]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - contrib/libarchive/libarchive/archive_read_disk_posix.c
MFC r344063,r344088:
[FreeBSD/stable/10.git] / contrib / libarchive / libarchive / archive_read_disk_posix.c
1 /*-
2  * Copyright (c) 2003-2009 Tim Kientzle
3  * Copyright (c) 2010-2012 Michihiro NAKAJIMA
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer
11  *    in this position and unchanged.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27
28 /* This is the tree-walking code for POSIX systems. */
29 #if !defined(_WIN32) || defined(__CYGWIN__)
30
31 #include "archive_platform.h"
32 __FBSDID("$FreeBSD$");
33
34 #ifdef HAVE_SYS_PARAM_H
35 #include <sys/param.h>
36 #endif
37 #ifdef HAVE_SYS_MOUNT_H
38 #include <sys/mount.h>
39 #endif
40 #ifdef HAVE_SYS_STAT_H
41 #include <sys/stat.h>
42 #endif
43 #ifdef HAVE_SYS_STATFS_H
44 #include <sys/statfs.h>
45 #endif
46 #ifdef HAVE_SYS_STATVFS_H
47 #include <sys/statvfs.h>
48 #endif
49 #ifdef HAVE_SYS_TIME_H
50 #include <sys/time.h>
51 #endif
52 #ifdef HAVE_LINUX_MAGIC_H
53 #include <linux/magic.h>
54 #endif
55 #ifdef HAVE_LINUX_FS_H
56 #include <linux/fs.h>
57 #endif
58 /*
59  * Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h.
60  * As the include guards don't agree, the order of include is important.
61  */
62 #ifdef HAVE_LINUX_EXT2_FS_H
63 #include <linux/ext2_fs.h>      /* for Linux file flags */
64 #endif
65 #if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__)
66 #include <ext2fs/ext2_fs.h>     /* Linux file flags, broken on Cygwin */
67 #endif
68 #ifdef HAVE_DIRECT_H
69 #include <direct.h>
70 #endif
71 #ifdef HAVE_DIRENT_H
72 #include <dirent.h>
73 #endif
74 #ifdef HAVE_ERRNO_H
75 #include <errno.h>
76 #endif
77 #ifdef HAVE_FCNTL_H
78 #include <fcntl.h>
79 #endif
80 #ifdef HAVE_LIMITS_H
81 #include <limits.h>
82 #endif
83 #ifdef HAVE_STDLIB_H
84 #include <stdlib.h>
85 #endif
86 #ifdef HAVE_STRING_H
87 #include <string.h>
88 #endif
89 #ifdef HAVE_UNISTD_H
90 #include <unistd.h>
91 #endif
92 #ifdef HAVE_SYS_IOCTL_H
93 #include <sys/ioctl.h>
94 #endif
95
96 #include "archive.h"
97 #include "archive_string.h"
98 #include "archive_entry.h"
99 #include "archive_private.h"
100 #include "archive_read_disk_private.h"
101
102 #ifndef HAVE_FCHDIR
103 #error fchdir function required.
104 #endif
105 #ifndef O_BINARY
106 #define O_BINARY        0
107 #endif
108 #ifndef O_CLOEXEC
109 #define O_CLOEXEC       0
110 #endif
111
112 /*-
113  * This is a new directory-walking system that addresses a number
114  * of problems I've had with fts(3).  In particular, it has no
115  * pathname-length limits (other than the size of 'int'), handles
116  * deep logical traversals, uses considerably less memory, and has
117  * an opaque interface (easier to modify in the future).
118  *
119  * Internally, it keeps a single list of "tree_entry" items that
120  * represent filesystem objects that require further attention.
121  * Non-directories are not kept in memory: they are pulled from
122  * readdir(), returned to the client, then freed as soon as possible.
123  * Any directory entry to be traversed gets pushed onto the stack.
124  *
125  * There is surprisingly little information that needs to be kept for
126  * each item on the stack.  Just the name, depth (represented here as the
127  * string length of the parent directory's pathname), and some markers
128  * indicating how to get back to the parent (via chdir("..") for a
129  * regular dir or via fchdir(2) for a symlink).
130  */
131 /*
132  * TODO:
133  *    1) Loop checking.
134  *    3) Arbitrary logical traversals by closing/reopening intermediate fds.
135  */
136
137 struct restore_time {
138         const char              *name;
139         time_t                   mtime;
140         long                     mtime_nsec;
141         time_t                   atime;
142         long                     atime_nsec;
143         mode_t                   filetype;
144         int                      noatime;
145 };
146
147 struct tree_entry {
148         int                      depth;
149         struct tree_entry       *next;
150         struct tree_entry       *parent;
151         struct archive_string    name;
152         size_t                   dirname_length;
153         int64_t                  dev;
154         int64_t                  ino;
155         int                      flags;
156         int                      filesystem_id;
157         /* How to return back to the parent of a symlink. */
158         int                      symlink_parent_fd;
159         /* How to restore time of a directory. */
160         struct restore_time      restore_time;
161 };
162
163 struct filesystem {
164         int64_t         dev;
165         int             synthetic;
166         int             remote;
167         int             noatime;
168 #if defined(USE_READDIR_R)
169         size_t          name_max;
170 #endif
171         long            incr_xfer_size;
172         long            max_xfer_size;
173         long            min_xfer_size;
174         long            xfer_align;
175
176         /*
177          * Buffer used for reading file contents.
178          */
179         /* Exactly allocated memory pointer. */
180         unsigned char   *allocation_ptr;
181         /* Pointer adjusted to the filesystem alignment . */
182         unsigned char   *buff;
183         size_t           buff_size;
184 };
185
186 /* Definitions for tree_entry.flags bitmap. */
187 #define isDir           1  /* This entry is a regular directory. */
188 #define isDirLink       2  /* This entry is a symbolic link to a directory. */
189 #define needsFirstVisit 4  /* This is an initial entry. */
190 #define needsDescent    8  /* This entry needs to be previsited. */
191 #define needsOpen       16 /* This is a directory that needs to be opened. */
192 #define needsAscent     32 /* This entry needs to be postvisited. */
193
194 /*
195  * Local data for this package.
196  */
197 struct tree {
198         struct tree_entry       *stack;
199         struct tree_entry       *current;
200         DIR                     *d;
201 #define INVALID_DIR_HANDLE NULL
202         struct dirent           *de;
203 #if defined(USE_READDIR_R)
204         struct dirent           *dirent;
205         size_t                   dirent_allocated;
206 #endif
207         int                      flags;
208         int                      visit_type;
209         /* Error code from last failed operation. */
210         int                      tree_errno;
211
212         /* Dynamically-sized buffer for holding path */
213         struct archive_string    path;
214
215         /* Last path element */
216         const char              *basename;
217         /* Leading dir length */
218         size_t                   dirname_length;
219
220         int                      depth;
221         int                      openCount;
222         int                      maxOpenCount;
223         int                      initial_dir_fd;
224         int                      working_dir_fd;
225
226         struct stat              lst;
227         struct stat              st;
228         int                      descend;
229         int                      nlink;
230         /* How to restore time of a file. */
231         struct restore_time      restore_time;
232
233         struct entry_sparse {
234                 int64_t          length;
235                 int64_t          offset;
236         }                       *sparse_list, *current_sparse;
237         int                      sparse_count;
238         int                      sparse_list_size;
239
240         char                     initial_symlink_mode;
241         char                     symlink_mode;
242         struct filesystem       *current_filesystem;
243         struct filesystem       *filesystem_table;
244         int                      initial_filesystem_id;
245         int                      current_filesystem_id;
246         int                      max_filesystem_id;
247         int                      allocated_filesystem;
248
249         int                      entry_fd;
250         int                      entry_eof;
251         int64_t                  entry_remaining_bytes;
252         int64_t                  entry_total;
253         unsigned char           *entry_buff;
254         size_t                   entry_buff_size;
255 };
256
257 /* Definitions for tree.flags bitmap. */
258 #define hasStat         16 /* The st entry is valid. */
259 #define hasLstat        32 /* The lst entry is valid. */
260 #define onWorkingDir    64 /* We are on the working dir where we are
261                             * reading directory entry at this time. */
262 #define needsRestoreTimes 128
263 #define onInitialDir    256 /* We are on the initial dir. */
264
265 static int
266 tree_dir_next_posix(struct tree *t);
267
268 #ifdef HAVE_DIRENT_D_NAMLEN
269 /* BSD extension; avoids need for a strlen() call. */
270 #define D_NAMELEN(dp)   (dp)->d_namlen
271 #else
272 #define D_NAMELEN(dp)   (strlen((dp)->d_name))
273 #endif
274
275 /* Initiate/terminate a tree traversal. */
276 static struct tree *tree_open(const char *, int, int);
277 static struct tree *tree_reopen(struct tree *, const char *, int);
278 static void tree_close(struct tree *);
279 static void tree_free(struct tree *);
280 static void tree_push(struct tree *, const char *, int, int64_t, int64_t,
281                 struct restore_time *);
282 static int tree_enter_initial_dir(struct tree *);
283 static int tree_enter_working_dir(struct tree *);
284 static int tree_current_dir_fd(struct tree *);
285
286 /*
287  * tree_next() returns Zero if there is no next entry, non-zero if
288  * there is.  Note that directories are visited three times.
289  * Directories are always visited first as part of enumerating their
290  * parent; that is a "regular" visit.  If tree_descend() is invoked at
291  * that time, the directory is added to a work list and will
292  * subsequently be visited two more times: once just after descending
293  * into the directory ("postdescent") and again just after ascending
294  * back to the parent ("postascent").
295  *
296  * TREE_ERROR_DIR is returned if the descent failed (because the
297  * directory couldn't be opened, for instance).  This is returned
298  * instead of TREE_POSTDESCENT/TREE_POSTASCENT.  TREE_ERROR_DIR is not a
299  * fatal error, but it does imply that the relevant subtree won't be
300  * visited.  TREE_ERROR_FATAL is returned for an error that left the
301  * traversal completely hosed.  Right now, this is only returned for
302  * chdir() failures during ascent.
303  */
304 #define TREE_REGULAR            1
305 #define TREE_POSTDESCENT        2
306 #define TREE_POSTASCENT         3
307 #define TREE_ERROR_DIR          -1
308 #define TREE_ERROR_FATAL        -2
309
310 static int tree_next(struct tree *);
311
312 /*
313  * Return information about the current entry.
314  */
315
316 /*
317  * The current full pathname, length of the full pathname, and a name
318  * that can be used to access the file.  Because tree does use chdir
319  * extensively, the access path is almost never the same as the full
320  * current path.
321  *
322  * TODO: On platforms that support it, use openat()-style operations
323  * to eliminate the chdir() operations entirely while still supporting
324  * arbitrarily deep traversals.  This makes access_path troublesome to
325  * support, of course, which means we'll need a rich enough interface
326  * that clients can function without it.  (In particular, we'll need
327  * tree_current_open() that returns an open file descriptor.)
328  *
329  */
330 static const char *tree_current_path(struct tree *);
331 static const char *tree_current_access_path(struct tree *);
332
333 /*
334  * Request the lstat() or stat() data for the current path.  Since the
335  * tree package needs to do some of this anyway, and caches the
336  * results, you should take advantage of it here if you need it rather
337  * than make a redundant stat() or lstat() call of your own.
