]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - contrib/libarchive/libarchive/archive_read_disk_posix.c
MFC r302294:
[FreeBSD/stable/10.git] / contrib / libarchive / libarchive / archive_read_disk_posix.c
1 /*-
2  * Copyright (c) 2003-2009 Tim Kientzle
3  * Copyright (c) 2010-2012 Michihiro NAKAJIMA
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer
11  *    in this position and unchanged.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27
28 /* This is the tree-walking code for POSIX systems. */
29 #if !defined(_WIN32) || defined(__CYGWIN__)
30
31 #include "archive_platform.h"
32 __FBSDID("$FreeBSD$");
33
34 #ifdef HAVE_SYS_PARAM_H
35 #include <sys/param.h>
36 #endif
37 #ifdef HAVE_SYS_MOUNT_H
38 #include <sys/mount.h>
39 #endif
40 #ifdef HAVE_SYS_STAT_H
41 #include <sys/stat.h>
42 #endif
43 #ifdef HAVE_SYS_STATFS_H
44 #include <sys/statfs.h>
45 #endif
46 #ifdef HAVE_SYS_STATVFS_H
47 #include <sys/statvfs.h>
48 #endif
49 #ifdef HAVE_SYS_TIME_H
50 #include <sys/time.h>
51 #endif
52 #ifdef HAVE_LINUX_MAGIC_H
53 #include <linux/magic.h>
54 #endif
55 #ifdef HAVE_LINUX_FS_H
56 #include <linux/fs.h>
57 #endif
58 /*
59  * Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h.
60  * As the include guards don't agree, the order of include is important.
61  */
62 #ifdef HAVE_LINUX_EXT2_FS_H
63 #include <linux/ext2_fs.h>      /* for Linux file flags */
64 #endif
65 #if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__)
66 #include <ext2fs/ext2_fs.h>     /* Linux file flags, broken on Cygwin */
67 #endif
68 #ifdef HAVE_DIRECT_H
69 #include <direct.h>
70 #endif
71 #ifdef HAVE_DIRENT_H
72 #include <dirent.h>
73 #endif
74 #ifdef HAVE_ERRNO_H
75 #include <errno.h>
76 #endif
77 #ifdef HAVE_FCNTL_H
78 #include <fcntl.h>
79 #endif
80 #ifdef HAVE_LIMITS_H
81 #include <limits.h>
82 #endif
83 #ifdef HAVE_STDLIB_H
84 #include <stdlib.h>
85 #endif
86 #ifdef HAVE_STRING_H
87 #include <string.h>
88 #endif
89 #ifdef HAVE_UNISTD_H
90 #include <unistd.h>
91 #endif
92 #ifdef HAVE_SYS_IOCTL_H
93 #include <sys/ioctl.h>
94 #endif
95
96 #include "archive.h"
97 #include "archive_string.h"
98 #include "archive_entry.h"
99 #include "archive_private.h"
100 #include "archive_read_disk_private.h"
101
102 #ifndef HAVE_FCHDIR
103 #error fchdir function required.
104 #endif
105 #ifndef O_BINARY
106 #define O_BINARY        0
107 #endif
108 #ifndef O_CLOEXEC
109 #define O_CLOEXEC       0
110 #endif
111
112 /*-
113  * This is a new directory-walking system that addresses a number
114  * of problems I've had with fts(3).  In particular, it has no
115  * pathname-length limits (other than the size of 'int'), handles
116  * deep logical traversals, uses considerably less memory, and has
117  * an opaque interface (easier to modify in the future).
118  *
119  * Internally, it keeps a single list of "tree_entry" items that
120  * represent filesystem objects that require further attention.
121  * Non-directories are not kept in memory: they are pulled from
122  * readdir(), returned to the client, then freed as soon as possible.
123  * Any directory entry to be traversed gets pushed onto the stack.
124  *
125  * There is surprisingly little information that needs to be kept for
126  * each item on the stack.  Just the name, depth (represented here as the
127  * string length of the parent directory's pathname), and some markers
128  * indicating how to get back to the parent (via chdir("..") for a
129  * regular dir or via fchdir(2) for a symlink).
130  */
131 /*
132  * TODO:
133  *    1) Loop checking.
134  *    3) Arbitrary logical traversals by closing/reopening intermediate fds.
135  */
136
137 struct restore_time {
138         const char              *name;
139         time_t                   mtime;
140         long                     mtime_nsec;
141         time_t                   atime;
142         long                     atime_nsec;
143         mode_t                   filetype;
144         int                      noatime;
145 };
146
147 struct tree_entry {
148         int                      depth;
149         struct tree_entry       *next;
150         struct tree_entry       *parent;
151         struct archive_string    name;
152         size_t                   dirname_length;
153         int64_t                  dev;
154         int64_t                  ino;
155         int                      flags;
156         int                      filesystem_id;
157         /* How to return back to the parent of a symlink. */
158         int                      symlink_parent_fd;
159         /* How to restore time of a directory. */
160         struct restore_time      restore_time;
161 };
162
163 struct filesystem {
164         int64_t         dev;
165         int             synthetic;
166         int             remote;
167         int             noatime;
168 #if defined(HAVE_READDIR_R)
169         size_t          name_max;
170 #endif
171         long            incr_xfer_size;
172         long            max_xfer_size;
173         long            min_xfer_size;
174         long            xfer_align;
175
176         /*
177          * Buffer used for reading file contents.
178          */
179         /* Exactly allocated memory pointer. */
180         unsigned char   *allocation_ptr;
181         /* Pointer adjusted to the filesystem alignment . */
182         unsigned char   *buff;
183         size_t           buff_size;
184 };
185
186 /* Definitions for tree_entry.flags bitmap. */
187 #define isDir           1  /* This entry is a regular directory. */
188 #define isDirLink       2  /* This entry is a symbolic link to a directory. */
189 #define needsFirstVisit 4  /* This is an initial entry. */
190 #define needsDescent    8  /* This entry needs to be previsited. */
191 #define needsOpen       16 /* This is a directory that needs to be opened. */
192 #define needsAscent     32 /* This entry needs to be postvisited. */
193
194 /*
195  * Local data for this package.
196  */
197 struct tree {
198         struct tree_entry       *stack;
199         struct tree_entry       *current;
200         DIR                     *d;
201 #define INVALID_DIR_HANDLE NULL
202         struct dirent           *de;
203 #if defined(HAVE_READDIR_R)
204         struct dirent           *dirent;
205         size_t                   dirent_allocated;
206 #endif
207         int                      flags;
208         int                      visit_type;
209         /* Error code from last failed operation. */
210         int                      tree_errno;
211
212         /* Dynamically-sized buffer for holding path */
213         struct archive_string    path;
214
215         /* Last path element */
216         const char              *basename;
217         /* Leading dir length */
218         size_t                   dirname_length;
219
220         int                      depth;
221         int                      openCount;
222         int                      maxOpenCount;
223         int                      initial_dir_fd;
224         int                      working_dir_fd;
225
226         struct stat              lst;
227         struct stat              st;
228         int                      descend;
229         int                      nlink;
230         /* How to restore time of a file. */
231         struct restore_time      restore_time;
232
233         struct entry_sparse {
234                 int64_t          length;
235                 int64_t          offset;
236         }                       *sparse_list, *current_sparse;
237         int                      sparse_count;
238         int                      sparse_list_size;
239
240         char                     initial_symlink_mode;
241         char                     symlink_mode;
242         struct filesystem       *current_filesystem;
243         struct filesystem       *filesystem_table;
244         int                      initial_filesystem_id;
245         int                      current_filesystem_id;
246         int                      max_filesystem_id;
247         int                      allocated_filesytem;
248
249         int                      entry_fd;
250         int                      entry_eof;
251         int64_t                  entry_remaining_bytes;
252         int64_t                  entry_total;
253         unsigned char           *entry_buff;
254         size_t                   entry_buff_size;
255 };
256
257 /* Definitions for tree.flags bitmap. */
258 #define hasStat         16 /* The st entry is valid. */
259 #define hasLstat        32 /* The lst entry is valid. */
260 #define onWorkingDir    64 /* We are on the working dir where we are
261                             * reading directory entry at this time. */
262 #define needsRestoreTimes 128
263 #define onInitialDir    256 /* We are on the initial dir. */
264
265 static int
266 tree_dir_next_posix(struct tree *t);
267
268 #ifdef HAVE_DIRENT_D_NAMLEN
269 /* BSD extension; avoids need for a strlen() call. */
270 #define D_NAMELEN(dp)   (dp)->d_namlen
271 #else
272 #define D_NAMELEN(dp)   (strlen((dp)->d_name))
273 #endif
274
275 /* Initiate/terminate a tree traversal. */
276 static struct tree *tree_open(const char *, int, int);
277 static struct tree *tree_reopen(struct tree *, const char *, int);
278 static void tree_close(struct tree *);
279 static void tree_free(struct tree *);
280 static void tree_push(struct tree *, const char *, int, int64_t, int64_t,
281                 struct restore_time *);
282 static int tree_enter_initial_dir(struct tree *);
283 static int tree_enter_working_dir(struct tree *);
284 static int tree_current_dir_fd(struct tree *);
285
286 /*
287  * tree_next() returns Zero if there is no next entry, non-zero if
288  * there is.  Note that directories are visited three times.
289  * Directories are always visited first as part of enumerating their
290  * parent; that is a "regular" visit.  If tree_descend() is invoked at
291  * that time, the directory is added to a work list and will
292  * subsequently be visited two more times: once just after descending
293  * into the directory ("postdescent") and again just after ascending
294  * back to the parent ("postascent").
295  *
296  * TREE_ERROR_DIR is returned if the descent failed (because the
297  * directory couldn't be opened, for instance).  This is returned
298  * instead of TREE_POSTDESCENT/TREE_POSTASCENT.  TREE_ERROR_DIR is not a
299  * fatal error, but it does imply that the relevant subtree won't be
300  * visited.  TREE_ERROR_FATAL is returned for an error that left the
301  * traversal completely hosed.  Right now, this is only returned for
302  * chdir() failures during ascent.
303  */
304 #define TREE_REGULAR            1
305 #define TREE_POSTDESCENT        2
306 #define TREE_POSTASCENT         3
307 #define TREE_ERROR_DIR          -1
308 #define TREE_ERROR_FATAL        -2
309
310 static int tree_next(struct tree *);
311
312 /*
313  * Return information about the current entry.
314  */
315
316 /*
317  * The current full pathname, length of the full pathname, and a name
318  * that can be used to access the file.  Because tree does use chdir
319  * extensively, the access path is almost never the same as the full
320  * current path.
321  *
322  * TODO: On platforms that support it, use openat()-style operations
323  * to eliminate the chdir() operations entirely while still supporting
324  * arbitrarily deep traversals.  This makes access_path troublesome to
325  * support, of course, which means we'll need a rich enough interface
326  * that clients can function without it.  (In particular, we'll need
327  * tree_current_open() that returns an open file descriptor.)
328  *
329  */
330 static const char *tree_current_path(struct tree *);
331 static const char *tree_current_access_path(struct tree *);
332
333 /*
334  * Request the lstat() or stat() data for the current path.  Since the
335  * tree package needs to do some of this anyway, and caches the
336  * results, you should take advantage of it here if you need it rather
337  * than make a redundant stat() or lstat() call of your own.
