]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - contrib/gcc/tree.c
MFC r368207,368607:
[FreeBSD/stable/10.git] / contrib / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4    Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22
23 /* This file contains the low level primitives for operating on tree nodes,
24    including allocation, list operations, interning of identifiers,
25    construction of data type nodes and statement nodes,
26    and construction of type conversion nodes.  It also contains
27    tables index by tree code that describe how to take apart
28    nodes of that code.
29
30    It is intended to be language-independent, but occasionally
31    calls language-dependent routines defined (for C) in typecheck.c.  */
32
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54
55 /* Each tree code class has an associated string representation.
56    These must correspond to the tree_code_class entries.  */
57
58 const char *const tree_code_class_strings[] =
59 {
60   "exceptional",
61   "constant",
62   "type",
63   "declaration",
64   "reference",
65   "comparison",
66   "unary",
67   "binary",
68   "statement",
69   "expression",
70 };
71
72 /* APPLE LOCAL begin 6353006  */
73 tree generic_block_literal_struct_type;
74 /* APPLE LOCAL end 6353006  */
75
76 /* obstack.[ch] explicitly declined to prototype this.  */
77 extern int _obstack_allocated_p (struct obstack *h, void *obj);
78
79 #ifdef GATHER_STATISTICS
80 /* Statistics-gathering stuff.  */
81
82 int tree_node_counts[(int) all_kinds];
83 int tree_node_sizes[(int) all_kinds];
84
85 /* Keep in sync with tree.h:enum tree_node_kind.  */
86 static const char * const tree_node_kind_names[] = {
87   "decls",
88   "types",
89   "blocks",
90   "stmts",
91   "refs",
92   "exprs",
93   "constants",
94   "identifiers",
95   "perm_tree_lists",
96   "temp_tree_lists",
97   "vecs",
98   "binfos",
99   "phi_nodes",
100   "ssa names",
101   "constructors",
102   "random kinds",
103   "lang_decl kinds",
104   "lang_type kinds",
105   "omp clauses"
106 };
107 #endif /* GATHER_STATISTICS */
108
109 /* Unique id for next decl created.  */
110 static GTY(()) int next_decl_uid;
111 /* Unique id for next type created.  */
112 static GTY(()) int next_type_uid = 1;
113
114 /* Since we cannot rehash a type after it is in the table, we have to
115    keep the hash code.  */
116
117 struct type_hash GTY(())
118 {
119   unsigned long hash;
120   tree type;
121 };
122
123 /* Initial size of the hash table (rounded to next prime).  */
124 #define TYPE_HASH_INITIAL_SIZE 1000
125
126 /* Now here is the hash table.  When recording a type, it is added to
127    the slot whose index is the hash code.  Note that the hash table is
128    used for several kinds of types (function types, array types and
129    array index range types, for now).  While all these live in the
130    same table, they are completely independent, and the hash code is
131    computed differently for each of these.  */
132
133 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
134      htab_t type_hash_table;
135
136 /* Hash table and temporary node for larger integer const values.  */
137 static GTY (()) tree int_cst_node;
138 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
139      htab_t int_cst_hash_table;
140
141 /* General tree->tree mapping  structure for use in hash tables.  */
142
143
144 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map))) 
145      htab_t debug_expr_for_decl;
146
147 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map))) 
148      htab_t value_expr_for_decl;
149
150 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
151   htab_t init_priority_for_decl;
152
153 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
154   htab_t restrict_base_for_decl;
155
156 struct tree_int_map GTY(())
157 {
158   tree from;
159   unsigned short to;
160 };
161 static unsigned int tree_int_map_hash (const void *);
162 static int tree_int_map_eq (const void *, const void *);
163 static int tree_int_map_marked_p (const void *);
164 static void set_type_quals (tree, int);
165 static int type_hash_eq (const void *, const void *);
166 static hashval_t type_hash_hash (const void *);
167 static hashval_t int_cst_hash_hash (const void *);
168 static int int_cst_hash_eq (const void *, const void *);
169 static void print_type_hash_statistics (void);
170 static void print_debug_expr_statistics (void);
171 static void print_value_expr_statistics (void);
172 static int type_hash_marked_p (const void *);
173 static unsigned int type_hash_list (tree, hashval_t);
174 static unsigned int attribute_hash_list (tree, hashval_t);
175
176 tree global_trees[TI_MAX];
177 tree integer_types[itk_none];
178
179 unsigned char tree_contains_struct[256][64];
180
181 /* Number of operands for each OpenMP clause.  */
182 unsigned const char omp_clause_num_ops[] =
183 {
184   0, /* OMP_CLAUSE_ERROR  */
185   1, /* OMP_CLAUSE_PRIVATE  */
186   1, /* OMP_CLAUSE_SHARED  */
187   1, /* OMP_CLAUSE_FIRSTPRIVATE  */
188   1, /* OMP_CLAUSE_LASTPRIVATE  */
189   4, /* OMP_CLAUSE_REDUCTION  */
190   1, /* OMP_CLAUSE_COPYIN  */
191   1, /* OMP_CLAUSE_COPYPRIVATE  */
192   1, /* OMP_CLAUSE_IF  */
193   1, /* OMP_CLAUSE_NUM_THREADS  */
194   1, /* OMP_CLAUSE_SCHEDULE  */
195   0, /* OMP_CLAUSE_NOWAIT  */
196   0, /* OMP_CLAUSE_ORDERED  */
197   0  /* OMP_CLAUSE_DEFAULT  */
198 };
199
200 const char * const omp_clause_code_name[] =
201 {
202   "error_clause",
203   "private",
204   "shared",
205   "firstprivate",
206   "lastprivate",
207   "reduction",
208   "copyin",
209   "copyprivate",
210   "if",
211   "num_threads",
212   "schedule",
213   "nowait",
214   "ordered",
215   "default"
216 };
217 \f
218 /* Init tree.c.  */
219
220 void
221 init_ttree (void)
222 {
223   /* Initialize the hash table of types.  */
224   type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
225                                      type_hash_eq, 0);
226
227   debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
228                                          tree_map_eq, 0);
229
230   value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
231                                          tree_map_eq, 0);
232   init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
233                                             tree_int_map_eq, 0);
234   restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
235                                             tree_map_eq, 0);
236
237   int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
238                                         int_cst_hash_eq, NULL);
239   
240   int_cst_node = make_node (INTEGER_CST);
241
242   tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
243   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
244   tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
245   
246
247   tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
248   tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
249   tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
250   tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
251   tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
252   tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
253   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
254   tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
255   tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
256
257
258   tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
259   tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
260   tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
261   tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
262   tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
263   tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1; 
264
265   tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
266   tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
267   tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
268   tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
269   tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
270   tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
271   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
272   tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
273   tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
274   tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
275   tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
276   tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
277
278   tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
279   tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
280   tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
281
282   tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
283
284   tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
285   tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
286   tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
287   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
288   
289   tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
290   tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
291   tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
292   tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
293   tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
294   tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
295   tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
296   tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
297
298   lang_hooks.init_ts ();
299 }
300
301 \f
302 /* The name of the object as the assembler will see it (but before any
303    translations made by ASM_OUTPUT_LABELREF).  Often this is the same
304    as DECL_NAME.  It is an IDENTIFIER_NODE.  */
305 tree
306 decl_assembler_name (tree decl)
307 {
308   if (!DECL_ASSEMBLER_NAME_SET_P (decl))
309     lang_hooks.set_decl_assembler_name (decl);
310   return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
311 }
312
313 /* Compute the number of bytes occupied by a tree with code CODE.
314    This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
315    codes, which are of variable length.  */
316 size_t
317 tree_code_size (enum tree_code code)
318 {
319   switch (TREE_CODE_CLASS (code))
320     {
321     case tcc_declaration:  /* A decl node */
322       {
323         switch (code)
324           {
325           case FIELD_DECL:
326             return sizeof (struct tree_field_decl);
327           case PARM_DECL:
328             return sizeof (struct tree_parm_decl);
329           case VAR_DECL:
330             return sizeof (struct tree_var_decl);
331           case LABEL_DECL:
332             return sizeof (struct tree_label_decl);
333           case RESULT_DECL:
334             return sizeof (struct tree_result_decl);
335           case CONST_DECL:
336             return sizeof (struct tree_const_decl);
337           case TYPE_DECL:
338             return sizeof (struct tree_type_decl);
339           case FUNCTION_DECL:
340             return sizeof (struct tree_function_decl);
341           case NAME_MEMORY_TAG:
342           case SYMBOL_MEMORY_TAG:
343             return sizeof (struct tree_memory_tag);
344           case STRUCT_FIELD_TAG:
345             return sizeof (struct tree_struct_field_tag);
346           default:
347             return sizeof (struct tree_decl_non_common);
348           }
349       }
350
351     case tcc_type:  /* a type node */
352       return sizeof (struct tree_type);
353
354     case tcc_reference:   /* a reference */
355     case tcc_expression:  /* an expression */
356     case tcc_statement:   /* an expression with side effects */
357     case tcc_comparison:  /* a comparison expression */
358     case tcc_unary:       /* a unary arithmetic expression */
359     case tcc_binary:      /* a binary arithmetic expression */
360       return (sizeof (struct tree_exp)
361               + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
362
363     case tcc_constant:  /* a constant */
364       switch (code)
365         {
366         case INTEGER_CST:       return sizeof (struct tree_int_cst);
367         case REAL_CST:          return sizeof (struct tree_real_cst);
368         case COMPLEX_CST:       return sizeof (struct tree_complex);
369         case VECTOR_CST:        return sizeof (struct tree_vector);
370         case STRING_CST:        gcc_unreachable ();
371         default:
372           return lang_hooks.tree_size (code);
373         }
374
375     case tcc_exceptional:  /* something random, like an identifier.  */
376       switch (code)
377         {
378         case IDENTIFIER_NODE:   return lang_hooks.identifier_size;
379         case TREE_LIST:         return sizeof (struct tree_list);
380
381         case ERROR_MARK:
382         case PLACEHOLDER_EXPR:  return sizeof (struct tree_common);
383
384         case TREE_VEC:
385         case OMP_CLAUSE:
386         case PHI_NODE:          gcc_unreachable ();
387
388         case SSA_NAME:          return sizeof (struct tree_ssa_name);
389
390         case STATEMENT_LIST:    return sizeof (struct tree_statement_list);
391         case BLOCK:             return sizeof (struct tree_block);
392         case VALUE_HANDLE:      return sizeof (struct tree_value_handle);
393         case CONSTRUCTOR:       return sizeof (struct tree_constructor);
394
395         default:
396           return lang_hooks.tree_size (code);
397         }
398
399     default:
400       gcc_unreachable ();
401     }
402 }
403
404 /* Compute the number of bytes occupied by NODE.  This routine only
405    looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes.  */
406 size_t
407 tree_size (tree node)
408 {
409   enum tree_code code = TREE_CODE (node);
410   switch (code)
411     {
412     case PHI_NODE:
413       return (sizeof (struct tree_phi_node)
414               + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
415
416     case TREE_BINFO:
417       return (offsetof (struct tree_binfo, base_binfos)
418               + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
419
420     case TREE_VEC:
421       return (sizeof (struct tree_vec)
422               + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
423
424     case STRING_CST:
425       return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
426
427     case OMP_CLAUSE:
428       return (sizeof (struct tree_omp_clause)
429               + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
430                 * sizeof (tree));
431
432     default:
433       return tree_code_size (code);
434     }
435 }
436
437 /* Return a newly allocated node of code CODE.  For decl and type
438    nodes, some other fields are initialized.  The rest of the node is
439    initialized to zero.  This function cannot be used for PHI_NODE,
440    TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
441    tree_code_size.
442
443    Achoo!  I got a code in the node.  */
444
445 tree
446 make_node_stat (enum tree_code code MEM_STAT_DECL)
447 {
448   tree t;
449   enum tree_code_class type = TREE_CODE_CLASS (code);
450   size_t length = tree_code_size (code);
451 #ifdef GATHER_STATISTICS
452   tree_node_kind kind;
453
454   switch (type)
455     {
456     case tcc_declaration:  /* A decl node */
457       kind = d_kind;
458       break;
459
460     case tcc_type:  /* a type node */
461       kind = t_kind;
462       break;
463
464     case tcc_statement:  /* an expression with side effects */
465       kind = s_kind;
466       break;
467
468     case tcc_reference:  /* a reference */
469       kind = r_kind;
470       break;
471
472     case tcc_expression:  /* an expression */
473     case tcc_comparison:  /* a comparison expression */
474     case tcc_unary:  /* a unary arithmetic expression */
475     case tcc_binary:  /* a binary arithmetic expression */
476       kind = e_kind;
477       break;
478
479     case tcc_constant:  /* a constant */
480       kind = c_kind;
481       break;
482
483     case tcc_exceptional:  /* something random, like an identifier.  */
484       switch (code)
485         {
486         case IDENTIFIER_NODE:
487           kind = id_kind;
488           break;
489
490         case TREE_VEC:
491           kind = vec_kind;
492           break;
493
494         case TREE_BINFO:
495           kind = binfo_kind;
496           break;
497
498         case PHI_NODE:
499           kind = phi_kind;
500           break;
501
502         case SSA_NAME:
503           kind = ssa_name_kind;
504           break;
505
506         case BLOCK:
507           kind = b_kind;
508           break;
509
510         case CONSTRUCTOR:
511           kind = constr_kind;
512           break;
513
514         default:
515           kind = x_kind;
516           break;
517         }
518       break;
519       
520     default:
521       gcc_unreachable ();
522     }
523
524   tree_node_counts[(int) kind]++;
525   tree_node_sizes[(int) kind] += length;
526 #endif
527
528   if (code == IDENTIFIER_NODE)
529     t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
530   else
531     t = ggc_alloc_zone_pass_stat (length, &tree_zone);
532
533   memset (t, 0, length);
534
535   TREE_SET_CODE (t, code);
536
537   switch (type)
538     {
539     case tcc_statement:
540       TREE_SIDE_EFFECTS (t) = 1;
541       break;
542
543     case tcc_declaration:
544       if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
545         DECL_IN_SYSTEM_HEADER (t) = in_system_header;
546       if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
547         {
548           if (code == FUNCTION_DECL)
549             {
550               DECL_ALIGN (t) = FUNCTION_BOUNDARY;
551               DECL_MODE (t) = FUNCTION_MODE;
552             }
553           else
554             DECL_ALIGN (t) = 1;
555           /* We have not yet computed the alias set for this declaration.  */
556           DECL_POINTER_ALIAS_SET (t) = -1;
557         }
558       DECL_SOURCE_LOCATION (t) = input_location;
559       DECL_UID (t) = next_decl_uid++;
560
561       break;
562
563     case tcc_type:
564       TYPE_UID (t) = next_type_uid++;
565       TYPE_ALIGN (t) = BITS_PER_UNIT;
566       TYPE_USER_ALIGN (t) = 0;
567       TYPE_MAIN_VARIANT (t) = t;
568
569       /* Default to no attributes for type, but let target change that.  */
570       TYPE_ATTRIBUTES (t) = NULL_TREE;
571       targetm.set_default_type_attributes (t);
572
573       /* We have not yet computed the alias set for this type.  */
574       TYPE_ALIAS_SET (t) = -1;
575       break;
576
577     case tcc_constant:
578       TREE_CONSTANT (t) = 1;
579       TREE_INVARIANT (t) = 1;
580       break;
581
582     case tcc_expression:
583       switch (code)
584         {
585         case INIT_EXPR:
586         case MODIFY_EXPR:
587         case VA_ARG_EXPR:
588         case PREDECREMENT_EXPR:
589         case PREINCREMENT_EXPR:
590         case POSTDECREMENT_EXPR:
591         case POSTINCREMENT_EXPR:
592           /* All of these have side-effects, no matter what their
593              operands are.  */
594           TREE_SIDE_EFFECTS (t) = 1;
595           break;
596
597         default:
598           break;
599         }
600       break;
601
602     default:
603       /* Other classes need no special treatment.  */
604       break;
605     }
606
607   return t;
608 }
609 \f
610 /* Return a new node with the same contents as NODE except that its
611    TREE_CHAIN is zero and it has a fresh uid.  */
612
613 tree
614 copy_node_stat (tree node MEM_STAT_DECL)
615 {
616   tree t;
617   enum tree_code code = TREE_CODE (node);
618   size_t length;
619
620   gcc_assert (code != STATEMENT_LIST);
621
622   length = tree_size (node);
623   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
624   memcpy (t, node, length);
625
626   TREE_CHAIN (t) = 0;
627   TREE_ASM_WRITTEN (t) = 0;
628   TREE_VISITED (t) = 0;
629   t->common.ann = 0;
630
631   if (TREE_CODE_CLASS (code) == tcc_declaration)
632     {
633       DECL_UID (t) = next_decl_uid++;
634       if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
635           && DECL_HAS_VALUE_EXPR_P (node))
636         {
637           SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
638           DECL_HAS_VALUE_EXPR_P (t) = 1;
639         }
640       if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
641         {
642           SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
643           DECL_HAS_INIT_PRIORITY_P (t) = 1;
644         }
645       if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
646         {
647           SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
648           DECL_BASED_ON_RESTRICT_P (t) = 1;
649         }
650     }
651   else if (TREE_CODE_CLASS (code) == tcc_type)
652     {
653       TYPE_UID (t) = next_type_uid++;
654       /* The following is so that the debug code for
655          the copy is different from the original type.
656          The two statements usually duplicate each other
657          (because they clear fields of the same union),
658          but the optimizer should catch that.  */
659       TYPE_SYMTAB_POINTER (t) = 0;
660       TYPE_SYMTAB_ADDRESS (t) = 0;
661       
662       /* Do not copy the values cache.  */
663       if (TYPE_CACHED_VALUES_P(t))
664         {
665           TYPE_CACHED_VALUES_P (t) = 0;
666           TYPE_CACHED_VALUES (t) = NULL_TREE;
667         }
668     }
669
670   return t;
671 }
672
673 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
674    For example, this can copy a list made of TREE_LIST nodes.  */
675
676 tree
677 copy_list (tree list)
678 {
679   tree head;
680   tree prev, next;
681
682   if (list == 0)
683     return 0;
684
685   head = prev = copy_node (list);
686   next = TREE_CHAIN (list);
687   while (next)
688     {
689       TREE_CHAIN (prev) = copy_node (next);
690       prev = TREE_CHAIN (prev);
691       next = TREE_CHAIN (next);
692     }
693   return head;
694 }
695
696 \f
697 /* Create an INT_CST node with a LOW value sign extended.  */
698
699 tree
700 build_int_cst (tree type, HOST_WIDE_INT low)
701 {
702   return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
703 }
704
705 /* Create an INT_CST node with a LOW value zero extended.  */
706
707 tree
708 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
709 {
710   return build_int_cst_wide (type, low, 0);
711 }
712
713 /* Create an INT_CST node with a LOW value in TYPE.  The value is sign extended
714    if it is negative.  This function is similar to build_int_cst, but
715    the extra bits outside of the type precision are cleared.  Constants
716    with these extra bits may confuse the fold so that it detects overflows
717    even in cases when they do not occur, and in general should be avoided.
718    We cannot however make this a default behavior of build_int_cst without
719    more intrusive changes, since there are parts of gcc that rely on the extra
720    precision of the integer constants.  */
721
722 tree
723 build_int_cst_type (tree type, HOST_WIDE_INT low)
724 {
725   unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
726   unsigned HOST_WIDE_INT hi, mask;
727   unsigned bits;
728   bool signed_p;
729   bool negative;
730
731   if (!type)
732     type = integer_type_node;
733
734   bits = TYPE_PRECISION (type);
735   signed_p = !TYPE_UNSIGNED (type);
736
737   if (bits >= HOST_BITS_PER_WIDE_INT)
738     negative = (low < 0);
739   else
740     {
741       /* If the sign bit is inside precision of LOW, use it to determine
742          the sign of the constant.  */
743       negative = ((val >> (bits - 1)) & 1) != 0;
744
745       /* Mask out the bits outside of the precision of the constant.  */
746       mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
747
748       if (signed_p && negative)
749         val |= ~mask;
750       else
751         val &= mask;
752     }
753
754   /* Determine the high bits.  */
755   hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
756
757   /* For unsigned type we need to mask out the bits outside of the type
758      precision.  */
759   if (!signed_p)
760     {
761       if (bits <= HOST_BITS_PER_WIDE_INT)
762         hi = 0;
763       else
764         {
765           bits -= HOST_BITS_PER_WIDE_INT;
766           mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
767           hi &= mask;
768         }
769     }
770
771   return build_int_cst_wide (type, val, hi);
772 }
773
774 /* These are the hash table functions for the hash table of INTEGER_CST
775    nodes of a sizetype.  */
776
777 /* Return the hash code code X, an INTEGER_CST.  */
778
779 static hashval_t
780 int_cst_hash_hash (const void *x)
781 {
782   tree t = (tree) x;
783
784   return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
785           ^ htab_hash_pointer (TREE_TYPE (t)));
786 }
787
788 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
789    is the same as that given by *Y, which is the same.  */
790
791 static int
792 int_cst_hash_eq (const void *x, const void *y)
793 {
794   tree xt = (tree) x;
795   tree yt = (tree) y;
796
797   return (TREE_TYPE (xt) == TREE_TYPE (yt)
798           && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
799           && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
800 }
801
802 /* Create an INT_CST node of TYPE and value HI:LOW.  If TYPE is NULL,
803    integer_type_node is used.  The returned node is always shared.
804    For small integers we use a per-type vector cache, for larger ones
805    we use a single hash table.  */
806
807 tree
808 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
809 {
810   tree t;
811   int ix = -1;
812   int limit = 0;
813
814   if (!type)
815     type = integer_type_node;
816
817   switch (TREE_CODE (type))
818     {
819     case POINTER_TYPE:
820     case REFERENCE_TYPE:
821       /* Cache NULL pointer.  */
822       if (!hi && !low)
823         {
824           limit = 1;
825           ix = 0;
826         }
827       break;
828
829     case BOOLEAN_TYPE:
830       /* Cache false or true.  */
831       limit = 2;
832       if (!hi && low < 2)
833         ix = low;
834       break;
835
836     case INTEGER_TYPE:
837     case OFFSET_TYPE:
838       if (TYPE_UNSIGNED (type))
839         {
840           /* Cache 0..N */
841           limit = INTEGER_SHARE_LIMIT;
842           if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
843             ix = low;
844         }
845       else
846         {
847           /* Cache -1..N */
848           limit = INTEGER_SHARE_LIMIT + 1;
849           if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
850             ix = low + 1;
851           else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
852             ix = 0;
853         }
854       break;
855     default:
856       break;
857     }
858
859   if (ix >= 0)
860     {
861       /* Look for it in the type's vector of small shared ints.  */
862       if (!TYPE_CACHED_VALUES_P (type))
863         {
864           TYPE_CACHED_VALUES_P (type) = 1;
865           TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
866         }
867
868       t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
869       if (t)
870         {
871           /* Make sure no one is clobbering the shared constant.  */
872           gcc_assert (TREE_TYPE (t) == type);
873           gcc_assert (TREE_INT_CST_LOW (t) == low);
874           gcc_assert (TREE_INT_CST_HIGH (t) == hi);
875         }
876       else
877         {
878           /* Create a new shared int.  */
879           t = make_node (INTEGER_CST);
880
881           TREE_INT_CST_LOW (t) = low;
882           TREE_INT_CST_HIGH (t) = hi;
883           TREE_TYPE (t) = type;
884           
885           TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
886         }
887     }
888   else
889     {
890       /* Use the cache of larger shared ints.  */
891       void **slot;
892
893       TREE_INT_CST_LOW (int_cst_node) = low;
894       TREE_INT_CST_HIGH (int_cst_node) = hi;
895       TREE_TYPE (int_cst_node) = type;
896
897       slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
898       t = *slot;
899       if (!t)
900         {
901           /* Insert this one into the hash table.  */
902           t = int_cst_node;
903           *slot = t;
904           /* Make a new node for next time round.  */
905           int_cst_node = make_node (INTEGER_CST);
906         }
907     }
908
909   return t;
910 }
911
912 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
913    and the rest are zeros.  */
914
915 tree
916 build_low_bits_mask (tree type, unsigned bits)
917 {
918   unsigned HOST_WIDE_INT low;
919   HOST_WIDE_INT high;
920   unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
921
922   gcc_assert (bits <= TYPE_PRECISION (type));
923
924   if (bits == TYPE_PRECISION (type)
925       && !TYPE_UNSIGNED (type))
926     {
927       /* Sign extended all-ones mask.  */
928       low = all_ones;
929       high = -1;
930     }
931   else if (bits <= HOST_BITS_PER_WIDE_INT)
932     {
933       low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
934       high = 0;
935     }
936   else
937     {
938       bits -= HOST_BITS_PER_WIDE_INT;
939       low = all_ones;
940       high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
941     }
942
943   return build_int_cst_wide (type, low, high);
944 }
945
946 /* Checks that X is integer constant that can be expressed in (unsigned)
947    HOST_WIDE_INT without loss of precision.  */
948
949 bool
950 cst_and_fits_in_hwi (tree x)
951 {
952   if (TREE_CODE (x) != INTEGER_CST)
953     return false;
954
955   if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
956     return false;
957
958   return (TREE_INT_CST_HIGH (x) == 0
959           || TREE_INT_CST_HIGH (x) == -1);
960 }
961
962 /* Return a new VECTOR_CST node whose type is TYPE and whose values
963    are in a list pointed to by VALS.  */
964
965 tree
966 build_vector (tree type, tree vals)
967 {
968   tree v = make_node (VECTOR_CST);
969   int over1 = 0, over2 = 0;
970   tree link;
971
972   TREE_VECTOR_CST_ELTS (v) = vals;
973   TREE_TYPE (v) = type;
974
975   /* Iterate through elements and check for overflow.  */
976   for (link = vals; link; link = TREE_CHAIN (link))
977     {
978       tree value = TREE_VALUE (link);
979
980       /* Don't crash if we get an address constant.  */
981       if (!CONSTANT_CLASS_P (value))
982         continue;
983
984       over1 |= TREE_OVERFLOW (value);
985       over2 |= TREE_CONSTANT_OVERFLOW (value);
986     }
987
988   TREE_OVERFLOW (v) = over1;
989   TREE_CONSTANT_OVERFLOW (v) = over2;
990
991   return v;
992 }
993
994 /* Return a new VECTOR_CST node whose type is TYPE and whose values
995    are extracted from V, a vector of CONSTRUCTOR_ELT.  */
996
997 tree
998 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
999 {
1000   tree list = NULL_TREE;
1001   unsigned HOST_WIDE_INT idx;
1002   tree value;
1003
1004   FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1005     list = tree_cons (NULL_TREE, value, list);
1006   return build_vector (type, nreverse (list));
1007 }
1008
1009 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1010    are in the VEC pointed to by VALS.  */
1011 tree
1012 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1013 {
1014   tree c = make_node (CONSTRUCTOR);
1015   TREE_TYPE (c) = type;
1016   CONSTRUCTOR_ELTS (c) = vals;
1017   return c;
1018 }
1019
1020 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1021    INDEX and VALUE.  */
1022 tree
1023 build_constructor_single (tree type, tree index, tree value)
1024 {
1025   VEC(constructor_elt,gc) *v;
1026   constructor_elt *elt;
1027   tree t;
1028
1029   v = VEC_alloc (constructor_elt, gc, 1);
1030   elt = VEC_quick_push (constructor_elt, v, NULL);
1031   elt->index = index;
1032   elt->value = value;
1033
1034   t = build_constructor (type, v);
1035   TREE_CONSTANT (t) = TREE_CONSTANT (value);
1036   return t;
1037 }
1038
1039
1040 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1041    are in a list pointed to by VALS.  */
1042 tree
1043 build_constructor_from_list (tree type, tree vals)
1044 {
1045   tree t, val;
1046   VEC(constructor_elt,gc) *v = NULL;
1047   bool constant_p = true;
1048
1049   if (vals)
1050     {
1051       v = VEC_alloc (constructor_elt, gc, list_length (vals));
1052       for (t = vals; t; t = TREE_CHAIN (t))
1053         {
1054           constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1055           val = TREE_VALUE (t);
1056           elt->index = TREE_PURPOSE (t);
1057           elt->value = val;
1058           if (!TREE_CONSTANT (val))
1059             constant_p = false;
1060         }
1061     }
1062
1063   t = build_constructor (type, v);
1064   TREE_CONSTANT (t) = constant_p;
1065   return t;
1066 }
1067
1068
1069 /* Return a new REAL_CST node whose type is TYPE and value is D.  */
1070
1071 tree
1072 build_real (tree type, REAL_VALUE_TYPE d)
1073 {
1074   tree v;
1075   REAL_VALUE_TYPE *dp;
1076   int overflow = 0;
1077
1078   /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1079      Consider doing it via real_convert now.  */
1080
1081   v = make_node (REAL_CST);
1082   dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1083   memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1084
1085   TREE_TYPE (v) = type;
1086   TREE_REAL_CST_PTR (v) = dp;
1087   TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1088   return v;
1089 }
1090
1091 /* Return a new REAL_CST node whose type is TYPE
1092    and whose value is the integer value of the INTEGER_CST node I.  */
1093
1094 REAL_VALUE_TYPE
1095 real_value_from_int_cst (tree type, tree i)
1096 {
1097   REAL_VALUE_TYPE d;
1098
1099   /* Clear all bits of the real value type so that we can later do
1100      bitwise comparisons to see if two values are the same.  */
1101   memset (&d, 0, sizeof d);
1102
1103   real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1104                      TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1105                      TYPE_UNSIGNED (TREE_TYPE (i)));
1106   return d;
1107 }
1108
1109 /* Given a tree representing an integer constant I, return a tree
1110    representing the same value as a floating-point constant of type TYPE.  */
1111
1112 tree
1113 build_real_from_int_cst (tree type, tree i)
1114 {
1115   tree v;
1116   int overflow = TREE_OVERFLOW (i);
1117
1118   v = build_real (type, real_value_from_int_cst (type, i));
1119
1120   TREE_OVERFLOW (v) |= overflow;
1121   TREE_CONSTANT_OVERFLOW (v) |= overflow;
1122   return v;
1123 }
1124
1125 /* Return a newly constructed STRING_CST node whose value is
1126    the LEN characters at STR.
