]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - contrib/gcc/tree-vrp.c
MFC r368207,368607:
[FreeBSD/stable/10.git] / contrib / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2    Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
41
42 /* Set of SSA names found during the dominator traversal of a
43    sub-graph in find_assert_locations.  */
44 static sbitmap found_in_subgraph;
45
46 /* Local functions.  */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
50
51 /* Location information for ASSERT_EXPRs.  Each instance of this
52    structure describes an ASSERT_EXPR for an SSA name.  Since a single
53    SSA name may have more than one assertion associated with it, these
54    locations are kept in a linked list attached to the corresponding
55    SSA name.  */
56 struct assert_locus_d
57 {
58   /* Basic block where the assertion would be inserted.  */
59   basic_block bb;
60
61   /* Some assertions need to be inserted on an edge (e.g., assertions
62      generated by COND_EXPRs).  In those cases, BB will be NULL.  */
63   edge e;
64
65   /* Pointer to the statement that generated this assertion.  */
66   block_stmt_iterator si;
67
68   /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
69   enum tree_code comp_code;
70
71   /* Value being compared against.  */
72   tree val;
73
74   /* Next node in the linked list.  */
75   struct assert_locus_d *next;
76 };
77
78 typedef struct assert_locus_d *assert_locus_t;
79
80 /* If bit I is present, it means that SSA name N_i has a list of
81    assertions that should be inserted in the IL.  */
82 static bitmap need_assert_for;
83
84 /* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
85    holds a list of ASSERT_LOCUS_T nodes that describe where
86    ASSERT_EXPRs for SSA name N_I should be inserted.  */
87 static assert_locus_t *asserts_for;
88
89 /* Set of blocks visited in find_assert_locations.  Used to avoid
90    visiting the same block more than once.  */
91 static sbitmap blocks_visited;
92
93 /* Value range array.  After propagation, VR_VALUE[I] holds the range
94    of values that SSA name N_I may take.  */
95 static value_range_t **vr_value;
96
97
98 /* Return whether TYPE should use an overflow infinity distinct from
99    TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
100    represent a signed overflow during VRP computations.  An infinity
101    is distinct from a half-range, which will go from some number to
102    TYPE_{MIN,MAX}_VALUE.  */
103
104 static inline bool
105 needs_overflow_infinity (tree type)
106 {
107   return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
108 }
109
110 /* Return whether TYPE can support our overflow infinity
111    representation: we use the TREE_OVERFLOW flag, which only exists
112    for constants.  If TYPE doesn't support this, we don't optimize
113    cases which would require signed overflow--we drop them to
114    VARYING.  */
115
116 static inline bool
117 supports_overflow_infinity (tree type)
118 {
119 #ifdef ENABLE_CHECKING
120   gcc_assert (needs_overflow_infinity (type));
121 #endif
122   return (TYPE_MIN_VALUE (type) != NULL_TREE
123           && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
124           && TYPE_MAX_VALUE (type) != NULL_TREE
125           && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
126 }
127
128 /* VAL is the maximum or minimum value of a type.  Return a
129    corresponding overflow infinity.  */
130
131 static inline tree
132 make_overflow_infinity (tree val)
133 {
134 #ifdef ENABLE_CHECKING
135   gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
136 #endif
137   val = copy_node (val);
138   TREE_OVERFLOW (val) = 1;
139   return val;
140 }
141
142 /* Return a negative overflow infinity for TYPE.  */
143
144 static inline tree
145 negative_overflow_infinity (tree type)
146 {
147 #ifdef ENABLE_CHECKING
148   gcc_assert (supports_overflow_infinity (type));
149 #endif
150   return make_overflow_infinity (TYPE_MIN_VALUE (type));
151 }
152
153 /* Return a positive overflow infinity for TYPE.  */
154
155 static inline tree
156 positive_overflow_infinity (tree type)
157 {
158 #ifdef ENABLE_CHECKING
159   gcc_assert (supports_overflow_infinity (type));
160 #endif
161   return make_overflow_infinity (TYPE_MAX_VALUE (type));
162 }
163
164 /* Return whether VAL is a negative overflow infinity.  */
165
166 static inline bool
167 is_negative_overflow_infinity (tree val)
168 {
169   return (needs_overflow_infinity (TREE_TYPE (val))
170           && CONSTANT_CLASS_P (val)
171           && TREE_OVERFLOW (val)
172           && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
173 }
174
175 /* Return whether VAL is a positive overflow infinity.  */
176
177 static inline bool
178 is_positive_overflow_infinity (tree val)
179 {
180   return (needs_overflow_infinity (TREE_TYPE (val))
181           && CONSTANT_CLASS_P (val)
182           && TREE_OVERFLOW (val)
183           && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
184 }
185
186 /* Return whether VAL is a positive or negative overflow infinity.  */
187
188 static inline bool
189 is_overflow_infinity (tree val)
190 {
191   return (needs_overflow_infinity (TREE_TYPE (val))
192           && CONSTANT_CLASS_P (val)
193           && TREE_OVERFLOW (val)
194           && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
195               || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
196 }
197
198 /* If VAL is now an overflow infinity, return VAL.  Otherwise, return
199    the same value with TREE_OVERFLOW clear.  This can be used to avoid
200    confusing a regular value with an overflow value.  */
201
202 static inline tree
203 avoid_overflow_infinity (tree val)
204 {
205   if (!is_overflow_infinity (val))
206     return val;
207
208   if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
209     return TYPE_MAX_VALUE (TREE_TYPE (val));
210   else
211     {
212 #ifdef ENABLE_CHECKING
213       gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
214 #endif
215       return TYPE_MIN_VALUE (TREE_TYPE (val));
216     }
217 }
218
219
220 /* Return whether VAL is equal to the maximum value of its type.  This
221    will be true for a positive overflow infinity.  We can't do a
222    simple equality comparison with TYPE_MAX_VALUE because C typedefs
223    and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
224    to the integer constant with the same value in the type.  */
225
226 static inline bool
227 vrp_val_is_max (tree val)
228 {
229   tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
230
231   return (val == type_max
232           || (type_max != NULL_TREE
233               && operand_equal_p (val, type_max, 0)));
234 }
235
236 /* Return whether VAL is equal to the minimum value of its type.  This
237    will be true for a negative overflow infinity.  */
238
239 static inline bool
240 vrp_val_is_min (tree val)
241 {
242   tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
243
244   return (val == type_min
245           || (type_min != NULL_TREE
246               && operand_equal_p (val, type_min, 0)));
247 }
248
249
250 /* Return true if ARG is marked with the nonnull attribute in the
251    current function signature.  */
252
253 static bool
254 nonnull_arg_p (tree arg)
255 {
256   tree t, attrs, fntype;
257   unsigned HOST_WIDE_INT arg_num;
258
259   gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
260
261   /* The static chain decl is always non null.  */
262   if (arg == cfun->static_chain_decl)
263     return true;
264
265   fntype = TREE_TYPE (current_function_decl);
266   attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
267
268   /* If "nonnull" wasn't specified, we know nothing about the argument.  */
269   if (attrs == NULL_TREE)
270     return false;
271
272   /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
273   if (TREE_VALUE (attrs) == NULL_TREE)
274     return true;
275
276   /* Get the position number for ARG in the function signature.  */
277   for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
278        t;
279        t = TREE_CHAIN (t), arg_num++)
280     {
281       if (t == arg)
282         break;
283     }
284
285   gcc_assert (t == arg);
286
287   /* Now see if ARG_NUM is mentioned in the nonnull list.  */
288   for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
289     {
290       if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
291         return true;
292     }
293
294   return false;
295 }
296
297
298 /* Set value range VR to {T, MIN, MAX, EQUIV}.  */
299
300 static void
301 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
302                  tree max, bitmap equiv)
303 {
304 #if defined ENABLE_CHECKING
305   /* Check the validity of the range.  */
306   if (t == VR_RANGE || t == VR_ANTI_RANGE)
307     {
308       int cmp;
309
310       gcc_assert (min && max);
311
312       if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
313         gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
314
315       cmp = compare_values (min, max);
316       gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
317
318       if (needs_overflow_infinity (TREE_TYPE (min)))
319         gcc_assert (!is_overflow_infinity (min)
320                     || !is_overflow_infinity (max));
321     }
322
323   if (t == VR_UNDEFINED || t == VR_VARYING)
324     gcc_assert (min == NULL_TREE && max == NULL_TREE);
325
326   if (t == VR_UNDEFINED || t == VR_VARYING)
327     gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
328 #endif
329
330   vr->type = t;
331   vr->min = min;
332   vr->max = max;
333
334   /* Since updating the equivalence set involves deep copying the
335      bitmaps, only do it if absolutely necessary.  */
336   if (vr->equiv == NULL)
337     vr->equiv = BITMAP_ALLOC (NULL);
338
339   if (equiv != vr->equiv)
340     {
341       if (equiv && !bitmap_empty_p (equiv))
342         bitmap_copy (vr->equiv, equiv);
343       else
344         bitmap_clear (vr->equiv);
345     }
346 }
347
348
349 /* Copy value range FROM into value range TO.  */
350
351 static inline void
352 copy_value_range (value_range_t *to, value_range_t *from)
353 {
354   set_value_range (to, from->type, from->min, from->max, from->equiv);
355 }
356
357
358 /* Set value range VR to VR_VARYING.  */
359
360 static inline void
361 set_value_range_to_varying (value_range_t *vr)
362 {
363   vr->type = VR_VARYING;
364   vr->min = vr->max = NULL_TREE;
365   if (vr->equiv)
366     bitmap_clear (vr->equiv);
367 }
368
369 /* Set value range VR to a single value.  This function is only called
370    with values we get from statements, and exists to clear the
371    TREE_OVERFLOW flag so that we don't think we have an overflow
372    infinity when we shouldn't.  */
373
374 static inline void
375 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
376 {
377   gcc_assert (is_gimple_min_invariant (val));
378   val = avoid_overflow_infinity (val);
379   set_value_range (vr, VR_RANGE, val, val, equiv);
380 }
381
382 /* Set value range VR to a non-negative range of type TYPE.
383    OVERFLOW_INFINITY indicates whether to use a overflow infinity
384    rather than TYPE_MAX_VALUE; this should be true if we determine
385    that the range is nonnegative based on the assumption that signed
386    overflow does not occur.  */
387
388 static inline void
389 set_value_range_to_nonnegative (value_range_t *vr, tree type,
390                                 bool overflow_infinity)
391 {
392   tree zero;
393
394   if (overflow_infinity && !supports_overflow_infinity (type))
395     {
396       set_value_range_to_varying (vr);
397       return;
398     }
399
400   zero = build_int_cst (type, 0);
401   set_value_range (vr, VR_RANGE, zero,
402                    (overflow_infinity
403                     ? positive_overflow_infinity (type)
404                     : TYPE_MAX_VALUE (type)),
405                    vr->equiv);
406 }
407
408 /* Set value range VR to a non-NULL range of type TYPE.  */
409
410 static inline void
411 set_value_range_to_nonnull (value_range_t *vr, tree type)
412 {
413   tree zero = build_int_cst (type, 0);
414   set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
415 }
416
417
418 /* Set value range VR to a NULL range of type TYPE.  */
419
420 static inline void
421 set_value_range_to_null (value_range_t *vr, tree type)
422 {
423   set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
424 }
425
426
427 /* Set value range VR to VR_UNDEFINED.  */
428
429 static inline void
430 set_value_range_to_undefined (value_range_t *vr)
431 {
432   vr->type = VR_UNDEFINED;
433   vr->min = vr->max = NULL_TREE;
434   if (vr->equiv)
435     bitmap_clear (vr->equiv);
436 }
437
438
439 /* Return value range information for VAR.  
440
441    If we have no values ranges recorded (ie, VRP is not running), then
442    return NULL.  Otherwise create an empty range if none existed for VAR.  */
443
444 static value_range_t *
445 get_value_range (tree var)
446 {
447   value_range_t *vr;
448   tree sym;
449   unsigned ver = SSA_NAME_VERSION (var);
450
451   /* If we have no recorded ranges, then return NULL.  */
452   if (! vr_value)
453     return NULL;
454
455   vr = vr_value[ver];
456   if (vr)
457     return vr;
458
459   /* Create a default value range.  */
460   vr_value[ver] = vr = XNEW (value_range_t);
461   memset (vr, 0, sizeof (*vr));
462
463   /* Allocate an equivalence set.  */
464   vr->equiv = BITMAP_ALLOC (NULL);
465
466   /* If VAR is a default definition, the variable can take any value
467      in VAR's type.  */
468   sym = SSA_NAME_VAR (var);
469   if (var == default_def (sym))
470     {
471       /* Try to use the "nonnull" attribute to create ~[0, 0]
472          anti-ranges for pointers.  Note that this is only valid with
473          default definitions of PARM_DECLs.  */
474       if (TREE_CODE (sym) == PARM_DECL
475           && POINTER_TYPE_P (TREE_TYPE (sym))
476           && nonnull_arg_p (sym))
477         set_value_range_to_nonnull (vr, TREE_TYPE (sym));
478       else
479         set_value_range_to_varying (vr);
480     }
481
482   return vr;
483 }
484
485 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
486
487 static inline bool
488 vrp_operand_equal_p (tree val1, tree val2)
489 {
490   if (val1 == val2)
491     return true;
492   if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
493     return false;
494   if (is_overflow_infinity (val1))
495     return is_overflow_infinity (val2);
496   return true;
497 }
498
499 /* Return true, if the bitmaps B1 and B2 are equal.  */
500
501 static inline bool
502 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
503 {
504   return (b1 == b2
505           || (b1 && b2
506               && bitmap_equal_p (b1, b2)));
507 }
508
509 /* Update the value range and equivalence set for variable VAR to
510    NEW_VR.  Return true if NEW_VR is different from VAR's previous
511    value.
512
513    NOTE: This function assumes that NEW_VR is a temporary value range
514    object created for the sole purpose of updating VAR's range.  The
515    storage used by the equivalence set from NEW_VR will be freed by
516    this function.  Do not call update_value_range when NEW_VR
517    is the range object associated with another SSA name.  */
518
519 static inline bool
520 update_value_range (tree var, value_range_t *new_vr)
521 {
522   value_range_t *old_vr;
523   bool is_new;
524
525   /* Update the value range, if necessary.  */
526   old_vr = get_value_range (var);
527   is_new = old_vr->type != new_vr->type
528            || !vrp_operand_equal_p (old_vr->min, new_vr->min)
529            || !vrp_operand_equal_p (old_vr->max, new_vr->max)
530            || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
531
532   if (is_new)
533     set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
534                      new_vr->equiv);
535
536   BITMAP_FREE (new_vr->equiv);
537   new_vr->equiv = NULL;
538
539   return is_new;
540 }
541
542
543 /* Add VAR and VAR's equivalence set to EQUIV.  */
544
545 static void
546 add_equivalence (bitmap equiv, tree var)
547 {
548   unsigned ver = SSA_NAME_VERSION (var);
549   value_range_t *vr = vr_value[ver];
550
551   bitmap_set_bit (equiv, ver);
552   if (vr && vr->equiv)
553     bitmap_ior_into (equiv, vr->equiv);
554 }
555
556
557 /* Return true if VR is ~[0, 0].  */
558
559 static inline bool
560 range_is_nonnull (value_range_t *vr)
561 {
562   return vr->type == VR_ANTI_RANGE
563          && integer_zerop (vr->min)
564          && integer_zerop (vr->max);
565 }
566
567
568 /* Return true if VR is [0, 0].  */
569
570 static inline bool
571 range_is_null (value_range_t *vr)
572 {
573   return vr->type == VR_RANGE
574          && integer_zerop (vr->min)
575          && integer_zerop (vr->max);
576 }
577
578
579 /* Return true if value range VR involves at least one symbol.  */
580
581 static inline bool
582 symbolic_range_p (value_range_t *vr)
583 {
584   return (!is_gimple_min_invariant (vr->min)
585           || !is_gimple_min_invariant (vr->max));
586 }
587
588 /* Return true if value range VR uses a overflow infinity.  */
589
590 static inline bool
591 overflow_infinity_range_p (value_range_t *vr)
592 {
593   return (vr->type == VR_RANGE
594           && (is_overflow_infinity (vr->min)
595               || is_overflow_infinity (vr->max)));
596 }
597
598 /* Return false if we can not make a valid comparison based on VR;
599    this will be the case if it uses an overflow infinity and overflow
600    is not undefined (i.e., -fno-strict-overflow is in effect).
601    Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
602    uses an overflow infinity.  */
603
604 static bool
605 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
606 {
607   gcc_assert (vr->type == VR_RANGE);
608   if (is_overflow_infinity (vr->min))
609     {
610       *strict_overflow_p = true;
611       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
612         return false;
613     }
614   if (is_overflow_infinity (vr->max))
615     {
616       *strict_overflow_p = true;
617       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
618         return false;
619     }
620   return true;
621 }
622
623
624 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
625    ranges obtained so far.  */
626
627 static bool
628 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
629 {
630   return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
631 }
632
633 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
634    obtained so far.  */
635
636 static bool
637 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
638 {
639   if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
640     return true;
641
642   /* If we have an expression of the form &X->a, then the expression
643      is nonnull if X is nonnull.  */
644   if (TREE_CODE (expr) == ADDR_EXPR)
645     {
646       tree base = get_base_address (TREE_OPERAND (expr, 0));
647
648       if (base != NULL_TREE
649           && TREE_CODE (base) == INDIRECT_REF
650           && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
651         {
652           value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
653           if (range_is_nonnull (vr))
654             return true;
655         }
656     }
657
658   return false;
659 }
660
661 /* Returns true if EXPR is a valid value (as expected by compare_values) --
662    a gimple invariant, or SSA_NAME +- CST.  */
663
664 static bool
665 valid_value_p (tree expr)
666 {
667   if (TREE_CODE (expr) == SSA_NAME)
668     return true;
669
670   if (TREE_CODE (expr) == PLUS_EXPR
671       || TREE_CODE (expr) == MINUS_EXPR)
672     return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
673             && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
674   
675   return is_gimple_min_invariant (expr);
676 }
677
678 /* Compare two values VAL1 and VAL2.  Return
679    
680         -2 if VAL1 and VAL2 cannot be compared at compile-time,
681         -1 if VAL1 < VAL2,
682          0 if VAL1 == VAL2,
683         +1 if VAL1 > VAL2, and
684         +2 if VAL1 != VAL2
685
686    This is similar to tree_int_cst_compare but supports pointer values
687    and values that cannot be compared at compile time.
688
689    If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
690    true if the return value is only valid if we assume that signed
691    overflow is undefined.  */
692
693 static int
694 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
695 {
696   if (val1 == val2)
697     return 0;
698
699   /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
700      both integers.  */
701   gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
702               == POINTER_TYPE_P (TREE_TYPE (val2)));
703
704   if ((TREE_CODE (val1) == SSA_NAME
705        || TREE_CODE (val1) == PLUS_EXPR
706        || TREE_CODE (val1) == MINUS_EXPR)
707       && (TREE_CODE (val2) == SSA_NAME
708           || TREE_CODE (val2) == PLUS_EXPR
709           || TREE_CODE (val2) == MINUS_EXPR))
710     {
711       tree n1, c1, n2, c2;
712       enum tree_code code1, code2;
713   
714       /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
715          return -1 or +1 accordingly.  If VAL1 and VAL2 don't use the
716          same name, return -2.  */
717       if (TREE_CODE (val1) == SSA_NAME)
718         {
719           code1 = SSA_NAME;
720           n1 = val1;
721           c1 = NULL_TREE;
722         }
723       else
724         {
725           code1 = TREE_CODE (val1);
726           n1 = TREE_OPERAND (val1, 0);
727           c1 = TREE_OPERAND (val1, 1);
728           if (tree_int_cst_sgn (c1) == -1)
729             {
730               if (is_negative_overflow_infinity (c1))
731                 return -2;
732               c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
733               if (!c1)
734                 return -2;
735               code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
736             }
737         }
738
739       if (TREE_CODE (val2) == SSA_NAME)
740         {
741           code2 = SSA_NAME;
742           n2 = val2;
743           c2 = NULL_TREE;
744         }
745       else
746         {
747           code2 = TREE_CODE (val2);
748           n2 = TREE_OPERAND (val2, 0);
749           c2 = TREE_OPERAND (val2, 1);
750           if (tree_int_cst_sgn (c2) == -1)
751             {
752               if (is_negative_overflow_infinity (c2))
753                 return -2;
754               c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
755               if (!c2)
756                 return -2;
757               code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
758             }
759         }
760
761       /* Both values must use the same name.  */
762       if (n1 != n2)
763         return -2;
764
765       if (code1 == SSA_NAME
766           && code2 == SSA_NAME)
767         /* NAME == NAME  */
768         return 0;
769
770       /* If overflow is defined we cannot simplify more.  */
771       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
772         return -2;
773
774       if (strict_overflow_p != NULL
775           && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
776           && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
777         *strict_overflow_p = true;
778
779       if (code1 == SSA_NAME)
780         {
781           if (code2 == PLUS_EXPR)
782             /* NAME < NAME + CST  */
783             return -1;
784           else if (code2 == MINUS_EXPR)
785             /* NAME > NAME - CST  */
786             return 1;
787         }
788       else if (code1 == PLUS_EXPR)
789         {
790           if (code2 == SSA_NAME)
791             /* NAME + CST > NAME  */
792             return 1;
793           else if (code2 == PLUS_EXPR)
794             /* NAME + CST1 > NAME + CST2, if CST1 > CST2  */
795             return compare_values_warnv (c1, c2, strict_overflow_p);
796           else if (code2 == MINUS_EXPR)
797             /* NAME + CST1 > NAME - CST2  */
798             return 1;
799         }
800       else if (code1 == MINUS_EXPR)
801         {
802           if (code2 == SSA_NAME)
803             /* NAME - CST < NAME  */
804             return -1;
805           else if (code2 == PLUS_EXPR)
806             /* NAME - CST1 < NAME + CST2  */
807             return -1;
808           else if (code2 == MINUS_EXPR)
809             /* NAME - CST1 > NAME - CST2, if CST1 < CST2.  Notice that
810                C1 and C2 are swapped in the call to compare_values.  */
811             return compare_values_warnv (c2, c1, strict_overflow_p);
812         }
813
814       gcc_unreachable ();
815     }
816
817   /* We cannot compare non-constants.  */
818   if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
819     return -2;
820
821   if (!POINTER_TYPE_P (TREE_TYPE (val1)))
822     {
823       /* We cannot compare overflowed values, except for overflow
824          infinities.  */
825       if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
826         {
827           if (strict_overflow_p != NULL)
828             *strict_overflow_p = true;
829           if (is_negative_overflow_infinity (val1))
830             return is_negative_overflow_infinity (val2) ? 0 : -1;
831           else if (is_negative_overflow_infinity (val2))
832             return 1;
833           else if (is_positive_overflow_infinity (val1))
834             return is_positive_overflow_infinity (val2) ? 0 : 1;
835           else if (is_positive_overflow_infinity (val2))
836             return -1;
837           return -2;
838         }
839
840       return tree_int_cst_compare (val1, val2);
841     }
842   else
843     {
844       tree t;
845
846       /* First see if VAL1 and VAL2 are not the same.  */
847       if (val1 == val2 || operand_equal_p (val1, val2, 0))
848         return 0;
849       
850       /* If VAL1 is a lower address than VAL2, return -1.  */
851       t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
852       if (t == boolean_true_node)
853         return -1;
854
855       /* If VAL1 is a higher address than VAL2, return +1.  */
856       t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
857       if (t == boolean_true_node)
858         return 1;
859
860       /* If VAL1 is different than VAL2, return +2.  */
861       t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
862       if (t == boolean_true_node)
863         return 2;
864
865       return -2;
866     }
867 }
868
869 /* Compare values like compare_values_warnv, but treat comparisons of
870    nonconstants which rely on undefined overflow as incomparable.  */
871
872 static int
873 compare_values (tree val1, tree val2)
874 {
875   bool sop;
876   int ret;
877
878   sop = false;
879   ret = compare_values_warnv (val1, val2, &sop);
880   if (sop
881       && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
882     ret = -2;
883   return ret;
884 }
885
886
887 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
888           0 if VAL is not inside VR,
889          -2 if we cannot tell either way.
