]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c
Copy head (r256279) to stable/10 as part of the 10.0-RELEASE cycle.
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / dtrace / dtrace.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Copyright (c) 2012 by Delphix. All rights reserved
27  * Use is subject to license terms.
28  */
29
30 #pragma ident   "%Z%%M% %I%     %E% SMI"
31
32 /*
33  * DTrace - Dynamic Tracing for Solaris
34  *
35  * This is the implementation of the Solaris Dynamic Tracing framework
36  * (DTrace).  The user-visible interface to DTrace is described at length in
37  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
38  * library, the in-kernel DTrace framework, and the DTrace providers are
39  * described in the block comments in the <sys/dtrace.h> header file.  The
40  * internal architecture of DTrace is described in the block comments in the
41  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
42  * implementation very much assume mastery of all of these sources; if one has
43  * an unanswered question about the implementation, one should consult them
44  * first.
45  *
46  * The functions here are ordered roughly as follows:
47  *
48  *   - Probe context functions
49  *   - Probe hashing functions
50  *   - Non-probe context utility functions
51  *   - Matching functions
52  *   - Provider-to-Framework API functions
53  *   - Probe management functions
54  *   - DIF object functions
55  *   - Format functions
56  *   - Predicate functions
57  *   - ECB functions
58  *   - Buffer functions
59  *   - Enabling functions
60  *   - DOF functions
61  *   - Anonymous enabling functions
62  *   - Consumer state functions
63  *   - Helper functions
64  *   - Hook functions
65  *   - Driver cookbook functions
66  *
67  * Each group of functions begins with a block comment labelled the "DTrace
68  * [Group] Functions", allowing one to find each block by searching forward
69  * on capital-f functions.
70  */
71 #include <sys/errno.h>
72 #if !defined(sun)
73 #include <sys/time.h>
74 #endif
75 #include <sys/stat.h>
76 #include <sys/modctl.h>
77 #include <sys/conf.h>
78 #include <sys/systm.h>
79 #if defined(sun)
80 #include <sys/ddi.h>
81 #include <sys/sunddi.h>
82 #endif
83 #include <sys/cpuvar.h>
84 #include <sys/kmem.h>
85 #if defined(sun)
86 #include <sys/strsubr.h>
87 #endif
88 #include <sys/sysmacros.h>
89 #include <sys/dtrace_impl.h>
90 #include <sys/atomic.h>
91 #include <sys/cmn_err.h>
92 #if defined(sun)
93 #include <sys/mutex_impl.h>
94 #include <sys/rwlock_impl.h>
95 #endif
96 #include <sys/ctf_api.h>
97 #if defined(sun)
98 #include <sys/panic.h>
99 #include <sys/priv_impl.h>
100 #endif
101 #include <sys/policy.h>
102 #if defined(sun)
103 #include <sys/cred_impl.h>
104 #include <sys/procfs_isa.h>
105 #endif
106 #include <sys/taskq.h>
107 #if defined(sun)
108 #include <sys/mkdev.h>
109 #include <sys/kdi.h>
110 #endif
111 #include <sys/zone.h>
112 #include <sys/socket.h>
113 #include <netinet/in.h>
114
115 /* FreeBSD includes: */
116 #if !defined(sun)
117 #include <sys/callout.h>
118 #include <sys/ctype.h>
119 #include <sys/eventhandler.h>
120 #include <sys/limits.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/sysctl.h>
125 #include <sys/lock.h>
126 #include <sys/mutex.h>
127 #include <sys/rwlock.h>
128 #include <sys/sx.h>
129 #include <sys/dtrace_bsd.h>
130 #include <netinet/in.h>
131 #include "dtrace_cddl.h"
132 #include "dtrace_debug.c"
133 #endif
134
135 /*
136  * DTrace Tunable Variables
137  *
138  * The following variables may be tuned by adding a line to /etc/system that
139  * includes both the name of the DTrace module ("dtrace") and the name of the
140  * variable.  For example:
141  *
142  *   set dtrace:dtrace_destructive_disallow = 1
143  *
144  * In general, the only variables that one should be tuning this way are those
145  * that affect system-wide DTrace behavior, and for which the default behavior
146  * is undesirable.  Most of these variables are tunable on a per-consumer
147  * basis using DTrace options, and need not be tuned on a system-wide basis.
148  * When tuning these variables, avoid pathological values; while some attempt
149  * is made to verify the integrity of these variables, they are not considered
150  * part of the supported interface to DTrace, and they are therefore not
151  * checked comprehensively.  Further, these variables should not be tuned
152  * dynamically via "mdb -kw" or other means; they should only be tuned via
153  * /etc/system.
154  */
155 int             dtrace_destructive_disallow = 0;
156 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
157 size_t          dtrace_difo_maxsize = (256 * 1024);
158 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
159 size_t          dtrace_global_maxsize = (16 * 1024);
160 size_t          dtrace_actions_max = (16 * 1024);
161 size_t          dtrace_retain_max = 1024;
162 dtrace_optval_t dtrace_helper_actions_max = 128;
163 dtrace_optval_t dtrace_helper_providers_max = 32;
164 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
165 size_t          dtrace_strsize_default = 256;
166 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
167 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
168 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
169 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
170 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
171 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
172 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
173 dtrace_optval_t dtrace_nspec_default = 1;
174 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
175 dtrace_optval_t dtrace_stackframes_default = 20;
176 dtrace_optval_t dtrace_ustackframes_default = 20;
177 dtrace_optval_t dtrace_jstackframes_default = 50;
178 dtrace_optval_t dtrace_jstackstrsize_default = 512;
179 int             dtrace_msgdsize_max = 128;
180 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
181 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
182 int             dtrace_devdepth_max = 32;
183 int             dtrace_err_verbose;
184 hrtime_t        dtrace_deadman_interval = NANOSEC;
185 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
186 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
187 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
188
189 /*
190  * DTrace External Variables
191  *
192  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
193  * available to DTrace consumers via the backtick (`) syntax.  One of these,
194  * dtrace_zero, is made deliberately so:  it is provided as a source of
195  * well-known, zero-filled memory.  While this variable is not documented,
196  * it is used by some translators as an implementation detail.
197  */
198 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
199
200 /*
201  * DTrace Internal Variables
202  */
203 #if defined(sun)
204 static dev_info_t       *dtrace_devi;           /* device info */
205 #endif
206 #if defined(sun)
207 static vmem_t           *dtrace_arena;          /* probe ID arena */
208 static vmem_t           *dtrace_minor;          /* minor number arena */
209 #else
210 static taskq_t          *dtrace_taskq;          /* task queue */
211 static struct unrhdr    *dtrace_arena;          /* Probe ID number.     */
212 #endif
213 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
214 static int              dtrace_nprobes;         /* number of probes */
215 static dtrace_provider_t *dtrace_provider;      /* provider list */
216 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
217 static int              dtrace_opens;           /* number of opens */
218 static int              dtrace_helpers;         /* number of helpers */
219 #if defined(sun)
220 static void             *dtrace_softstate;      /* softstate pointer */
221 #endif
222 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
223 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
224 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
225 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
226 static int              dtrace_toxranges;       /* number of toxic ranges */
227 static int              dtrace_toxranges_max;   /* size of toxic range array */
228 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
229 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
230 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
231 static kthread_t        *dtrace_panicked;       /* panicking thread */
232 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
233 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
234 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
235 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
236 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
237 #if !defined(sun)
238 static struct mtx       dtrace_unr_mtx;
239 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
240 int             dtrace_in_probe;        /* non-zero if executing a probe */
241 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
242 uintptr_t       dtrace_in_probe_addr;   /* Address of invop when already in probe */
243 #endif
244 static eventhandler_tag dtrace_kld_load_tag;
245 static eventhandler_tag dtrace_kld_unload_try_tag;
246 #endif
247
248 /*
249  * DTrace Locking
250  * DTrace is protected by three (relatively coarse-grained) locks:
251  *
252  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
253  *     including enabling state, probes, ECBs, consumer state, helper state,
254  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
255  *     probe context is lock-free -- synchronization is handled via the
256  *     dtrace_sync() cross call mechanism.
257  *
258  * (2) dtrace_provider_lock is required when manipulating provider state, or
259  *     when provider state must be held constant.
260  *
261  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
262  *     when meta provider state must be held constant.
263  *
264  * The lock ordering between these three locks is dtrace_meta_lock before
265  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
266  * several places where dtrace_provider_lock is held by the framework as it
267  * calls into the providers -- which then call back into the framework,
268  * grabbing dtrace_lock.)
269  *
270  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
271  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
272  * role as a coarse-grained lock; it is acquired before both of these locks.
273  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
274  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
275  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
276  * acquired _between_ dtrace_provider_lock and dtrace_lock.
277  */
278 static kmutex_t         dtrace_lock;            /* probe state lock */
279 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
280 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
281
282 #if !defined(sun)
283 /* XXX FreeBSD hacks. */
284 #define cr_suid         cr_svuid
285 #define cr_sgid         cr_svgid
286 #define ipaddr_t        in_addr_t
287 #define mod_modname     pathname
288 #define vuprintf        vprintf
289 #define ttoproc(_a)     ((_a)->td_proc)
290 #define crgetzoneid(_a) 0
291 #define NCPU            MAXCPU
292 #define SNOCD           0
293 #define CPU_ON_INTR(_a) 0
294
295 #define PRIV_EFFECTIVE          (1 << 0)
296 #define PRIV_DTRACE_KERNEL      (1 << 1)
297 #define PRIV_DTRACE_PROC        (1 << 2)
298 #define PRIV_DTRACE_USER        (1 << 3)
299 #define PRIV_PROC_OWNER         (1 << 4)
300 #define PRIV_PROC_ZONE          (1 << 5)
301 #define PRIV_ALL                ~0
302
303 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
304 #endif
305
306 #if defined(sun)
307 #define curcpu  CPU->cpu_id
308 #endif
309
310
311 /*
312  * DTrace Provider Variables
313  *
314  * These are the variables relating to DTrace as a provider (that is, the
315  * provider of the BEGIN, END, and ERROR probes).
316  */
317 static dtrace_pattr_t   dtrace_provider_attr = {
318 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
320 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
321 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
322 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
323 };
324
325 static void
326 dtrace_nullop(void)
327 {}
328
329 static dtrace_pops_t    dtrace_provider_ops = {
330         (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
331         (void (*)(void *, modctl_t *))dtrace_nullop,
332         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
335         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336         NULL,
337         NULL,
338         NULL,
339         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
340 };
341
342 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
343 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
344 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
345
346 /*
347  * DTrace Helper Tracing Variables
348  */
349 uint32_t dtrace_helptrace_next = 0;
350 uint32_t dtrace_helptrace_nlocals;
351 char    *dtrace_helptrace_buffer;
352 int     dtrace_helptrace_bufsize = 512 * 1024;
353
354 #ifdef DEBUG
355 int     dtrace_helptrace_enabled = 1;
356 #else
357 int     dtrace_helptrace_enabled = 0;
358 #endif
359
360 /*
361  * DTrace Error Hashing
362  *
363  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
364  * table.  This is very useful for checking coverage of tests that are
365  * expected to induce DIF or DOF processing errors, and may be useful for
366  * debugging problems in the DIF code generator or in DOF generation .  The
367  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
368  */
369 #ifdef DEBUG
370 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
371 static const char *dtrace_errlast;
372 static kthread_t *dtrace_errthread;
373 static kmutex_t dtrace_errlock;
374 #endif
375
376 /*
377  * DTrace Macros and Constants
378  *
379  * These are various macros that are useful in various spots in the
380  * implementation, along with a few random constants that have no meaning
381  * outside of the implementation.  There is no real structure to this cpp
382  * mishmash -- but is there ever?
383  */
384 #define DTRACE_HASHSTR(hash, probe)     \
385         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
386
387 #define DTRACE_HASHNEXT(hash, probe)    \
388         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
389
390 #define DTRACE_HASHPREV(hash, probe)    \
391         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
392
393 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
394         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
395             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
396
397 #define DTRACE_AGGHASHSIZE_SLEW         17
398
399 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
400
401 /*
402  * The key for a thread-local variable consists of the lower 61 bits of the
403  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
404  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
405  * equal to a variable identifier.  This is necessary (but not sufficient) to
406  * assure that global associative arrays never collide with thread-local
407  * variables.  To guarantee that they cannot collide, we must also define the
408  * order for keying dynamic variables.  That order is:
409  *
410  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
411  *
412  * Because the variable-key and the tls-key are in orthogonal spaces, there is
413  * no way for a global variable key signature to match a thread-local key
414  * signature.
415  */
416 #if defined(sun)
417 #define DTRACE_TLS_THRKEY(where) { \
418         uint_t intr = 0; \
419         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
420         for (; actv; actv >>= 1) \
421                 intr++; \
422         ASSERT(intr < (1 << 3)); \
423         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
424             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
425 }
426 #else
427 #define DTRACE_TLS_THRKEY(where) { \
428         solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
429         uint_t intr = 0; \
430         uint_t actv = _c->cpu_intr_actv; \
431         for (; actv; actv >>= 1) \
432                 intr++; \
433         ASSERT(intr < (1 << 3)); \
434         (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
435             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
436 }
437 #endif
438
439 #define DT_BSWAP_8(x)   ((x) & 0xff)
440 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
441 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
442 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
443
444 #define DT_MASK_LO 0x00000000FFFFFFFFULL
445
446 #define DTRACE_STORE(type, tomax, offset, what) \
447         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
448
449 #ifndef __x86
450 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
451         if (addr & (size - 1)) {                                        \
452                 *flags |= CPU_DTRACE_BADALIGN;                          \
453                 cpu_core[curcpu].cpuc_dtrace_illval = addr;     \
454                 return (0);                                             \
455         }
456 #else
457 #define DTRACE_ALIGNCHECK(addr, size, flags)
458 #endif
459
460 /*
461  * Test whether a range of memory starting at testaddr of size testsz falls
462  * within the range of memory described by addr, sz.  We take care to avoid
463  * problems with overflow and underflow of the unsigned quantities, and
464  * disallow all negative sizes.  Ranges of size 0 are allowed.
465  */
466 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
467         ((testaddr) - (baseaddr) < (basesz) && \
468         (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
469         (testaddr) + (testsz) >= (testaddr))
470
471 /*
472  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
473  * alloc_sz on the righthand side of the comparison in order to avoid overflow
474  * or underflow in the comparison with it.  This is simpler than the INRANGE
475  * check above, because we know that the dtms_scratch_ptr is valid in the
476  * range.  Allocations of size zero are allowed.
