RAW_BUF_LEN];
176     int i, n;
177
178     if (bs->length < 0)
179         return 0;
180     switch (afi) {
181     case IANA_AFI_IPV4:
182         if (!addr_expand(addr, bs, 4, fill))
183             return 0;
184         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
185         break;
186     case IANA_AFI_IPV6:
187         if (!addr_expand(addr, bs, 16, fill))
188             return 0;
189         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
190              n -= 2) ;
191         for (i = 0; i < n; i += 2)
192             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
193                        (i < 14 ? ":" : ""));
194         if (i < 16)
195             BIO_puts(out, ":");
196         if (i == 0)
197             BIO_puts(out, ":");
198         break;
199     default:
200         for (i = 0; i < bs->length; i++)
201             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
202         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
203         break;
204     }
205     return 1;
206 }
207
208 /*
209  * i2r handler for a sequence of addresses and ranges.
210  */
211 static int i2r_IPAddressOrRanges(BIO *out,
212                                  const int indent,
213                                  const IPAddressOrRanges *aors,
214                                  const unsigned afi)
215 {
216     int i;
217     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
218         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
219         BIO_printf(out, "%*s", indent, "");
220         switch (aor->type) {
221         case IPAddressOrRange_addressPrefix:
222             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
223                 return 0;
224             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
225             continue;
226         case IPAddressOrRange_addressRange:
227             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
228                 return 0;
229             BIO_puts(out, "-");
230             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
231                 return 0;
232             BIO_puts(out, "\n");
233             continue;
234         }
235     }
236     return 1;
237 }
238
239 /*
240  * i2r handler for an IPAddrBlocks extension.
241  */
242 static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
243                             void *ext, BIO *out, int indent)
244 {
245     const IPAddrBlocks *addr = ext;
246     int i;
247     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
248         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
249         const unsigned int afi = v3_addr_get_afi(f);
250         switch (afi) {
251         case IANA_AFI_IPV4:
252             BIO_printf(out, "%*sIPv4", indent, "");
253             break;
254         case IANA_AFI_IPV6:
255             BIO_printf(out, "%*sIPv6", indent, "");
256             break;
257         default:
258             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
259             break;
260         }
261         if (f->addressFamily->length > 2) {
262             switch (f->addressFamily->data[2]) {
263             case 1:
264                 BIO_puts(out, " (Unicast)");
265                 break;
266             case 2:
267                 BIO_puts(out, " (Multicast)");
268                 break;
269             case 3:
270                 BIO_puts(out, " (Unicast/Multicast)");
271                 break;
272             case 4:
273                 BIO_puts(out, " (MPLS)");
274                 break;
275             case 64:
276                 BIO_puts(out, " (Tunnel)");
277                 break;
278             case 65:
279                 BIO_puts(out, " (VPLS)");
280                 break;
281             case 66:
282                 BIO_puts(out, " (BGP MDT)");
283                 break;
284             case 128:
285                 BIO_puts(out, " (MPLS-labeled VPN)");
286                 break;
287             default:
288                 BIO_printf(out, " (Unknown SAFI %u)",
289                            (unsigned)f->addressFamily->data[2]);
290                 break;
291             }
292         }
293         switch (f->ipAddressChoice->type) {
294         case IPAddressChoice_inherit:
295             BIO_puts(out, ": inherit\n");
296             break;
297         case IPAddressChoice_addressesOrRanges:
298             BIO_puts(out, ":\n");
299             if (!i2r_IPAddressOrRanges(out,
300                                        indent + 2,
301                                        f->ipAddressChoice->
302                                        u.addressesOrRanges, afi))
303                 return 0;
304             break;
305         }
306     }
307     return 1;
308 }
309
310 /*
311  * Sort comparison function for a sequence of IPAddressOrRange
312  * elements.
313  *
314  * There's no sane answer we can give if addr_expand() fails, and an
315  * assertion failure on externally supplied data is seriously uncool,
316  * so we just arbitrarily declare that if given invalid inputs this
317  * function returns -1.  If this messes up your preferred sort order
318  * for garbage input, tough noogies.