338  */
339 static const struct stat *tree_current_stat(struct tree *);
340 static const struct stat *tree_current_lstat(struct tree *);
341 static int      tree_current_is_symblic_link_target(struct tree *);
342
343 /* The following functions use tricks to avoid a certain number of
344  * stat()/lstat() calls. */
345 /* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */
346 static int tree_current_is_physical_dir(struct tree *);
347 /* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */
348 static int tree_current_is_dir(struct tree *);
349 static int update_current_filesystem(struct archive_read_disk *a,
350                     int64_t dev);
351 static int setup_current_filesystem(struct archive_read_disk *);
352 static int tree_target_is_same_as_parent(struct tree *, const struct stat *);
353
354 static int      _archive_read_disk_open(struct archive *, const char *);
355 static int      _archive_read_free(struct archive *);
356 static int      _archive_read_close(struct archive *);
357 static int      _archive_read_data_block(struct archive *,
358                     const void **, size_t *, int64_t *);
359 static int      _archive_read_next_header(struct archive *,
360                     struct archive_entry **);
361 static int      _archive_read_next_header2(struct archive *,
362                     struct archive_entry *);
363 static const char *trivial_lookup_gname(void *, int64_t gid);
364 static const char *trivial_lookup_uname(void *, int64_t uid);
365 static int      setup_sparse(struct archive_read_disk *, struct archive_entry *);
366 static int      close_and_restore_time(int fd, struct tree *,
367                     struct restore_time *);
368 static int      open_on_current_dir(struct tree *, const char *, int);
369 static int      tree_dup(int);
370
371
372 static struct archive_vtable *
373 archive_read_disk_vtable(void)
374 {
375         static struct archive_vtable av;
376         static int inited = 0;
377
378         if (!inited) {
379                 av.archive_free = _archive_read_free;
380                 av.archive_close = _archive_read_close;
381                 av.archive_read_data_block = _archive_read_data_block;
382                 av.archive_read_next_header = _archive_read_next_header;
383                 av.archive_read_next_header2 = _archive_read_next_header2;
384                 inited = 1;
385         }
386         return (&av);
387 }
388
389 const char *
390 archive_read_disk_gname(struct archive *_a, la_int64_t gid)
391 {
392         struct archive_read_disk *a = (struct archive_read_disk *)_a;
393         if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
394                 ARCHIVE_STATE_ANY, "archive_read_disk_gname"))
395                 return (NULL);
396         if (a->lookup_gname == NULL)
397                 return (NULL);
398         return ((*a->lookup_gname)(a->lookup_gname_data, gid));
399 }
400
401 const char *
402 archive_read_disk_uname(struct archive *_a, la_int64_t uid)
403 {
404         struct archive_read_disk *a = (struct archive_read_disk *)_a;
405         if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
406                 ARCHIVE_STATE_ANY, "archive_read_disk_uname"))
407                 return (NULL);
408         if (a->lookup_uname == NULL)
409                 return (NULL);
410         return ((*a->lookup_uname)(a->lookup_uname_data, uid));
411 }
412
413 int
414 archive_read_disk_set_gname_lookup(struct archive *_a,
415     void *private_data,
416     const char * (*lookup_gname)(void *private, la_int64_t gid),
417     void (*cleanup_gname)(void *private))
418 {
419         struct archive_read_disk *a = (struct archive_read_disk *)_a;
420         archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
421             ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup");
422
423         if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
424                 (a->cleanup_gname)(a->lookup_gname_data);
425
426         a->lookup_gname = lookup_gname;
427         a->cleanup_gname = cleanup_gname;
428         a->lookup_gname_data = private_data;
429         return (ARCHIVE_OK);
430 }
431
432 int
433 archive_read_disk_set_uname_lookup(struct archive *_a,
434     void *private_data,
435     const char * (*lookup_uname)(void *private, la_int64_t uid),
436     void (*cleanup_uname)(void *private))
437 {
438         struct archive_read_disk *a = (struct archive_read_disk *)_a;
439         archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
440             ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup");
441
442         if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
443                 (a->cleanup_uname)(a->lookup_uname_data);
444
445         a->lookup_uname = lookup_uname;
446         a->cleanup_uname = cleanup_uname;
447         a->lookup_uname_data = private_data;
448         return (ARCHIVE_OK);
449 }
450
451 /*
452  * Create a new archive_read_disk object and initialize it with global state.
453  */
454 struct archive *
455 archive_read_disk_new(void)
456 {
457         struct archive_read_disk *a;
458
459         a = (struct archive_read_disk *)calloc(1, sizeof(*a));
460         if (a == NULL)
461                 return (NULL);
462         a->archive.magic = ARCHIVE_READ_DISK_MAGIC;
463         a->archive.state = ARCHIVE_STATE_NEW;
464         a->archive.vtable = archive_read_disk_vtable();
465         a->entry = archive_entry_new2(&a->archive);
466         a->lookup_uname = trivial_lookup_uname;
467         a->lookup_gname = trivial_lookup_gname;
468         a->flags = ARCHIVE_READDISK_MAC_COPYFILE;
469         a->open_on_current_dir = open_on_current_dir;
470         a->tree_current_dir_fd = tree_current_dir_fd;
471         a->tree_enter_working_dir = tree_enter_working_dir;
472         return (&a->archive);
473 }
474
475 static int
476 _archive_read_free(struct archive *_a)
477 {
478         struct archive_read_disk *a = (struct archive_read_disk *)_a;
479         int r;
480
481         if (_a == NULL)
482                 return (ARCHIVE_OK);
483         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
484             ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
485
486         if (a->archive.state != ARCHIVE_STATE_CLOSED)
487                 r = _archive_read_close(&a->archive);
488         else
489                 r = ARCHIVE_OK;
490
491         tree_free(a->tree);
492         if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
493                 (a->cleanup_gname)(a->lookup_gname_data);
494         if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
495                 (a->cleanup_uname)(a->lookup_uname_data);
496         archive_string_free(&a->archive.error_string);
497         archive_entry_free(a->entry);
498         a->archive.magic = 0;
499         __archive_clean(&a->archive);
500         free(a);
501         return (r);
502 }
503
504 static int
505 _archive_read_close(struct archive *_a)
506 {
507         struct archive_read_disk *a = (struct archive_read_disk *)_a;
508
509         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
510             ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
511
512         if (a->archive.state != ARCHIVE_STATE_FATAL)
513                 a->archive.state = ARCHIVE_STATE_CLOSED;
514
515         tree_close(a->tree);
516
517         return (ARCHIVE_OK);
518 }
519
520 static void
521 setup_symlink_mode(struct archive_read_disk *a, char symlink_mode,
522     int follow_symlinks)
523 {
524         a->symlink_mode = symlink_mode;
525         a->follow_symlinks = follow_symlinks;
526         if (a->tree != NULL) {
527                 a->tree->initial_symlink_mode = a->symlink_mode;
528                 a->tree->symlink_mode = a->symlink_mode;
529         }
530 }
531
532 int
533 archive_read_disk_set_symlink_logical(struct archive *_a)
534 {
535         struct archive_read_disk *a = (struct archive_read_disk *)_a;
536         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
537             ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical");
538         setup_symlink_mode(a, 'L', 1);
539         return (ARCHIVE_OK);
540 }
541
542 int
543 archive_read_disk_set_symlink_physical(struct archive *_a)
544 {
545         struct archive_read_disk *a = (struct archive_read_disk *)_a;
546         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
547             ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical");
548         setup_symlink_mode(a, 'P', 0);
549         return (ARCHIVE_OK);
550 }
551
552 int
553 archive_read_disk_set_symlink_hybrid(struct archive *_a)
554 {
555         struct archive_read_disk *a = (struct archive_read_disk *)_a;
556         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
557             ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid");
558         setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */
559         return (ARCHIVE_OK);
560 }
561
562 int
563 archive_read_disk_set_atime_restored(struct archive *_a)
564 {
565         struct archive_read_disk *a = (struct archive_read_disk *)_a;
566         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
567             ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime");
568 #ifdef HAVE_UTIMES
569         a->flags |= ARCHIVE_READDISK_RESTORE_ATIME;
570         if (a->tree != NULL)
571                 a->tree->flags |= needsRestoreTimes;
572         return (ARCHIVE_OK);
573 #else
574         /* Display warning and unset flag */
575         archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
576             "Cannot restore access time on this system");
577         a->flags &= ~ARCHIVE_READDISK_RESTORE_ATIME;
578         return (ARCHIVE_WARN);
579 #endif
580 }
581
582 int
583 archive_read_disk_set_behavior(struct archive *_a, int flags)
584 {
585         struct archive_read_disk *a = (struct archive_read_disk *)_a;
586         int r = ARCHIVE_OK;
587
588         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
589             ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump");
590
591         a->flags = flags;
592
593         if (flags & ARCHIVE_READDISK_RESTORE_ATIME)
594                 r = archive_read_disk_set_atime_restored(_a);
595         else {
596                 if (a->tree != NULL)
597                         a->tree->flags &= ~needsRestoreTimes;
598         }
599         return (r);
600 }
601
602 /*
603  * Trivial implementations of gname/uname lookup functions.
604  * These are normally overridden by the client, but these stub
605  * versions ensure that we always have something that works.
606  */
607 static const char *
608 trivial_lookup_gname(void *private_data, int64_t gid)
609 {
610         (void)private_data; /* UNUSED */
611         (void)gid; /* UNUSED */
612         return (NULL);
613 }
614
615 static const char *
616 trivial_lookup_uname(void *private_data, int64_t uid)
617 {
618         (void)private_data; /* UNUSED */
619         (void)uid; /* UNUSED */
620         return (NULL);
621 }
622
623 /*
624  * Allocate memory for the reading buffer adjusted to the filesystem
625  * alignment.
626  */
627 static int
628 setup_suitable_read_buffer(struct archive_read_disk *a)
629 {
630         struct tree *t = a->tree;
631         struct filesystem *cf = t->current_filesystem;
632         size_t asize;
633         size_t s;
634
635         if (cf->allocation_ptr == NULL) {
636                 /* If we couldn't get a filesystem alignment,
637                  * we use 4096 as default value but we won't use
638                  * O_DIRECT to open() and openat() operations. */
639                 long xfer_align = (cf->xfer_align == -1)?4096:cf->xfer_align;
640
641                 if (cf->max_xfer_size != -1)
642                         asize = cf->max_xfer_size + xfer_align;
643                 else {
644                         long incr = cf->incr_xfer_size;
645                         /* Some platform does not set a proper value to
646                          * incr_xfer_size.*/
647                         if (incr < 0)
648                                 incr = cf->min_xfer_size;
649                         if (cf->min_xfer_size < 0) {
650                                 incr = xfer_align;
651                                 asize = xfer_align;
652                         } else
653                                 asize = cf->min_xfer_size;
654
655                         /* Increase a buffer size up to 64K bytes in
656                          * a proper increment size. */
657                         while (asize < 1024*64)
658                                 asize += incr;
659                         /* Take a margin to adjust to the filesystem
660                          * alignment. */
661                         asize += xfer_align;
662                 }
663                 cf->allocation_ptr = malloc(asize);
664                 if (cf->allocation_ptr == NULL) {
665                         archive_set_error(&a->archive, ENOMEM,
666                             "Couldn't allocate memory");
667                         a->archive.state = ARCHIVE_STATE_FATAL;
668                         return (ARCHIVE_FATAL);
669                 }
670
671                 /*
672                  * Calculate proper address for the filesystem.
673                  */
674                 s = (uintptr_t)cf->allocation_ptr;
675                 s %= xfer_align;
676                 if (s > 0)
677                         s = xfer_align - s;
678
679                 /*
680                  * Set a read buffer pointer in the proper alignment of
681                  * the current filesystem.
682                  */
683                 cf->buff = cf->allocation_ptr + s;
684                 cf->buff_size = asize - xfer_align;
685         }
686         return (ARCHIVE_OK);
687 }
688
689 static int
690 _archive_read_data_block(struct archive *_a, const void **buff,
691     size_t *size, int64_t *offset)
692 {
693         struct archive_read_disk *a = (struct archive_read_disk *)_a;
694         struct tree *t = a->tree;
695         int r;
696         ssize_t bytes;
697         size_t buffbytes;
698         int empty_sparse_region = 0;
699
700         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
701             "archive_read_data_block");
702
703         if (t->entry_eof || t->entry_remaining_bytes <= 0) {
704                 r = ARCHIVE_EOF;
705                 goto abort_read_data;
706         }
707
708         /*
709          * Open the current file.
710          */
711         if (t->entry_fd < 0) {
712                 int flags = O_RDONLY | O_BINARY | O_CLOEXEC;
713
714                 /*
715                  * Eliminate or reduce cache effects if we can.
716                  *
717                  * Carefully consider this to be enabled.