890
891    FIXME, the current semantics of this functions are a bit quirky
892           when taken in the context of VRP.  In here we do not care
893           about VR's type.  If VR is the anti-range ~[3, 5] the call
894           value_inside_range (4, VR) will return 1.
895
896           This is counter-intuitive in a strict sense, but the callers
897           currently expect this.  They are calling the function
898           merely to determine whether VR->MIN <= VAL <= VR->MAX.  The
899           callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
900           themselves.
901
902           This also applies to value_ranges_intersect_p and
903           range_includes_zero_p.  The semantics of VR_RANGE and
904           VR_ANTI_RANGE should be encoded here, but that also means
905           adapting the users of these functions to the new semantics.  */
906
907 static inline int
908 value_inside_range (tree val, value_range_t *vr)
909 {
910   tree cmp1, cmp2;
911
912   fold_defer_overflow_warnings ();
913
914   cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
915   if (!cmp1)
916   {
917     fold_undefer_and_ignore_overflow_warnings ();
918     return -2;
919   }
920
921   cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
922
923   fold_undefer_and_ignore_overflow_warnings ();
924
925   if (!cmp2)
926     return -2;
927
928   return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
929 }
930
931
932 /* Return true if value ranges VR0 and VR1 have a non-empty
933    intersection.  */
934
935 static inline bool
936 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
937 {
938   return (value_inside_range (vr1->min, vr0) == 1
939           || value_inside_range (vr1->max, vr0) == 1
940           || value_inside_range (vr0->min, vr1) == 1
941           || value_inside_range (vr0->max, vr1) == 1);
942 }
943
944
945 /* Return true if VR includes the value zero, false otherwise.  FIXME,
946    currently this will return false for an anti-range like ~[-4, 3].
947    This will be wrong when the semantics of value_inside_range are
948    modified (currently the users of this function expect these
949    semantics).  */
950
951 static inline bool
952 range_includes_zero_p (value_range_t *vr)
953 {
954   tree zero;
955
956   gcc_assert (vr->type != VR_UNDEFINED
957               && vr->type != VR_VARYING
958               && !symbolic_range_p (vr));
959
960   zero = build_int_cst (TREE_TYPE (vr->min), 0);
961   return (value_inside_range (zero, vr) == 1);
962 }
963
964 /* Return true if T, an SSA_NAME, is known to be nonnegative.  Return
965    false otherwise or if no value range information is available.  */
966
967 bool
968 ssa_name_nonnegative_p (tree t)
969 {
970   value_range_t *vr = get_value_range (t);
971
972   if (!vr)
973     return false;
974
975   /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
976      which would return a useful value should be encoded as a VR_RANGE.  */
977   if (vr->type == VR_RANGE)
978     {
979       int result = compare_values (vr->min, integer_zero_node);
980
981       return (result == 0 || result == 1);
982     }
983   return false;
984 }
985
986 /* Return true if T, an SSA_NAME, is known to be nonzero.  Return
987    false otherwise or if no value range information is available.  */
988
989 bool
990 ssa_name_nonzero_p (tree t)
991 {
992   value_range_t *vr = get_value_range (t);
993
994   if (!vr)
995     return false;
996
997   /* A VR_RANGE which does not include zero is a nonzero value.  */
998   if (vr->type == VR_RANGE && !symbolic_range_p (vr))
999     return ! range_includes_zero_p (vr);
1000
1001   /* A VR_ANTI_RANGE which does include zero is a nonzero value.  */
1002   if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1003     return range_includes_zero_p (vr);
1004
1005   return false;
1006 }
1007
1008
1009 /* Extract value range information from an ASSERT_EXPR EXPR and store
1010    it in *VR_P.  */
1011
1012 static void
1013 extract_range_from_assert (value_range_t *vr_p, tree expr)
1014 {
1015   tree var, cond, limit, min, max, type;
1016   value_range_t *var_vr, *limit_vr;
1017   enum tree_code cond_code;
1018
1019   var = ASSERT_EXPR_VAR (expr);
1020   cond = ASSERT_EXPR_COND (expr);
1021
1022   gcc_assert (COMPARISON_CLASS_P (cond));
1023
1024   /* Find VAR in the ASSERT_EXPR conditional.  */
1025   if (var == TREE_OPERAND (cond, 0))
1026     {
1027       /* If the predicate is of the form VAR COMP LIMIT, then we just
1028          take LIMIT from the RHS and use the same comparison code.  */
1029       limit = TREE_OPERAND (cond, 1);
1030       cond_code = TREE_CODE (cond);
1031     }
1032   else
1033     {
1034       /* If the predicate is of the form LIMIT COMP VAR, then we need
1035          to flip around the comparison code to create the proper range
1036          for VAR.  */
1037       limit = TREE_OPERAND (cond, 0);
1038       cond_code = swap_tree_comparison (TREE_CODE (cond));
1039     }
1040
1041   limit = avoid_overflow_infinity (limit);
1042
1043   type = TREE_TYPE (limit);
1044   gcc_assert (limit != var);
1045
1046   /* For pointer arithmetic, we only keep track of pointer equality
1047      and inequality.  */
1048   if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1049     {
1050       set_value_range_to_varying (vr_p);
1051       return;
1052     }
1053
1054   /* If LIMIT is another SSA name and LIMIT has a range of its own,
1055      try to use LIMIT's range to avoid creating symbolic ranges
1056      unnecessarily. */
1057   limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1058
1059   /* LIMIT's range is only interesting if it has any useful information.  */
1060   if (limit_vr
1061       && (limit_vr->type == VR_UNDEFINED
1062           || limit_vr->type == VR_VARYING
1063           || symbolic_range_p (limit_vr)))
1064     limit_vr = NULL;
1065
1066   /* Initially, the new range has the same set of equivalences of
1067      VAR's range.  This will be revised before returning the final
1068      value.  Since assertions may be chained via mutually exclusive
1069      predicates, we will need to trim the set of equivalences before
1070      we are done.  */
1071   gcc_assert (vr_p->equiv == NULL);
1072   vr_p->equiv = BITMAP_ALLOC (NULL);
1073   add_equivalence (vr_p->equiv, var);
1074
1075   /* Extract a new range based on the asserted comparison for VAR and
1076      LIMIT's value range.  Notice that if LIMIT has an anti-range, we
1077      will only use it for equality comparisons (EQ_EXPR).  For any
1078      other kind of assertion, we cannot derive a range from LIMIT's
1079      anti-range that can be used to describe the new range.  For
1080      instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
1081      then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
1082      no single range for x_2 that could describe LE_EXPR, so we might
1083      as well build the range [b_4, +INF] for it.  */
1084   if (cond_code == EQ_EXPR)
1085     {
1086       enum value_range_type range_type;
1087
1088       if (limit_vr)
1089         {
1090           range_type = limit_vr->type;
1091           min = limit_vr->min;
1092           max = limit_vr->max;
1093         }
1094       else
1095         {
1096           range_type = VR_RANGE;
1097           min = limit;
1098           max = limit;
1099         }
1100
1101       set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1102
1103       /* When asserting the equality VAR == LIMIT and LIMIT is another
1104          SSA name, the new range will also inherit the equivalence set
1105          from LIMIT.  */
1106       if (TREE_CODE (limit) == SSA_NAME)
1107         add_equivalence (vr_p->equiv, limit);
1108     }
1109   else if (cond_code == NE_EXPR)
1110     {
1111       /* As described above, when LIMIT's range is an anti-range and
1112          this assertion is an inequality (NE_EXPR), then we cannot
1113          derive anything from the anti-range.  For instance, if
1114          LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1115          not imply that VAR's range is [0, 0].  So, in the case of
1116          anti-ranges, we just assert the inequality using LIMIT and
1117          not its anti-range.
1118
1119          If LIMIT_VR is a range, we can only use it to build a new
1120          anti-range if LIMIT_VR is a single-valued range.  For
1121          instance, if LIMIT_VR is [0, 1], the predicate
1122          VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1123          Rather, it means that for value 0 VAR should be ~[0, 0]
1124          and for value 1, VAR should be ~[1, 1].  We cannot
1125          represent these ranges.
1126
1127          The only situation in which we can build a valid
1128          anti-range is when LIMIT_VR is a single-valued range
1129          (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case, 
1130          build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
1131       if (limit_vr
1132           && limit_vr->type == VR_RANGE
1133           && compare_values (limit_vr->min, limit_vr->max) == 0)
1134         {
1135           min = limit_vr->min;
1136           max = limit_vr->max;
1137         }
1138       else
1139         {
1140           /* In any other case, we cannot use LIMIT's range to build a
1141              valid anti-range.  */
1142           min = max = limit;
1143         }
1144
1145       /* If MIN and MAX cover the whole range for their type, then
1146          just use the original LIMIT.  */
1147       if (INTEGRAL_TYPE_P (type)
1148           && vrp_val_is_min (min)
1149           && vrp_val_is_max (max))
1150         min = max = limit;
1151
1152       set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1153     }
1154   else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1155     {
1156       min = TYPE_MIN_VALUE (type);
1157
1158       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1159         max = limit;
1160       else
1161         {
1162           /* If LIMIT_VR is of the form [N1, N2], we need to build the
1163              range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1164              LT_EXPR.  */
1165           max = limit_vr->max;
1166         }
1167
1168       /* If the maximum value forces us to be out of bounds, simply punt.
1169          It would be pointless to try and do anything more since this
1170          all should be optimized away above us.  */
1171       if ((cond_code == LT_EXPR
1172            && compare_values (max, min) == 0)
1173           || is_overflow_infinity (max))
1174         set_value_range_to_varying (vr_p);
1175       else
1176         {
1177           /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
1178           if (cond_code == LT_EXPR)
1179             {
1180               tree one = build_int_cst (type, 1);
1181               max = fold_build2 (MINUS_EXPR, type, max, one);
1182               if (EXPR_P (max))
1183                 TREE_NO_WARNING (max) = 1;
1184             }
1185
1186           set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1187         }
1188     }
1189   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1190     {
1191       max = TYPE_MAX_VALUE (type);
1192
1193       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1194         min = limit;
1195       else
1196         {
1197           /* If LIMIT_VR is of the form [N1, N2], we need to build the
1198              range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1199              GT_EXPR.  */
1200           min = limit_vr->min;
1201         }
1202
1203       /* If the minimum value forces us to be out of bounds, simply punt.
1204          It would be pointless to try and do anything more since this
1205          all should be optimized away above us.  */
1206       if ((cond_code == GT_EXPR
1207            && compare_values (min, max) == 0)
1208           || is_overflow_infinity (min))
1209         set_value_range_to_varying (vr_p);
1210       else
1211         {
1212           /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
1213           if (cond_code == GT_EXPR)
1214             {
1215               tree one = build_int_cst (type, 1);
1216               min = fold_build2 (PLUS_EXPR, type, min, one);
1217               if (EXPR_P (min))
1218                 TREE_NO_WARNING (min) = 1;
1219             }
1220
1221           set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1222         }
1223     }
1224   else
1225     gcc_unreachable ();
1226
1227   /* If VAR already had a known range, it may happen that the new
1228      range we have computed and VAR's range are not compatible.  For
1229      instance,
1230
1231         if (p_5 == NULL)
1232           p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1233           x_7 = p_6->fld;
1234           p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1235
1236      While the above comes from a faulty program, it will cause an ICE
1237      later because p_8 and p_6 will have incompatible ranges and at
1238      the same time will be considered equivalent.  A similar situation
1239      would arise from
1240
1241         if (i_5 > 10)
1242           i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1243           if (i_5 < 5)
1244             i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1245
1246      Again i_6 and i_7 will have incompatible ranges.  It would be
1247      pointless to try and do anything with i_7's range because
1248      anything dominated by 'if (i_5 < 5)' will be optimized away.
1249      Note, due to the wa in which simulation proceeds, the statement
1250      i_7 = ASSERT_EXPR <...> we would never be visited because the
1251      conditional 'if (i_5 < 5)' always evaluates to false.  However,
1252      this extra check does not hurt and may protect against future
1253      changes to VRP that may get into a situation similar to the
1254      NULL pointer dereference example.
1255
1256      Note that these compatibility tests are only needed when dealing
1257      with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
1258      are both anti-ranges, they will always be compatible, because two
1259      anti-ranges will always have a non-empty intersection.  */
1260
1261   var_vr = get_value_range (var);
1262
1263   /* We may need to make adjustments when VR_P and VAR_VR are numeric
1264      ranges or anti-ranges.  */
1265   if (vr_p->type == VR_VARYING
1266       || vr_p->type == VR_UNDEFINED
1267       || var_vr->type == VR_VARYING
1268       || var_vr->type == VR_UNDEFINED
1269       || symbolic_range_p (vr_p)
1270       || symbolic_range_p (var_vr))
1271     return;
1272
1273   if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1274     {
1275       /* If the two ranges have a non-empty intersection, we can
1276          refine the resulting range.  Since the assert expression
1277          creates an equivalency and at the same time it asserts a
1278          predicate, we can take the intersection of the two ranges to
1279          get better precision.  */
1280       if (value_ranges_intersect_p (var_vr, vr_p))
1281         {
1282           /* Use the larger of the two minimums.  */
1283           if (compare_values (vr_p->min, var_vr->min) == -1)
1284             min = var_vr->min;
1285           else
1286             min = vr_p->min;
1287
1288           /* Use the smaller of the two maximums.  */
1289           if (compare_values (vr_p->max, var_vr->max) == 1)
1290             max = var_vr->max;
1291           else
1292             max = vr_p->max;
1293
1294           set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1295         }
1296       else
1297         {
1298           /* The two ranges do not intersect, set the new range to
1299              VARYING, because we will not be able to do anything
1300              meaningful with it.  */
1301           set_value_range_to_varying (vr_p);
1302         }
1303     }
1304   else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1305            || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1306     {
1307       /* A range and an anti-range will cancel each other only if
1308          their ends are the same.  For instance, in the example above,
1309          p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1310          so VR_P should be set to VR_VARYING.  */
1311       if (compare_values (var_vr->min, vr_p->min) == 0
1312           && compare_values (var_vr->max, vr_p->max) == 0)
1313         set_value_range_to_varying (vr_p);
1314       else
1315         {
1316           tree min, max, anti_min, anti_max, real_min, real_max;
1317
1318           /* We want to compute the logical AND of the two ranges;
1319              there are three cases to consider.
1320
1321
1322              1. The VR_ANTI_RANGE range is completely within the 
1323                 VR_RANGE and the endpoints of the ranges are
1324                 different.  In that case the resulting range
1325                 should be whichever range is more precise.
1326                 Typically that will be the VR_RANGE.
1327
1328              2. The VR_ANTI_RANGE is completely disjoint from
1329                 the VR_RANGE.  In this case the resulting range
1330                 should be the VR_RANGE.
1331
1332              3. There is some overlap between the VR_ANTI_RANGE
1333                 and the VR_RANGE.
1334
1335                 3a. If the high limit of the VR_ANTI_RANGE resides
1336                     within the VR_RANGE, then the result is a new
1337                     VR_RANGE starting at the high limit of the
1338                     the VR_ANTI_RANGE + 1 and extending to the
1339                     high limit of the original VR_RANGE.
1340
1341                 3b. If the low limit of the VR_ANTI_RANGE resides
1342                     within the VR_RANGE, then the result is a new
1343                     VR_RANGE starting at the low limit of the original
1344                     VR_RANGE and extending to the low limit of the
1345                     VR_ANTI_RANGE - 1.  */
1346           if (vr_p->type == VR_ANTI_RANGE)
1347             {
1348               anti_min = vr_p->min;
1349               anti_max = vr_p->max;
1350               real_min = var_vr->min;
1351               real_max = var_vr->max;
1352             }
1353           else
1354             {
1355               anti_min = var_vr->min;
1356               anti_max = var_vr->max;
1357               real_min = vr_p->min;
1358               real_max = vr_p->max;
1359             }
1360
1361
1362           /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1363              not including any endpoints.  */
1364           if (compare_values (anti_max, real_max) == -1
1365               && compare_values (anti_min, real_min) == 1)
1366             {
1367               set_value_range (vr_p, VR_RANGE, real_min,
1368                                real_max, vr_p->equiv);
1369             }
1370           /* Case 2, VR_ANTI_RANGE completely disjoint from
1371              VR_RANGE.  */
1372           else if (compare_values (anti_min, real_max) == 1
1373                    || compare_values (anti_max, real_min) == -1)
1374             {
1375               set_value_range (vr_p, VR_RANGE, real_min,
1376                                real_max, vr_p->equiv);
1377             }
1378           /* Case 3a, the anti-range extends into the low
1379              part of the real range.  Thus creating a new
1380              low for the real range.  */
1381           else if ((compare_values (anti_max, real_min) == 1
1382                     || compare_values (anti_max, real_min) == 0)
1383                    && compare_values (anti_max, real_max) == -1)
1384             {
1385               gcc_assert (!is_positive_overflow_infinity (anti_max));
1386               if (needs_overflow_infinity (TREE_TYPE (anti_max))
1387                   && vrp_val_is_max (anti_max))
1388                 {
1389                   if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1390                     {
1391                       set_value_range_to_varying (vr_p);
1392                       return;
1393                     }
1394                   min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1395                 }
1396               else
1397                 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1398                                    anti_max,
1399                                    build_int_cst (TREE_TYPE (var_vr->min), 1));
1400               max = real_max;
1401               set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1402             }
1403           /* Case 3b, the anti-range extends into the high
1404              part of the real range.  Thus creating a new
1405              higher for the real range.  */
1406           else if (compare_values (anti_min, real_min) == 1
1407                    && (compare_values (anti_min, real_max) == -1
1408                        || compare_values (anti_min, real_max) == 0))
1409             {
1410               gcc_assert (!is_negative_overflow_infinity (anti_min));
1411               if (needs_overflow_infinity (TREE_TYPE (anti_min))
1412                   && vrp_val_is_min (anti_min))
1413                 {
1414                   if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1415                     {
1416                       set_value_range_to_varying (vr_p);
1417                       return;
1418                     }
1419                   max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1420                 }
1421               else
1422                 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1423                                    anti_min,
1424                                    build_int_cst (TREE_TYPE (var_vr->min), 1));
1425               min = real_min;
1426               set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1427             }
1428         }
1429     }
1430 }
1431
1432
1433 /* Extract range information from SSA name VAR and store it in VR.  If
1434    VAR has an interesting range, use it.  Otherwise, create the
1435    range [VAR, VAR] and return it.  This is useful in situations where
1436    we may have conditionals testing values of VARYING names.  For
1437    instance,
1438
1439         x_3 = y_5;
1440         if (x_3 > y_5)
1441           ...