1127    The TREE_TYPE is not initialized.  */
1128
1129 tree
1130 build_string (int len, const char *str)
1131 {
1132   tree s;
1133   size_t length;
1134
1135   /* Do not waste bytes provided by padding of struct tree_string.  */
1136   length = len + offsetof (struct tree_string, str) + 1;
1137
1138 #ifdef GATHER_STATISTICS
1139   tree_node_counts[(int) c_kind]++;
1140   tree_node_sizes[(int) c_kind] += length;
1141 #endif  
1142
1143   s = ggc_alloc_tree (length);
1144
1145   memset (s, 0, sizeof (struct tree_common));
1146   TREE_SET_CODE (s, STRING_CST);
1147   TREE_CONSTANT (s) = 1;
1148   TREE_INVARIANT (s) = 1;
1149   TREE_STRING_LENGTH (s) = len;
1150   memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1151   ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1152
1153   return s;
1154 }
1155
1156 /* Return a newly constructed COMPLEX_CST node whose value is
1157    specified by the real and imaginary parts REAL and IMAG.
1158    Both REAL and IMAG should be constant nodes.  TYPE, if specified,
1159    will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
1160
1161 tree
1162 build_complex (tree type, tree real, tree imag)
1163 {
1164   tree t = make_node (COMPLEX_CST);
1165
1166   TREE_REALPART (t) = real;
1167   TREE_IMAGPART (t) = imag;
1168   TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1169   TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1170   TREE_CONSTANT_OVERFLOW (t)
1171     = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1172   return t;
1173 }
1174
1175 /* Return a constant of arithmetic type TYPE which is the
1176    multiplicative identity of the set TYPE.  */
1177
1178 tree
1179 build_one_cst (tree type)
1180 {
1181   switch (TREE_CODE (type))
1182     {
1183     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1184     case POINTER_TYPE: case REFERENCE_TYPE:
1185     case OFFSET_TYPE:
1186       return build_int_cst (type, 1);
1187
1188     case REAL_TYPE:
1189       return build_real (type, dconst1);
1190
1191     case VECTOR_TYPE:
1192       {
1193         tree scalar, cst;
1194         int i;
1195
1196         scalar = build_one_cst (TREE_TYPE (type));
1197
1198         /* Create 'vect_cst_ = {cst,cst,...,cst}'  */
1199         cst = NULL_TREE;
1200         for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1201           cst = tree_cons (NULL_TREE, scalar, cst);
1202
1203         return build_vector (type, cst);
1204       }
1205
1206     case COMPLEX_TYPE:
1207       return build_complex (type,
1208                             build_one_cst (TREE_TYPE (type)),
1209                             fold_convert (TREE_TYPE (type), integer_zero_node));
1210
1211     default:
1212       gcc_unreachable ();
1213     }
1214 }
1215
1216 /* Build a BINFO with LEN language slots.  */
1217
1218 tree
1219 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1220 {
1221   tree t;
1222   size_t length = (offsetof (struct tree_binfo, base_binfos)
1223                    + VEC_embedded_size (tree, base_binfos));
1224
1225 #ifdef GATHER_STATISTICS
1226   tree_node_counts[(int) binfo_kind]++;
1227   tree_node_sizes[(int) binfo_kind] += length;
1228 #endif
1229
1230   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1231
1232   memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1233
1234   TREE_SET_CODE (t, TREE_BINFO);
1235
1236   VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1237
1238   return t;
1239 }
1240
1241
1242 /* Build a newly constructed TREE_VEC node of length LEN.  */
1243
1244 tree
1245 make_tree_vec_stat (int len MEM_STAT_DECL)
1246 {
1247   tree t;
1248   int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1249
1250 #ifdef GATHER_STATISTICS
1251   tree_node_counts[(int) vec_kind]++;
1252   tree_node_sizes[(int) vec_kind] += length;
1253 #endif
1254
1255   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1256
1257   memset (t, 0, length);
1258
1259   TREE_SET_CODE (t, TREE_VEC);
1260   TREE_VEC_LENGTH (t) = len;
1261
1262   return t;
1263 }
1264 \f
1265 /* Return 1 if EXPR is the integer constant zero or a complex constant
1266    of zero.  */
1267
1268 int
1269 integer_zerop (tree expr)
1270 {
1271   STRIP_NOPS (expr);
1272
1273   return ((TREE_CODE (expr) == INTEGER_CST
1274            && TREE_INT_CST_LOW (expr) == 0
1275            && TREE_INT_CST_HIGH (expr) == 0)
1276           || (TREE_CODE (expr) == COMPLEX_CST
1277               && integer_zerop (TREE_REALPART (expr))
1278               && integer_zerop (TREE_IMAGPART (expr))));
1279 }
1280
1281 /* Return 1 if EXPR is the integer constant one or the corresponding
1282    complex constant.  */
1283
1284 int
1285 integer_onep (tree expr)
1286 {
1287   STRIP_NOPS (expr);
1288
1289   return ((TREE_CODE (expr) == INTEGER_CST
1290            && TREE_INT_CST_LOW (expr) == 1
1291            && TREE_INT_CST_HIGH (expr) == 0)
1292           || (TREE_CODE (expr) == COMPLEX_CST
1293               && integer_onep (TREE_REALPART (expr))
1294               && integer_zerop (TREE_IMAGPART (expr))));
1295 }
1296
1297 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1298    it contains.  Likewise for the corresponding complex constant.  */
1299
1300 int
1301 integer_all_onesp (tree expr)
1302 {
1303   int prec;
1304   int uns;
1305
1306   STRIP_NOPS (expr);
1307
1308   if (TREE_CODE (expr) == COMPLEX_CST
1309       && integer_all_onesp (TREE_REALPART (expr))
1310       && integer_zerop (TREE_IMAGPART (expr)))
1311     return 1;
1312
1313   else if (TREE_CODE (expr) != INTEGER_CST)
1314     return 0;
1315
1316   uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1317   if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1318       && TREE_INT_CST_HIGH (expr) == -1)
1319     return 1;
1320   if (!uns)
1321     return 0;
1322
1323   /* Note that using TYPE_PRECISION here is wrong.  We care about the
1324      actual bits, not the (arbitrary) range of the type.  */
1325   prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1326   if (prec >= HOST_BITS_PER_WIDE_INT)
1327     {
1328       HOST_WIDE_INT high_value;
1329       int shift_amount;
1330
1331       shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1332
1333       /* Can not handle precisions greater than twice the host int size.  */
1334       gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1335       if (shift_amount == HOST_BITS_PER_WIDE_INT)
1336         /* Shifting by the host word size is undefined according to the ANSI
1337            standard, so we must handle this as a special case.  */
1338         high_value = -1;
1339       else
1340         high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1341
1342       return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1343               && TREE_INT_CST_HIGH (expr) == high_value);
1344     }
1345   else
1346     return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1347 }
1348
1349 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1350    one bit on).  */
1351
1352 int
1353 integer_pow2p (tree expr)
1354 {
1355   int prec;
1356   HOST_WIDE_INT high, low;
1357
1358   STRIP_NOPS (expr);
1359
1360   if (TREE_CODE (expr) == COMPLEX_CST
1361       && integer_pow2p (TREE_REALPART (expr))
1362       && integer_zerop (TREE_IMAGPART (expr)))
1363     return 1;
1364
1365   if (TREE_CODE (expr) != INTEGER_CST)
1366     return 0;
1367
1368   prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1369           ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1370   high = TREE_INT_CST_HIGH (expr);
1371   low = TREE_INT_CST_LOW (expr);
1372
1373   /* First clear all bits that are beyond the type's precision in case
1374      we've been sign extended.  */
1375
1376   if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1377     ;
1378   else if (prec > HOST_BITS_PER_WIDE_INT)
1379     high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1380   else
1381     {
1382       high = 0;
1383       if (prec < HOST_BITS_PER_WIDE_INT)
1384         low &= ~((HOST_WIDE_INT) (-1) << prec);
1385     }
1386
1387   if (high == 0 && low == 0)
1388     return 0;
1389
1390   return ((high == 0 && (low & (low - 1)) == 0)
1391           || (low == 0 && (high & (high - 1)) == 0));
1392 }
1393
1394 /* Return 1 if EXPR is an integer constant other than zero or a
1395    complex constant other than zero.  */
1396
1397 int
1398 integer_nonzerop (tree expr)
1399 {
1400   STRIP_NOPS (expr);
1401
1402   return ((TREE_CODE (expr) == INTEGER_CST
1403            && (TREE_INT_CST_LOW (expr) != 0
1404                || TREE_INT_CST_HIGH (expr) != 0))
1405           || (TREE_CODE (expr) == COMPLEX_CST
1406               && (integer_nonzerop (TREE_REALPART (expr))
1407                   || integer_nonzerop (TREE_IMAGPART (expr)))));
1408 }
1409
1410 /* Return the power of two represented by a tree node known to be a
1411    power of two.  */
1412
1413 int
1414 tree_log2 (tree expr)
1415 {
1416   int prec;
1417   HOST_WIDE_INT high, low;
1418
1419   STRIP_NOPS (expr);
1420
1421   if (TREE_CODE (expr) == COMPLEX_CST)
1422     return tree_log2 (TREE_REALPART (expr));
1423
1424   prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1425           ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1426
1427   high = TREE_INT_CST_HIGH (expr);
1428   low = TREE_INT_CST_LOW (expr);
1429
1430   /* First clear all bits that are beyond the type's precision in case
1431      we've been sign extended.  */
1432
1433   if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1434     ;
1435   else if (prec > HOST_BITS_PER_WIDE_INT)
1436     high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1437   else
1438     {
1439       high = 0;
1440       if (prec < HOST_BITS_PER_WIDE_INT)
1441         low &= ~((HOST_WIDE_INT) (-1) << prec);
1442     }
1443
1444   return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1445           : exact_log2 (low));
1446 }
1447
1448 /* Similar, but return the largest integer Y such that 2 ** Y is less
1449    than or equal to EXPR.  */
1450
1451 int
1452 tree_floor_log2 (tree expr)
1453 {
1454   int prec;
1455   HOST_WIDE_INT high, low;
1456
1457   STRIP_NOPS (expr);
1458
1459   if (TREE_CODE (expr) == COMPLEX_CST)
1460     return tree_log2 (TREE_REALPART (expr));
1461
1462   prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1463           ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1464
1465   high = TREE_INT_CST_HIGH (expr);
1466   low = TREE_INT_CST_LOW (expr);
1467
1468   /* First clear all bits that are beyond the type's precision in case
1469      we've been sign extended.  Ignore if type's precision hasn't been set
1470      since what we are doing is setting it.  */
1471
1472   if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1473     ;
1474   else if (prec > HOST_BITS_PER_WIDE_INT)
1475     high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1476   else
1477     {
1478       high = 0;
1479       if (prec < HOST_BITS_PER_WIDE_INT)
1480         low &= ~((HOST_WIDE_INT) (-1) << prec);
1481     }
1482
1483   return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1484           : floor_log2 (low));
1485 }
1486
1487 /* Return 1 if EXPR is the real constant zero.  */
1488
1489 int
1490 real_zerop (tree expr)
1491 {
1492   STRIP_NOPS (expr);
1493
1494   return ((TREE_CODE (expr) == REAL_CST
1495            && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1496           || (TREE_CODE (expr) == COMPLEX_CST
1497               && real_zerop (TREE_REALPART (expr))
1498               && real_zerop (TREE_IMAGPART (expr))));
1499 }
1500
1501 /* Return 1 if EXPR is the real constant one in real or complex form.  */
1502
1503 int
1504 real_onep (tree expr)
1505 {
1506   STRIP_NOPS (expr);
1507
1508   return ((TREE_CODE (expr) == REAL_CST
1509            && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1510           || (TREE_CODE (expr) == COMPLEX_CST
1511               && real_onep (TREE_REALPART (expr))
1512               && real_zerop (TREE_IMAGPART (expr))));
1513 }
1514
1515 /* Return 1 if EXPR is the real constant two.  */
1516
1517 int
1518 real_twop (tree expr)
1519 {
1520   STRIP_NOPS (expr);
1521
1522   return ((TREE_CODE (expr) == REAL_CST
1523            && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1524           || (TREE_CODE (expr) == COMPLEX_CST
1525               && real_twop (TREE_REALPART (expr))
1526               && real_zerop (TREE_IMAGPART (expr))));
1527 }
1528
1529 /* Return 1 if EXPR is the real constant minus one.  */
1530
1531 int
1532 real_minus_onep (tree expr)
1533 {
1534   STRIP_NOPS (expr);
1535
1536   return ((TREE_CODE (expr) == REAL_CST
1537            && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1538           || (TREE_CODE (expr) == COMPLEX_CST
1539               && real_minus_onep (TREE_REALPART (expr))
1540               && real_zerop (TREE_IMAGPART (expr))));
1541 }
1542
1543 /* Nonzero if EXP is a constant or a cast of a constant.  */
1544
1545 int
1546 really_constant_p (tree exp)
1547 {
1548   /* This is not quite the same as STRIP_NOPS.  It does more.  */
1549   while (TREE_CODE (exp) == NOP_EXPR
1550          || TREE_CODE (exp) == CONVERT_EXPR
1551          || TREE_CODE (exp) == NON_LVALUE_EXPR)
1552     exp = TREE_OPERAND (exp, 0);
1553   return TREE_CONSTANT (exp);
1554 }
1555 \f
1556 /* Return first list element whose TREE_VALUE is ELEM.
1557    Return 0 if ELEM is not in LIST.  */
1558
1559 tree
1560 value_member (tree elem, tree list)
1561 {
1562   while (list)
1563     {
1564       if (elem == TREE_VALUE (list))
1565         return list;
1566       list = TREE_CHAIN (list);
1567     }
1568   return NULL_TREE;
1569 }
1570
1571 /* Return first list element whose TREE_PURPOSE is ELEM.
1572    Return 0 if ELEM is not in LIST.  */
1573
1574 tree
1575 purpose_member (tree elem, tree list)
1576 {
1577   while (list)
1578     {
1579       if (elem == TREE_PURPOSE (list))
1580         return list;
1581       list = TREE_CHAIN (list);
1582     }
1583   return NULL_TREE;
1584 }
1585
1586 /* Return nonzero if ELEM is part of the chain CHAIN.  */
1587
1588 int
1589 chain_member (tree elem, tree chain)
1590 {
1591   while (chain)
1592     {
1593       if (elem == chain)
1594         return 1;
1595       chain = TREE_CHAIN (chain);
1596     }
1597
1598   return 0;
1599 }
1600
1601 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1602    We expect a null pointer to mark the end of the chain.
1603    This is the Lisp primitive `length'.  */
1604
1605 int
1606 list_length (tree t)
1607 {
1608   tree p = t;
1609 #ifdef ENABLE_TREE_CHECKING
1610   tree q = t;
1611 #endif
1612   int len = 0;
1613
1614   while (p)
1615     {
1616       p = TREE_CHAIN (p);
1617 #ifdef ENABLE_TREE_CHECKING
1618       if (len % 2)
1619         q = TREE_CHAIN (q);
1620       gcc_assert (p != q);
1621 #endif
1622       len++;
1623     }
1624
1625   return len;
1626 }
1627
1628 /* Returns the number of FIELD_DECLs in TYPE.  */
1629
1630 int
1631 fields_length (tree type)
1632 {
1633   tree t = TYPE_FIELDS (type);
1634   int count = 0;
1635
1636   for (; t; t = TREE_CHAIN (t))
1637     if (TREE_CODE (t) == FIELD_DECL)
1638       ++count;
1639
1640   return count;
1641 }
1642
1643 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1644    by modifying the last node in chain 1 to point to chain 2.
1645    This is the Lisp primitive `nconc'.  */
1646
1647 tree
1648 chainon (tree op1, tree op2)
1649 {
1650   tree t1;
1651
1652   if (!op1)
1653     return op2;
1654   if (!op2)
1655     return op1;
1656
1657   for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1658     continue;
1659   TREE_CHAIN (t1) = op2;
1660
1661 #ifdef ENABLE_TREE_CHECKING
1662   {
1663     tree t2;
1664     for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1665       gcc_assert (t2 != t1);
1666   }
1667 #endif
1668
1669   return op1;
1670 }
1671
1672 /* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
1673
1674 tree
1675 tree_last (tree chain)
1676 {
1677   tree next;
1678   if (chain)
1679     while ((next = TREE_CHAIN (chain)))
1680       chain = next;
1681   return chain;
1682 }
1683
1684 /* Reverse the order of elements in the chain T,
1685    and return the new head of the chain (old last element).  */
1686
1687 tree
1688 nreverse (tree t)
1689 {
1690   tree prev = 0, decl, next;
1691   for (decl = t; decl; decl = next)
1692     {
1693       next = TREE_CHAIN (decl);
1694       TREE_CHAIN (decl) = prev;
1695       prev = decl;
1696     }
1697   return prev;
1698 }
1699 \f
1700 /* Return a newly created TREE_LIST node whose
1701    purpose and value fields are PARM and VALUE.  */
1702
1703 tree
1704 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1705 {
1706   tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1707   TREE_PURPOSE (t) = parm;
1708   TREE_VALUE (t) = value;
1709   return t;
1710 }
1711
1712 /* Return a newly created TREE_LIST node whose
1713    purpose and value fields are PURPOSE and VALUE
1714    and whose TREE_CHAIN is CHAIN.  */
1715
1716 tree
1717 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1718 {
1719   tree node;
1720
1721   node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1722
1723   memset (node, 0, sizeof (struct tree_common));
1724
1725 #ifdef GATHER_STATISTICS
1726   tree_node_counts[(int) x_kind]++;
1727   tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1728 #endif
1729
1730   TREE_SET_CODE (node, TREE_LIST);
1731   TREE_CHAIN (node) = chain;
1732   TREE_PURPOSE (node) = purpose;
1733   TREE_VALUE (node) = value;
1734   return node;
1735 }
1736
1737 \f
1738 /* Return the size nominally occupied by an object of type TYPE
1739    when it resides in memory.  The value is measured in units of bytes,
1740    and its data type is that normally used for type sizes
1741    (which is the first type created by make_signed_type or
1742    make_unsigned_type).  */
1743
1744 tree
1745 size_in_bytes (tree type)
1746 {
1747   tree t;
1748
1749   if (type == error_mark_node)
1750     return integer_zero_node;
1751
1752   type = TYPE_MAIN_VARIANT (type);
1753   t = TYPE_SIZE_UNIT (type);
1754
1755   if (t == 0)
1756     {
1757       lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1758       return size_zero_node;
1759     }
1760
1761   if (TREE_CODE (t) == INTEGER_CST)
1762     t = force_fit_type (t, 0, false, false);
1763
1764   return t;
1765 }
1766
1767 /* Return the size of TYPE (in bytes) as a wide integer
1768    or return -1 if the size can vary or is larger than an integer.  */
1769
1770 HOST_WIDE_INT
1771 int_size_in_bytes (tree type)
1772 {
1773   tree t;
1774
1775   if (type == error_mark_node)
1776     return 0;
1777
1778   type = TYPE_MAIN_VARIANT (type);
1779   t = TYPE_SIZE_UNIT (type);
1780   if (t == 0
1781       || TREE_CODE (t) != INTEGER_CST
1782       || TREE_INT_CST_HIGH (t) != 0
1783       /* If the result would appear negative, it's too big to represent.  */
1784       || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1785     return -1;
1786
1787   return TREE_INT_CST_LOW (t);
1788 }
1789
1790 /* Return the maximum size of TYPE (in bytes) as a wide integer
1791    or return -1 if the size can vary or is larger than an integer.  */
1792
1793 HOST_WIDE_INT
1794 max_int_size_in_bytes (tree type)
1795 {
1796   HOST_WIDE_INT size = -1;
1797   tree size_tree;
1798
1799   /* If this is an array type, check for a possible MAX_SIZE attached.  */
1800
1801   if (TREE_CODE (type) == ARRAY_TYPE)
1802     {
1803       size_tree = TYPE_ARRAY_MAX_SIZE (type);
1804
1805       if (size_tree && host_integerp (size_tree, 1))
1806         size = tree_low_cst (size_tree, 1);
1807     }
1808
1809   /* If we still haven't been able to get a size, see if the language
1810      can compute a maximum size.  */
1811
1812   if (size == -1)
1813     {
1814       size_tree = lang_hooks.types.max_size (type);
1815
1816       if (size_tree && host_integerp (size_tree, 1))
1817         size = tree_low_cst (size_tree, 1);
1818     }
1819
1820   return size;
1821 }
1822 \f
1823 /* Return the bit position of FIELD, in bits from the start of the record.
1824    This is a tree of type bitsizetype.  */
1825
1826 tree
1827 bit_position (tree field)
1828 {
1829   return bit_from_pos (DECL_FIELD_OFFSET (field),
1830                        DECL_FIELD_BIT_OFFSET (field));
1831 }
1832
1833 /* Likewise, but return as an integer.  It must be representable in
1834    that way (since it could be a signed value, we don't have the
1835    option of returning -1 like int_size_in_byte can.  */
1836
1837 HOST_WIDE_INT
1838 int_bit_position (tree field)
1839 {
1840   return tree_low_cst (bit_position (field), 0);
1841 }
1842 \f
1843 /* Return the byte position of FIELD, in bytes from the start of the record.
1844    This is a tree of type sizetype.  */
1845
1846 tree
1847 byte_position (tree field)
1848 {
1849   return byte_from_pos (DECL_FIELD_OFFSET (field),
1850                         DECL_FIELD_BIT_OFFSET (field));
1851 }
1852
1853 /* Likewise, but return as an integer.  It must be representable in
1854    that way (since it could be a signed value, we don't have the
1855    option of returning -1 like int_size_in_byte can.  */
1856
1857 HOST_WIDE_INT
1858 int_byte_position (tree field)
1859 {
1860   return tree_low_cst (byte_position (field), 0);
1861 }
1862 \f
1863 /* Return the strictest alignment, in bits, that T is known to have.  */
1864
1865 unsigned int
1866 expr_align (tree t)
1867 {
1868   unsigned int align0, align1;
1869
1870   switch (TREE_CODE (t))
1871     {
1872     case NOP_EXPR:  case CONVERT_EXPR:  case NON_LVALUE_EXPR:
1873       /* If we have conversions, we know that the alignment of the
1874          object must meet each of the alignments of the types.  */
1875       align0 = expr_align (TREE_OPERAND (t, 0));
1876       align1 = TYPE_ALIGN (TREE_TYPE (t));
1877       return MAX (align0, align1);
1878
1879     case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
1880     case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
1881     case CLEANUP_POINT_EXPR:
1882       /* These don't change the alignment of an object.  */
1883       return expr_align (TREE_OPERAND (t, 0));
1884
1885     case COND_EXPR:
1886       /* The best we can do is say that the alignment is the least aligned
1887          of the two arms.  */
1888       align0 = expr_align (TREE_OPERAND (t, 1));
1889       align1 = expr_align (TREE_OPERAND (t, 2));
1890       return MIN (align0, align1);
1891
1892       /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
1893          meaningfully, it's always 1.  */
1894     case LABEL_DECL:     case CONST_DECL:
1895     case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
1896     case FUNCTION_DECL:
1897       gcc_assert (DECL_ALIGN (t) != 0);
1898       return DECL_ALIGN (t);
1899
1900     default:
1901       break;
1902     }
1903
1904   /* Otherwise take the alignment from that of the type.  */
1905   return TYPE_ALIGN (TREE_TYPE (t));
1906 }
1907 \f
1908 /* Return, as a tree node, the number of elements for TYPE (which is an
1909    ARRAY_TYPE) minus one. This counts only elements of the top array.  */
1910
1911 tree
1912 array_type_nelts (tree type)
1913 {
1914   tree index_type, min, max;
1915
1916   /* If they did it with unspecified bounds, then we should have already
1917      given an error about it before we got here.  */
1918   if (! TYPE_DOMAIN (type))
1919     return error_mark_node;
1920
1921   index_type = TYPE_DOMAIN (type);
1922   min = TYPE_MIN_VALUE (index_type);
1923   max = TYPE_MAX_VALUE (index_type);
1924
1925   return (integer_zerop (min)
1926           ? max
1927           : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1928 }
1929 \f
1930 /* If arg is static -- a reference to an object in static storage -- then
1931    return the object.  This is not the same as the C meaning of `static'.
1932    If arg isn't static, return NULL.  */
1933
1934 tree
1935 staticp (tree arg)
1936 {
1937   switch (TREE_CODE (arg))
1938     {
1939     case FUNCTION_DECL:
1940       /* Nested functions are static, even though taking their address will
1941          involve a trampoline as we unnest the nested function and create
1942          the trampoline on the tree level.  */
1943       return arg;
1944
1945     case VAR_DECL:
1946       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1947               && ! DECL_THREAD_LOCAL_P (arg)
1948               && ! DECL_DLLIMPORT_P (arg)
1949               ? arg : NULL);
1950
1951     case CONST_DECL:
1952       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1953               ? arg : NULL);
1954
1955     case CONSTRUCTOR:
1956       return TREE_STATIC (arg) ? arg : NULL;
1957
1958     case LABEL_DECL:
1959     case STRING_CST:
1960       return arg;
1961
1962     case COMPONENT_REF:
1963       /* If the thing being referenced is not a field, then it is
1964          something language specific.  */
1965       if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1966         return (*lang_hooks.staticp) (arg);
1967
1968       /* If we are referencing a bitfield, we can't evaluate an
1969          ADDR_EXPR at compile time and so it isn't a constant.  */
1970       if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1971         return NULL;
1972
1973       return staticp (TREE_OPERAND (arg, 0));
1974
1975     case BIT_FIELD_REF:
1976       return NULL;
1977
1978     case MISALIGNED_INDIRECT_REF:
1979     case ALIGN_INDIRECT_REF:
1980     case INDIRECT_REF:
1981       return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1982
1983     case ARRAY_REF:
1984     case ARRAY_RANGE_REF:
1985       if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1986           && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1987         return staticp (TREE_OPERAND (arg, 0));
1988       else
1989         return false;
1990
1991     default:
1992       if ((unsigned int) TREE_CODE (arg)
1993           >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1994         return lang_hooks.staticp (arg);
1995       else
1996         return NULL;
1997     }
1998 }
1999 \f
2000 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2001    Do this to any expression which may be used in more than one place,
2002    but must be evaluated only once.
2003
2004    Normally, expand_expr would reevaluate the expression each time.
2005    Calling save_expr produces something that is evaluated and recorded
2006    the first time expand_expr is called on it.  Subsequent calls to
2007    expand_expr just reuse the recorded value.
2008
2009    The call to expand_expr that generates code that actually computes
2010    the value is the first call *at compile time*.  Subsequent calls
2011    *at compile time* generate code to use the saved value.
2012    This produces correct result provided that *at run time* control
2013    always flows through the insns made by the first expand_expr
2014    before reaching the other places where the save_expr was evaluated.
2015    You, the caller of save_expr, must make sure this is so.
2016
2017    Constants, and certain read-only nodes, are returned with no
2018    SAVE_EXPR because that is safe.  Expressions containing placeholders
2019    are not touched; see tree.def for an explanation of what these
2020    are used for.  */
2021
2022 tree
2023 save_expr (tree expr)
2024 {
2025   tree t = fold (expr);
2026   tree inner;
2027
2028   /* If the tree evaluates to a constant, then we don't want to hide that
2029      fact (i.e. this allows further folding, and direct checks for constants).