319  */
320 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
321                                 const IPAddressOrRange *b, const int length)
322 {
323     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
324     int prefixlen_a = 0;
325     int prefixlen_b = 0;
326     int r;
327
328     switch (a->type) {
329     case IPAddressOrRange_addressPrefix:
330         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
331             return -1;
332         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
333         break;
334     case IPAddressOrRange_addressRange:
335         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
336             return -1;
337         prefixlen_a = length * 8;
338         break;
339     }
340
341     switch (b->type) {
342     case IPAddressOrRange_addressPrefix:
343         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
344             return -1;
345         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
346         break;
347     case IPAddressOrRange_addressRange:
348         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
349             return -1;
350         prefixlen_b = length * 8;
351         break;
352     }
353
354     if ((r = memcmp(addr_a, addr_b, length)) != 0)
355         return r;
356     else
357         return prefixlen_a - prefixlen_b;
358 }
359
360 /*
361  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
362  * comparision routines are only allowed two arguments.
363  */
364 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
365                                   const IPAddressOrRange *const *b)
366 {
367     return IPAddressOrRange_cmp(*a, *b, 4);
368 }
369
370 /*
371  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
372  * comparision routines are only allowed two arguments.
373  */
374 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
375                                   const IPAddressOrRange *const *b)
376 {
377     return IPAddressOrRange_cmp(*a, *b, 16);
378 }
379
380 /*
381  * Calculate whether a range collapses to a prefix.
382  * See last paragraph of RFC 3779 2.2.3.7.
383  */
384 static int range_should_be_prefix(const unsigned char *min,
385                                   const unsigned char *max, const int length)
386 {
387     unsigned char mask;
388     int i, j;
389
390     OPENSSL_assert(memcmp(min, max, length) <= 0);
391     for (i = 0; i < length && min[i] == max[i]; i++) ;
392     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
393     if (i < j)
394         return -1;
395     if (i > j)
396         return i * 8;
397     mask = min[i] ^ max[i];
398     switch (mask) {
399     case 0x01:
400         j = 7;
401         break;
402     case 0x03:
403         j = 6;
404         break;
405     case 0x07:
406         j = 5;
407         break;
408     case 0x0F:
409         j = 4;
410         break;
411     case 0x1F:
412         j = 3;
413         break;
414     case 0x3F:
415         j = 2;
416         break;
417     case 0x7F:
418         j = 1;
419         break;
420     default:
421         return -1;
422     }
423     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
424         return -1;
425     else
426         return i * 8 + j;
427 }
428
429 /*
430  * Construct a prefix.
431  */
432 static int make_addressPrefix(IPAddressOrRange **result,
433                               unsigned char *addr, const int prefixlen)
434 {
435     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
436     IPAddressOrRange *aor = IPAddressOrRange_new();
437
438     if (aor == NULL)
439         return 0;
440     aor->type = IPAddressOrRange_addressPrefix;
441     if (aor->u.addressPrefix == NULL &&
442         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
443         goto err;
444     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
445         goto err;
446     aor->u.addressPrefix->flags &= ~7;
447     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
448     if (bitlen > 0) {
449         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
450         aor->u.addressPrefix->flags |= 8 - bitlen;
451     }
452
453     *result = aor;
454     return 1;
455
456  err:
457     IPAddressOrRange_free(aor);
458     return 0;
459 }
460
461 /*
462  * Construct a range.  If it can be expressed as a prefix,
463  * return a prefix instead.  Doing this here simplifies
464  * the rest of the code considerably.
