]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cam/scsi/scsi_pass.c
MFC r368207,368607:
[FreeBSD/stable/10.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_compat.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/conf.h>
37 #include <sys/types.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/devicestat.h>
41 #include <sys/errno.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/poll.h>
46 #include <sys/selinfo.h>
47 #include <sys/sdt.h>
48 #include <sys/sysent.h>
49 #include <sys/taskqueue.h>
50 #include <vm/uma.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53
54 #include <machine/bus.h>
55
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_periph.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 #include <cam/cam_xpt_periph.h>
65
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_pass.h>
68
69 typedef enum {
70         PASS_FLAG_OPEN                  = 0x01,
71         PASS_FLAG_LOCKED                = 0x02,
72         PASS_FLAG_INVALID               = 0x04,
73         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
74         PASS_FLAG_ZONE_INPROG           = 0x10,
75         PASS_FLAG_ZONE_VALID            = 0x20,
76         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
77         PASS_FLAG_ABANDONED_REF_SET     = 0x80
78 } pass_flags;
79
80 typedef enum {
81         PASS_STATE_NORMAL
82 } pass_state;
83
84 typedef enum {
85         PASS_CCB_BUFFER_IO,
86         PASS_CCB_QUEUED_IO
87 } pass_ccb_types;
88
89 #define ccb_type        ppriv_field0
90 #define ccb_ioreq       ppriv_ptr1
91
92 /*
93  * The maximum number of memory segments we preallocate.
94  */
95 #define PASS_MAX_SEGS   16
96
97 typedef enum {
98         PASS_IO_NONE            = 0x00,
99         PASS_IO_USER_SEG_MALLOC = 0x01,
100         PASS_IO_KERN_SEG_MALLOC = 0x02,
101         PASS_IO_ABANDONED       = 0x04
102 } pass_io_flags; 
103
104 struct pass_io_req {
105         union ccb                        ccb;
106         union ccb                       *alloced_ccb;
107         union ccb                       *user_ccb_ptr;
108         camq_entry                       user_periph_links;
109         ccb_ppriv_area                   user_periph_priv;
110         struct cam_periph_map_info       mapinfo;
111         pass_io_flags                    flags;
112         ccb_flags                        data_flags;
113         int                              num_user_segs;
114         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
115         int                              num_kern_segs;
116         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
117         bus_dma_segment_t               *user_segptr;
118         bus_dma_segment_t               *kern_segptr;
119         int                              num_bufs;
120         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
121         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
122         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
123         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
124         struct bintime                   start_time;
125         TAILQ_ENTRY(pass_io_req)         links;
126 };
127
128 struct pass_softc {
129         pass_state                state;
130         pass_flags                flags;
131         u_int8_t                  pd_type;
132         union ccb                 saved_ccb;
133         int                       open_count;
134         u_int                     maxio;
135         struct devstat           *device_stats;
136         struct cdev              *dev;
137         struct cdev              *alias_dev;
138         struct task               add_physpath_task;
139         struct task               shutdown_kqueue_task;
140         struct selinfo            read_select;
141         TAILQ_HEAD(, pass_io_req) incoming_queue;
142         TAILQ_HEAD(, pass_io_req) active_queue;
143         TAILQ_HEAD(, pass_io_req) abandoned_queue;
144         TAILQ_HEAD(, pass_io_req) done_queue;
145         struct cam_periph        *periph;
146         char                      zone_name[12];
147         char                      io_zone_name[12];
148         uma_zone_t                pass_zone;
149         uma_zone_t                pass_io_zone;
150         size_t                    io_zone_size;
151 };
152
153 static  d_open_t        passopen;
154 static  d_close_t       passclose;
155 static  d_ioctl_t       passioctl;
156 static  d_ioctl_t       passdoioctl;
157 static  d_poll_t        passpoll;
158 static  d_kqfilter_t    passkqfilter;
159 static  void            passreadfiltdetach(struct knote *kn);
160 static  int             passreadfilt(struct knote *kn, long hint);
161
162 static  periph_init_t   passinit;
163 static  periph_ctor_t   passregister;
164 static  periph_oninv_t  passoninvalidate;
165 static  periph_dtor_t   passcleanup;
166 static  periph_start_t  passstart;
167 static  void            pass_shutdown_kqueue(void *context, int pending);
168 static  void            pass_add_physpath(void *context, int pending);
169 static  void            passasync(void *callback_arg, u_int32_t code,
170                                   struct cam_path *path, void *arg);
171 static  void            passdone(struct cam_periph *periph, 
172                                  union ccb *done_ccb);
173 static  int             passcreatezone(struct cam_periph *periph);
174 static  void            passiocleanup(struct pass_softc *softc, 
175                                       struct pass_io_req *io_req);
176 static  int             passcopysglist(struct cam_periph *periph,
177                                        struct pass_io_req *io_req,
178                                        ccb_flags direction);
179 static  int             passmemsetup(struct cam_periph *periph,
180                                      struct pass_io_req *io_req);
181 static  int             passmemdone(struct cam_periph *periph,
182                                     struct pass_io_req *io_req);
183 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
184                                   u_int32_t sense_flags);
185 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
186                                     union ccb *inccb);
187
188 static struct periph_driver passdriver =
189 {
190         passinit, "pass",
191         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
192 };
193
194 PERIPHDRIVER_DECLARE(pass, passdriver);
195
196 static struct cdevsw pass_cdevsw = {
197         .d_version =    D_VERSION,
198         .d_flags =      D_TRACKCLOSE,
199         .d_open =       passopen,
200         .d_close =      passclose,
201         .d_ioctl =      passioctl,
202         .d_poll =       passpoll,
203         .d_kqfilter =   passkqfilter,
204         .d_name =       "pass",
205 };
206
207 static struct filterops passread_filtops = {
208         .f_isfd =       1,
209         .f_detach =     passreadfiltdetach,
210         .f_event =      passreadfilt
211 };
212
213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
214
215 static void
216 passinit(void)
217 {
218         cam_status status;
219
220         /*
221          * Install a global async callback.  This callback will
222          * receive async callbacks like "new device found".
223          */
224         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
225
226         if (status != CAM_REQ_CMP) {
227                 printf("pass: Failed to attach master async callback "
228                        "due to status 0x%x!\n", status);
229         }
230
231 }
232
233 static void
234 passrejectios(struct cam_periph *periph)
235 {
236         struct pass_io_req *io_req, *io_req2;
237         struct pass_softc *softc;
238
239         softc = (struct pass_softc *)periph->softc;
240
241         /*
242          * The user can no longer get status for I/O on the done queue, so
243          * clean up all outstanding I/O on the done queue.
244          */
245         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
246                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
247                 passiocleanup(softc, io_req);
248                 uma_zfree(softc->pass_zone, io_req);
249         }
250
251         /*
252          * The underlying device is gone, so we can't issue these I/Os.
253          * The devfs node has been shut down, so we can't return status to
254          * the user.  Free any I/O left on the incoming queue.
255          */
256         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
257                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
258                 passiocleanup(softc, io_req);
259                 uma_zfree(softc->pass_zone, io_req);
260         }
261
262         /*
263          * Normally we would put I/Os on the abandoned queue and acquire a
264          * reference when we saw the final close.  But, the device went
265          * away and devfs may have moved everything off to deadfs by the
266          * time the I/O done callback is called; as a result, we won't see
267          * any more closes.  So, if we have any active I/Os, we need to put
268          * them on the abandoned queue.  When the abandoned queue is empty,
269          * we'll release the remaining reference (see below) to the peripheral.
270          */
271         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
272                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
273                 io_req->flags |= PASS_IO_ABANDONED;
274                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
275         }
276
277         /*
278          * If we put any I/O on the abandoned queue, acquire a reference.
279          */
280         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
281          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
282                 cam_periph_doacquire(periph);
283                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
284         }
285 }
286
287 static void
288 passdevgonecb(void *arg)
289 {
290         struct cam_periph *periph;
291         struct mtx *mtx;
292         struct pass_softc *softc;
293         int i;
294
295         periph = (struct cam_periph *)arg;
296         mtx = cam_periph_mtx(periph);
297         mtx_lock(mtx);
298
299         softc = (struct pass_softc *)periph->softc;
300         KASSERT(softc->open_count >= 0, ("Negative open count %d",
301                 softc->open_count));
302
303         /*
304          * When we get this callback, we will get no more close calls from
305          * devfs.  So if we have any dangling opens, we need to release the
306          * reference held for that particular context.