477  */
478 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
479         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
480         (mstate)->dtms_scratch_ptr >= (alloc_sz))
481
482 #define DTRACE_LOADFUNC(bits)                                           \
483 /*CSTYLED*/                                                             \
484 uint##bits##_t                                                          \
485 dtrace_load##bits(uintptr_t addr)                                       \
486 {                                                                       \
487         size_t size = bits / NBBY;                                      \
488         /*CSTYLED*/                                                     \
489         uint##bits##_t rval;                                            \
490         int i;                                                          \
491         volatile uint16_t *flags = (volatile uint16_t *)                \
492             &cpu_core[curcpu].cpuc_dtrace_flags;                        \
493                                                                         \
494         DTRACE_ALIGNCHECK(addr, size, flags);                           \
495                                                                         \
496         for (i = 0; i < dtrace_toxranges; i++) {                        \
497                 if (addr >= dtrace_toxrange[i].dtt_limit)               \
498                         continue;                                       \
499                                                                         \
500                 if (addr + size <= dtrace_toxrange[i].dtt_base)         \
501                         continue;                                       \
502                                                                         \
503                 /*                                                      \
504                  * This address falls within a toxic region; return 0.  \
505                  */                                                     \
506                 *flags |= CPU_DTRACE_BADADDR;                           \
507                 cpu_core[curcpu].cpuc_dtrace_illval = addr;             \
508                 return (0);                                             \
509         }                                                               \
510                                                                         \
511         *flags |= CPU_DTRACE_NOFAULT;                                   \
512         /*CSTYLED*/                                                     \
513         rval = *((volatile uint##bits##_t *)addr);                      \
514         *flags &= ~CPU_DTRACE_NOFAULT;                                  \
515                                                                         \
516         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);               \
517 }
518
519 #ifdef _LP64
520 #define dtrace_loadptr  dtrace_load64
521 #else
522 #define dtrace_loadptr  dtrace_load32
523 #endif
524
525 #define DTRACE_DYNHASH_FREE     0
526 #define DTRACE_DYNHASH_SINK     1
527 #define DTRACE_DYNHASH_VALID    2
528
529 #define DTRACE_MATCH_NEXT       0
530 #define DTRACE_MATCH_DONE       1
531 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
532 #define DTRACE_STATE_ALIGN      64
533
534 #define DTRACE_FLAGS2FLT(flags)                                         \
535         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :           \
536         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :                \
537         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :            \
538         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :                \
539         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :                \
540         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :         \
541         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :         \
542         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :       \
543         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :         \
544         DTRACEFLT_UNKNOWN)
545
546 #define DTRACEACT_ISSTRING(act)                                         \
547         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                        \
548         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
549
550 /* Function prototype definitions: */
551 static size_t dtrace_strlen(const char *, size_t);
552 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
553 static void dtrace_enabling_provide(dtrace_provider_t *);
554 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
555 static void dtrace_enabling_matchall(void);
556 static void dtrace_enabling_reap(void);
557 static dtrace_state_t *dtrace_anon_grab(void);
558 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
559     dtrace_state_t *, uint64_t, uint64_t);
560 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
561 static void dtrace_buffer_drop(dtrace_buffer_t *);
562 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
563 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
564     dtrace_state_t *, dtrace_mstate_t *);
565 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
566     dtrace_optval_t);
567 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
568 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
569 uint16_t dtrace_load16(uintptr_t);
570 uint32_t dtrace_load32(uintptr_t);
571 uint64_t dtrace_load64(uintptr_t);
572 uint8_t dtrace_load8(uintptr_t);
573 void dtrace_dynvar_clean(dtrace_dstate_t *);
574 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
575     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
576 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
577
578 /*
579  * DTrace Probe Context Functions
580  *
581  * These functions are called from probe context.  Because probe context is
582  * any context in which C may be called, arbitrarily locks may be held,
583  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
584  * As a result, functions called from probe context may only call other DTrace
585  * support functions -- they may not interact at all with the system at large.
586  * (Note that the ASSERT macro is made probe-context safe by redefining it in
587  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
588  * loads are to be performed from probe context, they _must_ be in terms of
589  * the safe dtrace_load*() variants.
590  *
591  * Some functions in this block are not actually called from probe context;
592  * for these functions, there will be a comment above the function reading
593  * "Note:  not called from probe context."
594  */
595 void
596 dtrace_panic(const char *format, ...)
597 {
598         va_list alist;
599
600         va_start(alist, format);
601         dtrace_vpanic(format, alist);
602         va_end(alist);
603 }
604
605 int
606 dtrace_assfail(const char *a, const char *f, int l)
607 {
608         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
609
610         /*
611          * We just need something here that even the most clever compiler
612          * cannot optimize away.
613          */
614         return (a[(uintptr_t)f]);
615 }
616
617 /*
618  * Atomically increment a specified error counter from probe context.
619  */
620 static void
621 dtrace_error(uint32_t *counter)
622 {
623         /*
624          * Most counters stored to in probe context are per-CPU counters.
625          * However, there are some error conditions that are sufficiently
626          * arcane that they don't merit per-CPU storage.  If these counters
627          * are incremented concurrently on different CPUs, scalability will be
628          * adversely affected -- but we don't expect them to be white-hot in a
629          * correctly constructed enabling...
630          */
631         uint32_t oval, nval;
632
633         do {
634                 oval = *counter;
635
636                 if ((nval = oval + 1) == 0) {
637                         /*
638                          * If the counter would wrap, set it to 1 -- assuring
639                          * that the counter is never zero when we have seen
640                          * errors.  (The counter must be 32-bits because we
641                          * aren't guaranteed a 64-bit compare&swap operation.)
642                          * To save this code both the infamy of being fingered
643                          * by a priggish news story and the indignity of being
644                          * the target of a neo-puritan witch trial, we're
645                          * carefully avoiding any colorful description of the
646                          * likelihood of this condition -- but suffice it to
647                          * say that it is only slightly more likely than the
648                          * overflow of predicate cache IDs, as discussed in
649                          * dtrace_predicate_create().
650                          */
651                         nval = 1;
652                 }
653         } while (dtrace_cas32(counter, oval, nval) != oval);
654 }
655
656 /*
657  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
658  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
659  */
660 DTRACE_LOADFUNC(8)
661 DTRACE_LOADFUNC(16)
662 DTRACE_LOADFUNC(32)
663 DTRACE_LOADFUNC(64)
664
665 static int
666 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
667 {
668         if (dest < mstate->dtms_scratch_base)
669                 return (0);
670
671         if (dest + size < dest)
672                 return (0);
673
674         if (dest + size > mstate->dtms_scratch_ptr)
675                 return (0);
676
677         return (1);
678 }
679
680 static int
681 dtrace_canstore_statvar(uint64_t addr, size_t sz,
682     dtrace_statvar_t **svars, int nsvars)
683 {
684         int i;
685
686         for (i = 0; i < nsvars; i++) {
687                 dtrace_statvar_t *svar = svars[i];
688
689                 if (svar == NULL || svar->dtsv_size == 0)
690                         continue;
691
692                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
693                         return (1);
694         }
695
696         return (0);
697 }
698
699 /*
700  * Check to see if the address is within a memory region to which a store may
701  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
702  * region.  The caller of dtrace_canstore() is responsible for performing any
703  * alignment checks that are needed before stores are actually executed.
704  */
705 static int
706 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
707     dtrace_vstate_t *vstate)
708 {
709         /*
710          * First, check to see if the address is in scratch space...
711          */
712         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
713             mstate->dtms_scratch_size))
714                 return (1);
715
716         /*
717          * Now check to see if it's a dynamic variable.  This check will pick
718          * up both thread-local variables and any global dynamically-allocated
719          * variables.
720          */
721         if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
722             vstate->dtvs_dynvars.dtds_size)) {
723                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
724                 uintptr_t base = (uintptr_t)dstate->dtds_base +
725                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
726                 uintptr_t chunkoffs;
727
728                 /*
729                  * Before we assume that we can store here, we need to make
730                  * sure that it isn't in our metadata -- storing to our
731                  * dynamic variable metadata would corrupt our state.  For
732                  * the range to not include any dynamic variable metadata,
733                  * it must:
734                  *
735                  *      (1) Start above the hash table that is at the base of
736                  *      the dynamic variable space
737                  *
738                  *      (2) Have a starting chunk offset that is beyond the
739                  *      dtrace_dynvar_t that is at the base of every chunk
740                  *
741                  *      (3) Not span a chunk boundary
742                  *
743                  */
744                 if (addr < base)
745                         return (0);
746
747                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
748
749                 if (chunkoffs < sizeof (dtrace_dynvar_t))
750                         return (0);
751
752                 if (chunkoffs + sz > dstate->dtds_chunksize)
753                         return (0);
754
755                 return (1);
756         }
757
758         /*
759          * Finally, check the static local and global variables.  These checks
760          * take the longest, so we perform them last.
761          */
762         if (dtrace_canstore_statvar(addr, sz,
763             vstate->dtvs_locals, vstate->dtvs_nlocals))
764                 return (1);
765
766         if (dtrace_canstore_statvar(addr, sz,
767             vstate->dtvs_globals, vstate->dtvs_nglobals))
768                 return (1);
769
770         return (0);
771 }
772
773
774 /*
775  * Convenience routine to check to see if the address is within a memory
776  * region in which a load may be issued given the user's privilege level;
777  * if not, it sets the appropriate error flags and loads 'addr' into the
778  * illegal value slot.
779  *
780  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
781  * appropriate memory access protection.
782  */
783 static int
784 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
785     dtrace_vstate_t *vstate)
786 {
787         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
788
789         /*
790          * If we hold the privilege to read from kernel memory, then
791          * everything is readable.
792          */
793         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
794                 return (1);
795
796         /*
797          * You can obviously read that which you can store.
798          */
799         if (dtrace_canstore(addr, sz, mstate, vstate))
800                 return (1);
801
802         /*
803          * We're allowed to read from our own string table.
804          */
805         if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
806             mstate->dtms_difo->dtdo_strlen))
807                 return (1);
808
809         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
810         *illval = addr;
811         return (0);
812 }
813
814 /*
815  * Convenience routine to check to see if a given string is within a memory
816  * region in which a load may be issued given the user's privilege level;
817  * this exists so that we don't need to issue unnecessary dtrace_strlen()
818  * calls in the event that the user has all privileges.
819  */
820 static int
821 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
822     dtrace_vstate_t *vstate)
823 {
824         size_t strsz;
825
826         /*
827          * If we hold the privilege to read from kernel memory, then
828          * everything is readable.
829          */
830         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
831                 return (1);
832
833         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
834         if (dtrace_canload(addr, strsz, mstate, vstate))
835                 return (1);
836
837         return (0);
838 }
839
840 /*
841  * Convenience routine to check to see if a given variable is within a memory
842  * region in which a load may be issued given the user's privilege level.
843  */
844 static int
845 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
846     dtrace_vstate_t *vstate)
847 {
848         size_t sz;
849         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
850
851         /*
852          * If we hold the privilege to read from kernel memory, then
853          * everything is readable.
854          */
855         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
856                 return (1);
857
858         if (type->dtdt_kind == DIF_TYPE_STRING)
859                 sz = dtrace_strlen(src,
860                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
861         else
862                 sz = type->dtdt_size;
863
864         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
865 }
866
867 /*
868  * Compare two strings using safe loads.
869  */
870 static int
871 dtrace_strncmp(char *s1, char *s2, size_t limit)
872 {
873         uint8_t c1, c2;
874         volatile uint16_t *flags;
875
876         if (s1 == s2 || limit == 0)
877                 return (0);
878
879         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
880
881         do {
882                 if (s1 == NULL) {
883                         c1 = '\0';
884                 } else {
885                         c1 = dtrace_load8((uintptr_t)s1++);
886                 }
887
888                 if (s2 == NULL) {
889                         c2 = '\0';
890                 } else {
891                         c2 = dtrace_load8((uintptr_t)s2++);
892                 }
893
894                 if (c1 != c2)
895                         return (c1 - c2);
896         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
897
898         return (0);
899 }
900
901 /*
902  * Compute strlen(s) for a string using safe memory accesses.  The additional
903  * len parameter is used to specify a maximum length to ensure completion.
904  */
905 static size_t
906 dtrace_strlen(const char *s, size_t lim)
907 {
908         uint_t len;
909
910         for (len = 0; len != lim; len++) {
911                 if (dtrace_load8((uintptr_t)s++) == '\0')
912                         break;
913         }
914
915         return (len);
916 }
917
918 /*
919  * Check if an address falls within a toxic region.
920  */
921 static int
922 dtrace_istoxic(uintptr_t kaddr, size_t size)
923 {
924         uintptr_t taddr, tsize;
925         int i;
926
927         for (i = 0; i < dtrace_toxranges; i++) {
928                 taddr = dtrace_toxrange[i].dtt_base;
929                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
930
931                 if (kaddr - taddr < tsize) {
932                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
933                         cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
934                         return (1);
935                 }
936
937                 if (taddr - kaddr < size) {
938                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
939                         cpu_core[curcpu].cpuc_dtrace_illval = taddr;
940                         return (1);
941                 }
942         }
943
944         return (0);
945 }
946
947 /*
948  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
949  * memory specified by the DIF program.  The dst is assumed to be safe memory
950  * that we can store to directly because it is managed by DTrace.  As with
951  * standard bcopy, overlapping copies are handled properly.
952  */
953 static void
954 dtrace_bcopy(const void *src, void *dst, size_t len)
955 {
956         if (len != 0) {
957                 uint8_t *s1 = dst;
958                 const uint8_t *s2 = src;
959
960                 if (s1 <= s2) {
961                         do {
962                                 *s1++ = dtrace_load8((uintptr_t)s2++);
963                         } while (--len != 0);
964                 } else {
965                         s2 += len;
966                         s1 += len;
967
968                         do {
969                                 *--s1 = dtrace_load8((uintptr_t)--s2);
970                         } while (--len != 0);
971                 }
972         }
973 }
974
975 /*
976  * Copy src to dst using safe memory accesses, up to either the specified
977  * length, or the point that a nul byte is encountered.  The src is assumed to
978  * be unsafe memory specified by the DIF program.  The dst is assumed to be
979  * safe memory that we can store to directly because it is managed by DTrace.
980  * Unlike dtrace_bcopy(), overlapping regions are not handled.
981  */
982 static void
983 dtrace_strcpy(const void *src, void *dst, size_t len)
984 {
985         if (len != 0) {
986                 uint8_t *s1 = dst, c;
987                 const uint8_t *s2 = src;
988
989                 do {
990                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
991                 } while (--len != 0 && c != '\0');
992         }
993 }
994
995 /*
996  * Copy src to dst, deriving the size and type from the specified (BYREF)
997  * variable type.  The src is assumed to be unsafe memory specified by the DIF
998  * program.  The dst is assumed to be DTrace variable memory that is of the
999  * specified type; we assume that we can store to directly.
1000  */
1001 static void
1002 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1003 {
1004         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1005
1006         if (type->dtdt_kind == DIF_TYPE_STRING) {
1007                 dtrace_strcpy(src, dst, type->dtdt_size);
1008         } else {
1009                 dtrace_bcopy(src, dst, type->dtdt_size);
1010         }
1011 }
1012
1013 /*
1014  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1015  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1016  * safe memory that we can access directly because it is managed by DTrace.
1017  */
1018 static int
1019 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1020 {
1021         volatile uint16_t *flags;
1022
1023         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1024
1025         if (s1 == s2)
1026                 return (0);
1027
1028         if (s1 == NULL || s2 == NULL)
1029                 return (1);
1030
1031         if (s1 != s2 && len != 0) {
1032                 const uint8_t *ps1 = s1;
1033                 const uint8_t *ps2 = s2;
1034
1035                 do {
1036                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1037                                 return (1);
1038                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1039         }
1040         return (0);
1041 }
1042
1043 /*
1044  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1045  * is for safe DTrace-managed memory only.
1046  */
1047 static void
1048 dtrace_bzero(void *dst, size_t len)
1049 {
1050         uchar_t *cp;
1051
1052         for (cp = dst; len != 0; len--)
1053                 *cp++ = 0;
1054 }
1055
1056 static void
1057 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1058 {
1059         uint64_t result[2];
1060
1061         result[0] = addend1[0] + addend2[0];
1062         result[1] = addend1[1] + addend2[1] +
1063             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1064
1065         sum[0] = result[0];
1066         sum[1] = result[1];
1067 }
1068
1069 /*
1070  * Shift the 128-bit value in a by b. If b is positive, shift left.
1071  * If b is negative, shift right.
1072  */
1073 static void
1074 dtrace_shift_128(uint64_t *a, int b)
1075 {
1076         uint64_t mask;
1077
1078         if (b == 0)
1079                 return;
1080
1081         if (b < 0) {
1082                 b = -b;
1083                 if (b >= 64) {
1084                         a[0] = a[1] >> (b - 64);
1085                         a[1] = 0;
1086                 } else {
1087                         a[0] >>= b;
1088                         mask = 1LL << (64 - b);
1089                         mask -= 1;
1090                         a[0] |= ((a[1] & mask) << (64 - b));
1091                         a[1] >>= b;
1092                 }
1093         } else {
1094                 if (b >= 64) {
1095                         a[1] = a[0] << (b - 64);
1096                         a[0] = 0;
1097                 } else {
1098                         a[1] <<= b;
1099                         mask = a[0] >> (64 - b);
1100                         a[1] |= mask;
1101                         a[0] <<= b;
1102                 }
1103         }
1104 }
1105
1106 /*
1107  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1108  * use native multiplication on those, and then re-combine into the
1109  * resulting 128-bit value.