465  */
466 static int make_addressRange(IPAddressOrRange **result,
467                              unsigned char *min,
468                              unsigned char *max, const int length)
469 {
470     IPAddressOrRange *aor;
471     int i, prefixlen;
472
473     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
474         return make_addressPrefix(result, min, prefixlen);
475
476     if ((aor = IPAddressOrRange_new()) == NULL)
477         return 0;
478     aor->type = IPAddressOrRange_addressRange;
479     OPENSSL_assert(aor->u.addressRange == NULL);
480     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
481         goto err;
482     if (aor->u.addressRange->min == NULL &&
483         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
484         goto err;
485     if (aor->u.addressRange->max == NULL &&
486         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
487         goto err;
488
489     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
490     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
491         goto err;
492     aor->u.addressRange->min->flags &= ~7;
493     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
494     if (i > 0) {
495         unsigned char b = min[i - 1];
496         int j = 1;
497         while ((b & (0xFFU >> j)) != 0)
498             ++j;
499         aor->u.addressRange->min->flags |= 8 - j;
500     }
501
502     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
503     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
504         goto err;
505     aor->u.addressRange->max->flags &= ~7;
506     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
507     if (i > 0) {
508         unsigned char b = max[i - 1];
509         int j = 1;
510         while ((b & (0xFFU >> j)) != (0xFFU >> j))
511             ++j;
512         aor->u.addressRange->max->flags |= 8 - j;
513     }
514
515     *result = aor;
516     return 1;
517
518  err:
519     IPAddressOrRange_free(aor);
520     return 0;
521 }
522
523 /*
524  * Construct a new address family or find an existing one.
525  */
526 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
527                                              const unsigned afi,
528                                              const unsigned *safi)
529 {
530     IPAddressFamily *f;
531     unsigned char key[3];
532     unsigned keylen;
533     int i;
534
535     key[0] = (afi >> 8) & 0xFF;
536     key[1] = afi & 0xFF;
537     if (safi != NULL) {
538         key[2] = *safi & 0xFF;
539         keylen = 3;
540     } else {
541         keylen = 2;
542     }
543
544     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
545         f = sk_IPAddressFamily_value(addr, i);
546         OPENSSL_assert(f->addressFamily->data != NULL);
547         if (f->addressFamily->length == keylen &&
548             !memcmp(f->addressFamily->data, key, keylen))
549             return f;
550     }
551
552     if ((f = IPAddressFamily_new()) == NULL)
553         goto err;
554     if (f->ipAddressChoice == NULL &&
555         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
556         goto err;
557     if (f->addressFamily == NULL &&
558         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
559         goto err;
560     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
561         goto err;
562     if (!sk_IPAddressFamily_push(addr, f))
563         goto err;
564
565     return f;
566
567  err:
568     IPAddressFamily_free(f);
569     return NULL;
570 }
571
572 /*
573  * Add an inheritance element.
574  */
575 int v3_addr_add_inherit(IPAddrBlocks *addr,
576                         const unsigned afi, const unsigned *safi)
577 {
578     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
579     if (f == NULL ||
580         f->ipAddressChoice == NULL ||
581         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
582          f->ipAddressChoice->u.addressesOrRanges != NULL))
583         return 0;
584     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
585         f->ipAddressChoice->u.inherit != NULL)
586         return 1;
587     if (f->ipAddressChoice->u.inherit == NULL &&
588         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
589         return 0;
590     f->ipAddressChoice->type = IPAddressChoice_inherit;
591     return 1;
592 }
593
594 /*
595  * Construct an IPAddressOrRange sequence, or return an existing one.
596  */
597 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
598                                                const unsigned afi,
599                                                const unsigned *safi)
600 {
601     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
602     IPAddressOrRanges *aors = NULL;
603
604     if (f == NULL ||
605         f->ipAddressChoice == NULL ||
606         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
607          f->ipAddressChoice->u.inherit != NULL))
608         return NULL;
609     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
610         aors = f->ipAddressChoice->u.addressesOrRanges;
611     if (aors != NULL)
612         return aors;
613     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
614         return NULL;
615     switch (afi) {
616     case IANA_AFI_IPV4:
617         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
618         break;
619     case IANA_AFI_IPV6:
620         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
621         break;
622     }
623     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
624     f->ipAddressChoice->u.addressesOrRanges = aors;
625     return aors;
626 }
627
628 /*
629  * Add a prefix.