307          */
308         for (i = 0; i < softc->open_count; i++)
309                 cam_periph_release_locked(periph);
310
311         softc->open_count = 0;
312
313         /*
314          * Release the reference held for the device node, it is gone now.
315          * Accordingly, inform all queued I/Os of their fate.
316          */
317         cam_periph_release_locked(periph);
318         passrejectios(periph);
319
320         /*
321          * We reference the SIM lock directly here, instead of using
322          * cam_periph_unlock().  The reason is that the final call to
323          * cam_periph_release_locked() above could result in the periph
324          * getting freed.  If that is the case, dereferencing the periph
325          * with a cam_periph_unlock() call would cause a page fault.
326          */
327         mtx_unlock(mtx);
328
329         /*
330          * We have to remove our kqueue context from a thread because it
331          * may sleep.  It would be nice if we could get a callback from
332          * kqueue when it is done cleaning up resources.
333          */
334         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
335 }
336
337 static void
338 passoninvalidate(struct cam_periph *periph)
339 {
340         struct pass_softc *softc;
341
342         softc = (struct pass_softc *)periph->softc;
343
344         /*
345          * De-register any async callbacks.
346          */
347         xpt_register_async(0, passasync, periph, periph->path);
348
349         softc->flags |= PASS_FLAG_INVALID;
350
351         /*
352          * Tell devfs this device has gone away, and ask for a callback
353          * when it has cleaned up its state.
354          */
355         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
356 }
357
358 static void
359 passcleanup(struct cam_periph *periph)
360 {
361         struct pass_softc *softc;
362
363         softc = (struct pass_softc *)periph->softc;
364
365         cam_periph_assert(periph, MA_OWNED);
366         KASSERT(TAILQ_EMPTY(&softc->active_queue),
367                 ("%s called when there are commands on the active queue!\n",
368                 __func__));
369         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
370                 ("%s called when there are commands on the abandoned queue!\n",
371                 __func__));
372         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
373                 ("%s called when there are commands on the incoming queue!\n",
374                 __func__));
375         KASSERT(TAILQ_EMPTY(&softc->done_queue),
376                 ("%s called when there are commands on the done queue!\n",
377                 __func__));
378
379         devstat_remove_entry(softc->device_stats);
380
381         cam_periph_unlock(periph);
382
383         /*
384          * We call taskqueue_drain() for the physpath task to make sure it
385          * is complete.  We drop the lock because this can potentially
386          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
387          * a taskqueue is drained.
388          *
389          * Note that we don't drain the kqueue shutdown task queue.  This
390          * is because we hold a reference on the periph for kqueue, and
391          * release that reference from the kqueue shutdown task queue.  So
392          * we cannot come into this routine unless we've released that
393          * reference.  Also, because that could be the last reference, we
394          * could be called from the cam_periph_release() call in
395          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
396          * would deadlock.  It would be preferable if we had a way to
397          * get a callback when a taskqueue is done.
398          */
399         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
400
401         cam_periph_lock(periph);
402
403         free(softc, M_DEVBUF);
404 }
405
406 static void
407 pass_shutdown_kqueue(void *context, int pending)
408 {
409         struct cam_periph *periph;
410         struct pass_softc *softc;
411
412         periph = context;
413         softc = periph->softc;
414
415         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
416         knlist_destroy(&softc->read_select.si_note);
417
418         /*
419          * Release the reference we held for kqueue.
420          */
421         cam_periph_release(periph);
422 }
423
424 static void
425 pass_add_physpath(void *context, int pending)
426 {
427         struct cam_periph *periph;
428         struct pass_softc *softc;
429         struct mtx *mtx;
430         char *physpath;
431
432         /*
433          * If we have one, create a devfs alias for our
434          * physical path.
435          */
436         periph = context;
437         softc = periph->softc;
438         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
439         mtx = cam_periph_mtx(periph);
440         mtx_lock(mtx);
441
442         if (periph->flags & CAM_PERIPH_INVALID)
443                 goto out;
444
445         if (xpt_getattr(physpath, MAXPATHLEN,
446                         "GEOM::physpath", periph->path) == 0
447          && strlen(physpath) != 0) {
448
449                 mtx_unlock(mtx);
450                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
451                                         softc->dev, softc->alias_dev, physpath);
452                 mtx_lock(mtx);
453         }
454
455 out:
456         /*
457          * Now that we've made our alias, we no longer have to have a
458          * reference to the device.
459          */
460         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
461                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
462
463         /*
464          * We always acquire a reference to the periph before queueing this
465          * task queue function, so it won't go away before we run.
466          */
467         while (pending-- > 0)
468                 cam_periph_release_locked(periph);
469         mtx_unlock(mtx);
470
471         free(physpath, M_DEVBUF);
472 }
473
474 static void
475 passasync(void *callback_arg, u_int32_t code,
476           struct cam_path *path, void *arg)
477 {
478         struct cam_periph *periph;
479
480         periph = (struct cam_periph *)callback_arg;
481
482         switch (code) {
483         case AC_FOUND_DEVICE:
484         {
485                 struct ccb_getdev *cgd;
486                 cam_status status;
487  
488                 cgd = (struct ccb_getdev *)arg;
489                 if (cgd == NULL)
490                         break;
491
492                 /*
493                  * Allocate a peripheral instance for
494                  * this device and start the probe
495                  * process.
496                  */
497                 status = cam_periph_alloc(passregister, passoninvalidate,
498                                           passcleanup, passstart, "pass",
499                                           CAM_PERIPH_BIO, path,
500                                           passasync, AC_FOUND_DEVICE, cgd);
501
502                 if (status != CAM_REQ_CMP
503                  && status != CAM_REQ_INPROG) {
504                         const struct cam_status_entry *entry;
505
506                         entry = cam_fetch_status_entry(status);
507
508                         printf("passasync: Unable to attach new device "
509                                "due to status %#x: %s\n", status, entry ?
510                                entry->status_text : "Unknown");
511                 }
512
513                 break;
514         }
515         case AC_ADVINFO_CHANGED:
516         {
517                 uintptr_t buftype;
518
519                 buftype = (uintptr_t)arg;
520                 if (buftype == CDAI_TYPE_PHYS_PATH) {
521                         struct pass_softc *softc;
522                         cam_status status;
523
524                         softc = (struct pass_softc *)periph->softc;
525                         /*
526                          * Acquire a reference to the periph before we
527                          * start the taskqueue, so that we don't run into
528                          * a situation where the periph goes away before
529                          * the task queue has a chance to run.
530                          */
531                         status = cam_periph_acquire(periph);
532                         if (status != CAM_REQ_CMP)
533                                 break;
534
535                         taskqueue_enqueue(taskqueue_thread,
536                                           &softc->add_physpath_task);
537                 }
538                 break;
539         }
540         default:
541                 cam_periph_async(periph, code, path, arg);
542                 break;
543         }
544 }
545
546 static cam_status
547 passregister(struct cam_periph *periph, void *arg)
548 {
549         struct pass_softc *softc;
550         struct ccb_getdev *cgd;
551         struct ccb_pathinq cpi;
552         struct make_dev_args args;
553         int error, no_tags;
554
555         cgd = (struct ccb_getdev *)arg;
556         if (cgd == NULL) {
557                 printf("%s: no getdev CCB, can't register device\n", __func__);
558                 return(CAM_REQ_CMP_ERR);
559         }
560
561         softc = (struct pass_softc *)malloc(sizeof(*softc),
562                                             M_DEVBUF, M_NOWAIT);
563
564         if (softc == NULL) {
565                 printf("%s: Unable to probe new device. "
566                        "Unable to allocate softc\n", __func__);
567                 return(CAM_REQ_CMP_ERR);
568         }
569
570         bzero(softc, sizeof(*softc));
571         softc->state = PASS_STATE_NORMAL;
572         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
573                 softc->pd_type = SID_TYPE(&cgd->inq_data);
574         else if (cgd->protocol == PROTO_SATAPM)
575                 softc->pd_type = T_ENCLOSURE;
576         else
577                 softc->pd_type = T_DIRECT;
578
579         periph->softc = softc;
580         softc->periph = periph;
581         TAILQ_INIT(&softc->incoming_queue);
582         TAILQ_INIT(&softc->active_queue);
583         TAILQ_INIT(&softc->abandoned_queue);
584         TAILQ_INIT(&softc->done_queue);
585         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
586                  periph->periph_name, periph->unit_number);
587         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
588                  periph->periph_name, periph->unit_number);
589         softc->io_zone_size = MAXPHYS;
590         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
591
592         bzero(&cpi, sizeof(cpi));
593         xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
594         cpi.ccb_h.func_code = XPT_PATH_INQ;
595         xpt_action((union ccb *)&cpi);
596
597         if (cpi.maxio == 0)
598                 softc->maxio = DFLTPHYS;        /* traditional default */
599         else if (cpi.maxio > MAXPHYS)
600                 softc->maxio = MAXPHYS;         /* for safety */
601         else
602                 softc->maxio = cpi.maxio;       /* real value */
603
604         if (cpi.hba_misc & PIM_UNMAPPED)
605                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
606
607         /*
608          * We pass in 0 for a blocksize, since we don't 
609          * know what the blocksize of this device is, if 
610          * it even has a blocksize.