338  */
339 static const struct stat *tree_current_stat(struct tree *);
340 static const struct stat *tree_current_lstat(struct tree *);
341 static int      tree_current_is_symblic_link_target(struct tree *);
342
343 /* The following functions use tricks to avoid a certain number of
344  * stat()/lstat() calls. */
345 /* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */
346 static int tree_current_is_physical_dir(struct tree *);
347 /* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */
348 static int tree_current_is_dir(struct tree *);
349 static int update_current_filesystem(struct archive_read_disk *a,
350                     int64_t dev);
351 static int setup_current_filesystem(struct archive_read_disk *);
352 static int tree_target_is_same_as_parent(struct tree *, const struct stat *);
353
354 static int      _archive_read_disk_open(struct archive *, const char *);
355 static int      _archive_read_free(struct archive *);
356 static int      _archive_read_close(struct archive *);
357 static int      _archive_read_data_block(struct archive *,
358                     const void **, size_t *, int64_t *);
359 static int      _archive_read_next_header(struct archive *,
360                     struct archive_entry **);
361 static int      _archive_read_next_header2(struct archive *,
362                     struct archive_entry *);
363 static const char *trivial_lookup_gname(void *, int64_t gid);
364 static const char *trivial_lookup_uname(void *, int64_t uid);
365 static int      setup_sparse(struct archive_read_disk *, struct archive_entry *);
366 static int      close_and_restore_time(int fd, struct tree *,
367                     struct restore_time *);
368 static int      open_on_current_dir(struct tree *, const char *, int);
369 static int      tree_dup(int);
370
371
372 static struct archive_vtable *
373 archive_read_disk_vtable(void)
374 {
375         static struct archive_vtable av;
376         static int inited = 0;
377
378         if (!inited) {
379                 av.archive_free = _archive_read_free;
380                 av.archive_close = _archive_read_close;
381                 av.archive_read_data_block = _archive_read_data_block;
382                 av.archive_read_next_header = _archive_read_next_header;
383                 av.archive_read_next_header2 = _archive_read_next_header2;
384                 inited = 1;
385         }
386         return (&av);
387 }
388
389 const char *
390 archive_read_disk_gname(struct archive *_a, int64_t gid)
391 {
392         struct archive_read_disk *a = (struct archive_read_disk *)_a;
393         if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
394                 ARCHIVE_STATE_ANY, "archive_read_disk_gname"))
395                 return (NULL);
396         if (a->lookup_gname == NULL)
397                 return (NULL);
398         return ((*a->lookup_gname)(a->lookup_gname_data, gid));
399 }
400
401 const char *
402 archive_read_disk_uname(struct archive *_a, int64_t uid)
403 {
404         struct archive_read_disk *a = (struct archive_read_disk *)_a;
405         if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
406                 ARCHIVE_STATE_ANY, "archive_read_disk_uname"))
407                 return (NULL);
408         if (a->lookup_uname == NULL)
409                 return (NULL);
410         return ((*a->lookup_uname)(a->lookup_uname_data, uid));
411 }
412
413 int
414 archive_read_disk_set_gname_lookup(struct archive *_a,
415     void *private_data,
416     const char * (*lookup_gname)(void *private, int64_t gid),
417     void (*cleanup_gname)(void *private))
418 {
419         struct archive_read_disk *a = (struct archive_read_disk *)_a;
420         archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
421             ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup");
422
423         if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
424                 (a->cleanup_gname)(a->lookup_gname_data);
425
426         a->lookup_gname = lookup_gname;
427         a->cleanup_gname = cleanup_gname;
428         a->lookup_gname_data = private_data;
429         return (ARCHIVE_OK);
430 }
431
432 int
433 archive_read_disk_set_uname_lookup(struct archive *_a,
434     void *private_data,
435     const char * (*lookup_uname)(void *private, int64_t uid),
436     void (*cleanup_uname)(void *private))
437 {
438         struct archive_read_disk *a = (struct archive_read_disk *)_a;
439         archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
440             ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup");
441
442         if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
443                 (a->cleanup_uname)(a->lookup_uname_data);
444
445         a->lookup_uname = lookup_uname;
446         a->cleanup_uname = cleanup_uname;
447         a->lookup_uname_data = private_data;
448         return (ARCHIVE_OK);
449 }
450
451 /*
452  * Create a new archive_read_disk object and initialize it with global state.
453  */
454 struct archive *
455 archive_read_disk_new(void)
456 {
457         struct archive_read_disk *a;
458
459         a = (struct archive_read_disk *)calloc(1, sizeof(*a));
460         if (a == NULL)
461                 return (NULL);
462         a->archive.magic = ARCHIVE_READ_DISK_MAGIC;
463         a->archive.state = ARCHIVE_STATE_NEW;
464         a->archive.vtable = archive_read_disk_vtable();
465         a->entry = archive_entry_new2(&a->archive);
466         a->lookup_uname = trivial_lookup_uname;
467         a->lookup_gname = trivial_lookup_gname;
468         a->enable_copyfile = 1;
469         a->traverse_mount_points = 1;
470         a->open_on_current_dir = open_on_current_dir;
471         a->tree_current_dir_fd = tree_current_dir_fd;
472         a->tree_enter_working_dir = tree_enter_working_dir;
473         return (&a->archive);
474 }
475
476 static int
477 _archive_read_free(struct archive *_a)
478 {
479         struct archive_read_disk *a = (struct archive_read_disk *)_a;
480         int r;
481
482         if (_a == NULL)
483                 return (ARCHIVE_OK);
484         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
485             ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
486
487         if (a->archive.state != ARCHIVE_STATE_CLOSED)
488                 r = _archive_read_close(&a->archive);
489         else
490                 r = ARCHIVE_OK;
491
492         tree_free(a->tree);
493         if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
494                 (a->cleanup_gname)(a->lookup_gname_data);
495         if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
496                 (a->cleanup_uname)(a->lookup_uname_data);
497         archive_string_free(&a->archive.error_string);
498         archive_entry_free(a->entry);
499         a->archive.magic = 0;
500         __archive_clean(&a->archive);
501         free(a);
502         return (r);
503 }
504
505 static int
506 _archive_read_close(struct archive *_a)
507 {
508         struct archive_read_disk *a = (struct archive_read_disk *)_a;
509
510         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
511             ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
512
513         if (a->archive.state != ARCHIVE_STATE_FATAL)
514                 a->archive.state = ARCHIVE_STATE_CLOSED;
515
516         tree_close(a->tree);
517
518         return (ARCHIVE_OK);
519 }
520
521 static void
522 setup_symlink_mode(struct archive_read_disk *a, char symlink_mode,
523     int follow_symlinks)
524 {
525         a->symlink_mode = symlink_mode;
526         a->follow_symlinks = follow_symlinks;
527         if (a->tree != NULL) {
528                 a->tree->initial_symlink_mode = a->symlink_mode;
529                 a->tree->symlink_mode = a->symlink_mode;
530         }
531 }
532
533 int
534 archive_read_disk_set_symlink_logical(struct archive *_a)
535 {
536         struct archive_read_disk *a = (struct archive_read_disk *)_a;
537         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
538             ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical");
539         setup_symlink_mode(a, 'L', 1);
540         return (ARCHIVE_OK);
541 }
542
543 int
544 archive_read_disk_set_symlink_physical(struct archive *_a)
545 {
546         struct archive_read_disk *a = (struct archive_read_disk *)_a;
547         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
548             ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical");
549         setup_symlink_mode(a, 'P', 0);
550         return (ARCHIVE_OK);
551 }
552
553 int
554 archive_read_disk_set_symlink_hybrid(struct archive *_a)
555 {
556         struct archive_read_disk *a = (struct archive_read_disk *)_a;
557         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
558             ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid");
559         setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */
560         return (ARCHIVE_OK);
561 }
562
563 int
564 archive_read_disk_set_atime_restored(struct archive *_a)
565 {
566 #ifndef HAVE_UTIMES
567         static int warning_done = 0;
568 #endif
569         struct archive_read_disk *a = (struct archive_read_disk *)_a;
570         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
571             ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime");
572 #ifdef HAVE_UTIMES
573         a->restore_time = 1;
574         if (a->tree != NULL)
575                 a->tree->flags |= needsRestoreTimes;
576         return (ARCHIVE_OK);
577 #else
578         if (warning_done)
579                 /* Warning was already emitted; suppress further warnings. */
580                 return (ARCHIVE_OK);
581
582         archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
583             "Cannot restore access time on this system");
584         warning_done = 1;
585         return (ARCHIVE_WARN);
586 #endif
587 }
588
589 int
590 archive_read_disk_set_behavior(struct archive *_a, int flags)
591 {
592         struct archive_read_disk *a = (struct archive_read_disk *)_a;
593         int r = ARCHIVE_OK;
594
595         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
596             ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump");
597
598         if (flags & ARCHIVE_READDISK_RESTORE_ATIME)
599                 r = archive_read_disk_set_atime_restored(_a);
600         else {
601                 a->restore_time = 0;
602                 if (a->tree != NULL)
603                         a->tree->flags &= ~needsRestoreTimes;
604         }
605         if (flags & ARCHIVE_READDISK_HONOR_NODUMP)
606                 a->honor_nodump = 1;
607         else
608                 a->honor_nodump = 0;
609         if (flags & ARCHIVE_READDISK_MAC_COPYFILE)
610                 a->enable_copyfile = 1;
611         else
612                 a->enable_copyfile = 0;
613         if (flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS)
614                 a->traverse_mount_points = 0;
615         else
616                 a->traverse_mount_points = 1;
617         if (flags & ARCHIVE_READDISK_NO_XATTR)
618                 a->suppress_xattr = 1;
619         else
620                 a->suppress_xattr = 0;
621         return (r);
622 }
623
624 /*
625  * Trivial implementations of gname/uname lookup functions.
626  * These are normally overridden by the client, but these stub
627  * versions ensure that we always have something that works.
628  */
629 static const char *
630 trivial_lookup_gname(void *private_data, int64_t gid)
631 {
632         (void)private_data; /* UNUSED */
633         (void)gid; /* UNUSED */
634         return (NULL);
635 }
636
637 static const char *
638 trivial_lookup_uname(void *private_data, int64_t uid)
639 {
640         (void)private_data; /* UNUSED */
641         (void)uid; /* UNUSED */
642         return (NULL);
643 }
644
645 /*
646  * Allocate memory for the reading buffer adjusted to the filesystem
647  * alignment.
648  */
649 static int
650 setup_suitable_read_buffer(struct archive_read_disk *a)
651 {
652         struct tree *t = a->tree;
653         struct filesystem *cf = t->current_filesystem;
654         size_t asize;
655         size_t s;
656
657         if (cf->allocation_ptr == NULL) {
658                 /* If we couldn't get a filesystem alignment,
659                  * we use 4096 as default value but we won't use
660                  * O_DIRECT to open() and openat() operations. */
661                 long xfer_align = (cf->xfer_align == -1)?4096:cf->xfer_align;
662
663                 if (cf->max_xfer_size != -1)
664                         asize = cf->max_xfer_size + xfer_align;
665                 else {
666                         long incr = cf->incr_xfer_size;
667                         /* Some platform does not set a proper value to
668                          * incr_xfer_size.*/
669                         if (incr < 0)
670                                 incr = cf->min_xfer_size;
671                         if (cf->min_xfer_size < 0) {
672                                 incr = xfer_align;
673                                 asize = xfer_align;
674                         } else
675                                 asize = cf->min_xfer_size;
676
677                         /* Increase a buffer size up to 64K bytes in
678                          * a proper incremant size. */
679                         while (asize < 1024*64)
680                                 asize += incr;
681                         /* Take a margin to adjust to the filesystem
682                          * alignment. */
683                         asize += xfer_align;
684                 }
685                 cf->allocation_ptr = malloc(asize);
686                 if (cf->allocation_ptr == NULL) {
687                         archive_set_error(&a->archive, ENOMEM,
688                             "Couldn't allocate memory");
689                         a->archive.state = ARCHIVE_STATE_FATAL;
690                         return (ARCHIVE_FATAL);
691                 }
692
693                 /*
694                  * Calculate proper address for the filesystem.
695                  */
696                 s = (uintptr_t)cf->allocation_ptr;
697                 s %= xfer_align;
698                 if (s > 0)
699                         s = xfer_align - s;
700
701                 /*
702                  * Set a read buffer pointer in the proper alignment of
703                  * the current filesystem.