2030      However, a read-only object that has side effects cannot be bypassed.
2031      Since it is no problem to reevaluate literals, we just return the
2032      literal node.  */
2033   inner = skip_simple_arithmetic (t);
2034
2035   if (TREE_INVARIANT (inner)
2036       || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2037       || TREE_CODE (inner) == SAVE_EXPR
2038       || TREE_CODE (inner) == ERROR_MARK)
2039     return t;
2040
2041   /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2042      it means that the size or offset of some field of an object depends on
2043      the value within another field.
2044
2045      Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2046      and some variable since it would then need to be both evaluated once and
2047      evaluated more than once.  Front-ends must assure this case cannot
2048      happen by surrounding any such subexpressions in their own SAVE_EXPR
2049      and forcing evaluation at the proper time.  */
2050   if (contains_placeholder_p (inner))
2051     return t;
2052
2053   t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2054
2055   /* This expression might be placed ahead of a jump to ensure that the
2056      value was computed on both sides of the jump.  So make sure it isn't
2057      eliminated as dead.  */
2058   TREE_SIDE_EFFECTS (t) = 1;
2059   TREE_INVARIANT (t) = 1;
2060   return t;
2061 }
2062
2063 /* Look inside EXPR and into any simple arithmetic operations.  Return
2064    the innermost non-arithmetic node.  */
2065
2066 tree
2067 skip_simple_arithmetic (tree expr)
2068 {
2069   tree inner;
2070
2071   /* We don't care about whether this can be used as an lvalue in this
2072      context.  */
2073   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2074     expr = TREE_OPERAND (expr, 0);
2075
2076   /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2077      a constant, it will be more efficient to not make another SAVE_EXPR since
2078      it will allow better simplification and GCSE will be able to merge the
2079      computations if they actually occur.  */
2080   inner = expr;
2081   while (1)
2082     {
2083       if (UNARY_CLASS_P (inner))
2084         inner = TREE_OPERAND (inner, 0);
2085       else if (BINARY_CLASS_P (inner))
2086         {
2087           if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2088             inner = TREE_OPERAND (inner, 0);
2089           else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2090             inner = TREE_OPERAND (inner, 1);
2091           else
2092             break;
2093         }
2094       else
2095         break;
2096     }
2097
2098   return inner;
2099 }
2100
2101 /* Return which tree structure is used by T.  */
2102
2103 enum tree_node_structure_enum
2104 tree_node_structure (tree t)
2105 {
2106   enum tree_code code = TREE_CODE (t);
2107
2108   switch (TREE_CODE_CLASS (code))
2109     {      
2110     case tcc_declaration:
2111       {
2112         switch (code)
2113           {
2114           case FIELD_DECL:
2115             return TS_FIELD_DECL;
2116           case PARM_DECL:
2117             return TS_PARM_DECL;
2118           case VAR_DECL:
2119             return TS_VAR_DECL;
2120           case LABEL_DECL:
2121             return TS_LABEL_DECL;
2122           case RESULT_DECL:
2123             return TS_RESULT_DECL;
2124           case CONST_DECL:
2125             return TS_CONST_DECL;
2126           case TYPE_DECL:
2127             return TS_TYPE_DECL;
2128           case FUNCTION_DECL:
2129             return TS_FUNCTION_DECL;
2130           case SYMBOL_MEMORY_TAG:
2131           case NAME_MEMORY_TAG:
2132           case STRUCT_FIELD_TAG:
2133             return TS_MEMORY_TAG;
2134           default:
2135             return TS_DECL_NON_COMMON;
2136           }
2137       }
2138     case tcc_type:
2139       return TS_TYPE;
2140     case tcc_reference:
2141     case tcc_comparison:
2142     case tcc_unary:
2143     case tcc_binary:
2144     case tcc_expression:
2145     case tcc_statement:
2146       return TS_EXP;
2147     default:  /* tcc_constant and tcc_exceptional */
2148       break;
2149     }
2150   switch (code)
2151     {
2152       /* tcc_constant cases.  */
2153     case INTEGER_CST:           return TS_INT_CST;
2154     case REAL_CST:              return TS_REAL_CST;
2155     case COMPLEX_CST:           return TS_COMPLEX;
2156     case VECTOR_CST:            return TS_VECTOR;
2157     case STRING_CST:            return TS_STRING;
2158       /* tcc_exceptional cases.  */
2159     case ERROR_MARK:            return TS_COMMON;
2160     case IDENTIFIER_NODE:       return TS_IDENTIFIER;
2161     case TREE_LIST:             return TS_LIST;
2162     case TREE_VEC:              return TS_VEC;
2163     case PHI_NODE:              return TS_PHI_NODE;
2164     case SSA_NAME:              return TS_SSA_NAME;
2165     case PLACEHOLDER_EXPR:      return TS_COMMON;
2166     case STATEMENT_LIST:        return TS_STATEMENT_LIST;
2167     case BLOCK:                 return TS_BLOCK;
2168     case CONSTRUCTOR:           return TS_CONSTRUCTOR;
2169     case TREE_BINFO:            return TS_BINFO;
2170     case VALUE_HANDLE:          return TS_VALUE_HANDLE;
2171     case OMP_CLAUSE:            return TS_OMP_CLAUSE;
2172
2173     default:
2174       gcc_unreachable ();
2175     }
2176 }
2177 \f
2178 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2179    or offset that depends on a field within a record.  */
2180
2181 bool
2182 contains_placeholder_p (tree exp)
2183 {
2184   enum tree_code code;
2185
2186   if (!exp)
2187     return 0;
2188
2189   code = TREE_CODE (exp);
2190   if (code == PLACEHOLDER_EXPR)
2191     return 1;
2192
2193   switch (TREE_CODE_CLASS (code))
2194     {
2195     case tcc_reference:
2196       /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2197          position computations since they will be converted into a
2198          WITH_RECORD_EXPR involving the reference, which will assume
2199          here will be valid.  */
2200       return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2201
2202     case tcc_exceptional:
2203       if (code == TREE_LIST)
2204         return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2205                 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2206       break;
2207
2208     case tcc_unary:
2209     case tcc_binary:
2210     case tcc_comparison:
2211     case tcc_expression:
2212       switch (code)
2213         {
2214         case COMPOUND_EXPR:
2215           /* Ignoring the first operand isn't quite right, but works best.  */
2216           return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2217
2218         case COND_EXPR:
2219           return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2220                   || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2221                   || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2222
2223         case CALL_EXPR:
2224           return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2225
2226         default:
2227           break;
2228         }
2229
2230       switch (TREE_CODE_LENGTH (code))
2231         {
2232         case 1:
2233           return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2234         case 2:
2235           return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2236                   || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2237         default:
2238           return 0;
2239         }
2240
2241     default:
2242       return 0;
2243     }
2244   return 0;
2245 }
2246
2247 /* Return true if any part of the computation of TYPE involves a
2248    PLACEHOLDER_EXPR.  This includes size, bounds, qualifiers
2249    (for QUAL_UNION_TYPE) and field positions.  */
2250
2251 static bool
2252 type_contains_placeholder_1 (tree type)
2253 {
2254   /* If the size contains a placeholder or the parent type (component type in
2255      the case of arrays) type involves a placeholder, this type does.  */
2256   if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2257       || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2258       || (TREE_TYPE (type) != 0
2259           && type_contains_placeholder_p (TREE_TYPE (type))))
2260     return true;
2261
2262   /* Now do type-specific checks.  Note that the last part of the check above
2263      greatly limits what we have to do below.  */
2264   switch (TREE_CODE (type))
2265     {
2266     case VOID_TYPE:
2267     case COMPLEX_TYPE:
2268     case ENUMERAL_TYPE:
2269     case BOOLEAN_TYPE:
2270     case POINTER_TYPE:
2271     case OFFSET_TYPE:
2272     case REFERENCE_TYPE:
2273     case METHOD_TYPE:
2274     case FUNCTION_TYPE:
2275     case VECTOR_TYPE:
2276       return false;
2277
2278     case INTEGER_TYPE:
2279     case REAL_TYPE:
2280       /* Here we just check the bounds.  */
2281       return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2282               || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2283
2284     case ARRAY_TYPE:
2285       /* We're already checked the component type (TREE_TYPE), so just check
2286          the index type.  */
2287       return type_contains_placeholder_p (TYPE_DOMAIN (type));
2288
2289     case RECORD_TYPE:
2290     case UNION_TYPE:
2291     case QUAL_UNION_TYPE:
2292       {
2293         tree field;
2294
2295         for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2296           if (TREE_CODE (field) == FIELD_DECL
2297               && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2298                   || (TREE_CODE (type) == QUAL_UNION_TYPE
2299                       && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2300                   || type_contains_placeholder_p (TREE_TYPE (field))))
2301             return true;
2302
2303         return false;
2304       }
2305
2306     default:
2307       gcc_unreachable ();
2308     }
2309 }
2310
2311 bool
2312 type_contains_placeholder_p (tree type)
2313 {
2314   bool result;
2315
2316   /* If the contains_placeholder_bits field has been initialized,
2317      then we know the answer.  */
2318   if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2319     return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2320
2321   /* Indicate that we've seen this type node, and the answer is false.
2322      This is what we want to return if we run into recursion via fields.  */
2323   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2324
2325   /* Compute the real value.  */
2326   result = type_contains_placeholder_1 (type);
2327
2328   /* Store the real value.  */
2329   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2330
2331   return result;
2332 }
2333 \f
2334 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2335    return a tree with all occurrences of references to F in a
2336    PLACEHOLDER_EXPR replaced by R.   Note that we assume here that EXP
2337    contains only arithmetic expressions or a CALL_EXPR with a
2338    PLACEHOLDER_EXPR occurring only in its arglist.  */
2339
2340 tree
2341 substitute_in_expr (tree exp, tree f, tree r)
2342 {
2343   enum tree_code code = TREE_CODE (exp);
2344   tree op0, op1, op2, op3;
2345   tree new;
2346   tree inner;
2347
2348   /* We handle TREE_LIST and COMPONENT_REF separately.  */
2349   if (code == TREE_LIST)
2350     {
2351       op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2352       op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2353       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2354         return exp;
2355
2356       return tree_cons (TREE_PURPOSE (exp), op1, op0);
2357     }
2358   else if (code == COMPONENT_REF)
2359    {
2360      /* If this expression is getting a value from a PLACEHOLDER_EXPR
2361         and it is the right field, replace it with R.  */
2362      for (inner = TREE_OPERAND (exp, 0);
2363           REFERENCE_CLASS_P (inner);
2364           inner = TREE_OPERAND (inner, 0))
2365        ;
2366      if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2367          && TREE_OPERAND (exp, 1) == f)
2368        return r;
2369
2370      /* If this expression hasn't been completed let, leave it alone.  */
2371      if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2372        return exp;
2373
2374      op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2375      if (op0 == TREE_OPERAND (exp, 0))
2376        return exp;
2377
2378      new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2379                         op0, TREE_OPERAND (exp, 1), NULL_TREE);
2380    }
2381   else
2382     switch (TREE_CODE_CLASS (code))
2383       {
2384       case tcc_constant:
2385       case tcc_declaration:
2386         return exp;
2387
2388       case tcc_exceptional:
2389       case tcc_unary:
2390       case tcc_binary:
2391       case tcc_comparison:
2392       case tcc_expression:
2393       case tcc_reference:
2394         switch (TREE_CODE_LENGTH (code))
2395           {
2396           case 0:
2397             return exp;
2398
2399           case 1:
2400             op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2401             if (op0 == TREE_OPERAND (exp, 0))
2402               return exp;
2403
2404             new = fold_build1 (code, TREE_TYPE (exp), op0);
2405             break;
2406
2407           case 2:
2408             op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2409             op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2410
2411             if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2412               return exp;
2413
2414             new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2415             break;
2416
2417           case 3:
2418             op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2419             op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2420             op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2421
2422             if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2423                 && op2 == TREE_OPERAND (exp, 2))
2424               return exp;
2425
2426             new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2427             break;
2428
2429           case 4:
2430             op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2431             op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2432             op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2433             op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2434
2435             if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2436                 && op2 == TREE_OPERAND (exp, 2)
2437                 && op3 == TREE_OPERAND (exp, 3))
2438               return exp;
2439
2440             new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2441             break;
2442
2443           default:
2444             gcc_unreachable ();
2445           }
2446         break;
2447
2448       default:
2449         gcc_unreachable ();
2450       }
2451
2452   TREE_READONLY (new) = TREE_READONLY (exp);
2453   return new;
2454 }
2455
2456 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2457    for it within OBJ, a tree that is an object or a chain of references.  */
2458
2459 tree
2460 substitute_placeholder_in_expr (tree exp, tree obj)
2461 {
2462   enum tree_code code = TREE_CODE (exp);
2463   tree op0, op1, op2, op3;
2464
2465   /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2466      in the chain of OBJ.  */
2467   if (code == PLACEHOLDER_EXPR)
2468     {
2469       tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2470       tree elt;
2471
2472       for (elt = obj; elt != 0;
2473            elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2474                    || TREE_CODE (elt) == COND_EXPR)
2475                   ? TREE_OPERAND (elt, 1)
2476                   : (REFERENCE_CLASS_P (elt)
2477                      || UNARY_CLASS_P (elt)
2478                      || BINARY_CLASS_P (elt)
2479                      || EXPRESSION_CLASS_P (elt))
2480                   ? TREE_OPERAND (elt, 0) : 0))
2481         if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2482           return elt;
2483
2484       for (elt = obj; elt != 0;
2485            elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2486                    || TREE_CODE (elt) == COND_EXPR)
2487                   ? TREE_OPERAND (elt, 1)
2488                   : (REFERENCE_CLASS_P (elt)
2489                      || UNARY_CLASS_P (elt)
2490                      || BINARY_CLASS_P (elt)
2491                      || EXPRESSION_CLASS_P (elt))
2492                   ? TREE_OPERAND (elt, 0) : 0))
2493         if (POINTER_TYPE_P (TREE_TYPE (elt))
2494             && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2495                 == need_type))
2496           return fold_build1 (INDIRECT_REF, need_type, elt);
2497
2498       /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
2499          survives until RTL generation, there will be an error.  */
2500       return exp;
2501     }
2502
2503   /* TREE_LIST is special because we need to look at TREE_VALUE
2504      and TREE_CHAIN, not TREE_OPERANDS.  */
2505   else if (code == TREE_LIST)
2506     {
2507       op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2508       op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2509       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2510         return exp;
2511
2512       return tree_cons (TREE_PURPOSE (exp), op1, op0);
2513     }
2514   else
2515     switch (TREE_CODE_CLASS (code))
2516       {
2517       case tcc_constant:
2518       case tcc_declaration:
2519         return exp;
2520
2521       case tcc_exceptional:
2522       case tcc_unary:
2523       case tcc_binary:
2524       case tcc_comparison:
2525       case tcc_expression:
2526       case tcc_reference:
2527       case tcc_statement:
2528         switch (TREE_CODE_LENGTH (code))
2529           {
2530           case 0:
2531             return exp;
2532
2533           case 1:
2534             op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2535             if (op0 == TREE_OPERAND (exp, 0))
2536               return exp;
2537             else
2538               return fold_build1 (code, TREE_TYPE (exp), op0);
2539
2540           case 2:
2541             op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2542             op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2543
2544             if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2545               return exp;
2546             else
2547               return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2548
2549           case 3:
2550             op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2551             op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2552             op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2553
2554             if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2555                 && op2 == TREE_OPERAND (exp, 2))
2556               return exp;
2557             else
2558               return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2559
2560           case 4:
2561             op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2562             op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2563             op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2564             op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2565
2566             if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2567                 && op2 == TREE_OPERAND (exp, 2)
2568                 && op3 == TREE_OPERAND (exp, 3))
2569               return exp;
2570             else
2571               return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2572
2573           default:
2574             gcc_unreachable ();
2575           }
2576         break;
2577
2578       default:
2579         gcc_unreachable ();
2580       }
2581 }
2582 \f
2583 /* Stabilize a reference so that we can use it any number of times
2584    without causing its operands to be evaluated more than once.
2585    Returns the stabilized reference.  This works by means of save_expr,
2586    so see the caveats in the comments about save_expr.
2587
2588    Also allows conversion expressions whose operands are references.
2589    Any other kind of expression is returned unchanged.  */
2590
2591 tree
2592 stabilize_reference (tree ref)
2593 {
2594   tree result;
2595   enum tree_code code = TREE_CODE (ref);
2596
2597   switch (code)
2598     {
2599     case VAR_DECL:
2600     case PARM_DECL:
2601     case RESULT_DECL:
2602       /* No action is needed in this case.  */
2603       return ref;
2604
2605     case NOP_EXPR:
2606     case CONVERT_EXPR:
2607     case FLOAT_EXPR:
2608     case FIX_TRUNC_EXPR:
2609     case FIX_FLOOR_EXPR:
2610     case FIX_ROUND_EXPR:
2611     case FIX_CEIL_EXPR:
2612       result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2613       break;
2614
2615     case INDIRECT_REF:
2616       result = build_nt (INDIRECT_REF,
2617                          stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2618       break;
2619
2620     case COMPONENT_REF:
2621       result = build_nt (COMPONENT_REF,
2622                          stabilize_reference (TREE_OPERAND (ref, 0)),
2623                          TREE_OPERAND (ref, 1), NULL_TREE);
2624       break;
2625
2626     case BIT_FIELD_REF:
2627       result = build_nt (BIT_FIELD_REF,
2628                          stabilize_reference (TREE_OPERAND (ref, 0)),
2629                          stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2630                          stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2631       break;
2632
2633     case ARRAY_REF:
2634       result = build_nt (ARRAY_REF,
2635                          stabilize_reference (TREE_OPERAND (ref, 0)),
2636                          stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2637                          TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2638       break;
2639
2640     case ARRAY_RANGE_REF:
2641       result = build_nt (ARRAY_RANGE_REF,
2642                          stabilize_reference (TREE_OPERAND (ref, 0)),
2643                          stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2644                          TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2645       break;
2646
2647     case COMPOUND_EXPR:
2648       /* We cannot wrap the first expression in a SAVE_EXPR, as then
2649          it wouldn't be ignored.  This matters when dealing with
2650          volatiles.  */
2651       return stabilize_reference_1 (ref);
2652
2653       /* If arg isn't a kind of lvalue we recognize, make no change.
2654          Caller should recognize the error for an invalid lvalue.  */
2655     default:
2656       return ref;
2657
2658     case ERROR_MARK:
2659       return error_mark_node;
2660     }
2661
2662   TREE_TYPE (result) = TREE_TYPE (ref);
2663   TREE_READONLY (result) = TREE_READONLY (ref);
2664   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2665   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2666
2667   return result;
2668 }
2669
2670 /* Subroutine of stabilize_reference; this is called for subtrees of
2671    references.  Any expression with side-effects must be put in a SAVE_EXPR
2672    to ensure that it is only evaluated once.
2673
2674    We don't put SAVE_EXPR nodes around everything, because assigning very
2675    simple expressions to temporaries causes us to miss good opportunities
2676    for optimizations.  Among other things, the opportunity to fold in the
2677    addition of a constant into an addressing mode often gets lost, e.g.
2678    "y[i+1] += x;".  In general, we take the approach that we should not make
2679    an assignment unless we are forced into it - i.e., that any non-side effect
2680    operator should be allowed, and that cse should take care of coalescing
2681    multiple utterances of the same expression should that prove fruitful.  */
2682
2683 tree
2684 stabilize_reference_1 (tree e)
2685 {
2686   tree result;
2687   enum tree_code code = TREE_CODE (e);
2688
2689   /* We cannot ignore const expressions because it might be a reference
2690      to a const array but whose index contains side-effects.  But we can
2691      ignore things that are actual constant or that already have been
2692      handled by this function.  */
2693
2694   if (TREE_INVARIANT (e))
2695     return e;
2696
2697   switch (TREE_CODE_CLASS (code))
2698     {
2699     case tcc_exceptional:
2700     case tcc_type:
2701     case tcc_declaration:
2702     case tcc_comparison:
2703     case tcc_statement:
2704     case tcc_expression:
2705     case tcc_reference:
2706       /* If the expression has side-effects, then encase it in a SAVE_EXPR
2707          so that it will only be evaluated once.  */
2708       /* The reference (r) and comparison (<) classes could be handled as
2709          below, but it is generally faster to only evaluate them once.  */
2710       if (TREE_SIDE_EFFECTS (e))
2711         return save_expr (e);
2712       return e;
2713
2714     case tcc_constant:
2715       /* Constants need no processing.  In fact, we should never reach
2716          here.  */
2717       return e;
2718
2719     case tcc_binary:
2720       /* Division is slow and tends to be compiled with jumps,
2721          especially the division by powers of 2 that is often
2722          found inside of an array reference.  So do it just once.  */
2723       if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2724           || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2725           || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2726           || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2727         return save_expr (e);
2728       /* Recursively stabilize each operand.  */
2729       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2730                          stabilize_reference_1 (TREE_OPERAND (e, 1)));
2731       break;
2732
2733     case tcc_unary:
2734       /* Recursively stabilize each operand.  */
2735       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2736       break;
2737
2738     default:
2739       gcc_unreachable ();
2740     }
2741
2742   TREE_TYPE (result) = TREE_TYPE (e);
2743   TREE_READONLY (result) = TREE_READONLY (e);
2744   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2745   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2746   TREE_INVARIANT (result) = 1;
2747
2748   return result;
2749 }
2750 \f
2751 /* Low-level constructors for expressions.  */
2752
2753 /* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
2754    TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
2755
2756 void
2757 recompute_tree_invariant_for_addr_expr (tree t)
2758 {
2759   tree node;
2760   bool tc = true, ti = true, se = false;
2761
2762   /* We started out assuming this address is both invariant and constant, but
2763      does not have side effects.  Now go down any handled components and see if
2764      any of them involve offsets that are either non-constant or non-invariant.
2765      Also check for side-effects.
2766
2767      ??? Note that this code makes no attempt to deal with the case where
2768      taking the address of something causes a copy due to misalignment.  */
2769
2770 #define UPDATE_TITCSE(NODE)  \
2771 do { tree _node = (NODE); \
2772      if (_node && !TREE_INVARIANT (_node)) ti = false; \
2773      if (_node && !TREE_CONSTANT (_node)) tc = false; \
2774      if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2775
2776   for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2777        node = TREE_OPERAND (node, 0))
2778     {
2779       /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2780          array reference (probably made temporarily by the G++ front end),
2781          so ignore all the operands.  */
2782       if ((TREE_CODE (node) == ARRAY_REF
2783            || TREE_CODE (node) == ARRAY_RANGE_REF)
2784           && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2785         {
2786           UPDATE_TITCSE (TREE_OPERAND (node, 1));
2787           if (TREE_OPERAND (node, 2))
2788             UPDATE_TITCSE (TREE_OPERAND (node, 2));
2789           if (TREE_OPERAND (node, 3))
2790             UPDATE_TITCSE (TREE_OPERAND (node, 3));
2791         }
2792       /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2793          FIELD_DECL, apparently.  The G++ front end can put something else
2794          there, at least temporarily.  */
2795       else if (TREE_CODE (node) == COMPONENT_REF
2796                && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2797         {
2798           if (TREE_OPERAND (node, 2))
2799             UPDATE_TITCSE (TREE_OPERAND (node, 2));
2800         }
2801       else if (TREE_CODE (node) == BIT_FIELD_REF)
2802         UPDATE_TITCSE (TREE_OPERAND (node, 2));
2803     }
2804
2805   node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2806
2807   /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
2808      the address, since &(*a)->b is a form of addition.  If it's a decl, it's
2809      invariant and constant if the decl is static.  It's also invariant if it's
2810      a decl in the current function.  Taking the address of a volatile variable
2811      is not volatile.  If it's a constant, the address is both invariant and
2812      constant.  Otherwise it's neither.  */
2813   if (TREE_CODE (node) == INDIRECT_REF)
2814     UPDATE_TITCSE (TREE_OPERAND (node, 0));
2815   else if (DECL_P (node))
2816     {
2817       if (staticp (node))
2818         ;
2819       else if (decl_function_context (node) == current_function_decl
2820                /* Addresses of thread-local variables are invariant.  */
2821                || (TREE_CODE (node) == VAR_DECL
2822                    && DECL_THREAD_LOCAL_P (node)))
2823         tc = false;
2824       else
2825         ti = tc = false;
2826     }
2827   else if (CONSTANT_CLASS_P (node))
2828     ;
2829   else
2830     {
2831       ti = tc = false;
2832       se |= TREE_SIDE_EFFECTS (node);
2833     }
2834
2835   TREE_CONSTANT (t) = tc;
2836   TREE_INVARIANT (t) = ti;
2837   TREE_SIDE_EFFECTS (t) = se;
2838 #undef UPDATE_TITCSE
2839 }
2840
2841 /* Build an expression of code CODE, data type TYPE, and operands as
2842    specified.  Expressions and reference nodes can be created this way.