611          */
612         cam_periph_unlock(periph);
613         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
614         softc->device_stats = devstat_new_entry("pass",
615                           periph->unit_number, 0,
616                           DEVSTAT_NO_BLOCKSIZE
617                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
618                           softc->pd_type |
619                           XPORT_DEVSTAT_TYPE(cpi.transport) |
620                           DEVSTAT_TYPE_PASS,
621                           DEVSTAT_PRIORITY_PASS);
622
623         /*
624          * Initialize the taskqueue handler for shutting down kqueue.
625          */
626         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
627                   pass_shutdown_kqueue, periph);
628
629         /*
630          * Acquire a reference to the periph that we can release once we've
631          * cleaned up the kqueue.
632          */
633         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
634                 xpt_print(periph->path, "%s: lost periph during "
635                           "registration!\n", __func__);
636                 cam_periph_lock(periph);
637                 return (CAM_REQ_CMP_ERR);
638         }
639
640         /*
641          * Acquire a reference to the periph before we create the devfs
642          * instance for it.  We'll release this reference once the devfs
643          * instance has been freed.
644          */
645         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
646                 xpt_print(periph->path, "%s: lost periph during "
647                           "registration!\n", __func__);
648                 cam_periph_lock(periph);
649                 return (CAM_REQ_CMP_ERR);
650         }
651
652         /* Register the device */
653         make_dev_args_init(&args);
654         args.mda_devsw = &pass_cdevsw;
655         args.mda_unit = periph->unit_number;
656         args.mda_uid = UID_ROOT;
657         args.mda_gid = GID_OPERATOR;
658         args.mda_mode = 0600;
659         args.mda_si_drv1 = periph;
660         error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
661             periph->unit_number);
662         if (error != 0) {
663                 cam_periph_lock(periph);
664                 cam_periph_release_locked(periph);
665                 return (CAM_REQ_CMP_ERR);
666         }
667
668         /*
669          * Hold a reference to the periph before we create the physical
670          * path alias so it can't go away.
671          */
672         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
673                 xpt_print(periph->path, "%s: lost periph during "
674                           "registration!\n", __func__);
675                 cam_periph_lock(periph);
676                 return (CAM_REQ_CMP_ERR);
677         }
678
679         cam_periph_lock(periph);
680
681         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
682                   pass_add_physpath, periph);
683
684         /*
685          * See if physical path information is already available.
686          */
687         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
688
689         /*
690          * Add an async callback so that we get notified if
691          * this device goes away or its physical path
692          * (stored in the advanced info data of the EDT) has
693          * changed.
694          */
695         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
696                            passasync, periph, periph->path);
697
698         if (bootverbose)
699                 xpt_announce_periph(periph, NULL);
700
701         return(CAM_REQ_CMP);
702 }
703
704 static int
705 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
706 {
707         struct cam_periph *periph;
708         struct pass_softc *softc;
709         int error;
710
711         periph = (struct cam_periph *)dev->si_drv1;
712         if (cam_periph_acquire(periph) != CAM_REQ_CMP)
713                 return (ENXIO);
714
715         cam_periph_lock(periph);
716
717         softc = (struct pass_softc *)periph->softc;
718
719         if (softc->flags & PASS_FLAG_INVALID) {
720                 cam_periph_release_locked(periph);
721                 cam_periph_unlock(periph);
722                 return(ENXIO);
723         }
724
725         /*
726          * Don't allow access when we're running at a high securelevel.
727          */
728         error = securelevel_gt(td->td_ucred, 1);
729         if (error) {
730                 cam_periph_release_locked(periph);
731                 cam_periph_unlock(periph);
732                 return(error);
733         }
734
735         /*
736          * Only allow read-write access.
737          */
738         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
739                 cam_periph_release_locked(periph);
740                 cam_periph_unlock(periph);
741                 return(EPERM);
742         }
743
744         /*
745          * We don't allow nonblocking access.
746          */
747         if ((flags & O_NONBLOCK) != 0) {
748                 xpt_print(periph->path, "can't do nonblocking access\n");
749                 cam_periph_release_locked(periph);
750                 cam_periph_unlock(periph);
751                 return(EINVAL);
752         }
753
754         softc->open_count++;
755
756         cam_periph_unlock(periph);
757
758         return (error);
759 }
760
761 static int
762 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
763 {
764         struct  cam_periph *periph;
765         struct  pass_softc *softc;
766         struct mtx *mtx;
767
768         periph = (struct cam_periph *)dev->si_drv1;
769         mtx = cam_periph_mtx(periph);
770         mtx_lock(mtx);
771
772         softc = periph->softc;
773         softc->open_count--;
774
775         if (softc->open_count == 0) {
776                 struct pass_io_req *io_req, *io_req2;
777                 int need_unlock;
778
779                 need_unlock = 0;
780
781                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
782                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
783                         passiocleanup(softc, io_req);
784                         uma_zfree(softc->pass_zone, io_req);
785                 }
786
787                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
788                                    io_req2) {
789                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
790                         passiocleanup(softc, io_req);
791                         uma_zfree(softc->pass_zone, io_req);
792                 }
793
794                 /*
795                  * If there are any active I/Os, we need to forcibly acquire a
796                  * reference to the peripheral so that we don't go away
797                  * before they complete.  We'll release the reference when
798                  * the abandoned queue is empty.
799                  */
800                 io_req = TAILQ_FIRST(&softc->active_queue);
801                 if ((io_req != NULL)
802                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
803                         cam_periph_doacquire(periph);
804                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
805                 }
806
807                 /*
808                  * Since the I/O in the active queue is not under our
809                  * control, just set a flag so that we can clean it up when
810                  * it completes and put it on the abandoned queue.  This
811                  * will prevent our sending spurious completions in the
812                  * event that the device is opened again before these I/Os
813                  * complete.
814                  */
815                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
816                                    io_req2) {
817                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
818                         io_req->flags |= PASS_IO_ABANDONED;
819                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
820                                           links);
821                 }
822         }
823
824         cam_periph_release_locked(periph);
825
826         /*
827          * We reference the lock directly here, instead of using
828          * cam_periph_unlock().  The reason is that the call to
829          * cam_periph_release_locked() above could result in the periph
830          * getting freed.  If that is the case, dereferencing the periph
831          * with a cam_periph_unlock() call would cause a page fault.
832          *
833          * cam_periph_release() avoids this problem using the same method,
834          * but we're manually acquiring and dropping the lock here to
835          * protect the open count and avoid another lock acquisition and
836          * release.
837          */
838         mtx_unlock(mtx);
839
840         return (0);
841 }
842
843
844 static void
845 passstart(struct cam_periph *periph, union ccb *start_ccb)
846 {
847         struct pass_softc *softc;
848
849         softc = (struct pass_softc *)periph->softc;
850
851         switch (softc->state) {
852         case PASS_STATE_NORMAL: {
853                 struct pass_io_req *io_req;
854
855                 /*
856                  * Check for any queued I/O requests that require an
857                  * allocated slot.
858                  */
859                 io_req = TAILQ_FIRST(&softc->incoming_queue);
860                 if (io_req == NULL) {
861                         xpt_release_ccb(start_ccb);
862                         break;
863                 }
864                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
865                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
866                 /*
867                  * Merge the user's CCB into the allocated CCB.
868                  */
869                 xpt_merge_ccb(start_ccb, &io_req->ccb);
870                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
871                 start_ccb->ccb_h.ccb_ioreq = io_req;
872                 start_ccb->ccb_h.cbfcnp = passdone;
873                 io_req->alloced_ccb = start_ccb;
874                 binuptime(&io_req->start_time);
875                 devstat_start_transaction(softc->device_stats,
876                                           &io_req->start_time);
877
878                 xpt_action(start_ccb);
879
880                 /*
881                  * If we have any more I/O waiting, schedule ourselves again.
