]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - crypto/openssh/openbsd-compat/sha2.c
MFH (r265214, r294333, r294407, r294467): misc prop fixes
[FreeBSD/stable/10.git] / crypto / openssh / openbsd-compat / sha2.c
1 /*      from OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp       */
2
3 /*
4  * FILE:        sha2.c
5  * AUTHOR:      Aaron D. Gifford <me@aarongifford.com>
6  * 
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  * 
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38
39 #include "includes.h"
40
41 #ifdef WITH_OPENSSL
42 # include <openssl/opensslv.h>
43 # if !defined(HAVE_EVP_SHA256) && (OPENSSL_VERSION_NUMBER >= 0x00907000L)
44 #  define _NEED_SHA2 1
45 # endif
46 #else
47 # define _NEED_SHA2 1
48 #endif
49
50 #if defined(_NEED_SHA2) && !defined(HAVE_SHA256_UPDATE)
51
52 #include <string.h>
53
54 /*
55  * UNROLLED TRANSFORM LOOP NOTE:
56  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57  * loop version for the hash transform rounds (defined using macros
58  * later in this file).  Either define on the command line, for example:
59  *
60  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61  *
62  * or define below:
63  *
64  *   #define SHA2_UNROLL_TRANSFORM
65  *
66  */
67
68 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
69 /*
70  * BYTE_ORDER NOTE:
71  *
72  * Please make sure that your system defines BYTE_ORDER.  If your
73  * architecture is little-endian, make sure it also defines
74  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
75  * equivilent.
76  *
77  * If your system does not define the above, then you can do so by
78  * hand like this:
79  *
80  *   #define LITTLE_ENDIAN 1234
81  *   #define BIG_ENDIAN    4321
82  *
83  * And for little-endian machines, add:
84  *
85  *   #define BYTE_ORDER LITTLE_ENDIAN 
86  *
87  * Or for big-endian machines:
88  *
89  *   #define BYTE_ORDER BIG_ENDIAN
90  *
91  * The FreeBSD machine this was written on defines BYTE_ORDER
92  * appropriately by including <sys/types.h> (which in turn includes
93  * <machine/endian.h> where the appropriate definitions are actually
94  * made).
95  */
96 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
97 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
98 #endif
99
100
101 /*** SHA-256/384/512 Various Length Definitions ***********************/
102 /* NOTE: Most of these are in sha2.h */
103 #define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
104 #define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
105 #define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)
106
107 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
108 #define BE_8_TO_32(dst, cp) do {                                        \
109         (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |        \
110             ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);    \
111 } while(0)
112
113 #define BE_8_TO_64(dst, cp) do {                                        \
114         (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |        \
115             ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |   \
116             ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |   \
117             ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);    \
118 } while (0)
119
120 #define BE_64_TO_8(cp, src) do {                                        \
121         (cp)[0] = (src) >> 56;                                          \
122         (cp)[1] = (src) >> 48;                                          \
123         (cp)[2] = (src) >> 40;                                          \
124         (cp)[3] = (src) >> 32;                                          \
125         (cp)[4] = (src) >> 24;                                          \
126         (cp)[5] = (src) >> 16;                                          \
127         (cp)[6] = (src) >> 8;                                           \
128         (cp)[7] = (src);                                                \
129 } while (0)
130
131 #define BE_32_TO_8(cp, src) do {                                        \
132         (cp)[0] = (src) >> 24;                                          \
133         (cp)[1] = (src) >> 16;                                          \
134         (cp)[2] = (src) >> 8;                                           \
135         (cp)[3] = (src);                                                \
136 } while (0)
137
138 /*
139  * Macro for incrementally adding the unsigned 64-bit integer n to the
140  * unsigned 128-bit integer (represented using a two-element array of
141  * 64-bit words):
142  */
143 #define ADDINC128(w,n) do {                                             \
144         (w)[0] += (u_int64_t)(n);                                       \
145         if ((w)[0] < (n)) {                                             \
146                 (w)[1]++;                                               \
147         }                                                               \
148 } while (0)
149
150 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
151 /*
152  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
153  *
154  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
155  *   S is a ROTATION) because the SHA-256/384/512 description document
156  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
157  *   same "backwards" definition.