1442
1443     Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1444     always false.  */
1445
1446 static void
1447 extract_range_from_ssa_name (value_range_t *vr, tree var)
1448 {
1449   value_range_t *var_vr = get_value_range (var);
1450
1451   if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1452     copy_value_range (vr, var_vr);
1453   else
1454     set_value_range (vr, VR_RANGE, var, var, NULL);
1455
1456   add_equivalence (vr->equiv, var);
1457 }
1458
1459
1460 /* Wrapper around int_const_binop.  If the operation overflows and we
1461    are not using wrapping arithmetic, then adjust the result to be
1462    -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
1463    NULL_TREE if we need to use an overflow infinity representation but
1464    the type does not support it.  */
1465
1466 static tree
1467 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1468 {
1469   tree res;
1470
1471   res = int_const_binop (code, val1, val2, 0);
1472
1473   /* If we are not using wrapping arithmetic, operate symbolically
1474      on -INF and +INF.  */
1475   if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1476     {
1477       int checkz = compare_values (res, val1);
1478       bool overflow = false;
1479
1480       /* Ensure that res = val1 [+*] val2 >= val1
1481          or that res = val1 - val2 <= val1.  */
1482       if ((code == PLUS_EXPR
1483            && !(checkz == 1 || checkz == 0))
1484           || (code == MINUS_EXPR
1485               && !(checkz == 0 || checkz == -1)))
1486         {
1487           overflow = true;
1488         }
1489       /* Checking for multiplication overflow is done by dividing the
1490          output of the multiplication by the first input of the
1491          multiplication.  If the result of that division operation is
1492          not equal to the second input of the multiplication, then the
1493          multiplication overflowed.  */
1494       else if (code == MULT_EXPR && !integer_zerop (val1))
1495         {
1496           tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1497                                       res,
1498                                       val1, 0);
1499           int check = compare_values (tmp, val2);
1500
1501           if (check != 0)
1502             overflow = true;
1503         }
1504
1505       if (overflow)
1506         {
1507           res = copy_node (res);
1508           TREE_OVERFLOW (res) = 1;
1509         }
1510
1511     }
1512   else if ((TREE_OVERFLOW (res)
1513             && !TREE_OVERFLOW (val1)
1514             && !TREE_OVERFLOW (val2))
1515            || is_overflow_infinity (val1)
1516            || is_overflow_infinity (val2))
1517     {
1518       /* If the operation overflowed but neither VAL1 nor VAL2 are
1519          overflown, return -INF or +INF depending on the operation
1520          and the combination of signs of the operands.  */
1521       int sgn1 = tree_int_cst_sgn (val1);
1522       int sgn2 = tree_int_cst_sgn (val2);
1523
1524       if (needs_overflow_infinity (TREE_TYPE (res))
1525           && !supports_overflow_infinity (TREE_TYPE (res)))
1526         return NULL_TREE;
1527
1528       /* We have to punt on adding infinities of different signs,
1529          since we can't tell what the sign of the result should be.
1530          Likewise for subtracting infinities of the same sign.  */
1531       if (((code == PLUS_EXPR && sgn1 != sgn2)
1532            || (code == MINUS_EXPR && sgn1 == sgn2))
1533           && is_overflow_infinity (val1)
1534           && is_overflow_infinity (val2))
1535         return NULL_TREE;
1536
1537       /* Don't try to handle division or shifting of infinities.  */
1538       if ((code == TRUNC_DIV_EXPR
1539            || code == FLOOR_DIV_EXPR
1540            || code == CEIL_DIV_EXPR
1541            || code == EXACT_DIV_EXPR
1542            || code == ROUND_DIV_EXPR
1543            || code == RSHIFT_EXPR)
1544           && (is_overflow_infinity (val1)
1545               || is_overflow_infinity (val2)))
1546         return NULL_TREE;
1547
1548       /* Notice that we only need to handle the restricted set of
1549          operations handled by extract_range_from_binary_expr.
1550          Among them, only multiplication, addition and subtraction
1551          can yield overflow without overflown operands because we
1552          are working with integral types only... except in the
1553          case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1554          for division too.  */
1555
1556       /* For multiplication, the sign of the overflow is given
1557          by the comparison of the signs of the operands.  */
1558       if ((code == MULT_EXPR && sgn1 == sgn2)
1559           /* For addition, the operands must be of the same sign
1560              to yield an overflow.  Its sign is therefore that
1561              of one of the operands, for example the first.  For
1562              infinite operands X + -INF is negative, not positive.  */
1563           || (code == PLUS_EXPR
1564               && (sgn1 >= 0
1565                   ? !is_negative_overflow_infinity (val2)
1566                   : is_positive_overflow_infinity (val2)))
1567           /* For subtraction, non-infinite operands must be of
1568              different signs to yield an overflow.  Its sign is
1569              therefore that of the first operand or the opposite of
1570              that of the second operand.  A first operand of 0 counts
1571              as positive here, for the corner case 0 - (-INF), which
1572              overflows, but must yield +INF.  For infinite operands 0
1573              - INF is negative, not positive.  */
1574           || (code == MINUS_EXPR
1575               && (sgn1 >= 0
1576                   ? !is_positive_overflow_infinity (val2)
1577                   : is_negative_overflow_infinity (val2)))
1578           /* For division, the only case is -INF / -1 = +INF.  */
1579           || code == TRUNC_DIV_EXPR
1580           || code == FLOOR_DIV_EXPR
1581           || code == CEIL_DIV_EXPR
1582           || code == EXACT_DIV_EXPR
1583           || code == ROUND_DIV_EXPR)
1584         return (needs_overflow_infinity (TREE_TYPE (res))
1585                 ? positive_overflow_infinity (TREE_TYPE (res))
1586                 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1587       else
1588         return (needs_overflow_infinity (TREE_TYPE (res))
1589                 ? negative_overflow_infinity (TREE_TYPE (res))
1590                 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1591     }
1592
1593   return res;
1594 }
1595
1596
1597 /* Extract range information from a binary expression EXPR based on
1598    the ranges of each of its operands and the expression code.  */
1599
1600 static void
1601 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1602 {
1603   enum tree_code code = TREE_CODE (expr);
1604   enum value_range_type type;
1605   tree op0, op1, min, max;
1606   int cmp;
1607   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1608   value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1609
1610   /* Not all binary expressions can be applied to ranges in a
1611      meaningful way.  Handle only arithmetic operations.  */
1612   if (code != PLUS_EXPR
1613       && code != MINUS_EXPR
1614       && code != MULT_EXPR
1615       && code != TRUNC_DIV_EXPR
1616       && code != FLOOR_DIV_EXPR
1617       && code != CEIL_DIV_EXPR
1618       && code != EXACT_DIV_EXPR
1619       && code != ROUND_DIV_EXPR
1620       && code != MIN_EXPR
1621       && code != MAX_EXPR
1622       && code != BIT_AND_EXPR
1623       && code != TRUTH_ANDIF_EXPR
1624       && code != TRUTH_ORIF_EXPR
1625       && code != TRUTH_AND_EXPR
1626       && code != TRUTH_OR_EXPR)
1627     {
1628       set_value_range_to_varying (vr);
1629       return;
1630     }
1631
1632   /* Get value ranges for each operand.  For constant operands, create
1633      a new value range with the operand to simplify processing.  */
1634   op0 = TREE_OPERAND (expr, 0);
1635   if (TREE_CODE (op0) == SSA_NAME)
1636     vr0 = *(get_value_range (op0));
1637   else if (is_gimple_min_invariant (op0))
1638     set_value_range_to_value (&vr0, op0, NULL);
1639   else
1640     set_value_range_to_varying (&vr0);
1641
1642   op1 = TREE_OPERAND (expr, 1);
1643   if (TREE_CODE (op1) == SSA_NAME)
1644     vr1 = *(get_value_range (op1));
1645   else if (is_gimple_min_invariant (op1))
1646     set_value_range_to_value (&vr1, op1, NULL);
1647   else
1648     set_value_range_to_varying (&vr1);
1649
1650   /* If either range is UNDEFINED, so is the result.  */
1651   if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1652     {
1653       set_value_range_to_undefined (vr);
1654       return;
1655     }
1656
1657   /* The type of the resulting value range defaults to VR0.TYPE.  */
1658   type = vr0.type;
1659
1660   /* Refuse to operate on VARYING ranges, ranges of different kinds
1661      and symbolic ranges.  As an exception, we allow BIT_AND_EXPR
1662      because we may be able to derive a useful range even if one of
1663      the operands is VR_VARYING or symbolic range.  TODO, we may be
1664      able to derive anti-ranges in some cases.  */
1665   if (code != BIT_AND_EXPR
1666       && code != TRUTH_AND_EXPR
1667       && code != TRUTH_OR_EXPR
1668       && (vr0.type == VR_VARYING
1669           || vr1.type == VR_VARYING
1670           || vr0.type != vr1.type
1671           || symbolic_range_p (&vr0)
1672           || symbolic_range_p (&vr1)))
1673     {
1674       set_value_range_to_varying (vr);
1675       return;
1676     }
1677
1678   /* Now evaluate the expression to determine the new range.  */
1679   if (POINTER_TYPE_P (TREE_TYPE (expr))
1680       || POINTER_TYPE_P (TREE_TYPE (op0))
1681       || POINTER_TYPE_P (TREE_TYPE (op1)))
1682     {
1683       /* For pointer types, we are really only interested in asserting
1684          whether the expression evaluates to non-NULL.  FIXME, we used
1685          to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1686          ivopts is generating expressions with pointer multiplication
1687          in them.  */
1688       if (code == PLUS_EXPR)
1689         {
1690           if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1691             set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1692           else if (range_is_null (&vr0) && range_is_null (&vr1))
1693             set_value_range_to_null (vr, TREE_TYPE (expr));
1694           else
1695             set_value_range_to_varying (vr);
1696         }
1697       else
1698         {
1699           /* Subtracting from a pointer, may yield 0, so just drop the
1700              resulting range to varying.  */
1701           set_value_range_to_varying (vr);
1702         }
1703
1704       return;
1705     }
1706
1707   /* For integer ranges, apply the operation to each end of the
1708      range and see what we end up with.  */
1709   if (code == TRUTH_ANDIF_EXPR
1710       || code == TRUTH_ORIF_EXPR
1711       || code == TRUTH_AND_EXPR
1712       || code == TRUTH_OR_EXPR)
1713     {
1714       /* If one of the operands is zero, we know that the whole
1715          expression evaluates zero.  */
1716       if (code == TRUTH_AND_EXPR
1717           && ((vr0.type == VR_RANGE
1718                && integer_zerop (vr0.min)
1719                && integer_zerop (vr0.max))
1720               || (vr1.type == VR_RANGE
1721                   && integer_zerop (vr1.min)
1722                   && integer_zerop (vr1.max))))
1723         {
1724           type = VR_RANGE;
1725           min = max = build_int_cst (TREE_TYPE (expr), 0);
1726         }
1727       /* If one of the operands is one, we know that the whole
1728          expression evaluates one.  */
1729       else if (code == TRUTH_OR_EXPR
1730                && ((vr0.type == VR_RANGE
1731                     && integer_onep (vr0.min)
1732                     && integer_onep (vr0.max))
1733                    || (vr1.type == VR_RANGE
1734                        && integer_onep (vr1.min)
1735                        && integer_onep (vr1.max))))
1736         {
1737           type = VR_RANGE;
1738           min = max = build_int_cst (TREE_TYPE (expr), 1);
1739         }
1740       else if (vr0.type != VR_VARYING
1741                && vr1.type != VR_VARYING
1742                && vr0.type == vr1.type
1743                && !symbolic_range_p (&vr0)
1744                && !overflow_infinity_range_p (&vr0)
1745                && !symbolic_range_p (&vr1)
1746                && !overflow_infinity_range_p (&vr1))
1747         {
1748           /* Boolean expressions cannot be folded with int_const_binop.  */
1749           min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1750           max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1751         }
1752       else
1753         {
1754           set_value_range_to_varying (vr);
1755           return;
1756         }
1757     }
1758   else if (code == PLUS_EXPR
1759            || code == MIN_EXPR
1760            || code == MAX_EXPR)
1761     {
1762       /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1763          VR_VARYING.  It would take more effort to compute a precise
1764          range for such a case.  For example, if we have op0 == 1 and
1765          op1 == -1 with their ranges both being ~[0,0], we would have
1766          op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1767          Note that we are guaranteed to have vr0.type == vr1.type at
1768          this point.  */
1769       if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1770         {
1771           set_value_range_to_varying (vr);
1772           return;
1773         }
1774
1775       /* For operations that make the resulting range directly
1776          proportional to the original ranges, apply the operation to
1777          the same end of each range.  */
1778       min = vrp_int_const_binop (code, vr0.min, vr1.min);
1779       max = vrp_int_const_binop (code, vr0.max, vr1.max);
1780     }
1781   else if (code == MULT_EXPR
1782            || code == TRUNC_DIV_EXPR
1783            || code == FLOOR_DIV_EXPR
1784            || code == CEIL_DIV_EXPR
1785            || code == EXACT_DIV_EXPR
1786            || code == ROUND_DIV_EXPR)
1787     {
1788       tree val[4];
1789       size_t i;
1790       bool sop;
1791
1792       /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1793          drop to VR_VARYING.  It would take more effort to compute a
1794          precise range for such a case.  For example, if we have
1795          op0 == 65536 and op1 == 65536 with their ranges both being
1796          ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1797          we cannot claim that the product is in ~[0,0].  Note that we
1798          are guaranteed to have vr0.type == vr1.type at this
1799          point.  */
1800       if (code == MULT_EXPR
1801           && vr0.type == VR_ANTI_RANGE
1802           && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1803         {
1804           set_value_range_to_varying (vr);
1805           return;
1806         }
1807
1808       /* Multiplications and divisions are a bit tricky to handle,
1809          depending on the mix of signs we have in the two ranges, we
1810          need to operate on different values to get the minimum and
1811          maximum values for the new range.  One approach is to figure
1812          out all the variations of range combinations and do the
1813          operations.
1814
1815          However, this involves several calls to compare_values and it
1816          is pretty convoluted.  It's simpler to do the 4 operations
1817          (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1818          MAX1) and then figure the smallest and largest values to form
1819          the new range.  */
1820
1821       /* Divisions by zero result in a VARYING value.  */
1822       if (code != MULT_EXPR
1823           && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1824         {
1825           set_value_range_to_varying (vr);
1826           return;
1827         }
1828
1829       /* Compute the 4 cross operations.  */
1830       sop = false;
1831       val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1832       if (val[0] == NULL_TREE)
1833         sop = true;
1834
1835       if (vr1.max == vr1.min)
1836         val[1] = NULL_TREE;
1837       else
1838         {
1839           val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1840           if (val[1] == NULL_TREE)
1841             sop = true;
1842         }
1843
1844       if (vr0.max == vr0.min)
1845         val[2] = NULL_TREE;
1846       else
1847         {
1848           val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1849           if (val[2] == NULL_TREE)
1850             sop = true;
1851         }
1852
1853       if (vr0.min == vr0.max || vr1.min == vr1.max)
1854         val[3] = NULL_TREE;
1855       else
1856         {
1857           val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1858           if (val[3] == NULL_TREE)
1859             sop = true;
1860         }
1861
1862       if (sop)
1863         {
1864           set_value_range_to_varying (vr);
1865           return;
1866         }
1867
1868       /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1869          of VAL[i].  */
1870       min = val[0];
1871       max = val[0];
1872       for (i = 1; i < 4; i++)
1873         {
1874           if (!is_gimple_min_invariant (min)
1875               || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1876               || !is_gimple_min_invariant (max)
1877               || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1878             break;
1879
1880           if (val[i])
1881             {
1882               if (!is_gimple_min_invariant (val[i])
1883                   || (TREE_OVERFLOW (val[i])
1884                       && !is_overflow_infinity (val[i])))
1885                 {
1886                   /* If we found an overflowed value, set MIN and MAX
1887                      to it so that we set the resulting range to
1888                      VARYING.  */
1889                   min = max = val[i];
1890                   break;
1891                 }
1892
1893               if (compare_values (val[i], min) == -1)
1894                 min = val[i];
1895
1896               if (compare_values (val[i], max) == 1)
1897                 max = val[i];
1898             }
1899         }
1900     }
1901   else if (code == MINUS_EXPR)
1902     {
1903       /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1904          VR_VARYING.  It would take more effort to compute a precise
1905          range for such a case.  For example, if we have op0 == 1 and
1906          op1 == 1 with their ranges both being ~[0,0], we would have
1907          op0 - op1 == 0, so we cannot claim that the difference is in
1908          ~[0,0].  Note that we are guaranteed to have
1909          vr0.type == vr1.type at this point.  */
1910       if (vr0.type == VR_ANTI_RANGE)
1911         {
1912           set_value_range_to_varying (vr);
1913           return;
1914         }
1915
1916       /* For MINUS_EXPR, apply the operation to the opposite ends of
1917          each range.  */
1918       min = vrp_int_const_binop (code, vr0.min, vr1.max);
1919       max = vrp_int_const_binop (code, vr0.max, vr1.min);
1920     }
1921   else if (code == BIT_AND_EXPR)
1922     {
1923       if (vr0.type == VR_RANGE
1924           && vr0.min == vr0.max
1925           && TREE_CODE (vr0.max) == INTEGER_CST
1926           && !TREE_OVERFLOW (vr0.max)
1927           && tree_int_cst_sgn (vr0.max) >= 0)
1928         {
1929           min = build_int_cst (TREE_TYPE (expr), 0);
1930           max = vr0.max;
1931         }
1932       else if (vr1.type == VR_RANGE
1933                && vr1.min == vr1.max
1934                && TREE_CODE (vr1.max) == INTEGER_CST
1935                && !TREE_OVERFLOW (vr1.max)
1936                && tree_int_cst_sgn (vr1.max) >= 0)
1937         {
1938           type = VR_RANGE;
1939           min = build_int_cst (TREE_TYPE (expr), 0);
1940           max = vr1.max;
1941         }
1942       else
1943         {
1944           set_value_range_to_varying (vr);
1945           return;
1946         }
1947     }
1948   else
1949     gcc_unreachable ();
1950
1951   /* If either MIN or MAX overflowed, then set the resulting range to
1952      VARYING.  But we do accept an overflow infinity
1953      representation.  */
1954   if (min == NULL_TREE
1955       || !is_gimple_min_invariant (min)
1956       || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1957       || max == NULL_TREE
1958       || !is_gimple_min_invariant (max)
1959       || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1960     {
1961       set_value_range_to_varying (vr);
1962       return;
1963     }
1964
1965   /* We punt if:
1966      1) [-INF, +INF]
1967      2) [-INF, +-INF(OVF)]
1968      3) [+-INF(OVF), +INF]
1969      4) [+-INF(OVF), +-INF(OVF)]