882                  */
883                 if (!TAILQ_EMPTY(&softc->incoming_queue))
884                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
885                 break;
886         }
887         default:
888                 break;
889         }
890 }
891
892 static void
893 passdone(struct cam_periph *periph, union ccb *done_ccb)
894
895         struct pass_softc *softc;
896         struct ccb_scsiio *csio;
897
898         softc = (struct pass_softc *)periph->softc;
899
900         cam_periph_assert(periph, MA_OWNED);
901
902         csio = &done_ccb->csio;
903         switch (csio->ccb_h.ccb_type) {
904         case PASS_CCB_QUEUED_IO: {
905                 struct pass_io_req *io_req;
906
907                 io_req = done_ccb->ccb_h.ccb_ioreq;
908 #if 0
909                 xpt_print(periph->path, "%s: called for user CCB %p\n",
910                           __func__, io_req->user_ccb_ptr);
911 #endif
912                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
913                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
914                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
915                         int error;
916
917                         error = passerror(done_ccb, CAM_RETRY_SELTO,
918                                           SF_RETRY_UA | SF_NO_PRINT);
919
920                         if (error == ERESTART) {
921                                 /*
922                                  * A retry was scheduled, so
923                                  * just return.
924                                  */
925                                 return;
926                         }
927                 }
928
929                 /*
930                  * Copy the allocated CCB contents back to the malloced CCB
931                  * so we can give status back to the user when he requests it.
932                  */
933                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
934
935                 /*
936                  * Log data/transaction completion with devstat(9).
937                  */
938                 switch (done_ccb->ccb_h.func_code) {
939                 case XPT_SCSI_IO:
940                         devstat_end_transaction(softc->device_stats,
941                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
942                             done_ccb->csio.tag_action & 0x3,
943                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
944                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
945                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
946                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
947                             &io_req->start_time);
948                         break;
949                 case XPT_ATA_IO:
950                         devstat_end_transaction(softc->device_stats,
951                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
952                             done_ccb->ataio.tag_action & 0x3,
953                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
954                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
955                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
956                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
957                             &io_req->start_time);
958                         break;
959                 case XPT_SMP_IO:
960                         /*
961                          * XXX KDM this isn't quite right, but there isn't
962                          * currently an easy way to represent a bidirectional 
963                          * transfer in devstat.  The only way to do it
964                          * and have the byte counts come out right would
965                          * mean that we would have to record two
966                          * transactions, one for the request and one for the
967                          * response.  For now, so that we report something,
968                          * just treat the entire thing as a read.
969                          */
970                         devstat_end_transaction(softc->device_stats,
971                             done_ccb->smpio.smp_request_len +
972                             done_ccb->smpio.smp_response_len,
973                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
974                             &io_req->start_time);
975                         break;
976                 default:
977                         devstat_end_transaction(softc->device_stats, 0,
978                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
979                             &io_req->start_time);
980                         break;
981                 }
982
983                 /*
984                  * In the normal case, take the completed I/O off of the
985                  * active queue and put it on the done queue.  Notitfy the
986                  * user that we have a completed I/O.
987                  */
988                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
989                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
990                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
991                         selwakeuppri(&softc->read_select, PRIBIO);
992                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
993                 } else {
994                         /*
995                          * In the case of an abandoned I/O (final close
996                          * without fetching the I/O), take it off of the
997                          * abandoned queue and free it.
998                          */
999                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
1000                         passiocleanup(softc, io_req);
1001                         uma_zfree(softc->pass_zone, io_req);
1002
1003                         /*
1004                          * Release the done_ccb here, since we may wind up
1005                          * freeing the peripheral when we decrement the
1006                          * reference count below.
1007                          */
1008                         xpt_release_ccb(done_ccb);
1009
1010                         /*
1011                          * If the abandoned queue is empty, we can release
1012                          * our reference to the periph since we won't have
1013                          * any more completions coming.
1014                          */
1015                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1016                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1017                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1018                                 cam_periph_release_locked(periph);
1019                         }
1020
1021                         /*
1022                          * We have already released the CCB, so we can
1023                          * return.
1024                          */
1025                         return;
1026                 }
1027                 break;
1028         }
1029         }
1030         xpt_release_ccb(done_ccb);
1031 }
1032
1033 static int
1034 passcreatezone(struct cam_periph *periph)
1035 {
1036         struct pass_softc *softc;
1037         int error;
1038
1039         error = 0;
1040         softc = (struct pass_softc *)periph->softc;
1041
1042         cam_periph_assert(periph, MA_OWNED);
1043         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1044                 ("%s called when the pass(4) zone is valid!\n", __func__));
1045         KASSERT((softc->pass_zone == NULL), 
1046                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1047
1048         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1049
1050                 /*
1051                  * We're the first context through, so we need to create
1052                  * the pass(4) UMA zone for I/O requests.
1053                  */
1054                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1055
1056                 /*
1057                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1058                  * so we cannot hold a mutex while we call it.
1059                  */
1060                 cam_periph_unlock(periph);
1061
1062                 softc->pass_zone = uma_zcreate(softc->zone_name,
1063                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1064                     /*align*/ 0, /*flags*/ 0);
1065
1066                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1067                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1068                     /*align*/ 0, /*flags*/ 0);
1069
1070                 cam_periph_lock(periph);
1071
1072                 if ((softc->pass_zone == NULL)
1073                  || (softc->pass_io_zone == NULL)) {
1074                         if (softc->pass_zone == NULL)
1075                                 xpt_print(periph->path, "unable to allocate "
1076                                     "IO Req UMA zone\n");
1077                         else
1078                                 xpt_print(periph->path, "unable to allocate "
1079                                     "IO UMA zone\n");
1080                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1081                         goto bailout;
1082                 }
1083
1084                 /*
1085                  * Set the flags appropriately and notify any other waiters.
1086                  */
1087                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1088                 softc->flags |= PASS_FLAG_ZONE_VALID;
1089                 wakeup(&softc->pass_zone);
1090         } else {
1091                 /*
1092                  * In this case, the UMA zone has not yet been created, but
1093                  * another context is in the process of creating it.  We
1094                  * need to sleep until the creation is either done or has
1095                  * failed.
1096                  */
1097                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1098                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1099                         error = msleep(&softc->pass_zone,
1100                                        cam_periph_mtx(periph), PRIBIO,
1101                                        "paszon", 0);
1102                         if (error != 0)
1103                                 goto bailout;
1104                 }
1105                 /*
1106                  * If the zone creation failed, no luck for the user.
1107                  */
1108                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1109                         error = ENOMEM;
1110                         goto bailout;
1111                 }
1112         }
1113 bailout:
1114         return (error);
1115 }
1116
1117 static void
1118 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1119 {
1120         union ccb *ccb;
1121         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1122         int i, numbufs;
1123
1124         ccb = &io_req->ccb;
1125
1126         switch (ccb->ccb_h.func_code) {
1127         case XPT_DEV_MATCH:
1128                 numbufs = min(io_req->num_bufs, 2);
1129
1130                 if (numbufs == 1) {
1131                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1132                 } else {
1133                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1134                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1135                 }
1136                 break;
1137         case XPT_SCSI_IO:
1138         case XPT_CONT_TARGET_IO:
1139                 data_ptrs[0] = &ccb->csio.data_ptr;
1140                 numbufs = min(io_req->num_bufs, 1);
1141                 break;
1142         case XPT_ATA_IO:
1143                 data_ptrs[0] = &ccb->ataio.data_ptr;
1144                 numbufs = min(io_req->num_bufs, 1);
1145                 break;
1146         case XPT_SMP_IO:
1147                 numbufs = min(io_req->num_bufs, 2);
1148                 data_ptrs[0] = &ccb->smpio.smp_request;
1149                 data_ptrs[1] = &ccb->smpio.smp_response;
1150                 break;
1151         case XPT_DEV_ADVINFO:
1152                 numbufs = min(io_req->num_bufs, 1);
1153                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1154                 break;
1155         default:
1156                 /* allow ourselves to be swapped once again */
1157                 return;
1158                 break; /* NOTREACHED */ 
1159         }
1160
1161         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1162                 free(io_req->user_segptr, M_SCSIPASS);
1163                 io_req->user_segptr = NULL;
1164         }
1165
1166         /*
1167          * We only want to free memory we malloced.
