]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - cddl/contrib/opensolaris/lib/libzpool/common/taskq.c
MFC r274304 (by delphij): MFV r274272 and diff reduction with upstream.
[FreeBSD/stable/10.git] / cddl / contrib / opensolaris / lib / libzpool / common / taskq.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  * Copyright (c) 2014 by Delphix. All rights reserved.
29  */
30
31 #include <sys/zfs_context.h>
32
33 int taskq_now;
34 taskq_t *system_taskq;
35
36 #define TASKQ_ACTIVE    0x00010000
37 #define TASKQ_NAMELEN   31
38
39 struct taskq {
40         char            tq_name[TASKQ_NAMELEN + 1];
41         kmutex_t        tq_lock;
42         krwlock_t       tq_threadlock;
43         kcondvar_t      tq_dispatch_cv;
44         kcondvar_t      tq_wait_cv;
45         thread_t        *tq_threadlist;
46         int             tq_flags;
47         int             tq_active;
48         int             tq_nthreads;
49         int             tq_nalloc;
50         int             tq_minalloc;
51         int             tq_maxalloc;
52         kcondvar_t      tq_maxalloc_cv;
53         int             tq_maxalloc_wait;
54         taskq_ent_t     *tq_freelist;
55         taskq_ent_t     tq_task;
56 };
57
58 static taskq_ent_t *
59 task_alloc(taskq_t *tq, int tqflags)
60 {
61         taskq_ent_t *t;
62         int rv;
63
64 again:  if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
65                 tq->tq_freelist = t->tqent_next;
66         } else {
67                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
68                         if (!(tqflags & KM_SLEEP))
69                                 return (NULL);
70
71                         /*
72                          * We don't want to exceed tq_maxalloc, but we can't
73                          * wait for other tasks to complete (and thus free up
74                          * task structures) without risking deadlock with
75                          * the caller.  So, we just delay for one second
76                          * to throttle the allocation rate. If we have tasks
77                          * complete before one second timeout expires then
78                          * taskq_ent_free will signal us and we will
79                          * immediately retry the allocation.
80                          */
81                         tq->tq_maxalloc_wait++;
82                         rv = cv_timedwait(&tq->tq_maxalloc_cv,
83                             &tq->tq_lock, ddi_get_lbolt() + hz);
84                         tq->tq_maxalloc_wait--;
85                         if (rv > 0)
86                                 goto again;             /* signaled */
87                 }
88                 mutex_exit(&tq->tq_lock);
89
90                 t = kmem_alloc(sizeof (taskq_ent_t), tqflags & KM_SLEEP);
91
92                 mutex_enter(&tq->tq_lock);
93                 if (t != NULL)
94                         tq->tq_nalloc++;
95         }
96         return (t);
97 }
98
99 static void
100 task_free(taskq_t *tq, taskq_ent_t *t)
101 {
102         if (tq->tq_nalloc <= tq->tq_minalloc) {
103                 t->tqent_next = tq->tq_freelist;
104                 tq->tq_freelist = t;
105         } else {
106                 tq->tq_nalloc--;
107                 mutex_exit(&tq->tq_lock);
108                 kmem_free(t, sizeof (taskq_ent_t));
109                 mutex_enter(&tq->tq_lock);
110         }
111
112         if (tq->tq_maxalloc_wait)
113                 cv_signal(&tq->tq_maxalloc_cv);
114 }
115
116 taskqid_t
117 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
118 {
119         taskq_ent_t *t;
120
121         if (taskq_now) {
122                 func(arg);
123                 return (1);
124         }
125
126         mutex_enter(&tq->tq_lock);
127         ASSERT(tq->tq_flags & TASKQ_ACTIVE);
128         if ((t = task_alloc(tq, tqflags)) == NULL) {
129                 mutex_exit(&tq->tq_lock);
130                 return (0);
131         }
132         if (tqflags & TQ_FRONT) {
133                 t->tqent_next = tq->tq_task.tqent_next;
134                 t->tqent_prev = &tq->tq_task;
135         } else {
136                 t->tqent_next = &tq->tq_task;
137                 t->tqent_prev = tq->tq_task.tqent_prev;
138         }
139         t->tqent_next->tqent_prev = t;
140         t->tqent_prev->tqent_next = t;
141         t->tqent_func = func;
142         t->tqent_arg = arg;
143         t->tqent_flags = 0;
144         cv_signal(&tq->tq_dispatch_cv);
145         mutex_exit(&tq->tq_lock);
146         return (1);
147 }
148
149 void
150 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
151     taskq_ent_t *t)
152 {
153         ASSERT(func != NULL);
154         ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
155
156         /*
157          * Mark it as a prealloc'd task.  This is important
158          * to ensure that we don't free it later.
159          */
160         t->tqent_flags |= TQENT_FLAG_PREALLOC;
161         /*
162          * Enqueue the task to the underlying queue.