1110  *
1111  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1112  *     hi1 * hi2 << 64 +
1113  *     hi1 * lo2 << 32 +
1114  *     hi2 * lo1 << 32 +
1115  *     lo1 * lo2
1116  */
1117 static void
1118 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1119 {
1120         uint64_t hi1, hi2, lo1, lo2;
1121         uint64_t tmp[2];
1122
1123         hi1 = factor1 >> 32;
1124         hi2 = factor2 >> 32;
1125
1126         lo1 = factor1 & DT_MASK_LO;
1127         lo2 = factor2 & DT_MASK_LO;
1128
1129         product[0] = lo1 * lo2;
1130         product[1] = hi1 * hi2;
1131
1132         tmp[0] = hi1 * lo2;
1133         tmp[1] = 0;
1134         dtrace_shift_128(tmp, 32);
1135         dtrace_add_128(product, tmp, product);
1136
1137         tmp[0] = hi2 * lo1;
1138         tmp[1] = 0;
1139         dtrace_shift_128(tmp, 32);
1140         dtrace_add_128(product, tmp, product);
1141 }
1142
1143 /*
1144  * This privilege check should be used by actions and subroutines to
1145  * verify that the user credentials of the process that enabled the
1146  * invoking ECB match the target credentials
1147  */
1148 static int
1149 dtrace_priv_proc_common_user(dtrace_state_t *state)
1150 {
1151         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1152
1153         /*
1154          * We should always have a non-NULL state cred here, since if cred
1155          * is null (anonymous tracing), we fast-path bypass this routine.
1156          */
1157         ASSERT(s_cr != NULL);
1158
1159         if ((cr = CRED()) != NULL &&
1160             s_cr->cr_uid == cr->cr_uid &&
1161             s_cr->cr_uid == cr->cr_ruid &&
1162             s_cr->cr_uid == cr->cr_suid &&
1163             s_cr->cr_gid == cr->cr_gid &&
1164             s_cr->cr_gid == cr->cr_rgid &&
1165             s_cr->cr_gid == cr->cr_sgid)
1166                 return (1);
1167
1168         return (0);
1169 }
1170
1171 /*
1172  * This privilege check should be used by actions and subroutines to
1173  * verify that the zone of the process that enabled the invoking ECB
1174  * matches the target credentials
1175  */
1176 static int
1177 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1178 {
1179 #if defined(sun)
1180         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1181
1182         /*
1183          * We should always have a non-NULL state cred here, since if cred
1184          * is null (anonymous tracing), we fast-path bypass this routine.
1185          */
1186         ASSERT(s_cr != NULL);
1187
1188         if ((cr = CRED()) != NULL &&
1189             s_cr->cr_zone == cr->cr_zone)
1190                 return (1);
1191
1192         return (0);
1193 #else
1194         return (1);
1195 #endif
1196 }
1197
1198 /*
1199  * This privilege check should be used by actions and subroutines to
1200  * verify that the process has not setuid or changed credentials.
1201  */
1202 static int
1203 dtrace_priv_proc_common_nocd(void)
1204 {
1205         proc_t *proc;
1206
1207         if ((proc = ttoproc(curthread)) != NULL &&
1208             !(proc->p_flag & SNOCD))
1209                 return (1);
1210
1211         return (0);
1212 }
1213
1214 static int
1215 dtrace_priv_proc_destructive(dtrace_state_t *state)
1216 {
1217         int action = state->dts_cred.dcr_action;
1218
1219         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1220             dtrace_priv_proc_common_zone(state) == 0)
1221                 goto bad;
1222
1223         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1224             dtrace_priv_proc_common_user(state) == 0)
1225                 goto bad;
1226
1227         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1228             dtrace_priv_proc_common_nocd() == 0)
1229                 goto bad;
1230
1231         return (1);
1232
1233 bad:
1234         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1235
1236         return (0);
1237 }
1238
1239 static int
1240 dtrace_priv_proc_control(dtrace_state_t *state)
1241 {
1242         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1243                 return (1);
1244
1245         if (dtrace_priv_proc_common_zone(state) &&
1246             dtrace_priv_proc_common_user(state) &&
1247             dtrace_priv_proc_common_nocd())
1248                 return (1);
1249
1250         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1251
1252         return (0);
1253 }
1254
1255 static int
1256 dtrace_priv_proc(dtrace_state_t *state)
1257 {
1258         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1259                 return (1);
1260
1261         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1262
1263         return (0);
1264 }
1265
1266 static int
1267 dtrace_priv_kernel(dtrace_state_t *state)
1268 {
1269         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1270                 return (1);
1271
1272         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1273
1274         return (0);
1275 }
1276
1277 static int
1278 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1279 {
1280         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1281                 return (1);
1282
1283         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1284
1285         return (0);
1286 }
1287
1288 /*
1289  * Note:  not called from probe context.  This function is called
1290  * asynchronously (and at a regular interval) from outside of probe context to
1291  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1292  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1293  */
1294 void
1295 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1296 {
1297         dtrace_dynvar_t *dirty;
1298         dtrace_dstate_percpu_t *dcpu;
1299         int i, work = 0;
1300
1301         for (i = 0; i < NCPU; i++) {
1302                 dcpu = &dstate->dtds_percpu[i];
1303
1304                 ASSERT(dcpu->dtdsc_rinsing == NULL);
1305
1306                 /*
1307                  * If the dirty list is NULL, there is no dirty work to do.
1308                  */
1309                 if (dcpu->dtdsc_dirty == NULL)
1310                         continue;
1311
1312                 /*
1313                  * If the clean list is non-NULL, then we're not going to do
1314                  * any work for this CPU -- it means that there has not been
1315                  * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1316                  * since the last time we cleaned house.
1317                  */
1318                 if (dcpu->dtdsc_clean != NULL)
1319                         continue;
1320
1321                 work = 1;
1322
1323                 /*
1324                  * Atomically move the dirty list aside.
1325                  */
1326                 do {
1327                         dirty = dcpu->dtdsc_dirty;
1328
1329                         /*
1330                          * Before we zap the dirty list, set the rinsing list.
1331                          * (This allows for a potential assertion in
1332                          * dtrace_dynvar():  if a free dynamic variable appears
1333                          * on a hash chain, either the dirty list or the
1334                          * rinsing list for some CPU must be non-NULL.)
1335                          */
1336                         dcpu->dtdsc_rinsing = dirty;
1337                         dtrace_membar_producer();
1338                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1339                     dirty, NULL) != dirty);
1340         }
1341
1342         if (!work) {
1343                 /*
1344                  * We have no work to do; we can simply return.
1345                  */
1346                 return;
1347         }
1348
1349         dtrace_sync();
1350
1351         for (i = 0; i < NCPU; i++) {
1352                 dcpu = &dstate->dtds_percpu[i];
1353
1354                 if (dcpu->dtdsc_rinsing == NULL)
1355                         continue;
1356
1357                 /*
1358                  * We are now guaranteed that no hash chain contains a pointer
1359                  * into this dirty list; we can make it clean.
1360                  */
1361                 ASSERT(dcpu->dtdsc_clean == NULL);
1362                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1363                 dcpu->dtdsc_rinsing = NULL;
1364         }
1365
1366         /*
1367          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1368          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1369          * This prevents a race whereby a CPU incorrectly decides that
1370          * the state should be something other than DTRACE_DSTATE_CLEAN
1371          * after dtrace_dynvar_clean() has completed.
1372          */
1373         dtrace_sync();
1374
1375         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1376 }
1377
1378 /*
1379  * Depending on the value of the op parameter, this function looks-up,
1380  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1381  * allocation is requested, this function will return a pointer to a
1382  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1383  * variable can be allocated.  If NULL is returned, the appropriate counter
1384  * will be incremented.
1385  */
1386 dtrace_dynvar_t *
1387 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1388     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1389     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1390 {
1391         uint64_t hashval = DTRACE_DYNHASH_VALID;
1392         dtrace_dynhash_t *hash = dstate->dtds_hash;
1393         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1394         processorid_t me = curcpu, cpu = me;
1395         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1396         size_t bucket, ksize;
1397         size_t chunksize = dstate->dtds_chunksize;
1398         uintptr_t kdata, lock, nstate;
1399         uint_t i;
1400
1401         ASSERT(nkeys != 0);
1402
1403         /*
1404          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1405          * algorithm.  For the by-value portions, we perform the algorithm in
1406          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1407          * bit, and seems to have only a minute effect on distribution.  For
1408          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1409          * over each referenced byte.  It's painful to do this, but it's much
1410          * better than pathological hash distribution.  The efficacy of the
1411          * hashing algorithm (and a comparison with other algorithms) may be
1412          * found by running the ::dtrace_dynstat MDB dcmd.
1413          */
1414         for (i = 0; i < nkeys; i++) {
1415                 if (key[i].dttk_size == 0) {
1416                         uint64_t val = key[i].dttk_value;
1417
1418                         hashval += (val >> 48) & 0xffff;
1419                         hashval += (hashval << 10);
1420                         hashval ^= (hashval >> 6);
1421
1422                         hashval += (val >> 32) & 0xffff;
1423                         hashval += (hashval << 10);
1424                         hashval ^= (hashval >> 6);
1425
1426                         hashval += (val >> 16) & 0xffff;
1427                         hashval += (hashval << 10);
1428                         hashval ^= (hashval >> 6);
1429
1430                         hashval += val & 0xffff;
1431                         hashval += (hashval << 10);
1432                         hashval ^= (hashval >> 6);
1433                 } else {
1434                         /*
1435                          * This is incredibly painful, but it beats the hell
1436                          * out of the alternative.
1437                          */
1438                         uint64_t j, size = key[i].dttk_size;
1439                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1440
1441                         if (!dtrace_canload(base, size, mstate, vstate))
1442                                 break;
1443
1444                         for (j = 0; j < size; j++) {
1445                                 hashval += dtrace_load8(base + j);
1446                                 hashval += (hashval << 10);
1447                                 hashval ^= (hashval >> 6);
1448                         }
1449                 }
1450         }
1451
1452         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1453                 return (NULL);
1454
1455         hashval += (hashval << 3);
1456         hashval ^= (hashval >> 11);
1457         hashval += (hashval << 15);
1458
1459         /*
1460          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1461          * comes out to be one of our two sentinel hash values.  If this
1462          * actually happens, we set the hashval to be a value known to be a
1463          * non-sentinel value.
1464          */
1465         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1466                 hashval = DTRACE_DYNHASH_VALID;
1467
1468         /*
1469          * Yes, it's painful to do a divide here.  If the cycle count becomes
1470          * important here, tricks can be pulled to reduce it.  (However, it's
1471          * critical that hash collisions be kept to an absolute minimum;
1472          * they're much more painful than a divide.)  It's better to have a
1473          * solution that generates few collisions and still keeps things
1474          * relatively simple.
1475          */
1476         bucket = hashval % dstate->dtds_hashsize;
1477
1478         if (op == DTRACE_DYNVAR_DEALLOC) {
1479                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1480
1481                 for (;;) {
1482                         while ((lock = *lockp) & 1)
1483                                 continue;
1484
1485                         if (dtrace_casptr((volatile void *)lockp,
1486                             (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1487                                 break;
1488                 }
1489
1490                 dtrace_membar_producer();
1491         }
1492
1493 top:
1494         prev = NULL;
1495         lock = hash[bucket].dtdh_lock;
1496
1497         dtrace_membar_consumer();
1498
1499         start = hash[bucket].dtdh_chain;
1500         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1501             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1502             op != DTRACE_DYNVAR_DEALLOC));
1503
1504         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1505                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1506                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1507
1508                 if (dvar->dtdv_hashval != hashval) {
1509                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1510                                 /*
1511                                  * We've reached the sink, and therefore the
1512                                  * end of the hash chain; we can kick out of
1513                                  * the loop knowing that we have seen a valid
1514                                  * snapshot of state.
1515                                  */
1516                                 ASSERT(dvar->dtdv_next == NULL);
1517                                 ASSERT(dvar == &dtrace_dynhash_sink);
1518                                 break;
1519                         }
1520
1521                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1522                                 /*
1523                                  * We've gone off the rails:  somewhere along
1524                                  * the line, one of the members of this hash
1525                                  * chain was deleted.  Note that we could also
1526                                  * detect this by simply letting this loop run
1527                                  * to completion, as we would eventually hit
1528                                  * the end of the dirty list.  However, we
1529                                  * want to avoid running the length of the
1530                                  * dirty list unnecessarily (it might be quite
1531                                  * long), so we catch this as early as
1532                                  * possible by detecting the hash marker.  In
1533                                  * this case, we simply set dvar to NULL and
1534                                  * break; the conditional after the loop will
1535                                  * send us back to top.
1536                                  */
1537                                 dvar = NULL;
1538                                 break;
1539                         }
1540
1541                         goto next;
1542                 }
1543
1544                 if (dtuple->dtt_nkeys != nkeys)
1545                         goto next;
1546
1547                 for (i = 0; i < nkeys; i++, dkey++) {
1548                         if (dkey->dttk_size != key[i].dttk_size)
1549                                 goto next; /* size or type mismatch */
1550
1551                         if (dkey->dttk_size != 0) {
1552                                 if (dtrace_bcmp(
1553                                     (void *)(uintptr_t)key[i].dttk_value,
1554                                     (void *)(uintptr_t)dkey->dttk_value,
1555                                     dkey->dttk_size))
1556                                         goto next;
1557                         } else {
1558                                 if (dkey->dttk_value != key[i].dttk_value)
1559                                         goto next;
1560                         }
1561                 }
1562
1563                 if (op != DTRACE_DYNVAR_DEALLOC)
1564                         return (dvar);
1565
1566                 ASSERT(dvar->dtdv_next == NULL ||
1567                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1568
1569                 if (prev != NULL) {
1570                         ASSERT(hash[bucket].dtdh_chain != dvar);
1571                         ASSERT(start != dvar);
1572                         ASSERT(prev->dtdv_next == dvar);
1573                         prev->dtdv_next = dvar->dtdv_next;
1574                 } else {
1575                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1576                             start, dvar->dtdv_next) != start) {
1577                                 /*
1578                                  * We have failed to atomically swing the
1579                                  * hash table head pointer, presumably because
1580                                  * of a conflicting allocation on another CPU.
1581                                  * We need to reread the hash chain and try
1582                                  * again.
1583                                  */
1584                                 goto top;
1585                         }
1586                 }
1587
1588                 dtrace_membar_producer();
1589
1590                 /*
1591                  * Now set the hash value to indicate that it's free.
1592                  */
1593                 ASSERT(hash[bucket].dtdh_chain != dvar);
1594                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1595
1596                 dtrace_membar_producer();
1597
1598                 /*
1599                  * Set the next pointer to point at the dirty list, and
1600                  * atomically swing the dirty pointer to the newly freed dvar.
1601                  */
1602                 do {
1603                         next = dcpu->dtdsc_dirty;
1604                         dvar->dtdv_next = next;
1605                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1606
1607                 /*
1608                  * Finally, unlock this hash bucket.
1609                  */
1610                 ASSERT(hash[bucket].dtdh_lock == lock);
1611                 ASSERT(lock & 1);
1612                 hash[bucket].dtdh_lock++;
1613
1614                 return (NULL);
1615 next:
1616                 prev = dvar;
1617                 continue;
1618         }
1619
1620         if (dvar == NULL) {
1621                 /*
1622                  * If dvar is NULL, it is because we went off the rails:
1623                  * one of the elements that we traversed in the hash chain
1624                  * was deleted while we were traversing it.  In this case,
1625                  * we assert that we aren't doing a dealloc (deallocs lock
1626                  * the hash bucket to prevent themselves from racing with
1627                  * one another), and retry the hash chain traversal.
1628                  */
1629                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1630                 goto top;
1631         }
1632
1633         if (op != DTRACE_DYNVAR_ALLOC) {
1634                 /*
1635                  * If we are not to allocate a new variable, we want to
1636                  * return NULL now.  Before we return, check that the value
1637                  * of the lock word hasn't changed.  If it has, we may have
1638                  * seen an inconsistent snapshot.
1639                  */
1640                 if (op == DTRACE_DYNVAR_NOALLOC) {
1641                         if (hash[bucket].dtdh_lock != lock)
1642                                 goto top;
1643                 } else {
1644                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1645                         ASSERT(hash[bucket].dtdh_lock == lock);
1646                         ASSERT(lock & 1);
1647                         hash[bucket].dtdh_lock++;
1648                 }
1649
1650                 return (NULL);
1651         }
1652
1653         /*
1654          * We need to allocate a new dynamic variable.  The size we need is the
1655          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1656          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1657          * the size of any referred-to data (dsize).  We then round the final
1658          * size up to the chunksize for allocation.