1168          */
1169         if (io_req->data_flags == CAM_DATA_VADDR) {
1170                 for (i = 0; i < io_req->num_bufs; i++) {
1171                         if (io_req->kern_bufs[i] == NULL)
1172                                 continue;
1173
1174                         free(io_req->kern_bufs[i], M_SCSIPASS);
1175                         io_req->kern_bufs[i] = NULL;
1176                 }
1177         } else if (io_req->data_flags == CAM_DATA_SG) {
1178                 for (i = 0; i < io_req->num_kern_segs; i++) {
1179                         if ((uint8_t *)(uintptr_t)
1180                             io_req->kern_segptr[i].ds_addr == NULL)
1181                                 continue;
1182
1183                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1184                             io_req->kern_segptr[i].ds_addr);
1185                         io_req->kern_segptr[i].ds_addr = 0;
1186                 }
1187         }
1188
1189         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1190                 free(io_req->kern_segptr, M_SCSIPASS);
1191                 io_req->kern_segptr = NULL;
1192         }
1193
1194         if (io_req->data_flags != CAM_DATA_PADDR) {
1195                 for (i = 0; i < numbufs; i++) {
1196                         /*
1197                          * Restore the user's buffer pointers to their
1198                          * previous values.
1199                          */
1200                         if (io_req->user_bufs[i] != NULL)
1201                                 *data_ptrs[i] = io_req->user_bufs[i];
1202                 }
1203         }
1204
1205 }
1206
1207 static int
1208 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1209                ccb_flags direction)
1210 {
1211         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1212         bus_dma_segment_t *user_sglist, *kern_sglist;
1213         int i, j, error;
1214
1215         error = 0;
1216         kern_watermark = 0;
1217         user_watermark = 0;
1218         len_to_copy = 0;
1219         len_copied = 0;
1220         user_sglist = io_req->user_segptr;
1221         kern_sglist = io_req->kern_segptr;
1222
1223         for (i = 0, j = 0; i < io_req->num_user_segs &&
1224              j < io_req->num_kern_segs;) {
1225                 uint8_t *user_ptr, *kern_ptr;
1226
1227                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1228                     kern_sglist[j].ds_len - kern_watermark);
1229
1230                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1231                 user_ptr = user_ptr + user_watermark;
1232                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1233                 kern_ptr = kern_ptr + kern_watermark;
1234
1235                 user_watermark += len_to_copy;
1236                 kern_watermark += len_to_copy;
1237
1238                 if (!useracc(user_ptr, len_to_copy,
1239                     (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1240                         xpt_print(periph->path, "%s: unable to access user "
1241                                   "S/G list element %p len %zu\n", __func__,
1242                                   user_ptr, len_to_copy);
1243                         error = EFAULT;
1244                         goto bailout;
1245                 }
1246
1247                 if (direction == CAM_DIR_IN) {
1248                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1249                         if (error != 0) {
1250                                 xpt_print(periph->path, "%s: copyout of %u "
1251                                           "bytes from %p to %p failed with "
1252                                           "error %d\n", __func__, len_to_copy,
1253                                           kern_ptr, user_ptr, error);
1254                                 goto bailout;
1255                         }
1256                 } else {
1257                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1258                         if (error != 0) {
1259                                 xpt_print(periph->path, "%s: copyin of %u "
1260                                           "bytes from %p to %p failed with "
1261                                           "error %d\n", __func__, len_to_copy,
1262                                           user_ptr, kern_ptr, error);
1263                                 goto bailout;
1264                         }
1265                 }
1266
1267                 len_copied += len_to_copy;
1268
1269                 if (user_sglist[i].ds_len == user_watermark) {
1270                         i++;
1271                         user_watermark = 0;
1272                 }
1273
1274                 if (kern_sglist[j].ds_len == kern_watermark) {
1275                         j++;
1276                         kern_watermark = 0;
1277                 }
1278         }
1279
1280 bailout:
1281
1282         return (error);
1283 }
1284
1285 static int
1286 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1287 {
1288         union ccb *ccb;
1289         struct pass_softc *softc;
1290         int numbufs, i;
1291         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1292         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1293         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1294         uint32_t num_segs;
1295         uint16_t *seg_cnt_ptr;
1296         size_t maxmap;
1297         int error;
1298
1299         cam_periph_assert(periph, MA_NOTOWNED);
1300
1301         softc = periph->softc;
1302
1303         error = 0;
1304         ccb = &io_req->ccb;
1305         maxmap = 0;
1306         num_segs = 0;
1307         seg_cnt_ptr = NULL;
1308
1309         switch(ccb->ccb_h.func_code) {
1310         case XPT_DEV_MATCH:
1311                 if (ccb->cdm.match_buf_len == 0) {
1312                         printf("%s: invalid match buffer length 0\n", __func__);
1313                         return(EINVAL);
1314                 }
1315                 if (ccb->cdm.pattern_buf_len > 0) {
1316                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1317                         lengths[0] = ccb->cdm.pattern_buf_len;
1318                         dirs[0] = CAM_DIR_OUT;
1319                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1320                         lengths[1] = ccb->cdm.match_buf_len;
1321                         dirs[1] = CAM_DIR_IN;
1322                         numbufs = 2;
1323                 } else {
1324                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1325                         lengths[0] = ccb->cdm.match_buf_len;
1326                         dirs[0] = CAM_DIR_IN;
1327                         numbufs = 1;
1328                 }
1329                 io_req->data_flags = CAM_DATA_VADDR;
1330                 break;
1331         case XPT_SCSI_IO:
1332         case XPT_CONT_TARGET_IO:
1333                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1334                         return(0);
1335
1336                 /*
1337                  * The user shouldn't be able to supply a bio.
1338                  */
1339                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1340                         return (EINVAL);
1341
1342                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1343
1344                 data_ptrs[0] = &ccb->csio.data_ptr;
1345                 lengths[0] = ccb->csio.dxfer_len;
1346                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1347                 num_segs = ccb->csio.sglist_cnt;
1348                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1349                 numbufs = 1;
1350                 maxmap = softc->maxio;
1351                 break;
1352         case XPT_ATA_IO:
1353                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1354                         return(0);
1355
1356                 /*
1357                  * We only support a single virtual address for ATA I/O.
1358                  */
1359                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1360                         return (EINVAL);
1361
1362                 io_req->data_flags = CAM_DATA_VADDR;
1363
1364                 data_ptrs[0] = &ccb->ataio.data_ptr;
1365                 lengths[0] = ccb->ataio.dxfer_len;
1366                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1367                 numbufs = 1;
1368                 maxmap = softc->maxio;
1369                 break;
1370         case XPT_SMP_IO:
1371                 io_req->data_flags = CAM_DATA_VADDR;
1372
1373                 data_ptrs[0] = &ccb->smpio.smp_request;
1374                 lengths[0] = ccb->smpio.smp_request_len;
1375                 dirs[0] = CAM_DIR_OUT;
1376                 data_ptrs[1] = &ccb->smpio.smp_response;
1377                 lengths[1] = ccb->smpio.smp_response_len;
1378                 dirs[1] = CAM_DIR_IN;
1379                 numbufs = 2;
1380                 maxmap = softc->maxio;
1381                 break;
1382         case XPT_DEV_ADVINFO:
1383                 if (ccb->cdai.bufsiz == 0)
1384                         return (0);
1385
1386                 io_req->data_flags = CAM_DATA_VADDR;
1387
1388                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1389                 lengths[0] = ccb->cdai.bufsiz;
1390                 dirs[0] = CAM_DIR_IN;
1391                 numbufs = 1;
1392                 break;
1393         default:
1394                 return(EINVAL);
1395                 break; /* NOTREACHED */
1396         }
1397
1398         io_req->num_bufs = numbufs;
1399
1400         /*
1401          * If there is a maximum, check to make sure that the user's
1402          * request fits within the limit.  In general, we should only have
1403          * a maximum length for requests that go to hardware.  Otherwise it
1404          * is whatever we're able to malloc.
1405          */
1406         for (i = 0; i < numbufs; i++) {
1407                 io_req->user_bufs[i] = *data_ptrs[i];
1408                 io_req->dirs[i] = dirs[i];
1409                 io_req->lengths[i] = lengths[i];
1410
1411                 if (maxmap == 0)
1412                         continue;
1413
1414                 if (lengths[i] <= maxmap)
1415                         continue;
1416
1417                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1418                           "bytes\n", __func__, lengths[i], maxmap);
1419                 error = EINVAL;
1420                 goto bailout;
1421         }
1422
1423         switch (io_req->data_flags) {
1424         case CAM_DATA_VADDR:
1425                 /* Map or copy the buffer into kernel address space */
1426                 for (i = 0; i < numbufs; i++) {
1427                         uint8_t *tmp_buf;
1428
1429                         /*
1430                          * If for some reason no length is specified, we
1431                          * don't need to allocate anything.