704                  */
705                 cf->buff = cf->allocation_ptr + s;
706                 cf->buff_size = asize - xfer_align;
707         }
708         return (ARCHIVE_OK);
709 }
710
711 static int
712 _archive_read_data_block(struct archive *_a, const void **buff,
713     size_t *size, int64_t *offset)
714 {
715         struct archive_read_disk *a = (struct archive_read_disk *)_a;
716         struct tree *t = a->tree;
717         int r;
718         ssize_t bytes;
719         size_t buffbytes;
720         int empty_sparse_region = 0;
721
722         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
723             "archive_read_data_block");
724
725         if (t->entry_eof || t->entry_remaining_bytes <= 0) {
726                 r = ARCHIVE_EOF;
727                 goto abort_read_data;
728         }
729
730         /*
731          * Open the current file.
732          */
733         if (t->entry_fd < 0) {
734                 int flags = O_RDONLY | O_BINARY | O_CLOEXEC;
735
736                 /*
737                  * Eliminate or reduce cache effects if we can.
738                  *
739                  * Carefully consider this to be enabled.
740                  */
741 #if defined(O_DIRECT) && 0/* Disabled for now */
742                 if (t->current_filesystem->xfer_align != -1 &&
743                     t->nlink == 1)
744                         flags |= O_DIRECT;
745 #endif
746 #if defined(O_NOATIME)
747                 /*
748                  * Linux has O_NOATIME flag; use it if we need.
749                  */
750                 if ((t->flags & needsRestoreTimes) != 0 &&
751                     t->restore_time.noatime == 0)
752                         flags |= O_NOATIME;
753                 do {
754 #endif
755                         t->entry_fd = open_on_current_dir(t,
756                             tree_current_access_path(t), flags);
757                         __archive_ensure_cloexec_flag(t->entry_fd);
758 #if defined(O_NOATIME)
759                         /*
760                          * When we did open the file with O_NOATIME flag,
761                          * if successful, set 1 to t->restore_time.noatime
762                          * not to restore an atime of the file later.
763                          * if failed by EPERM, retry it without O_NOATIME flag.
764                          */
765                         if (flags & O_NOATIME) {
766                                 if (t->entry_fd >= 0)
767                                         t->restore_time.noatime = 1;
768                                 else if (errno == EPERM) {
769                                         flags &= ~O_NOATIME;
770                                         continue;
771                                 }
772                         }
773                 } while (0);
774 #endif
775                 if (t->entry_fd < 0) {
776                         archive_set_error(&a->archive, errno,
777                             "Couldn't open %s", tree_current_path(t));
778                         r = ARCHIVE_FAILED;
779                         tree_enter_initial_dir(t);
780                         goto abort_read_data;
781                 }
782                 tree_enter_initial_dir(t);
783         }
784
785         /*
786          * Allocate read buffer if not allocated.
787          */
788         if (t->current_filesystem->allocation_ptr == NULL) {
789                 r = setup_suitable_read_buffer(a);
790                 if (r != ARCHIVE_OK) {
791                         a->archive.state = ARCHIVE_STATE_FATAL;
792                         goto abort_read_data;
793                 }
794         }
795         t->entry_buff = t->current_filesystem->buff;
796         t->entry_buff_size = t->current_filesystem->buff_size;
797
798         buffbytes = t->entry_buff_size;
799         if ((int64_t)buffbytes > t->current_sparse->length)
800                 buffbytes = t->current_sparse->length;
801
802         if (t->current_sparse->length == 0)
803                 empty_sparse_region = 1;
804
805         /*
806          * Skip hole.
807          * TODO: Should we consider t->current_filesystem->xfer_align?
808          */
809         if (t->current_sparse->offset > t->entry_total) {
810                 if (lseek(t->entry_fd,
811                     (off_t)t->current_sparse->offset, SEEK_SET) < 0) {
812                         archive_set_error(&a->archive, errno, "Seek error");
813                         r = ARCHIVE_FATAL;
814                         a->archive.state = ARCHIVE_STATE_FATAL;
815                         goto abort_read_data;
816                 }
817                 bytes = t->current_sparse->offset - t->entry_total;
818                 t->entry_remaining_bytes -= bytes;
819                 t->entry_total += bytes;
820         }
821
822         /*
823          * Read file contents.
824          */
825         if (buffbytes > 0) {
826                 bytes = read(t->entry_fd, t->entry_buff, buffbytes);
827                 if (bytes < 0) {
828                         archive_set_error(&a->archive, errno, "Read error");
829                         r = ARCHIVE_FATAL;
830                         a->archive.state = ARCHIVE_STATE_FATAL;
831                         goto abort_read_data;
832                 }
833         } else
834                 bytes = 0;
835         /*
836          * Return an EOF unless we've read a leading empty sparse region, which
837          * is used to represent fully-sparse files.
838         */
839         if (bytes == 0 && !empty_sparse_region) {
840                 /* Get EOF */
841                 t->entry_eof = 1;
842                 r = ARCHIVE_EOF;
843                 goto abort_read_data;
844         }
845         *buff = t->entry_buff;
846         *size = bytes;
847         *offset = t->entry_total;
848         t->entry_total += bytes;
849         t->entry_remaining_bytes -= bytes;
850         if (t->entry_remaining_bytes == 0) {
851                 /* Close the current file descriptor */
852                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
853                 t->entry_fd = -1;
854                 t->entry_eof = 1;
855         }
856         t->current_sparse->offset += bytes;
857         t->current_sparse->length -= bytes;
858         if (t->current_sparse->length == 0 && !t->entry_eof)
859                 t->current_sparse++;
860         return (ARCHIVE_OK);
861
862 abort_read_data:
863         *buff = NULL;
864         *size = 0;
865         *offset = t->entry_total;
866         if (t->entry_fd >= 0) {
867                 /* Close the current file descriptor */
868                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
869                 t->entry_fd = -1;
870         }
871         return (r);
872 }
873
874 static int
875 next_entry(struct archive_read_disk *a, struct tree *t,
876     struct archive_entry *entry)
877 {
878         const struct stat *st; /* info to use for this entry */
879         const struct stat *lst;/* lstat() information */
880         const char *name;
881         int descend, r;
882
883         st = NULL;
884         lst = NULL;
885         t->descend = 0;
886         do {
887                 switch (tree_next(t)) {
888                 case TREE_ERROR_FATAL:
889                         archive_set_error(&a->archive, t->tree_errno,
890                             "%s: Unable to continue traversing directory tree",
891                             tree_current_path(t));
892                         a->archive.state = ARCHIVE_STATE_FATAL;
893                         tree_enter_initial_dir(t);
894                         return (ARCHIVE_FATAL);
895                 case TREE_ERROR_DIR:
896                         archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
897                             "%s: Couldn't visit directory",
898                             tree_current_path(t));
899                         tree_enter_initial_dir(t);
900                         return (ARCHIVE_FAILED);
901                 case 0:
902                         tree_enter_initial_dir(t);
903                         return (ARCHIVE_EOF);
904                 case TREE_POSTDESCENT:
905                 case TREE_POSTASCENT:
906                         break;
907                 case TREE_REGULAR:
908                         lst = tree_current_lstat(t);
909                         if (lst == NULL) {
910                                 archive_set_error(&a->archive, errno,
911                                     "%s: Cannot stat",
912                                     tree_current_path(t));
913                                 tree_enter_initial_dir(t);
914                                 return (ARCHIVE_FAILED);
915                         }
916                         break;
917                 }       
918         } while (lst == NULL);
919
920 #ifdef __APPLE__
921         if (a->enable_copyfile) {
922                 /* If we're using copyfile(), ignore "._XXX" files. */
923                 const char *bname = strrchr(tree_current_path(t), '/');
924                 if (bname == NULL)
925                         bname = tree_current_path(t);
926                 else
927                         ++bname;
928                 if (bname[0] == '.' && bname[1] == '_')
929                         return (ARCHIVE_RETRY);
930         }
931 #endif
932
933         archive_entry_copy_pathname(entry, tree_current_path(t));
934         /*
935          * Perform path matching.
936          */
937         if (a->matching) {
938                 r = archive_match_path_excluded(a->matching, entry);
939                 if (r < 0) {
940                         archive_set_error(&(a->archive), errno,
941                             "Faild : %s", archive_error_string(a->matching));
942                         return (r);
943                 }
944                 if (r) {
945                         if (a->excluded_cb_func)
946                                 a->excluded_cb_func(&(a->archive),
947                                     a->excluded_cb_data, entry);
948                         return (ARCHIVE_RETRY);
949                 }
950         }
951
952         /*
953          * Distinguish 'L'/'P'/'H' symlink following.
954          */
955         switch(t->symlink_mode) {
956         case 'H':
957                 /* 'H': After the first item, rest like 'P'. */
958                 t->symlink_mode = 'P';
959                 /* 'H': First item (from command line) like 'L'. */
960                 /* FALLTHROUGH */
961         case 'L':
962                 /* 'L': Do descend through a symlink to dir. */
963                 descend = tree_current_is_dir(t);
964                 /* 'L': Follow symlinks to files. */
965                 a->symlink_mode = 'L';
966                 a->follow_symlinks = 1;
967                 /* 'L': Archive symlinks as targets, if we can. */
968                 st = tree_current_stat(t);
969                 if (st != NULL && !tree_target_is_same_as_parent(t, st))
970                         break;
971                 /* If stat fails, we have a broken symlink;
972                  * in that case, don't follow the link. */
973                 /* FALLTHROUGH */
974         default:
975                 /* 'P': Don't descend through a symlink to dir. */
976                 descend = tree_current_is_physical_dir(t);
977                 /* 'P': Don't follow symlinks to files. */
978                 a->symlink_mode = 'P';
979                 a->follow_symlinks = 0;
980                 /* 'P': Archive symlinks as symlinks. */
981                 st = lst;
982                 break;
983         }
984
985         if (update_current_filesystem(a, st->st_dev) != ARCHIVE_OK) {
986                 a->archive.state = ARCHIVE_STATE_FATAL;
987                 tree_enter_initial_dir(t);
988                 return (ARCHIVE_FATAL);
989         }
990         if (t->initial_filesystem_id == -1)
991                 t->initial_filesystem_id = t->current_filesystem_id;
992         if (!a->traverse_mount_points) {
993                 if (t->initial_filesystem_id != t->current_filesystem_id)
994                         descend = 0;
995         }
996         t->descend = descend;
997
998         /*
999          * Honor nodump flag.
1000          * If the file is marked with nodump flag, do not return this entry.
1001          */
1002         if (a->honor_nodump) {
1003 #if defined(HAVE_STRUCT_STAT_ST_FLAGS) && defined(UF_NODUMP)
1004                 if (st->st_flags & UF_NODUMP)
1005                         return (ARCHIVE_RETRY);
1006 #elif defined(EXT2_IOC_GETFLAGS) && defined(EXT2_NODUMP_FL) &&\
1007       defined(HAVE_WORKING_EXT2_IOC_GETFLAGS)
1008                 if (S_ISREG(st->st_mode) || S_ISDIR(st->st_mode)) {
1009                         int stflags;
1010
1011                         t->entry_fd = open_on_current_dir(t,
1012                             tree_current_access_path(t),
1013                             O_RDONLY | O_NONBLOCK | O_CLOEXEC);
1014                         __archive_ensure_cloexec_flag(t->entry_fd);
1015                         if (t->entry_fd >= 0) {
1016                                 r = ioctl(t->entry_fd, EXT2_IOC_GETFLAGS,
1017                                         &stflags);
1018                                 if (r == 0 && (stflags & EXT2_NODUMP_FL) != 0)
1019                                         return (ARCHIVE_RETRY);
1020                         }
1021                 }
1022 #endif
1023         }
1024
1025         archive_entry_copy_stat(entry, st);
1026
1027         /* Save the times to be restored. This must be in before
1028          * calling archive_read_disk_descend() or any chance of it,
1029          * especially, invokng a callback. */
1030         t->restore_time.mtime = archive_entry_mtime(entry);
1031         t->restore_time.mtime_nsec = archive_entry_mtime_nsec(entry);
1032         t->restore_time.atime = archive_entry_atime(entry);
1033         t->restore_time.atime_nsec = archive_entry_atime_nsec(entry);
1034         t->restore_time.filetype = archive_entry_filetype(entry);
1035         t->restore_time.noatime = t->current_filesystem->noatime;
1036
1037         /*
1038          * Perform time matching.