2843    Constants, decls, types and misc nodes cannot be.
2844
2845    We define 5 non-variadic functions, from 0 to 4 arguments.  This is
2846    enough for all extant tree codes.  */
2847
2848 tree
2849 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2850 {
2851   tree t;
2852
2853   gcc_assert (TREE_CODE_LENGTH (code) == 0);
2854
2855   t = make_node_stat (code PASS_MEM_STAT);
2856   TREE_TYPE (t) = tt;
2857
2858   return t;
2859 }
2860
2861 tree
2862 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2863 {
2864   int length = sizeof (struct tree_exp);
2865 #ifdef GATHER_STATISTICS
2866   tree_node_kind kind;
2867 #endif
2868   tree t;
2869
2870 #ifdef GATHER_STATISTICS
2871   switch (TREE_CODE_CLASS (code))
2872     {
2873     case tcc_statement:  /* an expression with side effects */
2874       kind = s_kind;
2875       break;
2876     case tcc_reference:  /* a reference */
2877       kind = r_kind;
2878       break;
2879     default:
2880       kind = e_kind;
2881       break;
2882     }
2883
2884   tree_node_counts[(int) kind]++;
2885   tree_node_sizes[(int) kind] += length;
2886 #endif
2887
2888   gcc_assert (TREE_CODE_LENGTH (code) == 1);
2889
2890   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2891
2892   memset (t, 0, sizeof (struct tree_common));
2893
2894   TREE_SET_CODE (t, code);
2895
2896   TREE_TYPE (t) = type;
2897 #ifdef USE_MAPPED_LOCATION
2898   SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2899 #else
2900   SET_EXPR_LOCUS (t, NULL);
2901 #endif
2902   TREE_COMPLEXITY (t) = 0;
2903   TREE_OPERAND (t, 0) = node;
2904   TREE_BLOCK (t) = NULL_TREE;
2905   if (node && !TYPE_P (node))
2906     {
2907       TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2908       TREE_READONLY (t) = TREE_READONLY (node);
2909     }
2910
2911   if (TREE_CODE_CLASS (code) == tcc_statement)
2912     TREE_SIDE_EFFECTS (t) = 1;
2913   else switch (code)
2914     {
2915     case VA_ARG_EXPR:
2916       /* All of these have side-effects, no matter what their
2917          operands are.  */
2918       TREE_SIDE_EFFECTS (t) = 1;
2919       TREE_READONLY (t) = 0;
2920       break;
2921
2922     case MISALIGNED_INDIRECT_REF:
2923     case ALIGN_INDIRECT_REF:
2924     case INDIRECT_REF:
2925       /* Whether a dereference is readonly has nothing to do with whether
2926          its operand is readonly.  */
2927       TREE_READONLY (t) = 0;
2928       break;
2929
2930     case ADDR_EXPR:
2931       if (node)
2932         recompute_tree_invariant_for_addr_expr (t);
2933       break;
2934
2935     default:
2936       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2937           && node && !TYPE_P (node)
2938           && TREE_CONSTANT (node))
2939         TREE_CONSTANT (t) = 1;
2940       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2941           && node && TREE_INVARIANT (node))
2942         TREE_INVARIANT (t) = 1;
2943       if (TREE_CODE_CLASS (code) == tcc_reference
2944           && node && TREE_THIS_VOLATILE (node))
2945         TREE_THIS_VOLATILE (t) = 1;
2946       break;
2947     }
2948
2949   return t;
2950 }
2951
2952 #define PROCESS_ARG(N)                  \
2953   do {                                  \
2954     TREE_OPERAND (t, N) = arg##N;       \
2955     if (arg##N &&!TYPE_P (arg##N))      \
2956       {                                 \
2957         if (TREE_SIDE_EFFECTS (arg##N)) \
2958           side_effects = 1;             \
2959         if (!TREE_READONLY (arg##N))    \
2960           read_only = 0;                \
2961         if (!TREE_CONSTANT (arg##N))    \
2962           constant = 0;                 \
2963         if (!TREE_INVARIANT (arg##N))   \
2964           invariant = 0;                \
2965       }                                 \
2966   } while (0)
2967
2968 tree
2969 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2970 {
2971   bool constant, read_only, side_effects, invariant;
2972   tree t;
2973
2974   gcc_assert (TREE_CODE_LENGTH (code) == 2);
2975
2976   t = make_node_stat (code PASS_MEM_STAT);
2977   TREE_TYPE (t) = tt;
2978
2979   /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2980      result based on those same flags for the arguments.  But if the
2981      arguments aren't really even `tree' expressions, we shouldn't be trying
2982      to do this.  */
2983
2984   /* Expressions without side effects may be constant if their
2985      arguments are as well.  */
2986   constant = (TREE_CODE_CLASS (code) == tcc_comparison
2987               || TREE_CODE_CLASS (code) == tcc_binary);
2988   read_only = 1;
2989   side_effects = TREE_SIDE_EFFECTS (t);
2990   invariant = constant;
2991
2992   PROCESS_ARG(0);
2993   PROCESS_ARG(1);
2994
2995   TREE_READONLY (t) = read_only;
2996   TREE_CONSTANT (t) = constant;
2997   TREE_INVARIANT (t) = invariant;
2998   TREE_SIDE_EFFECTS (t) = side_effects;
2999   TREE_THIS_VOLATILE (t)
3000     = (TREE_CODE_CLASS (code) == tcc_reference
3001        && arg0 && TREE_THIS_VOLATILE (arg0));
3002
3003   return t;
3004 }
3005
3006 tree
3007 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3008              tree arg2 MEM_STAT_DECL)
3009 {
3010   bool constant, read_only, side_effects, invariant;
3011   tree t;
3012
3013   gcc_assert (TREE_CODE_LENGTH (code) == 3);
3014
3015   t = make_node_stat (code PASS_MEM_STAT);
3016   TREE_TYPE (t) = tt;
3017
3018   side_effects = TREE_SIDE_EFFECTS (t);
3019
3020   PROCESS_ARG(0);
3021   PROCESS_ARG(1);
3022   PROCESS_ARG(2);
3023
3024   if (code == CALL_EXPR && !side_effects)
3025     {
3026       tree node;
3027       int i;
3028
3029       /* Calls have side-effects, except those to const or
3030          pure functions.  */
3031       i = call_expr_flags (t);
3032       if (!(i & (ECF_CONST | ECF_PURE)))
3033         side_effects = 1;
3034
3035       /* And even those have side-effects if their arguments do.  */
3036       else for (node = arg1; node; node = TREE_CHAIN (node))
3037         if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3038           {
3039             side_effects = 1;
3040             break;
3041           }
3042     }
3043
3044   TREE_SIDE_EFFECTS (t) = side_effects;
3045   TREE_THIS_VOLATILE (t)
3046     = (TREE_CODE_CLASS (code) == tcc_reference
3047        && arg0 && TREE_THIS_VOLATILE (arg0));
3048
3049   return t;
3050 }
3051
3052 tree
3053 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3054              tree arg2, tree arg3 MEM_STAT_DECL)
3055 {
3056   bool constant, read_only, side_effects, invariant;
3057   tree t;
3058
3059   gcc_assert (TREE_CODE_LENGTH (code) == 4);
3060
3061   t = make_node_stat (code PASS_MEM_STAT);
3062   TREE_TYPE (t) = tt;
3063
3064   side_effects = TREE_SIDE_EFFECTS (t);
3065
3066   PROCESS_ARG(0);
3067   PROCESS_ARG(1);
3068   PROCESS_ARG(2);
3069   PROCESS_ARG(3);
3070
3071   TREE_SIDE_EFFECTS (t) = side_effects;
3072   TREE_THIS_VOLATILE (t)
3073     = (TREE_CODE_CLASS (code) == tcc_reference
3074        && arg0 && TREE_THIS_VOLATILE (arg0));
3075
3076   return t;
3077 }
3078
3079 tree
3080 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3081              tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3082 {
3083   bool constant, read_only, side_effects, invariant;
3084   tree t;
3085
3086   gcc_assert (TREE_CODE_LENGTH (code) == 5);
3087
3088   t = make_node_stat (code PASS_MEM_STAT);
3089   TREE_TYPE (t) = tt;
3090
3091   side_effects = TREE_SIDE_EFFECTS (t);
3092
3093   PROCESS_ARG(0);
3094   PROCESS_ARG(1);
3095   PROCESS_ARG(2);
3096   PROCESS_ARG(3);
3097   PROCESS_ARG(4);
3098
3099   TREE_SIDE_EFFECTS (t) = side_effects;
3100   TREE_THIS_VOLATILE (t)
3101     = (TREE_CODE_CLASS (code) == tcc_reference
3102        && arg0 && TREE_THIS_VOLATILE (arg0));
3103
3104   return t;
3105 }
3106
3107 tree
3108 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3109              tree arg2, tree arg3, tree arg4, tree arg5,
3110              tree arg6 MEM_STAT_DECL)
3111 {
3112   bool constant, read_only, side_effects, invariant;
3113   tree t;
3114
3115   gcc_assert (code == TARGET_MEM_REF);
3116
3117   t = make_node_stat (code PASS_MEM_STAT);
3118   TREE_TYPE (t) = tt;
3119
3120   side_effects = TREE_SIDE_EFFECTS (t);
3121
3122   PROCESS_ARG(0);
3123   PROCESS_ARG(1);
3124   PROCESS_ARG(2);
3125   PROCESS_ARG(3);
3126   PROCESS_ARG(4);
3127   PROCESS_ARG(5);
3128   PROCESS_ARG(6);
3129
3130   TREE_SIDE_EFFECTS (t) = side_effects;
3131   TREE_THIS_VOLATILE (t) = 0;
3132
3133   return t;
3134 }
3135
3136 /* Similar except don't specify the TREE_TYPE
3137    and leave the TREE_SIDE_EFFECTS as 0.
3138    It is permissible for arguments to be null,
3139    or even garbage if their values do not matter.  */
3140
3141 tree
3142 build_nt (enum tree_code code, ...)
3143 {
3144   tree t;
3145   int length;
3146   int i;
3147   va_list p;
3148
3149   va_start (p, code);
3150
3151   t = make_node (code);
3152   length = TREE_CODE_LENGTH (code);
3153
3154   for (i = 0; i < length; i++)
3155     TREE_OPERAND (t, i) = va_arg (p, tree);
3156
3157   va_end (p);
3158   return t;
3159 }
3160 \f
3161 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3162    We do NOT enter this node in any sort of symbol table.
3163
3164    layout_decl is used to set up the decl's storage layout.
3165    Other slots are initialized to 0 or null pointers.  */
3166
3167 tree
3168 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3169 {
3170   tree t;
3171
3172   t = make_node_stat (code PASS_MEM_STAT);
3173
3174 /*  if (type == error_mark_node)
3175     type = integer_type_node; */
3176 /* That is not done, deliberately, so that having error_mark_node
3177    as the type can suppress useless errors in the use of this variable.  */
3178
3179   DECL_NAME (t) = name;
3180   TREE_TYPE (t) = type;
3181
3182   if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3183     layout_decl (t, 0);
3184
3185   return t;
3186 }
3187
3188 /* Builds and returns function declaration with NAME and TYPE.  */
3189
3190 tree
3191 build_fn_decl (const char *name, tree type)
3192 {
3193   tree id = get_identifier (name);
3194   tree decl = build_decl (FUNCTION_DECL, id, type);
3195
3196   DECL_EXTERNAL (decl) = 1;
3197   TREE_PUBLIC (decl) = 1;
3198   DECL_ARTIFICIAL (decl) = 1;
3199   TREE_NOTHROW (decl) = 1;
3200
3201   return decl;
3202 }
3203
3204 \f
3205 /* BLOCK nodes are used to represent the structure of binding contours
3206    and declarations, once those contours have been exited and their contents
3207    compiled.  This information is used for outputting debugging info.  */
3208
3209 tree
3210 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3211 {
3212   tree block = make_node (BLOCK);
3213
3214   BLOCK_VARS (block) = vars;
3215   BLOCK_SUBBLOCKS (block) = subblocks;
3216   BLOCK_SUPERCONTEXT (block) = supercontext;
3217   BLOCK_CHAIN (block) = chain;
3218   return block;
3219 }
3220
3221 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3222 /* ??? gengtype doesn't handle conditionals */
3223 static GTY(()) source_locus last_annotated_node;
3224 #endif
3225
3226 #ifdef USE_MAPPED_LOCATION
3227
3228 expanded_location
3229 expand_location (source_location loc)
3230 {
3231   expanded_location xloc;
3232   if (loc == 0) { xloc.file = NULL; xloc.line = 0;  xloc.column = 0; }
3233   else
3234     {
3235       const struct line_map *map = linemap_lookup (&line_table, loc);
3236       xloc.file = map->to_file;
3237       xloc.line = SOURCE_LINE (map, loc);
3238       xloc.column = SOURCE_COLUMN (map, loc);
3239     };
3240   return xloc;
3241 }
3242
3243 #else
3244
3245 /* Record the exact location where an expression or an identifier were
3246    encountered.  */
3247
3248 void
3249 annotate_with_file_line (tree node, const char *file, int line)
3250 {
3251   /* Roughly one percent of the calls to this function are to annotate
3252      a node with the same information already attached to that node!
3253      Just return instead of wasting memory.  */
3254   if (EXPR_LOCUS (node)
3255       && EXPR_LINENO (node) == line
3256       && (EXPR_FILENAME (node) == file
3257           || !strcmp (EXPR_FILENAME (node), file)))
3258     {
3259       last_annotated_node = EXPR_LOCUS (node);
3260       return;
3261     }
3262
3263   /* In heavily macroized code (such as GCC itself) this single
3264      entry cache can reduce the number of allocations by more
3265      than half.  */
3266   if (last_annotated_node
3267       && last_annotated_node->line == line
3268       && (last_annotated_node->file == file
3269           || !strcmp (last_annotated_node->file, file)))
3270     {
3271       SET_EXPR_LOCUS (node, last_annotated_node);
3272       return;
3273     }
3274
3275   SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3276   EXPR_LINENO (node) = line;
3277   EXPR_FILENAME (node) = file;
3278   last_annotated_node = EXPR_LOCUS (node);
3279 }
3280
3281 void
3282 annotate_with_locus (tree node, location_t locus)
3283 {
3284   annotate_with_file_line (node, locus.file, locus.line);
3285 }
3286 #endif
3287 \f
3288 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3289    is ATTRIBUTE.  */
3290
3291 tree
3292 build_decl_attribute_variant (tree ddecl, tree attribute)
3293 {
3294   DECL_ATTRIBUTES (ddecl) = attribute;
3295   return ddecl;
3296 }
3297
3298 /* Borrowed from hashtab.c iterative_hash implementation.  */
3299 #define mix(a,b,c) \
3300 { \
3301   a -= b; a -= c; a ^= (c>>13); \
3302   b -= c; b -= a; b ^= (a<< 8); \
3303   c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3304   a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3305   b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3306   c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3307   a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3308   b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3309   c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3310 }
3311
3312
3313 /* Produce good hash value combining VAL and VAL2.  */
3314 static inline hashval_t
3315 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3316 {
3317   /* the golden ratio; an arbitrary value.  */
3318   hashval_t a = 0x9e3779b9;
3319
3320   mix (a, val, val2);
3321   return val2;
3322 }
3323
3324 /* Produce good hash value combining PTR and VAL2.  */
3325 static inline hashval_t
3326 iterative_hash_pointer (void *ptr, hashval_t val2)
3327 {
3328   if (sizeof (ptr) == sizeof (hashval_t))
3329     return iterative_hash_hashval_t ((size_t) ptr, val2);
3330   else
3331     {
3332       hashval_t a = (hashval_t) (size_t) ptr;
3333       /* Avoid warnings about shifting of more than the width of the type on
3334          hosts that won't execute this path.  */
3335       int zero = 0;
3336       hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3337       mix (a, b, val2);
3338       return val2;
3339     }
3340 }
3341
3342 /* Produce good hash value combining VAL and VAL2.  */
3343 static inline hashval_t
3344 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3345 {
3346   if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3347     return iterative_hash_hashval_t (val, val2);
3348   else
3349     {
3350       hashval_t a = (hashval_t) val;
3351       /* Avoid warnings about shifting of more than the width of the type on
3352          hosts that won't execute this path.  */
3353       int zero = 0;
3354       hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3355       mix (a, b, val2);
3356       if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3357         {
3358           hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3359           hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3360           mix (a, b, val2);
3361         }
3362       return val2;
3363     }
3364 }
3365
3366 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3367    is ATTRIBUTE and its qualifiers are QUALS.
3368
3369    Record such modified types already made so we don't make duplicates.  */
3370
3371 static tree
3372 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3373 {
3374   if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3375     {
3376       hashval_t hashcode = 0;
3377       tree ntype;
3378       enum tree_code code = TREE_CODE (ttype);
3379
3380       ntype = copy_node (ttype);
3381
3382       TYPE_POINTER_TO (ntype) = 0;
3383       TYPE_REFERENCE_TO (ntype) = 0;
3384       TYPE_ATTRIBUTES (ntype) = attribute;
3385
3386       /* Create a new main variant of TYPE.  */
3387       TYPE_MAIN_VARIANT (ntype) = ntype;
3388       TYPE_NEXT_VARIANT (ntype) = 0;
3389       set_type_quals (ntype, TYPE_UNQUALIFIED);
3390
3391       hashcode = iterative_hash_object (code, hashcode);
3392       if (TREE_TYPE (ntype))
3393         hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3394                                           hashcode);
3395       hashcode = attribute_hash_list (attribute, hashcode);
3396
3397       switch (TREE_CODE (ntype))
3398         {
3399         case FUNCTION_TYPE:
3400           hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3401           break;
3402         case ARRAY_TYPE:
3403           hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3404                                             hashcode);
3405           break;
3406         case INTEGER_TYPE:
3407           hashcode = iterative_hash_object
3408             (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3409           hashcode = iterative_hash_object
3410             (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3411           break;
3412         case REAL_TYPE:
3413           {
3414             unsigned int precision = TYPE_PRECISION (ntype);
3415             hashcode = iterative_hash_object (precision, hashcode);
3416           }
3417           break;
3418         default:
3419           break;
3420         }
3421
3422       ntype = type_hash_canon (hashcode, ntype);
3423       ttype = build_qualified_type (ntype, quals);
3424     }
3425
3426   return ttype;
3427 }
3428
3429
3430 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3431    is ATTRIBUTE.
3432
3433    Record such modified types already made so we don't make duplicates.  */
3434
3435 tree
3436 build_type_attribute_variant (tree ttype, tree attribute)
3437 {
3438   return build_type_attribute_qual_variant (ttype, attribute,
3439                                             TYPE_QUALS (ttype));
3440 }
3441
3442 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3443    or zero if not.
3444
3445    We try both `text' and `__text__', ATTR may be either one.  */
3446 /* ??? It might be a reasonable simplification to require ATTR to be only
3447    `text'.  One might then also require attribute lists to be stored in
3448    their canonicalized form.  */
3449
3450 static int
3451 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3452 {
3453   int ident_len;
3454   const char *p;
3455
3456   if (TREE_CODE (ident) != IDENTIFIER_NODE)
3457     return 0;
3458   
3459   p = IDENTIFIER_POINTER (ident);
3460   ident_len = IDENTIFIER_LENGTH (ident);
3461   
3462   if (ident_len == attr_len
3463       && strcmp (attr, p) == 0)
3464     return 1;
3465
3466   /* If ATTR is `__text__', IDENT must be `text'; and vice versa.  */
3467   if (attr[0] == '_')
3468     {
3469       gcc_assert (attr[1] == '_');
3470       gcc_assert (attr[attr_len - 2] == '_');
3471       gcc_assert (attr[attr_len - 1] == '_');
3472       if (ident_len == attr_len - 4
3473           && strncmp (attr + 2, p, attr_len - 4) == 0)
3474         return 1;
3475     }
3476   else
3477     {
3478       if (ident_len == attr_len + 4
3479           && p[0] == '_' && p[1] == '_'
3480           && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3481           && strncmp (attr, p + 2, attr_len) == 0)
3482         return 1;
3483     }
3484
3485   return 0;
3486 }
3487
3488 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3489    or zero if not.
3490
3491    We try both `text' and `__text__', ATTR may be either one.  */
3492
3493 int
3494 is_attribute_p (const char *attr, tree ident)
3495 {
3496   return is_attribute_with_length_p (attr, strlen (attr), ident);
3497 }
3498
3499 /* Given an attribute name and a list of attributes, return a pointer to the
3500    attribute's list element if the attribute is part of the list, or NULL_TREE
3501    if not found.  If the attribute appears more than once, this only
3502    returns the first occurrence; the TREE_CHAIN of the return value should
3503    be passed back in if further occurrences are wanted.  */
3504
3505 tree
3506 lookup_attribute (const char *attr_name, tree list)
3507 {
3508   tree l;
3509   size_t attr_len = strlen (attr_name);
3510
3511   for (l = list; l; l = TREE_CHAIN (l))
3512     {
3513       gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3514       if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3515         return l;
3516     }
3517
3518   return NULL_TREE;
3519 }
3520
3521 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3522    modified list.  */
3523
3524 tree
3525 remove_attribute (const char *attr_name, tree list)
3526 {
3527   tree *p;
3528   size_t attr_len = strlen (attr_name);
3529
3530   for (p = &list; *p; )
3531     {
3532       tree l = *p;
3533       gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3534       if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3535         *p = TREE_CHAIN (l);
3536       else
3537         p = &TREE_CHAIN (l);
3538     }
3539
3540   return list;
3541 }
3542
3543 /* Return an attribute list that is the union of a1 and a2.  */
3544
3545 tree
3546 merge_attributes (tree a1, tree a2)
3547 {
3548   tree attributes;
3549
3550   /* Either one unset?  Take the set one.  */
3551
3552   if ((attributes = a1) == 0)
3553     attributes = a2;
3554
3555   /* One that completely contains the other?  Take it.  */
3556
3557   else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3558     {
3559       if (attribute_list_contained (a2, a1))
3560         attributes = a2;
3561       else
3562         {
3563           /* Pick the longest list, and hang on the other list.  */
3564
3565           if (list_length (a1) < list_length (a2))
3566             attributes = a2, a2 = a1;
3567
3568           for (; a2 != 0; a2 = TREE_CHAIN (a2))
3569             {
3570               tree a;
3571               for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3572                                          attributes);
3573                    a != NULL_TREE;
3574                    a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3575                                          TREE_CHAIN (a)))
3576                 {
3577                   if (TREE_VALUE (a) != NULL
3578                       && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3579                       && TREE_VALUE (a2) != NULL
3580                       && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3581                     {
3582                       if (simple_cst_list_equal (TREE_VALUE (a),
3583                                                  TREE_VALUE (a2)) == 1)
3584                         break;
3585                     }
3586                   else if (simple_cst_equal (TREE_VALUE (a),
3587                                              TREE_VALUE (a2)) == 1)
3588                     break;
3589                 }
3590               if (a == NULL_TREE)
3591                 {
3592                   a1 = copy_node (a2);
3593                   TREE_CHAIN (a1) = attributes;
3594                   attributes = a1;
3595                 }
3596             }
3597         }
3598     }
3599   return attributes;
3600 }
3601
3602 /* Given types T1 and T2, merge their attributes and return
3603   the result.  */
3604
3605 tree
3606 merge_type_attributes (tree t1, tree t2)
3607 {
3608   return merge_attributes (TYPE_ATTRIBUTES (t1),
3609                            TYPE_ATTRIBUTES (t2));
3610 }
3611
3612 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3613    the result.  */
3614
3615 tree
3616 merge_decl_attributes (tree olddecl, tree newdecl)
3617 {
3618   return merge_attributes (DECL_ATTRIBUTES (olddecl),
3619                            DECL_ATTRIBUTES (newdecl));
3620 }
3621
3622 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3623
3624 /* Specialization of merge_decl_attributes for various Windows targets.
3625
3626    This handles the following situation:
3627
3628      __declspec (dllimport) int foo;
3629      int foo;
3630
3631    The second instance of `foo' nullifies the dllimport.  */
3632
3633 tree
3634 merge_dllimport_decl_attributes (tree old, tree new)
3635 {
3636   tree a;
3637   int delete_dllimport_p = 1;
3638
3639   /* What we need to do here is remove from `old' dllimport if it doesn't
3640      appear in `new'.  dllimport behaves like extern: if a declaration is
3641      marked dllimport and a definition appears later, then the object
3642      is not dllimport'd.  We also remove a `new' dllimport if the old list
3643      contains dllexport:  dllexport always overrides dllimport, regardless
3644      of the order of declaration.  */     
3645   if (!VAR_OR_FUNCTION_DECL_P (new))
3646     delete_dllimport_p = 0;
3647   else if (DECL_DLLIMPORT_P (new)
3648            && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3649     { 
3650       DECL_DLLIMPORT_P (new) = 0;
3651       warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3652               "dllimport ignored", new);
3653     }
3654   else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3655     {
3656       /* Warn about overriding a symbol that has already been used. eg:
3657            extern int __attribute__ ((dllimport)) foo;
3658            int* bar () {return &foo;}
3659            int foo;
3660       */
3661       if (TREE_USED (old))
3662         {
3663           warning (0, "%q+D redeclared without dllimport attribute "
3664                    "after being referenced with dll linkage", new);
3665           /* If we have used a variable's address with dllimport linkage,
3666               keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3667               decl may already have had TREE_INVARIANT and TREE_CONSTANT
3668               computed.
3669               We still remove the attribute so that assembler code refers
3670               to '&foo rather than '_imp__foo'.  */
3671           if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3672             DECL_DLLIMPORT_P (new) = 1;
3673         }
3674
3675       /* Let an inline definition silently override the external reference,
3676          but otherwise warn about attribute inconsistency.  */ 
3677       else if (TREE_CODE (new) == VAR_DECL
3678                || !DECL_DECLARED_INLINE_P (new))
3679         warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3680                   "previous dllimport ignored", new);
3681     }
3682   else
3683     delete_dllimport_p = 0;
3684
3685   a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3686
3687   if (delete_dllimport_p) 
3688     {
3689       tree prev, t;
3690       const size_t attr_len = strlen ("dllimport"); 
3691      
3692       /* Scan the list for dllimport and delete it.  */
3693       for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3694         {
3695           if (is_attribute_with_length_p ("dllimport", attr_len,
3696                                           TREE_PURPOSE (t)))
3697             {
3698               if (prev == NULL_TREE)
3699                 a = TREE_CHAIN (a);
3700               else
3701                 TREE_CHAIN (prev) = TREE_CHAIN (t);
3702               break;
3703             }
3704         }
3705     }
3706
3707   return a;
3708 }
3709
3710 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3711    struct attribute_spec.handler.  */
3712
3713 tree
3714 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3715                       bool *no_add_attrs)
3716 {
3717   tree node = *pnode;
3718
3719   /* These attributes may apply to structure and union types being created,
3720      but otherwise should pass to the declaration involved.  */
3721   if (!DECL_P (node))
3722     {
3723       if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3724                    | (int) ATTR_FLAG_ARRAY_NEXT))
3725         {
3726           *no_add_attrs = true;
3727           return tree_cons (name, args, NULL_TREE);
3728         }
3729       if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3730         {
3731           warning (OPT_Wattributes, "%qs attribute ignored",
3732                    IDENTIFIER_POINTER (name));
3733           *no_add_attrs = true;
3734         }
3735
3736       return NULL_TREE;
3737     }
3738
3739   if (TREE_CODE (node) != FUNCTION_DECL
3740       && TREE_CODE (node) != VAR_DECL)
3741     {
3742       *no_add_attrs = true;
3743       warning (OPT_Wattributes, "%qs attribute ignored",
3744                IDENTIFIER_POINTER (name));
3745       return NULL_TREE;
3746     }
3747
3748   /* Report error on dllimport ambiguities seen now before they cause
3749      any damage.  */
3750   else if (is_attribute_p ("dllimport", name))
3751     {
3752       /* Honor any target-specific overrides. */ 
3753       if (!targetm.valid_dllimport_attribute_p (node))
3754         *no_add_attrs = true;
3755
3756      else if (TREE_CODE (node) == FUNCTION_DECL
3757                 && DECL_DECLARED_INLINE_P (node))
3758         {
3759           warning (OPT_Wattributes, "inline function %q+D declared as "
3760                   " dllimport: attribute ignored", node); 
3761           *no_add_attrs = true;
3762         }
3763       /* Like MS, treat definition of dllimported variables and
3764          non-inlined functions on declaration as syntax errors. */
3765      else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3766         {
3767           error ("function %q+D definition is marked dllimport", node);
3768           *no_add_attrs = true;
3769         }
3770
3771      else if (TREE_CODE (node) == VAR_DECL)
3772         {
3773           if (DECL_INITIAL (node))
3774             {
3775               error ("variable %q+D definition is marked dllimport",
3776                      node);
3777               *no_add_attrs = true;
3778             }
3779
3780           /* `extern' needn't be specified with dllimport.
3781              Specify `extern' now and hope for the best.  Sigh.  */
3782           DECL_EXTERNAL (node) = 1;
3783           /* Also, implicitly give dllimport'd variables declared within
3784              a function global scope, unless declared static.  */
3785           if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3786             TREE_PUBLIC (node) = 1;
3787         }
3788
3789       if (*no_add_attrs == false)
3790         DECL_DLLIMPORT_P (node) = 1;
3791     }
3792
3793   /*  Report error if symbol is not accessible at global scope.  */
3794   if (!TREE_PUBLIC (node)
3795       && (TREE_CODE (node) == VAR_DECL
3796           || TREE_CODE (node) == FUNCTION_DECL))
3797     {
3798       error ("external linkage required for symbol %q+D because of "
3799              "%qs attribute", node, IDENTIFIER_POINTER (name));
3800       *no_add_attrs = true;
3801     }
3802
3803   return NULL_TREE;
3804 }
3805
3806 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES  */
3807 \f
3808 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3809    of the various TYPE_QUAL values.  */
3810
3811 static void
3812 set_type_quals (tree type, int type_quals)
3813 {
3814   TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3815   TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3816   TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3817 }
3818
3819 /* Returns true iff cand is equivalent to base with type_quals.  */
3820
3821 bool
3822 check_qualified_type (tree cand, tree base, int type_quals)
3823 {
3824   return (TYPE_QUALS (cand) == type_quals
3825           && TYPE_NAME (cand) == TYPE_NAME (base)
3826           /* Apparently this is needed for Objective-C.  */
3827           && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3828           && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3829                                    TYPE_ATTRIBUTES (base)));
3830 }
3831
3832 /* Return a version of the TYPE, qualified as indicated by the
3833    TYPE_QUALS, if one exists.  If no qualified version exists yet,
3834    return NULL_TREE.  */
3835
3836 tree
3837 get_qualified_type (tree type, int type_quals)
3838 {
3839   tree t;
3840
3841   if (TYPE_QUALS (type) == type_quals)
3842     return type;
3843
3844   /* Search the chain of variants to see if there is already one there just
3845      like the one we need to have.  If so, use that existing one.  We must
3846      preserve the TYPE_NAME, since there is code that depends on this.  */
3847   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3848     if (check_qualified_type (t, type, type_quals))
3849       return t;
3850
3851   return NULL_TREE;
3852 }
3853
3854 /* Like get_qualified_type, but creates the type if it does not
3855    exist.  This function never returns NULL_TREE.  */
3856
3857 tree
3858 build_qualified_type (tree type, int type_quals)
3859 {
3860   tree t;
3861
3862   /* See if we already have the appropriate qualified variant.  */
3863   t = get_qualified_type (type, type_quals);
3864
3865   /* If not, build it.  */
3866   if (!t)
3867     {
3868       t = build_variant_type_copy (type);
3869       set_type_quals (t, type_quals);
3870     }
3871
3872   return t;
3873 }
3874
3875 /* Create a new distinct copy of TYPE.  The new type is made its own
3876    MAIN_VARIANT.  */
3877
3878 tree
3879 build_distinct_type_copy (tree type)
3880 {
3881   tree t = copy_node (type);
3882   
3883   TYPE_POINTER_TO (t) = 0;
3884   TYPE_REFERENCE_TO (t) = 0;
3885
3886   /* Make it its own variant.  */
3887   TYPE_MAIN_VARIANT (t) = t;
3888   TYPE_NEXT_VARIANT (t) = 0;
3889
3890   /* Note that it is now possible for TYPE_MIN_VALUE to be a value
3891      whose TREE_TYPE is not t.  This can also happen in the Ada
3892      frontend when using subtypes.  */
3893
3894   return t;
3895 }
3896
3897 /* Create a new variant of TYPE, equivalent but distinct.