1970      We learn nothing when we have INF and INF(OVF) on both sides.
1971      Note that we do accept [-INF, -INF] and [+INF, +INF] without
1972      overflow.  */
1973   if ((vrp_val_is_min (min) || is_overflow_infinity (min))
1974       && (vrp_val_is_max (max) || is_overflow_infinity (max)))
1975     {
1976       set_value_range_to_varying (vr);
1977       return;
1978     }
1979
1980   cmp = compare_values (min, max);
1981   if (cmp == -2 || cmp == 1)
1982     {
1983       /* If the new range has its limits swapped around (MIN > MAX),
1984          then the operation caused one of them to wrap around, mark
1985          the new range VARYING.  */
1986       set_value_range_to_varying (vr);
1987     }
1988   else
1989     set_value_range (vr, type, min, max, NULL);
1990 }
1991
1992
1993 /* Extract range information from a unary expression EXPR based on
1994    the range of its operand and the expression code.  */
1995
1996 static void
1997 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1998 {
1999   enum tree_code code = TREE_CODE (expr);
2000   tree min, max, op0;
2001   int cmp;
2002   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2003
2004   /* Refuse to operate on certain unary expressions for which we
2005      cannot easily determine a resulting range.  */
2006   if (code == FIX_TRUNC_EXPR
2007       || code == FIX_CEIL_EXPR
2008       || code == FIX_FLOOR_EXPR
2009       || code == FIX_ROUND_EXPR
2010       || code == FLOAT_EXPR
2011       || code == BIT_NOT_EXPR
2012       || code == NON_LVALUE_EXPR
2013       || code == CONJ_EXPR)
2014     {
2015       set_value_range_to_varying (vr);
2016       return;
2017     }
2018
2019   /* Get value ranges for the operand.  For constant operands, create
2020      a new value range with the operand to simplify processing.  */
2021   op0 = TREE_OPERAND (expr, 0);
2022   if (TREE_CODE (op0) == SSA_NAME)
2023     vr0 = *(get_value_range (op0));
2024   else if (is_gimple_min_invariant (op0))
2025     set_value_range_to_value (&vr0, op0, NULL);
2026   else
2027     set_value_range_to_varying (&vr0);
2028
2029   /* If VR0 is UNDEFINED, so is the result.  */
2030   if (vr0.type == VR_UNDEFINED)
2031     {
2032       set_value_range_to_undefined (vr);
2033       return;
2034     }
2035
2036   /* Refuse to operate on symbolic ranges, or if neither operand is
2037      a pointer or integral type.  */
2038   if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2039        && !POINTER_TYPE_P (TREE_TYPE (op0)))
2040       || (vr0.type != VR_VARYING
2041           && symbolic_range_p (&vr0)))
2042     {
2043       set_value_range_to_varying (vr);
2044       return;
2045     }
2046
2047   /* If the expression involves pointers, we are only interested in
2048      determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
2049   if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2050     {
2051       bool sop;
2052
2053       sop = false;
2054       if (range_is_nonnull (&vr0)
2055           || (tree_expr_nonzero_warnv_p (expr, &sop)
2056               && !sop))
2057         set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2058       else if (range_is_null (&vr0))
2059         set_value_range_to_null (vr, TREE_TYPE (expr));
2060       else
2061         set_value_range_to_varying (vr);
2062
2063       return;
2064     }
2065
2066   /* Handle unary expressions on integer ranges.  */
2067   if (code == NOP_EXPR || code == CONVERT_EXPR)
2068     {
2069       tree inner_type = TREE_TYPE (op0);
2070       tree outer_type = TREE_TYPE (expr);
2071
2072       /* If VR0 represents a simple range, then try to convert
2073          the min and max values for the range to the same type
2074          as OUTER_TYPE.  If the results compare equal to VR0's
2075          min and max values and the new min is still less than
2076          or equal to the new max, then we can safely use the newly
2077          computed range for EXPR.  This allows us to compute
2078          accurate ranges through many casts.  */
2079       if ((vr0.type == VR_RANGE
2080            && !overflow_infinity_range_p (&vr0))
2081           || (vr0.type == VR_VARYING
2082               && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2083         {
2084           tree new_min, new_max, orig_min, orig_max;
2085
2086           /* Convert the input operand min/max to OUTER_TYPE.   If
2087              the input has no range information, then use the min/max
2088              for the input's type.  */
2089           if (vr0.type == VR_RANGE)
2090             {
2091               orig_min = vr0.min;
2092               orig_max = vr0.max;
2093             }
2094           else
2095             {
2096               orig_min = TYPE_MIN_VALUE (inner_type);
2097               orig_max = TYPE_MAX_VALUE (inner_type);
2098             }
2099
2100           new_min = fold_convert (outer_type, orig_min);
2101           new_max = fold_convert (outer_type, orig_max);
2102
2103           /* Verify the new min/max values are gimple values and
2104              that they compare equal to the original input's
2105              min/max values.  */
2106           if (is_gimple_val (new_min)
2107               && is_gimple_val (new_max)
2108               && tree_int_cst_equal (new_min, orig_min)
2109               && tree_int_cst_equal (new_max, orig_max)
2110               && (!is_overflow_infinity (new_min)
2111                   || !is_overflow_infinity (new_max))
2112               && compare_values (new_min, new_max) <= 0
2113               && compare_values (new_min, new_max) >= -1)
2114             {
2115               set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2116               return;
2117             }
2118         }
2119
2120       /* When converting types of different sizes, set the result to
2121          VARYING.  Things like sign extensions and precision loss may
2122          change the range.  For instance, if x_3 is of type 'long long
2123          int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2124          is impossible to know at compile time whether y_5 will be
2125          ~[0, 0].  */
2126       if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2127           || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2128         {
2129           set_value_range_to_varying (vr);
2130           return;
2131         }
2132     }
2133
2134   /* Conversion of a VR_VARYING value to a wider type can result
2135      in a usable range.  So wait until after we've handled conversions
2136      before dropping the result to VR_VARYING if we had a source
2137      operand that is VR_VARYING.  */
2138   if (vr0.type == VR_VARYING)
2139     {
2140       set_value_range_to_varying (vr);
2141       return;
2142     }
2143
2144   /* Apply the operation to each end of the range and see what we end
2145      up with.  */
2146   if (code == NEGATE_EXPR
2147       && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2148     {
2149       /* NEGATE_EXPR flips the range around.  We need to treat
2150          TYPE_MIN_VALUE specially.  */
2151       if (is_positive_overflow_infinity (vr0.max))
2152         min = negative_overflow_infinity (TREE_TYPE (expr));
2153       else if (is_negative_overflow_infinity (vr0.max))
2154         min = positive_overflow_infinity (TREE_TYPE (expr));
2155       else if (!vrp_val_is_min (vr0.max))
2156         min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2157       else if (needs_overflow_infinity (TREE_TYPE (expr)))
2158         {
2159           if (supports_overflow_infinity (TREE_TYPE (expr))
2160               && !is_overflow_infinity (vr0.min)
2161               && !vrp_val_is_min (vr0.min))
2162             min = positive_overflow_infinity (TREE_TYPE (expr));
2163           else
2164             {
2165               set_value_range_to_varying (vr);
2166               return;
2167             }
2168         }
2169       else
2170         min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2171
2172       if (is_positive_overflow_infinity (vr0.min))
2173         max = negative_overflow_infinity (TREE_TYPE (expr));
2174       else if (is_negative_overflow_infinity (vr0.min))
2175         max = positive_overflow_infinity (TREE_TYPE (expr));
2176       else if (!vrp_val_is_min (vr0.min))
2177         max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2178       else if (needs_overflow_infinity (TREE_TYPE (expr)))
2179         {
2180           if (supports_overflow_infinity (TREE_TYPE (expr)))
2181             max = positive_overflow_infinity (TREE_TYPE (expr));
2182           else
2183             {
2184               set_value_range_to_varying (vr);
2185               return;
2186             }
2187         }
2188       else
2189         max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2190     }
2191   else if (code == NEGATE_EXPR
2192            && TYPE_UNSIGNED (TREE_TYPE (expr)))
2193     {
2194       if (!range_includes_zero_p (&vr0))
2195         {
2196           max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2197           min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2198         }
2199       else
2200         {
2201           if (range_is_null (&vr0))
2202             set_value_range_to_null (vr, TREE_TYPE (expr));
2203           else
2204             set_value_range_to_varying (vr);
2205           return;
2206         }
2207     }
2208   else if (code == ABS_EXPR
2209            && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2210     {
2211       /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2212          useful range.  */
2213       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2214           && ((vr0.type == VR_RANGE
2215                && vrp_val_is_min (vr0.min))
2216               || (vr0.type == VR_ANTI_RANGE
2217                   && !vrp_val_is_min (vr0.min)
2218                   && !range_includes_zero_p (&vr0))))
2219         {
2220           set_value_range_to_varying (vr);
2221           return;
2222         }
2223         
2224       /* ABS_EXPR may flip the range around, if the original range
2225          included negative values.  */
2226       if (is_overflow_infinity (vr0.min))
2227         min = positive_overflow_infinity (TREE_TYPE (expr));
2228       else if (!vrp_val_is_min (vr0.min))
2229         min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2230       else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2231         min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2232       else if (supports_overflow_infinity (TREE_TYPE (expr)))
2233         min = positive_overflow_infinity (TREE_TYPE (expr));
2234       else
2235         {
2236           set_value_range_to_varying (vr);
2237           return;
2238         }
2239
2240       if (is_overflow_infinity (vr0.max))
2241         max = positive_overflow_infinity (TREE_TYPE (expr));
2242       else if (!vrp_val_is_min (vr0.max))
2243         max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2244       else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2245         max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2246       else if (supports_overflow_infinity (TREE_TYPE (expr)))
2247         max = positive_overflow_infinity (TREE_TYPE (expr));
2248       else
2249         {
2250           set_value_range_to_varying (vr);
2251           return;
2252         }
2253
2254       cmp = compare_values (min, max);
2255
2256       /* If a VR_ANTI_RANGEs contains zero, then we have
2257          ~[-INF, min(MIN, MAX)].  */
2258       if (vr0.type == VR_ANTI_RANGE)
2259         { 
2260           if (range_includes_zero_p (&vr0))
2261             {
2262               /* Take the lower of the two values.  */
2263               if (cmp != 1)
2264                 max = min;
2265
2266               /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2267                  or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2268                  flag_wrapv is set and the original anti-range doesn't include
2269                  TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
2270               if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2271                 {
2272                   tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2273
2274                   min = (vr0.min != type_min_value
2275                          ? int_const_binop (PLUS_EXPR, type_min_value,
2276                                             integer_one_node, 0)
2277                          : type_min_value);
2278                 }
2279               else
2280                 {
2281                   if (overflow_infinity_range_p (&vr0))
2282                     min = negative_overflow_infinity (TREE_TYPE (expr));
2283                   else
2284                     min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2285                 }
2286             }
2287           else
2288             {
2289               /* All else has failed, so create the range [0, INF], even for
2290                  flag_wrapv since TYPE_MIN_VALUE is in the original
2291                  anti-range.  */
2292               vr0.type = VR_RANGE;
2293               min = build_int_cst (TREE_TYPE (expr), 0);
2294               if (needs_overflow_infinity (TREE_TYPE (expr)))
2295                 {
2296                   if (supports_overflow_infinity (TREE_TYPE (expr)))
2297                     max = positive_overflow_infinity (TREE_TYPE (expr));
2298                   else
2299                     {
2300                       set_value_range_to_varying (vr);
2301                       return;
2302                     }
2303                 }
2304               else
2305                 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2306             }
2307         }
2308
2309       /* If the range contains zero then we know that the minimum value in the
2310          range will be zero.  */
2311       else if (range_includes_zero_p (&vr0))
2312         {
2313           if (cmp == 1)
2314             max = min;
2315           min = build_int_cst (TREE_TYPE (expr), 0);
2316         }
2317       else
2318         {
2319           /* If the range was reversed, swap MIN and MAX.  */
2320           if (cmp == 1)
2321             {
2322               tree t = min;
2323               min = max;
2324               max = t;
2325             }
2326         }
2327     }
2328   else
2329     {
2330       /* Otherwise, operate on each end of the range.  */
2331       min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2332       max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2333
2334       if (needs_overflow_infinity (TREE_TYPE (expr)))
2335         {
2336           gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2337
2338           /* If both sides have overflowed, we don't know
2339              anything.  */
2340           if ((is_overflow_infinity (vr0.min)
2341                || TREE_OVERFLOW (min))
2342               && (is_overflow_infinity (vr0.max)
2343                   || TREE_OVERFLOW (max)))
2344             {
2345               set_value_range_to_varying (vr);
2346               return;
2347             }
2348
2349           if (is_overflow_infinity (vr0.min))
2350             min = vr0.min;
2351           else if (TREE_OVERFLOW (min))
2352             {
2353               if (supports_overflow_infinity (TREE_TYPE (expr)))
2354                 min = (tree_int_cst_sgn (min) >= 0
2355                        ? positive_overflow_infinity (TREE_TYPE (min))
2356                        : negative_overflow_infinity (TREE_TYPE (min)));
2357               else
2358                 {
2359                   set_value_range_to_varying (vr);
2360                   return;
2361                 }
2362             }
2363
2364           if (is_overflow_infinity (vr0.max))
2365             max = vr0.max;
2366           else if (TREE_OVERFLOW (max))
2367             {
2368               if (supports_overflow_infinity (TREE_TYPE (expr)))
2369                 max = (tree_int_cst_sgn (max) >= 0
2370                        ? positive_overflow_infinity (TREE_TYPE (max))
2371                        : negative_overflow_infinity (TREE_TYPE (max)));
2372               else
2373                 {
2374                   set_value_range_to_varying (vr);
2375                   return;
2376                 }
2377             }
2378         }
2379     }
2380
2381   cmp = compare_values (min, max);
2382   if (cmp == -2 || cmp == 1)
2383     {
2384       /* If the new range has its limits swapped around (MIN > MAX),
2385          then the operation caused one of them to wrap around, mark
2386          the new range VARYING.  */
2387       set_value_range_to_varying (vr);
2388     }
2389   else
2390     set_value_range (vr, vr0.type, min, max, NULL);
2391 }
2392
2393
2394 /* Extract range information from a comparison expression EXPR based
2395    on the range of its operand and the expression code.  */
2396
2397 static void
2398 extract_range_from_comparison (value_range_t *vr, tree expr)
2399 {
2400   bool sop = false;
2401   tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2402
2403   /* A disadvantage of using a special infinity as an overflow
2404      representation is that we lose the ability to record overflow
2405      when we don't have an infinity.  So we have to ignore a result
2406      which relies on overflow.  */
2407
2408   if (val && !is_overflow_infinity (val) && !sop)
2409     {
2410       /* Since this expression was found on the RHS of an assignment,
2411          its type may be different from _Bool.  Convert VAL to EXPR's
2412          type.  */
2413       val = fold_convert (TREE_TYPE (expr), val);
2414       if (is_gimple_min_invariant (val))
2415         set_value_range_to_value (vr, val, vr->equiv);
2416       else
2417         set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2418     }
2419   else
2420     set_value_range_to_varying (vr);
2421 }
2422
2423
2424 /* Try to compute a useful range out of expression EXPR and store it
2425    in *VR.  */
2426
2427 static void
2428 extract_range_from_expr (value_range_t *vr, tree expr)
2429 {
2430   enum tree_code code = TREE_CODE (expr);
2431
2432   if (code == ASSERT_EXPR)
2433     extract_range_from_assert (vr, expr);
2434   else if (code == SSA_NAME)
2435     extract_range_from_ssa_name (vr, expr);
2436   else if (TREE_CODE_CLASS (code) == tcc_binary
2437            || code == TRUTH_ANDIF_EXPR
2438            || code == TRUTH_ORIF_EXPR
2439            || code == TRUTH_AND_EXPR
2440            || code == TRUTH_OR_EXPR
2441            || code == TRUTH_XOR_EXPR)
2442     extract_range_from_binary_expr (vr, expr);
2443   else if (TREE_CODE_CLASS (code) == tcc_unary)
2444     extract_range_from_unary_expr (vr, expr);
2445   else if (TREE_CODE_CLASS (code) == tcc_comparison)
2446     extract_range_from_comparison (vr, expr);
2447   else if (is_gimple_min_invariant (expr))
2448     set_value_range_to_value (vr, expr, NULL);
2449   else
2450     set_value_range_to_varying (vr);
2451
2452   /* If we got a varying range from the tests above, try a final
2453      time to derive a nonnegative or nonzero range.  This time
2454      relying primarily on generic routines in fold in conjunction
2455      with range data.  */
2456   if (vr->type == VR_VARYING)
2457     {
2458       bool sop = false;
2459
2460       if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2461           && vrp_expr_computes_nonnegative (expr, &sop))
2462         set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2463                                         sop || is_overflow_infinity (expr));
2464       else if (vrp_expr_computes_nonzero (expr, &sop)
2465                && !sop)
2466         set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2467     }
2468 }
2469
2470 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2471    would be profitable to adjust VR using scalar evolution information
2472    for VAR.  If so, update VR with the new limits.  */
2473
2474 static void
2475 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2476                         tree var)
2477 {
2478   tree init, step, chrec, tmin, tmax, min, max, type;
2479   enum ev_direction dir;
2480
2481   /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
2482      better opportunities than a regular range, but I'm not sure.  */
2483   if (vr->type == VR_ANTI_RANGE)
2484     return;
2485
2486   chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2487   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2488     return;
2489
2490   init = initial_condition_in_loop_num (chrec, loop->num);
2491   step = evolution_part_in_loop_num (chrec, loop->num);
2492
2493   /* If STEP is symbolic, we can't know whether INIT will be the
2494      minimum or maximum value in the range.  Also, unless INIT is
2495      a simple expression, compare_values and possibly other functions
2496      in tree-vrp won't be able to handle it.  */
2497   if (step == NULL_TREE
2498       || !is_gimple_min_invariant (step)
2499       || !valid_value_p (init))
2500     return;
2501
2502   dir = scev_direction (chrec);
2503   if (/* Do not adjust ranges if we do not know whether the iv increases
2504          or decreases,  ... */
2505       dir == EV_DIR_UNKNOWN
2506       /* ... or if it may wrap.  */
2507       || scev_probably_wraps_p (init, step, stmt,
2508                                 current_loops->parray[CHREC_VARIABLE (chrec)],
2509                                 true))
2510     return;
2511
2512   type = TREE_TYPE (var);
2513
2514   /* If we see a pointer type starting at a constant, then we have an
2515      unusual ivopt.  It may legitimately wrap.  */
2516   if (POINTER_TYPE_P (type) && is_gimple_min_invariant (init))
2517     return;
2518
2519   /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2520      negative_overflow_infinity and positive_overflow_infinity,
2521      because we have concluded that the loop probably does not
2522      wrap.  */
2523
2524   if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2525     tmin = lower_bound_in_type (type, type);
2526   else
2527     tmin = TYPE_MIN_VALUE (type);
2528   if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2529     tmax = upper_bound_in_type (type, type);
2530   else
2531     tmax = TYPE_MAX_VALUE (type);
2532
2533   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2534     {
2535       min = tmin;
2536       max = tmax;
2537
2538       /* For VARYING or UNDEFINED ranges, just about anything we get
2539          from scalar evolutions should be better.  */
2540
2541       if (dir == EV_DIR_DECREASES)
2542         max = init;
2543       else
2544         min = init;
2545
2546       /* If we would create an invalid range, then just assume we
2547          know absolutely nothing.  This may be over-conservative,
2548          but it's clearly safe, and should happen only in unreachable
2549          parts of code, or for invalid programs.  */
2550       if (compare_values (min, max) == 1)
2551         return;
2552
2553       set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2554     }
2555   else if (vr->type == VR_RANGE)
2556     {
2557       min = vr->min;
2558       max = vr->max;
2559
2560       if (dir == EV_DIR_DECREASES)
2561         {
2562           /* INIT is the maximum value.  If INIT is lower than VR->MAX
2563              but no smaller than VR->MIN, set VR->MAX to INIT.  */
2564           if (compare_values (init, max) == -1)
2565             {
2566               max = init;
2567
2568               /* If we just created an invalid range with the minimum
2569                  greater than the maximum, we fail conservatively.
2570                  This should happen only in unreachable
2571                  parts of code, or for invalid programs.  */
2572               if (compare_values (min, max) == 1)
2573                 return;
2574             }
2575
2576           /* According to the loop information, the variable does not
2577              overflow.  If we think it does, probably because of an
2578              overflow due to arithmetic on a different INF value,
2579              reset now.  */
2580           if (is_negative_overflow_infinity (min))
2581             min = tmin;
2582         }
2583       else
2584         {
2585           /* If INIT is bigger than VR->MIN, set VR->MIN to INIT.  */
2586           if (compare_values (init, min) == 1)
2587             {
2588               min = init;
2589
2590               /* Again, avoid creating invalid range by failing.  */
2591               if (compare_values (min, max) == 1)
2592                 return;
2593             }
2594
2595           if (is_positive_overflow_infinity (max))
2596             max = tmax;
2597         }
2598
2599       set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2600     }
2601 }
2602
2603 /* Return true if VAR may overflow at STMT.  This checks any available
2604    loop information to see if we can determine that VAR does not
2605    overflow.  */
2606
2607 static bool
2608 vrp_var_may_overflow (tree var, tree stmt)
2609 {
2610   struct loop *l;
2611   tree chrec, init, step;
2612
2613   if (current_loops == NULL)
2614     return true;
2615
2616   l = loop_containing_stmt (stmt);
2617   if (l == NULL)
2618     return true;
2619
2620   chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2621   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2622     return true;
2623
2624   init = initial_condition_in_loop_num (chrec, l->num);
2625   step = evolution_part_in_loop_num (chrec, l->num);
2626
2627   if (step == NULL_TREE
2628       || !is_gimple_min_invariant (step)
2629       || !valid_value_p (init))
2630     return true;
2631
2632   /* If we get here, we know something useful about VAR based on the
2633      loop information.  If it wraps, it may overflow.  */
2634
2635   if (scev_probably_wraps_p (init, step, stmt,
2636                              current_loops->parray[CHREC_VARIABLE (chrec)],
2637                              true))
2638     return true;
2639
2640   if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2641     {
2642       print_generic_expr (dump_file, var, 0);
2643       fprintf (dump_file, ": loop information indicates does not overflow\n");
2644     }
2645
2646   return false;
2647 }
2648
2649
2650 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2651    
2652    - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2653      all the values in the ranges.
2654
2655    - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2656
2657    - Return NULL_TREE if it is not always possible to determine the
2658      value of the comparison.