1039          */
1040         if (a->matching) {
1041                 r = archive_match_time_excluded(a->matching, entry);
1042                 if (r < 0) {
1043                         archive_set_error(&(a->archive), errno,
1044                             "Faild : %s", archive_error_string(a->matching));
1045                         return (r);
1046                 }
1047                 if (r) {
1048                         if (a->excluded_cb_func)
1049                                 a->excluded_cb_func(&(a->archive),
1050                                     a->excluded_cb_data, entry);
1051                         return (ARCHIVE_RETRY);
1052                 }
1053         }
1054
1055         /* Lookup uname/gname */
1056         name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry));
1057         if (name != NULL)
1058                 archive_entry_copy_uname(entry, name);
1059         name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry));
1060         if (name != NULL)
1061                 archive_entry_copy_gname(entry, name);
1062
1063         /*
1064          * Perform owner matching.
1065          */
1066         if (a->matching) {
1067                 r = archive_match_owner_excluded(a->matching, entry);
1068                 if (r < 0) {
1069                         archive_set_error(&(a->archive), errno,
1070                             "Faild : %s", archive_error_string(a->matching));
1071                         return (r);
1072                 }
1073                 if (r) {
1074                         if (a->excluded_cb_func)
1075                                 a->excluded_cb_func(&(a->archive),
1076                                     a->excluded_cb_data, entry);
1077                         return (ARCHIVE_RETRY);
1078                 }
1079         }
1080
1081         /*
1082          * Invoke a meta data filter callback.
1083          */
1084         if (a->metadata_filter_func) {
1085                 if (!a->metadata_filter_func(&(a->archive),
1086                     a->metadata_filter_data, entry))
1087                         return (ARCHIVE_RETRY);
1088         }
1089
1090         /*
1091          * Populate the archive_entry with metadata from the disk.
1092          */
1093         archive_entry_copy_sourcepath(entry, tree_current_access_path(t));
1094         r = archive_read_disk_entry_from_file(&(a->archive), entry,
1095                 t->entry_fd, st);
1096
1097         return (r);
1098 }
1099
1100 static int
1101 _archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
1102 {
1103         int ret;
1104         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1105         *entryp = NULL;
1106         ret = _archive_read_next_header2(_a, a->entry);
1107         *entryp = a->entry;
1108         return ret;
1109 }
1110
1111 static int
1112 _archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
1113 {
1114         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1115         struct tree *t;
1116         int r;
1117
1118         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1119             ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1120             "archive_read_next_header2");
1121
1122         t = a->tree;
1123         if (t->entry_fd >= 0) {
1124                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
1125                 t->entry_fd = -1;
1126         }
1127
1128         for (;;) {
1129                 r = next_entry(a, t, entry);
1130                 if (t->entry_fd >= 0) {
1131                         close(t->entry_fd);
1132                         t->entry_fd = -1;
1133                 }
1134
1135                 if (r == ARCHIVE_RETRY) {
1136                         archive_entry_clear(entry);
1137                         continue;
1138                 }
1139                 break;
1140         }
1141
1142         /* Return to the initial directory. */
1143         tree_enter_initial_dir(t);
1144
1145         /*
1146          * EOF and FATAL are persistent at this layer.  By
1147          * modifying the state, we guarantee that future calls to
1148          * read a header or read data will fail.
1149          */
1150         switch (r) {
1151         case ARCHIVE_EOF:
1152                 a->archive.state = ARCHIVE_STATE_EOF;
1153                 break;
1154         case ARCHIVE_OK:
1155         case ARCHIVE_WARN:
1156                 /* Overwrite the sourcepath based on the initial directory. */
1157                 archive_entry_copy_sourcepath(entry, tree_current_path(t));
1158                 t->entry_total = 0;
1159                 if (archive_entry_filetype(entry) == AE_IFREG) {
1160                         t->nlink = archive_entry_nlink(entry);
1161                         t->entry_remaining_bytes = archive_entry_size(entry);
1162                         t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0;
1163                         if (!t->entry_eof &&
1164                             setup_sparse(a, entry) != ARCHIVE_OK)
1165                                 return (ARCHIVE_FATAL);
1166                 } else {
1167                         t->entry_remaining_bytes = 0;
1168                         t->entry_eof = 1;
1169                 }
1170                 a->archive.state = ARCHIVE_STATE_DATA;
1171                 break;
1172         case ARCHIVE_RETRY:
1173                 break;
1174         case ARCHIVE_FATAL:
1175                 a->archive.state = ARCHIVE_STATE_FATAL;
1176                 break;
1177         }
1178
1179         __archive_reset_read_data(&a->archive);
1180         return (r);
1181 }
1182
1183 static int
1184 setup_sparse(struct archive_read_disk *a, struct archive_entry *entry)
1185 {
1186         struct tree *t = a->tree;
1187         int64_t length, offset;
1188         int i;
1189
1190         t->sparse_count = archive_entry_sparse_reset(entry);
1191         if (t->sparse_count+1 > t->sparse_list_size) {
1192                 free(t->sparse_list);
1193                 t->sparse_list_size = t->sparse_count + 1;
1194                 t->sparse_list = malloc(sizeof(t->sparse_list[0]) *
1195                     t->sparse_list_size);
1196                 if (t->sparse_list == NULL) {
1197                         t->sparse_list_size = 0;
1198                         archive_set_error(&a->archive, ENOMEM,
1199                             "Can't allocate data");
1200                         a->archive.state = ARCHIVE_STATE_FATAL;
1201                         return (ARCHIVE_FATAL);
1202                 }
1203         }
1204         for (i = 0; i < t->sparse_count; i++) {
1205                 archive_entry_sparse_next(entry, &offset, &length);
1206                 t->sparse_list[i].offset = offset;
1207                 t->sparse_list[i].length = length;
1208         }
1209         if (i == 0) {
1210                 t->sparse_list[i].offset = 0;
1211                 t->sparse_list[i].length = archive_entry_size(entry);
1212         } else {
1213                 t->sparse_list[i].offset = archive_entry_size(entry);
1214                 t->sparse_list[i].length = 0;
1215         }
1216         t->current_sparse = t->sparse_list;
1217
1218         return (ARCHIVE_OK);
1219 }
1220
1221 int
1222 archive_read_disk_set_matching(struct archive *_a, struct archive *_ma,
1223     void (*_excluded_func)(struct archive *, void *, struct archive_entry *),
1224     void *_client_data)
1225 {
1226         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1227         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1228             ARCHIVE_STATE_ANY, "archive_read_disk_set_matching");
1229         a->matching = _ma;
1230         a->excluded_cb_func = _excluded_func;
1231         a->excluded_cb_data = _client_data;
1232         return (ARCHIVE_OK);
1233 }
1234
1235 int
1236 archive_read_disk_set_metadata_filter_callback(struct archive *_a,
1237     int (*_metadata_filter_func)(struct archive *, void *,
1238     struct archive_entry *), void *_client_data)
1239 {
1240         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1241
1242         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY,
1243             "archive_read_disk_set_metadata_filter_callback");
1244
1245         a->metadata_filter_func = _metadata_filter_func;
1246         a->metadata_filter_data = _client_data;
1247         return (ARCHIVE_OK);
1248 }
1249
1250 int
1251 archive_read_disk_can_descend(struct archive *_a)
1252 {
1253         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1254         struct tree *t = a->tree;
1255
1256         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1257             ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1258             "archive_read_disk_can_descend");
1259
1260         return (t->visit_type == TREE_REGULAR && t->descend);
1261 }
1262
1263 /*
1264  * Called by the client to mark the directory just returned from
1265  * tree_next() as needing to be visited.
1266  */
1267 int
1268 archive_read_disk_descend(struct archive *_a)
1269 {
1270         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1271         struct tree *t = a->tree;
1272
1273         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1274             ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1275             "archive_read_disk_descend");
1276
1277         if (t->visit_type != TREE_REGULAR || !t->descend)
1278                 return (ARCHIVE_OK);
1279
1280         if (tree_current_is_physical_dir(t)) {
1281                 tree_push(t, t->basename, t->current_filesystem_id,
1282                     t->lst.st_dev, t->lst.st_ino, &t->restore_time);
1283                 t->stack->flags |= isDir;
1284         } else if (tree_current_is_dir(t)) {
1285                 tree_push(t, t->basename, t->current_filesystem_id,
1286                     t->st.st_dev, t->st.st_ino, &t->restore_time);
1287                 t->stack->flags |= isDirLink;
1288         }
1289         t->descend = 0;
1290         return (ARCHIVE_OK);
1291 }
1292
1293 int
1294 archive_read_disk_open(struct archive *_a, const char *pathname)
1295 {
1296         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1297
1298         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1299             ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1300             "archive_read_disk_open");
1301         archive_clear_error(&a->archive);
1302
1303         return (_archive_read_disk_open(_a, pathname));
1304 }
1305
1306 int
1307 archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
1308 {
1309         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1310         struct archive_string path;
1311         int ret;
1312
1313         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1314             ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1315             "archive_read_disk_open_w");
1316         archive_clear_error(&a->archive);
1317
1318         /* Make a char string from a wchar_t string. */
1319         archive_string_init(&path);
1320         if (archive_string_append_from_wcs(&path, pathname,
1321             wcslen(pathname)) != 0) {
1322                 if (errno == ENOMEM)
1323                         archive_set_error(&a->archive, ENOMEM,
1324                             "Can't allocate memory");
1325                 else
1326                         archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1327                             "Can't convert a path to a char string");
1328                 a->archive.state = ARCHIVE_STATE_FATAL;
1329                 ret = ARCHIVE_FATAL;
1330         } else
1331                 ret = _archive_read_disk_open(_a, path.s);
1332
1333         archive_string_free(&path);
1334         return (ret);
1335 }
1336
1337 static int
1338 _archive_read_disk_open(struct archive *_a, const char *pathname)
1339 {
1340         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1341
1342         if (a->tree != NULL)
1343                 a->tree = tree_reopen(a->tree, pathname, a->restore_time);
1344         else
1345                 a->tree = tree_open(pathname, a->symlink_mode,
1346                     a->restore_time);
1347         if (a->tree == NULL) {
1348                 archive_set_error(&a->archive, ENOMEM,
1349                     "Can't allocate tar data");
1350                 a->archive.state = ARCHIVE_STATE_FATAL;
1351                 return (ARCHIVE_FATAL);
1352         }
1353         a->archive.state = ARCHIVE_STATE_HEADER;
1354
1355         return (ARCHIVE_OK);
1356 }
1357
1358 /*
1359  * Return a current filesystem ID which is index of the filesystem entry
1360  * you've visited through archive_read_disk.
1361  */
1362 int
1363 archive_read_disk_current_filesystem(struct archive *_a)
1364 {
1365         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1366
1367         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1368             "archive_read_disk_current_filesystem");
1369
1370         return (a->tree->current_filesystem_id);
1371 }
1372
1373 static int
1374 update_current_filesystem(struct archive_read_disk *a, int64_t dev)
1375 {
1376         struct tree *t = a->tree;
1377         int i, fid;
1378
1379         if (t->current_filesystem != NULL &&
1380             t->current_filesystem->dev == dev)
1381                 return (ARCHIVE_OK);
1382
1383         for (i = 0; i < t->max_filesystem_id; i++) {
1384                 if (t->filesystem_table[i].dev == dev) {
1385                         /* There is the filesytem ID we've already generated. */
1386                         t->current_filesystem_id = i;
1387                         t->current_filesystem = &(t->filesystem_table[i]);
1388                         return (ARCHIVE_OK);
1389                 }
1390         }
1391
1392         /*
1393          * This is the new filesytem which we have to generate a new ID for.