630  */
631 int v3_addr_add_prefix(IPAddrBlocks *addr,
632                        const unsigned afi,
633                        const unsigned *safi,
634                        unsigned char *a, const int prefixlen)
635 {
636     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
637     IPAddressOrRange *aor;
638     if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
639         return 0;
640     if (sk_IPAddressOrRange_push(aors, aor))
641         return 1;
642     IPAddressOrRange_free(aor);
643     return 0;
644 }
645
646 /*
647  * Add a range.
648  */
649 int v3_addr_add_range(IPAddrBlocks *addr,
650                       const unsigned afi,
651                       const unsigned *safi,
652                       unsigned char *min, unsigned char *max)
653 {
654     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
655     IPAddressOrRange *aor;
656     int length = length_from_afi(afi);
657     if (aors == NULL)
658         return 0;
659     if (!make_addressRange(&aor, min, max, length))
660         return 0;
661     if (sk_IPAddressOrRange_push(aors, aor))
662         return 1;
663     IPAddressOrRange_free(aor);
664     return 0;
665 }
666
667 /*
668  * Extract min and max values from an IPAddressOrRange.
669  */
670 static int extract_min_max(IPAddressOrRange *aor,
671                            unsigned char *min, unsigned char *max, int length)
672 {
673     if (aor == NULL || min == NULL || max == NULL)
674         return 0;
675     switch (aor->type) {
676     case IPAddressOrRange_addressPrefix:
677         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
678                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
679     case IPAddressOrRange_addressRange:
680         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
681                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
682     }
683     return 0;
684 }
685
686 /*
687  * Public wrapper for extract_min_max().
688  */
689 int v3_addr_get_range(IPAddressOrRange *aor,
690                       const unsigned afi,
691                       unsigned char *min,
692                       unsigned char *max, const int length)
693 {
694     int afi_length = length_from_afi(afi);
695     if (aor == NULL || min == NULL || max == NULL ||
696         afi_length == 0 || length < afi_length ||
697         (aor->type != IPAddressOrRange_addressPrefix &&
698          aor->type != IPAddressOrRange_addressRange) ||
699         !extract_min_max(aor, min, max, afi_length))
700         return 0;
701
702     return afi_length;
703 }
704
705 /*
706  * Sort comparision function for a sequence of IPAddressFamily.
707  *
708  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
709  * the ordering: I can read it as meaning that IPv6 without a SAFI
710  * comes before IPv4 with a SAFI, which seems pretty weird.  The
711  * examples in appendix B suggest that the author intended the
712  * null-SAFI rule to apply only within a single AFI, which is what I
713  * would have expected and is what the following code implements.
714  */
715 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
716                                const IPAddressFamily *const *b_)
717 {
718     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
719     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
720     int len = ((a->length <= b->length) ? a->length : b->length);
721     int cmp = memcmp(a->data, b->data, len);
722     return cmp ? cmp : a->length - b->length;
723 }
724
725 /*
726  * Check whether an IPAddrBLocks is in canonical form.
727  */
728 int v3_addr_is_canonical(IPAddrBlocks *addr)
729 {
730     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
731     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
732     IPAddressOrRanges *aors;
733     int i, j, k;
734
735     /*
736      * Empty extension is cannonical.
737      */
738     if (addr == NULL)
739         return 1;
740
741     /*
742      * Check whether the top-level list is in order.
743      */
744     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
745         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
746         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
747         if (IPAddressFamily_cmp(&a, &b) >= 0)
748             return 0;
749     }
750
751     /*
752      * Top level's ok, now check each address family.
753      */
754     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
755         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
756         int length = length_from_afi(v3_addr_get_afi(f));
757
758         /*
759          * Inheritance is canonical.  Anything other than inheritance or
760          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
761          */
762         if (f == NULL || f->ipAddressChoice == NULL)
763             return 0;
764         switch (f->ipAddressChoice->type) {
765         case IPAddressChoice_inherit:
766             continue;
767         case IPAddressChoice_addressesOrRanges:
768             break;
769         default:
770             return 0;
771         }
772
773         /*
774          * It's an IPAddressOrRanges sequence, check it.