158  */
159 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
160 #define R(b,x)          ((x) >> (b))
161 /* 32-bit Rotate-right (used in SHA-256): */
162 #define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
163 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
164 #define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))
165
166 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
167 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
168 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
169
170 /* Four of six logical functions used in SHA-256: */
171 #define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
172 #define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
173 #define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
174 #define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
175
176 /* Four of six logical functions used in SHA-384 and SHA-512: */
177 #define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
178 #define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
179 #define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
180 #define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
181
182
183 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
184 /* Hash constant words K for SHA-256: */
185 const static u_int32_t K256[64] = {
186         0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
187         0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
188         0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
189         0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
190         0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
191         0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
192         0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
193         0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
194         0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
195         0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
196         0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
197         0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
198         0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
199         0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
200         0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
201         0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
202 };
203
204 /* Initial hash value H for SHA-256: */
205 const static u_int32_t sha256_initial_hash_value[8] = {
206         0x6a09e667UL,
207         0xbb67ae85UL,
208         0x3c6ef372UL,
209         0xa54ff53aUL,
210         0x510e527fUL,
211         0x9b05688cUL,
212         0x1f83d9abUL,
213         0x5be0cd19UL
214 };
215
216 /* Hash constant words K for SHA-384 and SHA-512: */
217 const static u_int64_t K512[80] = {
218         0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
219         0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
220         0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
221         0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
222         0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
223         0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
224         0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
225         0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
226         0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
227         0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
228         0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
229         0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
230         0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
231         0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
232         0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
233         0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
234         0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
235         0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
236         0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
237         0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
238         0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
239         0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
240         0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
241         0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
242         0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
243         0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
244         0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
245         0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
246         0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
247         0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
248         0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
249         0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
250         0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
251         0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
252         0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
253         0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
254         0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
255         0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
256         0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
257         0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
258 };
259
260 /* Initial hash value H for SHA-384 */
261 const static u_int64_t sha384_initial_hash_value[8] = {
262         0xcbbb9d5dc1059ed8ULL,
263         0x629a292a367cd507ULL,
264         0x9159015a3070dd17ULL,
265         0x152fecd8f70e5939ULL,
266         0x67332667ffc00b31ULL,
267         0x8eb44a8768581511ULL,
268         0xdb0c2e0d64f98fa7ULL,
269         0x47b5481dbefa4fa4ULL
270 };
271
272 /* Initial hash value H for SHA-512 */