1659          */
1660         for (ksize = 0, i = 0; i < nkeys; i++)
1661                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1662
1663         /*
1664          * This should be pretty much impossible, but could happen if, say,
1665          * strange DIF specified the tuple.  Ideally, this should be an
1666          * assertion and not an error condition -- but that requires that the
1667          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1668          * bullet-proof.  (That is, it must not be able to be fooled by
1669          * malicious DIF.)  Given the lack of backwards branches in DIF,
1670          * solving this would presumably not amount to solving the Halting
1671          * Problem -- but it still seems awfully hard.
1672          */
1673         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1674             ksize + dsize > chunksize) {
1675                 dcpu->dtdsc_drops++;
1676                 return (NULL);
1677         }
1678
1679         nstate = DTRACE_DSTATE_EMPTY;
1680
1681         do {
1682 retry:
1683                 free = dcpu->dtdsc_free;
1684
1685                 if (free == NULL) {
1686                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1687                         void *rval;
1688
1689                         if (clean == NULL) {
1690                                 /*
1691                                  * We're out of dynamic variable space on
1692                                  * this CPU.  Unless we have tried all CPUs,
1693                                  * we'll try to allocate from a different
1694                                  * CPU.
1695                                  */
1696                                 switch (dstate->dtds_state) {
1697                                 case DTRACE_DSTATE_CLEAN: {
1698                                         void *sp = &dstate->dtds_state;
1699
1700                                         if (++cpu >= NCPU)
1701                                                 cpu = 0;
1702
1703                                         if (dcpu->dtdsc_dirty != NULL &&
1704                                             nstate == DTRACE_DSTATE_EMPTY)
1705                                                 nstate = DTRACE_DSTATE_DIRTY;
1706
1707                                         if (dcpu->dtdsc_rinsing != NULL)
1708                                                 nstate = DTRACE_DSTATE_RINSING;
1709
1710                                         dcpu = &dstate->dtds_percpu[cpu];
1711
1712                                         if (cpu != me)
1713                                                 goto retry;
1714
1715                                         (void) dtrace_cas32(sp,
1716                                             DTRACE_DSTATE_CLEAN, nstate);
1717
1718                                         /*
1719                                          * To increment the correct bean
1720                                          * counter, take another lap.
1721                                          */
1722                                         goto retry;
1723                                 }
1724
1725                                 case DTRACE_DSTATE_DIRTY:
1726                                         dcpu->dtdsc_dirty_drops++;
1727                                         break;
1728
1729                                 case DTRACE_DSTATE_RINSING:
1730                                         dcpu->dtdsc_rinsing_drops++;
1731                                         break;
1732
1733                                 case DTRACE_DSTATE_EMPTY:
1734                                         dcpu->dtdsc_drops++;
1735                                         break;
1736                                 }
1737
1738                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1739                                 return (NULL);
1740                         }
1741
1742                         /*
1743                          * The clean list appears to be non-empty.  We want to
1744                          * move the clean list to the free list; we start by
1745                          * moving the clean pointer aside.
1746                          */
1747                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1748                             clean, NULL) != clean) {
1749                                 /*
1750                                  * We are in one of two situations:
1751                                  *
1752                                  *  (a) The clean list was switched to the
1753                                  *      free list by another CPU.
1754                                  *
1755                                  *  (b) The clean list was added to by the
1756                                  *      cleansing cyclic.
1757                                  *
1758                                  * In either of these situations, we can
1759                                  * just reattempt the free list allocation.
1760                                  */
1761                                 goto retry;
1762                         }
1763
1764                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1765
1766                         /*
1767                          * Now we'll move the clean list to the free list.
1768                          * It's impossible for this to fail:  the only way
1769                          * the free list can be updated is through this
1770                          * code path, and only one CPU can own the clean list.
1771                          * Thus, it would only be possible for this to fail if
1772                          * this code were racing with dtrace_dynvar_clean().
1773                          * (That is, if dtrace_dynvar_clean() updated the clean
1774                          * list, and we ended up racing to update the free
1775                          * list.)  This race is prevented by the dtrace_sync()
1776                          * in dtrace_dynvar_clean() -- which flushes the
1777                          * owners of the clean lists out before resetting
1778                          * the clean lists.
1779                          */
1780                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1781                         ASSERT(rval == NULL);
1782                         goto retry;
1783                 }
1784
1785                 dvar = free;
1786                 new_free = dvar->dtdv_next;
1787         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1788
1789         /*
1790          * We have now allocated a new chunk.  We copy the tuple keys into the
1791          * tuple array and copy any referenced key data into the data space
1792          * following the tuple array.  As we do this, we relocate dttk_value
1793          * in the final tuple to point to the key data address in the chunk.
1794          */
1795         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1796         dvar->dtdv_data = (void *)(kdata + ksize);
1797         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1798
1799         for (i = 0; i < nkeys; i++) {
1800                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1801                 size_t kesize = key[i].dttk_size;
1802
1803                 if (kesize != 0) {
1804                         dtrace_bcopy(
1805                             (const void *)(uintptr_t)key[i].dttk_value,
1806                             (void *)kdata, kesize);
1807                         dkey->dttk_value = kdata;
1808                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1809                 } else {
1810                         dkey->dttk_value = key[i].dttk_value;
1811                 }
1812
1813                 dkey->dttk_size = kesize;
1814         }
1815
1816         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1817         dvar->dtdv_hashval = hashval;
1818         dvar->dtdv_next = start;
1819
1820         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1821                 return (dvar);
1822
1823         /*
1824          * The cas has failed.  Either another CPU is adding an element to
1825          * this hash chain, or another CPU is deleting an element from this
1826          * hash chain.  The simplest way to deal with both of these cases
1827          * (though not necessarily the most efficient) is to free our
1828          * allocated block and tail-call ourselves.  Note that the free is
1829          * to the dirty list and _not_ to the free list.  This is to prevent
1830          * races with allocators, above.
1831          */
1832         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1833
1834         dtrace_membar_producer();
1835
1836         do {
1837                 free = dcpu->dtdsc_dirty;
1838                 dvar->dtdv_next = free;
1839         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1840
1841         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1842 }
1843
1844 /*ARGSUSED*/
1845 static void
1846 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1847 {
1848         if ((int64_t)nval < (int64_t)*oval)
1849                 *oval = nval;
1850 }
1851
1852 /*ARGSUSED*/
1853 static void
1854 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1855 {
1856         if ((int64_t)nval > (int64_t)*oval)
1857                 *oval = nval;
1858 }
1859
1860 static void
1861 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1862 {
1863         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1864         int64_t val = (int64_t)nval;
1865
1866         if (val < 0) {
1867                 for (i = 0; i < zero; i++) {
1868                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1869                                 quanta[i] += incr;
1870                                 return;
1871                         }
1872                 }
1873         } else {
1874                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1875                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1876                                 quanta[i - 1] += incr;
1877                                 return;
1878                         }
1879                 }
1880
1881                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1882                 return;
1883         }
1884
1885         ASSERT(0);
1886 }
1887
1888 static void
1889 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1890 {
1891         uint64_t arg = *lquanta++;
1892         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1893         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1894         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1895         int32_t val = (int32_t)nval, level;
1896
1897         ASSERT(step != 0);
1898         ASSERT(levels != 0);
1899
1900         if (val < base) {
1901                 /*
1902                  * This is an underflow.
1903                  */
1904                 lquanta[0] += incr;
1905                 return;
1906         }
1907
1908         level = (val - base) / step;
1909
1910         if (level < levels) {
1911                 lquanta[level + 1] += incr;
1912                 return;
1913         }
1914
1915         /*
1916          * This is an overflow.
1917          */
1918         lquanta[levels + 1] += incr;
1919 }
1920
1921 static int
1922 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1923     uint16_t high, uint16_t nsteps, int64_t value)
1924 {
1925         int64_t this = 1, last, next;
1926         int base = 1, order;
1927
1928         ASSERT(factor <= nsteps);
1929         ASSERT(nsteps % factor == 0);
1930
1931         for (order = 0; order < low; order++)
1932                 this *= factor;
1933
1934         /*
1935          * If our value is less than our factor taken to the power of the
1936          * low order of magnitude, it goes into the zeroth bucket.
1937          */
1938         if (value < (last = this))
1939                 return (0);
1940
1941         for (this *= factor; order <= high; order++) {
1942                 int nbuckets = this > nsteps ? nsteps : this;
1943
1944                 if ((next = this * factor) < this) {
1945                         /*
1946                          * We should not generally get log/linear quantizations
1947                          * with a high magnitude that allows 64-bits to
1948                          * overflow, but we nonetheless protect against this
1949                          * by explicitly checking for overflow, and clamping
1950                          * our value accordingly.
1951                          */
1952                         value = this - 1;
1953                 }
1954
1955                 if (value < this) {
1956                         /*
1957                          * If our value lies within this order of magnitude,
1958                          * determine its position by taking the offset within
1959                          * the order of magnitude, dividing by the bucket
1960                          * width, and adding to our (accumulated) base.
1961                          */
1962                         return (base + (value - last) / (this / nbuckets));
1963                 }
1964
1965                 base += nbuckets - (nbuckets / factor);
1966                 last = this;
1967                 this = next;
1968         }
1969
1970         /*
1971          * Our value is greater than or equal to our factor taken to the
1972          * power of one plus the high magnitude -- return the top bucket.
1973          */
1974         return (base);
1975 }
1976
1977 static void
1978 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1979 {
1980         uint64_t arg = *llquanta++;
1981         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1982         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1983         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1984         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1985
1986         llquanta[dtrace_aggregate_llquantize_bucket(factor,
1987             low, high, nsteps, nval)] += incr;
1988 }
1989
1990 /*ARGSUSED*/
1991 static void
1992 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1993 {
1994         data[0]++;
1995         data[1] += nval;
1996 }
1997
1998 /*ARGSUSED*/
1999 static void
2000 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2001 {
2002         int64_t snval = (int64_t)nval;
2003         uint64_t tmp[2];
2004
2005         data[0]++;
2006         data[1] += nval;
2007
2008         /*
2009          * What we want to say here is:
2010          *
2011          * data[2] += nval * nval;
2012          *
2013          * But given that nval is 64-bit, we could easily overflow, so
2014          * we do this as 128-bit arithmetic.
2015          */
2016         if (snval < 0)
2017                 snval = -snval;
2018
2019         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2020         dtrace_add_128(data + 2, tmp, data + 2);
2021 }
2022
2023 /*ARGSUSED*/
2024 static void
2025 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2026 {
2027         *oval = *oval + 1;
2028 }
2029
2030 /*ARGSUSED*/
2031 static void
2032 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2033 {
2034         *oval += nval;
2035 }
2036
2037 /*
2038  * Aggregate given the tuple in the principal data buffer, and the aggregating
2039  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2040  * buffer is specified as the buf parameter.  This routine does not return
2041  * failure; if there is no space in the aggregation buffer, the data will be
2042  * dropped, and a corresponding counter incremented.
2043  */
2044 static void
2045 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2046     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2047 {
2048         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2049         uint32_t i, ndx, size, fsize;
2050         uint32_t align = sizeof (uint64_t) - 1;
2051         dtrace_aggbuffer_t *agb;
2052         dtrace_aggkey_t *key;
2053         uint32_t hashval = 0, limit, isstr;
2054         caddr_t tomax, data, kdata;
2055         dtrace_actkind_t action;
2056         dtrace_action_t *act;
2057         uintptr_t offs;
2058
2059         if (buf == NULL)
2060                 return;
2061
2062         if (!agg->dtag_hasarg) {
2063                 /*
2064                  * Currently, only quantize() and lquantize() take additional
2065                  * arguments, and they have the same semantics:  an increment
2066                  * value that defaults to 1 when not present.  If additional
2067                  * aggregating actions take arguments, the setting of the
2068                  * default argument value will presumably have to become more
2069                  * sophisticated...
2070                  */
2071                 arg = 1;
2072         }
2073
2074         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2075         size = rec->dtrd_offset - agg->dtag_base;
2076         fsize = size + rec->dtrd_size;
2077
2078         ASSERT(dbuf->dtb_tomax != NULL);
2079         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2080
2081         if ((tomax = buf->dtb_tomax) == NULL) {
2082                 dtrace_buffer_drop(buf);
2083                 return;
2084         }
2085
2086         /*
2087          * The metastructure is always at the bottom of the buffer.
2088          */
2089         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2090             sizeof (dtrace_aggbuffer_t));
2091
2092         if (buf->dtb_offset == 0) {
2093                 /*
2094                  * We just kludge up approximately 1/8th of the size to be
2095                  * buckets.  If this guess ends up being routinely
2096                  * off-the-mark, we may need to dynamically readjust this
2097                  * based on past performance.
2098                  */
2099                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2100
2101                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2102                     (uintptr_t)tomax || hashsize == 0) {
2103                         /*
2104                          * We've been given a ludicrously small buffer;
2105                          * increment our drop count and leave.
2106                          */
2107                         dtrace_buffer_drop(buf);
2108                         return;
2109                 }
2110
2111                 /*
2112                  * And now, a pathetic attempt to try to get a an odd (or
2113                  * perchance, a prime) hash size for better hash distribution.
2114                  */
2115                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2116                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2117
2118                 agb->dtagb_hashsize = hashsize;
2119                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2120                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2121                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2122
2123                 for (i = 0; i < agb->dtagb_hashsize; i++)
2124                         agb->dtagb_hash[i] = NULL;
2125         }
2126
2127         ASSERT(agg->dtag_first != NULL);
2128         ASSERT(agg->dtag_first->dta_intuple);
2129
2130         /*
2131          * Calculate the hash value based on the key.  Note that we _don't_
2132          * include the aggid in the hashing (but we will store it as part of
2133          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2134          * algorithm: a simple, quick algorithm that has no known funnels, and
2135          * gets good distribution in practice.  The efficacy of the hashing
2136          * algorithm (and a comparison with other algorithms) may be found by
2137          * running the ::dtrace_aggstat MDB dcmd.
2138          */
2139         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2140                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2141                 limit = i + act->dta_rec.dtrd_size;
2142                 ASSERT(limit <= size);
2143                 isstr = DTRACEACT_ISSTRING(act);
2144
2145                 for (; i < limit; i++) {
2146                         hashval += data[i];
2147                         hashval += (hashval << 10);
2148                         hashval ^= (hashval >> 6);
2149
2150                         if (isstr && data[i] == '\0')
2151                                 break;
2152                 }
2153         }
2154
2155         hashval += (hashval << 3);
2156         hashval ^= (hashval >> 11);
2157         hashval += (hashval << 15);
2158
2159         /*
2160          * Yes, the divide here is expensive -- but it's generally the least
2161          * of the performance issues given the amount of data that we iterate
2162          * over to compute hash values, compare data, etc.
2163          */
2164         ndx = hashval % agb->dtagb_hashsize;
2165
2166         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2167                 ASSERT((caddr_t)key >= tomax);
2168                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2169
2170                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2171                         continue;
2172
2173                 kdata = key->dtak_data;
2174                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2175
2176                 for (act = agg->dtag_first; act->dta_intuple;
2177                     act = act->dta_next) {
2178                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2179                         limit = i + act->dta_rec.dtrd_size;
2180                         ASSERT(limit <= size);
2181                         isstr = DTRACEACT_ISSTRING(act);
2182
2183                         for (; i < limit; i++) {
2184                                 if (kdata[i] != data[i])
2185                                         goto next;
2186
2187                                 if (isstr && data[i] == '\0')
2188                                         break;
2189                         }
2190                 }
2191
2192                 if (action != key->dtak_action) {
2193                         /*
2194                          * We are aggregating on the same value in the same
2195                          * aggregation with two different aggregating actions.
2196                          * (This should have been picked up in the compiler,
2197                          * so we may be dealing with errant or devious DIF.)
2198                          * This is an error condition; we indicate as much,
2199                          * and return.
2200                          */
2201                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2202                         return;
2203                 }
2204
2205                 /*
2206                  * This is a hit:  we need to apply the aggregator to
2207                  * the value at this key.
2208                  */
2209                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2210                 return;
2211 next:
2212                 continue;
2213         }
2214
2215         /*
2216          * We didn't find it.  We need to allocate some zero-filled space,
2217          * link it into the hash table appropriately, and apply the aggregator
2218          * to the (zero-filled) value.
2219          */
2220         offs = buf->dtb_offset;
2221         while (offs & (align - 1))
2222                 offs += sizeof (uint32_t);
2223
2224         /*
2225          * If we don't have enough room to both allocate a new key _and_
2226          * its associated data, increment the drop count and return.