775          */
776         aors = f->ipAddressChoice->u.addressesOrRanges;
777         if (sk_IPAddressOrRange_num(aors) == 0)
778             return 0;
779         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
780             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
781             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
782
783             if (!extract_min_max(a, a_min, a_max, length) ||
784                 !extract_min_max(b, b_min, b_max, length))
785                 return 0;
786
787             /*
788              * Punt misordered list, overlapping start, or inverted range.
789              */
790             if (memcmp(a_min, b_min, length) >= 0 ||
791                 memcmp(a_min, a_max, length) > 0 ||
792                 memcmp(b_min, b_max, length) > 0)
793                 return 0;
794
795             /*
796              * Punt if adjacent or overlapping.  Check for adjacency by
797              * subtracting one from b_min first.
798              */
799             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
800             if (memcmp(a_max, b_min, length) >= 0)
801                 return 0;
802
803             /*
804              * Check for range that should be expressed as a prefix.
805              */
806             if (a->type == IPAddressOrRange_addressRange &&
807                 range_should_be_prefix(a_min, a_max, length) >= 0)
808                 return 0;
809         }
810
811         /*
812          * Check range to see if it's inverted or should be a
813          * prefix.
814          */
815         j = sk_IPAddressOrRange_num(aors) - 1;
816         {
817             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
818             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
819                 if (!extract_min_max(a, a_min, a_max, length))
820                     return 0;
821                 if (memcmp(a_min, a_max, length) > 0 ||
822                     range_should_be_prefix(a_min, a_max, length) >= 0)
823                     return 0;
824             }
825         }
826     }
827
828     /*
829      * If we made it through all that, we're happy.
830      */
831     return 1;
832 }
833
834 /*
835  * Whack an IPAddressOrRanges into canonical form.
836  */
837 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
838                                       const unsigned afi)
839 {
840     int i, j, length = length_from_afi(afi);
841
842     /*
843      * Sort the IPAddressOrRanges sequence.
844      */
845     sk_IPAddressOrRange_sort(aors);
846
847     /*
848      * Clean up representation issues, punt on duplicates or overlaps.
849      */
850     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
851         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
852         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
853         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
854         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
855
856         if (!extract_min_max(a, a_min, a_max, length) ||
857             !extract_min_max(b, b_min, b_max, length))
858             return 0;
859
860         /*
861          * Punt inverted ranges.
862          */
863         if (memcmp(a_min, a_max, length) > 0 ||
864             memcmp(b_min, b_max, length) > 0)
865             return 0;
866
867         /*
868          * Punt overlaps.
869          */
870         if (memcmp(a_max, b_min, length) >= 0)
871             return 0;
872
873         /*
874          * Merge if a and b are adjacent.  We check for
875          * adjacency by subtracting one from b_min first.
876          */
877         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
878         if (memcmp(a_max, b_min, length) == 0) {
879             IPAddressOrRange *merged;
880             if (!make_addressRange(&merged, a_min, b_max, length))
881                 return 0;
882             sk_IPAddressOrRange_set(aors, i, merged);
883             (void)sk_IPAddressOrRange_delete(aors, i + 1);
884             IPAddressOrRange_free(a);
885             IPAddressOrRange_free(b);
886             --i;
887             continue;
888         }
889     }
890
891     /*
892      * Check for inverted final range.
893      */
894     j = sk_IPAddressOrRange_num(aors) - 1;
895     {
896         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
897         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
898             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
899             extract_min_max(a, a_min, a_max, length);
900             if (memcmp(a_min, a_max, length) > 0)
901                 return 0;
902         }
903     }
904
905     return 1;
906 }
907
908 /*
909  * Whack an IPAddrBlocks extension into canonical form.