163          */
164         mutex_enter(&tq->tq_lock);
165
166         if (flags & TQ_FRONT) {
167                 t->tqent_next = tq->tq_task.tqent_next;
168                 t->tqent_prev = &tq->tq_task;
169         } else {
170                 t->tqent_next = &tq->tq_task;
171                 t->tqent_prev = tq->tq_task.tqent_prev;
172         }
173         t->tqent_next->tqent_prev = t;
174         t->tqent_prev->tqent_next = t;
175         t->tqent_func = func;
176         t->tqent_arg = arg;
177         cv_signal(&tq->tq_dispatch_cv);
178         mutex_exit(&tq->tq_lock);
179 }
180
181 void
182 taskq_wait(taskq_t *tq)
183 {
184         mutex_enter(&tq->tq_lock);
185         while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
186                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
187         mutex_exit(&tq->tq_lock);
188 }
189
190 static void *
191 taskq_thread(void *arg)
192 {
193         taskq_t *tq = arg;
194         taskq_ent_t *t;
195         boolean_t prealloc;
196
197         mutex_enter(&tq->tq_lock);
198         while (tq->tq_flags & TASKQ_ACTIVE) {
199                 if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
200                         if (--tq->tq_active == 0)
201                                 cv_broadcast(&tq->tq_wait_cv);
202                         cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
203                         tq->tq_active++;
204                         continue;
205                 }
206                 t->tqent_prev->tqent_next = t->tqent_next;
207                 t->tqent_next->tqent_prev = t->tqent_prev;
208                 t->tqent_next = NULL;
209                 t->tqent_prev = NULL;
210                 prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
211                 mutex_exit(&tq->tq_lock);
212
213                 rw_enter(&tq->tq_threadlock, RW_READER);
214                 t->tqent_func(t->tqent_arg);
215                 rw_exit(&tq->tq_threadlock);
216
217                 mutex_enter(&tq->tq_lock);
218                 if (!prealloc)
219                         task_free(tq, t);
220         }
221         tq->tq_nthreads--;
222         cv_broadcast(&tq->tq_wait_cv);
223         mutex_exit(&tq->tq_lock);
224         return (NULL);
225 }
226
227 /*ARGSUSED*/
228 taskq_t *
229 taskq_create(const char *name, int nthreads, pri_t pri,
230         int minalloc, int maxalloc, uint_t flags)
231 {
232         taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
233         int t;
234
235         if (flags & TASKQ_THREADS_CPU_PCT) {
236                 int pct;
237                 ASSERT3S(nthreads, >=, 0);
238                 ASSERT3S(nthreads, <=, 100);
239                 pct = MIN(nthreads, 100);
240                 pct = MAX(pct, 0);
241
242                 nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
243                 nthreads = MAX(nthreads, 1);    /* need at least 1 thread */
244         } else {
245                 ASSERT3S(nthreads, >=, 1);
246         }
247
248         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
249         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
250         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
251         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
252         cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
253         (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
254         tq->tq_flags = flags | TASKQ_ACTIVE;
255         tq->tq_active = nthreads;
256         tq->tq_nthreads = nthreads;
257         tq->tq_minalloc = minalloc;
258         tq->tq_maxalloc = maxalloc;
259         tq->tq_task.tqent_next = &tq->tq_task;
260         tq->tq_task.tqent_prev = &tq->tq_task;
261         tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
262
263         if (flags & TASKQ_PREPOPULATE) {
264                 mutex_enter(&tq->tq_lock);
265                 while (minalloc-- > 0)
266                         task_free(tq, task_alloc(tq, KM_SLEEP));
267                 mutex_exit(&tq->tq_lock);
268         }
269
270         for (t = 0; t < nthreads; t++)
271                 (void) thr_create(0, 0, taskq_thread,
272                     tq, THR_BOUND, &tq->tq_threadlist[t]);
273
274         return (tq);
275 }
276
277 void
278 taskq_destroy(taskq_t *tq)
279 {
280         int t;
281         int nthreads = tq->tq_nthreads;
282
283         taskq_wait(tq);
284
285         mutex_enter(&tq->tq_lock);
286
287         tq->tq_flags &= ~TASKQ_ACTIVE;
288         cv_broadcast(&tq->tq_dispatch_cv);
289
290         while (tq->tq_nthreads != 0)
291                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
292
293         tq->tq_minalloc = 0;
294         while (tq->tq_nalloc != 0) {
295                 ASSERT(tq->tq_freelist != NULL);
296                 task_free(tq, task_alloc(tq, KM_SLEEP));
297         }
298
299         mutex_exit(&tq->tq_lock);
300
301         for (t = 0; t < nthreads; t++)
302                 (void) thr_join(tq->tq_threadlist[t], NULL, NULL);
303
304         kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
305
306         rw_destroy(&tq->tq_threadlock);
307         mutex_destroy(&tq->tq_lock);
308         cv_destroy(&tq->tq_dispatch_cv);
309         cv_destroy(&tq->tq_wait_cv);
310         cv_destroy(&tq->tq_maxalloc_cv);
311
312         kmem_free(tq, sizeof (taskq_t));
313 }
314
315 int
316 taskq_member(taskq_t *tq, void *t)
317 {
318         int i;
319
320         if (taskq_now)
321                 return (1);
322
323         for (i = 0; i < tq->tq_nthreads; i++)
324                 if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
325                         return (1);
326
327         return (0);
328 }
329
330 void
331 system_taskq_init(void)
332 {
333         system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
334             TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
335 }
336
337 void
338 system_taskq_fini(void)
339 {
340         taskq_destroy(system_taskq);
341         system_taskq = NULL; /* defensive */
342 }