3898    This is so the caller can modify it.  */
3899
3900 tree
3901 build_variant_type_copy (tree type)
3902 {
3903   tree t, m = TYPE_MAIN_VARIANT (type);
3904
3905   t = build_distinct_type_copy (type);
3906   
3907   /* Add the new type to the chain of variants of TYPE.  */
3908   TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3909   TYPE_NEXT_VARIANT (m) = t;
3910   TYPE_MAIN_VARIANT (t) = m;
3911
3912   return t;
3913 }
3914 \f
3915 /* Return true if the from tree in both tree maps are equal.  */
3916
3917 int
3918 tree_map_eq (const void *va, const void *vb)
3919 {
3920   const struct tree_map  *a = va, *b = vb;
3921   return (a->from == b->from);
3922 }
3923
3924 /* Hash a from tree in a tree_map.  */
3925
3926 unsigned int
3927 tree_map_hash (const void *item)
3928 {
3929   return (((const struct tree_map *) item)->hash);
3930 }
3931
3932 /* Return true if this tree map structure is marked for garbage collection
3933    purposes.  We simply return true if the from tree is marked, so that this
3934    structure goes away when the from tree goes away.  */
3935
3936 int
3937 tree_map_marked_p (const void *p)
3938 {
3939   tree from = ((struct tree_map *) p)->from;
3940
3941   return ggc_marked_p (from);
3942 }
3943
3944 /* Return true if the trees in the tree_int_map *'s VA and VB are equal.  */
3945
3946 static int
3947 tree_int_map_eq (const void *va, const void *vb)
3948 {
3949   const struct tree_int_map  *a = va, *b = vb;
3950   return (a->from == b->from);
3951 }
3952
3953 /* Hash a from tree in the tree_int_map * ITEM.  */
3954
3955 static unsigned int
3956 tree_int_map_hash (const void *item)
3957 {
3958   return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3959 }
3960
3961 /* Return true if this tree int map structure is marked for garbage collection
3962    purposes.  We simply return true if the from tree_int_map *P's from tree is marked, so that this
3963    structure goes away when the from tree goes away.  */
3964
3965 static int
3966 tree_int_map_marked_p (const void *p)
3967 {
3968   tree from = ((struct tree_int_map *) p)->from;
3969
3970   return ggc_marked_p (from);
3971 }
3972 /* Lookup an init priority for FROM, and return it if we find one.  */
3973
3974 unsigned short
3975 decl_init_priority_lookup (tree from)
3976 {
3977   struct tree_int_map *h, in;
3978   in.from = from;
3979
3980   h = htab_find_with_hash (init_priority_for_decl, 
3981                            &in, htab_hash_pointer (from));
3982   if (h)
3983     return h->to;
3984   return 0;
3985 }
3986
3987 /* Insert a mapping FROM->TO in the init priority hashtable.  */
3988
3989 void
3990 decl_init_priority_insert (tree from, unsigned short to)
3991 {
3992   struct tree_int_map *h;
3993   void **loc;
3994
3995   h = ggc_alloc (sizeof (struct tree_int_map));
3996   h->from = from;
3997   h->to = to;
3998   loc = htab_find_slot_with_hash (init_priority_for_decl, h, 
3999                                   htab_hash_pointer (from), INSERT);
4000   *(struct tree_int_map **) loc = h;
4001 }  
4002
4003 /* Look up a restrict qualified base decl for FROM.  */
4004
4005 tree
4006 decl_restrict_base_lookup (tree from)
4007 {
4008   struct tree_map *h;
4009   struct tree_map in;
4010
4011   in.from = from;
4012   h = htab_find_with_hash (restrict_base_for_decl, &in,
4013                            htab_hash_pointer (from));
4014   return h ? h->to : NULL_TREE;
4015 }
4016
4017 /* Record the restrict qualified base TO for FROM.  */
4018
4019 void
4020 decl_restrict_base_insert (tree from, tree to)
4021 {
4022   struct tree_map *h;
4023   void **loc;
4024
4025   h = ggc_alloc (sizeof (struct tree_map));
4026   h->hash = htab_hash_pointer (from);
4027   h->from = from;
4028   h->to = to;
4029   loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4030   *(struct tree_map **) loc = h;
4031 }
4032
4033 /* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
4034
4035 static void
4036 print_debug_expr_statistics (void)
4037 {
4038   fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4039            (long) htab_size (debug_expr_for_decl),
4040            (long) htab_elements (debug_expr_for_decl),
4041            htab_collisions (debug_expr_for_decl));
4042 }
4043
4044 /* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
4045
4046 static void
4047 print_value_expr_statistics (void)
4048 {
4049   fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4050            (long) htab_size (value_expr_for_decl),
4051            (long) htab_elements (value_expr_for_decl),
4052            htab_collisions (value_expr_for_decl));
4053 }
4054
4055 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4056    don't print anything if the table is empty.  */
4057
4058 static void
4059 print_restrict_base_statistics (void)
4060 {
4061   if (htab_elements (restrict_base_for_decl) != 0)
4062     fprintf (stderr,
4063              "RESTRICT_BASE    hash: size %ld, %ld elements, %f collisions\n",
4064              (long) htab_size (restrict_base_for_decl),
4065              (long) htab_elements (restrict_base_for_decl),
4066              htab_collisions (restrict_base_for_decl));
4067 }
4068
4069 /* Lookup a debug expression for FROM, and return it if we find one.  */
4070
4071 tree 
4072 decl_debug_expr_lookup (tree from)
4073 {
4074   struct tree_map *h, in;
4075   in.from = from;
4076
4077   h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4078   if (h)
4079     return h->to;
4080   return NULL_TREE;
4081 }
4082
4083 /* Insert a mapping FROM->TO in the debug expression hashtable.  */
4084
4085 void
4086 decl_debug_expr_insert (tree from, tree to)
4087 {
4088   struct tree_map *h;
4089   void **loc;
4090
4091   h = ggc_alloc (sizeof (struct tree_map));
4092   h->hash = htab_hash_pointer (from);
4093   h->from = from;
4094   h->to = to;
4095   loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4096   *(struct tree_map **) loc = h;
4097 }  
4098
4099 /* Lookup a value expression for FROM, and return it if we find one.  */
4100
4101 tree 
4102 decl_value_expr_lookup (tree from)
4103 {
4104   struct tree_map *h, in;
4105   in.from = from;
4106
4107   h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4108   if (h)
4109     return h->to;
4110   return NULL_TREE;
4111 }
4112
4113 /* Insert a mapping FROM->TO in the value expression hashtable.  */
4114
4115 void
4116 decl_value_expr_insert (tree from, tree to)
4117 {
4118   struct tree_map *h;
4119   void **loc;
4120
4121   h = ggc_alloc (sizeof (struct tree_map));
4122   h->hash = htab_hash_pointer (from);
4123   h->from = from;
4124   h->to = to;
4125   loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4126   *(struct tree_map **) loc = h;
4127 }
4128
4129 /* Hashing of types so that we don't make duplicates.
4130    The entry point is `type_hash_canon'.  */
4131
4132 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4133    with types in the TREE_VALUE slots), by adding the hash codes
4134    of the individual types.  */
4135
4136 unsigned int
4137 type_hash_list (tree list, hashval_t hashcode)
4138 {
4139   tree tail;
4140
4141   for (tail = list; tail; tail = TREE_CHAIN (tail))
4142     if (TREE_VALUE (tail) != error_mark_node)
4143       hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4144                                         hashcode);
4145
4146   return hashcode;
4147 }
4148
4149 /* These are the Hashtable callback functions.  */
4150
4151 /* Returns true iff the types are equivalent.  */
4152
4153 static int
4154 type_hash_eq (const void *va, const void *vb)
4155 {
4156   const struct type_hash *a = va, *b = vb;
4157
4158   /* First test the things that are the same for all types.  */
4159   if (a->hash != b->hash
4160       || TREE_CODE (a->type) != TREE_CODE (b->type)
4161       || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4162       || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4163                                  TYPE_ATTRIBUTES (b->type))
4164       || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4165       || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4166     return 0;
4167
4168   switch (TREE_CODE (a->type))
4169     {
4170     case VOID_TYPE:
4171     case COMPLEX_TYPE:
4172     case POINTER_TYPE:
4173     case REFERENCE_TYPE:
4174       return 1;
4175
4176     case VECTOR_TYPE:
4177       return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4178
4179     case ENUMERAL_TYPE:
4180       if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4181           && !(TYPE_VALUES (a->type)
4182                && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4183                && TYPE_VALUES (b->type)
4184                && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4185                && type_list_equal (TYPE_VALUES (a->type),
4186                                    TYPE_VALUES (b->type))))
4187         return 0;
4188
4189       /* ... fall through ... */
4190
4191     case INTEGER_TYPE:
4192     case REAL_TYPE:
4193     case BOOLEAN_TYPE:
4194       return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4195                || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4196                                       TYPE_MAX_VALUE (b->type)))
4197               && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4198                   || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4199                                          TYPE_MIN_VALUE (b->type))));
4200
4201     case OFFSET_TYPE:
4202       return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4203
4204     case METHOD_TYPE:
4205       return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4206               && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4207                   || (TYPE_ARG_TYPES (a->type)
4208                       && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4209                       && TYPE_ARG_TYPES (b->type)
4210                       && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4211                       && type_list_equal (TYPE_ARG_TYPES (a->type),
4212                                           TYPE_ARG_TYPES (b->type)))));
4213
4214     case ARRAY_TYPE:
4215       return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4216
4217     case RECORD_TYPE:
4218     case UNION_TYPE:
4219     case QUAL_UNION_TYPE:
4220       return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4221               || (TYPE_FIELDS (a->type)
4222                   && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4223                   && TYPE_FIELDS (b->type)
4224                   && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4225                   && type_list_equal (TYPE_FIELDS (a->type),
4226                                       TYPE_FIELDS (b->type))));
4227
4228     case FUNCTION_TYPE:
4229       return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4230               || (TYPE_ARG_TYPES (a->type)
4231                   && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4232                   && TYPE_ARG_TYPES (b->type)
4233                   && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4234                   && type_list_equal (TYPE_ARG_TYPES (a->type),
4235                                       TYPE_ARG_TYPES (b->type))));
4236
4237     default:
4238       return 0;
4239     }
4240 }
4241
4242 /* Return the cached hash value.  */
4243
4244 static hashval_t
4245 type_hash_hash (const void *item)
4246 {
4247   return ((const struct type_hash *) item)->hash;
4248 }
4249
4250 /* Look in the type hash table for a type isomorphic to TYPE.
4251    If one is found, return it.  Otherwise return 0.  */
4252
4253 tree
4254 type_hash_lookup (hashval_t hashcode, tree type)
4255 {
4256   struct type_hash *h, in;
4257
4258   /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4259      must call that routine before comparing TYPE_ALIGNs.  */
4260   layout_type (type);
4261
4262   in.hash = hashcode;
4263   in.type = type;
4264
4265   h = htab_find_with_hash (type_hash_table, &in, hashcode);
4266   if (h)
4267     return h->type;
4268   return NULL_TREE;
4269 }
4270
4271 /* Add an entry to the type-hash-table
4272    for a type TYPE whose hash code is HASHCODE.  */
4273
4274 void
4275 type_hash_add (hashval_t hashcode, tree type)
4276 {
4277   struct type_hash *h;
4278   void **loc;
4279
4280   h = ggc_alloc (sizeof (struct type_hash));
4281   h->hash = hashcode;
4282   h->type = type;
4283   loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4284   *(struct type_hash **) loc = h;
4285 }
4286
4287 /* Given TYPE, and HASHCODE its hash code, return the canonical
4288    object for an identical type if one already exists.
4289    Otherwise, return TYPE, and record it as the canonical object.
4290
4291    To use this function, first create a type of the sort you want.
4292    Then compute its hash code from the fields of the type that
4293    make it different from other similar types.
4294    Then call this function and use the value.  */
4295
4296 tree
4297 type_hash_canon (unsigned int hashcode, tree type)
4298 {
4299   tree t1;
4300
4301   /* The hash table only contains main variants, so ensure that's what we're
4302      being passed.  */
4303   gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4304
4305   if (!lang_hooks.types.hash_types)
4306     return type;
4307
4308   /* See if the type is in the hash table already.  If so, return it.
4309      Otherwise, add the type.  */
4310   t1 = type_hash_lookup (hashcode, type);
4311   if (t1 != 0)
4312     {
4313 #ifdef GATHER_STATISTICS
4314       tree_node_counts[(int) t_kind]--;
4315       tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4316 #endif
4317       return t1;
4318     }
4319   else
4320     {
4321       type_hash_add (hashcode, type);
4322       return type;
4323     }
4324 }
4325
4326 /* See if the data pointed to by the type hash table is marked.  We consider
4327    it marked if the type is marked or if a debug type number or symbol
4328    table entry has been made for the type.  This reduces the amount of
4329    debugging output and eliminates that dependency of the debug output on
4330    the number of garbage collections.  */
4331
4332 static int
4333 type_hash_marked_p (const void *p)
4334 {
4335   tree type = ((struct type_hash *) p)->type;
4336
4337   return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4338 }
4339
4340 static void
4341 print_type_hash_statistics (void)
4342 {
4343   fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4344            (long) htab_size (type_hash_table),
4345            (long) htab_elements (type_hash_table),
4346            htab_collisions (type_hash_table));
4347 }
4348
4349 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4350    with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4351    by adding the hash codes of the individual attributes.  */
4352
4353 unsigned int
4354 attribute_hash_list (tree list, hashval_t hashcode)
4355 {
4356   tree tail;
4357
4358   for (tail = list; tail; tail = TREE_CHAIN (tail))
4359     /* ??? Do we want to add in TREE_VALUE too? */
4360     hashcode = iterative_hash_object
4361       (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4362   return hashcode;
4363 }
4364
4365 /* Given two lists of attributes, return true if list l2 is
4366    equivalent to l1.  */
4367
4368 int
4369 attribute_list_equal (tree l1, tree l2)
4370 {
4371   return attribute_list_contained (l1, l2)
4372          && attribute_list_contained (l2, l1);
4373 }
4374
4375 /* Given two lists of attributes, return true if list L2 is
4376    completely contained within L1.  */
4377 /* ??? This would be faster if attribute names were stored in a canonicalized
4378    form.  Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4379    must be used to show these elements are equivalent (which they are).  */
4380 /* ??? It's not clear that attributes with arguments will always be handled
4381    correctly.  */
4382
4383 int
4384 attribute_list_contained (tree l1, tree l2)
4385 {
4386   tree t1, t2;
4387
4388   /* First check the obvious, maybe the lists are identical.  */
4389   if (l1 == l2)
4390     return 1;
4391
4392   /* Maybe the lists are similar.  */
4393   for (t1 = l1, t2 = l2;
4394        t1 != 0 && t2 != 0
4395         && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4396         && TREE_VALUE (t1) == TREE_VALUE (t2);
4397        t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4398
4399   /* Maybe the lists are equal.  */
4400   if (t1 == 0 && t2 == 0)
4401     return 1;
4402
4403   for (; t2 != 0; t2 = TREE_CHAIN (t2))
4404     {
4405       tree attr;
4406       for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4407            attr != NULL_TREE;
4408            attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4409                                     TREE_CHAIN (attr)))
4410         {
4411           if (TREE_VALUE (t2) != NULL
4412               && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4413               && TREE_VALUE (attr) != NULL
4414               && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4415             {
4416               if (simple_cst_list_equal (TREE_VALUE (t2),
4417                                          TREE_VALUE (attr)) == 1)
4418                 break;
4419             }
4420           else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4421             break;
4422         }
4423
4424       if (attr == 0)
4425         return 0;
4426     }
4427
4428   return 1;
4429 }
4430
4431 /* Given two lists of types
4432    (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4433    return 1 if the lists contain the same types in the same order.
4434    Also, the TREE_PURPOSEs must match.  */
4435
4436 int
4437 type_list_equal (tree l1, tree l2)
4438 {
4439   tree t1, t2;
4440
4441   for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4442     if (TREE_VALUE (t1) != TREE_VALUE (t2)
4443         || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4444             && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4445                   && (TREE_TYPE (TREE_PURPOSE (t1))
4446                       == TREE_TYPE (TREE_PURPOSE (t2))))))
4447       return 0;
4448
4449   return t1 == t2;
4450 }
4451
4452 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4453    given by TYPE.  If the argument list accepts variable arguments,
4454    then this function counts only the ordinary arguments.  */
4455
4456 int
4457 type_num_arguments (tree type)
4458 {
4459   int i = 0;
4460   tree t;
4461
4462   for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4463     /* If the function does not take a variable number of arguments,
4464        the last element in the list will have type `void'.  */
4465     if (VOID_TYPE_P (TREE_VALUE (t)))
4466       break;
4467     else
4468       ++i;
4469
4470   return i;
4471 }
4472
4473 /* Nonzero if integer constants T1 and T2
4474    represent the same constant value.  */
4475
4476 int
4477 tree_int_cst_equal (tree t1, tree t2)
4478 {
4479   if (t1 == t2)
4480     return 1;
4481
4482   if (t1 == 0 || t2 == 0)
4483     return 0;
4484
4485   if (TREE_CODE (t1) == INTEGER_CST
4486       && TREE_CODE (t2) == INTEGER_CST
4487       && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4488       && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4489     return 1;
4490
4491   return 0;
4492 }
4493
4494 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4495    The precise way of comparison depends on their data type.  */
4496
4497 int
4498 tree_int_cst_lt (tree t1, tree t2)
4499 {
4500   if (t1 == t2)
4501     return 0;
4502
4503   if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4504     {
4505       int t1_sgn = tree_int_cst_sgn (t1);
4506       int t2_sgn = tree_int_cst_sgn (t2);
4507
4508       if (t1_sgn < t2_sgn)
4509         return 1;
4510       else if (t1_sgn > t2_sgn)
4511         return 0;
4512       /* Otherwise, both are non-negative, so we compare them as
4513          unsigned just in case one of them would overflow a signed
4514          type.  */
4515     }
4516   else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4517     return INT_CST_LT (t1, t2);
4518
4519   return INT_CST_LT_UNSIGNED (t1, t2);
4520 }
4521
4522 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2.  */
4523
4524 int
4525 tree_int_cst_compare (tree t1, tree t2)
4526 {
4527   if (tree_int_cst_lt (t1, t2))
4528     return -1;
4529   else if (tree_int_cst_lt (t2, t1))
4530     return 1;
4531   else
4532     return 0;
4533 }
4534
4535 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4536    the host.  If POS is zero, the value can be represented in a single
4537    HOST_WIDE_INT.  If POS is nonzero, the value must be non-negative and can
4538    be represented in a single unsigned HOST_WIDE_INT.  */
4539
4540 int
4541 host_integerp (tree t, int pos)
4542 {
4543   return (TREE_CODE (t) == INTEGER_CST
4544           && ((TREE_INT_CST_HIGH (t) == 0
4545                && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4546               || (! pos && TREE_INT_CST_HIGH (t) == -1
4547                   && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4548                   && (!TYPE_UNSIGNED (TREE_TYPE (t))
4549                       || TYPE_IS_SIZETYPE (TREE_TYPE (t))))
4550               || (pos && TREE_INT_CST_HIGH (t) == 0)));
4551 }
4552
4553 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4554    INTEGER_CST and there is no overflow.  POS is nonzero if the result must
4555    be non-negative.  We must be able to satisfy the above conditions.  */
4556
4557 HOST_WIDE_INT
4558 tree_low_cst (tree t, int pos)
4559 {
4560   gcc_assert (host_integerp (t, pos));
4561   return TREE_INT_CST_LOW (t);
4562 }
4563
4564 /* Return the most significant bit of the integer constant T.  */
4565
4566 int
4567 tree_int_cst_msb (tree t)
4568 {
4569   int prec;
4570   HOST_WIDE_INT h;
4571   unsigned HOST_WIDE_INT l;
4572
4573   /* Note that using TYPE_PRECISION here is wrong.  We care about the
4574      actual bits, not the (arbitrary) range of the type.  */
4575   prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4576   rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4577                  2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4578   return (l & 1) == 1;
4579 }
4580
4581 /* Return an indication of the sign of the integer constant T.
4582    The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4583    Note that -1 will never be returned if T's type is unsigned.  */
4584
4585 int
4586 tree_int_cst_sgn (tree t)
4587 {
4588   if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4589     return 0;
4590   else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4591     return 1;
4592   else if (TREE_INT_CST_HIGH (t) < 0)
4593     return -1;
4594   else
4595     return 1;
4596 }
4597
4598 /* Compare two constructor-element-type constants.  Return 1 if the lists
4599    are known to be equal; otherwise return 0.  */
4600
4601 int
4602 simple_cst_list_equal (tree l1, tree l2)
4603 {
4604   while (l1 != NULL_TREE && l2 != NULL_TREE)
4605     {
4606       if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4607         return 0;
4608
4609       l1 = TREE_CHAIN (l1);
4610       l2 = TREE_CHAIN (l2);
4611     }
4612
4613   return l1 == l2;
4614 }
4615
4616 /* Return truthvalue of whether T1 is the same tree structure as T2.
4617    Return 1 if they are the same.
4618    Return 0 if they are understandably different.
4619    Return -1 if either contains tree structure not understood by
4620    this function.  */
4621
4622 int
4623 simple_cst_equal (tree t1, tree t2)
4624 {
4625   enum tree_code code1, code2;
4626   int cmp;
4627   int i;
4628
4629   if (t1 == t2)
4630     return 1;
4631   if (t1 == 0 || t2 == 0)
4632     return 0;
4633
4634   code1 = TREE_CODE (t1);
4635   code2 = TREE_CODE (t2);
4636
4637   if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4638     {
4639       if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4640           || code2 == NON_LVALUE_EXPR)
4641         return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4642       else
4643         return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4644     }
4645
4646   else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4647            || code2 == NON_LVALUE_EXPR)
4648     return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4649
4650   if (code1 != code2)
4651     return 0;
4652
4653   switch (code1)
4654     {
4655     case INTEGER_CST:
4656       return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4657               && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4658
4659     case REAL_CST:
4660       return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4661
4662     case STRING_CST:
4663       return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4664               && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4665                          TREE_STRING_LENGTH (t1)));
4666
4667     case CONSTRUCTOR:
4668       {
4669         unsigned HOST_WIDE_INT idx;
4670         VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4671         VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4672
4673         if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4674           return false;
4675
4676         for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4677           /* ??? Should we handle also fields here? */
4678           if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4679                                  VEC_index (constructor_elt, v2, idx)->value))
4680             return false;
4681         return true;
4682       }
4683
4684     case SAVE_EXPR:
4685       return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4686
4687     case CALL_EXPR:
4688       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4689       if (cmp <= 0)
4690         return cmp;
4691       return
4692         simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4693
4694     case TARGET_EXPR:
4695       /* Special case: if either target is an unallocated VAR_DECL,
4696          it means that it's going to be unified with whatever the
4697          TARGET_EXPR is really supposed to initialize, so treat it
4698          as being equivalent to anything.  */
4699       if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4700            && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4701            && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4702           || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4703               && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4704               && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4705         cmp = 1;
4706       else
4707         cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4708
4709       if (cmp <= 0)
4710         return cmp;
4711
4712       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4713
4714     case WITH_CLEANUP_EXPR:
4715       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4716       if (cmp <= 0)
4717         return cmp;
4718
4719       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4720
4721     case COMPONENT_REF:
4722       if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4723         return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4724
4725       return 0;
4726
4727     case VAR_DECL:
4728     case PARM_DECL:
4729     case CONST_DECL:
4730     case FUNCTION_DECL:
4731       return 0;
4732
4733     default:
4734       break;
4735     }
4736
4737   /* This general rule works for most tree codes.  All exceptions should be
4738      handled above.  If this is a language-specific tree code, we can't
4739      trust what might be in the operand, so say we don't know
4740      the situation.  */
4741   if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4742     return -1;
4743
4744   switch (TREE_CODE_CLASS (code1))
4745     {
4746     case tcc_unary:
4747     case tcc_binary:
4748     case tcc_comparison:
4749     case tcc_expression:
4750     case tcc_reference:
4751     case tcc_statement:
4752       cmp = 1;
4753       for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4754         {
4755           cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4756           if (cmp <= 0)
4757             return cmp;
4758         }
4759
4760       return cmp;
4761
4762     default:
4763       return -1;
4764     }
4765 }
4766
4767 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4768    Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4769    than U, respectively.  */
4770
4771 int
4772 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4773 {
4774   if (tree_int_cst_sgn (t) < 0)
4775     return -1;
4776   else if (TREE_INT_CST_HIGH (t) != 0)
4777     return 1;
4778   else if (TREE_INT_CST_LOW (t) == u)
4779     return 0;
4780   else if (TREE_INT_CST_LOW (t) < u)
4781     return -1;
4782   else
4783     return 1;
4784 }
4785
4786 /* Return true if CODE represents an associative tree code.  Otherwise
4787    return false.  */
4788 bool
4789 associative_tree_code (enum tree_code code)
4790 {
4791   switch (code)
4792     {
4793     case BIT_IOR_EXPR:
4794     case BIT_AND_EXPR:
4795     case BIT_XOR_EXPR:
4796     case PLUS_EXPR:
4797     case MULT_EXPR:
4798     case MIN_EXPR:
4799     case MAX_EXPR:
4800       return true;
4801
4802     default:
4803       break;
4804     }
4805   return false;
4806 }
4807
4808 /* Return true if CODE represents a commutative tree code.  Otherwise
4809    return false.  */
4810 bool
4811 commutative_tree_code (enum tree_code code)
4812 {
4813   switch (code)
4814     {
4815     case PLUS_EXPR:
4816     case MULT_EXPR:
4817     case MIN_EXPR:
4818     case MAX_EXPR:
4819     case BIT_IOR_EXPR:
4820     case BIT_XOR_EXPR:
4821     case BIT_AND_EXPR:
4822     case NE_EXPR:
4823     case EQ_EXPR:
4824     case UNORDERED_EXPR:
4825     case ORDERED_EXPR:
4826     case UNEQ_EXPR:
4827     case LTGT_EXPR:
4828     case TRUTH_AND_EXPR:
4829     case TRUTH_XOR_EXPR:
4830     case TRUTH_OR_EXPR:
4831       return true;
4832
4833     default:
4834       break;
4835     }
4836   return false;
4837 }
4838
4839 /* Generate a hash value for an expression.  This can be used iteratively
4840    by passing a previous result as the "val" argument.
4841
4842    This function is intended to produce the same hash for expressions which
4843    would compare equal using operand_equal_p.  */
4844
4845 hashval_t
4846 iterative_hash_expr (tree t, hashval_t val)
4847 {
4848   int i;
4849   enum tree_code code;
4850   char class;
4851
4852   if (t == NULL_TREE)
4853     return iterative_hash_pointer (t, val);
4854
4855   code = TREE_CODE (t);
4856
4857   switch (code)
4858     {
4859     /* Alas, constants aren't shared, so we can't rely on pointer
4860        identity.  */
4861     case INTEGER_CST:
4862       val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4863       return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4864     case REAL_CST:
4865       {
4866         unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4867
4868         return iterative_hash_hashval_t (val2, val);
4869       }
4870     case STRING_CST:
4871       return iterative_hash (TREE_STRING_POINTER (t),
4872                              TREE_STRING_LENGTH (t), val);
4873     case COMPLEX_CST:
4874       val = iterative_hash_expr (TREE_REALPART (t), val);
4875       return iterative_hash_expr (TREE_IMAGPART (t), val);
4876     case VECTOR_CST:
4877       return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4878
4879     case SSA_NAME:
4880     case VALUE_HANDLE:
4881       /* we can just compare by pointer.  */
4882       return iterative_hash_pointer (t, val);
4883
4884     case TREE_LIST:
4885       /* A list of expressions, for a CALL_EXPR or as the elements of a
4886          VECTOR_CST.  */
4887       for (; t; t = TREE_CHAIN (t))
4888         val = iterative_hash_expr (TREE_VALUE (t), val);
4889       return val;
4890     case CONSTRUCTOR:
4891       {
4892         unsigned HOST_WIDE_INT idx;
4893         tree field, value;
4894         FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4895           {
4896             val = iterative_hash_expr (field, val);
4897             val = iterative_hash_expr (value, val);
4898           }
4899         return val;
4900       }
4901     case FUNCTION_DECL:
4902       /* When referring to a built-in FUNCTION_DECL, use the
4903          __builtin__ form.  Otherwise nodes that compare equal
4904          according to operand_equal_p might get different
4905          hash codes.  */
4906       if (DECL_BUILT_IN (t))
4907         {
4908           val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)], 
4909                                       val);
4910           return val;
4911         }
4912       /* else FALL THROUGH */
4913     default:
4914       class = TREE_CODE_CLASS (code);
4915
4916       if (class == tcc_declaration)
4917         {
4918           /* DECL's have a unique ID */
4919           val = iterative_hash_host_wide_int (DECL_UID (t), val);
4920         }
4921       else
4922         {
4923           gcc_assert (IS_EXPR_CODE_CLASS (class));
4924           
4925           val = iterative_hash_object (code, val);
4926
4927           /* Don't hash the type, that can lead to having nodes which
4928              compare equal according to operand_equal_p, but which
4929              have different hash codes.  */
4930           if (code == NOP_EXPR
4931               || code == CONVERT_EXPR
4932               || code == NON_LVALUE_EXPR)
4933             {
4934               /* Make sure to include signness in the hash computation.  */
4935               val += TYPE_UNSIGNED (TREE_TYPE (t));
4936               val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4937             }
4938
4939           else if (commutative_tree_code (code))
4940             {
4941               /* It's a commutative expression.  We want to hash it the same
4942                  however it appears.  We do this by first hashing both operands
4943                  and then rehashing based on the order of their independent
4944                  hashes.  */
4945               hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4946               hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4947               hashval_t t;
4948
4949               if (one > two)
4950                 t = one, one = two, two = t;
4951
4952               val = iterative_hash_hashval_t (one, val);
4953               val = iterative_hash_hashval_t (two, val);
4954             }
4955           else
4956             for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4957               val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4958         }
4959       return val;
4960       break;
4961     }
4962 }
4963 \f
4964 /* Constructors for pointer, array and function types.