1394          */
1395         fid = t->max_filesystem_id++;
1396         if (t->max_filesystem_id > t->allocated_filesytem) {
1397                 size_t s;
1398                 void *p;
1399
1400                 s = t->max_filesystem_id * 2;
1401                 p = realloc(t->filesystem_table,
1402                         s * sizeof(*t->filesystem_table));
1403                 if (p == NULL) {
1404                         archive_set_error(&a->archive, ENOMEM,
1405                             "Can't allocate tar data");
1406                         return (ARCHIVE_FATAL);
1407                 }
1408                 t->filesystem_table = (struct filesystem *)p;
1409                 t->allocated_filesytem = s;
1410         }
1411         t->current_filesystem_id = fid;
1412         t->current_filesystem = &(t->filesystem_table[fid]);
1413         t->current_filesystem->dev = dev;
1414         t->current_filesystem->allocation_ptr = NULL;
1415         t->current_filesystem->buff = NULL;
1416
1417         /* Setup the current filesystem properties which depend on
1418          * platform specific. */
1419         return (setup_current_filesystem(a));
1420 }
1421
1422 /*
1423  * Returns 1 if current filesystem is generated filesystem, 0 if it is not
1424  * or -1 if it is unknown.
1425  */
1426 int
1427 archive_read_disk_current_filesystem_is_synthetic(struct archive *_a)
1428 {
1429         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1430
1431         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1432             "archive_read_disk_current_filesystem");
1433
1434         return (a->tree->current_filesystem->synthetic);
1435 }
1436
1437 /*
1438  * Returns 1 if current filesystem is remote filesystem, 0 if it is not
1439  * or -1 if it is unknown.
1440  */
1441 int
1442 archive_read_disk_current_filesystem_is_remote(struct archive *_a)
1443 {
1444         struct archive_read_disk *a = (struct archive_read_disk *)_a;
1445
1446         archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1447             "archive_read_disk_current_filesystem");
1448
1449         return (a->tree->current_filesystem->remote);
1450 }
1451
1452 #if defined(_PC_REC_INCR_XFER_SIZE) && defined(_PC_REC_MAX_XFER_SIZE) &&\
1453         defined(_PC_REC_MIN_XFER_SIZE) && defined(_PC_REC_XFER_ALIGN)
1454 static int
1455 get_xfer_size(struct tree *t, int fd, const char *path)
1456 {
1457         t->current_filesystem->xfer_align = -1;
1458         errno = 0;
1459         if (fd >= 0) {
1460                 t->current_filesystem->incr_xfer_size =
1461                     fpathconf(fd, _PC_REC_INCR_XFER_SIZE);
1462                 t->current_filesystem->max_xfer_size =
1463                     fpathconf(fd, _PC_REC_MAX_XFER_SIZE);
1464                 t->current_filesystem->min_xfer_size =
1465                     fpathconf(fd, _PC_REC_MIN_XFER_SIZE);
1466                 t->current_filesystem->xfer_align =
1467                     fpathconf(fd, _PC_REC_XFER_ALIGN);
1468         } else if (path != NULL) {
1469                 t->current_filesystem->incr_xfer_size =
1470                     pathconf(path, _PC_REC_INCR_XFER_SIZE);
1471                 t->current_filesystem->max_xfer_size =
1472                     pathconf(path, _PC_REC_MAX_XFER_SIZE);
1473                 t->current_filesystem->min_xfer_size =
1474                     pathconf(path, _PC_REC_MIN_XFER_SIZE);
1475                 t->current_filesystem->xfer_align =
1476                     pathconf(path, _PC_REC_XFER_ALIGN);
1477         }
1478         /* At least we need an alignment size. */
1479         if (t->current_filesystem->xfer_align == -1)
1480                 return ((errno == EINVAL)?1:-1);
1481         else
1482                 return (0);
1483 }
1484 #else
1485 static int
1486 get_xfer_size(struct tree *t, int fd, const char *path)
1487 {
1488         (void)t; /* UNUSED */
1489         (void)fd; /* UNUSED */
1490         (void)path; /* UNUSED */
1491         return (1);/* Not supported */
1492 }
1493 #endif
1494
1495 #if defined(HAVE_STATFS) && defined(HAVE_FSTATFS) && defined(MNT_LOCAL) \
1496         && !defined(ST_LOCAL)
1497
1498 /*
1499  * Gather current filesystem properties on FreeBSD, OpenBSD and Mac OS X.
1500  */
1501 static int
1502 setup_current_filesystem(struct archive_read_disk *a)
1503 {
1504         struct tree *t = a->tree;
1505         struct statfs sfs;
1506 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1507 #  if defined(HAVE_STRUCT_VFSCONF)
1508         struct vfsconf vfc;
1509 #  else
1510         struct xvfsconf vfc;
1511 #  endif
1512 #endif
1513         int r, xr = 0;
1514 #if !defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1515         long nm;
1516 #endif
1517
1518         t->current_filesystem->synthetic = -1;
1519         t->current_filesystem->remote = -1;
1520         if (tree_current_is_symblic_link_target(t)) {
1521 #if defined(HAVE_OPENAT)
1522                 /*
1523                  * Get file system statistics on any directory
1524                  * where current is.
1525                  */
1526                 int fd = openat(tree_current_dir_fd(t),
1527                     tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1528                 __archive_ensure_cloexec_flag(fd);
1529                 if (fd < 0) {
1530                         archive_set_error(&a->archive, errno,
1531                             "openat failed");
1532                         return (ARCHIVE_FAILED);
1533                 }
1534                 r = fstatfs(fd, &sfs);
1535                 if (r == 0)
1536                         xr = get_xfer_size(t, fd, NULL);
1537                 close(fd);
1538 #else
1539                 if (tree_enter_working_dir(t) != 0) {
1540                         archive_set_error(&a->archive, errno, "fchdir failed");
1541                         return (ARCHIVE_FAILED);
1542                 }
1543                 r = statfs(tree_current_access_path(t), &sfs);
1544                 if (r == 0)
1545                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1546 #endif
1547         } else {
1548                 r = fstatfs(tree_current_dir_fd(t), &sfs);
1549                 if (r == 0)
1550                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1551         }
1552         if (r == -1 || xr == -1) {
1553                 archive_set_error(&a->archive, errno, "statfs failed");
1554                 return (ARCHIVE_FAILED);
1555         } else if (xr == 1) {
1556                 /* pathconf(_PC_REX_*) operations are not supported. */
1557                 t->current_filesystem->xfer_align = sfs.f_bsize;
1558                 t->current_filesystem->max_xfer_size = -1;
1559                 t->current_filesystem->min_xfer_size = sfs.f_iosize;
1560                 t->current_filesystem->incr_xfer_size = sfs.f_iosize;
1561         }
1562         if (sfs.f_flags & MNT_LOCAL)
1563                 t->current_filesystem->remote = 0;
1564         else
1565                 t->current_filesystem->remote = 1;
1566
1567 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1568         r = getvfsbyname(sfs.f_fstypename, &vfc);
1569         if (r == -1) {
1570                 archive_set_error(&a->archive, errno, "getvfsbyname failed");
1571                 return (ARCHIVE_FAILED);
1572         }
1573         if (vfc.vfc_flags & VFCF_SYNTHETIC)
1574                 t->current_filesystem->synthetic = 1;
1575         else
1576                 t->current_filesystem->synthetic = 0;
1577 #endif
1578
1579 #if defined(MNT_NOATIME)
1580         if (sfs.f_flags & MNT_NOATIME)
1581                 t->current_filesystem->noatime = 1;
1582         else
1583 #endif
1584                 t->current_filesystem->noatime = 0;
1585
1586 #if defined(HAVE_READDIR_R)
1587         /* Set maximum filename length. */
1588 #if defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1589         t->current_filesystem->name_max = sfs.f_namemax;
1590 #else
1591 # if defined(_PC_NAME_MAX)
1592         /* Mac OS X does not have f_namemax in struct statfs. */
1593         if (tree_current_is_symblic_link_target(t)) {
1594                 if (tree_enter_working_dir(t) != 0) {
1595                         archive_set_error(&a->archive, errno, "fchdir failed");
1596                         return (ARCHIVE_FAILED);
1597                 }
1598                 nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1599         } else
1600                 nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
1601 # else
1602         nm = -1;
1603 # endif
1604         if (nm == -1)
1605                 t->current_filesystem->name_max = NAME_MAX;
1606         else
1607                 t->current_filesystem->name_max = nm;
1608 #endif
1609 #endif /* HAVE_READDIR_R */
1610         return (ARCHIVE_OK);
1611 }
1612
1613 #elif (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) && defined(ST_LOCAL)
1614
1615 /*
1616  * Gather current filesystem properties on NetBSD
1617  */
1618 static int
1619 setup_current_filesystem(struct archive_read_disk *a)
1620 {
1621         struct tree *t = a->tree;
1622         struct statvfs sfs;
1623         int r, xr = 0;
1624
1625         t->current_filesystem->synthetic = -1;
1626         if (tree_enter_working_dir(t) != 0) {
1627                 archive_set_error(&a->archive, errno, "fchdir failed");
1628                 return (ARCHIVE_FAILED);
1629         }
1630         if (tree_current_is_symblic_link_target(t)) {
1631                 r = statvfs(tree_current_access_path(t), &sfs);
1632                 if (r == 0)
1633                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1634         } else {
1635 #ifdef HAVE_FSTATVFS
1636                 r = fstatvfs(tree_current_dir_fd(t), &sfs);
1637                 if (r == 0)
1638                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1639 #else
1640                 r = statvfs(".", &sfs);
1641                 if (r == 0)
1642                         xr = get_xfer_size(t, -1, ".");
1643 #endif
1644         }
1645         if (r == -1 || xr == -1) {
1646                 t->current_filesystem->remote = -1;
1647                 archive_set_error(&a->archive, errno, "statvfs failed");
1648                 return (ARCHIVE_FAILED);
1649         } else if (xr == 1) {
1650                 /* Usuall come here unless NetBSD supports _PC_REC_XFER_ALIGN
1651                  * for pathconf() function. */
1652                 t->current_filesystem->xfer_align = sfs.f_frsize;
1653                 t->current_filesystem->max_xfer_size = -1;
1654 #if defined(HAVE_STRUCT_STATVFS_F_IOSIZE)
1655                 t->current_filesystem->min_xfer_size = sfs.f_iosize;
1656                 t->current_filesystem->incr_xfer_size = sfs.f_iosize;
1657 #else
1658                 t->current_filesystem->min_xfer_size = sfs.f_bsize;
1659                 t->current_filesystem->incr_xfer_size = sfs.f_bsize;
1660 #endif
1661         }
1662         if (sfs.f_flag & ST_LOCAL)
1663                 t->current_filesystem->remote = 0;
1664         else
1665                 t->current_filesystem->remote = 1;
1666
1667 #if defined(ST_NOATIME)
1668         if (sfs.f_flag & ST_NOATIME)
1669                 t->current_filesystem->noatime = 1;
1670         else
1671 #endif
1672                 t->current_filesystem->noatime = 0;
1673
1674         /* Set maximum filename length. */
1675         t->current_filesystem->name_max = sfs.f_namemax;
1676         return (ARCHIVE_OK);
1677 }
1678
1679 #elif defined(HAVE_SYS_STATFS_H) && defined(HAVE_LINUX_MAGIC_H) &&\
1680         defined(HAVE_STATFS) && defined(HAVE_FSTATFS)
1681 /*
1682  * Note: statfs is deprecated since LSB 3.2
1683  */
1684
1685 #ifndef CIFS_SUPER_MAGIC
1686 #define CIFS_SUPER_MAGIC 0xFF534D42
1687 #endif
1688 #ifndef DEVFS_SUPER_MAGIC
1689 #define DEVFS_SUPER_MAGIC 0x1373
1690 #endif
1691
1692 /*
1693  * Gather current filesystem properties on Linux
1694  */
1695 static int
1696 setup_current_filesystem(struct archive_read_disk *a)
1697 {
1698         struct tree *t = a->tree;
1699         struct statfs sfs;
1700 #if defined(HAVE_STATVFS)
1701         struct statvfs svfs;
1702 #endif
1703         int r, vr = 0, xr = 0;
1704
1705         if (tree_current_is_symblic_link_target(t)) {
1706 #if defined(HAVE_OPENAT)
1707                 /*
1708                  * Get file system statistics on any directory
1709                  * where current is.