273 const static u_int64_t sha512_initial_hash_value[8] = {
274         0x6a09e667f3bcc908ULL,
275         0xbb67ae8584caa73bULL,
276         0x3c6ef372fe94f82bULL,
277         0xa54ff53a5f1d36f1ULL,
278         0x510e527fade682d1ULL,
279         0x9b05688c2b3e6c1fULL,
280         0x1f83d9abfb41bd6bULL,
281         0x5be0cd19137e2179ULL
282 };
283
284
285 /*** SHA-256: *********************************************************/
286 void
287 SHA256_Init(SHA256_CTX *context)
288 {
289         if (context == NULL)
290                 return;
291         memcpy(context->state, sha256_initial_hash_value,
292             sizeof(sha256_initial_hash_value));
293         memset(context->buffer, 0, sizeof(context->buffer));
294         context->bitcount = 0;
295 }
296
297 #ifdef SHA2_UNROLL_TRANSFORM
298
299 /* Unrolled SHA-256 round macros: */
300
301 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {                              \
302         BE_8_TO_32(W256[j], data);                                          \
303         data += 4;                                                          \
304         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
305         (d) += T1;                                                          \
306         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                    \
307         j++;                                                                \
308 } while(0)
309
310 #define ROUND256(a,b,c,d,e,f,g,h) do {                                      \
311         s0 = W256[(j+1)&0x0f];                                              \
312         s0 = sigma0_256(s0);                                                \
313         s1 = W256[(j+14)&0x0f];                                             \
314         s1 = sigma1_256(s1);                                                \
315         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +          \
316              (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);                  \
317         (d) += T1;                                                          \
318         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                    \
319         j++;                                                                \
320 } while(0)
321
322 void
323 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
324 {
325         u_int32_t       a, b, c, d, e, f, g, h, s0, s1;
326         u_int32_t       T1, W256[16];
327         int             j;
328
329         /* Initialize registers with the prev. intermediate value */
330         a = state[0];
331         b = state[1];
332         c = state[2];
333         d = state[3];
334         e = state[4];
335         f = state[5];
336         g = state[6];
337         h = state[7];
338
339         j = 0;
340         do {
341                 /* Rounds 0 to 15 (unrolled): */
342                 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
343                 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
344                 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
345                 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
346                 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
347                 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
348                 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
349                 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
350         } while (j < 16);
351
352         /* Now for the remaining rounds up to 63: */
353         do {
354                 ROUND256(a,b,c,d,e,f,g,h);
355                 ROUND256(h,a,b,c,d,e,f,g);
356                 ROUND256(g,h,a,b,c,d,e,f);
357                 ROUND256(f,g,h,a,b,c,d,e);
358                 ROUND256(e,f,g,h,a,b,c,d);
359                 ROUND256(d,e,f,g,h,a,b,c);
360                 ROUND256(c,d,e,f,g,h,a,b);
361                 ROUND256(b,c,d,e,f,g,h,a);
362         } while (j < 64);
363
364         /* Compute the current intermediate hash value */
365         state[0] += a;
366         state[1] += b;
367         state[2] += c;
368         state[3] += d;
369         state[4] += e;
370         state[5] += f;
371         state[6] += g;
372         state[7] += h;
373
374         /* Clean up */
375         a = b = c = d = e = f = g = h = T1 = 0;
376 }
377
378 #else /* SHA2_UNROLL_TRANSFORM */
379
380 void
381 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
382 {
383         u_int32_t       a, b, c, d, e, f, g, h, s0, s1;
384         u_int32_t       T1, T2, W256[16];
385         int             j;
386
387         /* Initialize registers with the prev. intermediate value */
388         a = state[0];
389         b = state[1];
390         c = state[2];
391         d = state[3];
392         e = state[4];
393         f = state[5];
394         g = state[6];
395         h = state[7];
396
397         j = 0;
398         do {
399                 BE_8_TO_32(W256[j], data);
400                 data += 4;
401                 /* Apply the SHA-256 compression function to update a..h */
402                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
403                 T2 = Sigma0_256(a) + Maj(a, b, c);
404                 h = g;
405                 g = f;
406                 f = e;
407                 e = d + T1;
408                 d = c;
409                 c = b;
410                 b = a;
411                 a = T1 + T2;
412
413                 j++;
414         } while (j < 16);
415
416         do {
417                 /* Part of the message block expansion: */
418                 s0 = W256[(j+1)&0x0f];
419                 s0 = sigma0_256(s0);
420                 s1 = W256[(j+14)&0x0f]; 
421                 s1 = sigma1_256(s1);
422
423                 /* Apply the SHA-256 compression function to update a..h */
424                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