2227          */
2228         if ((uintptr_t)tomax + offs + fsize >
2229             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2230                 dtrace_buffer_drop(buf);
2231                 return;
2232         }
2233
2234         /*CONSTCOND*/
2235         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2236         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2237         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2238
2239         key->dtak_data = kdata = tomax + offs;
2240         buf->dtb_offset = offs + fsize;
2241
2242         /*
2243          * Now copy the data across.
2244          */
2245         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2246
2247         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2248                 kdata[i] = data[i];
2249
2250         /*
2251          * Because strings are not zeroed out by default, we need to iterate
2252          * looking for actions that store strings, and we need to explicitly
2253          * pad these strings out with zeroes.
2254          */
2255         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2256                 int nul;
2257
2258                 if (!DTRACEACT_ISSTRING(act))
2259                         continue;
2260
2261                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2262                 limit = i + act->dta_rec.dtrd_size;
2263                 ASSERT(limit <= size);
2264
2265                 for (nul = 0; i < limit; i++) {
2266                         if (nul) {
2267                                 kdata[i] = '\0';
2268                                 continue;
2269                         }
2270
2271                         if (data[i] != '\0')
2272                                 continue;
2273
2274                         nul = 1;
2275                 }
2276         }
2277
2278         for (i = size; i < fsize; i++)
2279                 kdata[i] = 0;
2280
2281         key->dtak_hashval = hashval;
2282         key->dtak_size = size;
2283         key->dtak_action = action;
2284         key->dtak_next = agb->dtagb_hash[ndx];
2285         agb->dtagb_hash[ndx] = key;
2286
2287         /*
2288          * Finally, apply the aggregator.
2289          */
2290         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2291         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2292 }
2293
2294 /*
2295  * Given consumer state, this routine finds a speculation in the INACTIVE
2296  * state and transitions it into the ACTIVE state.  If there is no speculation
2297  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2298  * incremented -- it is up to the caller to take appropriate action.
2299  */
2300 static int
2301 dtrace_speculation(dtrace_state_t *state)
2302 {
2303         int i = 0;
2304         dtrace_speculation_state_t current;
2305         uint32_t *stat = &state->dts_speculations_unavail, count;
2306
2307         while (i < state->dts_nspeculations) {
2308                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2309
2310                 current = spec->dtsp_state;
2311
2312                 if (current != DTRACESPEC_INACTIVE) {
2313                         if (current == DTRACESPEC_COMMITTINGMANY ||
2314                             current == DTRACESPEC_COMMITTING ||
2315                             current == DTRACESPEC_DISCARDING)
2316                                 stat = &state->dts_speculations_busy;
2317                         i++;
2318                         continue;
2319                 }
2320
2321                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2322                     current, DTRACESPEC_ACTIVE) == current)
2323                         return (i + 1);
2324         }
2325
2326         /*
2327          * We couldn't find a speculation.  If we found as much as a single
2328          * busy speculation buffer, we'll attribute this failure as "busy"
2329          * instead of "unavail".
2330          */
2331         do {
2332                 count = *stat;
2333         } while (dtrace_cas32(stat, count, count + 1) != count);
2334
2335         return (0);
2336 }
2337
2338 /*
2339  * This routine commits an active speculation.  If the specified speculation
2340  * is not in a valid state to perform a commit(), this routine will silently do
2341  * nothing.  The state of the specified speculation is transitioned according
2342  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2343  */
2344 static void
2345 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2346     dtrace_specid_t which)
2347 {
2348         dtrace_speculation_t *spec;
2349         dtrace_buffer_t *src, *dest;
2350         uintptr_t daddr, saddr, dlimit, slimit;
2351         dtrace_speculation_state_t current, new = 0;
2352         intptr_t offs;
2353         uint64_t timestamp;
2354
2355         if (which == 0)
2356                 return;
2357
2358         if (which > state->dts_nspeculations) {
2359                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2360                 return;
2361         }
2362
2363         spec = &state->dts_speculations[which - 1];
2364         src = &spec->dtsp_buffer[cpu];
2365         dest = &state->dts_buffer[cpu];
2366
2367         do {
2368                 current = spec->dtsp_state;
2369
2370                 if (current == DTRACESPEC_COMMITTINGMANY)
2371                         break;
2372
2373                 switch (current) {
2374                 case DTRACESPEC_INACTIVE:
2375                 case DTRACESPEC_DISCARDING:
2376                         return;
2377
2378                 case DTRACESPEC_COMMITTING:
2379                         /*
2380                          * This is only possible if we are (a) commit()'ing
2381                          * without having done a prior speculate() on this CPU
2382                          * and (b) racing with another commit() on a different
2383                          * CPU.  There's nothing to do -- we just assert that
2384                          * our offset is 0.
2385                          */
2386                         ASSERT(src->dtb_offset == 0);
2387                         return;
2388
2389                 case DTRACESPEC_ACTIVE:
2390                         new = DTRACESPEC_COMMITTING;
2391                         break;
2392
2393                 case DTRACESPEC_ACTIVEONE:
2394                         /*
2395                          * This speculation is active on one CPU.  If our
2396                          * buffer offset is non-zero, we know that the one CPU
2397                          * must be us.  Otherwise, we are committing on a
2398                          * different CPU from the speculate(), and we must
2399                          * rely on being asynchronously cleaned.
2400                          */
2401                         if (src->dtb_offset != 0) {
2402                                 new = DTRACESPEC_COMMITTING;
2403                                 break;
2404                         }
2405                         /*FALLTHROUGH*/
2406
2407                 case DTRACESPEC_ACTIVEMANY:
2408                         new = DTRACESPEC_COMMITTINGMANY;
2409                         break;
2410
2411                 default:
2412                         ASSERT(0);
2413                 }
2414         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2415             current, new) != current);
2416
2417         /*
2418          * We have set the state to indicate that we are committing this
2419          * speculation.  Now reserve the necessary space in the destination
2420          * buffer.
2421          */
2422         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2423             sizeof (uint64_t), state, NULL)) < 0) {
2424                 dtrace_buffer_drop(dest);
2425                 goto out;
2426         }
2427
2428         /*
2429          * We have sufficient space to copy the speculative buffer into the
2430          * primary buffer.  First, modify the speculative buffer, filling
2431          * in the timestamp of all entries with the current time.  The data
2432          * must have the commit() time rather than the time it was traced,
2433          * so that all entries in the primary buffer are in timestamp order.
2434          */
2435         timestamp = dtrace_gethrtime();
2436         saddr = (uintptr_t)src->dtb_tomax;
2437         slimit = saddr + src->dtb_offset;
2438         while (saddr < slimit) {
2439                 size_t size;
2440                 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2441
2442                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2443                         saddr += sizeof (dtrace_epid_t);
2444                         continue;
2445                 }
2446                 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2447                 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2448
2449                 ASSERT3U(saddr + size, <=, slimit);
2450                 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2451                 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2452
2453                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2454
2455                 saddr += size;
2456         }
2457
2458         /*
2459          * Copy the buffer across.  (Note that this is a
2460          * highly subobtimal bcopy(); in the unlikely event that this becomes
2461          * a serious performance issue, a high-performance DTrace-specific
2462          * bcopy() should obviously be invented.)
2463          */
2464         daddr = (uintptr_t)dest->dtb_tomax + offs;
2465         dlimit = daddr + src->dtb_offset;
2466         saddr = (uintptr_t)src->dtb_tomax;
2467
2468         /*
2469          * First, the aligned portion.
2470          */
2471         while (dlimit - daddr >= sizeof (uint64_t)) {
2472                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2473
2474                 daddr += sizeof (uint64_t);
2475                 saddr += sizeof (uint64_t);
2476         }
2477
2478         /*
2479          * Now any left-over bit...
2480          */
2481         while (dlimit - daddr)
2482                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2483
2484         /*
2485          * Finally, commit the reserved space in the destination buffer.
2486          */
2487         dest->dtb_offset = offs + src->dtb_offset;
2488
2489 out:
2490         /*
2491          * If we're lucky enough to be the only active CPU on this speculation
2492          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2493          */
2494         if (current == DTRACESPEC_ACTIVE ||
2495             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2496                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2497                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2498
2499                 ASSERT(rval == DTRACESPEC_COMMITTING);
2500         }
2501
2502         src->dtb_offset = 0;
2503         src->dtb_xamot_drops += src->dtb_drops;
2504         src->dtb_drops = 0;
2505 }
2506
2507 /*
2508  * This routine discards an active speculation.  If the specified speculation
2509  * is not in a valid state to perform a discard(), this routine will silently
2510  * do nothing.  The state of the specified speculation is transitioned
2511  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2512  */
2513 static void
2514 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2515     dtrace_specid_t which)
2516 {
2517         dtrace_speculation_t *spec;
2518         dtrace_speculation_state_t current, new = 0;
2519         dtrace_buffer_t *buf;
2520
2521         if (which == 0)
2522                 return;
2523
2524         if (which > state->dts_nspeculations) {
2525                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2526                 return;
2527         }
2528
2529         spec = &state->dts_speculations[which - 1];
2530         buf = &spec->dtsp_buffer[cpu];
2531
2532         do {
2533                 current = spec->dtsp_state;
2534
2535                 switch (current) {
2536                 case DTRACESPEC_INACTIVE:
2537                 case DTRACESPEC_COMMITTINGMANY:
2538                 case DTRACESPEC_COMMITTING:
2539                 case DTRACESPEC_DISCARDING:
2540                         return;
2541
2542                 case DTRACESPEC_ACTIVE:
2543                 case DTRACESPEC_ACTIVEMANY:
2544                         new = DTRACESPEC_DISCARDING;
2545                         break;
2546
2547                 case DTRACESPEC_ACTIVEONE:
2548                         if (buf->dtb_offset != 0) {
2549                                 new = DTRACESPEC_INACTIVE;
2550                         } else {
2551                                 new = DTRACESPEC_DISCARDING;
2552                         }
2553                         break;
2554
2555                 default:
2556                         ASSERT(0);
2557                 }
2558         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2559             current, new) != current);
2560
2561         buf->dtb_offset = 0;
2562         buf->dtb_drops = 0;
2563 }
2564
2565 /*
2566  * Note:  not called from probe context.  This function is called
2567  * asynchronously from cross call context to clean any speculations that are
2568  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2569  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2570  * speculation.
2571  */
2572 static void
2573 dtrace_speculation_clean_here(dtrace_state_t *state)
2574 {
2575         dtrace_icookie_t cookie;
2576         processorid_t cpu = curcpu;
2577         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2578         dtrace_specid_t i;
2579
2580         cookie = dtrace_interrupt_disable();
2581
2582         if (dest->dtb_tomax == NULL) {
2583                 dtrace_interrupt_enable(cookie);
2584                 return;
2585         }
2586
2587         for (i = 0; i < state->dts_nspeculations; i++) {
2588                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2589                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2590
2591                 if (src->dtb_tomax == NULL)
2592                         continue;
2593
2594                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2595                         src->dtb_offset = 0;
2596                         continue;
2597                 }
2598
2599                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2600                         continue;
2601
2602                 if (src->dtb_offset == 0)
2603                         continue;
2604
2605                 dtrace_speculation_commit(state, cpu, i + 1);
2606         }
2607
2608         dtrace_interrupt_enable(cookie);
2609 }
2610
2611 /*
2612  * Note:  not called from probe context.  This function is called
2613  * asynchronously (and at a regular interval) to clean any speculations that
2614  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2615  * is work to be done, it cross calls all CPUs to perform that work;
2616  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2617  * INACTIVE state until they have been cleaned by all CPUs.
2618  */
2619 static void
2620 dtrace_speculation_clean(dtrace_state_t *state)
2621 {
2622         int work = 0, rv;
2623         dtrace_specid_t i;
2624
2625         for (i = 0; i < state->dts_nspeculations; i++) {
2626                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2627
2628                 ASSERT(!spec->dtsp_cleaning);
2629
2630                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2631                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2632                         continue;
2633
2634                 work++;
2635                 spec->dtsp_cleaning = 1;
2636         }
2637
2638         if (!work)
2639                 return;
2640
2641         dtrace_xcall(DTRACE_CPUALL,
2642             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2643
2644         /*
2645          * We now know that all CPUs have committed or discarded their
2646          * speculation buffers, as appropriate.  We can now set the state
2647          * to inactive.
2648          */
2649         for (i = 0; i < state->dts_nspeculations; i++) {
2650                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2651                 dtrace_speculation_state_t current, new;
2652
2653                 if (!spec->dtsp_cleaning)
2654                         continue;
2655
2656                 current = spec->dtsp_state;
2657                 ASSERT(current == DTRACESPEC_DISCARDING ||
2658                     current == DTRACESPEC_COMMITTINGMANY);
2659
2660                 new = DTRACESPEC_INACTIVE;
2661
2662                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2663                 ASSERT(rv == current);
2664                 spec->dtsp_cleaning = 0;
2665         }
2666 }
2667
2668 /*
2669  * Called as part of a speculate() to get the speculative buffer associated
2670  * with a given speculation.  Returns NULL if the specified speculation is not
2671  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2672  * the active CPU is not the specified CPU -- the speculation will be
2673  * atomically transitioned into the ACTIVEMANY state.
2674  */
2675 static dtrace_buffer_t *
2676 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2677     dtrace_specid_t which)
2678 {
2679         dtrace_speculation_t *spec;
2680         dtrace_speculation_state_t current, new = 0;
2681         dtrace_buffer_t *buf;
2682
2683         if (which == 0)
2684                 return (NULL);
2685
2686         if (which > state->dts_nspeculations) {
2687                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2688                 return (NULL);
2689         }
2690
2691         spec = &state->dts_speculations[which - 1];
2692         buf = &spec->dtsp_buffer[cpuid];
2693
2694         do {
2695                 current = spec->dtsp_state;
2696
2697                 switch (current) {
2698                 case DTRACESPEC_INACTIVE:
2699                 case DTRACESPEC_COMMITTINGMANY:
2700                 case DTRACESPEC_DISCARDING:
2701                         return (NULL);
2702
2703                 case DTRACESPEC_COMMITTING:
2704                         ASSERT(buf->dtb_offset == 0);
2705                         return (NULL);
2706
2707                 case DTRACESPEC_ACTIVEONE:
2708                         /*
2709                          * This speculation is currently active on one CPU.
2710                          * Check the offset in the buffer; if it's non-zero,
2711                          * that CPU must be us (and we leave the state alone).
2712                          * If it's zero, assume that we're starting on a new
2713                          * CPU -- and change the state to indicate that the
2714                          * speculation is active on more than one CPU.
2715                          */
2716                         if (buf->dtb_offset != 0)
2717                                 return (buf);
2718
2719                         new = DTRACESPEC_ACTIVEMANY;
2720                         break;
2721
2722                 case DTRACESPEC_ACTIVEMANY:
2723                         return (buf);
2724
2725                 case DTRACESPEC_ACTIVE:
2726                         new = DTRACESPEC_ACTIVEONE;
2727                         break;
2728
2729                 default:
2730                         ASSERT(0);
2731                 }
2732         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2733             current, new) != current);
2734
2735         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2736         return (buf);
2737 }
2738
2739 /*
2740  * Return a string.  In the event that the user lacks the privilege to access
2741  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2742  * don't fail access checking.
2743  *
2744  * dtrace_dif_variable() uses this routine as a helper for various
2745  * builtin values such as 'execname' and 'probefunc.'
2746  */
2747 uintptr_t
2748 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2749     dtrace_mstate_t *mstate)
2750 {
2751         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2752         uintptr_t ret;
2753         size_t strsz;
2754
2755         /*
2756          * The easy case: this probe is allowed to read all of memory, so
2757          * we can just return this as a vanilla pointer.
2758          */
2759         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2760                 return (addr);
2761
2762         /*
2763          * This is the tougher case: we copy the string in question from
2764          * kernel memory into scratch memory and return it that way: this
2765          * ensures that we won't trip up when access checking tests the
2766          * BYREF return value.
2767          */
2768         strsz = dtrace_strlen((char *)addr, size) + 1;
2769
2770         if (mstate->dtms_scratch_ptr + strsz >
2771             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2772                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2773                 return (0);
2774         }
2775
2776         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2777             strsz);
2778         ret = mstate->dtms_scratch_ptr;
2779         mstate->dtms_scratch_ptr += strsz;
2780         return (ret);
2781 }
2782
2783 /*
2784  * Return a string from a memoy address which is known to have one or
2785  * more concatenated, individually zero terminated, sub-strings.