1432                          */
1433                         if (io_req->lengths[i] == 0)
1434                                 continue;
1435
1436                         /*
1437                          * Make sure that the user's buffer is accessible
1438                          * to that process.
1439                          */
1440                         if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1441                             (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1442                              VM_PROT_READ)) {
1443                                 xpt_print(periph->path, "%s: user address %p "
1444                                     "length %u is not accessible\n", __func__,
1445                                     io_req->user_bufs[i], io_req->lengths[i]);
1446                                 error = EFAULT;
1447                                 goto bailout;
1448                         }
1449
1450                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1451                                          M_WAITOK | M_ZERO);
1452                         io_req->kern_bufs[i] = tmp_buf;
1453                         *data_ptrs[i] = tmp_buf;
1454
1455 #if 0
1456                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1457                                   "buffer %p, operation: %s\n", __func__,
1458                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1459                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1460 #endif
1461                         /*
1462                          * We only need to copy in if the user is writing.
1463                          */
1464                         if (dirs[i] != CAM_DIR_OUT)
1465                                 continue;
1466
1467                         error = copyin(io_req->user_bufs[i],
1468                                        io_req->kern_bufs[i], lengths[i]);
1469                         if (error != 0) {
1470                                 xpt_print(periph->path, "%s: copy of user "
1471                                           "buffer from %p to %p failed with "
1472                                           "error %d\n", __func__,
1473                                           io_req->user_bufs[i],
1474                                           io_req->kern_bufs[i], error);
1475                                 goto bailout;
1476                         }
1477                 }
1478                 break;
1479         case CAM_DATA_PADDR:
1480                 /* Pass down the pointer as-is */
1481                 break;
1482         case CAM_DATA_SG: {
1483                 size_t sg_length, size_to_go, alloc_size;
1484                 uint32_t num_segs_needed;
1485
1486                 /*
1487                  * Copy the user S/G list in, and then copy in the
1488                  * individual segments.
1489                  */
1490                 /*
1491                  * We shouldn't see this, but check just in case.
1492                  */
1493                 if (numbufs != 1) {
1494                         xpt_print(periph->path, "%s: cannot currently handle "
1495                                   "more than one S/G list per CCB\n", __func__);
1496                         error = EINVAL;
1497                         goto bailout;
1498                 }
1499
1500                 /*
1501                  * We have to have at least one segment.
1502                  */
1503                 if (num_segs == 0) {
1504                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1505                                   "but sglist_cnt=0!\n", __func__);
1506                         error = EINVAL;
1507                         goto bailout;
1508                 }
1509
1510                 /*
1511                  * Make sure the user specified the total length and didn't
1512                  * just leave it to us to decode the S/G list.
1513                  */
1514                 if (lengths[0] == 0) {
1515                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1516                                   "but CAM_DATA_SG flag is set!\n", __func__);
1517                         error = EINVAL;
1518                         goto bailout;
1519                 }
1520
1521                 /*
1522                  * We allocate buffers in io_zone_size increments for an
1523                  * S/G list.  This will generally be MAXPHYS.
1524                  */
1525                 if (lengths[0] <= softc->io_zone_size)
1526                         num_segs_needed = 1;
1527                 else {
1528                         num_segs_needed = lengths[0] / softc->io_zone_size;
1529                         if ((lengths[0] % softc->io_zone_size) != 0)
1530                                 num_segs_needed++;
1531                 }
1532
1533                 /* Figure out the size of the S/G list */
1534                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1535                 io_req->num_user_segs = num_segs;
1536                 io_req->num_kern_segs = num_segs_needed;
1537
1538                 /* Save the user's S/G list pointer for later restoration */
1539                 io_req->user_bufs[0] = *data_ptrs[0];
1540
1541                 /*
1542                  * If we have enough segments allocated by default to handle
1543                  * the length of the user's S/G list,
1544                  */
1545                 if (num_segs > PASS_MAX_SEGS) {
1546                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1547                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1548                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1549                 } else
1550                         io_req->user_segptr = io_req->user_segs;
1551
1552                 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1553                         xpt_print(periph->path, "%s: unable to access user "
1554                                   "S/G list at %p\n", __func__, *data_ptrs[0]);
1555                         error = EFAULT;
1556                         goto bailout;
1557                 }
1558
1559                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1560                 if (error != 0) {
1561                         xpt_print(periph->path, "%s: copy of user S/G list "
1562                                   "from %p to %p failed with error %d\n",
1563                                   __func__, *data_ptrs[0], io_req->user_segptr,
1564                                   error);
1565                         goto bailout;
1566                 }
1567
1568                 if (num_segs_needed > PASS_MAX_SEGS) {
1569                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1570                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1571                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1572                 } else {
1573                         io_req->kern_segptr = io_req->kern_segs;
1574                 }
1575
1576                 /*
1577                  * Allocate the kernel S/G list.
1578                  */
1579                 for (size_to_go = lengths[0], i = 0;
1580                      size_to_go > 0 && i < num_segs_needed;
1581                      i++, size_to_go -= alloc_size) {
1582                         uint8_t *kern_ptr;
1583
1584                         alloc_size = min(size_to_go, softc->io_zone_size);
1585                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1586                         io_req->kern_segptr[i].ds_addr =
1587                             (bus_addr_t)(uintptr_t)kern_ptr;
1588                         io_req->kern_segptr[i].ds_len = alloc_size;
1589                 }
1590                 if (size_to_go > 0) {
1591                         printf("%s: size_to_go = %zu, software error!\n",
1592                                __func__, size_to_go);
1593                         error = EINVAL;
1594                         goto bailout;
1595                 }
1596
1597                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1598                 *seg_cnt_ptr = io_req->num_kern_segs;
1599
1600                 /*
1601                  * We only need to copy data here if the user is writing.
1602                  */
1603                 if (dirs[0] == CAM_DIR_OUT)
1604                         error = passcopysglist(periph, io_req, dirs[0]);
1605                 break;
1606         }
1607         case CAM_DATA_SG_PADDR: {
1608                 size_t sg_length;
1609
1610                 /*
1611                  * We shouldn't see this, but check just in case.
1612                  */
1613                 if (numbufs != 1) {
1614                         printf("%s: cannot currently handle more than one "
1615                                "S/G list per CCB\n", __func__);
1616                         error = EINVAL;
1617                         goto bailout;
1618                 }
1619
1620                 /*
1621                  * We have to have at least one segment.
1622                  */
1623                 if (num_segs == 0) {
1624                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1625                                   "set, but sglist_cnt=0!\n", __func__);
1626                         error = EINVAL;
1627                         goto bailout;
1628                 }
1629
1630                 /*
1631                  * Make sure the user specified the total length and didn't
1632                  * just leave it to us to decode the S/G list.
1633                  */
1634                 if (lengths[0] == 0) {
1635                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1636                                   "but CAM_DATA_SG flag is set!\n", __func__);
1637                         error = EINVAL;
1638                         goto bailout;
1639                 }
1640
1641                 /* Figure out the size of the S/G list */
1642                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1643                 io_req->num_user_segs = num_segs;
1644                 io_req->num_kern_segs = io_req->num_user_segs;
1645
1646                 /* Save the user's S/G list pointer for later restoration */
1647                 io_req->user_bufs[0] = *data_ptrs[0];
1648
1649                 if (num_segs > PASS_MAX_SEGS) {
1650                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1651                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1652                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1653                 } else
1654                         io_req->user_segptr = io_req->user_segs;
1655
1656                 io_req->kern_segptr = io_req->user_segptr;
1657
1658                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1659                 if (error != 0) {
1660                         xpt_print(periph->path, "%s: copy of user S/G list "
1661                                   "from %p to %p failed with error %d\n",
1662                                   __func__, *data_ptrs[0], io_req->user_segptr,
1663                                   error);
1664                         goto bailout;
1665                 }
1666                 break;
1667         }
1668         default:
1669         case CAM_DATA_BIO:
1670                 /*
1671                  * A user shouldn't be attaching a bio to the CCB.  It
1672                  * isn't a user-accessible structure.
1673                  */
1674                 error = EINVAL;
1675                 break;
1676         }
1677
1678 bailout:
1679         if (error != 0)
1680                 passiocleanup(softc, io_req);
1681
1682         return (error);
1683 }
1684
1685 static int
1686 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1687 {
1688         struct pass_softc *softc;
1689         union ccb *ccb;
1690         int error;
1691         int i;
1692
1693         error = 0;
1694         softc = (struct pass_softc *)periph->softc;
1695         ccb = &io_req->ccb;
1696
1697         switch (io_req->data_flags) {
1698         case CAM_DATA_VADDR:
1699                 /*
1700                  * Copy back to the user buffer if this was a read.