4965    (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4966    constructed by language-dependent code, not here.)  */
4967
4968 /* Construct, lay out and return the type of pointers to TO_TYPE with
4969    mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
4970    reference all of memory. If such a type has already been
4971    constructed, reuse it.  */
4972
4973 tree
4974 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4975                              bool can_alias_all)
4976 {
4977   tree t;
4978
4979   if (to_type == error_mark_node)
4980     return error_mark_node;
4981
4982   /* In some cases, languages will have things that aren't a POINTER_TYPE
4983      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4984      In that case, return that type without regard to the rest of our
4985      operands.
4986
4987      ??? This is a kludge, but consistent with the way this function has
4988      always operated and there doesn't seem to be a good way to avoid this
4989      at the moment.  */
4990   if (TYPE_POINTER_TO (to_type) != 0
4991       && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4992     return TYPE_POINTER_TO (to_type);
4993
4994   /* First, if we already have a type for pointers to TO_TYPE and it's
4995      the proper mode, use it.  */
4996   for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4997     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4998       return t;
4999
5000   t = make_node (POINTER_TYPE);
5001
5002   TREE_TYPE (t) = to_type;
5003   TYPE_MODE (t) = mode;
5004   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5005   TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5006   TYPE_POINTER_TO (to_type) = t;
5007
5008   /* Lay out the type.  This function has many callers that are concerned
5009      with expression-construction, and this simplifies them all.  */
5010   layout_type (t);
5011
5012   return t;
5013 }
5014
5015 /* By default build pointers in ptr_mode.  */
5016
5017 tree
5018 build_pointer_type (tree to_type)
5019 {
5020   return build_pointer_type_for_mode (to_type, ptr_mode, false);
5021 }
5022
5023 /* APPLE LOCAL begin radar 5732232 - blocks */
5024 tree
5025 build_block_pointer_type (tree to_type)
5026 {
5027   tree t;
5028
5029   /* APPLE LOCAL begin radar 6300081 & 6353006 */
5030   if (!generic_block_literal_struct_type)
5031       generic_block_literal_struct_type = 
5032       lang_hooks.build_generic_block_struct_type ();
5033   /* APPLE LOCAL end radar 6300081 & 6353006 */
5034
5035   t = make_node (BLOCK_POINTER_TYPE);
5036
5037   TREE_TYPE (t) = to_type;
5038   TYPE_MODE (t) = ptr_mode;
5039
5040   /* Lay out the type.  This function has many callers that are concerned
5041      with expression-construction, and this simplifies them all.  */
5042   layout_type (t);
5043
5044   return t;
5045 }
5046 /* APPLE LOCAL end radar 5732232 - blocks */
5047
5048 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
5049
5050 tree
5051 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5052                                bool can_alias_all)
5053 {
5054   tree t;
5055
5056   /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5057      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5058      In that case, return that type without regard to the rest of our
5059      operands.
5060
5061      ??? This is a kludge, but consistent with the way this function has
5062      always operated and there doesn't seem to be a good way to avoid this
5063      at the moment.  */
5064   if (TYPE_REFERENCE_TO (to_type) != 0
5065       && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5066     return TYPE_REFERENCE_TO (to_type);
5067
5068   /* First, if we already have a type for pointers to TO_TYPE and it's
5069      the proper mode, use it.  */
5070   for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5071     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5072       return t;
5073
5074   t = make_node (REFERENCE_TYPE);
5075
5076   TREE_TYPE (t) = to_type;
5077   TYPE_MODE (t) = mode;
5078   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5079   TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5080   TYPE_REFERENCE_TO (to_type) = t;
5081
5082   layout_type (t);
5083
5084   return t;
5085 }
5086
5087
5088 /* Build the node for the type of references-to-TO_TYPE by default
5089    in ptr_mode.  */
5090
5091 tree
5092 build_reference_type (tree to_type)
5093 {
5094   return build_reference_type_for_mode (to_type, ptr_mode, false);
5095 }
5096
5097 /* Build a type that is compatible with t but has no cv quals anywhere
5098    in its type, thus
5099
5100    const char *const *const *  ->  char ***.  */
5101
5102 tree
5103 build_type_no_quals (tree t)
5104 {
5105   switch (TREE_CODE (t))
5106     {
5107     case POINTER_TYPE:
5108       return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5109                                           TYPE_MODE (t),
5110                                           TYPE_REF_CAN_ALIAS_ALL (t));
5111     case REFERENCE_TYPE:
5112       return
5113         build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5114                                        TYPE_MODE (t),
5115                                        TYPE_REF_CAN_ALIAS_ALL (t));
5116     default:
5117       return TYPE_MAIN_VARIANT (t);
5118     }
5119 }
5120
5121 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5122    MAXVAL should be the maximum value in the domain
5123    (one less than the length of the array).
5124
5125    The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5126    We don't enforce this limit, that is up to caller (e.g. language front end).
5127    The limit exists because the result is a signed type and we don't handle
5128    sizes that use more than one HOST_WIDE_INT.  */
5129
5130 tree
5131 build_index_type (tree maxval)
5132 {
5133   tree itype = make_node (INTEGER_TYPE);
5134
5135   TREE_TYPE (itype) = sizetype;
5136   TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5137   TYPE_MIN_VALUE (itype) = size_zero_node;
5138   TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5139   TYPE_MODE (itype) = TYPE_MODE (sizetype);
5140   TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5141   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5142   TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5143   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5144
5145   if (host_integerp (maxval, 1))
5146     return type_hash_canon (tree_low_cst (maxval, 1), itype);
5147   else
5148     return itype;
5149 }
5150
5151 /* Builds a signed or unsigned integer type of precision PRECISION.
5152    Used for C bitfields whose precision does not match that of
5153    built-in target types.  */
5154 tree
5155 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5156                                 int unsignedp)
5157 {
5158   tree itype = make_node (INTEGER_TYPE);
5159
5160   TYPE_PRECISION (itype) = precision;
5161
5162   if (unsignedp)
5163     fixup_unsigned_type (itype);
5164   else
5165     fixup_signed_type (itype);
5166
5167   if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5168     return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5169
5170   return itype;
5171 }
5172
5173 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5174    ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5175    high bound HIGHVAL.  If TYPE is NULL, sizetype is used.  */
5176
5177 tree
5178 build_range_type (tree type, tree lowval, tree highval)
5179 {
5180   tree itype = make_node (INTEGER_TYPE);
5181
5182   TREE_TYPE (itype) = type;
5183   if (type == NULL_TREE)
5184     type = sizetype;
5185
5186   TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5187   TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5188
5189   TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5190   TYPE_MODE (itype) = TYPE_MODE (type);
5191   TYPE_SIZE (itype) = TYPE_SIZE (type);
5192   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5193   TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5194   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5195
5196   if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5197     return type_hash_canon (tree_low_cst (highval, 0)
5198                             - tree_low_cst (lowval, 0),
5199                             itype);
5200   else
5201     return itype;
5202 }
5203
5204 /* Just like build_index_type, but takes lowval and highval instead
5205    of just highval (maxval).  */
5206
5207 tree
5208 build_index_2_type (tree lowval, tree highval)
5209 {
5210   return build_range_type (sizetype, lowval, highval);
5211 }
5212
5213 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5214    and number of elements specified by the range of values of INDEX_TYPE.
5215    If such a type has already been constructed, reuse it.  */
5216
5217 tree
5218 build_array_type (tree elt_type, tree index_type)
5219 {
5220   tree t;
5221   hashval_t hashcode = 0;
5222
5223   if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5224     {
5225       error ("arrays of functions are not meaningful");
5226       elt_type = integer_type_node;
5227     }
5228
5229   t = make_node (ARRAY_TYPE);
5230   TREE_TYPE (t) = elt_type;
5231   TYPE_DOMAIN (t) = index_type;
5232   
5233   if (index_type == 0)
5234     {
5235       tree save = t;
5236       hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5237       t = type_hash_canon (hashcode, t);
5238       if (save == t)
5239         layout_type (t);
5240       return t;
5241     }
5242
5243   hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5244   hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5245   t = type_hash_canon (hashcode, t);
5246
5247   if (!COMPLETE_TYPE_P (t))
5248     layout_type (t);
5249   return t;
5250 }
5251
5252 /* Return the TYPE of the elements comprising
5253    the innermost dimension of ARRAY.  */
5254
5255 tree
5256 get_inner_array_type (tree array)
5257 {
5258   tree type = TREE_TYPE (array);
5259
5260   while (TREE_CODE (type) == ARRAY_TYPE)
5261     type = TREE_TYPE (type);
5262
5263   return type;
5264 }
5265
5266 /* Construct, lay out and return
5267    the type of functions returning type VALUE_TYPE
5268    given arguments of types ARG_TYPES.
5269    ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5270    are data type nodes for the arguments of the function.
5271    If such a type has already been constructed, reuse it.  */
5272
5273 tree
5274 build_function_type (tree value_type, tree arg_types)
5275 {
5276   tree t;
5277   hashval_t hashcode = 0;
5278
5279   if (TREE_CODE (value_type) == FUNCTION_TYPE)
5280     {
5281       error ("function return type cannot be function");
5282       value_type = integer_type_node;
5283     }
5284
5285   /* Make a node of the sort we want.  */
5286   t = make_node (FUNCTION_TYPE);
5287   TREE_TYPE (t) = value_type;
5288   TYPE_ARG_TYPES (t) = arg_types;
5289
5290   /* If we already have such a type, use the old one.  */
5291   hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5292   hashcode = type_hash_list (arg_types, hashcode);
5293   t = type_hash_canon (hashcode, t);
5294
5295   if (!COMPLETE_TYPE_P (t))
5296     layout_type (t);
5297   return t;
5298 }
5299
5300 /* Build a function type.  The RETURN_TYPE is the type returned by the
5301    function.  If additional arguments are provided, they are
5302    additional argument types.  The list of argument types must always
5303    be terminated by NULL_TREE.  */
5304
5305 tree
5306 build_function_type_list (tree return_type, ...)
5307 {
5308   tree t, args, last;
5309   va_list p;
5310
5311   va_start (p, return_type);
5312
5313   t = va_arg (p, tree);
5314   for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5315     args = tree_cons (NULL_TREE, t, args);
5316
5317   if (args == NULL_TREE)
5318     args = void_list_node;
5319   else
5320     {
5321       last = args;
5322       args = nreverse (args);
5323       TREE_CHAIN (last) = void_list_node;
5324     }
5325   args = build_function_type (return_type, args);
5326
5327   va_end (p);
5328   return args;
5329 }
5330
5331 /* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
5332    and ARGTYPES (a TREE_LIST) are the return type and arguments types
5333    for the method.  An implicit additional parameter (of type
5334    pointer-to-BASETYPE) is added to the ARGTYPES.  */
5335
5336 tree
5337 build_method_type_directly (tree basetype,
5338                             tree rettype,
5339                             tree argtypes)
5340 {
5341   tree t;
5342   tree ptype;
5343   int hashcode = 0;
5344
5345   /* Make a node of the sort we want.  */
5346   t = make_node (METHOD_TYPE);
5347
5348   TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5349   TREE_TYPE (t) = rettype;
5350   ptype = build_pointer_type (basetype);
5351
5352   /* The actual arglist for this function includes a "hidden" argument
5353      which is "this".  Put it into the list of argument types.  */
5354   argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5355   TYPE_ARG_TYPES (t) = argtypes;
5356
5357   /* If we already have such a type, use the old one.  */
5358   hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5359   hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5360   hashcode = type_hash_list (argtypes, hashcode);
5361   t = type_hash_canon (hashcode, t);
5362
5363   if (!COMPLETE_TYPE_P (t))
5364     layout_type (t);
5365
5366   return t;
5367 }
5368
5369 /* Construct, lay out and return the type of methods belonging to class
5370    BASETYPE and whose arguments and values are described by TYPE.
5371    If that type exists already, reuse it.
5372    TYPE must be a FUNCTION_TYPE node.  */
5373
5374 tree
5375 build_method_type (tree basetype, tree type)
5376 {
5377   gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5378
5379   return build_method_type_directly (basetype,
5380                                      TREE_TYPE (type),
5381                                      TYPE_ARG_TYPES (type));
5382 }
5383
5384 /* Construct, lay out and return the type of offsets to a value
5385    of type TYPE, within an object of type BASETYPE.
5386    If a suitable offset type exists already, reuse it.  */
5387
5388 tree
5389 build_offset_type (tree basetype, tree type)
5390 {
5391   tree t;
5392   hashval_t hashcode = 0;
5393
5394   /* Make a node of the sort we want.  */
5395   t = make_node (OFFSET_TYPE);
5396
5397   TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5398   TREE_TYPE (t) = type;
5399
5400   /* If we already have such a type, use the old one.  */
5401   hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5402   hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5403   t = type_hash_canon (hashcode, t);
5404
5405   if (!COMPLETE_TYPE_P (t))
5406     layout_type (t);
5407
5408   return t;
5409 }
5410
5411 /* Create a complex type whose components are COMPONENT_TYPE.  */
5412
5413 tree
5414 build_complex_type (tree component_type)
5415 {
5416   tree t;
5417   hashval_t hashcode;
5418
5419   /* Make a node of the sort we want.  */
5420   t = make_node (COMPLEX_TYPE);
5421
5422   TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5423
5424   /* If we already have such a type, use the old one.  */
5425   hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5426   t = type_hash_canon (hashcode, t);
5427
5428   if (!COMPLETE_TYPE_P (t))
5429     layout_type (t);
5430
5431   /* If we are writing Dwarf2 output we need to create a name,
5432      since complex is a fundamental type.  */
5433   if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5434       && ! TYPE_NAME (t))
5435     {
5436       const char *name;
5437       if (component_type == char_type_node)
5438         name = "complex char";
5439       else if (component_type == signed_char_type_node)
5440         name = "complex signed char";
5441       else if (component_type == unsigned_char_type_node)
5442         name = "complex unsigned char";
5443       else if (component_type == short_integer_type_node)
5444         name = "complex short int";
5445       else if (component_type == short_unsigned_type_node)
5446         name = "complex short unsigned int";
5447       else if (component_type == integer_type_node)
5448         name = "complex int";
5449       else if (component_type == unsigned_type_node)
5450         name = "complex unsigned int";
5451       else if (component_type == long_integer_type_node)
5452         name = "complex long int";
5453       else if (component_type == long_unsigned_type_node)
5454         name = "complex long unsigned int";
5455       else if (component_type == long_long_integer_type_node)
5456         name = "complex long long int";
5457       else if (component_type == long_long_unsigned_type_node)
5458         name = "complex long long unsigned int";
5459       else
5460         name = 0;
5461
5462       if (name != 0)
5463         TYPE_NAME (t) = get_identifier (name);
5464     }
5465
5466   return build_qualified_type (t, TYPE_QUALS (component_type));
5467 }
5468 \f
5469 /* Return OP, stripped of any conversions to wider types as much as is safe.
5470    Converting the value back to OP's type makes a value equivalent to OP.
5471
5472    If FOR_TYPE is nonzero, we return a value which, if converted to
5473    type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5474
5475    If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5476    narrowest type that can hold the value, even if they don't exactly fit.
5477    Otherwise, bit-field references are changed to a narrower type
5478    only if they can be fetched directly from memory in that type.
5479
5480    OP must have integer, real or enumeral type.  Pointers are not allowed!
5481
5482    There are some cases where the obvious value we could return
5483    would regenerate to OP if converted to OP's type,
5484    but would not extend like OP to wider types.
5485    If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5486    For example, if OP is (unsigned short)(signed char)-1,
5487    we avoid returning (signed char)-1 if FOR_TYPE is int,
5488    even though extending that to an unsigned short would regenerate OP,
5489    since the result of extending (signed char)-1 to (int)
5490    is different from (int) OP.  */
5491
5492 tree
5493 get_unwidened (tree op, tree for_type)
5494 {
5495   /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
5496   tree type = TREE_TYPE (op);
5497   unsigned final_prec
5498     = TYPE_PRECISION (for_type != 0 ? for_type : type);
5499   int uns
5500     = (for_type != 0 && for_type != type
5501        && final_prec > TYPE_PRECISION (type)
5502        && TYPE_UNSIGNED (type));
5503   tree win = op;
5504
5505   while (TREE_CODE (op) == NOP_EXPR
5506          || TREE_CODE (op) == CONVERT_EXPR)
5507     {
5508       int bitschange;
5509
5510       /* TYPE_PRECISION on vector types has different meaning
5511          (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5512          so avoid them here.  */
5513       if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5514         break;
5515
5516       bitschange = TYPE_PRECISION (TREE_TYPE (op))
5517                    - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5518
5519       /* Truncations are many-one so cannot be removed.
5520          Unless we are later going to truncate down even farther.  */
5521       if (bitschange < 0
5522           && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5523         break;
5524
5525       /* See what's inside this conversion.  If we decide to strip it,
5526          we will set WIN.  */
5527       op = TREE_OPERAND (op, 0);
5528
5529       /* If we have not stripped any zero-extensions (uns is 0),
5530          we can strip any kind of extension.
5531          If we have previously stripped a zero-extension,
5532          only zero-extensions can safely be stripped.
5533          Any extension can be stripped if the bits it would produce
5534          are all going to be discarded later by truncating to FOR_TYPE.  */
5535
5536       if (bitschange > 0)
5537         {
5538           if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5539             win = op;
5540           /* TYPE_UNSIGNED says whether this is a zero-extension.
5541              Let's avoid computing it if it does not affect WIN
5542              and if UNS will not be needed again.  */
5543           if ((uns
5544                || TREE_CODE (op) == NOP_EXPR
5545                || TREE_CODE (op) == CONVERT_EXPR)
5546               && TYPE_UNSIGNED (TREE_TYPE (op)))
5547             {
5548               uns = 1;
5549               win = op;
5550             }
5551         }
5552     }
5553
5554   if (TREE_CODE (op) == COMPONENT_REF
5555       /* Since type_for_size always gives an integer type.  */
5556       && TREE_CODE (type) != REAL_TYPE
5557       /* Don't crash if field not laid out yet.  */
5558       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5559       && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5560     {
5561       unsigned int innerprec
5562         = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5563       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5564                        || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5565       type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5566
5567       /* We can get this structure field in the narrowest type it fits in.
5568          If FOR_TYPE is 0, do this only for a field that matches the
5569          narrower type exactly and is aligned for it
5570          The resulting extension to its nominal type (a fullword type)
5571          must fit the same conditions as for other extensions.  */
5572
5573       if (type != 0
5574           && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5575           && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5576           && (! uns || final_prec <= innerprec || unsignedp))
5577         {
5578           win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5579                         TREE_OPERAND (op, 1), NULL_TREE);
5580           TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5581           TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5582         }
5583     }
5584
5585   return win;
5586 }
5587 \f
5588 /* Return OP or a simpler expression for a narrower value
5589    which can be sign-extended or zero-extended to give back OP.
5590    Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5591    or 0 if the value should be sign-extended.  */
5592
5593 tree
5594 get_narrower (tree op, int *unsignedp_ptr)
5595 {
5596   int uns = 0;
5597   int first = 1;
5598   tree win = op;
5599   bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5600
5601   while (TREE_CODE (op) == NOP_EXPR)
5602     {
5603       int bitschange
5604         = (TYPE_PRECISION (TREE_TYPE (op))
5605            - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5606
5607       /* Truncations are many-one so cannot be removed.  */
5608       if (bitschange < 0)
5609         break;
5610
5611       /* See what's inside this conversion.  If we decide to strip it,
5612          we will set WIN.  */
5613
5614       if (bitschange > 0)
5615         {
5616           op = TREE_OPERAND (op, 0);
5617           /* An extension: the outermost one can be stripped,
5618              but remember whether it is zero or sign extension.  */
5619           if (first)
5620             uns = TYPE_UNSIGNED (TREE_TYPE (op));
5621           /* Otherwise, if a sign extension has been stripped,
5622              only sign extensions can now be stripped;
5623              if a zero extension has been stripped, only zero-extensions.  */
5624           else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5625             break;
5626           first = 0;
5627         }
5628       else /* bitschange == 0 */
5629         {
5630           /* A change in nominal type can always be stripped, but we must
5631              preserve the unsignedness.  */
5632           if (first)
5633             uns = TYPE_UNSIGNED (TREE_TYPE (op));
5634           first = 0;
5635           op = TREE_OPERAND (op, 0);
5636           /* Keep trying to narrow, but don't assign op to win if it
5637              would turn an integral type into something else.  */
5638           if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5639             continue;
5640         }
5641
5642       win = op;
5643     }
5644
5645   if (TREE_CODE (op) == COMPONENT_REF
5646       /* Since type_for_size always gives an integer type.  */
5647       && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5648       /* Ensure field is laid out already.  */
5649       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5650       && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5651     {
5652       unsigned HOST_WIDE_INT innerprec
5653         = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5654       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5655                        || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5656       tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5657
5658       /* We can get this structure field in a narrower type that fits it,
5659          but the resulting extension to its nominal type (a fullword type)
5660          must satisfy the same conditions as for other extensions.
5661
5662          Do this only for fields that are aligned (not bit-fields),
5663          because when bit-field insns will be used there is no
5664          advantage in doing this.  */
5665
5666       if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5667           && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5668           && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5669           && type != 0)
5670         {
5671           if (first)
5672             uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5673           win = fold_convert (type, op);
5674         }
5675     }
5676
5677   *unsignedp_ptr = uns;
5678   return win;
5679 }
5680 \f
5681 /* Nonzero if integer constant C has a value that is permissible
5682    for type TYPE (an INTEGER_TYPE).  */
5683
5684 int
5685 int_fits_type_p (tree c, tree type)
5686 {
5687   tree type_low_bound = TYPE_MIN_VALUE (type);
5688   tree type_high_bound = TYPE_MAX_VALUE (type);
5689   bool ok_for_low_bound, ok_for_high_bound;
5690   tree tmp;
5691
5692   /* If at least one bound of the type is a constant integer, we can check
5693      ourselves and maybe make a decision. If no such decision is possible, but
5694      this type is a subtype, try checking against that.  Otherwise, use
5695      force_fit_type, which checks against the precision.
5696
5697      Compute the status for each possibly constant bound, and return if we see
5698      one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5699      for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5700      for "constant known to fit".  */
5701
5702   /* Check if C >= type_low_bound.  */
5703   if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5704     {
5705       if (tree_int_cst_lt (c, type_low_bound))
5706         return 0;
5707       ok_for_low_bound = true;
5708     }
5709   else
5710     ok_for_low_bound = false;
5711
5712   /* Check if c <= type_high_bound.  */
5713   if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5714     {
5715       if (tree_int_cst_lt (type_high_bound, c))
5716         return 0;
5717       ok_for_high_bound = true;
5718     }
5719   else
5720     ok_for_high_bound = false;
5721
5722   /* If the constant fits both bounds, the result is known.  */
5723   if (ok_for_low_bound && ok_for_high_bound)
5724     return 1;
5725
5726   /* Perform some generic filtering which may allow making a decision
5727      even if the bounds are not constant.  First, negative integers
5728      never fit in unsigned types, */
5729   if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5730     return 0;
5731
5732   /* Second, narrower types always fit in wider ones.  */
5733   if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5734     return 1;
5735
5736   /* Third, unsigned integers with top bit set never fit signed types.  */
5737   if (! TYPE_UNSIGNED (type)
5738       && TYPE_UNSIGNED (TREE_TYPE (c))
5739       && tree_int_cst_msb (c))
5740     return 0;
5741
5742   /* If we haven't been able to decide at this point, there nothing more we
5743      can check ourselves here.  Look at the base type if we have one and it
5744      has the same precision.  */
5745   if (TREE_CODE (type) == INTEGER_TYPE
5746       && TREE_TYPE (type) != 0
5747       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5748     return int_fits_type_p (c, TREE_TYPE (type));
5749
5750   /* Or to force_fit_type, if nothing else.  */
5751   tmp = copy_node (c);
5752   TREE_TYPE (tmp) = type;
5753   tmp = force_fit_type (tmp, -1, false, false);
5754   return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5755          && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5756 }
5757
5758 /* Subprogram of following function.  Called by walk_tree.
5759
5760    Return *TP if it is an automatic variable or parameter of the
5761    function passed in as DATA.  */
5762
5763 static tree
5764 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5765 {
5766   tree fn = (tree) data;
5767
5768   if (TYPE_P (*tp))
5769     *walk_subtrees = 0;
5770
5771   else if (DECL_P (*tp)
5772            && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5773     return *tp;
5774
5775   return NULL_TREE;
5776 }
5777
5778 /* Returns true if T is, contains, or refers to a type with variable
5779    size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
5780    arguments, but not the return type.  If FN is nonzero, only return
5781    true if a modifier of the type or position of FN is a variable or
5782    parameter inside FN.
5783
5784    This concept is more general than that of C99 'variably modified types':
5785    in C99, a struct type is never variably modified because a VLA may not
5786    appear as a structure member.  However, in GNU C code like:
5787
5788      struct S { int i[f()]; };
5789
5790    is valid, and other languages may define similar constructs.  */
5791
5792 bool
5793 variably_modified_type_p (tree type, tree fn)
5794 {
5795   tree t;
5796
5797 /* Test if T is either variable (if FN is zero) or an expression containing
5798    a variable in FN.  */
5799 #define RETURN_TRUE_IF_VAR(T)                                           \
5800   do { tree _t = (T);                                                   \
5801     if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST    \
5802         && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL)))        \
5803       return true;  } while (0)
5804
5805   if (type == error_mark_node)
5806     return false;
5807
5808   /* If TYPE itself has variable size, it is variably modified.  */
5809   RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5810   RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
5811
5812   switch (TREE_CODE (type))
5813     {
5814     case POINTER_TYPE:
5815     case REFERENCE_TYPE:
5816     case VECTOR_TYPE:
5817       if (variably_modified_type_p (TREE_TYPE (type), fn))
5818         return true;
5819       break;
5820
5821     case FUNCTION_TYPE:
5822     case METHOD_TYPE:
5823       /* If TYPE is a function type, it is variably modified if the
5824          return type is variably modified.  */
5825       if (variably_modified_type_p (TREE_TYPE (type), fn))
5826           return true;
5827       break;
5828
5829     case INTEGER_TYPE:
5830     case REAL_TYPE:
5831     case ENUMERAL_TYPE:
5832     case BOOLEAN_TYPE:
5833       /* Scalar types are variably modified if their end points
5834          aren't constant.  */
5835       RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5836       RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5837       break;
5838
5839     case RECORD_TYPE:
5840     case UNION_TYPE:
5841     case QUAL_UNION_TYPE:
5842       /* We can't see if any of the fields are variably-modified by the
5843          definition we normally use, since that would produce infinite
5844          recursion via pointers.  */
5845       /* This is variably modified if some field's type is.  */
5846       for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5847         if (TREE_CODE (t) == FIELD_DECL)
5848           {
5849             RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5850             RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5851             RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5852
5853             if (TREE_CODE (type) == QUAL_UNION_TYPE)
5854               RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5855           }
5856         break;
5857
5858     case ARRAY_TYPE:
5859       /* Do not call ourselves to avoid infinite recursion.  This is
5860          variably modified if the element type is.  */
5861       RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
5862       RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
5863       break;
5864
5865     default:
5866       break;
5867     }
5868
5869   /* The current language may have other cases to check, but in general,
5870      all other types are not variably modified.  */
5871   return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5872
5873 #undef RETURN_TRUE_IF_VAR
5874 }
5875
5876 /* Given a DECL or TYPE, return the scope in which it was declared, or
5877    NULL_TREE if there is no containing scope.  */
5878
5879 tree
5880 get_containing_scope (tree t)
5881 {
5882   return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5883 }
5884
5885 /* Return the innermost context enclosing DECL that is
5886    a FUNCTION_DECL, or zero if none.  */
5887
5888 tree
5889 decl_function_context (tree decl)
5890 {
5891   tree context;
5892
5893   if (TREE_CODE (decl) == ERROR_MARK)
5894     return 0;
5895
5896   /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5897      where we look up the function at runtime.  Such functions always take
5898      a first argument of type 'pointer to real context'.