2786  * In the event that the user lacks the privilege to access
2787  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2788  * don't fail access checking.
2789  *
2790  * dtrace_dif_variable() uses this routine as a helper for various
2791  * builtin values such as 'execargs'.
2792  */
2793 static uintptr_t
2794 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2795     dtrace_mstate_t *mstate)
2796 {
2797         char *p;
2798         size_t i;
2799         uintptr_t ret;
2800
2801         if (mstate->dtms_scratch_ptr + strsz >
2802             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2803                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2804                 return (0);
2805         }
2806
2807         dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2808             strsz);
2809
2810         /* Replace sub-string termination characters with a space. */
2811         for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2812             p++, i++)
2813                 if (*p == '\0')
2814                         *p = ' ';
2815
2816         ret = mstate->dtms_scratch_ptr;
2817         mstate->dtms_scratch_ptr += strsz;
2818         return (ret);
2819 }
2820
2821 /*
2822  * This function implements the DIF emulator's variable lookups.  The emulator
2823  * passes a reserved variable identifier and optional built-in array index.
2824  */
2825 static uint64_t
2826 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2827     uint64_t ndx)
2828 {
2829         /*
2830          * If we're accessing one of the uncached arguments, we'll turn this
2831          * into a reference in the args array.
2832          */
2833         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2834                 ndx = v - DIF_VAR_ARG0;
2835                 v = DIF_VAR_ARGS;
2836         }
2837
2838         switch (v) {
2839         case DIF_VAR_ARGS:
2840                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2841                 if (ndx >= sizeof (mstate->dtms_arg) /
2842                     sizeof (mstate->dtms_arg[0])) {
2843                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2844                         dtrace_provider_t *pv;
2845                         uint64_t val;
2846
2847                         pv = mstate->dtms_probe->dtpr_provider;
2848                         if (pv->dtpv_pops.dtps_getargval != NULL)
2849                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2850                                     mstate->dtms_probe->dtpr_id,
2851                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2852                         else
2853                                 val = dtrace_getarg(ndx, aframes);
2854
2855                         /*
2856                          * This is regrettably required to keep the compiler
2857                          * from tail-optimizing the call to dtrace_getarg().
2858                          * The condition always evaluates to true, but the
2859                          * compiler has no way of figuring that out a priori.
2860                          * (None of this would be necessary if the compiler
2861                          * could be relied upon to _always_ tail-optimize
2862                          * the call to dtrace_getarg() -- but it can't.)
2863                          */
2864                         if (mstate->dtms_probe != NULL)
2865                                 return (val);
2866
2867                         ASSERT(0);
2868                 }
2869
2870                 return (mstate->dtms_arg[ndx]);
2871
2872 #if defined(sun)
2873         case DIF_VAR_UREGS: {
2874                 klwp_t *lwp;
2875
2876                 if (!dtrace_priv_proc(state))
2877                         return (0);
2878
2879                 if ((lwp = curthread->t_lwp) == NULL) {
2880                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2881                         cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2882                         return (0);
2883                 }
2884
2885                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2886                 return (0);
2887         }
2888 #else
2889         case DIF_VAR_UREGS: {
2890                 struct trapframe *tframe;
2891
2892                 if (!dtrace_priv_proc(state))
2893                         return (0);
2894
2895                 if ((tframe = curthread->td_frame) == NULL) {
2896                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2897                         cpu_core[curcpu].cpuc_dtrace_illval = 0;
2898                         return (0);
2899                 }
2900
2901                 return (dtrace_getreg(tframe, ndx));
2902         }
2903 #endif
2904
2905         case DIF_VAR_CURTHREAD:
2906                 if (!dtrace_priv_kernel(state))
2907                         return (0);
2908                 return ((uint64_t)(uintptr_t)curthread);
2909
2910         case DIF_VAR_TIMESTAMP:
2911                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2912                         mstate->dtms_timestamp = dtrace_gethrtime();
2913                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2914                 }
2915                 return (mstate->dtms_timestamp);
2916
2917         case DIF_VAR_VTIMESTAMP:
2918                 ASSERT(dtrace_vtime_references != 0);
2919                 return (curthread->t_dtrace_vtime);
2920
2921         case DIF_VAR_WALLTIMESTAMP:
2922                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2923                         mstate->dtms_walltimestamp = dtrace_gethrestime();
2924                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2925                 }
2926                 return (mstate->dtms_walltimestamp);
2927
2928 #if defined(sun)
2929         case DIF_VAR_IPL:
2930                 if (!dtrace_priv_kernel(state))
2931                         return (0);
2932                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2933                         mstate->dtms_ipl = dtrace_getipl();
2934                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
2935                 }
2936                 return (mstate->dtms_ipl);
2937 #endif
2938
2939         case DIF_VAR_EPID:
2940                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2941                 return (mstate->dtms_epid);
2942
2943         case DIF_VAR_ID:
2944                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2945                 return (mstate->dtms_probe->dtpr_id);
2946
2947         case DIF_VAR_STACKDEPTH:
2948                 if (!dtrace_priv_kernel(state))
2949                         return (0);
2950                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2951                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2952
2953                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2954                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2955                 }
2956                 return (mstate->dtms_stackdepth);
2957
2958         case DIF_VAR_USTACKDEPTH:
2959                 if (!dtrace_priv_proc(state))
2960                         return (0);
2961                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2962                         /*
2963                          * See comment in DIF_VAR_PID.
2964                          */
2965                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2966                             CPU_ON_INTR(CPU)) {
2967                                 mstate->dtms_ustackdepth = 0;
2968                         } else {
2969                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2970                                 mstate->dtms_ustackdepth =
2971                                     dtrace_getustackdepth();
2972                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2973                         }
2974                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2975                 }
2976                 return (mstate->dtms_ustackdepth);
2977
2978         case DIF_VAR_CALLER:
2979                 if (!dtrace_priv_kernel(state))
2980                         return (0);
2981                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2982                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2983
2984                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2985                                 /*
2986                                  * If this is an unanchored probe, we are
2987                                  * required to go through the slow path:
2988                                  * dtrace_caller() only guarantees correct
2989                                  * results for anchored probes.
2990                                  */
2991                                 pc_t caller[2] = {0, 0};
2992
2993                                 dtrace_getpcstack(caller, 2, aframes,
2994                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2995                                 mstate->dtms_caller = caller[1];
2996                         } else if ((mstate->dtms_caller =
2997                             dtrace_caller(aframes)) == -1) {
2998                                 /*
2999                                  * We have failed to do this the quick way;
3000                                  * we must resort to the slower approach of
3001                                  * calling dtrace_getpcstack().
3002                                  */
3003                                 pc_t caller = 0;
3004
3005                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3006                                 mstate->dtms_caller = caller;
3007                         }
3008
3009                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3010                 }
3011                 return (mstate->dtms_caller);
3012
3013         case DIF_VAR_UCALLER:
3014                 if (!dtrace_priv_proc(state))
3015                         return (0);
3016
3017                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3018                         uint64_t ustack[3];
3019
3020                         /*
3021                          * dtrace_getupcstack() fills in the first uint64_t
3022                          * with the current PID.  The second uint64_t will
3023                          * be the program counter at user-level.  The third
3024                          * uint64_t will contain the caller, which is what
3025                          * we're after.
3026                          */
3027                         ustack[2] = 0;
3028                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3029                         dtrace_getupcstack(ustack, 3);
3030                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3031                         mstate->dtms_ucaller = ustack[2];
3032                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3033                 }
3034
3035                 return (mstate->dtms_ucaller);
3036
3037         case DIF_VAR_PROBEPROV:
3038                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3039                 return (dtrace_dif_varstr(
3040                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3041                     state, mstate));
3042
3043         case DIF_VAR_PROBEMOD:
3044                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3045                 return (dtrace_dif_varstr(
3046                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3047                     state, mstate));
3048
3049         case DIF_VAR_PROBEFUNC:
3050                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3051                 return (dtrace_dif_varstr(
3052                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3053                     state, mstate));
3054
3055         case DIF_VAR_PROBENAME:
3056                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3057                 return (dtrace_dif_varstr(
3058                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3059                     state, mstate));
3060
3061         case DIF_VAR_PID:
3062                 if (!dtrace_priv_proc(state))
3063                         return (0);
3064
3065 #if defined(sun)
3066                 /*
3067                  * Note that we are assuming that an unanchored probe is
3068                  * always due to a high-level interrupt.  (And we're assuming
3069                  * that there is only a single high level interrupt.)
3070                  */
3071                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3072                         return (pid0.pid_id);
3073
3074                 /*
3075                  * It is always safe to dereference one's own t_procp pointer:
3076                  * it always points to a valid, allocated proc structure.
3077                  * Further, it is always safe to dereference the p_pidp member
3078                  * of one's own proc structure.  (These are truisms becuase
3079                  * threads and processes don't clean up their own state --
3080                  * they leave that task to whomever reaps them.)
3081                  */
3082                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3083 #else
3084                 return ((uint64_t)curproc->p_pid);
3085 #endif
3086
3087         case DIF_VAR_PPID:
3088                 if (!dtrace_priv_proc(state))
3089                         return (0);
3090
3091 #if defined(sun)
3092                 /*
3093                  * See comment in DIF_VAR_PID.
3094                  */
3095                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3096                         return (pid0.pid_id);
3097
3098                 /*
3099                  * It is always safe to dereference one's own t_procp pointer:
3100                  * it always points to a valid, allocated proc structure.
3101                  * (This is true because threads don't clean up their own
3102                  * state -- they leave that task to whomever reaps them.)
3103                  */
3104                 return ((uint64_t)curthread->t_procp->p_ppid);
3105 #else
3106                 return ((uint64_t)curproc->p_pptr->p_pid);
3107 #endif
3108
3109         case DIF_VAR_TID:
3110 #if defined(sun)
3111                 /*
3112                  * See comment in DIF_VAR_PID.
3113                  */
3114                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3115                         return (0);
3116 #endif
3117
3118                 return ((uint64_t)curthread->t_tid);
3119
3120         case DIF_VAR_EXECARGS: {
3121                 struct pargs *p_args = curthread->td_proc->p_args;
3122
3123                 if (p_args == NULL)
3124                         return(0);
3125
3126                 return (dtrace_dif_varstrz(
3127                     (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3128         }
3129
3130         case DIF_VAR_EXECNAME:
3131 #if defined(sun)
3132                 if (!dtrace_priv_proc(state))
3133                         return (0);
3134
3135                 /*
3136                  * See comment in DIF_VAR_PID.
3137                  */
3138                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3139                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3140
3141                 /*
3142                  * It is always safe to dereference one's own t_procp pointer:
3143                  * it always points to a valid, allocated proc structure.
3144                  * (This is true because threads don't clean up their own
3145                  * state -- they leave that task to whomever reaps them.)
3146                  */
3147                 return (dtrace_dif_varstr(
3148                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3149                     state, mstate));
3150 #else
3151                 return (dtrace_dif_varstr(
3152                     (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3153 #endif
3154
3155         case DIF_VAR_ZONENAME:
3156 #if defined(sun)
3157                 if (!dtrace_priv_proc(state))
3158                         return (0);
3159
3160                 /*
3161                  * See comment in DIF_VAR_PID.
3162                  */
3163                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3164                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3165
3166                 /*
3167                  * It is always safe to dereference one's own t_procp pointer:
3168                  * it always points to a valid, allocated proc structure.
3169                  * (This is true because threads don't clean up their own
3170                  * state -- they leave that task to whomever reaps them.)
3171                  */
3172                 return (dtrace_dif_varstr(
3173                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3174                     state, mstate));
3175 #else
3176                 return (0);
3177 #endif
3178
3179         case DIF_VAR_UID:
3180                 if (!dtrace_priv_proc(state))
3181                         return (0);
3182
3183 #if defined(sun)
3184                 /*
3185                  * See comment in DIF_VAR_PID.
3186                  */
3187                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3188                         return ((uint64_t)p0.p_cred->cr_uid);
3189 #endif
3190
3191                 /*
3192                  * It is always safe to dereference one's own t_procp pointer:
3193                  * it always points to a valid, allocated proc structure.
3194                  * (This is true because threads don't clean up their own
3195                  * state -- they leave that task to whomever reaps them.)
3196                  *
3197                  * Additionally, it is safe to dereference one's own process
3198                  * credential, since this is never NULL after process birth.
3199                  */
3200                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3201
3202         case DIF_VAR_GID:
3203                 if (!dtrace_priv_proc(state))
3204                         return (0);
3205
3206 #if defined(sun)
3207                 /*
3208                  * See comment in DIF_VAR_PID.
3209                  */
3210                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3211                         return ((uint64_t)p0.p_cred->cr_gid);
3212 #endif
3213
3214                 /*
3215                  * It is always safe to dereference one's own t_procp pointer:
3216                  * it always points to a valid, allocated proc structure.
3217                  * (This is true because threads don't clean up their own
3218                  * state -- they leave that task to whomever reaps them.)
3219                  *
3220                  * Additionally, it is safe to dereference one's own process
3221                  * credential, since this is never NULL after process birth.
3222                  */
3223                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3224
3225         case DIF_VAR_ERRNO: {
3226 #if defined(sun)
3227                 klwp_t *lwp;
3228                 if (!dtrace_priv_proc(state))
3229                         return (0);
3230
3231                 /*
3232                  * See comment in DIF_VAR_PID.
3233                  */
3234                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3235                         return (0);
3236
3237                 /*
3238                  * It is always safe to dereference one's own t_lwp pointer in
3239                  * the event that this pointer is non-NULL.  (This is true
3240                  * because threads and lwps don't clean up their own state --
3241                  * they leave that task to whomever reaps them.)
3242                  */
3243                 if ((lwp = curthread->t_lwp) == NULL)
3244                         return (0);
3245
3246                 return ((uint64_t)lwp->lwp_errno);
3247 #else
3248                 return (curthread->td_errno);
3249 #endif
3250         }
3251 #if !defined(sun)
3252         case DIF_VAR_CPU: {
3253                 return curcpu;
3254         }
3255 #endif
3256         default:
3257                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3258                 return (0);
3259         }
3260 }
3261
3262 /*
3263  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3264  * Notice that we don't bother validating the proper number of arguments or
3265  * their types in the tuple stack.  This isn't needed because all argument
3266  * interpretation is safe because of our load safety -- the worst that can
3267  * happen is that a bogus program can obtain bogus results.