1701                  */
1702                 for (i = 0; i < io_req->num_bufs; i++) {
1703                         if (io_req->dirs[i] != CAM_DIR_IN)
1704                                 continue;
1705
1706                         error = copyout(io_req->kern_bufs[i],
1707                             io_req->user_bufs[i], io_req->lengths[i]);
1708                         if (error != 0) {
1709                                 xpt_print(periph->path, "Unable to copy %u "
1710                                           "bytes from %p to user address %p\n",
1711                                           io_req->lengths[i],
1712                                           io_req->kern_bufs[i],
1713                                           io_req->user_bufs[i]);
1714                                 goto bailout;
1715                         }
1716
1717                 }
1718                 break;
1719         case CAM_DATA_PADDR:
1720                 /* Do nothing.  The pointer is a physical address already */
1721                 break;
1722         case CAM_DATA_SG:
1723                 /*
1724                  * Copy back to the user buffer if this was a read.
1725                  * Restore the user's S/G list buffer pointer.
1726                  */
1727                 if (io_req->dirs[0] == CAM_DIR_IN)
1728                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1729                 break;
1730         case CAM_DATA_SG_PADDR:
1731                 /*
1732                  * Restore the user's S/G list buffer pointer.  No need to
1733                  * copy.
1734                  */
1735                 break;
1736         default:
1737         case CAM_DATA_BIO:
1738                 error = EINVAL;
1739                 break;
1740         }
1741
1742 bailout:
1743         /*
1744          * Reset the user's pointers to their original values and free
1745          * allocated memory.
1746          */
1747         passiocleanup(softc, io_req);
1748
1749         return (error);
1750 }
1751
1752 static int
1753 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1754 {
1755         int error;
1756
1757         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1758                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1759         }
1760         return (error);
1761 }
1762
1763 static int
1764 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1765 {
1766         struct  cam_periph *periph;
1767         struct  pass_softc *softc;
1768         int     error;
1769         uint32_t priority;
1770
1771         periph = (struct cam_periph *)dev->si_drv1;
1772         cam_periph_lock(periph);
1773         softc = (struct pass_softc *)periph->softc;
1774
1775         error = 0;
1776
1777         switch (cmd) {
1778
1779         case CAMIOCOMMAND:
1780         {
1781                 union ccb *inccb;
1782                 union ccb *ccb;
1783                 int ccb_malloced;
1784
1785                 inccb = (union ccb *)addr;
1786
1787                 /*
1788                  * Some CCB types, like scan bus and scan lun can only go
1789                  * through the transport layer device.
1790                  */
1791                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1792                         xpt_print(periph->path, "CCB function code %#x is "
1793                             "restricted to the XPT device\n",
1794                             inccb->ccb_h.func_code);
1795                         error = ENODEV;
1796                         break;
1797                 }
1798
1799                 /* Compatibility for RL/priority-unaware code. */
1800                 priority = inccb->ccb_h.pinfo.priority;
1801                 if (priority <= CAM_PRIORITY_OOB)
1802                     priority += CAM_PRIORITY_OOB + 1;
1803
1804                 /*
1805                  * Non-immediate CCBs need a CCB from the per-device pool
1806                  * of CCBs, which is scheduled by the transport layer.
1807                  * Immediate CCBs and user-supplied CCBs should just be
1808                  * malloced.
1809                  */
1810                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1811                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1812                         ccb = cam_periph_getccb(periph, priority);
1813                         ccb_malloced = 0;
1814                 } else {
1815                         ccb = xpt_alloc_ccb_nowait();
1816
1817                         if (ccb != NULL)
1818                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1819                                               priority);
1820                         ccb_malloced = 1;
1821                 }
1822
1823                 if (ccb == NULL) {
1824                         xpt_print(periph->path, "unable to allocate CCB\n");
1825                         error = ENOMEM;
1826                         break;
1827                 }
1828
1829                 error = passsendccb(periph, ccb, inccb);
1830
1831                 if (ccb_malloced)
1832                         xpt_free_ccb(ccb);
1833                 else
1834                         xpt_release_ccb(ccb);
1835
1836                 break;
1837         }
1838         case CAMIOQUEUE:
1839         {
1840                 struct pass_io_req *io_req;
1841                 union ccb **user_ccb, *ccb;
1842                 xpt_opcode fc;
1843
1844 #ifdef COMPAT_FREEBSD32
1845                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1846                         error = ENOTTY;
1847                         goto bailout;
1848                 }
1849 #endif
1850                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1851                         error = passcreatezone(periph);
1852                         if (error != 0)
1853                                 goto bailout;
1854                 }
1855
1856                 /*
1857                  * We're going to do a blocking allocation for this I/O
1858                  * request, so we have to drop the lock.
1859                  */
1860                 cam_periph_unlock(periph);
1861
1862                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1863                 ccb = &io_req->ccb;
1864                 user_ccb = (union ccb **)addr;
1865
1866                 /*
1867                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1868                  * pointer to the user's CCB, so we have to copy the whole
1869                  * thing in to a buffer we have allocated (above) instead
1870                  * of allowing the ioctl code to malloc a buffer and copy
1871                  * it in.
1872                  *
1873                  * This is an advantage for this asynchronous interface,
1874                  * since we don't want the memory to get freed while the
1875                  * CCB is outstanding.
1876                  */
1877 #if 0
1878                 xpt_print(periph->path, "Copying user CCB %p to "
1879                           "kernel address %p\n", *user_ccb, ccb);
1880 #endif
1881                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1882                 if (error != 0) {
1883                         xpt_print(periph->path, "Copy of user CCB %p to "
1884                                   "kernel address %p failed with error %d\n",
1885                                   *user_ccb, ccb, error);
1886                         uma_zfree(softc->pass_zone, io_req);
1887                         cam_periph_lock(periph);
1888                         break;
1889                 }
1890
1891                 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1892                         if (ccb->csio.cdb_len > IOCDBLEN) {
1893                                 error = EINVAL;
1894                                 break;
1895                         }
1896                         error = copyin(ccb->csio.cdb_io.cdb_ptr,
1897                             ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1898                         if (error)
1899                                 break;
1900                         ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1901                 }
1902
1903                 /*
1904                  * Some CCB types, like scan bus and scan lun can only go
1905                  * through the transport layer device.
1906                  */
1907                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1908                         xpt_print(periph->path, "CCB function code %#x is "
1909                             "restricted to the XPT device\n",
1910                             ccb->ccb_h.func_code);
1911                         uma_zfree(softc->pass_zone, io_req);
1912                         cam_periph_lock(periph);
1913                         error = ENODEV;
1914                         break;
1915                 }
1916
1917                 /*
1918                  * Save the user's CCB pointer as well as his linked list
1919                  * pointers and peripheral private area so that we can
1920                  * restore these later.
1921                  */
1922                 io_req->user_ccb_ptr = *user_ccb;
1923                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1924                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1925
1926                 /*
1927                  * Now that we've saved the user's values, we can set our
1928                  * own peripheral private entry.
1929                  */
1930                 ccb->ccb_h.ccb_ioreq = io_req;
1931
1932                 /* Compatibility for RL/priority-unaware code. */
1933                 priority = ccb->ccb_h.pinfo.priority;
1934                 if (priority <= CAM_PRIORITY_OOB)
1935                     priority += CAM_PRIORITY_OOB + 1;
1936
1937                 /*
1938                  * Setup fields in the CCB like the path and the priority.
1939                  * The path in particular cannot be done in userland, since
1940                  * it is a pointer to a kernel data structure.
1941                  */
1942                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1943                                     ccb->ccb_h.flags);
1944
1945                 /*
1946                  * Setup our done routine.  There is no way for the user to
1947                  * have a valid pointer here.
1948                  */
1949                 ccb->ccb_h.cbfcnp = passdone;
1950
1951                 fc = ccb->ccb_h.func_code;
1952                 /*
1953                  * If this function code has memory that can be mapped in
1954                  * or out, we need to call passmemsetup().
1955                  */
1956                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1957                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1958                  || (fc == XPT_DEV_ADVINFO)) {
1959                         error = passmemsetup(periph, io_req);
1960                         if (error != 0) {
1961                                 uma_zfree(softc->pass_zone, io_req);
1962                                 cam_periph_lock(periph);
1963                                 break;
1964                         }
1965                 } else
1966                         io_req->mapinfo.num_bufs_used = 0;
1967
1968                 cam_periph_lock(periph);
1969
1970                 /*
1971                  * Everything goes on the incoming queue initially.