1710                  */
1711                 int fd = openat(tree_current_dir_fd(t),
1712                     tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1713                 __archive_ensure_cloexec_flag(fd);
1714                 if (fd < 0) {
1715                         archive_set_error(&a->archive, errno,
1716                             "openat failed");
1717                         return (ARCHIVE_FAILED);
1718                 }
1719 #if defined(HAVE_FSTATVFS)
1720                 vr = fstatvfs(fd, &svfs);/* for f_flag, mount flags */
1721 #endif
1722                 r = fstatfs(fd, &sfs);
1723                 if (r == 0)
1724                         xr = get_xfer_size(t, fd, NULL);
1725                 close(fd);
1726 #else
1727                 if (tree_enter_working_dir(t) != 0) {
1728                         archive_set_error(&a->archive, errno, "fchdir failed");
1729                         return (ARCHIVE_FAILED);
1730                 }
1731 #if defined(HAVE_STATVFS)
1732                 vr = statvfs(tree_current_access_path(t), &svfs);
1733 #endif
1734                 r = statfs(tree_current_access_path(t), &sfs);
1735                 if (r == 0)
1736                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1737 #endif
1738         } else {
1739 #ifdef HAVE_FSTATFS
1740 #if defined(HAVE_FSTATVFS)
1741                 vr = fstatvfs(tree_current_dir_fd(t), &svfs);
1742 #endif
1743                 r = fstatfs(tree_current_dir_fd(t), &sfs);
1744                 if (r == 0)
1745                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1746 #else
1747                 if (tree_enter_working_dir(t) != 0) {
1748                         archive_set_error(&a->archive, errno, "fchdir failed");
1749                         return (ARCHIVE_FAILED);
1750                 }
1751 #if defined(HAVE_STATVFS)
1752                 vr = statvfs(".", &svfs);
1753 #endif
1754                 r = statfs(".", &sfs);
1755                 if (r == 0)
1756                         xr = get_xfer_size(t, -1, ".");
1757 #endif
1758         }
1759         if (r == -1 || xr == -1 || vr == -1) {
1760                 t->current_filesystem->synthetic = -1;
1761                 t->current_filesystem->remote = -1;
1762                 archive_set_error(&a->archive, errno, "statfs failed");
1763                 return (ARCHIVE_FAILED);
1764         } else if (xr == 1) {
1765                 /* pathconf(_PC_REX_*) operations are not supported. */
1766 #if defined(HAVE_STATVFS)
1767                 t->current_filesystem->xfer_align = svfs.f_frsize;
1768                 t->current_filesystem->max_xfer_size = -1;
1769                 t->current_filesystem->min_xfer_size = svfs.f_bsize;
1770                 t->current_filesystem->incr_xfer_size = svfs.f_bsize;
1771 #else
1772                 t->current_filesystem->xfer_align = sfs.f_frsize;
1773                 t->current_filesystem->max_xfer_size = -1;
1774                 t->current_filesystem->min_xfer_size = sfs.f_bsize;
1775                 t->current_filesystem->incr_xfer_size = sfs.f_bsize;
1776 #endif
1777         }
1778         switch (sfs.f_type) {
1779         case AFS_SUPER_MAGIC:
1780         case CIFS_SUPER_MAGIC:
1781         case CODA_SUPER_MAGIC:
1782         case NCP_SUPER_MAGIC:/* NetWare */
1783         case NFS_SUPER_MAGIC:
1784         case SMB_SUPER_MAGIC:
1785                 t->current_filesystem->remote = 1;
1786                 t->current_filesystem->synthetic = 0;
1787                 break;
1788         case DEVFS_SUPER_MAGIC:
1789         case PROC_SUPER_MAGIC:
1790         case USBDEVICE_SUPER_MAGIC:
1791                 t->current_filesystem->remote = 0;
1792                 t->current_filesystem->synthetic = 1;
1793                 break;
1794         default:
1795                 t->current_filesystem->remote = 0;
1796                 t->current_filesystem->synthetic = 0;
1797                 break;
1798         }
1799
1800 #if defined(ST_NOATIME)
1801 #if defined(HAVE_STATVFS)
1802         if (svfs.f_flag & ST_NOATIME)
1803 #else
1804         if (sfs.f_flag & ST_NOATIME)
1805 #endif
1806                 t->current_filesystem->noatime = 1;
1807         else
1808 #endif
1809                 t->current_filesystem->noatime = 0;
1810
1811 #if defined(HAVE_READDIR_R)
1812         /* Set maximum filename length. */
1813         t->current_filesystem->name_max = sfs.f_namelen;
1814 #endif
1815         return (ARCHIVE_OK);
1816 }
1817
1818 #elif defined(HAVE_SYS_STATVFS_H) &&\
1819         (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS))
1820
1821 /*
1822  * Gather current filesystem properties on other posix platform.
1823  */
1824 static int
1825 setup_current_filesystem(struct archive_read_disk *a)
1826 {
1827         struct tree *t = a->tree;
1828         struct statvfs sfs;
1829         int r, xr = 0;
1830
1831         t->current_filesystem->synthetic = -1;/* Not supported */
1832         t->current_filesystem->remote = -1;/* Not supported */
1833         if (tree_current_is_symblic_link_target(t)) {
1834 #if defined(HAVE_OPENAT)
1835                 /*
1836                  * Get file system statistics on any directory
1837                  * where current is.
1838                  */
1839                 int fd = openat(tree_current_dir_fd(t),
1840                     tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1841                 __archive_ensure_cloexec_flag(fd);
1842                 if (fd < 0) {
1843                         archive_set_error(&a->archive, errno,
1844                             "openat failed");
1845                         return (ARCHIVE_FAILED);
1846                 }
1847                 r = fstatvfs(fd, &sfs);
1848                 if (r == 0)
1849                         xr = get_xfer_size(t, fd, NULL);
1850                 close(fd);
1851 #else
1852                 if (tree_enter_working_dir(t) != 0) {
1853                         archive_set_error(&a->archive, errno, "fchdir failed");
1854                         return (ARCHIVE_FAILED);
1855                 }
1856                 r = statvfs(tree_current_access_path(t), &sfs);
1857                 if (r == 0)
1858                         xr = get_xfer_size(t, -1, tree_current_access_path(t));
1859 #endif
1860         } else {
1861 #ifdef HAVE_FSTATVFS
1862                 r = fstatvfs(tree_current_dir_fd(t), &sfs);
1863                 if (r == 0)
1864                         xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1865 #else
1866                 if (tree_enter_working_dir(t) != 0) {
1867                         archive_set_error(&a->archive, errno, "fchdir failed");
1868                         return (ARCHIVE_FAILED);
1869                 }
1870                 r = statvfs(".", &sfs);
1871                 if (r == 0)
1872                         xr = get_xfer_size(t, -1, ".");
1873 #endif
1874         }
1875         if (r == -1 || xr == -1) {
1876                 t->current_filesystem->synthetic = -1;
1877                 t->current_filesystem->remote = -1;
1878                 archive_set_error(&a->archive, errno, "statvfs failed");
1879                 return (ARCHIVE_FAILED);
1880         } else if (xr == 1) {
1881                 /* pathconf(_PC_REX_*) operations are not supported. */
1882                 t->current_filesystem->xfer_align = sfs.f_frsize;
1883                 t->current_filesystem->max_xfer_size = -1;
1884                 t->current_filesystem->min_xfer_size = sfs.f_bsize;
1885                 t->current_filesystem->incr_xfer_size = sfs.f_bsize;
1886         }
1887
1888 #if defined(ST_NOATIME)
1889         if (sfs.f_flag & ST_NOATIME)
1890                 t->current_filesystem->noatime = 1;
1891         else
1892 #endif
1893                 t->current_filesystem->noatime = 0;
1894
1895 #if defined(HAVE_READDIR_R)
1896         /* Set maximum filename length. */
1897         t->current_filesystem->name_max = sfs.f_namemax;
1898 #endif
1899         return (ARCHIVE_OK);
1900 }
1901
1902 #else
1903
1904 /*
1905  * Generic: Gather current filesystem properties.
1906  * TODO: Is this generic function really needed?
1907  */
1908 static int
1909 setup_current_filesystem(struct archive_read_disk *a)
1910 {
1911         struct tree *t = a->tree;
1912 #if defined(_PC_NAME_MAX) && defined(HAVE_READDIR_R)
1913         long nm;
1914 #endif
1915         t->current_filesystem->synthetic = -1;/* Not supported */
1916         t->current_filesystem->remote = -1;/* Not supported */
1917         t->current_filesystem->noatime = 0;
1918         (void)get_xfer_size(t, -1, ".");/* Dummy call to avoid build error. */
1919         t->current_filesystem->xfer_align = -1;/* Unknown */
1920         t->current_filesystem->max_xfer_size = -1;
1921         t->current_filesystem->min_xfer_size = -1;
1922         t->current_filesystem->incr_xfer_size = -1;
1923
1924 #if defined(HAVE_READDIR_R)
1925         /* Set maximum filename length. */
1926 #  if defined(_PC_NAME_MAX)
1927         if (tree_current_is_symblic_link_target(t)) {
1928                 if (tree_enter_working_dir(t) != 0) {
1929                         archive_set_error(&a->archive, errno, "fchdir failed");
1930                         return (ARCHIVE_FAILED);
1931                 }
1932                 nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1933         } else
1934                 nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
1935         if (nm == -1)
1936 #  endif /* _PC_NAME_MAX */
1937                 /*
1938                  * Some sysmtes (HP-UX or others?) incorrectly defined
1939                  * NAME_MAX macro to be a smaller value.