718                  */
719 #if defined(O_DIRECT) && 0/* Disabled for now */
720                 if (t->current_filesystem->xfer_align != -1 &&
721                     t->nlink == 1)
722                         flags |= O_DIRECT;
723 #endif
724 #if defined(O_NOATIME)
725                 /*
726                  * Linux has O_NOATIME flag; use it if we need.
727                  */
728                 if ((t->flags & needsRestoreTimes) != 0 &&
729                     t->restore_time.noatime == 0)
730                         flags |= O_NOATIME;
731                 do {
732 #endif
733                         t->entry_fd = open_on_current_dir(t,
734                             tree_current_access_path(t), flags);
735                         __archive_ensure_cloexec_flag(t->entry_fd);
736 #if defined(O_NOATIME)
737                         /*
738                          * When we did open the file with O_NOATIME flag,
739                          * if successful, set 1 to t->restore_time.noatime
740                          * not to restore an atime of the file later.
741                          * if failed by EPERM, retry it without O_NOATIME flag.
742                          */
743                         if (flags & O_NOATIME) {
744                                 if (t->entry_fd >= 0)
745                                         t->restore_time.noatime = 1;
746                                 else if (errno == EPERM) {
747                                         flags &= ~O_NOATIME;
748                                         continue;
749                                 }
750                         }
751                 } while (0);
752 #endif
753                 if (t->entry_fd < 0) {
754                         archive_set_error(&a->archive, errno,
755                             "Couldn't open %s", tree_current_path(t));
756                         r = ARCHIVE_FAILED;
757                         tree_enter_initial_dir(t);
758                         goto abort_read_data;
759                 }
760                 tree_enter_initial_dir(t);
761         }
762
763         /*
764          * Allocate read buffer if not allocated.
765          */
766         if (t->current_filesystem->allocation_ptr == NULL) {
767                 r = setup_suitable_read_buffer(a);
768                 if (r != ARCHIVE_OK) {
769                         a->archive.state = ARCHIVE_STATE_FATAL;
770                         goto abort_read_data;
771                 }
772         }
773         t->entry_buff = t->current_filesystem->buff;
774         t->entry_buff_size = t->current_filesystem->buff_size;
775
776         buffbytes = t->entry_buff_size;
777         if ((int64_t)buffbytes > t->current_sparse->length)
778                 buffbytes = t->current_sparse->length;
779
780         if (t->current_sparse->length == 0)
781                 empty_sparse_region = 1;
782
783         /*
784          * Skip hole.
785          * TODO: Should we consider t->current_filesystem->xfer_align?
786          */
787         if (t->current_sparse->offset > t->entry_total) {
788                 if (lseek(t->entry_fd,
789                     (off_t)t->current_sparse->offset, SEEK_SET) < 0) {
790                         archive_set_error(&a->archive, errno, "Seek error");
791                         r = ARCHIVE_FATAL;
792                         a->archive.state = ARCHIVE_STATE_FATAL;
793                         goto abort_read_data;
794                 }
795                 bytes = t->current_sparse->offset - t->entry_total;
796                 t->entry_remaining_bytes -= bytes;
797                 t->entry_total += bytes;
798         }
799
800         /*
801          * Read file contents.
802          */
803         if (buffbytes > 0) {
804                 bytes = read(t->entry_fd, t->entry_buff, buffbytes);
805                 if (bytes < 0) {
806                         archive_set_error(&a->archive, errno, "Read error");
807                         r = ARCHIVE_FATAL;
808                         a->archive.state = ARCHIVE_STATE_FATAL;
809                         goto abort_read_data;
810                 }
811         } else
812                 bytes = 0;
813         /*
814          * Return an EOF unless we've read a leading empty sparse region, which
815          * is used to represent fully-sparse files.
816         */
817         if (bytes == 0 && !empty_sparse_region) {
818                 /* Get EOF */
819                 t->entry_eof = 1;
820                 r = ARCHIVE_EOF;
821                 goto abort_read_data;
822         }
823         *buff = t->entry_buff;
824         *size = bytes;
825         *offset = t->entry_total;
826         t->entry_total += bytes;
827         t->entry_remaining_bytes -= bytes;
828         if (t->entry_remaining_bytes == 0) {
829                 /* Close the current file descriptor */
830                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
831                 t->entry_fd = -1;
832                 t->entry_eof = 1;
833         }
834         t->current_sparse->offset += bytes;
835         t->current_sparse->length -= bytes;
836         if (t->current_sparse->length == 0 && !t->entry_eof)
837                 t->current_sparse++;
838         return (ARCHIVE_OK);
839
840 abort_read_data:
841         *buff = NULL;
842         *size = 0;
843         *offset = t->entry_total;
844         if (t->entry_fd >= 0) {
845                 /* Close the current file descriptor */
846                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
847                 t->entry_fd = -1;
848         }
849         return (r);
850 }
851
852 static int
853 next_entry(struct archive_read_disk *a, struct tree *t,
854     struct archive_entry *entry)
855 {
856         const struct stat *st; /* info to use for this entry */
857         const struct stat *lst;/* lstat() information */
858         const char *name;
859         int delayed, delayed_errno, descend, r;
860         struct archive_string delayed_str;
861
862         delayed = ARCHIVE_OK;
863         delayed_errno = 0;
864         archive_string_init(&delayed_str);
865
866         st = NULL;
867         lst = NULL;
868         t->descend = 0;
869         do {
870                 switch (tree_next(t)) {
871                 case TREE_ERROR_FATAL:
872                         archive_set_error(&a->archive, t->tree_errno,
873                             "%s: Unable to continue traversing directory tree",
874                             tree_current_path(t));
875                         a->archive.state = ARCHIVE_STATE_FATAL;
876                         tree_enter_initial_dir(t);
877                         return (ARCHIVE_FATAL);
878                 case TREE_ERROR_DIR:
879                         archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
880                             "%s: Couldn't visit directory",
881                             tree_current_path(t));
882                         tree_enter_initial_dir(t);
883                         return (ARCHIVE_FAILED);
884                 case 0:
885                         tree_enter_initial_dir(t);
886                         return (ARCHIVE_EOF);
887                 case TREE_POSTDESCENT:
888                 case TREE_POSTASCENT:
889                         break;
890                 case TREE_REGULAR:
891                         lst = tree_current_lstat(t);
892                         if (lst == NULL) {
893                             if (errno == ENOENT && t->depth > 0) {
894                                 delayed = ARCHIVE_WARN;
895                                 delayed_errno = errno;
896                                 if (delayed_str.length == 0) {
897                                         archive_string_sprintf(&delayed_str,
898                                             "%s", tree_current_path(t));
899                                 } else {
900                                         archive_string_sprintf(&delayed_str,
901                                             " %s", tree_current_path(t));
902                                 }
903                             } else {
904                                 archive_set_error(&a->archive, errno,
905                                     "%s: Cannot stat",
906                                     tree_current_path(t));
907                                 tree_enter_initial_dir(t);
908                                 return (ARCHIVE_FAILED);
909                             }
910                         }
911                         break;
912                 }       
913         } while (lst == NULL);
914
915 #ifdef __APPLE__
916         if (a->flags & ARCHIVE_READDISK_MAC_COPYFILE) {
917                 /* If we're using copyfile(), ignore "._XXX" files. */
918                 const char *bname = strrchr(tree_current_path(t), '/');
919                 if (bname == NULL)
920                         bname = tree_current_path(t);
921                 else
922                         ++bname;
923                 if (bname[0] == '.' && bname[1] == '_')
924                         return (ARCHIVE_RETRY);
925         }
926 #endif
927
928         archive_entry_copy_pathname(entry, tree_current_path(t));
929         /*
930          * Perform path matching.
931          */
932         if (a->matching) {
933                 r = archive_match_path_excluded(a->matching, entry);
934                 if (r < 0) {
935                         archive_set_error(&(a->archive), errno,
936                             "Failed : %s", archive_error_string(a->matching));
937                         return (r);
938                 }
939                 if (r) {
940                         if (a->excluded_cb_func)
941                                 a->excluded_cb_func(&(a->archive),
942                                     a->excluded_cb_data, entry);
943                         return (ARCHIVE_RETRY);
944                 }
945         }
946
947         /*
948          * Distinguish 'L'/'P'/'H' symlink following.
949          */
950         switch(t->symlink_mode) {
951         case 'H':
952                 /* 'H': After the first item, rest like 'P'. */
953                 t->symlink_mode = 'P';
954                 /* 'H': First item (from command line) like 'L'. */
955                 /* FALLTHROUGH */
956         case 'L':
957                 /* 'L': Do descend through a symlink to dir. */
958                 descend = tree_current_is_dir(t);
959                 /* 'L': Follow symlinks to files. */
960                 a->symlink_mode = 'L';
961                 a->follow_symlinks = 1;
962                 /* 'L': Archive symlinks as targets, if we can. */
963                 st = tree_current_stat(t);
964                 if (st != NULL && !tree_target_is_same_as_parent(t, st))
965                         break;
966                 /* If stat fails, we have a broken symlink;
967                  * in that case, don't follow the link. */
968                 /* FALLTHROUGH */
969         default:
970                 /* 'P': Don't descend through a symlink to dir. */
971                 descend = tree_current_is_physical_dir(t);
972                 /* 'P': Don't follow symlinks to files. */
973                 a->symlink_mode = 'P';
974                 a->follow_symlinks = 0;
975                 /* 'P': Archive symlinks as symlinks. */
976                 st = lst;
977                 break;
978         }
979
980         if (update_current_filesystem(a, st->st_dev) != ARCHIVE_OK) {
981                 a->archive.state = ARCHIVE_STATE_FATAL;
982                 tree_enter_initial_dir(t);
983                 return (ARCHIVE_FATAL);
984         }
985         if (t->initial_filesystem_id == -1)
986                 t->initial_filesystem_id = t->current_filesystem_id;
987         if (a->flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS) {
988                 if (t->initial_filesystem_id != t->current_filesystem_id)
989                         descend = 0;
990         }
991         t->descend = descend;
992
993         /*
994          * Honor nodump flag.
995          * If the file is marked with nodump flag, do not return this entry.
996          */
997         if (a->flags & ARCHIVE_READDISK_HONOR_NODUMP) {
998 #if defined(HAVE_STRUCT_STAT_ST_FLAGS) && defined(UF_NODUMP)
999                 if (st->st_flags & UF_NODUMP)
1000                         return (ARCHIVE_RETRY);
1001 #elif (defined(FS_IOC_GETFLAGS) && defined(FS_NODUMP_FL) && \
1002        defined(HAVE_WORKING_FS_IOC_GETFLAGS)) || \
1003       (defined(EXT2_IOC_GETFLAGS) && defined(EXT2_NODUMP_FL) && \
1004        defined(HAVE_WORKING_EXT2_IOC_GETFLAGS))
1005                 if (S_ISREG(st->st_mode) || S_ISDIR(st->st_mode)) {
1006                         int stflags;
1007
1008                         t->entry_fd = open_on_current_dir(t,
1009                             tree_current_access_path(t),
1010                             O_RDONLY | O_NONBLOCK | O_CLOEXEC);
1011                         __archive_ensure_cloexec_flag(t->entry_fd);
1012                         if (t->entry_fd >= 0) {
1013                                 r = ioctl(t->entry_fd,
1014 #ifdef FS_IOC_GETFLAGS
1015                                 FS_IOC_GETFLAGS,
1016 #else
1017                                 EXT2_IOC_GETFLAGS,
1018 #endif
1019                                         &stflags);
1020 #ifdef FS_NODUMP_FL
1021                                 if (r == 0 && (stflags & FS_NODUMP_FL) != 0)
1022 #else
1023                                 if (r == 0 && (stflags & EXT2_NODUMP_FL) != 0)
1024 #endif
1025                                         return (ARCHIVE_RETRY);
1026                         }
1027                 }
1028 #endif
1029         }
1030
1031         archive_entry_copy_stat(entry, st);
1032
1033         /* Save the times to be restored. This must be in before
1034          * calling archive_read_disk_descend() or any chance of it,
1035          * especially, invoking a callback. */
1036         t->restore_time.mtime = archive_entry_mtime(entry);
1037         t->restore_time.mtime_nsec = archive_entry_mtime_nsec(entry);
1038         t->restore_time.atime = archive_entry_atime(entry);
1039         t->restore_time.atime_nsec = archive_entry_atime_nsec(entry);
1040         t->restore_time.filetype = archive_entry_filetype(entry);
1041         t->restore_time.noatime = t->current_filesystem->noatime;
1042
1043         /*
1044          * Perform time matching.