1972                  */
1973                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1974
1975                 /*
1976                  * If the CCB is queued, and is not a user CCB, then
1977                  * we need to allocate a slot for it.  Call xpt_schedule()
1978                  * so that our start routine will get called when a CCB is
1979                  * available.
1980                  */
1981                 if ((fc & XPT_FC_QUEUED)
1982                  && ((fc & XPT_FC_USER_CCB) == 0)) {
1983                         xpt_schedule(periph, priority);
1984                         break;
1985                 } 
1986
1987                 /*
1988                  * At this point, the CCB in question is either an
1989                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1990                  * and therefore should be malloced, not allocated via a slot.
1991                  * Remove the CCB from the incoming queue and add it to the
1992                  * active queue.
1993                  */
1994                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1995                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1996
1997                 xpt_action(ccb);
1998
1999                 /*
2000                  * If this is not a queued CCB (i.e. it is an immediate CCB),
2001                  * then it is already done.  We need to put it on the done
2002                  * queue for the user to fetch.
2003                  */
2004                 if ((fc & XPT_FC_QUEUED) == 0) {
2005                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
2006                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2007                 }
2008                 break;
2009         }
2010         case CAMIOGET:
2011         {
2012                 union ccb **user_ccb;
2013                 struct pass_io_req *io_req;
2014                 int old_error;
2015
2016 #ifdef COMPAT_FREEBSD32
2017                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2018                         error = ENOTTY;
2019                         goto bailout;
2020                 }
2021 #endif
2022                 user_ccb = (union ccb **)addr;
2023                 old_error = 0;
2024
2025                 io_req = TAILQ_FIRST(&softc->done_queue);
2026                 if (io_req == NULL) {
2027                         error = ENOENT;
2028                         break;
2029                 }
2030
2031                 /*
2032                  * Remove the I/O from the done queue.
2033                  */
2034                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2035
2036                 /*
2037                  * We have to drop the lock during the copyout because the
2038                  * copyout can result in VM faults that require sleeping.
2039                  */
2040                 cam_periph_unlock(periph);
2041
2042                 /*
2043                  * Do any needed copies (e.g. for reads) and revert the
2044                  * pointers in the CCB back to the user's pointers.
2045                  */
2046                 error = passmemdone(periph, io_req);
2047
2048                 old_error = error;
2049
2050                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2051                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2052
2053 #if 0
2054                 xpt_print(periph->path, "Copying to user CCB %p from "
2055                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2056 #endif
2057
2058                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2059                 if (error != 0) {
2060                         xpt_print(periph->path, "Copy to user CCB %p from "
2061                                   "kernel address %p failed with error %d\n",
2062                                   *user_ccb, &io_req->ccb, error);
2063                 }
2064
2065                 /*
2066                  * Prefer the first error we got back, and make sure we
2067                  * don't overwrite bad status with good.
2068                  */
2069                 if (old_error != 0)
2070                         error = old_error;
2071
2072                 cam_periph_lock(periph);
2073
2074                 /*
2075                  * At this point, if there was an error, we could potentially
2076                  * re-queue the I/O and try again.  But why?  The error
2077                  * would almost certainly happen again.  We might as well
2078                  * not leak memory.
2079                  */
2080                 uma_zfree(softc->pass_zone, io_req);
2081                 break;
2082         }
2083         default:
2084                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2085                 break;
2086         }
2087
2088 bailout:
2089         cam_periph_unlock(periph);
2090
2091         return(error);
2092 }
2093
2094 static int
2095 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2096 {
2097         struct cam_periph *periph;
2098         struct pass_softc *softc;
2099         int revents;
2100
2101         periph = (struct cam_periph *)dev->si_drv1;
2102         softc = (struct pass_softc *)periph->softc;
2103
2104         revents = poll_events & (POLLOUT | POLLWRNORM);
2105         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2106                 cam_periph_lock(periph);
2107
2108                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2109                         revents |= poll_events & (POLLIN | POLLRDNORM);
2110                 }
2111                 cam_periph_unlock(periph);
2112                 if (revents == 0)
2113                         selrecord(td, &softc->read_select);
2114         }
2115
2116         return (revents);
2117 }
2118
2119 static int
2120 passkqfilter(struct cdev *dev, struct knote *kn)
2121 {
2122         struct cam_periph *periph;
2123         struct pass_softc *softc;
2124
2125         periph = (struct cam_periph *)dev->si_drv1;
2126         softc = (struct pass_softc *)periph->softc;
2127
2128         kn->kn_hook = (caddr_t)periph;
2129         kn->kn_fop = &passread_filtops;
2130         knlist_add(&softc->read_select.si_note, kn, 0);
2131
2132         return (0);
2133 }
2134
2135 static void
2136 passreadfiltdetach(struct knote *kn)
2137 {
2138         struct cam_periph *periph;
2139         struct pass_softc *softc;
2140
2141         periph = (struct cam_periph *)kn->kn_hook;
2142         softc = (struct pass_softc *)periph->softc;
2143
2144         knlist_remove(&softc->read_select.si_note, kn, 0);
2145 }
2146
2147 static int
2148 passreadfilt(struct knote *kn, long hint)
2149 {
2150         struct cam_periph *periph;
2151         struct pass_softc *softc;
2152         int retval;
2153
2154         periph = (struct cam_periph *)kn->kn_hook;
2155         softc = (struct pass_softc *)periph->softc;
2156
2157         cam_periph_assert(periph, MA_OWNED);
2158
2159         if (TAILQ_EMPTY(&softc->done_queue))
2160                 retval = 0;
2161         else
2162                 retval = 1;
2163
2164         return (retval);
2165 }
2166
2167 /*
2168  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2169  * should be the CCB that is copied in from the user.
2170  */
2171 static int
2172 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2173 {
2174         struct pass_softc *softc;
2175         struct cam_periph_map_info mapinfo;
2176         uint8_t *cmd;
2177         xpt_opcode fc;
2178         int error;
2179
2180         softc = (struct pass_softc *)periph->softc;
2181
2182         /*
2183          * There are some fields in the CCB header that need to be
2184          * preserved, the rest we get from the user.
2185          */
2186         xpt_merge_ccb(ccb, inccb);
2187
2188         if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2189                 cmd = __builtin_alloca(ccb->csio.cdb_len);
2190                 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2191                 if (error)
2192                         return (error);
2193                 ccb->csio.cdb_io.cdb_ptr = cmd;
2194         }
2195
2196         /*
2197          */
2198         ccb->ccb_h.cbfcnp = passdone;
2199
2200         /*
2201          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2202          * Even if no data transfer is needed, it's a cheap check and it
2203          * simplifies the code.
2204          */
2205         fc = ccb->ccb_h.func_code;
2206         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2207          || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2208                 bzero(&mapinfo, sizeof(mapinfo));
2209
2210                 /*
2211                  * cam_periph_mapmem calls into proc and vm functions that can
2212                  * sleep as well as trigger I/O, so we can't hold the lock.
2213                  * Dropping it here is reasonably safe.
2214                  */
2215                 cam_periph_unlock(periph);
2216                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2217                 cam_periph_lock(periph);
2218
2219                 /*
2220                  * cam_periph_mapmem returned an error, we can't continue.
2221                  * Return the error to the user.
2222                  */
2223                 if (error)
2224                         return(error);
2225         } else
2226                 /* Ensure that the unmap call later on is a no-op. */
2227                 mapinfo.num_bufs_used = 0;
2228
2229         /*
2230          * If the user wants us to perform any error recovery, then honor
2231          * that request.  Otherwise, it's up to the user to perform any
2232          * error recovery.
2233          */
2234         cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 
2235             passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
2236             /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
2237             softc->device_stats);
2238
2239         cam_periph_unmapmem(ccb, &mapinfo);
2240
2241         ccb->ccb_h.cbfcnp = NULL;
2242         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2243         bcopy(ccb, inccb, sizeof(union ccb));
2244
2245         return(0);
2246 }
2247
2248 static int
2249 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2250 {
2251         struct cam_periph *periph;
2252         struct pass_softc *softc;
2253
2254         periph = xpt_path_periph(ccb->ccb_h.path);
2255         softc = (struct pass_softc *)periph->softc;
2256         
2257         return(cam_periph_error(ccb, cam_flags, sense_flags, 
2258                                  &softc->saved_ccb));
2259 }