2659
2660    Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2661    overflow infinity was used in the test.  */
2662
2663
2664 static tree
2665 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2666                 bool *strict_overflow_p)
2667 {
2668   /* VARYING or UNDEFINED ranges cannot be compared.  */
2669   if (vr0->type == VR_VARYING
2670       || vr0->type == VR_UNDEFINED
2671       || vr1->type == VR_VARYING
2672       || vr1->type == VR_UNDEFINED)
2673     return NULL_TREE;
2674
2675   /* Anti-ranges need to be handled separately.  */
2676   if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2677     {
2678       /* If both are anti-ranges, then we cannot compute any
2679          comparison.  */
2680       if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2681         return NULL_TREE;
2682
2683       /* These comparisons are never statically computable.  */
2684       if (comp == GT_EXPR
2685           || comp == GE_EXPR
2686           || comp == LT_EXPR
2687           || comp == LE_EXPR)
2688         return NULL_TREE;
2689
2690       /* Equality can be computed only between a range and an
2691          anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
2692       if (vr0->type == VR_RANGE)
2693         {
2694           /* To simplify processing, make VR0 the anti-range.  */
2695           value_range_t *tmp = vr0;
2696           vr0 = vr1;
2697           vr1 = tmp;
2698         }
2699
2700       gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2701
2702       if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2703           && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2704         return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2705
2706       return NULL_TREE;
2707     }
2708
2709   if (!usable_range_p (vr0, strict_overflow_p)
2710       || !usable_range_p (vr1, strict_overflow_p))
2711     return NULL_TREE;
2712
2713   /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
2714      operands around and change the comparison code.  */
2715   if (comp == GT_EXPR || comp == GE_EXPR)
2716     {
2717       value_range_t *tmp;
2718       comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2719       tmp = vr0;
2720       vr0 = vr1;
2721       vr1 = tmp;
2722     }
2723
2724   if (comp == EQ_EXPR)
2725     {
2726       /* Equality may only be computed if both ranges represent
2727          exactly one value.  */
2728       if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2729           && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2730         {
2731           int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2732                                               strict_overflow_p);
2733           int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2734                                               strict_overflow_p);
2735           if (cmp_min == 0 && cmp_max == 0)
2736             return boolean_true_node;
2737           else if (cmp_min != -2 && cmp_max != -2)
2738             return boolean_false_node;
2739         }
2740       /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
2741       else if (compare_values_warnv (vr0->min, vr1->max,
2742                                      strict_overflow_p) == 1
2743                || compare_values_warnv (vr1->min, vr0->max,
2744                                         strict_overflow_p) == 1)
2745         return boolean_false_node;
2746
2747       return NULL_TREE;
2748     }
2749   else if (comp == NE_EXPR)
2750     {
2751       int cmp1, cmp2;
2752
2753       /* If VR0 is completely to the left or completely to the right
2754          of VR1, they are always different.  Notice that we need to
2755          make sure that both comparisons yield similar results to
2756          avoid comparing values that cannot be compared at
2757          compile-time.  */
2758       cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2759       cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2760       if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2761         return boolean_true_node;
2762
2763       /* If VR0 and VR1 represent a single value and are identical,
2764          return false.  */
2765       else if (compare_values_warnv (vr0->min, vr0->max,
2766                                      strict_overflow_p) == 0
2767                && compare_values_warnv (vr1->min, vr1->max,
2768                                         strict_overflow_p) == 0
2769                && compare_values_warnv (vr0->min, vr1->min,
2770                                         strict_overflow_p) == 0
2771                && compare_values_warnv (vr0->max, vr1->max,
2772                                         strict_overflow_p) == 0)
2773         return boolean_false_node;
2774
2775       /* Otherwise, they may or may not be different.  */
2776       else
2777         return NULL_TREE;
2778     }
2779   else if (comp == LT_EXPR || comp == LE_EXPR)
2780     {
2781       int tst;
2782
2783       /* If VR0 is to the left of VR1, return true.  */
2784       tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2785       if ((comp == LT_EXPR && tst == -1)
2786           || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2787         {
2788           if (overflow_infinity_range_p (vr0)
2789               || overflow_infinity_range_p (vr1))
2790             *strict_overflow_p = true;
2791           return boolean_true_node;
2792         }
2793
2794       /* If VR0 is to the right of VR1, return false.  */
2795       tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2796       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2797           || (comp == LE_EXPR && tst == 1))
2798         {
2799           if (overflow_infinity_range_p (vr0)
2800               || overflow_infinity_range_p (vr1))
2801             *strict_overflow_p = true;
2802           return boolean_false_node;
2803         }
2804
2805       /* Otherwise, we don't know.  */
2806       return NULL_TREE;
2807     }
2808     
2809   gcc_unreachable ();
2810 }
2811
2812
2813 /* Given a value range VR, a value VAL and a comparison code COMP, return
2814    BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2815    values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
2816    always returns false.  Return NULL_TREE if it is not always
2817    possible to determine the value of the comparison.  Also set
2818    *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2819    infinity was used in the test.  */
2820
2821 static tree
2822 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2823                           bool *strict_overflow_p)
2824 {
2825   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2826     return NULL_TREE;
2827
2828   /* Anti-ranges need to be handled separately.  */
2829   if (vr->type == VR_ANTI_RANGE)
2830     {
2831       /* For anti-ranges, the only predicates that we can compute at
2832          compile time are equality and inequality.  */
2833       if (comp == GT_EXPR
2834           || comp == GE_EXPR
2835           || comp == LT_EXPR
2836           || comp == LE_EXPR)
2837         return NULL_TREE;
2838
2839       /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
2840       if (value_inside_range (val, vr) == 1)
2841         return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2842
2843       return NULL_TREE;
2844     }
2845
2846   if (!usable_range_p (vr, strict_overflow_p))
2847     return NULL_TREE;
2848
2849   if (comp == EQ_EXPR)
2850     {
2851       /* EQ_EXPR may only be computed if VR represents exactly
2852          one value.  */
2853       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2854         {
2855           int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2856           if (cmp == 0)
2857             return boolean_true_node;
2858           else if (cmp == -1 || cmp == 1 || cmp == 2)
2859             return boolean_false_node;
2860         }
2861       else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2862                || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2863         return boolean_false_node;
2864
2865       return NULL_TREE;
2866     }
2867   else if (comp == NE_EXPR)
2868     {
2869       /* If VAL is not inside VR, then they are always different.  */
2870       if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2871           || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2872         return boolean_true_node;
2873
2874       /* If VR represents exactly one value equal to VAL, then return
2875          false.  */
2876       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2877           && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2878         return boolean_false_node;
2879
2880       /* Otherwise, they may or may not be different.  */
2881       return NULL_TREE;
2882     }
2883   else if (comp == LT_EXPR || comp == LE_EXPR)
2884     {
2885       int tst;
2886
2887       /* If VR is to the left of VAL, return true.  */
2888       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2889       if ((comp == LT_EXPR && tst == -1)
2890           || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2891         {
2892           if (overflow_infinity_range_p (vr))
2893             *strict_overflow_p = true;
2894           return boolean_true_node;
2895         }
2896
2897       /* If VR is to the right of VAL, return false.  */
2898       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2899       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2900           || (comp == LE_EXPR && tst == 1))
2901         {
2902           if (overflow_infinity_range_p (vr))
2903             *strict_overflow_p = true;
2904           return boolean_false_node;
2905         }
2906
2907       /* Otherwise, we don't know.  */
2908       return NULL_TREE;
2909     }
2910   else if (comp == GT_EXPR || comp == GE_EXPR)
2911     {
2912       int tst;
2913
2914       /* If VR is to the right of VAL, return true.  */
2915       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2916       if ((comp == GT_EXPR && tst == 1)
2917           || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2918         {
2919           if (overflow_infinity_range_p (vr))
2920             *strict_overflow_p = true;
2921           return boolean_true_node;
2922         }
2923
2924       /* If VR is to the left of VAL, return false.  */
2925       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2926       if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2927           || (comp == GE_EXPR && tst == -1))
2928         {
2929           if (overflow_infinity_range_p (vr))
2930             *strict_overflow_p = true;
2931           return boolean_false_node;
2932         }
2933
2934       /* Otherwise, we don't know.  */
2935       return NULL_TREE;
2936     }
2937
2938   gcc_unreachable ();
2939 }
2940
2941
2942 /* Debugging dumps.  */
2943
2944 void dump_value_range (FILE *, value_range_t *);
2945 void debug_value_range (value_range_t *);
2946 void dump_all_value_ranges (FILE *);
2947 void debug_all_value_ranges (void);
2948 void dump_vr_equiv (FILE *, bitmap);
2949 void debug_vr_equiv (bitmap);
2950
2951
2952 /* Dump value range VR to FILE.  */
2953
2954 void
2955 dump_value_range (FILE *file, value_range_t *vr)
2956 {
2957   if (vr == NULL)
2958     fprintf (file, "[]");
2959   else if (vr->type == VR_UNDEFINED)
2960     fprintf (file, "UNDEFINED");
2961   else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2962     {
2963       tree type = TREE_TYPE (vr->min);
2964
2965       fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2966
2967       if (is_negative_overflow_infinity (vr->min))
2968         fprintf (file, "-INF(OVF)");
2969       else if (INTEGRAL_TYPE_P (type)
2970                && !TYPE_UNSIGNED (type)
2971                && vrp_val_is_min (vr->min))
2972         fprintf (file, "-INF");
2973       else
2974         print_generic_expr (file, vr->min, 0);
2975
2976       fprintf (file, ", ");
2977
2978       if (is_positive_overflow_infinity (vr->max))
2979         fprintf (file, "+INF(OVF)");
2980       else if (INTEGRAL_TYPE_P (type)
2981                && vrp_val_is_max (vr->max))
2982         fprintf (file, "+INF");
2983       else
2984         print_generic_expr (file, vr->max, 0);
2985
2986       fprintf (file, "]");
2987
2988       if (vr->equiv)
2989         {
2990           bitmap_iterator bi;
2991           unsigned i, c = 0;
2992
2993           fprintf (file, "  EQUIVALENCES: { ");
2994
2995           EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2996             {
2997               print_generic_expr (file, ssa_name (i), 0);
2998               fprintf (file, " ");
2999               c++;
3000             }
3001
3002           fprintf (file, "} (%u elements)", c);
3003         }
3004     }
3005   else if (vr->type == VR_VARYING)
3006     fprintf (file, "VARYING");
3007   else
3008     fprintf (file, "INVALID RANGE");
3009 }
3010
3011
3012 /* Dump value range VR to stderr.  */
3013
3014 void
3015 debug_value_range (value_range_t *vr)
3016 {
3017   dump_value_range (stderr, vr);
3018   fprintf (stderr, "\n");
3019 }
3020
3021
3022 /* Dump value ranges of all SSA_NAMEs to FILE.  */
3023
3024 void
3025 dump_all_value_ranges (FILE *file)
3026 {
3027   size_t i;
3028
3029   for (i = 0; i < num_ssa_names; i++)
3030     {
3031       if (vr_value[i])
3032         {
3033           print_generic_expr (file, ssa_name (i), 0);
3034           fprintf (file, ": ");
3035           dump_value_range (file, vr_value[i]);
3036           fprintf (file, "\n");
3037         }
3038     }
3039
3040   fprintf (file, "\n");
3041 }
3042
3043
3044 /* Dump all value ranges to stderr.  */
3045
3046 void
3047 debug_all_value_ranges (void)
3048 {
3049   dump_all_value_ranges (stderr);
3050 }
3051
3052
3053 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3054    create a new SSA name N and return the assertion assignment
3055    'V = ASSERT_EXPR <V, V OP W>'.  */
3056
3057 static tree
3058 build_assert_expr_for (tree cond, tree v)
3059 {
3060   tree n, assertion;
3061
3062   gcc_assert (TREE_CODE (v) == SSA_NAME);
3063   n = duplicate_ssa_name (v, NULL_TREE);
3064
3065   if (COMPARISON_CLASS_P (cond))
3066     {
3067       tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond); 
3068       assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
3069     }
3070   else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3071     {
3072       /* Given !V, build the assignment N = false.  */
3073       tree op0 = TREE_OPERAND (cond, 0);
3074       gcc_assert (op0 == v);
3075       assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
3076     }
3077   else if (TREE_CODE (cond) == SSA_NAME)
3078     {
3079       /* Given V, build the assignment N = true.  */
3080       gcc_assert (v == cond);
3081       assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
3082     }
3083   else
3084     gcc_unreachable ();
3085
3086   SSA_NAME_DEF_STMT (n) = assertion;
3087
3088   /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3089      operand of the ASSERT_EXPR. Register the new name and the old one
3090      in the replacement table so that we can fix the SSA web after
3091      adding all the ASSERT_EXPRs.  */
3092   register_new_name_mapping (n, v);
3093
3094   return assertion;
3095 }
3096
3097
3098 /* Return false if EXPR is a predicate expression involving floating
3099    point values.  */
3100
3101 static inline bool
3102 fp_predicate (tree expr)
3103 {
3104   return (COMPARISON_CLASS_P (expr)
3105           && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3106 }
3107
3108
3109 /* If the range of values taken by OP can be inferred after STMT executes,
3110    return the comparison code (COMP_CODE_P) and value (VAL_P) that
3111    describes the inferred range.  Return true if a range could be
3112    inferred.  */
3113
3114 static bool
3115 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3116 {
3117   *val_p = NULL_TREE;
3118   *comp_code_p = ERROR_MARK;
3119
3120   /* Do not attempt to infer anything in names that flow through
3121      abnormal edges.  */
3122   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3123     return false;
3124
3125   /* Similarly, don't infer anything from statements that may throw
3126      exceptions.  */
3127   if (tree_could_throw_p (stmt))
3128     return false;
3129
3130   /* If STMT is the last statement of a basic block with no
3131      successors, there is no point inferring anything about any of its
3132      operands.  We would not be able to find a proper insertion point
3133      for the assertion, anyway.  */
3134   if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3135     return false;
3136
3137   /* We can only assume that a pointer dereference will yield
3138      non-NULL if -fdelete-null-pointer-checks is enabled.  */
3139   if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3140     {
3141       bool is_store;
3142       unsigned num_uses, num_derefs;
3143
3144       count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3145       if (num_derefs > 0)
3146         {
3147           *val_p = build_int_cst (TREE_TYPE (op), 0);
3148           *comp_code_p = NE_EXPR;
3149           return true;
3150         }
3151     }
3152
3153   return false;
3154 }
3155
3156
3157 void dump_asserts_for (FILE *, tree);
3158 void debug_asserts_for (tree);
3159 void dump_all_asserts (FILE *);
3160 void debug_all_asserts (void);
3161
3162 /* Dump all the registered assertions for NAME to FILE.  */
3163
3164 void
3165 dump_asserts_for (FILE *file, tree name)
3166 {
3167   assert_locus_t loc;
3168
3169   fprintf (file, "Assertions to be inserted for ");
3170   print_generic_expr (file, name, 0);
3171   fprintf (file, "\n");
3172
3173   loc = asserts_for[SSA_NAME_VERSION (name)];
3174   while (loc)
3175     {
3176       fprintf (file, "\t");
3177       print_generic_expr (file, bsi_stmt (loc->si), 0);
3178       fprintf (file, "\n\tBB #%d", loc->bb->index);
3179       if (loc->e)
3180         {
3181           fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3182                    loc->e->dest->index);
3183           dump_edge_info (file, loc->e, 0);
3184         }
3185       fprintf (file, "\n\tPREDICATE: ");
3186       print_generic_expr (file, name, 0);
3187       fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3188       print_generic_expr (file, loc->val, 0);
3189       fprintf (file, "\n\n");
3190       loc = loc->next;
3191     }
3192
3193   fprintf (file, "\n");
3194 }
3195
3196
3197 /* Dump all the registered assertions for NAME to stderr.  */
3198
3199 void
3200 debug_asserts_for (tree name)
3201 {
3202   dump_asserts_for (stderr, name);
3203 }
3204
3205
3206 /* Dump all the registered assertions for all the names to FILE.  */
3207
3208 void
3209 dump_all_asserts (FILE *file)
3210 {
3211   unsigned i;
3212   bitmap_iterator bi;
3213
3214   fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3215   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3216     dump_asserts_for (file, ssa_name (i));
3217   fprintf (file, "\n");
3218 }
3219
3220
3221 /* Dump all the registered assertions for all the names to stderr.  */
3222
3223 void
3224 debug_all_asserts (void)
3225 {
3226   dump_all_asserts (stderr);
3227 }
3228
3229
3230 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3231    'NAME COMP_CODE VAL' at a location that dominates block BB or
3232    E->DEST, then register this location as a possible insertion point
3233    for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3234
3235    BB, E and SI provide the exact insertion point for the new
3236    ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
3237    on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3238    BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3239    must not be NULL.  */
3240
3241 static void
3242 register_new_assert_for (tree name,
3243                          enum tree_code comp_code,
3244                          tree val,
3245                          basic_block bb,
3246                          edge e,
3247                          block_stmt_iterator si)
3248 {
3249   assert_locus_t n, loc, last_loc;
3250   bool found;
3251   basic_block dest_bb;
3252
3253 #if defined ENABLE_CHECKING
3254   gcc_assert (bb == NULL || e == NULL);
3255
3256   if (e == NULL)
3257     gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3258                 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3259 #endif
3260
3261   /* The new assertion A will be inserted at BB or E.  We need to
3262      determine if the new location is dominated by a previously
3263      registered location for A.  If we are doing an edge insertion,
3264      assume that A will be inserted at E->DEST.  Note that this is not
3265      necessarily true.
3266      
3267      If E is a critical edge, it will be split.  But even if E is
3268      split, the new block will dominate the same set of blocks that
3269      E->DEST dominates.
3270      
3271      The reverse, however, is not true, blocks dominated by E->DEST
3272      will not be dominated by the new block created to split E.  So,
3273      if the insertion location is on a critical edge, we will not use
3274      the new location to move another assertion previously registered
3275      at a block dominated by E->DEST.  */
3276   dest_bb = (bb) ? bb : e->dest;
3277
3278   /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3279      VAL at a block dominating DEST_BB, then we don't need to insert a new
3280      one.  Similarly, if the same assertion already exists at a block
3281      dominated by DEST_BB and the new location is not on a critical
3282      edge, then update the existing location for the assertion (i.e.,
3283      move the assertion up in the dominance tree).
3284
3285      Note, this is implemented as a simple linked list because there
3286      should not be more than a handful of assertions registered per
3287      name.  If this becomes a performance problem, a table hashed by
3288      COMP_CODE and VAL could be implemented.  */
3289   loc = asserts_for[SSA_NAME_VERSION (name)];
3290   last_loc = loc;
3291   found = false;
3292   while (loc)
3293     {
3294       if (loc->comp_code == comp_code
3295           && (loc->val == val
3296               || operand_equal_p (loc->val, val, 0)))
3297         {
3298           /* If the assertion NAME COMP_CODE VAL has already been
3299              registered at a basic block that dominates DEST_BB, then
3300              we don't need to insert the same assertion again.  Note
3301              that we don't check strict dominance here to avoid
3302              replicating the same assertion inside the same basic
3303              block more than once (e.g., when a pointer is
3304              dereferenced several times inside a block).
3305
3306              An exception to this rule are edge insertions.  If the
3307              new assertion is to be inserted on edge E, then it will
3308              dominate all the other insertions that we may want to
3309              insert in DEST_BB.  So, if we are doing an edge
3310              insertion, don't do this dominance check.  */
3311           if (e == NULL
3312               && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3313             return;
3314
3315           /* Otherwise, if E is not a critical edge and DEST_BB
3316              dominates the existing location for the assertion, move
3317              the assertion up in the dominance tree by updating its
3318              location information.  */
3319           if ((e == NULL || !EDGE_CRITICAL_P (e))
3320               && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3321             {
3322               loc->bb = dest_bb;
3323               loc->e = e;
3324               loc->si = si;
3325               return;
3326             }
3327         }
3328
3329       /* Update the last node of the list and move to the next one.  */
3330       last_loc = loc;
3331       loc = loc->next;
3332     }
3333
3334   /* If we didn't find an assertion already registered for
3335      NAME COMP_CODE VAL, add a new one at the end of the list of
3336      assertions associated with NAME.  */
3337   n = XNEW (struct assert_locus_d);
3338   n->bb = dest_bb;
3339   n->e = e;
3340   n->si = si;
3341   n->comp_code = comp_code;
3342   n->val = val;
3343   n->next = NULL;
3344
3345   if (last_loc)
3346     last_loc->next = n;
3347   else
3348     asserts_for[SSA_NAME_VERSION (name)] = n;
3349
3350   bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3351 }
3352
3353
3354 /* Try to register an edge assertion for SSA name NAME on edge E for
3355    the conditional jump pointed to by SI.  Return true if an assertion
3356    for NAME could be registered.  */
3357
3358 static bool
3359 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
3360 {
3361   tree val, stmt;
3362   enum tree_code comp_code;
3363
3364   stmt = bsi_stmt (si);
3365
3366   /* Do not attempt to infer anything in names that flow through
3367      abnormal edges.  */
3368   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3369     return false;
3370
3371   /* If NAME was not found in the sub-graph reachable from E, then
3372      there's nothing to do.  */
3373   if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3374     return false;
3375
3376   /* We found a use of NAME in the sub-graph rooted at E->DEST.
3377      Register an assertion for NAME according to the value that NAME
3378      takes on edge E.  */
3379   if (TREE_CODE (stmt) == COND_EXPR)
3380     {
3381       /* If BB ends in a COND_EXPR then NAME then we should insert
3382          the original predicate on EDGE_TRUE_VALUE and the
3383          opposite predicate on EDGE_FALSE_VALUE.  */
3384       tree cond = COND_EXPR_COND (stmt);
3385       bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3386
3387       /* Predicates may be a single SSA name or NAME OP VAL.  */
3388       if (cond == name)
3389         {
3390           /* If the predicate is a name, it must be NAME, in which
3391              case we create the predicate NAME == true or
3392              NAME == false accordingly.  */
3393           comp_code = EQ_EXPR;
3394           val = (is_else_edge) ? boolean_false_node : boolean_true_node;
3395         }
3396       else
3397         {
3398           /* Otherwise, we have a comparison of the form NAME COMP VAL
3399              or VAL COMP NAME.  */
3400           if (name == TREE_OPERAND (cond, 1))
3401             {
3402               /* If the predicate is of the form VAL COMP NAME, flip
3403                  COMP around because we need to register NAME as the
3404                  first operand in the predicate.  */
3405               comp_code = swap_tree_comparison (TREE_CODE (cond));
3406               val = TREE_OPERAND (cond, 0);
3407             }
3408           else
3409             {
3410               /* The comparison is of the form NAME COMP VAL, so the
3411                  comparison code remains unchanged.  */
3412               comp_code = TREE_CODE (cond);
3413               val = TREE_OPERAND (cond, 1);
3414             }
3415
3416           /* If we are inserting the assertion on the ELSE edge, we
3417              need to invert the sign comparison.  */
3418           if (is_else_edge)
3419             comp_code = invert_tree_comparison (comp_code, 0);
3420
3421           /* Do not register always-false predicates.  FIXME, this
3422              works around a limitation in fold() when dealing with
3423              enumerations.  Given 'enum { N1, N2 } x;', fold will not
3424              fold 'if (x > N2)' to 'if (0)'.  */
3425           if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3426               && (INTEGRAL_TYPE_P (TREE_TYPE (val))
3427                   || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
3428             {
3429               tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3430               tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3431
3432               if (comp_code == GT_EXPR && compare_values (val, max) == 0)
3433                 return false;
3434
3435               if (comp_code == LT_EXPR && compare_values (val, min) == 0)
3436                 return false;
3437             }
3438         }
3439     }
3440   else
3441     {
3442       /* FIXME.  Handle SWITCH_EXPR.  */
3443       gcc_unreachable ();
3444     }
3445
3446   register_new_assert_for (name, comp_code, val, NULL, e, si);
3447   return true;
3448 }
3449
3450
3451 static bool find_assert_locations (basic_block bb);
3452
3453 /* Determine whether the outgoing edges of BB should receive an
3454    ASSERT_EXPR for each of the operands of BB's last statement.  The
3455    last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
3456
3457    If any of the sub-graphs rooted at BB have an interesting use of
3458    the predicate operands, an assert location node is added to the
3459    list of assertions for the corresponding operands.  */
3460
3461 static bool
3462 find_conditional_asserts (basic_block bb)
3463 {
3464   bool need_assert;
3465   block_stmt_iterator last_si;
3466   tree op, last;
3467   edge_iterator ei;
3468   edge e;
3469   ssa_op_iter iter;
3470
3471   need_assert = false;
3472   last_si = bsi_last (bb);
3473   last = bsi_stmt (last_si);
3474
3475   /* Look for uses of the operands in each of the sub-graphs
3476      rooted at BB.  We need to check each of the outgoing edges
3477      separately, so that we know what kind of ASSERT_EXPR to
3478      insert.  */
3479   FOR_EACH_EDGE (e, ei, bb->succs)
3480     {
3481       if (e->dest == bb)
3482         continue;
3483
3484       /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3485          Otherwise, when we finish traversing each of the sub-graphs, we
3486          won't know whether the variables were found in the sub-graphs or
3487          if they had been found in a block upstream from BB. 