1045          */
1046         if (a->matching) {
1047                 r = archive_match_time_excluded(a->matching, entry);
1048                 if (r < 0) {
1049                         archive_set_error(&(a->archive), errno,
1050                             "Failed : %s", archive_error_string(a->matching));
1051                         return (r);
1052                 }
1053                 if (r) {
1054                         if (a->excluded_cb_func)
1055                                 a->excluded_cb_func(&(a->archive),
1056                                     a->excluded_cb_data, entry);
1057                         return (ARCHIVE_RETRY);
1058                 }
1059         }
1060
1061         /* Lookup uname/gname */
1062         name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry));
1063         if (name != NULL)
1064                 archive_entry_copy_uname(entry, name);
1065         name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry));
1066         if (name != NULL)
1067                 archive_entry_copy_gname(entry, name);
1068
1069         /*
1070          * Perform owner matching.
1071          */
1072         if (a->matching) {
1073                 r = archive_match_owner_excluded(a->matching, entry);
1074                 if (r < 0) {
1075                         archive_set_error(&(a->archive), errno,
1076                             "Failed : %s", archive_error_string(a->matching));
1077                         return (r);
1078                 }
1079                 if (r) {
1080                         if (a->excluded_cb_func)
1081                                 a->excluded_cb_func(&(a->archive),
1082                                     a->excluded_cb_data, entry);
1083                         return (ARCHIVE_RETRY);
1084                 }
1085         }
1086
1087         /*
1088          * Invoke a meta data filter callback.
1089          */
1090         if (a->metadata_filter_func) {
1091                 if (!a->metadata_filter_func(&(a->archive),
1092                     a->metadata_filter_data, entry))
1093                         return (ARCHIVE_RETRY);
1094         }
1095
1096         /*
1097          * Populate the archive_entry with metadata from the disk.
1098          */
1099         archive_entry_copy_sourcepath(entry, tree_current_access_path(t));
1100         r = archive_read_disk_entry_from_file(&(a->archive), entry,
1101                 t->entry_fd, st);
1102
1103         if (r == ARCHIVE_OK) {
1104                 r = delayed;
1105                 if (r != ARCHIVE_OK) {
1106                         archive_string_sprintf(&delayed_str, ": %s",
1107                             "File removed before we read it");
1108                         archive_set_error(&(a->archive), delayed_errno,
1109                             "%s", delayed_str.s);
1110                 }
1111         }
1112         if (!archive_string_empty(&delayed_str))
1113                 archive_string_free(&delayed_str);
1114
1115         return (r);
1116 }
1117
1118 static int
1119 _archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
1120 {
1121         int ret;
1122         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1123         *entryp = NULL;
1124         ret = _archive_read_next_header2(_a, a->entry);
1125         *entryp = a->entry;
1126         return ret;
1127 }
1128
1129 static int
1130 _archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
1131 {
1132         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1133         struct tree *t;
1134         int r;
1135
1136         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1137             ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1138             "archive_read_next_header2");
1139
1140         t = a->tree;
1141         if (t->entry_fd >= 0) {
1142                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
1143                 t->entry_fd = -1;
1144         }
1145
1146         for (;;) {
1147                 r = next_entry(a, t, entry);
1148                 if (t->entry_fd >= 0) {
1149                         close(t->entry_fd);
1150                         t->entry_fd = -1;
1151                 }
1152
1153                 if (r == ARCHIVE_RETRY) {
1154                         archive_entry_clear(entry);
1155                         continue;
1156                 }
1157                 break;
1158         }
1159
1160         /* Return to the initial directory. */
1161         tree_enter_initial_dir(t);
1162
1163         /*
1164          * EOF and FATAL are persistent at this layer.  By
1165          * modifying the state, we guarantee that future calls to
1166          * read a header or read data will fail.
1167          */
1168         switch (r) {
1169         case ARCHIVE_EOF:
1170                 a->archive.state = ARCHIVE_STATE_EOF;
1171                 break;
1172         case ARCHIVE_OK:
1173         case ARCHIVE_WARN:
1174                 /* Overwrite the sourcepath based on the initial directory. */
1175                 archive_entry_copy_sourcepath(entry, tree_current_path(t));
1176                 t->entry_total = 0;
1177                 if (archive_entry_filetype(entry) == AE_IFREG) {
1178                         t->nlink = archive_entry_nlink(entry);
1179                         t->entry_remaining_bytes = archive_entry_size(entry);
1180                         t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0;
1181                         if (!t->entry_eof &&
1182                             setup_sparse(a, entry) != ARCHIVE_OK)
1183                                 return (ARCHIVE_FATAL);
1184                 } else {
1185                         t->entry_remaining_bytes = 0;
1186                         t->entry_eof = 1;
1187                 }
1188                 a->archive.state = ARCHIVE_STATE_DATA;
1189                 break;
1190         case ARCHIVE_RETRY:
1191                 break;
1192         case ARCHIVE_FATAL:
1193                 a->archive.state = ARCHIVE_STATE_FATAL;
1194                 break;
1195         }
1196
1197         __archive_reset_read_data(&a->archive);
1198         return (r);
1199 }
1200
1201 static int
1202 setup_sparse(struct archive_read_disk *a, struct archive_entry *entry)
1203 {
1204         struct tree *t = a->tree;
1205         int64_t length, offset;
1206         int i;
1207
1208         t->sparse_count = archive_entry_sparse_reset(entry);
1209         if (t->sparse_count+1 > t->sparse_list_size) {
1210                 free(t->sparse_list);
1211                 t->sparse_list_size = t->sparse_count + 1;
1212                 t->sparse_list = malloc(sizeof(t->sparse_list[0]) *
1213                     t->sparse_list_size);
1214                 if (t->sparse_list == NULL) {
1215                         t->sparse_list_size = 0;
1216                         archive_set_error(&a->archive, ENOMEM,
1217                             "Can't allocate data");
1218                         a->archive.state = ARCHIVE_STATE_FATAL;
1219                         return (ARCHIVE_FATAL);
1220                 }
1221         }
1222         for (i = 0; i < t->sparse_count; i++) {
1223                 archive_entry_sparse_next(entry, &offset, &length);
1224                 t->sparse_list[i].offset = offset;
1225                 t->sparse_list[i].length = length;
1226         }
1227         if (i == 0) {
1228                 t->sparse_list[i].offset = 0;
1229                 t->sparse_list[i].length = archive_entry_size(entry);
1230         } else {
1231                 t->sparse_list[i].offset = archive_entry_size(entry);
1232                 t->sparse_list[i].length = 0;
1233         }
1234         t->current_sparse = t->sparse_list;
1235
1236         return (ARCHIVE_OK);
1237 }
1238
1239 int
1240 archive_read_disk_set_matching(struct archive *_a, struct archive *_ma,
1241     void (*_excluded_func)(struct archive *, void *, struct archive_entry *),
1242     void *_client_data)
1243 {
1244         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1245         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1246             ARCHIVE_STATE_ANY, "archive_read_disk_set_matching");
1247         a->matching = _ma;
1248         a->excluded_cb_func = _excluded_func;
1249         a->excluded_cb_data = _client_data;
1250         return (ARCHIVE_OK);
1251 }
1252
1253 int
1254 archive_read_disk_set_metadata_filter_callback(struct archive *_a,
1255     int (*_metadata_filter_func)(struct archive *, void *,
1256     struct archive_entry *), void *_client_data)
1257 {
1258         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1259
1260         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY,
1261             "archive_read_disk_set_metadata_filter_callback");
1262
1263         a->metadata_filter_func = _metadata_filter_func;
1264         a->metadata_filter_data = _client_data;
1265         return (ARCHIVE_OK);
1266 }
1267
1268 int
1269 archive_read_disk_can_descend(struct archive *_a)
1270 {
1271         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1272         struct tree *t = a->tree;
1273
1274         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1275             ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1276             "archive_read_disk_can_descend");
1277
1278         return (t->visit_type == TREE_REGULAR && t->descend);
1279 }
1280
1281 /*
1282  * Called by the client to mark the directory just returned from
1283  * tree_next() as needing to be visited.
1284  */
1285 int
1286 archive_read_disk_descend(struct archive *_a)
1287 {
1288         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1289         struct tree *t = a->tree;
1290
1291         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1292             ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1293             "archive_read_disk_descend");
1294
1295         if (t->visit_type != TREE_REGULAR || !t->descend)
1296                 return (ARCHIVE_OK);
1297
1298         if (tree_current_is_physical_dir(t)) {
1299                 tree_push(t, t->basename, t->current_filesystem_id,
1300                     t->lst.st_dev, t->lst.st_ino, &t->restore_time);
1301                 t->stack->flags |= isDir;
1302         } else if (tree_current_is_dir(t)) {
1303                 tree_push(t, t->basename, t->current_filesystem_id,
1304                     t->st.st_dev, t->st.st_ino, &t->restore_time);
1305                 t->stack->flags |= isDirLink;
1306         }
1307         t->descend = 0;
1308         return (ARCHIVE_OK);
1309 }
1310
1311 int
1312 archive_read_disk_open(struct archive *_a, const char *pathname)
1313 {
1314         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1315
1316         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1317             ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1318             "archive_read_disk_open");
1319         archive_clear_error(&a->archive);
1320
1321         return (_archive_read_disk_open(_a, pathname));
1322 }
1323
1324 int
1325 archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
1326 {
1327         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1328         struct archive_string path;
1329         int ret;
1330
1331         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1332             ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1333             "archive_read_disk_open_w");
1334         archive_clear_error(&a->archive);
1335
1336         /* Make a char string from a wchar_t string. */
1337         archive_string_init(&path);
1338         if (archive_string_append_from_wcs(&path, pathname,
1339             wcslen(pathname)) != 0) {
1340                 if (errno == ENOMEM)
1341                         archive_set_error(&a->archive, ENOMEM,
1342                             "Can't allocate memory");
1343                 else
1344                         archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1345                             "Can't convert a path to a char string");
1346                 a->archive.state = ARCHIVE_STATE_FATAL;
1347                 ret = ARCHIVE_FATAL;
1348         } else
1349                 ret = _archive_read_disk_open(_a, path.s);
1350
1351         archive_string_free(&path);
1352         return (ret);
1353 }
1354
1355 static int
1356 _archive_read_disk_open(struct archive *_a, const char *pathname)
1357 {
1358         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1359
1360         if (a->tree != NULL)
1361                 a->tree = tree_reopen(a->tree, pathname,
1362                     a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1363         else
1364                 a->tree = tree_open(pathname, a->symlink_mode,
1365                     a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1366         if (a->tree == NULL) {
1367                 archive_set_error(&a->archive, ENOMEM,
1368                     "Can't allocate tar data");
1369                 a->archive.state = ARCHIVE_STATE_FATAL;
1370                 return (ARCHIVE_FATAL);
1371         }
1372         a->archive.state = ARCHIVE_STATE_HEADER;
1373
1374         return (ARCHIVE_OK);
1375 }
1376
1377 /*
1378  * Return a current filesystem ID which is index of the filesystem entry
1379  * you've visited through archive_read_disk.
1380  */
1381 int
1382 archive_read_disk_current_filesystem(struct archive *_a)
1383 {
1384         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1385
1386         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1387             "archive_read_disk_current_filesystem");
1388
1389         return (a->tree->current_filesystem_id);
1390 }
1391
1392 static int
1393 update_current_filesystem(struct archive_read_disk *a, int64_t dev)
1394 {
1395         struct tree *t = a->tree;
1396         int i, fid;
1397
1398         if (t->current_filesystem != NULL &&
1399             t->current_filesystem->dev == dev)
1400                 return (ARCHIVE_OK);
1401
1402         for (i = 0; i < t->max_filesystem_id; i++) {
1403                 if (t->filesystem_table[i].dev == dev) {
1404                         /* There is the filesystem ID we've already generated. */
1405                         t->current_filesystem_id = i;
1406                         t->current_filesystem = &(t->filesystem_table[i]);
1407                         return (ARCHIVE_OK);
1408                 }
1409         }
1410
1411         /*
1412          * This is the new filesystem which we have to generate a new ID for.