425                      (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
426                 T2 = Sigma0_256(a) + Maj(a, b, c);
427                 h = g;
428                 g = f;
429                 f = e;
430                 e = d + T1;
431                 d = c;
432                 c = b;
433                 b = a;
434                 a = T1 + T2;
435
436                 j++;
437         } while (j < 64);
438
439         /* Compute the current intermediate hash value */
440         state[0] += a;
441         state[1] += b;
442         state[2] += c;
443         state[3] += d;
444         state[4] += e;
445         state[5] += f;
446         state[6] += g;
447         state[7] += h;
448
449         /* Clean up */
450         a = b = c = d = e = f = g = h = T1 = T2 = 0;
451 }
452
453 #endif /* SHA2_UNROLL_TRANSFORM */
454
455 void
456 SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len)
457 {
458         size_t  freespace, usedspace;
459
460         /* Calling with no data is valid (we do nothing) */
461         if (len == 0)
462                 return;
463
464         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
465         if (usedspace > 0) {
466                 /* Calculate how much free space is available in the buffer */
467                 freespace = SHA256_BLOCK_LENGTH - usedspace;
468
469                 if (len >= freespace) {
470                         /* Fill the buffer completely and process it */
471                         memcpy(&context->buffer[usedspace], data, freespace);
472                         context->bitcount += freespace << 3;
473                         len -= freespace;
474                         data += freespace;
475                         SHA256_Transform(context->state, context->buffer);
476                 } else {
477                         /* The buffer is not yet full */
478                         memcpy(&context->buffer[usedspace], data, len);
479                         context->bitcount += len << 3;
480                         /* Clean up: */
481                         usedspace = freespace = 0;
482                         return;
483                 }
484         }
485         while (len >= SHA256_BLOCK_LENGTH) {
486                 /* Process as many complete blocks as we can */
487                 SHA256_Transform(context->state, data);
488                 context->bitcount += SHA256_BLOCK_LENGTH << 3;
489                 len -= SHA256_BLOCK_LENGTH;
490                 data += SHA256_BLOCK_LENGTH;
491         }
492         if (len > 0) {
493                 /* There's left-overs, so save 'em */
494                 memcpy(context->buffer, data, len);
495                 context->bitcount += len << 3;
496         }
497         /* Clean up: */
498         usedspace = freespace = 0;
499 }
500
501 void
502 SHA256_Pad(SHA256_CTX *context)
503 {
504         unsigned int    usedspace;
505
506         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
507         if (usedspace > 0) {
508                 /* Begin padding with a 1 bit: */
509                 context->buffer[usedspace++] = 0x80;
510
511                 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
512                         /* Set-up for the last transform: */
513                         memset(&context->buffer[usedspace], 0,
514                             SHA256_SHORT_BLOCK_LENGTH - usedspace);
515                 } else {
516                         if (usedspace < SHA256_BLOCK_LENGTH) {
517                                 memset(&context->buffer[usedspace], 0,
518                                     SHA256_BLOCK_LENGTH - usedspace);
519                         }
520                         /* Do second-to-last transform: */
521                         SHA256_Transform(context->state, context->buffer);
522
523                         /* Prepare for last transform: */
524                         memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
525                 }
526         } else {
527                 /* Set-up for the last transform: */
528                 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
529
530                 /* Begin padding with a 1 bit: */
531                 *context->buffer = 0x80;
532         }
533         /* Store the length of input data (in bits) in big endian format: */
534         BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
535             context->bitcount);
536
537         /* Final transform: */
538         SHA256_Transform(context->state, context->buffer);
539
540         /* Clean up: */
541         usedspace = 0;
542 }
543
544 void
545 SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
546 {
547         SHA256_Pad(context);
548
549         /* If no digest buffer is passed, we don't bother doing this: */
550         if (digest != NULL) {
551 #if BYTE_ORDER == LITTLE_ENDIAN
552                 int     i;
553
554                 /* Convert TO host byte order */
555                 for (i = 0; i < 8; i++)
556                         BE_32_TO_8(digest + i * 4, context->state[i]);
557 #else
558                 memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
559 #endif
560                 memset(context, 0, sizeof(*context));
561         }
562 }
563
564
565 /*** SHA-512: *********************************************************/
566 void
567 SHA512_Init(SHA512_CTX *context)
568 {
569         if (context == NULL)
570                 return;
571         memcpy(context->state, sha512_initial_hash_value,
572             sizeof(sha512_initial_hash_value));
573         memset(context->buffer, 0, sizeof(context->buffer));
574         context->bitcount[0] = context->bitcount[1] =  0;
575 }
576
577 #ifdef SHA2_UNROLL_TRANSFORM
578
579 /* Unrolled SHA-512 round macros: */
580
581 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {                              \
582         BE_8_TO_64(W512[j], data);                                          \