3488
3489          This is actually a bad idea is some cases, particularly jump
3490          threading.  Consider a CFG like the following:
3491
3492                     0
3493                    /|
3494                   1 |
3495                    \|
3496                     2
3497                    / \
3498                   3   4
3499
3500          Assume that one or more operands in the conditional at the
3501          end of block 0 are used in a conditional in block 2, but not
3502          anywhere in block 1.  In this case we will not insert any
3503          assert statements in block 1, which may cause us to miss
3504          opportunities to optimize, particularly for jump threading.  */
3505       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3506         RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3507
3508       /* Traverse the strictly dominated sub-graph rooted at E->DEST
3509          to determine if any of the operands in the conditional
3510          predicate are used.  */
3511       if (e->dest != bb)
3512         need_assert |= find_assert_locations (e->dest);
3513
3514       /* Register the necessary assertions for each operand in the
3515          conditional predicate.  */
3516       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3517         need_assert |= register_edge_assert_for (op, e, last_si);
3518     }
3519
3520   /* Finally, indicate that we have found the operands in the
3521      conditional.  */
3522   FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3523     SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3524
3525   return need_assert;
3526 }
3527
3528
3529 /* Traverse all the statements in block BB looking for statements that
3530    may generate useful assertions for the SSA names in their operand.
3531    If a statement produces a useful assertion A for name N_i, then the
3532    list of assertions already generated for N_i is scanned to
3533    determine if A is actually needed.
3534    
3535    If N_i already had the assertion A at a location dominating the
3536    current location, then nothing needs to be done.  Otherwise, the
3537    new location for A is recorded instead.
3538
3539    1- For every statement S in BB, all the variables used by S are
3540       added to bitmap FOUND_IN_SUBGRAPH.
3541
3542    2- If statement S uses an operand N in a way that exposes a known
3543       value range for N, then if N was not already generated by an
3544       ASSERT_EXPR, create a new assert location for N.  For instance,
3545       if N is a pointer and the statement dereferences it, we can
3546       assume that N is not NULL.
3547
3548    3- COND_EXPRs are a special case of #2.  We can derive range
3549       information from the predicate but need to insert different
3550       ASSERT_EXPRs for each of the sub-graphs rooted at the
3551       conditional block.  If the last statement of BB is a conditional
3552       expression of the form 'X op Y', then
3553
3554       a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3555
3556       b) If the conditional is the only entry point to the sub-graph
3557          corresponding to the THEN_CLAUSE, recurse into it.  On
3558          return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3559          an ASSERT_EXPR is added for the corresponding variable.
3560
3561       c) Repeat step (b) on the ELSE_CLAUSE.
3562
3563       d) Mark X and Y in FOUND_IN_SUBGRAPH.
3564
3565       For instance,
3566
3567             if (a == 9)
3568               b = a;
3569             else
3570               b = c + 1;
3571
3572       In this case, an assertion on the THEN clause is useful to
3573       determine that 'a' is always 9 on that edge.  However, an assertion
3574       on the ELSE clause would be unnecessary.
3575
3576    4- If BB does not end in a conditional expression, then we recurse
3577       into BB's dominator children.
3578    
3579    At the end of the recursive traversal, every SSA name will have a
3580    list of locations where ASSERT_EXPRs should be added.  When a new
3581    location for name N is found, it is registered by calling
3582    register_new_assert_for.  That function keeps track of all the
3583    registered assertions to prevent adding unnecessary assertions.
3584    For instance, if a pointer P_4 is dereferenced more than once in a
3585    dominator tree, only the location dominating all the dereference of
3586    P_4 will receive an ASSERT_EXPR.
3587
3588    If this function returns true, then it means that there are names
3589    for which we need to generate ASSERT_EXPRs.  Those assertions are
3590    inserted by process_assert_insertions.
3591
3592    TODO.  Handle SWITCH_EXPR.  */
3593
3594 static bool
3595 find_assert_locations (basic_block bb)
3596 {
3597   block_stmt_iterator si;
3598   tree last, phi;
3599   bool need_assert;
3600   basic_block son;
3601
3602   if (TEST_BIT (blocks_visited, bb->index))
3603     return false;
3604
3605   SET_BIT (blocks_visited, bb->index);
3606
3607   need_assert = false;
3608
3609   /* Traverse all PHI nodes in BB marking used operands.  */
3610   for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3611     {
3612       use_operand_p arg_p;
3613       ssa_op_iter i;
3614
3615       FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3616         {
3617           tree arg = USE_FROM_PTR (arg_p);
3618           if (TREE_CODE (arg) == SSA_NAME)
3619             {
3620               gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3621               SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3622             }
3623         }
3624     }
3625
3626   /* Traverse all the statements in BB marking used names and looking
3627      for statements that may infer assertions for their used operands.  */
3628   last = NULL_TREE;
3629   for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3630     {
3631       tree stmt, op;
3632       ssa_op_iter i;
3633
3634       stmt = bsi_stmt (si);
3635
3636       /* See if we can derive an assertion for any of STMT's operands.  */
3637       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3638         {
3639           tree value;
3640           enum tree_code comp_code;
3641
3642           /* Mark OP in bitmap FOUND_IN_SUBGRAPH.  If STMT is inside
3643              the sub-graph of a conditional block, when we return from
3644              this recursive walk, our parent will use the
3645              FOUND_IN_SUBGRAPH bitset to determine if one of the
3646              operands it was looking for was present in the sub-graph.  */
3647           SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3648
3649           /* If OP is used in such a way that we can infer a value
3650              range for it, and we don't find a previous assertion for
3651              it, create a new assertion location node for OP.  */
3652           if (infer_value_range (stmt, op, &comp_code, &value))
3653             {
3654               /* If we are able to infer a nonzero value range for OP,
3655                  then walk backwards through the use-def chain to see if OP
3656                  was set via a typecast.
3657
3658                  If so, then we can also infer a nonzero value range
3659                  for the operand of the NOP_EXPR.  */
3660               if (comp_code == NE_EXPR && integer_zerop (value))
3661                 {
3662                   tree t = op;
3663                   tree def_stmt = SSA_NAME_DEF_STMT (t);
3664         
3665                   while (TREE_CODE (def_stmt) == MODIFY_EXPR
3666                          && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3667                          && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3668                          && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3669                     {
3670                       t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3671                       def_stmt = SSA_NAME_DEF_STMT (t);
3672
3673                       /* Note we want to register the assert for the
3674                          operand of the NOP_EXPR after SI, not after the
3675                          conversion.  */
3676                       if (! has_single_use (t))
3677                         {
3678                           register_new_assert_for (t, comp_code, value,
3679                                                    bb, NULL, si);
3680                           need_assert = true;
3681                         }
3682                     }
3683                 }
3684
3685               /* If OP is used only once, namely in this STMT, don't
3686                  bother creating an ASSERT_EXPR for it.  Such an
3687                  ASSERT_EXPR would do nothing but increase compile time.  */
3688               if (!has_single_use (op))
3689                 {
3690                   register_new_assert_for (op, comp_code, value, bb, NULL, si);
3691                   need_assert = true;
3692                 }
3693             }
3694         }
3695
3696       /* Remember the last statement of the block.  */
3697       last = stmt;
3698     }
3699
3700   /* If BB's last statement is a conditional expression
3701      involving integer operands, recurse into each of the sub-graphs
3702      rooted at BB to determine if we need to add ASSERT_EXPRs.  */
3703   if (last
3704       && TREE_CODE (last) == COND_EXPR
3705       && !fp_predicate (COND_EXPR_COND (last))
3706       && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3707     need_assert |= find_conditional_asserts (bb);
3708
3709   /* Recurse into the dominator children of BB.  */
3710   for (son = first_dom_son (CDI_DOMINATORS, bb);
3711        son;
3712        son = next_dom_son (CDI_DOMINATORS, son))
3713     need_assert |= find_assert_locations (son);
3714
3715   return need_assert;
3716 }
3717
3718
3719 /* Create an ASSERT_EXPR for NAME and insert it in the location
3720    indicated by LOC.  Return true if we made any edge insertions.  */
3721
3722 static bool
3723 process_assert_insertions_for (tree name, assert_locus_t loc)
3724 {
3725   /* Build the comparison expression NAME_i COMP_CODE VAL.  */
3726   tree stmt, cond, assert_expr;
3727   edge_iterator ei;
3728   edge e;
3729
3730   cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3731   assert_expr = build_assert_expr_for (cond, name);
3732
3733   if (loc->e)
3734     {
3735       /* We have been asked to insert the assertion on an edge.  This
3736          is used only by COND_EXPR and SWITCH_EXPR assertions.  */
3737 #if defined ENABLE_CHECKING
3738       gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3739           || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3740 #endif
3741
3742       bsi_insert_on_edge (loc->e, assert_expr);
3743       return true;
3744     }
3745
3746   /* Otherwise, we can insert right after LOC->SI iff the
3747      statement must not be the last statement in the block.  */
3748   stmt = bsi_stmt (loc->si);
3749   if (!stmt_ends_bb_p (stmt))
3750     {
3751       bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3752       return false;
3753     }
3754
3755   /* If STMT must be the last statement in BB, we can only insert new
3756      assertions on the non-abnormal edge out of BB.  Note that since
3757      STMT is not control flow, there may only be one non-abnormal edge
3758      out of BB.  */
3759   FOR_EACH_EDGE (e, ei, loc->bb->succs)
3760     if (!(e->flags & EDGE_ABNORMAL))
3761       {
3762         bsi_insert_on_edge (e, assert_expr);
3763         return true;
3764       }
3765
3766   gcc_unreachable ();
3767 }
3768
3769
3770 /* Process all the insertions registered for every name N_i registered
3771    in NEED_ASSERT_FOR.  The list of assertions to be inserted are
3772    found in ASSERTS_FOR[i].  */
3773
3774 static void
3775 process_assert_insertions (void)
3776 {
3777   unsigned i;
3778   bitmap_iterator bi;
3779   bool update_edges_p = false;
3780   int num_asserts = 0;
3781
3782   if (dump_file && (dump_flags & TDF_DETAILS))
3783     dump_all_asserts (dump_file);
3784
3785   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3786     {
3787       assert_locus_t loc = asserts_for[i];
3788       gcc_assert (loc);
3789
3790       while (loc)
3791         {
3792           assert_locus_t next = loc->next;
3793           update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3794           free (loc);
3795           loc = next;
3796           num_asserts++;
3797         }
3798     }
3799
3800   if (update_edges_p)
3801     bsi_commit_edge_inserts ();
3802
3803   if (dump_file && (dump_flags & TDF_STATS))
3804     fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3805              num_asserts);
3806 }
3807
3808
3809 /* Traverse the flowgraph looking for conditional jumps to insert range
3810    expressions.  These range expressions are meant to provide information
3811    to optimizations that need to reason in terms of value ranges.  They
3812    will not be expanded into RTL.  For instance, given:
3813
3814    x = ...
3815    y = ...
3816    if (x < y)
3817      y = x - 2;
3818    else
3819      x = y + 3;
3820
3821    this pass will transform the code into:
3822
3823    x = ...
3824    y = ...
3825    if (x < y)
3826     {
3827       x = ASSERT_EXPR <x, x < y>
3828       y = x - 2
3829     }
3830    else
3831     {
3832       y = ASSERT_EXPR <y, x <= y>
3833       x = y + 3
3834     }
3835
3836    The idea is that once copy and constant propagation have run, other
3837    optimizations will be able to determine what ranges of values can 'x'
3838    take in different paths of the code, simply by checking the reaching
3839    definition of 'x'.  */
3840
3841 static void
3842 insert_range_assertions (void)
3843 {
3844   edge e;
3845   edge_iterator ei;
3846   bool update_ssa_p;
3847   
3848   found_in_subgraph = sbitmap_alloc (num_ssa_names);
3849   sbitmap_zero (found_in_subgraph);
3850
3851   blocks_visited = sbitmap_alloc (last_basic_block);
3852   sbitmap_zero (blocks_visited);
3853
3854   need_assert_for = BITMAP_ALLOC (NULL);
3855   asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3856   memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3857
3858   calculate_dominance_info (CDI_DOMINATORS);
3859
3860   update_ssa_p = false;
3861   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3862     if (find_assert_locations (e->dest))
3863       update_ssa_p = true;
3864
3865   if (update_ssa_p)
3866     {
3867       process_assert_insertions ();
3868       update_ssa (TODO_update_ssa_no_phi);
3869     }
3870
3871   if (dump_file && (dump_flags & TDF_DETAILS))
3872     {
3873       fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3874       dump_function_to_file (current_function_decl, dump_file, dump_flags);
3875     }
3876
3877   sbitmap_free (found_in_subgraph);
3878   free (asserts_for);
3879   BITMAP_FREE (need_assert_for);
3880 }
3881
3882
3883 /* Convert range assertion expressions into the implied copies and
3884    copy propagate away the copies.  Doing the trivial copy propagation
3885    here avoids the need to run the full copy propagation pass after
3886    VRP. 
3887    
3888    FIXME, this will eventually lead to copy propagation removing the
3889    names that had useful range information attached to them.  For
3890    instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3891    then N_i will have the range [3, +INF].
3892    
3893    However, by converting the assertion into the implied copy
3894    operation N_i = N_j, we will then copy-propagate N_j into the uses
3895    of N_i and lose the range information.  We may want to hold on to
3896    ASSERT_EXPRs a little while longer as the ranges could be used in
3897    things like jump threading.
3898    
3899    The problem with keeping ASSERT_EXPRs around is that passes after
3900    VRP need to handle them appropriately. 
3901
3902    Another approach would be to make the range information a first
3903    class property of the SSA_NAME so that it can be queried from
3904    any pass.  This is made somewhat more complex by the need for
3905    multiple ranges to be associated with one SSA_NAME.  */
3906
3907 static void
3908 remove_range_assertions (void)
3909 {
3910   basic_block bb;
3911   block_stmt_iterator si;
3912
3913   /* Note that the BSI iterator bump happens at the bottom of the
3914      loop and no bump is necessary if we're removing the statement
3915      referenced by the current BSI.  */
3916   FOR_EACH_BB (bb)
3917     for (si = bsi_start (bb); !bsi_end_p (si);)
3918       {
3919         tree stmt = bsi_stmt (si);
3920         tree use_stmt;
3921
3922         if (TREE_CODE (stmt) == MODIFY_EXPR
3923             && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3924           {
3925             tree rhs = TREE_OPERAND (stmt, 1), var;
3926             tree cond = fold (ASSERT_EXPR_COND (rhs));
3927             use_operand_p use_p;
3928             imm_use_iterator iter;
3929
3930             gcc_assert (cond != boolean_false_node);
3931
3932             /* Propagate the RHS into every use of the LHS.  */
3933             var = ASSERT_EXPR_VAR (rhs);
3934             FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3935               FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3936                 {
3937                   SET_USE (use_p, var);
3938                   gcc_assert (TREE_CODE (var) == SSA_NAME);
3939                 }
3940
3941             /* And finally, remove the copy, it is not needed.  */
3942             bsi_remove (&si, true);
3943           }
3944         else
3945           bsi_next (&si);
3946       }
3947
3948   sbitmap_free (blocks_visited);
3949 }
3950
3951
3952 /* Return true if STMT is interesting for VRP.  */
3953
3954 static bool
3955 stmt_interesting_for_vrp (tree stmt)
3956 {
3957   if (TREE_CODE (stmt) == PHI_NODE
3958       && is_gimple_reg (PHI_RESULT (stmt))
3959       && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3960           || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3961     return true;
3962   else if (TREE_CODE (stmt) == MODIFY_EXPR)
3963     {
3964       tree lhs = TREE_OPERAND (stmt, 0);
3965       tree rhs = TREE_OPERAND (stmt, 1);
3966
3967       /* In general, assignments with virtual operands are not useful
3968          for deriving ranges, with the obvious exception of calls to
3969          builtin functions.  */
3970       if (TREE_CODE (lhs) == SSA_NAME
3971           && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3972               || POINTER_TYPE_P (TREE_TYPE (lhs)))
3973           && ((TREE_CODE (rhs) == CALL_EXPR
3974                && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3975                && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3976                && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3977               || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3978         return true;
3979     }
3980   else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3981     return true;
3982
3983   return false;
3984 }
3985
3986
3987 /* Initialize local data structures for VRP.  */
3988
3989 static void
3990 vrp_initialize (void)
3991 {
3992   basic_block bb;
3993
3994   vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3995   memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3996
3997   FOR_EACH_BB (bb)
3998     {
3999       block_stmt_iterator si;
4000       tree phi;
4001
4002       for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4003         {
4004           if (!stmt_interesting_for_vrp (phi))
4005             {
4006               tree lhs = PHI_RESULT (phi);
4007               set_value_range_to_varying (get_value_range (lhs));
4008               DONT_SIMULATE_AGAIN (phi) = true;
4009             }
4010           else
4011             DONT_SIMULATE_AGAIN (phi) = false;
4012         }
4013
4014       for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4015         {
4016           tree stmt = bsi_stmt (si);
4017
4018           if (!stmt_interesting_for_vrp (stmt))
4019             {
4020               ssa_op_iter i;
4021               tree def;
4022               FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4023                 set_value_range_to_varying (get_value_range (def));
4024               DONT_SIMULATE_AGAIN (stmt) = true;
4025             }
4026           else
4027             {
4028               DONT_SIMULATE_AGAIN (stmt) = false;
4029             }
4030         }
4031     }
4032 }
4033
4034
4035 /* Visit assignment STMT.  If it produces an interesting range, record
4036    the SSA name in *OUTPUT_P.  */
4037
4038 static enum ssa_prop_result
4039 vrp_visit_assignment (tree stmt, tree *output_p)
4040 {
4041   tree lhs, rhs, def;
4042   ssa_op_iter iter;
4043
4044   lhs = TREE_OPERAND (stmt, 0);
4045   rhs = TREE_OPERAND (stmt, 1);
4046
4047   /* We only keep track of ranges in integral and pointer types.  */
4048   if (TREE_CODE (lhs) == SSA_NAME
4049       && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4050            /* It is valid to have NULL MIN/MAX values on a type.  See
4051               build_range_type.  */
4052            && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4053            && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4054           || POINTER_TYPE_P (TREE_TYPE (lhs))))
4055     {
4056       struct loop *l;
4057       value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4058
4059       extract_range_from_expr (&new_vr, rhs);
4060
4061       /* If STMT is inside a loop, we may be able to know something
4062          else about the range of LHS by examining scalar evolution
4063          information.  */
4064       if (current_loops && (l = loop_containing_stmt (stmt)))
4065         adjust_range_with_scev (&new_vr, l, stmt, lhs);
4066
4067       if (update_value_range (lhs, &new_vr))
4068         {
4069           *output_p = lhs;
4070
4071           if (dump_file && (dump_flags & TDF_DETAILS))
4072             {
4073               fprintf (dump_file, "Found new range for ");
4074               print_generic_expr (dump_file, lhs, 0);
4075               fprintf (dump_file, ": ");
4076               dump_value_range (dump_file, &new_vr);
4077               fprintf (dump_file, "\n\n");
4078             }
4079
4080           if (new_vr.type == VR_VARYING)
4081             return SSA_PROP_VARYING;
4082
4083           return SSA_PROP_INTERESTING;
4084         }
4085
4086       return SSA_PROP_NOT_INTERESTING;
4087     }
4088   
4089   /* Every other statement produces no useful ranges.  */
4090   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4091     set_value_range_to_varying (get_value_range (def));
4092
4093   return SSA_PROP_VARYING;
4094 }
4095
4096
4097 /* Compare all the value ranges for names equivalent to VAR with VAL
4098    using comparison code COMP.  Return the same value returned by
4099    compare_range_with_value, including the setting of
4100    *STRICT_OVERFLOW_P.  */
4101
4102 static tree
4103 compare_name_with_value (enum tree_code comp, tree var, tree val,
4104                          bool *strict_overflow_p)
4105 {
4106   bitmap_iterator bi;
4107   unsigned i;
4108   bitmap e;
4109   tree retval, t;
4110   int used_strict_overflow;
4111   
4112   t = retval = NULL_TREE;
4113
4114   /* Get the set of equivalences for VAR.  */
4115   e = get_value_range (var)->equiv;
4116
4117   /* Add VAR to its own set of equivalences so that VAR's value range
4118      is processed by this loop (otherwise, we would have to replicate
4119      the body of the loop just to check VAR's value range).  */
4120   bitmap_set_bit (e, SSA_NAME_VERSION (var));
4121
4122   /* Start at -1.  Set it to 0 if we do a comparison without relying
4123      on overflow, or 1 if all comparisons rely on overflow.  */
4124   used_strict_overflow = -1;
4125
4126   EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4127     {
4128       bool sop;
4129
4130       value_range_t equiv_vr = *(vr_value[i]);
4131
4132       /* If name N_i does not have a valid range, use N_i as its own
4133          range.  This allows us to compare against names that may
4134          have N_i in their ranges.  */
4135       if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4136         {
4137           equiv_vr.type = VR_RANGE;
4138           equiv_vr.min = ssa_name (i);
4139           equiv_vr.max = ssa_name (i);
4140         }
4141
4142       sop = false;
4143       t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4144       if (t)
4145         {
4146           /* If we get different answers from different members
4147              of the equivalence set this check must be in a dead
4148              code region.  Folding it to a trap representation
4149              would be correct here.  For now just return don't-know.  */
4150           if (retval != NULL
4151               && t != retval)
4152             {
4153               retval = NULL_TREE;
4154               break;
4155             }
4156           retval = t;
4157
4158           if (!sop)
4159             used_strict_overflow = 0;
4160           else if (used_strict_overflow < 0)
4161             used_strict_overflow = 1;
4162         }
4163     }
4164
4165   /* Remove VAR from its own equivalence set.  */
4166   bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4167
4168   if (retval)
4169     {
4170       if (used_strict_overflow > 0)
4171         *strict_overflow_p = true;
4172       return retval;
4173     }
4174
4175   /* We couldn't find a non-NULL value for the predicate.  */
4176   return NULL_TREE;
4177 }
4178
4179
4180 /* Given a comparison code COMP and names N1 and N2, compare all the
4181    ranges equivalent to N1 against all the ranges equivalent to N2
4182    to determine the value of N1 COMP N2.  Return the same value
4183    returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
4184    whether we relied on an overflow infinity in the comparison.  */
4185
4186
4187 static tree
4188 compare_names (enum tree_code comp, tree n1, tree n2,
4189                bool *strict_overflow_p)
4190 {
4191   tree t, retval;
4192   bitmap e1, e2;
4193   bitmap_iterator bi1, bi2;
4194   unsigned i1, i2;
4195   int used_strict_overflow;
4196
4197   /* Compare the ranges of every name equivalent to N1 against the
4198      ranges of every name equivalent to N2.  */
4199   e1 = get_value_range (n1)->equiv;
4200   e2 = get_value_range (n2)->equiv;
4201
4202   /* Add N1 and N2 to their own set of equivalences to avoid
4203      duplicating the body of the loop just to check N1 and N2
4204      ranges.  */
4205   bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4206   bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4207
4208   /* If the equivalence sets have a common intersection, then the two
4209      names can be compared without checking their ranges.  */
4210   if (bitmap_intersect_p (e1, e2))
4211     {
4212       bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4213       bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4214
4215       return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4216              ? boolean_true_node
4217              : boolean_false_node;
4218     }
4219
4220   /* Start at -1.  Set it to 0 if we do a comparison without relying
4221      on overflow, or 1 if all comparisons rely on overflow.  */
4222   used_strict_overflow = -1;
4223
4224   /* Otherwise, compare all the equivalent ranges.  First, add N1 and
4225      N2 to their own set of equivalences to avoid duplicating the body
4226      of the loop just to check N1 and N2 ranges.  */
4227   EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4228     {
4229       value_range_t vr1 = *(vr_value[i1]);
4230
4231       /* If the range is VARYING or UNDEFINED, use the name itself.  */
4232       if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4233         {
4234           vr1.type = VR_RANGE;
4235           vr1.min = ssa_name (i1);
4236           vr1.max = ssa_name (i1);
4237         }
4238
4239       t = retval = NULL_TREE;
4240       EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4241         {
4242           bool sop = false;
4243
4244           value_range_t vr2 = *(vr_value[i2]);
4245
4246           if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4247             {
4248               vr2.type = VR_RANGE;
4249               vr2.min = ssa_name (i2);
4250               vr2.max = ssa_name (i2);
4251             }
4252
4253           t = compare_ranges (comp, &vr1, &vr2, &sop);
4254           if (t)
4255             {
4256               /* If we get different answers from different members
4257                  of the equivalence set this check must be in a dead
4258                  code region.  Folding it to a trap representation
4259                  would be correct here.  For now just return don't-know.  */
4260               if (retval != NULL
4261                   && t != retval)
4262                 {
4263                   bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4264                   bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4265                   return NULL_TREE;
4266                 }
4267               retval = t;
4268
4269               if (!sop)
4270                 used_strict_overflow = 0;
4271               else if (used_strict_overflow < 0)
4272                 used_strict_overflow = 1;
4273             }
4274         }
4275
4276       if (retval)
4277         {
4278           bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4279           bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4280           if (used_strict_overflow > 0)
4281             *strict_overflow_p = true;
4282           return retval;
4283         }
4284     }
4285
4286   /* None of the equivalent ranges are useful in computing this
4287      comparison.  */
4288   bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4289   bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4290   return NULL_TREE;
4291 }
4292
4293
4294 /* Given a conditional predicate COND, try to determine if COND yields
4295    true or false based on the value ranges of its operands.  Return
4296    BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4297    BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4298    NULL if the conditional cannot be evaluated at compile time.