1413          */
1414         fid = t->max_filesystem_id++;
1415         if (t->max_filesystem_id > t->allocated_filesystem) {
1416                 size_t s;
1417                 void *p;
1418
1419                 s = t->max_filesystem_id * 2;
1420                 p = realloc(t->filesystem_table,
1421                         s * sizeof(*t->filesystem_table));
1422                 if (p == NULL) {
1423                         archive_set_error(&a->archive, ENOMEM,
1424                             "Can't allocate tar data");
1425                         return (ARCHIVE_FATAL);
1426                 }
1427                 t->filesystem_table = (struct filesystem *)p;
1428                 t->allocated_filesystem = s;
1429         }
1430         t->current_filesystem_id = fid;
1431         t->current_filesystem = &(t->filesystem_table[fid]);
1432         t->current_filesystem->dev = dev;
1433         t->current_filesystem->allocation_ptr = NULL;
1434         t->current_filesystem->buff = NULL;
1435
1436         /* Setup the current filesystem properties which depend on
1437          * platform specific. */
1438         return (setup_current_filesystem(a));
1439 }
1440
1441 /*
1442  * Returns 1 if current filesystem is generated filesystem, 0 if it is not
1443  * or -1 if it is unknown.
1444  */
1445 int
1446 archive_read_disk_current_filesystem_is_synthetic(struct archive *_a)
1447 {
1448         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1449
1450         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1451             "archive_read_disk_current_filesystem");
1452
1453         return (a->tree->current_filesystem->synthetic);
1454 }
1455
1456 /*
1457  * Returns 1 if current filesystem is remote filesystem, 0 if it is not
1458  * or -1 if it is unknown.
1459  */
1460 int
1461 archive_read_disk_current_filesystem_is_remote(struct archive *_a)
1462 {
1463         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1464
1465         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1466             "archive_read_disk_current_filesystem");
1467
1468         return (a->tree->current_filesystem->remote);
1469 }
1470
1471 #if defined(_PC_REC_INCR_XFER_SIZE) && defined(_PC_REC_MAX_XFER_SIZE) &&\
1472         defined(_PC_REC_MIN_XFER_SIZE) && defined(_PC_REC_XFER_ALIGN)
1473 static int
1474 get_xfer_size(struct tree *t, int fd, const char *path)
1475 {
1476         t->current_filesystem->xfer_align = -1;
1477         errno = 0;
1478         if (fd >= 0) {
1479                 t->current_filesystem->incr_xfer_size =
1480                     fpathconf(fd, _PC_REC_INCR_XFER_SIZE);
1481                 t->current_filesystem->max_xfer_size =
1482                     fpathconf(fd, _PC_REC_MAX_XFER_SIZE);
1483                 t->current_filesystem->min_xfer_size =
1484                     fpathconf(fd, _PC_REC_MIN_XFER_SIZE);
1485                 t->current_filesystem->xfer_align =
1486                     fpathconf(fd, _PC_REC_XFER_ALIGN);
1487         } else if (path != NULL) {
1488                 t->current_filesystem->incr_xfer_size =
1489                     pathconf(path, _PC_REC_INCR_XFER_SIZE);
1490                 t->current_filesystem->max_xfer_size =
1491                     pathconf(path, _PC_REC_MAX_XFER_SIZE);
1492                 t->current_filesystem->min_xfer_size =
1493                     pathconf(path, _PC_REC_MIN_XFER_SIZE);
1494                 t->current_filesystem->xfer_align =
1495                     pathconf(path, _PC_REC_XFER_ALIGN);
1496         }
1497         /* At least we need an alignment size. */
1498         if (t->current_filesystem->xfer_align == -1)
1499                 return ((errno == EINVAL)?1:-1);
1500         else
1501                 return (0);
1502 }
1503 #else
1504 static int
1505 get_xfer_size(struct tree *t, int fd, const char *path)
1506 {
1507         (void)t; /* UNUSED */
1508         (void)fd; /* UNUSED */
1509         (void)path; /* UNUSED */
1510         return (1);/* Not supported */
1511 }
1512 #endif
1513
1514 #if defined(HAVE_STATFS) && defined(HAVE_FSTATFS) && defined(MNT_LOCAL) \
1515         && !defined(ST_LOCAL)
1516
1517 /*
1518  * Gather current filesystem properties on FreeBSD, OpenBSD and Mac OS X.
1519  */
1520 static int
1521 setup_current_filesystem(struct archive_read_disk *a)
1522 {
1523         struct tree *t = a->tree;
1524         struct statfs sfs;
1525 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1526 /* TODO: configure should set GETVFSBYNAME_ARG_TYPE to make
1527  * this accurate; some platforms have both and we need the one that's
1528  * used by getvfsbyname()
1529  *
1530  * Then the following would become:
1531  *  #if defined(GETVFSBYNAME_ARG_TYPE)
1532  *   GETVFSBYNAME_ARG_TYPE vfc;
1533  *  #endif
1534  */
1535 #  if defined(HAVE_STRUCT_XVFSCONF)
1536         struct xvfsconf vfc;
1537 #  else
1538         struct vfsconf vfc;
1539 #  endif
1540 #endif
1541         int r, xr = 0;
1542 #if !defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1543         long nm;
1544 #endif
1545
1546         t->current_filesystem->synthetic = -1;
1547         t->current_filesystem->remote = -1;
1548         if (tree_current_is_symblic_link_target(t)) {
1549 #if defined(HAVE_OPENAT)
1550                 /*
1551                  * Get file system statistics on any directory
1552                  * where current is.
1553                  */
1554                 int fd = openat(tree_current_dir_fd(t),
1555                     tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1556                 __archive_ensure_cloexec_flag(fd);
1557                 if (fd < 0) {
1558                         archive_set_error(&a->archive, errno,
1559                             "openat failed");
1560                         return (ARCHIVE_FAILED);
1561                 }
1562                 r = fstatfs(fd, &sfs);
1563                 if (r == 0)
1564                         xr = get_xfer_size(t, fd, NULL);
1565                 close(fd);
1566 #else
1567                 if (tree_enter_working_dir(t) != 0) {
1568                         archive_set_error(&a->archive, errno, "fchdir failed");
1569                         return (ARCHIVE_FAILED);
1570                 }
1571                 r = statfs(tree_current_access_path(t), &sfs);
1572                 if (r == 0)
1573                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1574 #endif
1575         } else {
1576                 r = fstatfs(tree_current_dir_fd(t), &sfs);
1577                 if (r == 0)
1578                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1579         }
1580         if (r == -1 || xr == -1) {
1581                 archive_set_error(&a->archive, errno, "statfs failed");
1582                 return (ARCHIVE_FAILED);
1583         } else if (xr == 1) {
1584                 /* pathconf(_PC_REX_*) operations are not supported. */
1585                 t->current_filesystem->xfer_align = sfs.f_bsize;
1586                 t->current_filesystem->max_xfer_size = -1;
1587                 t->current_filesystem->min_xfer_size = sfs.f_iosize;
1588                 t->current_filesystem->incr_xfer_size = sfs.f_iosize;
1589         }
1590         if (sfs.f_flags & MNT_LOCAL)
1591                 t->current_filesystem->remote = 0;
1592         else
1593                 t->current_filesystem->remote = 1;
1594
1595 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1596         r = getvfsbyname(sfs.f_fstypename, &vfc);
1597         if (r == -1) {
1598                 archive_set_error(&a->archive, errno, "getvfsbyname failed");
1599                 return (ARCHIVE_FAILED);
1600         }
1601         if (vfc.vfc_flags & VFCF_SYNTHETIC)
1602                 t->current_filesystem->synthetic = 1;
1603         else
1604                 t->current_filesystem->synthetic = 0;
1605 #endif
1606
1607 #if defined(MNT_NOATIME)
1608         if (sfs.f_flags & MNT_NOATIME)
1609                 t->current_filesystem->noatime = 1;
1610         else
1611 #endif
1612                 t->current_filesystem->noatime = 0;
1613
1614 #if defined(USE_READDIR_R)
1615         /* Set maximum filename length. */
1616 #if defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1617         t->current_filesystem->name_max = sfs.f_namemax;
1618 #else
1619 # if defined(_PC_NAME_MAX)
1620         /* Mac OS X does not have f_namemax in struct statfs. */
1621         if (tree_current_is_symblic_link_target(t)) {
1622                 if (tree_enter_working_dir(t) != 0) {
1623                         archive_set_error(&a->archive, errno, "fchdir failed");
1624                         return (ARCHIVE_FAILED);
1625                 }
1626                 nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1627         } else
1628                 nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
1629 # else
1630         nm = -1;
1631 # endif
1632         if (nm == -1)
1633                 t->current_filesystem->name_max = NAME_MAX;
1634         else
1635                 t->current_filesystem->name_max = nm;
1636 #endif
1637 #endif /* USE_READDIR_R */
1638         return (ARCHIVE_OK);
1639 }
1640
1641 #elif (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) && defined(ST_LOCAL)
1642
1643 /*
1644  * Gather current filesystem properties on NetBSD
1645  */
1646 static int
1647 setup_current_filesystem(struct archive_read_disk *a)
1648 {
1649         struct tree *t = a->tree;
1650         struct statvfs sfs;
1651         int r, xr = 0;
1652
1653         t->current_filesystem->synthetic = -1;
1654         if (tree_enter_working_dir(t) != 0) {
1655                 archive_set_error(&a->archive, errno, "fchdir failed");
1656                 return (ARCHIVE_FAILED);
1657         }
1658         if (tree_current_is_symblic_link_target(t)) {
1659                 r = statvfs(tree_current_access_path(t), &sfs);
1660                 if (r == 0)
1661                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1662         } else {
1663 #ifdef HAVE_FSTATVFS
1664                 r = fstatvfs(tree_current_dir_fd(t), &sfs);
1665                 if (r == 0)
1666                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1667 #else
1668                 r = statvfs(".", &sfs);
1669                 if (r == 0)
1670                         xr = get_xfer_size(t, -1, ".");
1671 #endif
1672         }
1673         if (r == -1 || xr == -1) {
1674                 t->current_filesystem->remote = -1;
1675                 archive_set_error(&a->archive, errno, "statvfs failed");
1676                 return (ARCHIVE_FAILED);
1677         } else if (xr == 1) {
1678                 /* Usually come here unless NetBSD supports _PC_REC_XFER_ALIGN
1679                  * for pathconf() function. */
1680                 t->current_filesystem->xfer_align = sfs.f_frsize;
1681                 t->current_filesystem->max_xfer_size = -1;
1682 #if defined(HAVE_STRUCT_STATVFS_F_IOSIZE)
1683                 t->current_filesystem->min_xfer_size = sfs.f_iosize;
1684                 t->current_filesystem->incr_xfer_size = sfs.f_iosize;
1685 #else
1686                 t->current_filesystem->min_xfer_size = sfs.f_bsize;
1687                 t->current_filesystem->incr_xfer_size = sfs.f_bsize;
1688 #endif
1689         }
1690         if (sfs.f_flag & ST_LOCAL)
1691                 t->current_filesystem->remote = 0;
1692         else
1693                 t->current_filesystem->remote = 1;
1694
1695 #if defined(ST_NOATIME)
1696         if (sfs.f_flag & ST_NOATIME)
1697                 t->current_filesystem->noatime = 1;
1698         else
1699 #endif
1700                 t->current_filesystem->noatime = 0;
1701
1702         /* Set maximum filename length. */
1703         t->current_filesystem->name_max = sfs.f_namemax;
1704         return (ARCHIVE_OK);
1705 }
1706
1707 #elif defined(HAVE_SYS_STATFS_H) && defined(HAVE_LINUX_MAGIC_H) &&\
1708         defined(HAVE_STATFS) && defined(HAVE_FSTATFS)
1709 /*
1710  * Note: statfs is deprecated since LSB 3.2
1711  */
1712
1713 #ifndef CIFS_SUPER_MAGIC
1714 #define CIFS_SUPER_MAGIC 0xFF534D42
1715 #endif
1716 #ifndef DEVFS_SUPER_MAGIC
1717 #define DEVFS_SUPER_MAGIC 0x1373
1718 #endif
1719
1720 /*
1721  * Gather current filesystem properties on Linux
1722  */
1723 static int
1724 setup_current_filesystem(struct archive_read_disk *a)
1725 {
1726         struct tree *t = a->tree;
1727         struct statfs sfs;
1728 #if defined(HAVE_STATVFS)
1729         struct statvfs svfs;
1730 #endif
1731         int r, vr = 0, xr = 0;
1732
1733         if (tree_current_is_symblic_link_target(t)) {
1734 #if defined(HAVE_OPENAT)
1735                 /*
1736                  * Get file system statistics on any directory
1737                  * where current is.