1940                  */
1941 #  if defined(NAME_MAX) && NAME_MAX >= 255
1942                 t->current_filesystem->name_max = NAME_MAX;
1943 #  else
1944                 /* No way to get a trusted value of maximum filename
1945                  * length. */
1946                 t->current_filesystem->name_max = PATH_MAX;
1947 #  endif /* NAME_MAX */
1948 #  if defined(_PC_NAME_MAX)
1949         else
1950                 t->current_filesystem->name_max = nm;
1951 #  endif /* _PC_NAME_MAX */
1952 #endif /* HAVE_READDIR_R */
1953         return (ARCHIVE_OK);
1954 }
1955
1956 #endif
1957
1958 static int
1959 close_and_restore_time(int fd, struct tree *t, struct restore_time *rt)
1960 {
1961 #ifndef HAVE_UTIMES
1962         (void)t; /* UNUSED */
1963         (void)rt; /* UNUSED */
1964         return (close(fd));
1965 #else
1966 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
1967         struct timespec timespecs[2];
1968 #endif
1969         struct timeval times[2];
1970
1971         if ((t->flags & needsRestoreTimes) == 0 || rt->noatime) {
1972                 if (fd >= 0)
1973                         return (close(fd));
1974                 else
1975                         return (0);
1976         }
1977
1978 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
1979         timespecs[1].tv_sec = rt->mtime;
1980         timespecs[1].tv_nsec = rt->mtime_nsec;
1981
1982         timespecs[0].tv_sec = rt->atime;
1983         timespecs[0].tv_nsec = rt->atime_nsec;
1984         /* futimens() is defined in POSIX.1-2008. */
1985         if (futimens(fd, timespecs) == 0)
1986                 return (close(fd));
1987 #endif
1988
1989         times[1].tv_sec = rt->mtime;
1990         times[1].tv_usec = rt->mtime_nsec / 1000;
1991
1992         times[0].tv_sec = rt->atime;
1993         times[0].tv_usec = rt->atime_nsec / 1000;
1994
1995 #if !defined(HAVE_FUTIMENS) && defined(HAVE_FUTIMES) && !defined(__CYGWIN__)
1996         if (futimes(fd, times) == 0)
1997                 return (close(fd));
1998 #endif
1999         close(fd);
2000 #if defined(HAVE_FUTIMESAT)
2001         if (futimesat(tree_current_dir_fd(t), rt->name, times) == 0)
2002                 return (0);
2003 #endif
2004 #ifdef HAVE_LUTIMES
2005         if (lutimes(rt->name, times) != 0)
2006 #else
2007         if (AE_IFLNK != rt->filetype && utimes(rt->name, times) != 0)
2008 #endif
2009                 return (-1);
2010 #endif
2011         return (0);
2012 }
2013
2014 static int
2015 open_on_current_dir(struct tree *t, const char *path, int flags)
2016 {
2017 #ifdef HAVE_OPENAT
2018         return (openat(tree_current_dir_fd(t), path, flags));
2019 #else
2020         if (tree_enter_working_dir(t) != 0)
2021                 return (-1);
2022         return (open(path, flags));
2023 #endif
2024 }
2025
2026 static int
2027 tree_dup(int fd)
2028 {
2029         int new_fd;
2030 #ifdef F_DUPFD_CLOEXEC
2031         static volatile int can_dupfd_cloexec = 1;
2032
2033         if (can_dupfd_cloexec) {
2034                 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
2035                 if (new_fd != -1)
2036                         return (new_fd);
2037                 /* Linux 2.6.18 - 2.6.23 declare F_DUPFD_CLOEXEC,
2038                  * but it cannot be used. So we have to try dup(). */
2039                 /* We won't try F_DUPFD_CLOEXEC. */
2040                 can_dupfd_cloexec = 0;
2041         }
2042 #endif /* F_DUPFD_CLOEXEC */
2043         new_fd = dup(fd);
2044         __archive_ensure_cloexec_flag(new_fd);
2045         return (new_fd);
2046 }
2047
2048 /*
2049  * Add a directory path to the current stack.
2050  */
2051 static void
2052 tree_push(struct tree *t, const char *path, int filesystem_id,
2053     int64_t dev, int64_t ino, struct restore_time *rt)
2054 {
2055         struct tree_entry *te;
2056
2057         te = malloc(sizeof(*te));
2058         memset(te, 0, sizeof(*te));
2059         te->next = t->stack;
2060         te->parent = t->current;
2061         if (te->parent)
2062                 te->depth = te->parent->depth + 1;
2063         t->stack = te;
2064         archive_string_init(&te->name);
2065         te->symlink_parent_fd = -1;
2066         archive_strcpy(&te->name, path);
2067         te->flags = needsDescent | needsOpen | needsAscent;
2068         te->filesystem_id = filesystem_id;
2069         te->dev = dev;
2070         te->ino = ino;
2071         te->dirname_length = t->dirname_length;
2072         te->restore_time.name = te->name.s;
2073         if (rt != NULL) {
2074                 te->restore_time.mtime = rt->mtime;
2075                 te->restore_time.mtime_nsec = rt->mtime_nsec;
2076                 te->restore_time.atime = rt->atime;
2077                 te->restore_time.atime_nsec = rt->atime_nsec;
2078                 te->restore_time.filetype = rt->filetype;
2079                 te->restore_time.noatime = rt->noatime;
2080         }
2081 }
2082
2083 /*
2084  * Append a name to the current dir path.
2085  */
2086 static void
2087 tree_append(struct tree *t, const char *name, size_t name_length)
2088 {
2089         size_t size_needed;
2090
2091         t->path.s[t->dirname_length] = '\0';
2092         t->path.length = t->dirname_length;
2093         /* Strip trailing '/' from name, unless entire name is "/". */
2094         while (name_length > 1 && name[name_length - 1] == '/')
2095                 name_length--;
2096
2097         /* Resize pathname buffer as needed. */
2098         size_needed = name_length + t->dirname_length + 2;
2099         archive_string_ensure(&t->path, size_needed);
2100         /* Add a separating '/' if it's needed. */
2101         if (t->dirname_length > 0 && t->path.s[archive_strlen(&t->path)-1] != '/')
2102                 archive_strappend_char(&t->path, '/');
2103         t->basename = t->path.s + archive_strlen(&t->path);
2104         archive_strncat(&t->path, name, name_length);
2105         t->restore_time.name = t->basename;
2106 }
2107
2108 /*
2109  * Open a directory tree for traversal.
2110  */
2111 static struct tree *
2112 tree_open(const char *path, int symlink_mode, int restore_time)
2113 {
2114         struct tree *t;
2115
2116         if ((t = malloc(sizeof(*t))) == NULL)
2117                 return (NULL);
2118         memset(t, 0, sizeof(*t));
2119         archive_string_init(&t->path);
2120         archive_string_ensure(&t->path, 31);
2121         t->initial_symlink_mode = symlink_mode;
2122         return (tree_reopen(t, path, restore_time));
2123 }
2124
2125 static struct tree *
2126 tree_reopen(struct tree *t, const char *path, int restore_time)
2127 {
2128         t->flags = (restore_time)?needsRestoreTimes:0;
2129         t->flags |= onInitialDir;
2130         t->visit_type = 0;
2131         t->tree_errno = 0;
2132         t->dirname_length = 0;
2133         t->depth = 0;
2134         t->descend = 0;
2135         t->current = NULL;
2136         t->d = INVALID_DIR_HANDLE;
2137         t->symlink_mode = t->initial_symlink_mode;
2138         archive_string_empty(&t->path);
2139         t->entry_fd = -1;
2140         t->entry_eof = 0;
2141         t->entry_remaining_bytes = 0;
2142         t->initial_filesystem_id = -1;
2143
2144         /* First item is set up a lot like a symlink traversal. */
2145         tree_push(t, path, 0, 0, 0, NULL);
2146         t->stack->flags = needsFirstVisit;
2147         t->maxOpenCount = t->openCount = 1;
2148         t->initial_dir_fd = open(".", O_RDONLY | O_CLOEXEC);
2149         __archive_ensure_cloexec_flag(t->initial_dir_fd);
2150         t->working_dir_fd = tree_dup(t->initial_dir_fd);
2151         return (t);
2152 }
2153
2154 static int
2155 tree_descent(struct tree *t)
2156 {
2157         int flag, new_fd, r = 0;
2158
2159         t->dirname_length = archive_strlen(&t->path);
2160         flag = O_RDONLY | O_CLOEXEC;
2161 #if defined(O_DIRECTORY)
2162         flag |= O_DIRECTORY;
2163 #endif
2164         new_fd = open_on_current_dir(t, t->stack->name.s, flag);
2165         __archive_ensure_cloexec_flag(new_fd);
2166         if (new_fd < 0) {
2167                 t->tree_errno = errno;
2168                 r = TREE_ERROR_DIR;
2169         } else {
2170                 t->depth++;
2171                 /* If it is a link, set up fd for the ascent. */
2172                 if (t->stack->flags & isDirLink) {
2173                         t->stack->symlink_parent_fd = t->working_dir_fd;
2174                         t->openCount++;
2175                         if (t->openCount > t->maxOpenCount)
2176                                 t->maxOpenCount = t->openCount;
2177                 } else
2178                         close(t->working_dir_fd);
2179                 /* Renew the current working directory. */
2180                 t->working_dir_fd = new_fd;
2181                 t->flags &= ~onWorkingDir;
2182         }
2183         return (r);
2184 }
2185
2186 /*
2187  * We've finished a directory; ascend back to the parent.
2188  */
2189 static int
2190 tree_ascend(struct tree *t)
2191 {
2192         struct tree_entry *te;
2193         int new_fd, r = 0, prev_dir_fd;
2194
2195         te = t->stack;
2196         prev_dir_fd = t->working_dir_fd;
2197         if (te->flags & isDirLink)
2198                 new_fd = te->symlink_parent_fd;
2199         else {
2200                 new_fd = open_on_current_dir(t, "..", O_RDONLY | O_CLOEXEC);
2201                 __archive_ensure_cloexec_flag(new_fd);
2202         }
2203         if (new_fd < 0) {
2204                 t->tree_errno = errno;
2205                 r = TREE_ERROR_FATAL;
2206         } else {
2207                 /* Renew the current working directory. */
2208                 t->working_dir_fd = new_fd;
2209                 t->flags &= ~onWorkingDir;
2210                 /* Current directory has been changed, we should
2211                  * close an fd of previous working directory. */
2212                 close_and_restore_time(prev_dir_fd, t, &te->restore_time);
2213                 if (te->flags & isDirLink) {
2214                         t->openCount--;
2215                         te->symlink_parent_fd = -1;
2216                 }
2217                 t->depth--;
2218         }
2219         return (r);
2220 }
2221
2222 /*
2223  * Return to the initial directory where tree_open() was performed.
2224  */
2225 static int
2226 tree_enter_initial_dir(struct tree *t)
2227 {
2228         int r = 0;
2229
2230         if ((t->flags & onInitialDir) == 0) {
2231                 r = fchdir(t->initial_dir_fd);
2232                 if (r == 0) {
2233                         t->flags &= ~onWorkingDir;
2234                         t->flags |= onInitialDir;
2235                 }
2236         }
2237         return (r);
2238 }
2239
2240 /*
2241  * Restore working directory of directory traversals.
2242  */
2243 static int
2244 tree_enter_working_dir(struct tree *t)
2245 {
2246         int r = 0;
2247
2248         /*
2249          * Change the current directory if really needed.
2250          * Sometimes this is unneeded when we did not do
2251          * descent.
2252          */
2253         if (t->depth > 0 && (t->flags & onWorkingDir) == 0) {
2254                 r = fchdir(t->working_dir_fd);
2255                 if (r == 0) {
2256                         t->flags &= ~onInitialDir;
2257                         t->flags |= onWorkingDir;
2258                 }
2259         }
2260         return (r);
2261 }
2262
2263 static int
2264 tree_current_dir_fd(struct tree *t)
2265 {
2266         return (t->working_dir_fd);
2267 }
2268
2269 /*
2270  * Pop the working stack.
2271  */
2272 static void
2273 tree_pop(struct tree *t)
2274 {
2275         struct tree_entry *te;
2276
2277         t->path.s[t->dirname_length] = '\0';
2278         t->path.length = t->dirname_length;
2279         if (t->stack == t->current && t->current != NULL)
2280                 t->current = t->current->parent;
2281         te = t->stack;
2282         t->stack = te->next;
2283         t->dirname_length = te->dirname_length;
2284         t->basename = t->path.s + t->dirname_length;
2285         while (t->basename[0] == '/')
2286                 t->basename++;
2287         archive_string_free(&te->name);
2288         free(te);
2289 }
2290
2291 /*
2292  * Get the next item in the tree traversal.