4299
4300    If USE_EQUIV_P is true, the ranges of all the names equivalent with
4301    the operands in COND are used when trying to compute its value.
4302    This is only used during final substitution.  During propagation,
4303    we only check the range of each variable and not its equivalents.
4304
4305    Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4306    infinity to produce the result.  */
4307
4308 static tree
4309 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4310                                 bool *strict_overflow_p)
4311 {
4312   gcc_assert (TREE_CODE (cond) == SSA_NAME
4313               || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4314
4315   if (TREE_CODE (cond) == SSA_NAME)
4316     {
4317       value_range_t *vr;
4318       tree retval;
4319
4320       if (use_equiv_p)
4321         retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4322                                           strict_overflow_p);
4323       else
4324         {
4325           value_range_t *vr = get_value_range (cond);
4326           retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4327                                              strict_overflow_p);
4328         }
4329
4330       /* If COND has a known boolean range, return it.  */
4331       if (retval)
4332         return retval;
4333
4334       /* Otherwise, if COND has a symbolic range of exactly one value,
4335          return it.  */
4336       vr = get_value_range (cond);
4337       if (vr->type == VR_RANGE && vr->min == vr->max)
4338         return vr->min;
4339     }
4340   else
4341     {
4342       tree op0 = TREE_OPERAND (cond, 0);
4343       tree op1 = TREE_OPERAND (cond, 1);
4344
4345       /* We only deal with integral and pointer types.  */
4346       if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4347           && !POINTER_TYPE_P (TREE_TYPE (op0)))
4348         return NULL_TREE;
4349
4350       if (use_equiv_p)
4351         {
4352           if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4353             return compare_names (TREE_CODE (cond), op0, op1,
4354                                   strict_overflow_p);
4355           else if (TREE_CODE (op0) == SSA_NAME)
4356             return compare_name_with_value (TREE_CODE (cond), op0, op1,
4357                                             strict_overflow_p);
4358           else if (TREE_CODE (op1) == SSA_NAME)
4359             return (compare_name_with_value
4360                     (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4361                      strict_overflow_p));
4362         }
4363       else
4364         {
4365           value_range_t *vr0, *vr1;
4366
4367           vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4368           vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4369
4370           if (vr0 && vr1)
4371             return compare_ranges (TREE_CODE (cond), vr0, vr1,
4372                                    strict_overflow_p);
4373           else if (vr0 && vr1 == NULL)
4374             return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4375                                              strict_overflow_p);
4376           else if (vr0 == NULL && vr1)
4377             return (compare_range_with_value
4378                     (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4379                      strict_overflow_p));
4380         }
4381     }
4382
4383   /* Anything else cannot be computed statically.  */
4384   return NULL_TREE;
4385 }
4386
4387 /* Given COND within STMT, try to simplify it based on value range
4388    information.  Return NULL if the conditional can not be evaluated.
4389    The ranges of all the names equivalent with the operands in COND
4390    will be used when trying to compute the value.  If the result is
4391    based on undefined signed overflow, issue a warning if
4392    appropriate.  */
4393
4394 tree
4395 vrp_evaluate_conditional (tree cond, tree stmt)
4396 {
4397   bool sop;
4398   tree ret;
4399
4400   sop = false;
4401   ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4402
4403   if (ret && sop)
4404     {
4405       enum warn_strict_overflow_code wc;
4406       const char* warnmsg;
4407
4408       if (is_gimple_min_invariant (ret))
4409         {
4410           wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4411           warnmsg = G_("assuming signed overflow does not occur when "
4412                        "simplifying conditional to constant");
4413         }
4414       else
4415         {
4416           wc = WARN_STRICT_OVERFLOW_COMPARISON;
4417           warnmsg = G_("assuming signed overflow does not occur when "
4418                        "simplifying conditional");
4419         }
4420
4421       if (issue_strict_overflow_warning (wc))
4422         {
4423           location_t locus;
4424
4425           if (!EXPR_HAS_LOCATION (stmt))
4426             locus = input_location;
4427           else
4428             locus = EXPR_LOCATION (stmt);
4429           warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4430         }
4431     }
4432
4433   return ret;
4434 }
4435
4436
4437 /* Visit conditional statement STMT.  If we can determine which edge
4438    will be taken out of STMT's basic block, record it in
4439    *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
4440    SSA_PROP_VARYING.  */
4441
4442 static enum ssa_prop_result
4443 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4444 {
4445   tree cond, val;
4446   bool sop;
4447
4448   *taken_edge_p = NULL;
4449
4450   /* FIXME.  Handle SWITCH_EXPRs.  But first, the assert pass needs to
4451      add ASSERT_EXPRs for them.  */
4452   if (TREE_CODE (stmt) == SWITCH_EXPR)
4453     return SSA_PROP_VARYING;
4454
4455   cond = COND_EXPR_COND (stmt);
4456
4457   if (dump_file && (dump_flags & TDF_DETAILS))
4458     {
4459       tree use;
4460       ssa_op_iter i;
4461
4462       fprintf (dump_file, "\nVisiting conditional with predicate: ");
4463       print_generic_expr (dump_file, cond, 0);
4464       fprintf (dump_file, "\nWith known ranges\n");
4465       
4466       FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4467         {
4468           fprintf (dump_file, "\t");
4469           print_generic_expr (dump_file, use, 0);
4470           fprintf (dump_file, ": ");
4471           dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4472         }
4473
4474       fprintf (dump_file, "\n");
4475     }
4476
4477   /* Compute the value of the predicate COND by checking the known
4478      ranges of each of its operands.
4479      
4480      Note that we cannot evaluate all the equivalent ranges here
4481      because those ranges may not yet be final and with the current
4482      propagation strategy, we cannot determine when the value ranges
4483      of the names in the equivalence set have changed.
4484
4485      For instance, given the following code fragment
4486
4487         i_5 = PHI <8, i_13>
4488         ...
4489         i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4490         if (i_14 == 1)
4491           ...
4492
4493      Assume that on the first visit to i_14, i_5 has the temporary
4494      range [8, 8] because the second argument to the PHI function is
4495      not yet executable.  We derive the range ~[0, 0] for i_14 and the
4496      equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
4497      the first time, since i_14 is equivalent to the range [8, 8], we
4498      determine that the predicate is always false.
4499
4500      On the next round of propagation, i_13 is determined to be
4501      VARYING, which causes i_5 to drop down to VARYING.  So, another
4502      visit to i_14 is scheduled.  In this second visit, we compute the
4503      exact same range and equivalence set for i_14, namely ~[0, 0] and
4504      { i_5 }.  But we did not have the previous range for i_5
4505      registered, so vrp_visit_assignment thinks that the range for
4506      i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
4507      is not visited again, which stops propagation from visiting
4508      statements in the THEN clause of that if().
4509
4510      To properly fix this we would need to keep the previous range
4511      value for the names in the equivalence set.  This way we would've
4512      discovered that from one visit to the other i_5 changed from
4513      range [8, 8] to VR_VARYING.
4514
4515      However, fixing this apparent limitation may not be worth the
4516      additional checking.  Testing on several code bases (GCC, DLV,
4517      MICO, TRAMP3D and SPEC2000) showed that doing this results in
4518      4 more predicates folded in SPEC.  */
4519   sop = false;
4520   val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4521   if (val)
4522     {
4523       if (!sop)
4524         *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4525       else
4526         {
4527           if (dump_file && (dump_flags & TDF_DETAILS))
4528             fprintf (dump_file,
4529                      "\nIgnoring predicate evaluation because "
4530                      "it assumes that signed overflow is undefined");
4531           val = NULL_TREE;
4532         }
4533     }
4534
4535   if (dump_file && (dump_flags & TDF_DETAILS))
4536     {
4537       fprintf (dump_file, "\nPredicate evaluates to: ");
4538       if (val == NULL_TREE)
4539         fprintf (dump_file, "DON'T KNOW\n");
4540       else
4541         print_generic_stmt (dump_file, val, 0);
4542     }
4543
4544   return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4545 }
4546
4547
4548 /* Evaluate statement STMT.  If the statement produces a useful range,
4549    return SSA_PROP_INTERESTING and record the SSA name with the
4550    interesting range into *OUTPUT_P.
4551
4552    If STMT is a conditional branch and we can determine its truth
4553    value, the taken edge is recorded in *TAKEN_EDGE_P.
4554
4555    If STMT produces a varying value, return SSA_PROP_VARYING.  */
4556
4557 static enum ssa_prop_result
4558 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4559 {
4560   tree def;
4561   ssa_op_iter iter;
4562   stmt_ann_t ann;
4563
4564   if (dump_file && (dump_flags & TDF_DETAILS))
4565     {
4566       fprintf (dump_file, "\nVisiting statement:\n");
4567       print_generic_stmt (dump_file, stmt, dump_flags);
4568       fprintf (dump_file, "\n");
4569     }
4570
4571   ann = stmt_ann (stmt);
4572   if (TREE_CODE (stmt) == MODIFY_EXPR)
4573     {
4574       tree rhs = TREE_OPERAND (stmt, 1);
4575
4576       /* In general, assignments with virtual operands are not useful
4577          for deriving ranges, with the obvious exception of calls to
4578          builtin functions.  */
4579       if ((TREE_CODE (rhs) == CALL_EXPR
4580            && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
4581            && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
4582            && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
4583           || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4584         return vrp_visit_assignment (stmt, output_p);
4585     }
4586   else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4587     return vrp_visit_cond_stmt (stmt, taken_edge_p);
4588
4589   /* All other statements produce nothing of interest for VRP, so mark
4590      their outputs varying and prevent further simulation.  */
4591   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4592     set_value_range_to_varying (get_value_range (def));
4593
4594   return SSA_PROP_VARYING;
4595 }
4596
4597
4598 /* Meet operation for value ranges.  Given two value ranges VR0 and
4599    VR1, store in VR0 the result of meeting VR0 and VR1.
4600    
4601    The meeting rules are as follows:
4602
4603    1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
4604
4605    2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
4606       union of VR0 and VR1.  */
4607
4608 static void
4609 vrp_meet (value_range_t *vr0, value_range_t *vr1)
4610 {
4611   if (vr0->type == VR_UNDEFINED)
4612     {
4613       copy_value_range (vr0, vr1);
4614       return;
4615     }
4616
4617   if (vr1->type == VR_UNDEFINED)
4618     {
4619       /* Nothing to do.  VR0 already has the resulting range.  */
4620       return;
4621     }
4622
4623   if (vr0->type == VR_VARYING)
4624     {
4625       /* Nothing to do.  VR0 already has the resulting range.  */
4626       return;
4627     }
4628
4629   if (vr1->type == VR_VARYING)
4630     {
4631       set_value_range_to_varying (vr0);
4632       return;
4633     }
4634
4635   if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4636     {
4637       /* If VR0 and VR1 have a non-empty intersection, compute the
4638          union of both ranges.  */
4639       if (value_ranges_intersect_p (vr0, vr1))
4640         {
4641           int cmp;
4642           tree min, max;
4643
4644           /* The lower limit of the new range is the minimum of the
4645              two ranges.  If they cannot be compared, the result is
4646              VARYING.  */
4647           cmp = compare_values (vr0->min, vr1->min);
4648           if (cmp == 0 || cmp == 1)
4649             min = vr1->min;
4650           else if (cmp == -1)
4651             min = vr0->min;
4652           else
4653             {
4654               set_value_range_to_varying (vr0);
4655               return;
4656             }
4657
4658           /* Similarly, the upper limit of the new range is the
4659              maximum of the two ranges.  If they cannot be compared,
4660              the result is VARYING.  */
4661           cmp = compare_values (vr0->max, vr1->max);
4662           if (cmp == 0 || cmp == -1)
4663             max = vr1->max;
4664           else if (cmp == 1)
4665             max = vr0->max;
4666           else
4667             {
4668               set_value_range_to_varying (vr0);
4669               return;
4670             }
4671
4672           /* Check for useless ranges.  */
4673           if (INTEGRAL_TYPE_P (TREE_TYPE (min))
4674               && ((vrp_val_is_min (min) || is_overflow_infinity (min))
4675                   && (vrp_val_is_max (max) || is_overflow_infinity (max))))
4676             {
4677               set_value_range_to_varying (vr0);
4678               return;
4679             }
4680
4681           /* The resulting set of equivalences is the intersection of
4682              the two sets.  */
4683           if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4684             bitmap_and_into (vr0->equiv, vr1->equiv);
4685           else if (vr0->equiv && !vr1->equiv)
4686             bitmap_clear (vr0->equiv);
4687
4688           set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4689         }
4690       else
4691         goto no_meet;
4692     }
4693   else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4694     {
4695       /* Two anti-ranges meet only if they are both identical.  */
4696       if (compare_values (vr0->min, vr1->min) == 0
4697           && compare_values (vr0->max, vr1->max) == 0
4698           && compare_values (vr0->min, vr0->max) == 0)
4699         {
4700           /* The resulting set of equivalences is the intersection of
4701              the two sets.  */
4702           if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4703             bitmap_and_into (vr0->equiv, vr1->equiv);
4704           else if (vr0->equiv && !vr1->equiv)
4705             bitmap_clear (vr0->equiv);
4706         }
4707       else
4708         goto no_meet;
4709     }
4710   else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4711     {
4712       /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
4713          meet only if the ranges have an empty intersection.  The
4714          result of the meet operation is the anti-range.  */
4715       if (!symbolic_range_p (vr0)
4716           && !symbolic_range_p (vr1)
4717           && !value_ranges_intersect_p (vr0, vr1))
4718         {
4719           /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
4720              set.  We need to compute the intersection of the two
4721              equivalence sets.  */
4722           if (vr1->type == VR_ANTI_RANGE)
4723             set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4724
4725           /* The resulting set of equivalences is the intersection of
4726              the two sets.  */
4727           if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4728             bitmap_and_into (vr0->equiv, vr1->equiv);
4729           else if (vr0->equiv && !vr1->equiv)
4730             bitmap_clear (vr0->equiv);
4731         }
4732       else
4733         goto no_meet;
4734     }
4735   else
4736     gcc_unreachable ();
4737
4738   return;
4739
4740 no_meet:
4741   /* The two range VR0 and VR1 do not meet.  Before giving up and
4742      setting the result to VARYING, see if we can at least derive a
4743      useful anti-range.  FIXME, all this nonsense about distinguishing
4744      anti-ranges from ranges is necessary because of the odd
4745      semantics of range_includes_zero_p and friends.  */
4746   if (!symbolic_range_p (vr0)
4747       && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4748           || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4749       && !symbolic_range_p (vr1)
4750       && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4751           || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4752     {
4753       set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4754
4755       /* Since this meet operation did not result from the meeting of
4756          two equivalent names, VR0 cannot have any equivalences.  */
4757       if (vr0->equiv)
4758         bitmap_clear (vr0->equiv);
4759     }
4760   else
4761     set_value_range_to_varying (vr0);
4762 }
4763
4764
4765 /* Visit all arguments for PHI node PHI that flow through executable
4766    edges.  If a valid value range can be derived from all the incoming
4767    value ranges, set a new range for the LHS of PHI.  */
4768
4769 static enum ssa_prop_result
4770 vrp_visit_phi_node (tree phi)
4771 {
4772   int i;
4773   tree lhs = PHI_RESULT (phi);
4774   value_range_t *lhs_vr = get_value_range (lhs);
4775   value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4776
4777   copy_value_range (&vr_result, lhs_vr);
4778
4779   if (dump_file && (dump_flags & TDF_DETAILS))
4780     {
4781       fprintf (dump_file, "\nVisiting PHI node: ");
4782       print_generic_expr (dump_file, phi, dump_flags);
4783     }
4784
4785   for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4786     {
4787       edge e = PHI_ARG_EDGE (phi, i);
4788
4789       if (dump_file && (dump_flags & TDF_DETAILS))
4790         {
4791           fprintf (dump_file,
4792               "\n    Argument #%d (%d -> %d %sexecutable)\n",
4793               i, e->src->index, e->dest->index,
4794               (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4795         }
4796
4797       if (e->flags & EDGE_EXECUTABLE)
4798         {
4799           tree arg = PHI_ARG_DEF (phi, i);
4800           value_range_t vr_arg;
4801
4802           if (TREE_CODE (arg) == SSA_NAME)
4803             vr_arg = *(get_value_range (arg));
4804           else
4805             {
4806               if (is_overflow_infinity (arg))
4807                 {
4808                   arg = copy_node (arg);
4809                   TREE_OVERFLOW (arg) = 0;
4810                 }
4811
4812               vr_arg.type = VR_RANGE;
4813               vr_arg.min = arg;
4814               vr_arg.max = arg;
4815               vr_arg.equiv = NULL;
4816             }
4817
4818           if (dump_file && (dump_flags & TDF_DETAILS))
4819             {
4820               fprintf (dump_file, "\t");
4821               print_generic_expr (dump_file, arg, dump_flags);
4822               fprintf (dump_file, "\n\tValue: ");
4823               dump_value_range (dump_file, &vr_arg);
4824               fprintf (dump_file, "\n");
4825             }
4826
4827           vrp_meet (&vr_result, &vr_arg);
4828
4829           if (vr_result.type == VR_VARYING)
4830             break;
4831         }
4832     }
4833
4834   if (vr_result.type == VR_VARYING)
4835     goto varying;
4836
4837   /* To prevent infinite iterations in the algorithm, derive ranges
4838      when the new value is slightly bigger or smaller than the
4839      previous one.  */
4840   if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4841     {
4842       if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4843         {
4844           int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4845           int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4846
4847           /* If the new minimum is smaller or larger than the previous
4848              one, go all the way to -INF.  In the first case, to avoid
4849              iterating millions of times to reach -INF, and in the
4850              other case to avoid infinite bouncing between different
4851              minimums.  */
4852           if (cmp_min > 0 || cmp_min < 0)
4853             {
4854               /* If we will end up with a (-INF, +INF) range, set it
4855                  to VARYING.  */
4856               if (vrp_val_is_max (vr_result.max))
4857                 goto varying;
4858
4859               if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
4860                   || !vrp_var_may_overflow (lhs, phi))
4861                 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4862               else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
4863                 vr_result.min =
4864                   negative_overflow_infinity (TREE_TYPE (vr_result.min));
4865               else
4866                 goto varying;
4867             }
4868
4869           /* Similarly, if the new maximum is smaller or larger than
4870              the previous one, go all the way to +INF.  */
4871           if (cmp_max < 0 || cmp_max > 0)
4872             {
4873               /* If we will end up with a (-INF, +INF) range, set it
4874                  to VARYING.  */
4875               if (vrp_val_is_min (vr_result.min))
4876                 goto varying;
4877
4878               if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
4879                   || !vrp_var_may_overflow (lhs, phi))
4880                 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4881               else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
4882                 vr_result.max =
4883                   positive_overflow_infinity (TREE_TYPE (vr_result.max));
4884               else
4885                 goto varying;
4886             }
4887         }
4888     }
4889
4890   /* If the new range is different than the previous value, keep
4891      iterating.  */
4892   if (update_value_range (lhs, &vr_result))
4893     return SSA_PROP_INTERESTING;
4894
4895   /* Nothing changed, don't add outgoing edges.  */
4896   return SSA_PROP_NOT_INTERESTING;
4897
4898   /* No match found.  Set the LHS to VARYING.  */
4899 varying:
4900   set_value_range_to_varying (lhs_vr);
4901   return SSA_PROP_VARYING;
4902 }
4903
4904 /* Simplify a division or modulo operator to a right shift or
4905    bitwise and if the first operand is unsigned or is greater
4906    than zero and the second operand is an exact power of two.  */
4907
4908 static void
4909 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4910 {
4911   tree val = NULL;
4912   tree op = TREE_OPERAND (rhs, 0);
4913   value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4914
4915   if (TYPE_UNSIGNED (TREE_TYPE (op)))
4916     {
4917       val = integer_one_node;
4918     }
4919   else
4920     {
4921       bool sop = false;
4922
4923       val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
4924
4925       if (val
4926           && sop
4927           && integer_onep (val)
4928           && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
4929         {
4930           location_t locus;
4931
4932           if (!EXPR_HAS_LOCATION (stmt))
4933             locus = input_location;
4934           else
4935             locus = EXPR_LOCATION (stmt);
4936           warning (OPT_Wstrict_overflow,
4937                    ("%Hassuming signed overflow does not occur when "
4938                     "simplifying / or %% to >> or &"),
4939                    &locus);
4940         }
4941     }
4942
4943   if (val && integer_onep (val))
4944     {
4945       tree t;
4946       tree op0 = TREE_OPERAND (rhs, 0);
4947       tree op1 = TREE_OPERAND (rhs, 1);
4948
4949       if (rhs_code == TRUNC_DIV_EXPR)
4950         {
4951           t = build_int_cst (NULL_TREE, tree_log2 (op1));
4952           t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4953         }
4954       else
4955         {
4956           t = build_int_cst (TREE_TYPE (op1), 1);
4957           t = int_const_binop (MINUS_EXPR, op1, t, 0);
4958           t = fold_convert (TREE_TYPE (op0), t);
4959           t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4960         }
4961
4962       TREE_OPERAND (stmt, 1) = t;
4963       update_stmt (stmt);
4964     }
4965 }
4966
4967 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4968    ABS_EXPR.  If the operand is <= 0, then simplify the
4969    ABS_EXPR into a NEGATE_EXPR.  */
4970
4971 static void
4972 simplify_abs_using_ranges (tree stmt, tree rhs)
4973 {
4974   tree val = NULL;
4975   tree op = TREE_OPERAND (rhs, 0);
4976   tree type = TREE_TYPE (op);
4977   value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4978
4979   if (TYPE_UNSIGNED (type))
4980     {
4981       val = integer_zero_node;
4982     }
4983   else if (vr)
4984     {
4985       bool sop = false;
4986
4987       val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
4988       if (!val)
4989         {
4990           sop = false;
4991           val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
4992                                           &sop);
4993
4994           if (val)
4995             {
4996               if (integer_zerop (val))
4997                 val = integer_one_node;
4998               else if (integer_onep (val))
4999                 val = integer_zero_node;
5000             }
5001         }
5002
5003       if (val
5004           && (integer_onep (val) || integer_zerop (val)))
5005         {
5006           tree t;
5007
5008           if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5009             {
5010               location_t locus;
5011
5012               if (!EXPR_HAS_LOCATION (stmt))
5013                 locus = input_location;
5014               else
5015                 locus = EXPR_LOCATION (stmt);
5016               warning (OPT_Wstrict_overflow,
5017                        ("%Hassuming signed overflow does not occur when "
5018                         "simplifying abs (X) to X or -X"),
5019                        &locus);
5020             }
5021
5022           if (integer_onep (val))
5023             t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5024           else
5025             t = op;
5026
5027           TREE_OPERAND (stmt, 1) = t;
5028           update_stmt (stmt);
5029         }
5030     }
5031 }
5032
5033 /* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
5034    a known value range VR.