1738                  */
1739                 int fd = openat(tree_current_dir_fd(t),
1740                     tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1741                 __archive_ensure_cloexec_flag(fd);
1742                 if (fd < 0) {
1743                         archive_set_error(&a->archive, errno,
1744                             "openat failed");
1745                         return (ARCHIVE_FAILED);
1746                 }
1747 #if defined(HAVE_FSTATVFS)
1748                 vr = fstatvfs(fd, &svfs);/* for f_flag, mount flags */
1749 #endif
1750                 r = fstatfs(fd, &sfs);
1751                 if (r == 0)
1752                         xr = get_xfer_size(t, fd, NULL);
1753                 close(fd);
1754 #else
1755                 if (tree_enter_working_dir(t) != 0) {
1756                         archive_set_error(&a->archive, errno, "fchdir failed");
1757                         return (ARCHIVE_FAILED);
1758                 }
1759 #if defined(HAVE_STATVFS)
1760                 vr = statvfs(tree_current_access_path(t), &svfs);
1761 #endif
1762                 r = statfs(tree_current_access_path(t), &sfs);
1763                 if (r == 0)
1764                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1765 #endif
1766         } else {
1767 #ifdef HAVE_FSTATFS
1768 #if defined(HAVE_FSTATVFS)
1769                 vr = fstatvfs(tree_current_dir_fd(t), &svfs);
1770 #endif
1771                 r = fstatfs(tree_current_dir_fd(t), &sfs);
1772                 if (r == 0)
1773                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1774 #else
1775                 if (tree_enter_working_dir(t) != 0) {
1776                         archive_set_error(&a->archive, errno, "fchdir failed");
1777                         return (ARCHIVE_FAILED);
1778                 }
1779 #if defined(HAVE_STATVFS)
1780                 vr = statvfs(".", &svfs);
1781 #endif
1782                 r = statfs(".", &sfs);
1783                 if (r == 0)
1784                         xr = get_xfer_size(t, -1, ".");
1785 #endif
1786         }
1787         if (r == -1 || xr == -1 || vr == -1) {
1788                 t->current_filesystem->synthetic = -1;
1789                 t->current_filesystem->remote = -1;
1790                 archive_set_error(&a->archive, errno, "statfs failed");
1791                 return (ARCHIVE_FAILED);
1792         } else if (xr == 1) {
1793                 /* pathconf(_PC_REX_*) operations are not supported. */
1794 #if defined(HAVE_STATVFS)
1795                 t->current_filesystem->xfer_align = svfs.f_frsize;
1796                 t->current_filesystem->max_xfer_size = -1;
1797                 t->current_filesystem->min_xfer_size = svfs.f_bsize;
1798                 t->current_filesystem->incr_xfer_size = svfs.f_bsize;
1799 #else
1800                 t->current_filesystem->xfer_align = sfs.f_frsize;
1801                 t->current_filesystem->max_xfer_size = -1;
1802                 t->current_filesystem->min_xfer_size = sfs.f_bsize;
1803                 t->current_filesystem->incr_xfer_size = sfs.f_bsize;
1804 #endif
1805         }
1806         switch (sfs.f_type) {
1807         case AFS_SUPER_MAGIC:
1808         case CIFS_SUPER_MAGIC:
1809         case CODA_SUPER_MAGIC:
1810         case NCP_SUPER_MAGIC:/* NetWare */
1811         case NFS_SUPER_MAGIC:
1812         case SMB_SUPER_MAGIC:
1813                 t->current_filesystem->remote = 1;
1814                 t->current_filesystem->synthetic = 0;
1815                 break;
1816         case DEVFS_SUPER_MAGIC:
1817         case PROC_SUPER_MAGIC:
1818         case USBDEVICE_SUPER_MAGIC:
1819                 t->current_filesystem->remote = 0;
1820                 t->current_filesystem->synthetic = 1;
1821                 break;
1822         default:
1823                 t->current_filesystem->remote = 0;
1824                 t->current_filesystem->synthetic = 0;
1825                 break;
1826         }
1827
1828 #if defined(ST_NOATIME)
1829 #if defined(HAVE_STATVFS)
1830         if (svfs.f_flag & ST_NOATIME)
1831 #else
1832         if (sfs.f_flag & ST_NOATIME)
1833 #endif
1834                 t->current_filesystem->noatime = 1;
1835         else
1836 #endif
1837                 t->current_filesystem->noatime = 0;
1838
1839 #if defined(USE_READDIR_R)
1840         /* Set maximum filename length. */
1841         t->current_filesystem->name_max = sfs.f_namelen;
1842 #endif
1843         return (ARCHIVE_OK);
1844 }
1845
1846 #elif defined(HAVE_SYS_STATVFS_H) &&\
1847         (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS))
1848
1849 /*
1850  * Gather current filesystem properties on other posix platform.
1851  */
1852 static int
1853 setup_current_filesystem(struct archive_read_disk *a)
1854 {
1855         struct tree *t = a->tree;
1856         struct statvfs sfs;
1857         int r, xr = 0;
1858
1859         t->current_filesystem->synthetic = -1;/* Not supported */
1860         t->current_filesystem->remote = -1;/* Not supported */
1861         if (tree_current_is_symblic_link_target(t)) {
1862 #if defined(HAVE_OPENAT)
1863                 /*
1864                  * Get file system statistics on any directory
1865                  * where current is.
1866                  */
1867                 int fd = openat(tree_current_dir_fd(t),
1868                     tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1869                 __archive_ensure_cloexec_flag(fd);
1870                 if (fd < 0) {
1871                         archive_set_error(&a->archive, errno,
1872                             "openat failed");
1873                         return (ARCHIVE_FAILED);
1874                 }
1875                 r = fstatvfs(fd, &sfs);
1876                 if (r == 0)
1877                         xr = get_xfer_size(t, fd, NULL);
1878                 close(fd);
1879 #else
1880                 if (tree_enter_working_dir(t) != 0) {
1881                         archive_set_error(&a->archive, errno, "fchdir failed");
1882                         return (ARCHIVE_FAILED);
1883                 }
1884                 r = statvfs(tree_current_access_path(t), &sfs);
1885                 if (r == 0)
1886                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1887 #endif
1888         } else {
1889 #ifdef HAVE_FSTATVFS
1890                 r = fstatvfs(tree_current_dir_fd(t), &sfs);
1891                 if (r == 0)
1892                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1893 #else
1894                 if (tree_enter_working_dir(t) != 0) {
1895                         archive_set_error(&a->archive, errno, "fchdir failed");
1896                         return (ARCHIVE_FAILED);
1897                 }
1898                 r = statvfs(".", &sfs);
1899                 if (r == 0)
1900                         xr = get_xfer_size(t, -1, ".");
1901 #endif
1902         }
1903         if (r == -1 || xr == -1) {
1904                 t->current_filesystem->synthetic = -1;
1905                 t->current_filesystem->remote = -1;
1906                 archive_set_error(&a->archive, errno, "statvfs failed");
1907                 return (ARCHIVE_FAILED);
1908         } else if (xr == 1) {
1909                 /* pathconf(_PC_REX_*) operations are not supported. */
1910                 t->current_filesystem->xfer_align = sfs.f_frsize;
1911                 t->current_filesystem->max_xfer_size = -1;
1912                 t->current_filesystem->min_xfer_size = sfs.f_bsize;
1913                 t->current_filesystem->incr_xfer_size = sfs.f_bsize;
1914         }
1915
1916 #if defined(ST_NOATIME)
1917         if (sfs.f_flag & ST_NOATIME)
1918                 t->current_filesystem->noatime = 1;
1919         else
1920 #endif
1921                 t->current_filesystem->noatime = 0;
1922
1923 #if defined(USE_READDIR_R)
1924         /* Set maximum filename length. */
1925         t->current_filesystem->name_max = sfs.f_namemax;
1926 #endif
1927         return (ARCHIVE_OK);
1928 }
1929
1930 #else
1931
1932 /*
1933  * Generic: Gather current filesystem properties.
1934  * TODO: Is this generic function really needed?
1935  */
1936 static int
1937 setup_current_filesystem(struct archive_read_disk *a)
1938 {
1939         struct tree *t = a->tree;
1940 #if defined(_PC_NAME_MAX) && defined(USE_READDIR_R)
1941         long nm;
1942 #endif
1943         t->current_filesystem->synthetic = -1;/* Not supported */
1944         t->current_filesystem->remote = -1;/* Not supported */
1945         t->current_filesystem->noatime = 0;
1946         (void)get_xfer_size(t, -1, ".");/* Dummy call to avoid build error. */
1947         t->current_filesystem->xfer_align = -1;/* Unknown */
1948         t->current_filesystem->max_xfer_size = -1;
1949         t->current_filesystem->min_xfer_size = -1;
1950         t->current_filesystem->incr_xfer_size = -1;
1951
1952 #if defined(USE_READDIR_R)
1953         /* Set maximum filename length. */
1954 #  if defined(_PC_NAME_MAX)
1955         if (tree_current_is_symblic_link_target(t)) {
1956                 if (tree_enter_working_dir(t) != 0) {
1957                         archive_set_error(&a->archive, errno, "fchdir failed");
1958                         return (ARCHIVE_FAILED);
1959                 }
1960                 nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1961         } else
1962                 nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
1963         if (nm == -1)
1964 #  endif /* _PC_NAME_MAX */
1965                 /*
1966                  * Some systems (HP-UX or others?) incorrectly defined
1967                  * NAME_MAX macro to be a smaller value.