2293  */
2294 static int
2295 tree_next(struct tree *t)
2296 {
2297         int r;
2298
2299         while (t->stack != NULL) {
2300                 /* If there's an open dir, get the next entry from there. */
2301                 if (t->d != INVALID_DIR_HANDLE) {
2302                         r = tree_dir_next_posix(t);
2303                         if (r == 0)
2304                                 continue;
2305                         return (r);
2306                 }
2307
2308                 if (t->stack->flags & needsFirstVisit) {
2309                         /* Top stack item needs a regular visit. */
2310                         t->current = t->stack;
2311                         tree_append(t, t->stack->name.s,
2312                             archive_strlen(&(t->stack->name)));
2313                         /* t->dirname_length = t->path_length; */
2314                         /* tree_pop(t); */
2315                         t->stack->flags &= ~needsFirstVisit;
2316                         return (t->visit_type = TREE_REGULAR);
2317                 } else if (t->stack->flags & needsDescent) {
2318                         /* Top stack item is dir to descend into. */
2319                         t->current = t->stack;
2320                         tree_append(t, t->stack->name.s,
2321                             archive_strlen(&(t->stack->name)));
2322                         t->stack->flags &= ~needsDescent;
2323                         r = tree_descent(t);
2324                         if (r != 0) {
2325                                 tree_pop(t);
2326                                 t->visit_type = r;
2327                         } else
2328                                 t->visit_type = TREE_POSTDESCENT;
2329                         return (t->visit_type);
2330                 } else if (t->stack->flags & needsOpen) {
2331                         t->stack->flags &= ~needsOpen;
2332                         r = tree_dir_next_posix(t);
2333                         if (r == 0)
2334                                 continue;
2335                         return (r);
2336                 } else if (t->stack->flags & needsAscent) {
2337                         /* Top stack item is dir and we're done with it. */
2338                         r = tree_ascend(t);
2339                         tree_pop(t);
2340                         t->visit_type = r != 0 ? r : TREE_POSTASCENT;
2341                         return (t->visit_type);
2342                 } else {
2343                         /* Top item on stack is dead. */
2344                         tree_pop(t);
2345                         t->flags &= ~hasLstat;
2346                         t->flags &= ~hasStat;
2347                 }
2348         }
2349         return (t->visit_type = 0);
2350 }
2351
2352 static int
2353 tree_dir_next_posix(struct tree *t)
2354 {
2355         int r;
2356         const char *name;
2357         size_t namelen;
2358
2359         if (t->d == NULL) {
2360 #if defined(HAVE_READDIR_R)
2361                 size_t dirent_size;
2362 #endif
2363
2364 #if defined(HAVE_FDOPENDIR)
2365                 t->d = fdopendir(tree_dup(t->working_dir_fd));
2366 #else /* HAVE_FDOPENDIR */
2367                 if (tree_enter_working_dir(t) == 0) {
2368                         t->d = opendir(".");
2369 #if HAVE_DIRFD || defined(dirfd)
2370                         __archive_ensure_cloexec_flag(dirfd(t->d));
2371 #endif
2372                 }
2373 #endif /* HAVE_FDOPENDIR */
2374                 if (t->d == NULL) {
2375                         r = tree_ascend(t); /* Undo "chdir" */
2376                         tree_pop(t);
2377                         t->tree_errno = errno;
2378                         t->visit_type = r != 0 ? r : TREE_ERROR_DIR;
2379                         return (t->visit_type);
2380                 }
2381 #if defined(HAVE_READDIR_R)
2382                 dirent_size = offsetof(struct dirent, d_name) +
2383                   t->filesystem_table[t->current->filesystem_id].name_max + 1;
2384                 if (t->dirent == NULL || t->dirent_allocated < dirent_size) {
2385                         free(t->dirent);
2386                         t->dirent = malloc(dirent_size);
2387                         if (t->dirent == NULL) {
2388                                 closedir(t->d);
2389                                 t->d = INVALID_DIR_HANDLE;
2390                                 (void)tree_ascend(t);
2391                                 tree_pop(t);
2392                                 t->tree_errno = ENOMEM;
2393                                 t->visit_type = TREE_ERROR_DIR;
2394                                 return (t->visit_type);
2395                         }
2396                         t->dirent_allocated = dirent_size;
2397                 }
2398 #endif /* HAVE_READDIR_R */
2399         }
2400         for (;;) {
2401                 errno = 0;
2402 #if defined(HAVE_READDIR_R)
2403                 r = readdir_r(t->d, t->dirent, &t->de);
2404 #ifdef _AIX
2405                 /* Note: According to the man page, return value 9 indicates
2406                  * that the readdir_r was not successful and the error code
2407                  * is set to the global errno variable. And then if the end
2408                  * of directory entries was reached, the return value is 9
2409                  * and the third parameter is set to NULL and errno is
2410                  * unchanged. */
2411                 if (r == 9)
2412                         r = errno;
2413 #endif /* _AIX */
2414                 if (r != 0 || t->de == NULL) {
2415 #else
2416                 t->de = readdir(t->d);
2417                 if (t->de == NULL) {
2418                         r = errno;
2419 #endif
2420                         closedir(t->d);
2421                         t->d = INVALID_DIR_HANDLE;
2422                         if (r != 0) {
2423                                 t->tree_errno = r;
2424                                 t->visit_type = TREE_ERROR_DIR;
2425                                 return (t->visit_type);
2426                         } else
2427                                 return (0);
2428                 }
2429                 name = t->de->d_name;
2430                 namelen = D_NAMELEN(t->de);
2431                 t->flags &= ~hasLstat;
2432                 t->flags &= ~hasStat;
2433                 if (name[0] == '.' && name[1] == '\0')
2434                         continue;
2435                 if (name[0] == '.' && name[1] == '.' && name[2] == '\0')
2436                         continue;
2437                 tree_append(t, name, namelen);
2438                 return (t->visit_type = TREE_REGULAR);
2439         }
2440 }
2441
2442
2443 /*
2444  * Get the stat() data for the entry just returned from tree_next().
2445  */
2446 static const struct stat *
2447 tree_current_stat(struct tree *t)
2448 {
2449         if (!(t->flags & hasStat)) {
2450 #ifdef HAVE_FSTATAT
2451                 if (fstatat(tree_current_dir_fd(t),
2452                     tree_current_access_path(t), &t->st, 0) != 0)
2453 #else
2454                 if (tree_enter_working_dir(t) != 0)
2455                         return NULL;
2456                 if (stat(tree_current_access_path(t), &t->st) != 0)
2457 #endif
2458                         return NULL;
2459                 t->flags |= hasStat;
2460         }
2461         return (&t->st);
2462 }
2463
2464 /*
2465  * Get the lstat() data for the entry just returned from tree_next().
2466  */
2467 static const struct stat *
2468 tree_current_lstat(struct tree *t)
2469 {
2470         if (!(t->flags & hasLstat)) {
2471 #ifdef HAVE_FSTATAT
2472                 if (fstatat(tree_current_dir_fd(t),
2473                     tree_current_access_path(t), &t->lst,
2474                     AT_SYMLINK_NOFOLLOW) != 0)
2475 #else
2476                 if (tree_enter_working_dir(t) != 0)
2477                         return NULL;
2478                 if (lstat(tree_current_access_path(t), &t->lst) != 0)
2479 #endif
2480                         return NULL;
2481                 t->flags |= hasLstat;
2482         }
2483         return (&t->lst);
2484 }
2485
2486 /*
2487  * Test whether current entry is a dir or link to a dir.
2488  */
2489 static int
2490 tree_current_is_dir(struct tree *t)
2491 {
2492         const struct stat *st;
2493         /*
2494          * If we already have lstat() info, then try some
2495          * cheap tests to determine if this is a dir.
2496          */
2497         if (t->flags & hasLstat) {
2498                 /* If lstat() says it's a dir, it must be a dir. */
2499                 st = tree_current_lstat(t);
2500                 if (st == NULL)
2501                         return 0;
2502                 if (S_ISDIR(st->st_mode))
2503                         return 1;
2504                 /* Not a dir; might be a link to a dir. */
2505                 /* If it's not a link, then it's not a link to a dir. */
2506                 if (!S_ISLNK(st->st_mode))
2507                         return 0;
2508                 /*
2509                  * It's a link, but we don't know what it's a link to,
2510                  * so we'll have to use stat().
2511                  */
2512         }
2513
2514         st = tree_current_stat(t);
2515         /* If we can't stat it, it's not a dir. */
2516         if (st == NULL)
2517                 return 0;
2518         /* Use the definitive test.  Hopefully this is cached. */
2519         return (S_ISDIR(st->st_mode));
2520 }
2521
2522 /*
2523  * Test whether current entry is a physical directory.  Usually, we
2524  * already have at least one of stat() or lstat() in memory, so we
2525  * use tricks to try to avoid an extra trip to the disk.
2526  */
2527 static int
2528 tree_current_is_physical_dir(struct tree *t)
2529 {
2530         const struct stat *st;
2531
2532         /*
2533          * If stat() says it isn't a dir, then it's not a dir.
2534          * If stat() data is cached, this check is free, so do it first.
2535          */
2536         if (t->flags & hasStat) {
2537                 st = tree_current_stat(t);
2538                 if (st == NULL)
2539                         return (0);
2540                 if (!S_ISDIR(st->st_mode))
2541                         return (0);
2542         }
2543
2544         /*
2545          * Either stat() said it was a dir (in which case, we have
2546          * to determine whether it's really a link to a dir) or
2547          * stat() info wasn't available.  So we use lstat(), which
2548          * hopefully is already cached.
2549          */
2550
2551         st = tree_current_lstat(t);
2552         /* If we can't stat it, it's not a dir. */
2553         if (st == NULL)
2554                 return 0;
2555         /* Use the definitive test.  Hopefully this is cached. */
2556         return (S_ISDIR(st->st_mode));
2557 }
2558
2559 /*
2560  * Test whether the same file has been in the tree as its parent.
2561  */
2562 static int
2563 tree_target_is_same_as_parent(struct tree *t, const struct stat *st)
2564 {
2565         struct tree_entry *te;
2566
2567         for (te = t->current->parent; te != NULL; te = te->parent) {
2568                 if (te->dev == (int64_t)st->st_dev &&
2569                     te->ino == (int64_t)st->st_ino)
2570                         return (1);
2571         }
2572         return (0);
2573 }
2574
2575 /*
2576  * Test whether the current file is symbolic link target and
2577  * on the other filesystem.
2578  */
2579 static int
2580 tree_current_is_symblic_link_target(struct tree *t)
2581 {
2582         static const struct stat *lst, *st;
2583
2584         lst = tree_current_lstat(t);
2585         st = tree_current_stat(t);
2586         return (st != NULL && lst != NULL &&
2587             (int64_t)st->st_dev == t->current_filesystem->dev &&
2588             st->st_dev != lst->st_dev);
2589 }
2590
2591 /*
2592  * Return the access path for the entry just returned from tree_next().
2593  */
2594 static const char *
2595 tree_current_access_path(struct tree *t)
2596 {
2597         return (t->basename);
2598 }
2599
2600 /*
2601  * Return the full path for the entry just returned from tree_next().
2602  */
2603 static const char *
2604 tree_current_path(struct tree *t)
2605 {
2606         return (t->path.s);
2607 }
2608
2609 /*
2610  * Terminate the traversal.
2611  */
2612 static void
2613 tree_close(struct tree *t)
2614 {
2615
2616         if (t == NULL)
2617                 return;
2618         if (t->entry_fd >= 0) {
2619                 close_and_restore_time(t->entry_fd, t, &t->restore_time);
2620                 t->entry_fd = -1;
2621         }
2622         /* Close the handle of readdir(). */
2623         if (t->d != INVALID_DIR_HANDLE) {
2624                 closedir(t->d);
2625                 t->d = INVALID_DIR_HANDLE;
2626         }
2627         /* Release anything remaining in the stack. */
2628         while (t->stack != NULL) {
2629                 if (t->stack->flags & isDirLink)
2630                         close(t->stack->symlink_parent_fd);
2631                 tree_pop(t);
2632         }
2633         if (t->working_dir_fd >= 0) {
2634                 close(t->working_dir_fd);
2635                 t->working_dir_fd = -1;
2636         }
2637         if (t->initial_dir_fd >= 0) {
2638                 close(t->initial_dir_fd);
2639                 t->initial_dir_fd = -1;
2640         }
2641 }
2642
2643 /*
2644  * Release any resources.
2645  */
2646 static void
2647 tree_free(struct tree *t)
2648 {
2649         int i;
2650
2651         if (t == NULL)
2652                 return;
2653         archive_string_free(&t->path);
2654 #if defined(HAVE_READDIR_R)
2655         free(t->dirent);
2656 #endif
2657         free(t->sparse_list);
2658         for (i = 0; i < t->max_filesystem_id; i++)
2659                 free(t->filesystem_table[i].allocation_ptr);
2660         free(t->filesystem_table);
2661         free(t);
2662 }
2663
2664 #endif