910  */
911 int v3_addr_canonize(IPAddrBlocks *addr)
912 {
913     int i;
914     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
915         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
916         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
917             !IPAddressOrRanges_canonize(f->ipAddressChoice->
918                                         u.addressesOrRanges,
919                                         v3_addr_get_afi(f)))
920             return 0;
921     }
922     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
923     sk_IPAddressFamily_sort(addr);
924     OPENSSL_assert(v3_addr_is_canonical(addr));
925     return 1;
926 }
927
928 /*
929  * v2i handler for the IPAddrBlocks extension.
930  */
931 static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
932                               struct v3_ext_ctx *ctx,
933                               STACK_OF(CONF_VALUE) *values)
934 {
935     static const char v4addr_chars[] = "0123456789.";
936     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
937     IPAddrBlocks *addr = NULL;
938     char *s = NULL, *t;
939     int i;
940
941     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
942         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
943         return NULL;
944     }
945
946     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
947         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
948         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
949         unsigned afi, *safi = NULL, safi_;
950         const char *addr_chars;
951         int prefixlen, i1, i2, delim, length;
952
953         if (!name_cmp(val->name, "IPv4")) {
954             afi = IANA_AFI_IPV4;
955         } else if (!name_cmp(val->name, "IPv6")) {
956             afi = IANA_AFI_IPV6;
957         } else if (!name_cmp(val->name, "IPv4-SAFI")) {
958             afi = IANA_AFI_IPV4;
959             safi = &safi_;
960         } else if (!name_cmp(val->name, "IPv6-SAFI")) {
961             afi = IANA_AFI_IPV6;
962             safi = &safi_;
963         } else {
964             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
965                       X509V3_R_EXTENSION_NAME_ERROR);
966             X509V3_conf_err(val);
967             goto err;
968         }
969
970         switch (afi) {
971         case IANA_AFI_IPV4:
972             addr_chars = v4addr_chars;
973             break;
974         case IANA_AFI_IPV6:
975             addr_chars = v6addr_chars;
976             break;
977         }
978
979         length = length_from_afi(afi);
980
981         /*
982          * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
983          * the other input values.
984          */
985         if (safi != NULL) {
986             *safi = strtoul(val->value, &t, 0);
987             t += strspn(t, " \t");
988             if (*safi > 0xFF || *t++ != ':') {
989                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
990                 X509V3_conf_err(val);
991                 goto err;
992             }
993             t += strspn(t, " \t");
994             s = BUF_strdup(t);
995         } else {
996             s = BUF_strdup(val->value);
997         }
998         if (s == NULL) {
999             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1000             goto err;
1001         }
1002
1003         /*
1004          * Check for inheritance.  Not worth additional complexity to
1005          * optimize this (seldom-used) case.
1006          */
1007         if (!strcmp(s, "inherit")) {
1008             if (!v3_addr_add_inherit(addr, afi, safi)) {
1009                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1010                           X509V3_R_INVALID_INHERITANCE);
1011                 X509V3_conf_err(val);
1012                 goto err;
1013             }
1014             OPENSSL_free(s);
1015             s = NULL;
1016             continue;
1017         }
1018
1019         i1 = strspn(s, addr_chars);
1020         i2 = i1 + strspn(s + i1, " \t");
1021         delim = s[i2++];
1022         s[i1] = '\0';
1023
1024         if (a2i_ipadd(min, s) != length) {
1025             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1026             X509V3_conf_err(val);
1027             goto err;
1028         }
1029
1030         switch (delim) {
1031         case '/':
1032             prefixlen = (int)strtoul(s + i2, &t, 10);
1033             if (t == s + i2 || *t != '\0') {
1034                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1035                           X509V3_R_EXTENSION_VALUE_ERROR);
1036                 X509V3_conf_err(val);
1037                 goto err;
1038             }
1039             if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1040                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1041                 goto err;
1042             }
1043             break;
1044         case '-':
1045             i1 = i2 + strspn(s + i2, " \t");
1046             i2 = i1 + strspn(s + i1, addr_chars);
1047             if (i1 == i2 || s[i2] != '\0') {
1048                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1049                           X509V3_R_EXTENSION_VALUE_ERROR);
1050                 X509V3_conf_err(val);
1051                 goto err;
1052             }
1053             if (a2i_ipadd(max, s + i1) != length) {
1054                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1055                           X509V3_R_INVALID_IPADDRESS);
1056                 X509V3_conf_err(val);
1057                 goto err;
1058             }
1059             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1060                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1061                           X509V3_R_EXTENSION_VALUE_ERROR);
1062                 X509V3_conf_err(val);
1063                 goto err;
1064             }
1065             if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1066                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1067                 goto err;
1068             }
1069             break;
1070         case '\0':
1071             if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1072                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1073                 goto err;
1074             }
1075             break;
1076         default:
1077             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1078                       X509V3_R_EXTENSION_VALUE_ERROR);
1079             X509V3_conf_err(val);
1080             goto err;
1081         }
1082
1083         OPENSSL_free(s);
1084         s = NULL;
1085     }
1086
1087     /*
1088      * Canonize the result, then we're done.