3268  */
3269 static void
3270 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3271     dtrace_key_t *tupregs, int nargs,
3272     dtrace_mstate_t *mstate, dtrace_state_t *state)
3273 {
3274         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3275         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3276         dtrace_vstate_t *vstate = &state->dts_vstate;
3277
3278 #if defined(sun)
3279         union {
3280                 mutex_impl_t mi;
3281                 uint64_t mx;
3282         } m;
3283
3284         union {
3285                 krwlock_t ri;
3286                 uintptr_t rw;
3287         } r;
3288 #else
3289         struct thread *lowner;
3290         union {
3291                 struct lock_object *li;
3292                 uintptr_t lx;
3293         } l;
3294 #endif
3295
3296         switch (subr) {
3297         case DIF_SUBR_RAND:
3298                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3299                 break;
3300
3301 #if defined(sun)
3302         case DIF_SUBR_MUTEX_OWNED:
3303                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3304                     mstate, vstate)) {
3305                         regs[rd] = 0;
3306                         break;
3307                 }
3308
3309                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3310                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3311                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3312                 else
3313                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3314                 break;
3315
3316         case DIF_SUBR_MUTEX_OWNER:
3317                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3318                     mstate, vstate)) {
3319                         regs[rd] = 0;
3320                         break;
3321                 }
3322
3323                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3324                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3325                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3326                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3327                 else
3328                         regs[rd] = 0;
3329                 break;
3330
3331         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3332                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3333                     mstate, vstate)) {
3334                         regs[rd] = 0;
3335                         break;
3336                 }
3337
3338                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3339                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3340                 break;
3341
3342         case DIF_SUBR_MUTEX_TYPE_SPIN:
3343                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3344                     mstate, vstate)) {
3345                         regs[rd] = 0;
3346                         break;
3347                 }
3348
3349                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3350                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3351                 break;
3352
3353         case DIF_SUBR_RW_READ_HELD: {
3354                 uintptr_t tmp;
3355
3356                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3357                     mstate, vstate)) {
3358                         regs[rd] = 0;
3359                         break;
3360                 }
3361
3362                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3363                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3364                 break;
3365         }
3366
3367         case DIF_SUBR_RW_WRITE_HELD:
3368                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3369                     mstate, vstate)) {
3370                         regs[rd] = 0;
3371                         break;
3372                 }
3373
3374                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3375                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3376                 break;
3377
3378         case DIF_SUBR_RW_ISWRITER:
3379                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3380                     mstate, vstate)) {
3381                         regs[rd] = 0;
3382                         break;
3383                 }
3384
3385                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3386                 regs[rd] = _RW_ISWRITER(&r.ri);
3387                 break;
3388
3389 #else
3390         case DIF_SUBR_MUTEX_OWNED:
3391                 if (!dtrace_canload(tupregs[0].dttk_value,
3392                         sizeof (struct lock_object), mstate, vstate)) {
3393                         regs[rd] = 0;
3394                         break;
3395                 }
3396                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3397                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3398                 break;
3399
3400         case DIF_SUBR_MUTEX_OWNER:
3401                 if (!dtrace_canload(tupregs[0].dttk_value,
3402                         sizeof (struct lock_object), mstate, vstate)) {
3403                         regs[rd] = 0;
3404                         break;
3405                 }
3406                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3407                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3408                 regs[rd] = (uintptr_t)lowner;
3409                 break;
3410
3411         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3412                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3413                     mstate, vstate)) {
3414                         regs[rd] = 0;
3415                         break;
3416                 }
3417                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3418                 /* XXX - should be only LC_SLEEPABLE? */
3419                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3420                     (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3421                 break;
3422
3423         case DIF_SUBR_MUTEX_TYPE_SPIN:
3424                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3425                     mstate, vstate)) {
3426                         regs[rd] = 0;
3427                         break;
3428                 }
3429                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3430                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3431                 break;
3432
3433         case DIF_SUBR_RW_READ_HELD: 
3434         case DIF_SUBR_SX_SHARED_HELD: 
3435                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3436                     mstate, vstate)) {
3437                         regs[rd] = 0;
3438                         break;
3439                 }
3440                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3441                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3442                     lowner == NULL;
3443                 break;
3444
3445         case DIF_SUBR_RW_WRITE_HELD:
3446         case DIF_SUBR_SX_EXCLUSIVE_HELD:
3447                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3448                     mstate, vstate)) {
3449                         regs[rd] = 0;
3450                         break;
3451                 }
3452                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3453                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3454                 regs[rd] = (lowner == curthread);
3455                 break;
3456
3457         case DIF_SUBR_RW_ISWRITER:
3458         case DIF_SUBR_SX_ISEXCLUSIVE:
3459                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3460                     mstate, vstate)) {
3461                         regs[rd] = 0;
3462                         break;
3463                 }
3464                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3465                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3466                     lowner != NULL;
3467                 break;
3468 #endif /* ! defined(sun) */
3469
3470         case DIF_SUBR_BCOPY: {
3471                 /*
3472                  * We need to be sure that the destination is in the scratch
3473                  * region -- no other region is allowed.
3474                  */
3475                 uintptr_t src = tupregs[0].dttk_value;
3476                 uintptr_t dest = tupregs[1].dttk_value;
3477                 size_t size = tupregs[2].dttk_value;
3478
3479                 if (!dtrace_inscratch(dest, size, mstate)) {
3480                         *flags |= CPU_DTRACE_BADADDR;
3481                         *illval = regs[rd];
3482                         break;
3483                 }
3484
3485                 if (!dtrace_canload(src, size, mstate, vstate)) {
3486                         regs[rd] = 0;
3487                         break;
3488                 }
3489
3490                 dtrace_bcopy((void *)src, (void *)dest, size);
3491                 break;
3492         }
3493
3494         case DIF_SUBR_ALLOCA:
3495         case DIF_SUBR_COPYIN: {
3496                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3497                 uint64_t size =
3498                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3499                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3500
3501                 /*
3502                  * This action doesn't require any credential checks since
3503                  * probes will not activate in user contexts to which the
3504                  * enabling user does not have permissions.
3505                  */
3506
3507                 /*
3508                  * Rounding up the user allocation size could have overflowed
3509                  * a large, bogus allocation (like -1ULL) to 0.
3510                  */
3511                 if (scratch_size < size ||
3512                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3513                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3514                         regs[rd] = 0;
3515                         break;
3516                 }
3517
3518                 if (subr == DIF_SUBR_COPYIN) {
3519                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3520                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3521                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3522                 }
3523
3524                 mstate->dtms_scratch_ptr += scratch_size;
3525                 regs[rd] = dest;
3526                 break;
3527         }
3528
3529         case DIF_SUBR_COPYINTO: {
3530                 uint64_t size = tupregs[1].dttk_value;
3531                 uintptr_t dest = tupregs[2].dttk_value;
3532
3533                 /*
3534                  * This action doesn't require any credential checks since
3535                  * probes will not activate in user contexts to which the
3536                  * enabling user does not have permissions.
3537                  */
3538                 if (!dtrace_inscratch(dest, size, mstate)) {
3539                         *flags |= CPU_DTRACE_BADADDR;
3540                         *illval = regs[rd];
3541                         break;
3542                 }
3543
3544                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3545                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3546                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3547                 break;
3548         }
3549
3550         case DIF_SUBR_COPYINSTR: {
3551                 uintptr_t dest = mstate->dtms_scratch_ptr;
3552                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3553
3554                 if (nargs > 1 && tupregs[1].dttk_value < size)
3555                         size = tupregs[1].dttk_value + 1;
3556
3557                 /*
3558                  * This action doesn't require any credential checks since
3559                  * probes will not activate in user contexts to which the
3560                  * enabling user does not have permissions.
3561                  */
3562                 if (!DTRACE_INSCRATCH(mstate, size)) {
3563                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3564                         regs[rd] = 0;
3565                         break;
3566                 }
3567
3568                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3569                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3570                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3571
3572                 ((char *)dest)[size - 1] = '\0';
3573                 mstate->dtms_scratch_ptr += size;
3574                 regs[rd] = dest;
3575                 break;
3576         }
3577
3578 #if defined(sun)
3579         case DIF_SUBR_MSGSIZE:
3580         case DIF_SUBR_MSGDSIZE: {
3581                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3582                 uintptr_t wptr, rptr;
3583                 size_t count = 0;
3584                 int cont = 0;
3585
3586                 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3587
3588                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3589                             vstate)) {
3590                                 regs[rd] = 0;
3591                                 break;
3592                         }
3593
3594                         wptr = dtrace_loadptr(baddr +
3595                             offsetof(mblk_t, b_wptr));
3596
3597                         rptr = dtrace_loadptr(baddr +
3598                             offsetof(mblk_t, b_rptr));
3599
3600                         if (wptr < rptr) {
3601                                 *flags |= CPU_DTRACE_BADADDR;
3602                                 *illval = tupregs[0].dttk_value;
3603                                 break;
3604                         }
3605
3606                         daddr = dtrace_loadptr(baddr +
3607                             offsetof(mblk_t, b_datap));
3608
3609                         baddr = dtrace_loadptr(baddr +
3610                             offsetof(mblk_t, b_cont));
3611
3612                         /*
3613                          * We want to prevent against denial-of-service here,
3614                          * so we're only going to search the list for
3615                          * dtrace_msgdsize_max mblks.
3616                          */
3617                         if (cont++ > dtrace_msgdsize_max) {
3618                                 *flags |= CPU_DTRACE_ILLOP;
3619                                 break;
3620                         }
3621
3622                         if (subr == DIF_SUBR_MSGDSIZE) {
3623                                 if (dtrace_load8(daddr +
3624                                     offsetof(dblk_t, db_type)) != M_DATA)
3625                                         continue;
3626                         }
3627
3628                         count += wptr - rptr;
3629                 }
3630
3631                 if (!(*flags & CPU_DTRACE_FAULT))
3632                         regs[rd] = count;
3633
3634                 break;
3635         }
3636 #endif
3637
3638         case DIF_SUBR_PROGENYOF: {
3639                 pid_t pid = tupregs[0].dttk_value;
3640                 proc_t *p;
3641                 int rval = 0;
3642
3643                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3644
3645                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3646 #if defined(sun)
3647                         if (p->p_pidp->pid_id == pid) {
3648 #else
3649                         if (p->p_pid == pid) {
3650 #endif
3651                                 rval = 1;
3652                                 break;
3653                         }
3654                 }
3655
3656                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3657
3658                 regs[rd] = rval;
3659                 break;
3660         }
3661
3662         case DIF_SUBR_SPECULATION:
3663                 regs[rd] = dtrace_speculation(state);
3664                 break;
3665
3666         case DIF_SUBR_COPYOUT: {
3667                 uintptr_t kaddr = tupregs[0].dttk_value;
3668                 uintptr_t uaddr = tupregs[1].dttk_value;
3669                 uint64_t size = tupregs[2].dttk_value;
3670
3671                 if (!dtrace_destructive_disallow &&
3672                     dtrace_priv_proc_control(state) &&
3673                     !dtrace_istoxic(kaddr, size)) {
3674                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3675                         dtrace_copyout(kaddr, uaddr, size, flags);
3676                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3677                 }
3678                 break;
3679         }
3680
3681         case DIF_SUBR_COPYOUTSTR: {
3682                 uintptr_t kaddr = tupregs[0].dttk_value;
3683                 uintptr_t uaddr = tupregs[1].dttk_value;
3684                 uint64_t size = tupregs[2].dttk_value;
3685
3686                 if (!dtrace_destructive_disallow &&
3687                     dtrace_priv_proc_control(state) &&
3688                     !dtrace_istoxic(kaddr, size)) {
3689                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3690                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3691                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3692                 }
3693                 break;
3694         }
3695
3696         case DIF_SUBR_STRLEN: {
3697                 size_t sz;
3698                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3699                 sz = dtrace_strlen((char *)addr,
3700                     state->dts_options[DTRACEOPT_STRSIZE]);
3701
3702                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3703                         regs[rd] = 0;
3704                         break;
3705                 }
3706
3707                 regs[rd] = sz;
3708
3709                 break;
3710         }
3711
3712         case DIF_SUBR_STRCHR:
3713         case DIF_SUBR_STRRCHR: {
3714                 /*
3715                  * We're going to iterate over the string looking for the
3716                  * specified character.  We will iterate until we have reached
3717                  * the string length or we have found the character.  If this
3718                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3719                  * of the specified character instead of the first.
3720                  */
3721                 uintptr_t saddr = tupregs[0].dttk_value;
3722                 uintptr_t addr = tupregs[0].dttk_value;
3723                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3724                 char c, target = (char)tupregs[1].dttk_value;
3725
3726                 for (regs[rd] = 0; addr < limit; addr++) {
3727                         if ((c = dtrace_load8(addr)) == target) {
3728                                 regs[rd] = addr;
3729
3730                                 if (subr == DIF_SUBR_STRCHR)
3731                                         break;
3732                         }
3733
3734                         if (c == '\0')
3735                                 break;
3736                 }
3737
3738                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3739                         regs[rd] = 0;
3740                         break;
3741                 }
3742
3743                 break;
3744         }
3745
3746         case DIF_SUBR_STRSTR:
3747         case DIF_SUBR_INDEX:
3748         case DIF_SUBR_RINDEX: {
3749                 /*
3750                  * We're going to iterate over the string looking for the
3751                  * specified string.  We will iterate until we have reached
3752                  * the string length or we have found the string.  (Yes, this
3753                  * is done in the most naive way possible -- but considering
3754                  * that the string we're searching for is likely to be
3755                  * relatively short, the complexity of Rabin-Karp or similar
3756                  * hardly seems merited.)
3757                  */
3758                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3759                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3760                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3761                 size_t len = dtrace_strlen(addr, size);
3762                 size_t sublen = dtrace_strlen(substr, size);
3763                 char *limit = addr + len, *orig = addr;
3764                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3765                 int inc = 1;
3766
3767                 regs[rd] = notfound;
3768
3769                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3770                         regs[rd] = 0;
3771                         break;
3772                 }
3773
3774                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3775                     vstate)) {
3776                         regs[rd] = 0;
3777                         break;
3778                 }
3779
3780                 /*
3781                  * strstr() and index()/rindex() have similar semantics if
3782                  * both strings are the empty string: strstr() returns a
3783                  * pointer to the (empty) string, and index() and rindex()
3784                  * both return index 0 (regardless of any position argument).
3785                  */
3786                 if (sublen == 0 && len == 0) {
3787                         if (subr == DIF_SUBR_STRSTR)
3788                                 regs[rd] = (uintptr_t)addr;
3789                         else
3790                                 regs[rd] = 0;
3791                         break;
3792                 }
3793
3794                 if (subr != DIF_SUBR_STRSTR) {
3795                         if (subr == DIF_SUBR_RINDEX) {
3796                                 limit = orig - 1;
3797                                 addr += len;
3798                                 inc = -1;
3799                         }
3800
3801                         /*
3802                          * Both index() and rindex() take an optional position
3803                          * argument that denotes the starting position.
3804                          */
3805                         if (nargs == 3) {
3806                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3807
3808                                 /*
3809                                  * If the position argument to index() is
3810                                  * negative, Perl implicitly clamps it at
3811                                  * zero.  This semantic is a little surprising
3812                                  * given the special meaning of negative
3813                                  * positions to similar Perl functions like
3814                                  * substr(), but it appears to reflect a
3815                                  * notion that index() can start from a
3816                                  * negative index and increment its way up to
3817                                  * the string.  Given this notion, Perl's
3818                                  * rindex() is at least self-consistent in
3819                                  * that it implicitly clamps positions greater
3820                                  * than the string length to be the string
3821                                  * length.  Where Perl completely loses
3822                                  * coherence, however, is when the specified
3823                                  * substring is the empty string ("").  In
3824                                  * this case, even if the position is
3825                                  * negative, rindex() returns 0 -- and even if
3826                                  * the position is greater than the length,
3827                                  * index() returns the string length.  These
3828                                  * semantics violate the notion that index()
3829                                  * should never return a value less than the
3830                                  * specified position and that rindex() should
3831                                  * never return a value greater than the
3832                                  * specified position.  (One assumes that
3833                                  * these semantics are artifacts of Perl's
3834                                  * implementation and not the results of
3835                                  * deliberate design -- it beggars belief that
3836                                  * even Larry Wall could desire such oddness.)
3837                                  * While in the abstract one would wish for
3838                                  * consistent position semantics across
3839                                  * substr(), index() and rindex() -- or at the
3840                                  * very least self-consistent position
3841                                  * semantics for index() and rindex() -- we
3842                                  * instead opt to keep with the extant Perl
3843                                  * semantics, in all their broken glory.  (Do
3844                                  * we have more desire to maintain Perl's
3845                                  * semantics than Perl does?  Probably.)
3846                                  */
3847                                 if (subr == DIF_SUBR_RINDEX) {
3848                                         if (pos < 0) {
3849                                                 if (sublen == 0)
3850                                                         regs[rd] = 0;
3851                                                 break;
3852                                         }
3853
3854                                         if (pos > len)
3855                                                 pos = len;
3856                                 } else {
3857                                         if (pos < 0)
3858                                                 pos = 0;
3859
3860                                         if (pos >= len) {
3861                                                 if (sublen == 0)
3862                                                         regs[rd] = len;
3863                                                 break;
3864                                         }
3865                                 }
3866
3867                                 addr = orig + pos;
3868                         }
3869                 }
3870
3871                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3872                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3873                                 if (subr != DIF_SUBR_STRSTR) {
3874                                         /*
3875                                          * As D index() and rindex() are
3876                                          * modeled on Perl (and not on awk),
3877                                          * we return a zero-based (and not a
3878                                          * one-based) index.  (For you Perl
3879                                          * weenies: no, we're not going to add
3880                                          * $[ -- and shouldn't you be at a con
3881                                          * or something?)