1968                  */
1969 #  if defined(NAME_MAX) && NAME_MAX >= 255
1970                 t->current_filesystem->name_max = NAME_MAX;
1971 #  else
1972                 /* No way to get a trusted value of maximum filename
1973                  * length. */
1974                 t->current_filesystem->name_max = PATH_MAX;
1975 #  endif /* NAME_MAX */
1976 #  if defined(_PC_NAME_MAX)
1977         else
1978                 t->current_filesystem->name_max = nm;
1979 #  endif /* _PC_NAME_MAX */
1980 #endif /* USE_READDIR_R */
1981         return (ARCHIVE_OK);
1982 }
1983
1984 #endif
1985
1986 static int
1987 close_and_restore_time(int fd, struct tree *t, struct restore_time *rt)
1988 {
1989 #ifndef HAVE_UTIMES
1990         (void)t; /* UNUSED */
1991         (void)rt; /* UNUSED */
1992         return (close(fd));
1993 #else
1994 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
1995         struct timespec timespecs[2];
1996 #endif
1997         struct timeval times[2];
1998
1999         if ((t->flags & needsRestoreTimes) == 0 || rt->noatime) {
2000                 if (fd >= 0)
2001                         return (close(fd));
2002                 else
2003                         return (0);
2004         }
2005
2006 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
2007         timespecs[1].tv_sec = rt->mtime;
2008         timespecs[1].tv_nsec = rt->mtime_nsec;
2009
2010         timespecs[0].tv_sec = rt->atime;
2011         timespecs[0].tv_nsec = rt->atime_nsec;
2012         /* futimens() is defined in POSIX.1-2008. */
2013         if (futimens(fd, timespecs) == 0)
2014                 return (close(fd));
2015 #endif
2016
2017         times[1].tv_sec = rt->mtime;
2018         times[1].tv_usec = rt->mtime_nsec / 1000;
2019
2020         times[0].tv_sec = rt->atime;
2021         times[0].tv_usec = rt->atime_nsec / 1000;
2022
2023 #if !defined(HAVE_FUTIMENS) && defined(HAVE_FUTIMES) && !defined(__CYGWIN__)
2024         if (futimes(fd, times) == 0)
2025                 return (close(fd));
2026 #endif
2027         close(fd);
2028 #if defined(HAVE_FUTIMESAT)
2029         if (futimesat(tree_current_dir_fd(t), rt->name, times) == 0)
2030                 return (0);
2031 #endif
2032 #ifdef HAVE_LUTIMES
2033         if (lutimes(rt->name, times) != 0)
2034 #else
2035         if (AE_IFLNK != rt->filetype && utimes(rt->name, times) != 0)
2036 #endif
2037                 return (-1);
2038 #endif
2039         return (0);
2040 }
2041
2042 static int
2043 open_on_current_dir(struct tree *t, const char *path, int flags)
2044 {
2045 #ifdef HAVE_OPENAT
2046         return (openat(tree_current_dir_fd(t), path, flags));
2047 #else
2048         if (tree_enter_working_dir(t) != 0)
2049                 return (-1);
2050         return (open(path, flags));
2051 #endif
2052 }
2053
2054 static int
2055 tree_dup(int fd)
2056 {
2057         int new_fd;
2058 #ifdef F_DUPFD_CLOEXEC
2059         static volatile int can_dupfd_cloexec = 1;
2060
2061         if (can_dupfd_cloexec) {
2062                 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
2063                 if (new_fd != -1)
2064                         return (new_fd);
2065                 /* Linux 2.6.18 - 2.6.23 declare F_DUPFD_CLOEXEC,
2066                  * but it cannot be used. So we have to try dup(). */
2067                 /* We won't try F_DUPFD_CLOEXEC. */
2068                 can_dupfd_cloexec = 0;
2069         }
2070 #endif /* F_DUPFD_CLOEXEC */
2071         new_fd = dup(fd);
2072         __archive_ensure_cloexec_flag(new_fd);
2073         return (new_fd);
2074 }
2075
2076 /*
2077  * Add a directory path to the current stack.
2078  */
2079 static void
2080 tree_push(struct tree *t, const char *path, int filesystem_id,
2081     int64_t dev, int64_t ino, struct restore_time *rt)
2082 {
2083         struct tree_entry *te;
2084
2085         te = calloc(1, sizeof(*te));
2086         te->next = t->stack;
2087         te->parent = t->current;
2088         if (te->parent)
2089                 te->depth = te->parent->depth + 1;
2090         t->stack = te;
2091         archive_string_init(&te->name);
2092         te->symlink_parent_fd = -1;
2093         archive_strcpy(&te->name, path);
2094         te->flags = needsDescent | needsOpen | needsAscent;
2095         te->filesystem_id = filesystem_id;
2096         te->dev = dev;
2097         te->ino = ino;
2098         te->dirname_length = t->dirname_length;
2099         te->restore_time.name = te->name.s;
2100         if (rt != NULL) {
2101                 te->restore_time.mtime = rt->mtime;
2102                 te->restore_time.mtime_nsec = rt->mtime_nsec;
2103                 te->restore_time.atime = rt->atime;
2104                 te->restore_time.atime_nsec = rt->atime_nsec;
2105                 te->restore_time.filetype = rt->filetype;
2106                 te->restore_time.noatime = rt->noatime;
2107         }
2108 }
2109
2110 /*
2111  * Append a name to the current dir path.
2112  */
2113 static void
2114 tree_append(struct tree *t, const char *name, size_t name_length)
2115 {
2116         size_t size_needed;
2117
2118         t->path.s[t->dirname_length] = '\0';
2119         t->path.length = t->dirname_length;
2120         /* Strip trailing '/' from name, unless entire name is "/". */
2121         while (name_length > 1 && name[name_length - 1] == '/')
2122                 name_length--;
2123
2124         /* Resize pathname buffer as needed. */
2125         size_needed = name_length + t->dirname_length + 2;
2126         archive_string_ensure(&t->path, size_needed);
2127         /* Add a separating '/' if it's needed. */
2128         if (t->dirname_length > 0 && t->path.s[archive_strlen(&t->path)-1] != '/')
2129                 archive_strappend_char(&t->path, '/');
2130         t->basename = t->path.s + archive_strlen(&t->path);
2131         archive_strncat(&t->path, name, name_length);
2132         t->restore_time.name = t->basename;
2133 }
2134
2135 /*
2136  * Open a directory tree for traversal.
2137  */
2138 static struct tree *
2139 tree_open(const char *path, int symlink_mode, int restore_time)
2140 {
2141         struct tree *t;
2142
2143         if ((t = calloc(1, sizeof(*t))) == NULL)
2144                 return (NULL);
2145         archive_string_init(&t->path);
2146         archive_string_ensure(&t->path, 31);
2147         t->initial_symlink_mode = symlink_mode;
2148         return (tree_reopen(t, path, restore_time));
2149 }
2150
2151 static struct tree *
2152 tree_reopen(struct tree *t, const char *path, int restore_time)
2153 {
2154         t->flags = (restore_time != 0)?needsRestoreTimes:0;
2155         t->flags |= onInitialDir;
2156         t->visit_type = 0;
2157         t->tree_errno = 0;
2158         t->dirname_length = 0;
2159         t->depth = 0;
2160         t->descend = 0;
2161         t->current = NULL;
2162         t->d = INVALID_DIR_HANDLE;
2163         t->symlink_mode = t->initial_symlink_mode;
2164         archive_string_empty(&t->path);
2165         t->entry_fd = -1;
2166         t->entry_eof = 0;
2167         t->entry_remaining_bytes = 0;
2168         t->initial_filesystem_id = -1;
2169
2170         /* First item is set up a lot like a symlink traversal. */
2171         tree_push(t, path, 0, 0, 0, NULL);
2172         t->stack->flags = needsFirstVisit;
2173         t->maxOpenCount = t->openCount = 1;
2174         t->initial_dir_fd = open(".", O_RDONLY | O_CLOEXEC);
2175         __archive_ensure_cloexec_flag(t->initial_dir_fd);
2176         t->working_dir_fd = tree_dup(t->initial_dir_fd);
2177         return (t);
2178 }
2179
2180 static int
2181 tree_descent(struct tree *t)
2182 {
2183         int flag, new_fd, r = 0;
2184
2185         t->dirname_length = archive_strlen(&t->path);
2186         flag = O_RDONLY | O_CLOEXEC;
2187 #if defined(O_DIRECTORY)
2188         flag |= O_DIRECTORY;
2189 #endif
2190         new_fd = open_on_current_dir(t, t->stack->name.s, flag);
2191         __archive_ensure_cloexec_flag(new_fd);
2192         if (new_fd < 0) {
2193                 t->tree_errno = errno;
2194                 r = TREE_ERROR_DIR;
2195         } else {
2196                 t->depth++;
2197                 /* If it is a link, set up fd for the ascent. */
2198                 if (t->stack->flags & isDirLink) {
2199                         t->stack->symlink_parent_fd = t->working_dir_fd;
2200                         t->openCount++;
2201                         if (t->openCount > t->maxOpenCount)
2202                                 t->maxOpenCount = t->openCount;
2203                 } else
2204                         close(t->working_dir_fd);
2205                 /* Renew the current working directory. */
2206                 t->working_dir_fd = new_fd;
2207                 t->flags &= ~onWorkingDir;
2208         }
2209         return (r);
2210 }
2211
2212 /*
2213  * We've finished a directory; ascend back to the parent.
2214  */
2215 static int
2216 tree_ascend(struct tree *t)
2217 {
2218         struct tree_entry *te;
2219         int new_fd, r = 0, prev_dir_fd;
2220
2221         te = t->stack;
2222         prev_dir_fd = t->working_dir_fd;
2223         if (te->flags & isDirLink)
2224                 new_fd = te->symlink_parent_fd;
2225         else {
2226                 new_fd = open_on_current_dir(t, "..", O_RDONLY | O_CLOEXEC);
2227                 __archive_ensure_cloexec_flag(new_fd);
2228         }
2229         if (new_fd < 0) {
2230                 t->tree_errno = errno;
2231                 r = TREE_ERROR_FATAL;
2232         } else {
2233                 /* Renew the current working directory. */
2234                 t->working_dir_fd = new_fd;
2235                 t->flags &= ~onWorkingDir;
2236                 /* Current directory has been changed, we should
2237                  * close an fd of previous working directory. */
2238                 close_and_restore_time(prev_dir_fd, t, &te->restore_time);
2239                 if (te->flags & isDirLink) {
2240                         t->openCount--;
2241                         te->symlink_parent_fd = -1;
2242                 }
2243                 t->depth--;
2244         }
2245         return (r);
2246 }
2247
2248 /*
2249  * Return to the initial directory where tree_open() was performed.
2250  */
2251 static int
2252 tree_enter_initial_dir(struct tree *t)
2253 {
2254         int r = 0;
2255
2256         if ((t->flags & onInitialDir) == 0) {
2257                 r = fchdir(t->initial_dir_fd);
2258                 if (r == 0) {
2259                         t->flags &= ~onWorkingDir;
2260                         t->flags |= onInitialDir;
2261                 }
2262         }
2263         return (r);
2264 }
2265
2266 /*
2267  * Restore working directory of directory traversals.
2268  */
2269 static int
2270 tree_enter_working_dir(struct tree *t)
2271 {
2272         int r = 0;
2273
2274         /*
2275          * Change the current directory if really needed.
2276          * Sometimes this is unneeded when we did not do
2277          * descent.
2278          */
2279         if (t->depth > 0 && (t->flags & onWorkingDir) == 0) {
2280                 r = fchdir(t->working_dir_fd);
2281                 if (r == 0) {
2282                         t->flags &= ~onInitialDir;
2283                         t->flags |= onWorkingDir;
2284                 }
2285         }
2286         return (r);
2287 }
2288
2289 static int
2290 tree_current_dir_fd(struct tree *t)
2291 {
2292         return (t->working_dir_fd);
2293 }
2294
2295 /*
2296  * Pop the working stack.
2297  */
2298 static void
2299 tree_pop(struct tree *t)
2300 {
2301         struct tree_entry *te;
2302
2303         t->path.s[t->dirname_length] = '\0';
2304         t->path.length = t->dirname_length;
2305         if (t->stack == t->current && t->current != NULL)
2306                 t->current = t->current->parent;
2307         te = t->stack;
2308         t->stack = te->next;
2309         t->dirname_length = te->dirname_length;
2310         t->basename = t->path.s + t->dirname_length;
2311         while (t->basename[0] == '/')
2312                 t->basename++;
2313         archive_string_free(&te->name);
2314         free(te);
2315 }
2316
2317 /*
2318  * Get the next item in the tree traversal.