1089      */
1090     if (!v3_addr_canonize(addr))
1091         goto err;
1092     return addr;
1093
1094  err:
1095     OPENSSL_free(s);
1096     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1097     return NULL;
1098 }
1099
1100 /*
1101  * OpenSSL dispatch
1102  */
1103 const X509V3_EXT_METHOD v3_addr = {
1104     NID_sbgp_ipAddrBlock,       /* nid */
1105     0,                          /* flags */
1106     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1107     0, 0, 0, 0,                 /* old functions, ignored */
1108     0,                          /* i2s */
1109     0,                          /* s2i */
1110     0,                          /* i2v */
1111     v2i_IPAddrBlocks,           /* v2i */
1112     i2r_IPAddrBlocks,           /* i2r */
1113     0,                          /* r2i */
1114     NULL                        /* extension-specific data */
1115 };
1116
1117 /*
1118  * Figure out whether extension sues inheritance.
1119  */
1120 int v3_addr_inherits(IPAddrBlocks *addr)
1121 {
1122     int i;
1123     if (addr == NULL)
1124         return 0;
1125     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1126         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1127         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1128             return 1;
1129     }
1130     return 0;
1131 }
1132
1133 /*
1134  * Figure out whether parent contains child.
1135  */
1136 static int addr_contains(IPAddressOrRanges *parent,
1137                          IPAddressOrRanges *child, int length)
1138 {
1139     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1140     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1141     int p, c;
1142
1143     if (child == NULL || parent == child)
1144         return 1;
1145     if (parent == NULL)
1146         return 0;
1147
1148     p = 0;
1149     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1150         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1151                              c_min, c_max, length))
1152             return -1;
1153         for (;; p++) {
1154             if (p >= sk_IPAddressOrRange_num(parent))
1155                 return 0;
1156             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1157                                  p_min, p_max, length))
1158                 return 0;
1159             if (memcmp(p_max, c_max, length) < 0)
1160                 continue;
1161             if (memcmp(p_min, c_min, length) > 0)
1162                 return 0;
1163             break;
1164         }
1165     }
1166
1167     return 1;
1168 }
1169
1170 /*
1171  * Test whether a is a subset of b.
1172  */
1173 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1174 {
1175     int i;
1176     if (a == NULL || a == b)
1177         return 1;
1178     if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1179         return 0;
1180     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1181     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1182         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1183         int j = sk_IPAddressFamily_find(b, fa);
1184         IPAddressFamily *fb;
1185         fb = sk_IPAddressFamily_value(b, j);
1186         if (fb == NULL)
1187             return 0;
1188         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1189                            fa->ipAddressChoice->u.addressesOrRanges,
1190                            length_from_afi(v3_addr_get_afi(fb))))
1191             return 0;
1192     }
1193     return 1;
1194 }
1195
1196 /*
1197  * Validation error handling via callback.