583         data += 8;                                                          \
584         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
585         (d) += T1;                                                          \
586         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                    \
587         j++;                                                                \
588 } while(0)
589
590
591 #define ROUND512(a,b,c,d,e,f,g,h) do {                                      \
592         s0 = W512[(j+1)&0x0f];                                              \
593         s0 = sigma0_512(s0);                                                \
594         s1 = W512[(j+14)&0x0f];                                             \
595         s1 = sigma1_512(s1);                                                \
596         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +          \
597              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);                  \
598         (d) += T1;                                                          \
599         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                    \
600         j++;                                                                \
601 } while(0)
602
603 void
604 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
605 {
606         u_int64_t       a, b, c, d, e, f, g, h, s0, s1;
607         u_int64_t       T1, W512[16];
608         int             j;
609
610         /* Initialize registers with the prev. intermediate value */
611         a = state[0];
612         b = state[1];
613         c = state[2];
614         d = state[3];
615         e = state[4];
616         f = state[5];
617         g = state[6];
618         h = state[7];
619
620         j = 0;
621         do {
622                 /* Rounds 0 to 15 (unrolled): */
623                 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
624                 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
625                 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
626                 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
627                 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
628                 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
629                 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
630                 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
631         } while (j < 16);
632
633         /* Now for the remaining rounds up to 79: */
634         do {
635                 ROUND512(a,b,c,d,e,f,g,h);
636                 ROUND512(h,a,b,c,d,e,f,g);
637                 ROUND512(g,h,a,b,c,d,e,f);
638                 ROUND512(f,g,h,a,b,c,d,e);
639                 ROUND512(e,f,g,h,a,b,c,d);
640                 ROUND512(d,e,f,g,h,a,b,c);
641                 ROUND512(c,d,e,f,g,h,a,b);
642                 ROUND512(b,c,d,e,f,g,h,a);
643         } while (j < 80);
644
645         /* Compute the current intermediate hash value */
646         state[0] += a;
647         state[1] += b;
648         state[2] += c;
649         state[3] += d;
650         state[4] += e;
651         state[5] += f;
652         state[6] += g;
653         state[7] += h;
654
655         /* Clean up */
656         a = b = c = d = e = f = g = h = T1 = 0;
657 }
658
659 #else /* SHA2_UNROLL_TRANSFORM */
660
661 void
662 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
663 {
664         u_int64_t       a, b, c, d, e, f, g, h, s0, s1;
665         u_int64_t       T1, T2, W512[16];
666         int             j;
667
668         /* Initialize registers with the prev. intermediate value */
669         a = state[0];
670         b = state[1];
671         c = state[2];
672         d = state[3];
673         e = state[4];
674         f = state[5];
675         g = state[6];
676         h = state[7];
677
678         j = 0;
679         do {
680                 BE_8_TO_64(W512[j], data);
681                 data += 8;
682                 /* Apply the SHA-512 compression function to update a..h */
683                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
684                 T2 = Sigma0_512(a) + Maj(a, b, c);
685                 h = g;
686                 g = f;
687                 f = e;
688                 e = d + T1;
689                 d = c;
690                 c = b;
691                 b = a;
692                 a = T1 + T2;
693
694                 j++;
695         } while (j < 16);
696
697         do {
698                 /* Part of the message block expansion: */
699                 s0 = W512[(j+1)&0x0f];
700                 s0 = sigma0_512(s0);
701                 s1 = W512[(j+14)&0x0f];
702                 s1 =  sigma1_512(s1);
703
704                 /* Apply the SHA-512 compression function to update a..h */
705                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
706                      (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
707                 T2 = Sigma0_512(a) + Maj(a, b, c);
708                 h = g;
709                 g = f;
710                 f = e;
711                 e = d + T1;
712                 d = c;
713                 c = b;
714                 b = a;
715                 a = T1 + T2;
716
717                 j++;
718         } while (j < 80);
719
720         /* Compute the current intermediate hash value */
721         state[0] += a;
722         state[1] += b;
723         state[2] += c;
724         state[3] += d;
725         state[4] += e;
726         state[5] += f;
727         state[6] += g;
728         state[7] += h;
729
730         /* Clean up */
731         a = b = c = d = e = f = g = h = T1 = T2 = 0;
732 }
733
734 #endif /* SHA2_UNROLL_TRANSFORM */
735
736 void
737 SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
738 {
739         size_t  freespace, usedspace;
740
741         /* Calling with no data is valid (we do nothing) */
742         if (len == 0)
743                 return;