5899
5900      C++ should really be fixed to use DECL_CONTEXT for the real context,
5901      and use something else for the "virtual context".  */
5902   else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5903     context
5904       = TYPE_MAIN_VARIANT
5905         (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5906   else
5907     context = DECL_CONTEXT (decl);
5908
5909   while (context && TREE_CODE (context) != FUNCTION_DECL)
5910     {
5911       if (TREE_CODE (context) == BLOCK)
5912         context = BLOCK_SUPERCONTEXT (context);
5913       else
5914         context = get_containing_scope (context);
5915     }
5916
5917   return context;
5918 }
5919
5920 /* Return the innermost context enclosing DECL that is
5921    a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5922    TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
5923
5924 tree
5925 decl_type_context (tree decl)
5926 {
5927   tree context = DECL_CONTEXT (decl);
5928
5929   while (context)
5930     switch (TREE_CODE (context))
5931       {
5932       case NAMESPACE_DECL:
5933       case TRANSLATION_UNIT_DECL:
5934         return NULL_TREE;
5935
5936       case RECORD_TYPE:
5937       case UNION_TYPE:
5938       case QUAL_UNION_TYPE:
5939         return context;
5940
5941       case TYPE_DECL:
5942       case FUNCTION_DECL:
5943         context = DECL_CONTEXT (context);
5944         break;
5945
5946       case BLOCK:
5947         context = BLOCK_SUPERCONTEXT (context);
5948         break;
5949
5950       default:
5951         gcc_unreachable ();
5952       }
5953
5954   return NULL_TREE;
5955 }
5956
5957 /* CALL is a CALL_EXPR.  Return the declaration for the function
5958    called, or NULL_TREE if the called function cannot be
5959    determined.  */
5960
5961 tree
5962 get_callee_fndecl (tree call)
5963 {
5964   tree addr;
5965
5966   if (call == error_mark_node)
5967     return call;
5968
5969   /* It's invalid to call this function with anything but a
5970      CALL_EXPR.  */
5971   gcc_assert (TREE_CODE (call) == CALL_EXPR);
5972
5973   /* The first operand to the CALL is the address of the function
5974      called.  */
5975   addr = TREE_OPERAND (call, 0);
5976
5977   STRIP_NOPS (addr);
5978
5979   /* If this is a readonly function pointer, extract its initial value.  */
5980   if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5981       && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5982       && DECL_INITIAL (addr))
5983     addr = DECL_INITIAL (addr);
5984
5985   /* If the address is just `&f' for some function `f', then we know
5986      that `f' is being called.  */
5987   if (TREE_CODE (addr) == ADDR_EXPR
5988       && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5989     return TREE_OPERAND (addr, 0);
5990
5991   /* We couldn't figure out what was being called.  Maybe the front
5992      end has some idea.  */
5993   return lang_hooks.lang_get_callee_fndecl (call);
5994 }
5995
5996 /* Print debugging information about tree nodes generated during the compile,
5997    and any language-specific information.  */
5998
5999 void
6000 dump_tree_statistics (void)
6001 {
6002 #ifdef GATHER_STATISTICS
6003   int i;
6004   int total_nodes, total_bytes;
6005 #endif
6006
6007   fprintf (stderr, "\n??? tree nodes created\n\n");
6008 #ifdef GATHER_STATISTICS
6009   fprintf (stderr, "Kind                   Nodes      Bytes\n");
6010   fprintf (stderr, "---------------------------------------\n");
6011   total_nodes = total_bytes = 0;
6012   for (i = 0; i < (int) all_kinds; i++)
6013     {
6014       fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6015                tree_node_counts[i], tree_node_sizes[i]);
6016       total_nodes += tree_node_counts[i];
6017       total_bytes += tree_node_sizes[i];
6018     }
6019   fprintf (stderr, "---------------------------------------\n");
6020   fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6021   fprintf (stderr, "---------------------------------------\n");
6022   ssanames_print_statistics ();
6023   phinodes_print_statistics ();
6024 #else
6025   fprintf (stderr, "(No per-node statistics)\n");
6026 #endif
6027   print_type_hash_statistics ();
6028   print_debug_expr_statistics ();
6029   print_value_expr_statistics ();
6030   print_restrict_base_statistics ();
6031   lang_hooks.print_statistics ();
6032 }
6033 \f
6034 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6035
6036 /* Generate a crc32 of a string.  */
6037
6038 unsigned
6039 crc32_string (unsigned chksum, const char *string)
6040 {
6041   do
6042     {
6043       unsigned value = *string << 24;
6044       unsigned ix;
6045
6046       for (ix = 8; ix--; value <<= 1)
6047         {
6048           unsigned feedback;
6049
6050           feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6051           chksum <<= 1;
6052           chksum ^= feedback;
6053         }
6054     }
6055   while (*string++);
6056   return chksum;
6057 }
6058
6059 /* P is a string that will be used in a symbol.  Mask out any characters
6060    that are not valid in that context.  */
6061
6062 void
6063 clean_symbol_name (char *p)
6064 {
6065   for (; *p; p++)
6066     if (! (ISALNUM (*p)
6067 #ifndef NO_DOLLAR_IN_LABEL      /* this for `$'; unlikely, but... -- kr */
6068             || *p == '$'
6069 #endif
6070 #ifndef NO_DOT_IN_LABEL         /* this for `.'; unlikely, but...  */
6071             || *p == '.'
6072 #endif
6073            ))
6074       *p = '_';
6075 }
6076
6077 /* Generate a name for a special-purpose function function.
6078    The generated name may need to be unique across the whole link.
6079    TYPE is some string to identify the purpose of this function to the
6080    linker or collect2; it must start with an uppercase letter,
6081    one of:
6082    I - for constructors
6083    D - for destructors
6084    N - for C++ anonymous namespaces
6085    F - for DWARF unwind frame information.  */
6086
6087 tree
6088 get_file_function_name (const char *type)
6089 {
6090   char *buf;
6091   const char *p;
6092   char *q;
6093
6094   /* If we already have a name we know to be unique, just use that.  */
6095   if (first_global_object_name)
6096     p = first_global_object_name;
6097   /* If the target is handling the constructors/destructors, they
6098      will be local to this file and the name is only necessary for
6099      debugging purposes.  */
6100   else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6101     {
6102       const char *file = main_input_filename;
6103       if (! file)
6104         file = input_filename;
6105       /* Just use the file's basename, because the full pathname
6106          might be quite long.  */
6107       p = strrchr (file, '/');
6108       if (p)
6109         p++;
6110       else
6111         p = file;
6112       p = q = ASTRDUP (p);
6113       clean_symbol_name (q);
6114     }
6115   else
6116     {
6117       /* Otherwise, the name must be unique across the entire link.
6118          We don't have anything that we know to be unique to this translation
6119          unit, so use what we do have and throw in some randomness.  */
6120       unsigned len;
6121       const char *name = weak_global_object_name;
6122       const char *file = main_input_filename;
6123
6124       if (! name)
6125         name = "";
6126       if (! file)
6127         file = input_filename;
6128
6129       len = strlen (file);
6130       q = alloca (9 * 2 + len + 1);
6131       memcpy (q, file, len + 1);
6132       clean_symbol_name (q);
6133
6134       sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6135                crc32_string (0, flag_random_seed));
6136
6137       p = q;
6138     }
6139
6140   buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6141
6142   /* Set up the name of the file-level functions we may need.
6143      Use a global object (which is already required to be unique over
6144      the program) rather than the file name (which imposes extra
6145      constraints).  */
6146   sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6147
6148   return get_identifier (buf);
6149 }
6150 \f
6151 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6152
6153 /* Complain that the tree code of NODE does not match the expected 0
6154    terminated list of trailing codes. The trailing code list can be
6155    empty, for a more vague error message.  FILE, LINE, and FUNCTION
6156    are of the caller.  */
6157
6158 void
6159 tree_check_failed (const tree node, const char *file,
6160                    int line, const char *function, ...)
6161 {
6162   va_list args;
6163   char *buffer;
6164   unsigned length = 0;
6165   int code;
6166
6167   va_start (args, function);
6168   while ((code = va_arg (args, int)))
6169     length += 4 + strlen (tree_code_name[code]);
6170   va_end (args);
6171   if (length)
6172     {
6173       va_start (args, function);
6174       length += strlen ("expected ");
6175       buffer = alloca (length);
6176       length = 0;
6177       while ((code = va_arg (args, int)))
6178         {
6179           const char *prefix = length ? " or " : "expected ";
6180           
6181           strcpy (buffer + length, prefix);
6182           length += strlen (prefix);
6183           strcpy (buffer + length, tree_code_name[code]);
6184           length += strlen (tree_code_name[code]);
6185         }
6186       va_end (args);
6187     }
6188   else
6189     buffer = (char *)"unexpected node";
6190
6191   internal_error ("tree check: %s, have %s in %s, at %s:%d",
6192                   buffer, tree_code_name[TREE_CODE (node)],
6193                   function, trim_filename (file), line);
6194 }
6195
6196 /* Complain that the tree code of NODE does match the expected 0
6197    terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6198    the caller.  */
6199
6200 void
6201 tree_not_check_failed (const tree node, const char *file,
6202                        int line, const char *function, ...)
6203 {
6204   va_list args;
6205   char *buffer;
6206   unsigned length = 0;
6207   int code;
6208
6209   va_start (args, function);
6210   while ((code = va_arg (args, int)))
6211     length += 4 + strlen (tree_code_name[code]);
6212   va_end (args);
6213   va_start (args, function);
6214   buffer = alloca (length);
6215   length = 0;
6216   while ((code = va_arg (args, int)))
6217     {
6218       if (length)
6219         {
6220           strcpy (buffer + length, " or ");
6221           length += 4;
6222         }
6223       strcpy (buffer + length, tree_code_name[code]);
6224       length += strlen (tree_code_name[code]);
6225     }
6226   va_end (args);
6227
6228   internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6229                   buffer, tree_code_name[TREE_CODE (node)],
6230                   function, trim_filename (file), line);
6231 }
6232
6233 /* Similar to tree_check_failed, except that we check for a class of tree
6234    code, given in CL.  */
6235
6236 void
6237 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6238                          const char *file, int line, const char *function)
6239 {
6240   internal_error
6241     ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6242      TREE_CODE_CLASS_STRING (cl),
6243      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6244      tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6245 }
6246
6247 /* Similar to tree_check_failed, except that instead of specifying a
6248    dozen codes, use the knowledge that they're all sequential.  */
6249
6250 void
6251 tree_range_check_failed (const tree node, const char *file, int line,
6252                          const char *function, enum tree_code c1,
6253                          enum tree_code c2)
6254 {
6255   char *buffer;
6256   unsigned length = 0;
6257   enum tree_code c;
6258
6259   for (c = c1; c <= c2; ++c)
6260     length += 4 + strlen (tree_code_name[c]);
6261
6262   length += strlen ("expected ");
6263   buffer = alloca (length);
6264   length = 0;
6265
6266   for (c = c1; c <= c2; ++c)
6267     {
6268       const char *prefix = length ? " or " : "expected ";
6269
6270       strcpy (buffer + length, prefix);
6271       length += strlen (prefix);
6272       strcpy (buffer + length, tree_code_name[c]);
6273       length += strlen (tree_code_name[c]);
6274     }
6275
6276   internal_error ("tree check: %s, have %s in %s, at %s:%d",
6277                   buffer, tree_code_name[TREE_CODE (node)],
6278                   function, trim_filename (file), line);
6279 }
6280
6281
6282 /* Similar to tree_check_failed, except that we check that a tree does
6283    not have the specified code, given in CL.  */
6284
6285 void
6286 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6287                              const char *file, int line, const char *function)
6288 {
6289   internal_error
6290     ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6291      TREE_CODE_CLASS_STRING (cl),
6292      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6293      tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6294 }
6295
6296
6297 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
6298
6299 void
6300 omp_clause_check_failed (const tree node, const char *file, int line,
6301                          const char *function, enum omp_clause_code code)
6302 {
6303   internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6304                   omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6305                   function, trim_filename (file), line);
6306 }
6307
6308
6309 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
6310
6311 void
6312 omp_clause_range_check_failed (const tree node, const char *file, int line,
6313                                const char *function, enum omp_clause_code c1,
6314                                enum omp_clause_code c2)
6315 {
6316   char *buffer;
6317   unsigned length = 0;
6318   enum omp_clause_code c;
6319
6320   for (c = c1; c <= c2; ++c)
6321     length += 4 + strlen (omp_clause_code_name[c]);
6322
6323   length += strlen ("expected ");
6324   buffer = alloca (length);
6325   length = 0;
6326
6327   for (c = c1; c <= c2; ++c)
6328     {
6329       const char *prefix = length ? " or " : "expected ";
6330
6331       strcpy (buffer + length, prefix);
6332       length += strlen (prefix);
6333       strcpy (buffer + length, omp_clause_code_name[c]);
6334       length += strlen (omp_clause_code_name[c]);
6335     }
6336
6337   internal_error ("tree check: %s, have %s in %s, at %s:%d",
6338                   buffer, omp_clause_code_name[TREE_CODE (node)],
6339                   function, trim_filename (file), line);
6340 }
6341
6342
6343 #undef DEFTREESTRUCT
6344 #define DEFTREESTRUCT(VAL, NAME) NAME,
6345
6346 static const char *ts_enum_names[] = {
6347 #include "treestruct.def"
6348 };
6349 #undef DEFTREESTRUCT
6350
6351 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6352
6353 /* Similar to tree_class_check_failed, except that we check for
6354    whether CODE contains the tree structure identified by EN.  */
6355
6356 void
6357 tree_contains_struct_check_failed (const tree node, 
6358                                    const enum tree_node_structure_enum en,
6359                                    const char *file, int line, 
6360                                    const char *function)
6361 {
6362   internal_error
6363     ("tree check: expected tree that contains %qs structure, have %qs  in %s, at %s:%d",
6364      TS_ENUM_NAME(en),
6365      tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6366 }
6367
6368
6369 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6370    (dynamically sized) vector.  */
6371
6372 void
6373 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6374                            const char *function)
6375 {
6376   internal_error
6377     ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6378      idx + 1, len, function, trim_filename (file), line);
6379 }
6380
6381 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6382    (dynamically sized) vector.  */
6383
6384 void
6385 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6386                             const char *function)
6387 {
6388   internal_error
6389     ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6390      idx + 1, len, function, trim_filename (file), line);
6391 }
6392
6393 /* Similar to above, except that the check is for the bounds of the operand
6394    vector of an expression node.  */
6395
6396 void
6397 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6398                            int line, const char *function)
6399 {
6400   internal_error
6401     ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6402      idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6403      function, trim_filename (file), line);
6404 }
6405
6406 /* Similar to above, except that the check is for the number of
6407    operands of an OMP_CLAUSE node.  */
6408
6409 void
6410 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6411                                  int line, const char *function)
6412 {
6413   internal_error
6414     ("tree check: accessed operand %d of omp_clause %s with %d operands "
6415      "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6416      omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6417      trim_filename (file), line);
6418 }
6419 #endif /* ENABLE_TREE_CHECKING */
6420 \f
6421 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6422    and mapped to the machine mode MODE.  Initialize its fields and build
6423    the information necessary for debugging output.  */
6424
6425 static tree
6426 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6427 {
6428   tree t;
6429   hashval_t hashcode = 0;
6430
6431   /* Build a main variant, based on the main variant of the inner type, then
6432      use it to build the variant we return.  */
6433   if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6434       && TYPE_MAIN_VARIANT (innertype) != innertype)
6435     return build_type_attribute_qual_variant (
6436             make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6437             TYPE_ATTRIBUTES (innertype),
6438             TYPE_QUALS (innertype));
6439
6440   t = make_node (VECTOR_TYPE);
6441   TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6442   SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6443   TYPE_MODE (t) = mode;
6444   TYPE_READONLY (t) = TYPE_READONLY (innertype);
6445   TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6446
6447   layout_type (t);
6448
6449   {
6450     tree index = build_int_cst (NULL_TREE, nunits - 1);
6451     tree array = build_array_type (innertype, build_index_type (index));
6452     tree rt = make_node (RECORD_TYPE);
6453
6454     TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6455     DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6456     layout_type (rt);
6457     TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6458     /* In dwarfout.c, type lookup uses TYPE_UID numbers.  We want to output
6459        the representation type, and we want to find that die when looking up
6460        the vector type.  This is most easily achieved by making the TYPE_UID
6461        numbers equal.  */
6462     TYPE_UID (rt) = TYPE_UID (t);
6463   }
6464
6465   hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6466   hashcode = iterative_hash_host_wide_int (mode, hashcode);
6467   hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6468   return type_hash_canon (hashcode, t);
6469 }
6470
6471 static tree
6472 make_or_reuse_type (unsigned size, int unsignedp)
6473 {
6474   if (size == INT_TYPE_SIZE)
6475     return unsignedp ? unsigned_type_node : integer_type_node;
6476   if (size == CHAR_TYPE_SIZE)
6477     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6478   if (size == SHORT_TYPE_SIZE)
6479     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6480   if (size == LONG_TYPE_SIZE)
6481     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6482   if (size == LONG_LONG_TYPE_SIZE)
6483     return (unsignedp ? long_long_unsigned_type_node
6484             : long_long_integer_type_node);
6485
6486   if (unsignedp)
6487     return make_unsigned_type (size);
6488   else
6489     return make_signed_type (size);
6490 }
6491
6492 /* Create nodes for all integer types (and error_mark_node) using the sizes
6493    of C datatypes.  The caller should call set_sizetype soon after calling
6494    this function to select one of the types as sizetype.  */
6495
6496 void
6497 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6498 {
6499   error_mark_node = make_node (ERROR_MARK);
6500   TREE_TYPE (error_mark_node) = error_mark_node;
6501
6502   initialize_sizetypes (signed_sizetype);
6503
6504   /* Define both `signed char' and `unsigned char'.  */
6505   signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6506   TYPE_STRING_FLAG (signed_char_type_node) = 1;
6507   unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6508   TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6509
6510   /* Define `char', which is like either `signed char' or `unsigned char'
6511      but not the same as either.  */
6512   char_type_node
6513     = (signed_char
6514        ? make_signed_type (CHAR_TYPE_SIZE)
6515        : make_unsigned_type (CHAR_TYPE_SIZE));
6516   TYPE_STRING_FLAG (char_type_node) = 1;
6517
6518   short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6519   short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6520   integer_type_node = make_signed_type (INT_TYPE_SIZE);
6521   unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6522   long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6523   long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6524   long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6525   long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6526
6527   /* Define a boolean type.  This type only represents boolean values but
6528      may be larger than char depending on the value of BOOL_TYPE_SIZE.
6529      Front ends which want to override this size (i.e. Java) can redefine
6530      boolean_type_node before calling build_common_tree_nodes_2.  */
6531   boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6532   TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6533   TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6534   TYPE_PRECISION (boolean_type_node) = 1;
6535
6536   /* Fill in the rest of the sized types.  Reuse existing type nodes
6537      when possible.  */
6538   intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6539   intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6540   intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6541   intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6542   intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6543
6544   unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6545   unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6546   unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6547   unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6548   unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6549
6550   access_public_node = get_identifier ("public");
6551   access_protected_node = get_identifier ("protected");
6552   access_private_node = get_identifier ("private");
6553 }
6554
6555 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6556    It will create several other common tree nodes.  */
6557
6558 void
6559 build_common_tree_nodes_2 (int short_double)
6560 {
6561   /* Define these next since types below may used them.  */
6562   integer_zero_node = build_int_cst (NULL_TREE, 0);
6563   integer_one_node = build_int_cst (NULL_TREE, 1);
6564   integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6565
6566   size_zero_node = size_int (0);
6567   size_one_node = size_int (1);
6568   bitsize_zero_node = bitsize_int (0);
6569   bitsize_one_node = bitsize_int (1);
6570   bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6571
6572   boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6573   boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6574
6575   void_type_node = make_node (VOID_TYPE);
6576   layout_type (void_type_node);
6577
6578   /* We are not going to have real types in C with less than byte alignment,
6579      so we might as well not have any types that claim to have it.  */
6580   TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6581   TYPE_USER_ALIGN (void_type_node) = 0;
6582
6583   null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6584   layout_type (TREE_TYPE (null_pointer_node));
6585
6586   ptr_type_node = build_pointer_type (void_type_node);
6587   const_ptr_type_node
6588     = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6589   fileptr_type_node = ptr_type_node;
6590
6591   float_type_node = make_node (REAL_TYPE);
6592   TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6593   layout_type (float_type_node);
6594
6595   double_type_node = make_node (REAL_TYPE);
6596   if (short_double)
6597     TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6598   else
6599     TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6600   layout_type (double_type_node);
6601
6602   long_double_type_node = make_node (REAL_TYPE);
6603   TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6604   layout_type (long_double_type_node);
6605
6606   float_ptr_type_node = build_pointer_type (float_type_node);
6607   double_ptr_type_node = build_pointer_type (double_type_node);
6608   long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6609   integer_ptr_type_node = build_pointer_type (integer_type_node);
6610
6611   /* Fixed size integer types.  */
6612   uint32_type_node = build_nonstandard_integer_type (32, true);
6613   uint64_type_node = build_nonstandard_integer_type (64, true);
6614
6615   /* Decimal float types. */
6616   dfloat32_type_node = make_node (REAL_TYPE);
6617   TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE; 
6618   layout_type (dfloat32_type_node);
6619   TYPE_MODE (dfloat32_type_node) = SDmode;
6620   dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6621
6622   dfloat64_type_node = make_node (REAL_TYPE);
6623   TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6624   layout_type (dfloat64_type_node);
6625   TYPE_MODE (dfloat64_type_node) = DDmode;
6626   dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6627
6628   dfloat128_type_node = make_node (REAL_TYPE);
6629   TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE; 
6630   layout_type (dfloat128_type_node);
6631   TYPE_MODE (dfloat128_type_node) = TDmode;
6632   dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6633
6634   complex_integer_type_node = make_node (COMPLEX_TYPE);
6635   TREE_TYPE (complex_integer_type_node) = integer_type_node;
6636   layout_type (complex_integer_type_node);
6637
6638   complex_float_type_node = make_node (COMPLEX_TYPE);
6639   TREE_TYPE (complex_float_type_node) = float_type_node;
6640   layout_type (complex_float_type_node);
6641
6642   complex_double_type_node = make_node (COMPLEX_TYPE);
6643   TREE_TYPE (complex_double_type_node) = double_type_node;
6644   layout_type (complex_double_type_node);
6645
6646   complex_long_double_type_node = make_node (COMPLEX_TYPE);
6647   TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6648   layout_type (complex_long_double_type_node);
6649
6650   {
6651     tree t = targetm.build_builtin_va_list ();
6652
6653     /* Many back-ends define record types without setting TYPE_NAME.
6654        If we copied the record type here, we'd keep the original
6655        record type without a name.  This breaks name mangling.  So,
6656        don't copy record types and let c_common_nodes_and_builtins()
6657        declare the type to be __builtin_va_list.  */
6658     if (TREE_CODE (t) != RECORD_TYPE)
6659       t = build_variant_type_copy (t);
6660
6661     va_list_type_node = t;
6662   }
6663 }
6664
6665 /* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
6666
6667 static void
6668 local_define_builtin (const char *name, tree type, enum built_in_function code,
6669                       const char *library_name, int ecf_flags)
6670 {
6671   tree decl;
6672
6673   decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6674                                       library_name, NULL_TREE);
6675   if (ecf_flags & ECF_CONST)
6676     TREE_READONLY (decl) = 1;
6677   if (ecf_flags & ECF_PURE)
6678     DECL_IS_PURE (decl) = 1;
6679   if (ecf_flags & ECF_NORETURN)
6680     TREE_THIS_VOLATILE (decl) = 1;
6681   if (ecf_flags & ECF_NOTHROW)
6682     TREE_NOTHROW (decl) = 1;
6683   if (ecf_flags & ECF_MALLOC)
6684     DECL_IS_MALLOC (decl) = 1;
6685
6686   built_in_decls[code] = decl;
6687   implicit_built_in_decls[code] = decl;
6688 }
6689
6690 /* Call this function after instantiating all builtins that the language
6691    front end cares about.  This will build the rest of the builtins that
6692    are relied upon by the tree optimizers and the middle-end.  */
6693
6694 void
6695 build_common_builtin_nodes (void)
6696 {
6697   tree tmp, ftype;
6698
6699   if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6700       || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6701     {
6702       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6703       tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6704       tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6705       ftype = build_function_type (ptr_type_node, tmp);
6706
6707       if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6708         local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6709                               "memcpy", ECF_NOTHROW);
6710       if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6711         local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6712                               "memmove", ECF_NOTHROW);
6713     }
6714
6715   if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6716     {
6717       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6718       tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6719       tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6720       ftype = build_function_type (integer_type_node, tmp);
6721       local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6722                             "memcmp", ECF_PURE | ECF_NOTHROW);
6723     }
6724
6725   if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6726     {
6727       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6728       tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6729       tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6730       ftype = build_function_type (ptr_type_node, tmp);
6731       local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6732                             "memset", ECF_NOTHROW);
6733     }
6734
6735   if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6736     {
6737       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6738       ftype = build_function_type (ptr_type_node, tmp);
6739       local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6740                             "alloca", ECF_NOTHROW | ECF_MALLOC);
6741     }
6742
6743   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6744   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6745   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6746   ftype = build_function_type (void_type_node, tmp);
6747   local_define_builtin ("__builtin_init_trampoline", ftype,
6748                         BUILT_IN_INIT_TRAMPOLINE,
6749                         "__builtin_init_trampoline", ECF_NOTHROW);
6750
6751   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6752   ftype = build_function_type (ptr_type_node, tmp);
6753   local_define_builtin ("__builtin_adjust_trampoline", ftype,
6754                         BUILT_IN_ADJUST_TRAMPOLINE,
6755                         "__builtin_adjust_trampoline",
6756                         ECF_CONST | ECF_NOTHROW);
6757
6758   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6759   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6760   ftype = build_function_type (void_type_node, tmp);
6761   local_define_builtin ("__builtin_nonlocal_goto", ftype,
6762                         BUILT_IN_NONLOCAL_GOTO,
6763                         "__builtin_nonlocal_goto",
6764                         ECF_NORETURN | ECF_NOTHROW);
6765
6766   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6767   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6768   ftype = build_function_type (void_type_node, tmp);
6769   local_define_builtin ("__builtin_setjmp_setup", ftype,
6770                         BUILT_IN_SETJMP_SETUP,
6771                         "__builtin_setjmp_setup", ECF_NOTHROW);
6772
6773   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6774   ftype = build_function_type (ptr_type_node, tmp);
6775   local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
6776                         BUILT_IN_SETJMP_DISPATCHER,
6777                         "__builtin_setjmp_dispatcher",
6778                         ECF_PURE | ECF_NOTHROW);
6779
6780   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6781   ftype = build_function_type (void_type_node, tmp);
6782   local_define_builtin ("__builtin_setjmp_receiver", ftype,
6783                         BUILT_IN_SETJMP_RECEIVER,
6784                         "__builtin_setjmp_receiver", ECF_NOTHROW);
6785
6786   ftype = build_function_type (ptr_type_node, void_list_node);
6787   local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6788                         "__builtin_stack_save", ECF_NOTHROW);
6789
6790   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6791   ftype = build_function_type (void_type_node, tmp);
6792   local_define_builtin ("__builtin_stack_restore", ftype,
6793                         BUILT_IN_STACK_RESTORE,
6794                         "__builtin_stack_restore", ECF_NOTHROW);
6795
6796   ftype = build_function_type (void_type_node, void_list_node);
6797   local_define_builtin ("__builtin_profile_func_enter", ftype,
6798                         BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6799   local_define_builtin ("__builtin_profile_func_exit", ftype,
6800                         BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6801
6802   /* Complex multiplication and division.  These are handled as builtins
6803      rather than optabs because emit_library_call_value doesn't support
6804      complex.  Further, we can do slightly better with folding these 
6805      beasties if the real and complex parts of the arguments are separate.  */
6806   {
6807     enum machine_mode mode;
6808
6809     for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6810       {
6811         char mode_name_buf[4], *q;
6812         const char *p;
6813         enum built_in_function mcode, dcode;
6814         tree type, inner_type;
6815
6816         type = lang_hooks.types.type_for_mode (mode, 0);
6817         if (type == NULL)
6818           continue;
6819         inner_type = TREE_TYPE (type);
6820
6821         tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6822         tmp = tree_cons (NULL_TREE, inner_type, tmp);
6823         tmp = tree_cons (NULL_TREE, inner_type, tmp);
6824         tmp = tree_cons (NULL_TREE, inner_type, tmp);
6825         ftype = build_function_type (type, tmp);
6826
6827         mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6828         dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6829
6830         for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6831           *q = TOLOWER (*p);
6832         *q = '\0';
6833
6834         built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6835         local_define_builtin (built_in_names[mcode], ftype, mcode,
6836                               built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6837
6838         built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6839         local_define_builtin (built_in_names[dcode], ftype, dcode,
6840                               built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6841       }
6842   }
6843 }
6844
6845 /* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
6846    better way.