2319  */
2320 static int
2321 tree_next(struct tree *t)
2322 {
2323         int r;
2324
2325         while (t->stack != NULL) {
2326                 /* If there's an open dir, get the next entry from there. */
2327                 if (t->d != INVALID_DIR_HANDLE) {
2328                         r = tree_dir_next_posix(t);
2329                         if (r == 0)
2330                                 continue;
2331                         return (r);
2332                 }
2333
2334                 if (t->stack->flags & needsFirstVisit) {
2335                         /* Top stack item needs a regular visit. */
2336                         t->current = t->stack;
2337                         tree_append(t, t->stack->name.s,
2338                             archive_strlen(&(t->stack->name)));
2339                         /* t->dirname_length = t->path_length; */
2340                         /* tree_pop(t); */
2341                         t->stack->flags &= ~needsFirstVisit;
2342                         return (t->visit_type = TREE_REGULAR);
2343                 } else if (t->stack->flags & needsDescent) {
2344                         /* Top stack item is dir to descend into. */
2345                         t->current = t->stack;
2346                         tree_append(t, t->stack->name.s,
2347                             archive_strlen(&(t->stack->name)));
2348                         t->stack->flags &= ~needsDescent;
2349                         r = tree_descent(t);
2350                         if (r != 0) {
2351                                 tree_pop(t);
2352                                 t->visit_type = r;
2353                         } else
2354                                 t->visit_type = TREE_POSTDESCENT;
2355                         return (t->visit_type);
2356                 } else if (t->stack->flags & needsOpen) {
2357                         t->stack->flags &= ~needsOpen;
2358                         r = tree_dir_next_posix(t);
2359                         if (r == 0)
2360                                 continue;
2361                         return (r);
2362                 } else if (t->stack->flags & needsAscent) {
2363                         /* Top stack item is dir and we're done with it. */
2364                         r = tree_ascend(t);
2365                         tree_pop(t);
2366                         t->visit_type = r != 0 ? r : TREE_POSTASCENT;
2367                         return (t->visit_type);
2368                 } else {
2369                         /* Top item on stack is dead. */
2370                         tree_pop(t);
2371                         t->flags &= ~hasLstat;
2372                         t->flags &= ~hasStat;
2373                 }
2374         }
2375         return (t->visit_type = 0);
2376 }
2377
2378 static int
2379 tree_dir_next_posix(struct tree *t)
2380 {
2381         int r;
2382         const char *name;
2383         size_t namelen;
2384
2385         if (t->d == NULL) {
2386 #if defined(USE_READDIR_R)
2387                 size_t dirent_size;
2388 #endif
2389
2390 #if defined(HAVE_FDOPENDIR)
2391                 t->d = fdopendir(tree_dup(t->working_dir_fd));
2392 #else /* HAVE_FDOPENDIR */
2393                 if (tree_enter_working_dir(t) == 0) {
2394                         t->d = opendir(".");
2395 #if HAVE_DIRFD || defined(dirfd)
2396                         __archive_ensure_cloexec_flag(dirfd(t->d));
2397 #endif
2398                 }
2399 #endif /* HAVE_FDOPENDIR */
2400                 if (t->d == NULL) {
2401                         r = tree_ascend(t); /* Undo "chdir" */
2402                         tree_pop(t);
2403                         t->tree_errno = errno;
2404                         t->visit_type = r != 0 ? r : TREE_ERROR_DIR;
2405                         return (t->visit_type);
2406                 }
2407 #if defined(USE_READDIR_R)
2408                 dirent_size = offsetof(struct dirent, d_name) +
2409                   t->filesystem_table[t->current->filesystem_id].name_max + 1;
2410                 if (t->dirent == NULL || t->dirent_allocated < dirent_size) {
2411                         free(t->dirent);
2412                         t->dirent = malloc(dirent_size);
2413                         if (t->dirent == NULL) {
2414                                 closedir(t->d);
2415                                 t->d = INVALID_DIR_HANDLE;
2416                                 (void)tree_ascend(t);
2417                                 tree_pop(t);
2418                                 t->tree_errno = ENOMEM;
2419                                 t->visit_type = TREE_ERROR_DIR;
2420                                 return (t->visit_type);
2421                         }
2422                         t->dirent_allocated = dirent_size;
2423                 }
2424 #endif /* USE_READDIR_R */
2425         }
2426         for (;;) {
2427                 errno = 0;
2428 #if defined(USE_READDIR_R)
2429                 r = readdir_r(t->d, t->dirent, &t->de);
2430 #ifdef _AIX
2431                 /* Note: According to the man page, return value 9 indicates
2432                  * that the readdir_r was not successful and the error code
2433                  * is set to the global errno variable. And then if the end
2434                  * of directory entries was reached, the return value is 9
2435                  * and the third parameter is set to NULL and errno is
2436                  * unchanged. */
2437                 if (r == 9)
2438                         r = errno;
2439 #endif /* _AIX */
2440                 if (r != 0 || t->de == NULL) {
2441 #else
2442                 t->de = readdir(t->d);
2443                 if (t->de == NULL) {
2444                         r = errno;
2445 #endif
2446                         closedir(t->d);
2447                         t->d = INVALID_DIR_HANDLE;
2448                         if (r != 0) {
2449                                 t->tree_errno = r;
2450                                 t->visit_type = TREE_ERROR_DIR;
2451                                 return (t->visit_type);
2452                         } else
2453                                 return (0);
2454                 }
2455                 name = t->de->d_name;
2456                 namelen = D_NAMELEN(t->de);
2457                 t->flags &= ~hasLstat;
2458                 t->flags &= ~hasStat;
2459                 if (name[0] == '.' && name[1] == '\0')
2460                         continue;
2461                 if (name[0] == '.' && name[1] == '.' && name[2] == '\0')
2462                         continue;
2463                 tree_append(t, name, namelen);
2464                 return (t->visit_type = TREE_REGULAR);
2465         }
2466 }
2467
2468
2469 /*
2470  * Get the stat() data for the entry just returned from tree_next().
2471  */
2472 static const struct stat *
2473 tree_current_stat(struct tree *t)
2474 {
2475         if (!(t->flags & hasStat)) {
2476 #ifdef HAVE_FSTATAT
2477                 if (fstatat(tree_current_dir_fd(t),
2478                     tree_current_access_path(t), &t->st, 0) != 0)
2479 #else
2480                 if (tree_enter_working_dir(t) != 0)
2481                         return NULL;
2482                 if (stat(tree_current_access_path(t), &t->st) != 0)
2483 #endif
2484                         return NULL;
2485                 t->flags |= hasStat;
2486         }
2487         return (&t->st);
2488 }
2489
2490 /*
2491  * Get the lstat() data for the entry just returned from tree_next().
2492  */
2493 static const struct stat *
2494 tree_current_lstat(struct tree *t)
2495 {
2496         if (!(t->flags & hasLstat)) {
2497 #ifdef HAVE_FSTATAT
2498                 if (fstatat(tree_current_dir_fd(t),
2499                     tree_current_access_path(t), &t->lst,
2500                     AT_SYMLINK_NOFOLLOW) != 0)
2501 #else
2502                 if (tree_enter_working_dir(t) != 0)
2503                         return NULL;
2504                 if (lstat(tree_current_access_path(t), &t->lst) != 0)
2505 #endif
2506                         return NULL;
2507                 t->flags |= hasLstat;
2508         }
2509         return (&t->lst);
2510 }
2511
2512 /*
2513  * Test whether current entry is a dir or link to a dir.
2514  */
2515 static int
2516 tree_current_is_dir(struct tree *t)
2517 {
2518         const struct stat *st;
2519         /*
2520          * If we already have lstat() info, then try some
2521          * cheap tests to determine if this is a dir.
2522          */
2523         if (t->flags & hasLstat) {
2524                 /* If lstat() says it's a dir, it must be a dir. */
2525                 st = tree_current_lstat(t);
2526                 if (st == NULL)
2527                         return 0;
2528                 if (S_ISDIR(st->st_mode))
2529                         return 1;
2530                 /* Not a dir; might be a link to a dir. */
2531                 /* If it's not a link, then it's not a link to a dir. */
2532                 if (!S_ISLNK(st->st_mode))
2533                         return 0;
2534                 /*
2535                  * It's a link, but we don't know what it's a link to,
2536                  * so we'll have to use stat().
2537                  */
2538         }
2539
2540         st = tree_current_stat(t);
2541         /* If we can't stat it, it's not a dir. */
2542         if (st == NULL)
2543                 return 0;
2544         /* Use the definitive test.  Hopefully this is cached. */
2545         return (S_ISDIR(st->st_mode));
2546 }
2547
2548 /*
2549  * Test whether current entry is a physical directory.  Usually, we
2550  * already have at least one of stat() or lstat() in memory, so we
2551  * use tricks to try to avoid an extra trip to the disk.
2552  */
2553 static int
2554 tree_current_is_physical_dir(struct tree *t)
2555 {
2556         const struct stat *st;
2557
2558         /*
2559          * If stat() says it isn't a dir, then it's not a dir.
2560          * If stat() data is cached, this check is free, so do it first.
2561          */
2562         if (t->flags & hasStat) {
2563                 st = tree_current_stat(t);
2564                 if (st == NULL)
2565                         return (0);
2566                 if (!S_ISDIR(st->st_mode))
2567                         return (0);
2568         }
2569
2570         /*
2571          * Either stat() said it was a dir (in which case, we have
2572          * to determine whether it's really a link to a dir) or
2573          * stat() info wasn't available.  So we use lstat(), which
2574          * hopefully is already cached.
2575          */
2576
2577         st = tree_current_lstat(t);
2578         /* If we can't stat it, it's not a dir. */
2579         if (st == NULL)
2580                 return 0;
2581         /* Use the definitive test.  Hopefully this is cached. */
2582         return (S_ISDIR(st->st_mode));
2583 }
2584
2585 /*
2586  * Test whether the same file has been in the tree as its parent.
2587  */
2588 static int
2589 tree_target_is_same_as_parent(struct tree *t, const struct stat *st)
2590 {
2591         struct tree_entry *te;
2592
2593         for (te = t->current->parent; te != NULL; te = te->parent) {
2594                 if (te->dev == (int64_t)st->st_dev &&
2595                     te->ino == (int64_t)st->st_ino)
2596                         return (1);
2597         }
2598         return (0);
2599 }
2600
2601 /*
2602  * Test whether the current file is symbolic link target and
2603  * on the other filesystem.
2604  */
2605 static int
2606 tree_current_is_symblic_link_target(struct tree *t)
2607 {
2608         static const struct stat *lst, *st;
2609
2610         lst = tree_current_lstat(t);
2611         st = tree_current_stat(t);
2612         return (st != NULL && lst != NULL &&
2613             (int64_t)st->st_dev == t->current_filesystem->dev &&
2614             st->st_dev != lst->st_dev);
2615 }
2616
2617 /*
2618  * Return the access path for the entry just returned from tree_next().
2619  */
2620 static const char *
2621 tree_current_access_path(struct tree *t)
2622 {
2623         return (t->basename);
2624 }
2625
2626 /*
2627  * Return the full path for the entry just returned from tree_next().
2628  */
2629 static const char *
2630 tree_current_path(struct tree *t)
2631 {
2632         return (t->path.s);
2633 }
2634
2635 /*
2636  * Terminate the traversal.
2637  */
2638 static void
2639 tree_close(struct tree *t)
2640 {
2641
2642         if (t == NULL)
2643                 return;
2644         if (t->entry_fd >= 0) {
2645                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
2646                 t->entry_fd = -1;
2647         }
2648         /* Close the handle of readdir(). */
2649         if (t->d != INVALID_DIR_HANDLE) {
2650                 closedir(t->d);
2651                 t->d = INVALID_DIR_HANDLE;
2652         }
2653         /* Release anything remaining in the stack. */
2654         while (t->stack != NULL) {
2655                 if (t->stack->flags & isDirLink)
2656                         close(t->stack->symlink_parent_fd);
2657                 tree_pop(t);
2658         }
2659         if (t->working_dir_fd >= 0) {
2660                 close(t->working_dir_fd);
2661                 t->working_dir_fd = -1;
2662         }
2663         if (t->initial_dir_fd >= 0) {
2664                 close(t->initial_dir_fd);
2665                 t->initial_dir_fd = -1;
2666         }
2667 }
2668
2669 /*
2670  * Release any resources.
2671  */
2672 static void
2673 tree_free(struct tree *t)
2674 {
2675         int i;
2676
2677         if (t == NULL)
2678                 return;
2679         archive_string_free(&t->path);
2680 #if defined(USE_READDIR_R)
2681         free(t->dirent);
2682 #endif
2683         free(t->sparse_list);
2684         for (i = 0; i < t->max_filesystem_id; i++)
2685                 free(t->filesystem_table[i].allocation_ptr);
2686         free(t->filesystem_table);
2687         free(t);
2688 }
2689
2690 #endif