744
745         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
746         if (usedspace > 0) {
747                 /* Calculate how much free space is available in the buffer */
748                 freespace = SHA512_BLOCK_LENGTH - usedspace;
749
750                 if (len >= freespace) {
751                         /* Fill the buffer completely and process it */
752                         memcpy(&context->buffer[usedspace], data, freespace);
753                         ADDINC128(context->bitcount, freespace << 3);
754                         len -= freespace;
755                         data += freespace;
756                         SHA512_Transform(context->state, context->buffer);
757                 } else {
758                         /* The buffer is not yet full */
759                         memcpy(&context->buffer[usedspace], data, len);
760                         ADDINC128(context->bitcount, len << 3);
761                         /* Clean up: */
762                         usedspace = freespace = 0;
763                         return;
764                 }
765         }
766         while (len >= SHA512_BLOCK_LENGTH) {
767                 /* Process as many complete blocks as we can */
768                 SHA512_Transform(context->state, data);
769                 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
770                 len -= SHA512_BLOCK_LENGTH;
771                 data += SHA512_BLOCK_LENGTH;
772         }
773         if (len > 0) {
774                 /* There's left-overs, so save 'em */
775                 memcpy(context->buffer, data, len);
776                 ADDINC128(context->bitcount, len << 3);
777         }
778         /* Clean up: */
779         usedspace = freespace = 0;
780 }
781
782 void
783 SHA512_Pad(SHA512_CTX *context)
784 {
785         unsigned int    usedspace;
786
787         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
788         if (usedspace > 0) {
789                 /* Begin padding with a 1 bit: */
790                 context->buffer[usedspace++] = 0x80;
791
792                 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
793                         /* Set-up for the last transform: */
794                         memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
795                 } else {
796                         if (usedspace < SHA512_BLOCK_LENGTH) {
797                                 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
798                         }
799                         /* Do second-to-last transform: */
800                         SHA512_Transform(context->state, context->buffer);
801
802                         /* And set-up for the last transform: */
803                         memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
804                 }
805         } else {
806                 /* Prepare for final transform: */
807                 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
808
809                 /* Begin padding with a 1 bit: */
810                 *context->buffer = 0x80;
811         }
812         /* Store the length of input data (in bits) in big endian format: */
813         BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
814             context->bitcount[1]);
815         BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
816             context->bitcount[0]);
817
818         /* Final transform: */
819         SHA512_Transform(context->state, context->buffer);
820
821         /* Clean up: */
822         usedspace = 0;
823 }
824
825 void
826 SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
827 {
828         SHA512_Pad(context);
829
830         /* If no digest buffer is passed, we don't bother doing this: */
831         if (digest != NULL) {
832 #if BYTE_ORDER == LITTLE_ENDIAN
833                 int     i;
834
835                 /* Convert TO host byte order */
836                 for (i = 0; i < 8; i++)
837                         BE_64_TO_8(digest + i * 8, context->state[i]);
838 #else
839                 memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
840 #endif
841                 memset(context, 0, sizeof(*context));
842         }
843 }
844
845
846 /*** SHA-384: *********************************************************/
847 void
848 SHA384_Init(SHA384_CTX *context)
849 {
850         if (context == NULL)
851                 return;
852         memcpy(context->state, sha384_initial_hash_value,
853             sizeof(sha384_initial_hash_value));
854         memset(context->buffer, 0, sizeof(context->buffer));
855         context->bitcount[0] = context->bitcount[1] = 0;
856 }
857
858 #if 0
859 __weak_alias(SHA384_Transform, SHA512_Transform);
860 __weak_alias(SHA384_Update, SHA512_Update);
861 __weak_alias(SHA384_Pad, SHA512_Pad);
862 #endif
863
864 void
865 SHA384_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
866 {
867         return SHA512_Transform(state, data);
868 }
869
870 void
871 SHA384_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
872 {
873         SHA512_Update(context, data, len);
874 }
875
876 void
877 SHA384_Pad(SHA512_CTX *context)
878 {
879         SHA512_Pad(context);
880 }
881
882 void
883 SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
884 {
885         SHA384_Pad(context);
886
887         /* If no digest buffer is passed, we don't bother doing this: */
888         if (digest != NULL) {
889 #if BYTE_ORDER == LITTLE_ENDIAN
890                 int     i;
891
892                 /* Convert TO host byte order */
893                 for (i = 0; i < 6; i++)
894                         BE_64_TO_8(digest + i * 8, context->state[i]);
895 #else
896                 memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
897 #endif
898         }
899
900         /* Zero out state data */
901         memset(context, 0, sizeof(*context));
902 }
903
904 #endif /* defined(_NEED_SHA2) && !defined(HAVE_SHA256_UPDATE) */