5035
5036    If there is one and only one value which will satisfy the
5037    conditional, then return that value.  Else return NULL.  */
5038
5039 static tree
5040 test_for_singularity (enum tree_code cond_code, tree op0,
5041                       tree op1, value_range_t *vr)
5042 {
5043   tree min = NULL;
5044   tree max = NULL;
5045
5046   /* Extract minimum/maximum values which satisfy the
5047      the conditional as it was written.  */
5048   if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5049     {
5050       /* This should not be negative infinity; there is no overflow
5051          here.  */
5052       min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5053
5054       max = op1;
5055       if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5056         {
5057           tree one = build_int_cst (TREE_TYPE (op0), 1);
5058           max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5059           if (EXPR_P (max))
5060             TREE_NO_WARNING (max) = 1;
5061         }
5062     }
5063   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5064     {
5065       /* This should not be positive infinity; there is no overflow
5066          here.  */
5067       max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5068
5069       min = op1;
5070       if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5071         {
5072           tree one = build_int_cst (TREE_TYPE (op0), 1);
5073           min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5074           if (EXPR_P (min))
5075             TREE_NO_WARNING (min) = 1;
5076         }
5077     }
5078
5079   /* Now refine the minimum and maximum values using any
5080      value range information we have for op0.  */
5081   if (min && max)
5082     {
5083       if (compare_values (vr->min, min) == -1)
5084         min = min;
5085       else
5086         min = vr->min;
5087       if (compare_values (vr->max, max) == 1)
5088         max = max;
5089       else
5090         max = vr->max;
5091
5092       /* If the new min/max values have converged to a single value,
5093          then there is only one value which can satisfy the condition,
5094          return that value.  */
5095       if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5096         return min;
5097     }
5098   return NULL;
5099 }
5100
5101 /* Simplify a conditional using a relational operator to an equality
5102    test if the range information indicates only one value can satisfy
5103    the original conditional.  */
5104
5105 static void
5106 simplify_cond_using_ranges (tree stmt)
5107 {
5108   tree cond = COND_EXPR_COND (stmt);
5109   tree op0 = TREE_OPERAND (cond, 0);
5110   tree op1 = TREE_OPERAND (cond, 1);
5111   enum tree_code cond_code = TREE_CODE (cond);
5112
5113   if (cond_code != NE_EXPR
5114       && cond_code != EQ_EXPR
5115       && TREE_CODE (op0) == SSA_NAME
5116       && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5117       && is_gimple_min_invariant (op1))
5118     {
5119       value_range_t *vr = get_value_range (op0);
5120           
5121       /* If we have range information for OP0, then we might be
5122          able to simplify this conditional. */
5123       if (vr->type == VR_RANGE)
5124         {
5125           tree new = test_for_singularity (cond_code, op0, op1, vr);
5126
5127           if (new)
5128             {
5129               if (dump_file)
5130                 {
5131                   fprintf (dump_file, "Simplified relational ");
5132                   print_generic_expr (dump_file, cond, 0);
5133                   fprintf (dump_file, " into ");
5134                 }
5135
5136               COND_EXPR_COND (stmt)
5137                 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5138               update_stmt (stmt);
5139
5140               if (dump_file)
5141                 {
5142                   print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5143                   fprintf (dump_file, "\n");
5144                 }
5145               return;
5146
5147             }
5148
5149           /* Try again after inverting the condition.  We only deal
5150              with integral types here, so no need to worry about
5151              issues with inverting FP comparisons.  */
5152           cond_code = invert_tree_comparison (cond_code, false);
5153           new = test_for_singularity (cond_code, op0, op1, vr);
5154
5155           if (new)
5156             {
5157               if (dump_file)
5158                 {
5159                   fprintf (dump_file, "Simplified relational ");
5160                   print_generic_expr (dump_file, cond, 0);
5161                   fprintf (dump_file, " into ");
5162                 }
5163
5164               COND_EXPR_COND (stmt)
5165                 = build2 (NE_EXPR, boolean_type_node, op0, new);
5166               update_stmt (stmt);
5167
5168               if (dump_file)
5169                 {
5170                   print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5171                   fprintf (dump_file, "\n");
5172                 }
5173               return;
5174
5175             }
5176         }
5177     }
5178 }
5179
5180 /* Simplify STMT using ranges if possible.  */
5181
5182 void
5183 simplify_stmt_using_ranges (tree stmt)
5184 {
5185   if (TREE_CODE (stmt) == MODIFY_EXPR)
5186     {
5187       tree rhs = TREE_OPERAND (stmt, 1);
5188       enum tree_code rhs_code = TREE_CODE (rhs);
5189
5190       /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5191          and BIT_AND_EXPR respectively if the first operand is greater
5192          than zero and the second operand is an exact power of two.  */
5193       if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5194           && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5195           && integer_pow2p (TREE_OPERAND (rhs, 1)))
5196         simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5197
5198       /* Transform ABS (X) into X or -X as appropriate.  */
5199       if (rhs_code == ABS_EXPR
5200           && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5201           && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5202         simplify_abs_using_ranges (stmt, rhs);
5203     }
5204   else if (TREE_CODE (stmt) == COND_EXPR
5205            && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5206     {
5207       simplify_cond_using_ranges (stmt);
5208     }
5209 }
5210
5211 /* Stack of dest,src equivalency pairs that need to be restored after
5212    each attempt to thread a block's incoming edge to an outgoing edge. 
5213
5214    A NULL entry is used to mark the end of pairs which need to be
5215    restored.  */
5216 static VEC(tree,heap) *stack;
5217
5218 /* A trivial wrapper so that we can present the generic jump threading
5219    code with a simple API for simplifying statements.  STMT is the
5220    statement we want to simplify, WITHIN_STMT provides the location
5221    for any overflow warnings.  */
5222
5223 static tree
5224 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5225 {
5226   /* We only use VRP information to simplify conditionals.  This is
5227      overly conservative, but it's unclear if doing more would be
5228      worth the compile time cost.  */
5229   if (TREE_CODE (stmt) != COND_EXPR)
5230     return NULL;
5231
5232   return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5233 }
5234
5235 /* Blocks which have more than one predecessor and more than
5236    one successor present jump threading opportunities.  ie,
5237    when the block is reached from a specific predecessor, we
5238    may be able to determine which of the outgoing edges will
5239    be traversed.  When this optimization applies, we are able
5240    to avoid conditionals at runtime and we may expose secondary
5241    optimization opportunities.
5242
5243    This routine is effectively a driver for the generic jump
5244    threading code.  It basically just presents the generic code
5245    with edges that may be suitable for jump threading.
5246
5247    Unlike DOM, we do not iterate VRP if jump threading was successful.
5248    While iterating may expose new opportunities for VRP, it is expected
5249    those opportunities would be very limited and the compile time cost
5250    to expose those opportunities would be significant. 
5251
5252    As jump threading opportunities are discovered, they are registered
5253    for later realization.  */
5254
5255 static void
5256 identify_jump_threads (void)
5257 {
5258   basic_block bb;
5259   tree dummy;
5260
5261   /* Ugh.  When substituting values earlier in this pass we can
5262      wipe the dominance information.  So rebuild the dominator
5263      information as we need it within the jump threading code.  */
5264   calculate_dominance_info (CDI_DOMINATORS);
5265
5266   /* We do not allow VRP information to be used for jump threading
5267      across a back edge in the CFG.  Otherwise it becomes too
5268      difficult to avoid eliminating loop exit tests.  Of course
5269      EDGE_DFS_BACK is not accurate at this time so we have to
5270      recompute it.  */
5271   mark_dfs_back_edges ();
5272
5273   /* Allocate our unwinder stack to unwind any temporary equivalences
5274      that might be recorded.  */
5275   stack = VEC_alloc (tree, heap, 20);
5276
5277   /* To avoid lots of silly node creation, we create a single
5278      conditional and just modify it in-place when attempting to
5279      thread jumps.  */
5280   dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5281   dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5282
5283   /* Walk through all the blocks finding those which present a
5284      potential jump threading opportunity.  We could set this up
5285      as a dominator walker and record data during the walk, but
5286      I doubt it's worth the effort for the classes of jump
5287      threading opportunities we are trying to identify at this
5288      point in compilation.  */
5289   FOR_EACH_BB (bb)
5290     {
5291       tree last, cond;
5292
5293       /* If the generic jump threading code does not find this block
5294          interesting, then there is nothing to do.  */
5295       if (! potentially_threadable_block (bb))
5296         continue;
5297
5298       /* We only care about blocks ending in a COND_EXPR.  While there
5299          may be some value in handling SWITCH_EXPR here, I doubt it's
5300          terribly important.  */
5301       last = bsi_stmt (bsi_last (bb));
5302       if (TREE_CODE (last) != COND_EXPR)
5303         continue;
5304
5305       /* We're basically looking for any kind of conditional with
5306          integral type arguments.  */
5307       cond = COND_EXPR_COND (last);
5308       if ((TREE_CODE (cond) == SSA_NAME
5309            && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5310           || (COMPARISON_CLASS_P (cond)
5311               && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5312               && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5313               && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5314                   || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5315               && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5316         {
5317           edge_iterator ei;
5318           edge e;
5319
5320           /* We've got a block with multiple predecessors and multiple
5321              successors which also ends in a suitable conditional.  For
5322              each predecessor, see if we can thread it to a specific
5323              successor.  */
5324           FOR_EACH_EDGE (e, ei, bb->preds)
5325             {
5326               /* Do not thread across back edges or abnormal edges
5327                  in the CFG.  */
5328               if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5329                 continue;
5330
5331               thread_across_edge (dummy, e, true,
5332                                   &stack,
5333                                   simplify_stmt_for_jump_threading);
5334             }
5335         }
5336     }
5337
5338   /* We do not actually update the CFG or SSA graphs at this point as
5339      ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5340      handle ASSERT_EXPRs gracefully.  */
5341 }
5342
5343 /* We identified all the jump threading opportunities earlier, but could
5344    not transform the CFG at that time.  This routine transforms the
5345    CFG and arranges for the dominator tree to be rebuilt if necessary.
5346
5347    Note the SSA graph update will occur during the normal TODO
5348    processing by the pass manager.  */
5349 static void
5350 finalize_jump_threads (void)
5351 {
5352   bool cfg_altered = false;
5353   cfg_altered = thread_through_all_blocks ();
5354
5355   /* If we threaded jumps, then we need to recompute the dominance
5356      information, to safely do that we must clean up the CFG first.  */
5357   if (cfg_altered)
5358     {
5359       free_dominance_info (CDI_DOMINATORS);
5360       cleanup_tree_cfg ();
5361       calculate_dominance_info (CDI_DOMINATORS);
5362     }
5363   VEC_free (tree, heap, stack);
5364 }
5365
5366
5367 /* Traverse all the blocks folding conditionals with known ranges.  */
5368
5369 static void
5370 vrp_finalize (void)
5371 {
5372   size_t i;
5373   prop_value_t *single_val_range;
5374   bool do_value_subst_p;
5375
5376   if (dump_file)
5377     {
5378       fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5379       dump_all_value_ranges (dump_file);
5380       fprintf (dump_file, "\n");
5381     }
5382
5383   /* We may have ended with ranges that have exactly one value.  Those
5384      values can be substituted as any other copy/const propagated
5385      value using substitute_and_fold.  */
5386   single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
5387   memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
5388
5389   do_value_subst_p = false;
5390   for (i = 0; i < num_ssa_names; i++)
5391     if (vr_value[i]
5392         && vr_value[i]->type == VR_RANGE
5393         && vr_value[i]->min == vr_value[i]->max)
5394       {
5395         single_val_range[i].value = vr_value[i]->min;
5396         do_value_subst_p = true;
5397       }
5398
5399   if (!do_value_subst_p)
5400     {
5401       /* We found no single-valued ranges, don't waste time trying to
5402          do single value substitution in substitute_and_fold.  */
5403       free (single_val_range);
5404       single_val_range = NULL;
5405     }
5406
5407   substitute_and_fold (single_val_range, true);
5408
5409   /* We must identify jump threading opportunities before we release
5410      the datastructures built by VRP.  */
5411   identify_jump_threads ();
5412
5413   /* Free allocated memory.  */
5414   for (i = 0; i < num_ssa_names; i++)
5415     if (vr_value[i])
5416       {
5417         BITMAP_FREE (vr_value[i]->equiv);
5418         free (vr_value[i]);
5419       }
5420
5421   free (single_val_range);
5422   free (vr_value);
5423
5424   /* So that we can distinguish between VRP data being available
5425      and not available.  */
5426   vr_value = NULL;
5427 }
5428
5429
5430 /* Main entry point to VRP (Value Range Propagation).  This pass is
5431    loosely based on J. R. C. Patterson, ``Accurate Static Branch
5432    Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5433    Programming Language Design and Implementation, pp. 67-78, 1995.
5434    Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5435
5436    This is essentially an SSA-CCP pass modified to deal with ranges
5437    instead of constants.
5438
5439    While propagating ranges, we may find that two or more SSA name
5440    have equivalent, though distinct ranges.  For instance,
5441
5442      1  x_9 = p_3->a;
5443      2  p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5444      3  if (p_4 == q_2)
5445      4    p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5446      5  endif
5447      6  if (q_2)
5448         
5449    In the code above, pointer p_5 has range [q_2, q_2], but from the
5450    code we can also determine that p_5 cannot be NULL and, if q_2 had
5451    a non-varying range, p_5's range should also be compatible with it.
5452
5453    These equivalences are created by two expressions: ASSERT_EXPR and
5454    copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
5455    result of another assertion, then we can use the fact that p_5 and
5456    p_4 are equivalent when evaluating p_5's range.
5457
5458    Together with value ranges, we also propagate these equivalences
5459    between names so that we can take advantage of information from
5460    multiple ranges when doing final replacement.  Note that this
5461    equivalency relation is transitive but not symmetric.
5462    
5463    In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5464    cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5465    in contexts where that assertion does not hold (e.g., in line 6).
5466
5467    TODO, the main difference between this pass and Patterson's is that
5468    we do not propagate edge probabilities.  We only compute whether
5469    edges can be taken or not.  That is, instead of having a spectrum
5470    of jump probabilities between 0 and 1, we only deal with 0, 1 and
5471    DON'T KNOW.  In the future, it may be worthwhile to propagate
5472    probabilities to aid branch prediction.  */
5473
5474 static unsigned int
5475 execute_vrp (void)
5476 {
5477   insert_range_assertions ();
5478
5479   current_loops = loop_optimizer_init (LOOPS_NORMAL);
5480   if (current_loops)
5481     scev_initialize (current_loops);
5482
5483   vrp_initialize ();
5484   ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5485   vrp_finalize ();
5486
5487   if (current_loops)
5488     {
5489       scev_finalize ();
5490       loop_optimizer_finalize (current_loops);
5491       current_loops = NULL;
5492     }
5493
5494   /* ASSERT_EXPRs must be removed before finalizing jump threads
5495      as finalizing jump threads calls the CFG cleanup code which
5496      does not properly handle ASSERT_EXPRs.  */
5497   remove_range_assertions ();
5498
5499   /* If we exposed any new variables, go ahead and put them into
5500      SSA form now, before we handle jump threading.  This simplifies
5501      interactions between rewriting of _DECL nodes into SSA form
5502      and rewriting SSA_NAME nodes into SSA form after block
5503      duplication and CFG manipulation.  */
5504   update_ssa (TODO_update_ssa);
5505
5506   finalize_jump_threads ();
5507   return 0;
5508 }
5509
5510 static bool
5511 gate_vrp (void)
5512 {
5513   return flag_tree_vrp != 0;
5514 }
5515
5516 struct tree_opt_pass pass_vrp =
5517 {
5518   "vrp",                                /* name */
5519   gate_vrp,                             /* gate */
5520   execute_vrp,                          /* execute */
5521   NULL,                                 /* sub */
5522   NULL,                                 /* next */
5523   0,                                    /* static_pass_number */
5524   TV_TREE_VRP,                          /* tv_id */
5525   PROP_ssa | PROP_alias,                /* properties_required */
5526   0,                                    /* properties_provided */
5527   PROP_smt_usage,                       /* properties_destroyed */
5528   0,                                    /* todo_flags_start */
5529   TODO_cleanup_cfg
5530     | TODO_ggc_collect
5531     | TODO_verify_ssa
5532     | TODO_dump_func
5533     | TODO_update_ssa
5534     | TODO_update_smt_usage,                    /* todo_flags_finish */
5535   0                                     /* letter */
5536 };