6847
6848    If we requested a pointer to a vector, build up the pointers that
6849    we stripped off while looking for the inner type.  Similarly for
6850    return values from functions.
6851
6852    The argument TYPE is the top of the chain, and BOTTOM is the
6853    new type which we will point to.  */
6854
6855 tree
6856 reconstruct_complex_type (tree type, tree bottom)
6857 {
6858   tree inner, outer;
6859
6860   if (POINTER_TYPE_P (type))
6861     {
6862       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6863       outer = build_pointer_type (inner);
6864     }
6865   else if (TREE_CODE (type) == ARRAY_TYPE)
6866     {
6867       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6868       outer = build_array_type (inner, TYPE_DOMAIN (type));
6869     }
6870   else if (TREE_CODE (type) == FUNCTION_TYPE)
6871     {
6872       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6873       outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6874     }
6875   else if (TREE_CODE (type) == METHOD_TYPE)
6876     {
6877       tree argtypes;
6878       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6879       /* The build_method_type_directly() routine prepends 'this' to argument list,
6880          so we must compensate by getting rid of it.  */
6881       argtypes = TYPE_ARG_TYPES (type);
6882       outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6883                                           inner,
6884                                           TYPE_ARG_TYPES (type));
6885       TYPE_ARG_TYPES (outer) = argtypes;
6886     }
6887   else
6888     return bottom;
6889
6890   TYPE_READONLY (outer) = TYPE_READONLY (type);
6891   TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6892
6893   return outer;
6894 }
6895
6896 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6897    the inner type.  */
6898 tree
6899 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6900 {
6901   int nunits;
6902
6903   switch (GET_MODE_CLASS (mode))
6904     {
6905     case MODE_VECTOR_INT:
6906     case MODE_VECTOR_FLOAT:
6907       nunits = GET_MODE_NUNITS (mode);
6908       break;
6909
6910     case MODE_INT:
6911       /* Check that there are no leftover bits.  */
6912       gcc_assert (GET_MODE_BITSIZE (mode)
6913                   % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6914
6915       nunits = GET_MODE_BITSIZE (mode)
6916                / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6917       break;
6918
6919     default:
6920       gcc_unreachable ();
6921     }
6922
6923   return make_vector_type (innertype, nunits, mode);
6924 }
6925
6926 /* Similarly, but takes the inner type and number of units, which must be
6927    a power of two.  */
6928
6929 tree
6930 build_vector_type (tree innertype, int nunits)
6931 {
6932   return make_vector_type (innertype, nunits, VOIDmode);
6933 }
6934
6935
6936 /* Build RESX_EXPR with given REGION_NUMBER.  */
6937 tree
6938 build_resx (int region_number)
6939 {
6940   tree t;
6941   t = build1 (RESX_EXPR, void_type_node,
6942               build_int_cst (NULL_TREE, region_number));
6943   return t;
6944 }
6945
6946 /* Given an initializer INIT, return TRUE if INIT is zero or some
6947    aggregate of zeros.  Otherwise return FALSE.  */
6948 bool
6949 initializer_zerop (tree init)
6950 {
6951   tree elt;
6952
6953   STRIP_NOPS (init);
6954
6955   switch (TREE_CODE (init))
6956     {
6957     case INTEGER_CST:
6958       return integer_zerop (init);
6959
6960     case REAL_CST:
6961       /* ??? Note that this is not correct for C4X float formats.  There,
6962          a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6963          negative exponent.  */
6964       return real_zerop (init)
6965         && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6966
6967     case COMPLEX_CST:
6968       return integer_zerop (init)
6969         || (real_zerop (init)
6970             && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6971             && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6972
6973     case VECTOR_CST:
6974       for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6975         if (!initializer_zerop (TREE_VALUE (elt)))
6976           return false;
6977       return true;
6978
6979     case CONSTRUCTOR:
6980       {
6981         unsigned HOST_WIDE_INT idx;
6982
6983         FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6984           if (!initializer_zerop (elt))
6985             return false;
6986         return true;
6987       }
6988
6989     default:
6990       return false;
6991     }
6992 }
6993
6994 /* Build an empty statement.  */
6995
6996 tree
6997 build_empty_stmt (void)
6998 {
6999   return build1 (NOP_EXPR, void_type_node, size_zero_node);
7000 }
7001
7002
7003 /* Build an OpenMP clause with code CODE.  */
7004
7005 tree
7006 build_omp_clause (enum omp_clause_code code)
7007 {
7008   tree t;
7009   int size, length;
7010
7011   length = omp_clause_num_ops[code];
7012   size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7013
7014   t = ggc_alloc (size);
7015   memset (t, 0, size);
7016   TREE_SET_CODE (t, OMP_CLAUSE);
7017   OMP_CLAUSE_SET_CODE (t, code);
7018
7019 #ifdef GATHER_STATISTICS
7020   tree_node_counts[(int) omp_clause_kind]++;
7021   tree_node_sizes[(int) omp_clause_kind] += size;
7022 #endif
7023   
7024   return t;
7025 }
7026
7027
7028 /* Returns true if it is possible to prove that the index of
7029    an array access REF (an ARRAY_REF expression) falls into the
7030    array bounds.  */
7031
7032 bool
7033 in_array_bounds_p (tree ref)
7034 {
7035   tree idx = TREE_OPERAND (ref, 1);
7036   tree min, max;
7037
7038   if (TREE_CODE (idx) != INTEGER_CST)
7039     return false;
7040
7041   min = array_ref_low_bound (ref);
7042   max = array_ref_up_bound (ref);
7043   if (!min
7044       || !max
7045       || TREE_CODE (min) != INTEGER_CST
7046       || TREE_CODE (max) != INTEGER_CST)
7047     return false;
7048
7049   if (tree_int_cst_lt (idx, min)
7050       || tree_int_cst_lt (max, idx))
7051     return false;
7052
7053   return true;
7054 }
7055
7056 /* Returns true if it is possible to prove that the range of
7057    an array access REF (an ARRAY_RANGE_REF expression) falls
7058    into the array bounds.  */
7059
7060 bool
7061 range_in_array_bounds_p (tree ref)
7062 {
7063   tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7064   tree range_min, range_max, min, max;
7065
7066   range_min = TYPE_MIN_VALUE (domain_type);
7067   range_max = TYPE_MAX_VALUE (domain_type);
7068   if (!range_min
7069       || !range_max
7070       || TREE_CODE (range_min) != INTEGER_CST
7071       || TREE_CODE (range_max) != INTEGER_CST)
7072     return false;
7073
7074   min = array_ref_low_bound (ref);
7075   max = array_ref_up_bound (ref);
7076   if (!min
7077       || !max
7078       || TREE_CODE (min) != INTEGER_CST
7079       || TREE_CODE (max) != INTEGER_CST)
7080     return false;
7081
7082   if (tree_int_cst_lt (range_min, min)
7083       || tree_int_cst_lt (max, range_max))
7084     return false;
7085
7086   return true;
7087 }
7088
7089 /* Return true if T (assumed to be a DECL) is a global variable.  */
7090
7091 bool
7092 is_global_var (tree t)
7093 {
7094   if (MTAG_P (t))
7095     return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7096   else
7097     return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7098 }
7099
7100 /* Return true if T (assumed to be a DECL) must be assigned a memory
7101    location.  */
7102
7103 bool
7104 needs_to_live_in_memory (tree t)
7105 {
7106   return (TREE_ADDRESSABLE (t)
7107           || is_global_var (t)
7108           || (TREE_CODE (t) == RESULT_DECL
7109               && aggregate_value_p (t, current_function_decl)));
7110 }
7111
7112 /* There are situations in which a language considers record types
7113    compatible which have different field lists.  Decide if two fields
7114    are compatible.  It is assumed that the parent records are compatible.  */
7115
7116 bool
7117 fields_compatible_p (tree f1, tree f2)
7118 {
7119   if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7120                         DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7121     return false;
7122
7123   if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7124                         DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7125     return false;
7126
7127   if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7128     return false;
7129
7130   return true;
7131 }
7132
7133 /* Locate within RECORD a field that is compatible with ORIG_FIELD.  */
7134
7135 tree
7136 find_compatible_field (tree record, tree orig_field)
7137 {
7138   tree f;
7139
7140   for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7141     if (TREE_CODE (f) == FIELD_DECL
7142         && fields_compatible_p (f, orig_field))
7143       return f;
7144
7145   /* ??? Why isn't this on the main fields list?  */
7146   f = TYPE_VFIELD (record);
7147   if (f && TREE_CODE (f) == FIELD_DECL
7148       && fields_compatible_p (f, orig_field))
7149     return f;
7150
7151   /* ??? We should abort here, but Java appears to do Bad Things
7152      with inherited fields.  */
7153   return orig_field;
7154 }
7155
7156 /* Return value of a constant X.  */
7157
7158 HOST_WIDE_INT
7159 int_cst_value (tree x)
7160 {
7161   unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7162   unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7163   bool negative = ((val >> (bits - 1)) & 1) != 0;
7164
7165   gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7166
7167   if (negative)
7168     val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7169   else
7170     val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7171
7172   return val;
7173 }
7174
7175 /* Returns the greatest common divisor of A and B, which must be
7176    INTEGER_CSTs.  */
7177
7178 tree
7179 tree_fold_gcd (tree a, tree b)
7180 {
7181   tree a_mod_b;
7182   tree type = TREE_TYPE (a);
7183
7184   gcc_assert (TREE_CODE (a) == INTEGER_CST);
7185   gcc_assert (TREE_CODE (b) == INTEGER_CST);
7186
7187   if (integer_zerop (a))
7188     return b;
7189
7190   if (integer_zerop (b))
7191     return a;
7192
7193   if (tree_int_cst_sgn (a) == -1)
7194     a = fold_build2 (MULT_EXPR, type, a,
7195                      build_int_cst (type, -1));
7196
7197   if (tree_int_cst_sgn (b) == -1)
7198     b = fold_build2 (MULT_EXPR, type, b,
7199                      build_int_cst (type, -1));
7200
7201   while (1)
7202     {
7203       a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7204
7205       if (!TREE_INT_CST_LOW (a_mod_b)
7206           && !TREE_INT_CST_HIGH (a_mod_b))
7207         return b;
7208
7209       a = b;
7210       b = a_mod_b;
7211     }
7212 }
7213
7214 /* Returns unsigned variant of TYPE.  */
7215
7216 tree
7217 unsigned_type_for (tree type)
7218 {
7219   if (POINTER_TYPE_P (type))
7220     return lang_hooks.types.unsigned_type (size_type_node);
7221   return lang_hooks.types.unsigned_type (type);
7222 }
7223
7224 /* Returns signed variant of TYPE.  */
7225
7226 tree
7227 signed_type_for (tree type)
7228 {
7229   if (POINTER_TYPE_P (type))
7230     return lang_hooks.types.signed_type (size_type_node);
7231   return lang_hooks.types.signed_type (type);
7232 }
7233
7234 /* Returns the largest value obtainable by casting something in INNER type to
7235    OUTER type.  */
7236
7237 tree
7238 upper_bound_in_type (tree outer, tree inner)
7239 {
7240   unsigned HOST_WIDE_INT lo, hi;
7241   unsigned int det = 0;
7242   unsigned oprec = TYPE_PRECISION (outer);
7243   unsigned iprec = TYPE_PRECISION (inner);
7244   unsigned prec;
7245
7246   /* Compute a unique number for every combination.  */
7247   det |= (oprec > iprec) ? 4 : 0;
7248   det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7249   det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7250
7251   /* Determine the exponent to use.  */
7252   switch (det)
7253     {
7254     case 0:
7255     case 1:
7256       /* oprec <= iprec, outer: signed, inner: don't care.  */
7257       prec = oprec - 1;
7258       break;
7259     case 2:
7260     case 3:
7261       /* oprec <= iprec, outer: unsigned, inner: don't care.  */
7262       prec = oprec;
7263       break;
7264     case 4:
7265       /* oprec > iprec, outer: signed, inner: signed.  */
7266       prec = iprec - 1;
7267       break;
7268     case 5:
7269       /* oprec > iprec, outer: signed, inner: unsigned.  */
7270       prec = iprec;
7271       break;
7272     case 6:
7273       /* oprec > iprec, outer: unsigned, inner: signed.  */
7274       prec = oprec;
7275       break;
7276     case 7:
7277       /* oprec > iprec, outer: unsigned, inner: unsigned.  */
7278       prec = iprec;
7279       break;
7280     default:
7281       gcc_unreachable ();
7282     }
7283
7284   /* Compute 2^^prec - 1.  */
7285   if (prec <= HOST_BITS_PER_WIDE_INT)
7286     {
7287       hi = 0;
7288       lo = ((~(unsigned HOST_WIDE_INT) 0)
7289             >> (HOST_BITS_PER_WIDE_INT - prec));
7290     }
7291   else
7292     {
7293       hi = ((~(unsigned HOST_WIDE_INT) 0)
7294             >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7295       lo = ~(unsigned HOST_WIDE_INT) 0;
7296     }
7297
7298   return build_int_cst_wide (outer, lo, hi);
7299 }
7300
7301 /* Returns the smallest value obtainable by casting something in INNER type to
7302    OUTER type.  */
7303
7304 tree
7305 lower_bound_in_type (tree outer, tree inner)
7306 {
7307   unsigned HOST_WIDE_INT lo, hi;
7308   unsigned oprec = TYPE_PRECISION (outer);
7309   unsigned iprec = TYPE_PRECISION (inner);
7310
7311   /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7312      and obtain 0.  */
7313   if (TYPE_UNSIGNED (outer)
7314       /* If we are widening something of an unsigned type, OUTER type
7315          contains all values of INNER type.  In particular, both INNER
7316          and OUTER types have zero in common.  */
7317       || (oprec > iprec && TYPE_UNSIGNED (inner)))
7318     lo = hi = 0;
7319   else
7320     {
7321       /* If we are widening a signed type to another signed type, we
7322          want to obtain -2^^(iprec-1).  If we are keeping the
7323          precision or narrowing to a signed type, we want to obtain
7324          -2^(oprec-1).  */
7325       unsigned prec = oprec > iprec ? iprec : oprec;
7326
7327       if (prec <= HOST_BITS_PER_WIDE_INT)
7328         {
7329           hi = ~(unsigned HOST_WIDE_INT) 0;
7330           lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7331         }
7332       else
7333         {
7334           hi = ((~(unsigned HOST_WIDE_INT) 0)
7335                 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7336           lo = 0;
7337         }
7338     }
7339
7340   return build_int_cst_wide (outer, lo, hi);
7341 }
7342
7343 /* Return nonzero if two operands that are suitable for PHI nodes are
7344    necessarily equal.  Specifically, both ARG0 and ARG1 must be either
7345    SSA_NAME or invariant.  Note that this is strictly an optimization.
7346    That is, callers of this function can directly call operand_equal_p
7347    and get the same result, only slower.  */
7348
7349 int
7350 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7351 {
7352   if (arg0 == arg1)
7353     return 1;
7354   if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7355     return 0;
7356   return operand_equal_p (arg0, arg1, 0);
7357 }
7358
7359 /* Returns number of zeros at the end of binary representation of X.
7360    
7361    ??? Use ffs if available?  */
7362
7363 tree
7364 num_ending_zeros (tree x)
7365 {
7366   unsigned HOST_WIDE_INT fr, nfr;
7367   unsigned num, abits;
7368   tree type = TREE_TYPE (x);
7369
7370   if (TREE_INT_CST_LOW (x) == 0)
7371     {
7372       num = HOST_BITS_PER_WIDE_INT;
7373       fr = TREE_INT_CST_HIGH (x);
7374     }
7375   else
7376     {
7377       num = 0;
7378       fr = TREE_INT_CST_LOW (x);
7379     }
7380
7381   for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7382     {
7383       nfr = fr >> abits;
7384       if (nfr << abits == fr)
7385         {
7386           num += abits;
7387           fr = nfr;
7388         }
7389     }
7390
7391   if (num > TYPE_PRECISION (type))
7392     num = TYPE_PRECISION (type);
7393
7394   return build_int_cst_type (type, num);
7395 }
7396
7397
7398 #define WALK_SUBTREE(NODE)                              \
7399   do                                                    \
7400     {                                                   \
7401       result = walk_tree (&(NODE), func, data, pset);   \
7402       if (result)                                       \
7403         return result;                                  \
7404     }                                                   \
7405   while (0)
7406
7407 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7408    be walked whenever a type is seen in the tree.  Rest of operands and return
7409    value are as for walk_tree.  */
7410
7411 static tree
7412 walk_type_fields (tree type, walk_tree_fn func, void *data,
7413                   struct pointer_set_t *pset)
7414 {
7415   tree result = NULL_TREE;
7416
7417   switch (TREE_CODE (type))
7418     {
7419     case POINTER_TYPE:
7420     case REFERENCE_TYPE:
7421       /* We have to worry about mutually recursive pointers.  These can't
7422          be written in C.  They can in Ada.  It's pathological, but
7423          there's an ACATS test (c38102a) that checks it.  Deal with this
7424          by checking if we're pointing to another pointer, that one
7425          points to another pointer, that one does too, and we have no htab.
7426          If so, get a hash table.  We check three levels deep to avoid
7427          the cost of the hash table if we don't need one.  */
7428       if (POINTER_TYPE_P (TREE_TYPE (type))
7429           && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7430           && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7431           && !pset)
7432         {
7433           result = walk_tree_without_duplicates (&TREE_TYPE (type),
7434                                                  func, data);
7435           if (result)
7436             return result;
7437
7438           break;
7439         }
7440
7441       /* ... fall through ... */
7442
7443     case COMPLEX_TYPE:
7444       WALK_SUBTREE (TREE_TYPE (type));
7445       break;
7446
7447     case METHOD_TYPE:
7448       WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7449
7450       /* Fall through.  */
7451
7452     case FUNCTION_TYPE:
7453       WALK_SUBTREE (TREE_TYPE (type));
7454       {
7455         tree arg;
7456
7457         /* We never want to walk into default arguments.  */
7458         for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7459           WALK_SUBTREE (TREE_VALUE (arg));
7460       }
7461       break;
7462
7463     case ARRAY_TYPE:
7464       /* Don't follow this nodes's type if a pointer for fear that
7465          we'll have infinite recursion.  If we have a PSET, then we
7466          need not fear.  */
7467       if (pset
7468           || (!POINTER_TYPE_P (TREE_TYPE (type))
7469               && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7470         WALK_SUBTREE (TREE_TYPE (type));
7471       WALK_SUBTREE (TYPE_DOMAIN (type));
7472       break;
7473
7474     case BOOLEAN_TYPE:
7475     case ENUMERAL_TYPE:
7476     case INTEGER_TYPE:
7477     case REAL_TYPE:
7478       WALK_SUBTREE (TYPE_MIN_VALUE (type));
7479       WALK_SUBTREE (TYPE_MAX_VALUE (type));
7480       break;
7481
7482     case OFFSET_TYPE:
7483       WALK_SUBTREE (TREE_TYPE (type));
7484       WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7485       break;
7486
7487     default:
7488       break;
7489     }
7490
7491   return NULL_TREE;
7492 }
7493
7494 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
7495    called with the DATA and the address of each sub-tree.  If FUNC returns a
7496    non-NULL value, the traversal is stopped, and the value returned by FUNC
7497    is returned.  If PSET is non-NULL it is used to record the nodes visited,
7498    and to avoid visiting a node more than once.  */
7499
7500 tree
7501 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7502 {
7503   enum tree_code code;
7504   int walk_subtrees;
7505   tree result;
7506
7507 #define WALK_SUBTREE_TAIL(NODE)                         \
7508   do                                                    \
7509     {                                                   \
7510        tp = & (NODE);                                   \
7511        goto tail_recurse;                               \
7512     }                                                   \
7513   while (0)
7514
7515  tail_recurse:
7516   /* Skip empty subtrees.  */
7517   if (!*tp)
7518     return NULL_TREE;
7519
7520   /* Don't walk the same tree twice, if the user has requested
7521      that we avoid doing so.  */
7522   if (pset && pointer_set_insert (pset, *tp))
7523     return NULL_TREE;
7524
7525   /* Call the function.  */
7526   walk_subtrees = 1;
7527   result = (*func) (tp, &walk_subtrees, data);
7528
7529   /* If we found something, return it.  */
7530   if (result)
7531     return result;
7532
7533   code = TREE_CODE (*tp);
7534
7535   /* Even if we didn't, FUNC may have decided that there was nothing
7536      interesting below this point in the tree.  */
7537   if (!walk_subtrees)
7538     {
7539       /* But we still need to check our siblings.  */
7540       if (code == TREE_LIST)
7541         WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7542       else if (code == OMP_CLAUSE)
7543         WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7544       else
7545         return NULL_TREE;
7546     }
7547
7548   result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7549                                                    data, pset);
7550   if (result || ! walk_subtrees)
7551     return result;
7552
7553   switch (code)
7554     {
7555     case ERROR_MARK:
7556     case IDENTIFIER_NODE:
7557     case INTEGER_CST:
7558     case REAL_CST:
7559     case VECTOR_CST:
7560     case STRING_CST:
7561     case BLOCK:
7562     case PLACEHOLDER_EXPR:
7563     case SSA_NAME:
7564     case FIELD_DECL:
7565     case RESULT_DECL:
7566       /* None of these have subtrees other than those already walked
7567          above.  */
7568       break;
7569
7570     case TREE_LIST:
7571       WALK_SUBTREE (TREE_VALUE (*tp));
7572       WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7573       break;
7574
7575     case TREE_VEC:
7576       {
7577         int len = TREE_VEC_LENGTH (*tp);
7578
7579         if (len == 0)
7580           break;
7581
7582         /* Walk all elements but the first.  */
7583         while (--len)
7584           WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7585
7586         /* Now walk the first one as a tail call.  */
7587         WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7588       }
7589
7590     case COMPLEX_CST:
7591       WALK_SUBTREE (TREE_REALPART (*tp));
7592       WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7593
7594     case CONSTRUCTOR:
7595       {
7596         unsigned HOST_WIDE_INT idx;
7597         constructor_elt *ce;
7598
7599         for (idx = 0;
7600              VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7601              idx++)
7602           WALK_SUBTREE (ce->value);
7603       }
7604       break;
7605
7606     case SAVE_EXPR:
7607       WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7608
7609     case BIND_EXPR:
7610       {
7611         tree decl;
7612         for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7613           {
7614             /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
7615                into declarations that are just mentioned, rather than
7616                declared; they don't really belong to this part of the tree.
7617                And, we can see cycles: the initializer for a declaration
7618                can refer to the declaration itself.  */
7619             WALK_SUBTREE (DECL_INITIAL (decl));
7620             WALK_SUBTREE (DECL_SIZE (decl));
7621             WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7622           }
7623         WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7624       }
7625
7626     case STATEMENT_LIST:
7627       {
7628         tree_stmt_iterator i;
7629         for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7630           WALK_SUBTREE (*tsi_stmt_ptr (i));
7631       }
7632       break;
7633
7634     case OMP_CLAUSE:
7635       switch (OMP_CLAUSE_CODE (*tp))
7636         {
7637         case OMP_CLAUSE_PRIVATE:
7638         case OMP_CLAUSE_SHARED:
7639         case OMP_CLAUSE_FIRSTPRIVATE:
7640         case OMP_CLAUSE_LASTPRIVATE:
7641         case OMP_CLAUSE_COPYIN:
7642         case OMP_CLAUSE_COPYPRIVATE:
7643         case OMP_CLAUSE_IF:
7644         case OMP_CLAUSE_NUM_THREADS:
7645         case OMP_CLAUSE_SCHEDULE:
7646           WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7647           /* FALLTHRU */
7648
7649         case OMP_CLAUSE_NOWAIT:
7650         case OMP_CLAUSE_ORDERED:
7651         case OMP_CLAUSE_DEFAULT:
7652           WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7653
7654         case OMP_CLAUSE_REDUCTION:
7655           {
7656             int i;
7657             for (i = 0; i < 4; i++)
7658               WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7659             WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7660           }
7661
7662         default:
7663           gcc_unreachable ();
7664         }
7665       break;
7666
7667     case TARGET_EXPR:
7668       {
7669         int i, len;
7670
7671         /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7672            But, we only want to walk once.  */
7673         len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7674         for (i = 0; i < len; ++i)
7675           WALK_SUBTREE (TREE_OPERAND (*tp, i));
7676         WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7677       }
7678
7679     case DECL_EXPR:
7680       /* Walk into various fields of the type that it's defining.  We only
7681          want to walk into these fields of a type in this case.  Note that
7682          decls get walked as part of the processing of a BIND_EXPR.
7683
7684          ??? Precisely which fields of types that we are supposed to walk in
7685          this case vs. the normal case aren't well defined.  */
7686       if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7687           && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7688         {
7689           tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7690
7691           /* Call the function for the type.  See if it returns anything or
7692              doesn't want us to continue.  If we are to continue, walk both
7693              the normal fields and those for the declaration case.  */
7694           result = (*func) (type_p, &walk_subtrees, data);
7695           if (result || !walk_subtrees)
7696             return NULL_TREE;
7697
7698           result = walk_type_fields (*type_p, func, data, pset);
7699           if (result)
7700             return result;
7701
7702           /* If this is a record type, also walk the fields.  */
7703           if (TREE_CODE (*type_p) == RECORD_TYPE
7704               || TREE_CODE (*type_p) == UNION_TYPE
7705               || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7706             {
7707               tree field;
7708
7709               for (field = TYPE_FIELDS (*type_p); field;
7710                    field = TREE_CHAIN (field))
7711                 {
7712                   /* We'd like to look at the type of the field, but we can
7713                      easily get infinite recursion.  So assume it's pointed
7714                      to elsewhere in the tree.  Also, ignore things that
7715                      aren't fields.  */
7716                   if (TREE_CODE (field) != FIELD_DECL)
7717                     continue;
7718
7719                   WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7720                   WALK_SUBTREE (DECL_SIZE (field));
7721                   WALK_SUBTREE (DECL_SIZE_UNIT (field));
7722                   if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7723                     WALK_SUBTREE (DECL_QUALIFIER (field));
7724                 }
7725             }
7726
7727           WALK_SUBTREE (TYPE_SIZE (*type_p));
7728           WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
7729         }
7730       /* FALLTHRU */
7731
7732     default:
7733       if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7734         {
7735           int i, len;
7736
7737           /* Walk over all the sub-trees of this operand.  */
7738           len = TREE_CODE_LENGTH (code);
7739
7740           /* Go through the subtrees.  We need to do this in forward order so
7741              that the scope of a FOR_EXPR is handled properly.  */
7742           if (len)
7743             {
7744               for (i = 0; i < len - 1; ++i)
7745                 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7746               WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7747             }
7748         }
7749
7750       /* If this is a type, walk the needed fields in the type.  */
7751       else if (TYPE_P (*tp))
7752         return walk_type_fields (*tp, func, data, pset);
7753       break;
7754     }
7755
7756   /* We didn't find what we were looking for.  */
7757   return NULL_TREE;
7758
7759 #undef WALK_SUBTREE_TAIL
7760 }
7761 #undef WALK_SUBTREE
7762
7763 /* Like walk_tree, but does not walk duplicate nodes more than once.  */
7764
7765 tree
7766 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7767 {
7768   tree result;
7769   struct pointer_set_t *pset;
7770
7771   pset = pointer_set_create ();
7772   result = walk_tree (tp, func, data, pset);
7773   pointer_set_destroy (pset);
7774   return result;
7775 }
7776
7777
7778 /* Return true if STMT is an empty statement or contains nothing but
7779    empty statements.  */
7780
7781 bool
7782 empty_body_p (tree stmt)
7783 {
7784   tree_stmt_iterator i;
7785   tree body;
7786
7787   if (IS_EMPTY_STMT (stmt))
7788     return true;
7789   else if (TREE_CODE (stmt) == BIND_EXPR)
7790     body = BIND_EXPR_BODY (stmt);
7791   else if (TREE_CODE (stmt) == STATEMENT_LIST)
7792     body = stmt;
7793   else
7794     return false;
7795
7796   for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
7797     if (!empty_body_p (tsi_stmt (i)))
7798       return false;
7799
7800   return true;
7801 }
7802
7803
7804 #include "gt-tree.h"