1198  */
1199 # define validation_err(_err_)           \
1200   do {                                  \
1201     if (ctx != NULL) {                  \
1202       ctx->error = _err_;               \
1203       ctx->error_depth = i;             \
1204       ctx->current_cert = x;            \
1205       ret = ctx->verify_cb(0, ctx);     \
1206     } else {                            \
1207       ret = 0;                          \
1208     }                                   \
1209     if (!ret)                           \
1210       goto done;                        \
1211   } while (0)
1212
1213 /*
1214  * Core code for RFC 3779 2.3 path validation.
1215  */
1216 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1217                                           STACK_OF(X509) *chain,
1218                                           IPAddrBlocks *ext)
1219 {
1220     IPAddrBlocks *child = NULL;
1221     int i, j, ret = 1;
1222     X509 *x = NULL;
1223
1224     OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1225     OPENSSL_assert(ctx != NULL || ext != NULL);
1226     OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1227
1228     /*
1229      * Figure out where to start.  If we don't have an extension to
1230      * check, we're done.  Otherwise, check canonical form and
1231      * set up for walking up the chain.
1232      */
1233     if (ext != NULL) {
1234         i = -1;
1235     } else {
1236         i = 0;
1237         x = sk_X509_value(chain, i);
1238         OPENSSL_assert(x != NULL);
1239         if ((ext = x->rfc3779_addr) == NULL)
1240             goto done;
1241     }
1242     if (!v3_addr_is_canonical(ext))
1243         validation_err(X509_V_ERR_INVALID_EXTENSION);
1244     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1245     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1246         X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1247                   ERR_R_MALLOC_FAILURE);
1248         ret = 0;
1249         goto done;
1250     }
1251
1252     /*
1253      * Now walk up the chain.  No cert may list resources that its
1254      * parent doesn't list.
1255      */
1256     for (i++; i < sk_X509_num(chain); i++) {
1257         x = sk_X509_value(chain, i);
1258         OPENSSL_assert(x != NULL);
1259         if (!v3_addr_is_canonical(x->rfc3779_addr))
1260             validation_err(X509_V_ERR_INVALID_EXTENSION);
1261         if (x->rfc3779_addr == NULL) {
1262             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1263                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1264                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1265                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1266                     break;
1267                 }
1268             }
1269             continue;
1270         }
1271         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1272                                               IPAddressFamily_cmp);
1273         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1274             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1275             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1276             IPAddressFamily *fp =
1277                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1278             if (fp == NULL) {
1279                 if (fc->ipAddressChoice->type ==
1280                     IPAddressChoice_addressesOrRanges) {
1281                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1282                     break;
1283                 }
1284                 continue;
1285             }
1286             if (fp->ipAddressChoice->type ==
1287                 IPAddressChoice_addressesOrRanges) {
1288                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1289                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1290                                      fc->ipAddressChoice->u.addressesOrRanges,
1291                                      length_from_afi(v3_addr_get_afi(fc))))
1292                     sk_IPAddressFamily_set(child, j, fp);
1293                 else
1294                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1295             }
1296         }
1297     }
1298
1299     /*
1300      * Trust anchor can't inherit.
1301      */
1302     if (x->rfc3779_addr != NULL) {
1303         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1304             IPAddressFamily *fp =
1305                 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1306             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1307                 && sk_IPAddressFamily_find(child, fp) >= 0)
1308                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1309         }
1310     }
1311
1312  done:
1313     sk_IPAddressFamily_free(child);
1314     return ret;
1315 }
1316
1317 # undef validation_err
1318
1319 /*
1320  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1321  */
1322 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1323 {
1324     return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1325 }
1326
1327 /*
1328  * RFC 3779 2.3 path validation of an extension.
1329  * Test whether chain covers extension.
1330  */
1331 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1332                                   IPAddrBlocks *ext, int allow_inheritance)
1333 {
1334     if (ext == NULL)
1335         return 1;
1336     if (chain == NULL || sk_X509_num(chain) == 0)
1337         return 0;
1338     if (!allow_inheritance && v3_addr_inherits(ext))
1339         return 0;
1340     return v3_addr_validate_path_internal(NULL, chain, ext);
1341 }
1342
1343 #endif                          /* OPENSSL_NO_RFC3779 */