3882                                          */
3883                                         regs[rd] = (uintptr_t)(addr - orig);
3884                                         break;
3885                                 }
3886
3887                                 ASSERT(subr == DIF_SUBR_STRSTR);
3888                                 regs[rd] = (uintptr_t)addr;
3889                                 break;
3890                         }
3891                 }
3892
3893                 break;
3894         }
3895
3896         case DIF_SUBR_STRTOK: {
3897                 uintptr_t addr = tupregs[0].dttk_value;
3898                 uintptr_t tokaddr = tupregs[1].dttk_value;
3899                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3900                 uintptr_t limit, toklimit = tokaddr + size;
3901                 uint8_t c = 0, tokmap[32];       /* 256 / 8 */
3902                 char *dest = (char *)mstate->dtms_scratch_ptr;
3903                 int i;
3904
3905                 /*
3906                  * Check both the token buffer and (later) the input buffer,
3907                  * since both could be non-scratch addresses.
3908                  */
3909                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3910                         regs[rd] = 0;
3911                         break;
3912                 }
3913
3914                 if (!DTRACE_INSCRATCH(mstate, size)) {
3915                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3916                         regs[rd] = 0;
3917                         break;
3918                 }
3919
3920                 if (addr == 0) {
3921                         /*
3922                          * If the address specified is NULL, we use our saved
3923                          * strtok pointer from the mstate.  Note that this
3924                          * means that the saved strtok pointer is _only_
3925                          * valid within multiple enablings of the same probe --
3926                          * it behaves like an implicit clause-local variable.
3927                          */
3928                         addr = mstate->dtms_strtok;
3929                 } else {
3930                         /*
3931                          * If the user-specified address is non-NULL we must
3932                          * access check it.  This is the only time we have
3933                          * a chance to do so, since this address may reside
3934                          * in the string table of this clause-- future calls
3935                          * (when we fetch addr from mstate->dtms_strtok)
3936                          * would fail this access check.
3937                          */
3938                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3939                                 regs[rd] = 0;
3940                                 break;
3941                         }
3942                 }
3943
3944                 /*
3945                  * First, zero the token map, and then process the token
3946                  * string -- setting a bit in the map for every character
3947                  * found in the token string.
3948                  */
3949                 for (i = 0; i < sizeof (tokmap); i++)
3950                         tokmap[i] = 0;
3951
3952                 for (; tokaddr < toklimit; tokaddr++) {
3953                         if ((c = dtrace_load8(tokaddr)) == '\0')
3954                                 break;
3955
3956                         ASSERT((c >> 3) < sizeof (tokmap));
3957                         tokmap[c >> 3] |= (1 << (c & 0x7));
3958                 }
3959
3960                 for (limit = addr + size; addr < limit; addr++) {
3961                         /*
3962                          * We're looking for a character that is _not_ contained
3963                          * in the token string.
3964                          */
3965                         if ((c = dtrace_load8(addr)) == '\0')
3966                                 break;
3967
3968                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3969                                 break;
3970                 }
3971
3972                 if (c == '\0') {
3973                         /*
3974                          * We reached the end of the string without finding
3975                          * any character that was not in the token string.
3976                          * We return NULL in this case, and we set the saved
3977                          * address to NULL as well.
3978                          */
3979                         regs[rd] = 0;
3980                         mstate->dtms_strtok = 0;
3981                         break;
3982                 }
3983
3984                 /*
3985                  * From here on, we're copying into the destination string.
3986                  */
3987                 for (i = 0; addr < limit && i < size - 1; addr++) {
3988                         if ((c = dtrace_load8(addr)) == '\0')
3989                                 break;
3990
3991                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3992                                 break;
3993
3994                         ASSERT(i < size);
3995                         dest[i++] = c;
3996                 }
3997
3998                 ASSERT(i < size);
3999                 dest[i] = '\0';
4000                 regs[rd] = (uintptr_t)dest;
4001                 mstate->dtms_scratch_ptr += size;
4002                 mstate->dtms_strtok = addr;
4003                 break;
4004         }
4005
4006         case DIF_SUBR_SUBSTR: {
4007                 uintptr_t s = tupregs[0].dttk_value;
4008                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4009                 char *d = (char *)mstate->dtms_scratch_ptr;
4010                 int64_t index = (int64_t)tupregs[1].dttk_value;
4011                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4012                 size_t len = dtrace_strlen((char *)s, size);
4013                 int64_t i = 0;
4014
4015                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4016                         regs[rd] = 0;
4017                         break;
4018                 }
4019
4020                 if (!DTRACE_INSCRATCH(mstate, size)) {
4021                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4022                         regs[rd] = 0;
4023                         break;
4024                 }
4025
4026                 if (nargs <= 2)
4027                         remaining = (int64_t)size;
4028
4029                 if (index < 0) {
4030                         index += len;
4031
4032                         if (index < 0 && index + remaining > 0) {
4033                                 remaining += index;
4034                                 index = 0;
4035                         }
4036                 }
4037
4038                 if (index >= len || index < 0) {
4039                         remaining = 0;
4040                 } else if (remaining < 0) {
4041                         remaining += len - index;
4042                 } else if (index + remaining > size) {
4043                         remaining = size - index;
4044                 }
4045
4046                 for (i = 0; i < remaining; i++) {
4047                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4048                                 break;
4049                 }
4050
4051                 d[i] = '\0';
4052
4053                 mstate->dtms_scratch_ptr += size;
4054                 regs[rd] = (uintptr_t)d;
4055                 break;
4056         }
4057
4058         case DIF_SUBR_TOUPPER:
4059         case DIF_SUBR_TOLOWER: {
4060                 uintptr_t s = tupregs[0].dttk_value;
4061                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4062                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4063                 size_t len = dtrace_strlen((char *)s, size);
4064                 char lower, upper, convert;
4065                 int64_t i;
4066
4067                 if (subr == DIF_SUBR_TOUPPER) {
4068                         lower = 'a';
4069                         upper = 'z';
4070                         convert = 'A';
4071                 } else {
4072                         lower = 'A';
4073                         upper = 'Z';
4074                         convert = 'a';
4075                 }
4076
4077                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4078                         regs[rd] = 0;
4079                         break;
4080                 }
4081
4082                 if (!DTRACE_INSCRATCH(mstate, size)) {
4083                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4084                         regs[rd] = 0;
4085                         break;
4086                 }
4087
4088                 for (i = 0; i < size - 1; i++) {
4089                         if ((c = dtrace_load8(s + i)) == '\0')
4090                                 break;
4091
4092                         if (c >= lower && c <= upper)
4093                                 c = convert + (c - lower);
4094
4095                         dest[i] = c;
4096                 }
4097
4098                 ASSERT(i < size);
4099                 dest[i] = '\0';
4100                 regs[rd] = (uintptr_t)dest;
4101                 mstate->dtms_scratch_ptr += size;
4102                 break;
4103         }
4104
4105 #if defined(sun)
4106         case DIF_SUBR_GETMAJOR:
4107 #ifdef _LP64
4108                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4109 #else
4110                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4111 #endif
4112                 break;
4113
4114         case DIF_SUBR_GETMINOR:
4115 #ifdef _LP64
4116                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4117 #else
4118                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4119 #endif
4120                 break;
4121
4122         case DIF_SUBR_DDI_PATHNAME: {
4123                 /*
4124                  * This one is a galactic mess.  We are going to roughly
4125                  * emulate ddi_pathname(), but it's made more complicated
4126                  * by the fact that we (a) want to include the minor name and
4127                  * (b) must proceed iteratively instead of recursively.
4128                  */
4129                 uintptr_t dest = mstate->dtms_scratch_ptr;
4130                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4131                 char *start = (char *)dest, *end = start + size - 1;
4132                 uintptr_t daddr = tupregs[0].dttk_value;
4133                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4134                 char *s;
4135                 int i, len, depth = 0;
4136
4137                 /*
4138                  * Due to all the pointer jumping we do and context we must
4139                  * rely upon, we just mandate that the user must have kernel
4140                  * read privileges to use this routine.
4141                  */
4142                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4143                         *flags |= CPU_DTRACE_KPRIV;
4144                         *illval = daddr;
4145                         regs[rd] = 0;
4146                 }
4147
4148                 if (!DTRACE_INSCRATCH(mstate, size)) {
4149                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4150                         regs[rd] = 0;
4151                         break;
4152                 }
4153
4154                 *end = '\0';
4155
4156                 /*
4157                  * We want to have a name for the minor.  In order to do this,
4158                  * we need to walk the minor list from the devinfo.  We want
4159                  * to be sure that we don't infinitely walk a circular list,
4160                  * so we check for circularity by sending a scout pointer
4161                  * ahead two elements for every element that we iterate over;
4162                  * if the list is circular, these will ultimately point to the
4163                  * same element.  You may recognize this little trick as the
4164                  * answer to a stupid interview question -- one that always
4165                  * seems to be asked by those who had to have it laboriously
4166                  * explained to them, and who can't even concisely describe
4167                  * the conditions under which one would be forced to resort to
4168                  * this technique.  Needless to say, those conditions are
4169                  * found here -- and probably only here.  Is this the only use
4170                  * of this infamous trick in shipping, production code?  If it
4171                  * isn't, it probably should be...
4172                  */
4173                 if (minor != -1) {
4174                         uintptr_t maddr = dtrace_loadptr(daddr +
4175                             offsetof(struct dev_info, devi_minor));
4176
4177                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4178                         uintptr_t name = offsetof(struct ddi_minor_data,
4179                             d_minor) + offsetof(struct ddi_minor, name);
4180                         uintptr_t dev = offsetof(struct ddi_minor_data,
4181                             d_minor) + offsetof(struct ddi_minor, dev);
4182                         uintptr_t scout;
4183
4184                         if (maddr != NULL)
4185                                 scout = dtrace_loadptr(maddr + next);
4186
4187                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4188                                 uint64_t m;
4189 #ifdef _LP64
4190                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4191 #else
4192                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4193 #endif
4194                                 if (m != minor) {
4195                                         maddr = dtrace_loadptr(maddr + next);
4196
4197                                         if (scout == NULL)
4198                                                 continue;
4199
4200                                         scout = dtrace_loadptr(scout + next);
4201
4202                                         if (scout == NULL)
4203                                                 continue;
4204
4205                                         scout = dtrace_loadptr(scout + next);
4206
4207                                         if (scout == NULL)
4208                                                 continue;
4209
4210                                         if (scout == maddr) {
4211                                                 *flags |= CPU_DTRACE_ILLOP;
4212                                                 break;
4213                                         }
4214
4215                                         continue;
4216                                 }
4217
4218                                 /*
4219                                  * We have the minor data.  Now we need to
4220                                  * copy the minor's name into the end of the
4221                                  * pathname.
4222                                  */
4223                                 s = (char *)dtrace_loadptr(maddr + name);
4224                                 len = dtrace_strlen(s, size);
4225
4226                                 if (*flags & CPU_DTRACE_FAULT)
4227                                         break;
4228
4229                                 if (len != 0) {
4230                                         if ((end -= (len + 1)) < start)
4231                                                 break;
4232
4233                                         *end = ':';
4234                                 }
4235
4236                                 for (i = 1; i <= len; i++)
4237                                         end[i] = dtrace_load8((uintptr_t)s++);
4238                                 break;
4239                         }
4240                 }
4241
4242                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4243                         ddi_node_state_t devi_state;
4244
4245                         devi_state = dtrace_load32(daddr +
4246                             offsetof(struct dev_info, devi_node_state));
4247
4248                         if (*flags & CPU_DTRACE_FAULT)
4249                                 break;
4250
4251                         if (devi_state >= DS_INITIALIZED) {
4252                                 s = (char *)dtrace_loadptr(daddr +
4253                                     offsetof(struct dev_info, devi_addr));
4254                                 len = dtrace_strlen(s, size);
4255
4256                                 if (*flags & CPU_DTRACE_FAULT)
4257                                         break;
4258
4259                                 if (len != 0) {
4260                                         if ((end -= (len + 1)) < start)
4261                                                 break;
4262
4263                                         *end = '@';
4264                                 }
4265
4266                                 for (i = 1; i <= len; i++)
4267                                         end[i] = dtrace_load8((uintptr_t)s++);
4268                         }
4269
4270                         /*
4271                          * Now for the node name...
4272                          */
4273                         s = (char *)dtrace_loadptr(daddr +
4274                             offsetof(struct dev_info, devi_node_name));
4275
4276                         daddr = dtrace_loadptr(daddr +
4277                             offsetof(struct dev_info, devi_parent));
4278
4279                         /*
4280                          * If our parent is NULL (that is, if we're the root
4281                          * node), we're going to use the special path
4282                          * "devices".
4283                          */
4284                         if (daddr == 0)
4285                                 s = "devices";
4286
4287                         len = dtrace_strlen(s, size);
4288                         if (*flags & CPU_DTRACE_FAULT)
4289                                 break;
4290
4291                         if ((end -= (len + 1)) < start)
4292                                 break;
4293
4294                         for (i = 1; i <= len; i++)
4295                                 end[i] = dtrace_load8((uintptr_t)s++);
4296                         *end = '/';
4297
4298                         if (depth++ > dtrace_devdepth_max) {
4299                                 *flags |= CPU_DTRACE_ILLOP;
4300                                 break;
4301                         }
4302                 }
4303
4304                 if (end < start)
4305                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4306
4307                 if (daddr == 0) {
4308                         regs[rd] = (uintptr_t)end;
4309                         mstate->dtms_scratch_ptr += size;
4310                 }
4311
4312                 break;
4313         }
4314 #endif
4315
4316         case DIF_SUBR_STRJOIN: {
4317                 char *d = (char *)mstate->dtms_scratch_ptr;
4318                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4319                 uintptr_t s1 = tupregs[0].dttk_value;
4320                 uintptr_t s2 = tupregs[1].dttk_value;
4321                 int i = 0;
4322
4323                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4324                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4325                         regs[rd] = 0;
4326                         break;
4327                 }
4328
4329                 if (!DTRACE_INSCRATCH(mstate, size)) {
4330                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4331                         regs[rd] = 0;
4332                         break;
4333                 }
4334
4335                 for (;;) {
4336                         if (i >= size) {
4337                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4338                                 regs[rd] = 0;
4339                                 break;
4340                         }
4341
4342                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4343                                 i--;
4344                                 break;
4345                         }
4346                 }
4347
4348                 for (;;) {
4349                         if (i >= size) {
4350                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4351                                 regs[rd] = 0;
4352                                 break;
4353                         }
4354
4355                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4356                                 break;
4357                 }
4358
4359                 if (i < size) {
4360                         mstate->dtms_scratch_ptr += i;
4361                         regs[rd] = (uintptr_t)d;
4362                 }
4363
4364                 break;
4365         }
4366
4367         case DIF_SUBR_LLTOSTR: {
4368                 int64_t i = (int64_t)tupregs[0].dttk_value;
4369                 uint64_t val, digit;
4370                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4371                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4372                 int base = 10;
4373
4374                 if (nargs > 1) {
4375                         if ((base = tupregs[1].dttk_value) <= 1 ||
4376                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4377                                 *flags |= CPU_DTRACE_ILLOP;
4378                                 break;
4379                         }
4380                 }
4381
4382                 val = (base == 10 && i < 0) ? i * -1 : i;
4383
4384                 if (!DTRACE_INSCRATCH(mstate, size)) {
4385                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4386                         regs[rd] = 0;
4387                         break;
4388                 }
4389
4390                 for (*end-- = '\0'; val; val /= base) {
4391                         if ((digit = val % base) <= '9' - '0') {
4392                                 *end-- = '0' + digit;
4393                         } else {
4394                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4395                         }
4396                 }
4397
4398                 if (i == 0 && base == 16)
4399                         *end-- = '0';
4400
4401                 if (base == 16)
4402                         *end-- = 'x';
4403
4404                 if (i == 0 || base == 8 || base == 16)
4405                         *end-- = '0';
4406
4407                 if (i < 0 && base == 10)
4408                         *end-- = '-';
4409
4410                 regs[rd] = (uintptr_t)end + 1;
4411                 mstate->dtms_scratch_ptr += size;
4412                 break;
4413         }
4414
4415         case DIF_SUBR_HTONS:
4416         case DIF_SUBR_NTOHS:
4417 #if BYTE_ORDER == BIG_ENDIAN
4418                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4419 #else
4420                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4421 #endif
4422                 break;
4423
4424
4425         case DIF_SUBR_HTONL:
4426         case DIF_SUBR_NTOHL:
4427 #if BYTE_ORDER == BIG_ENDIAN
4428                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4429 #else
4430                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4431 #endif
4432                 break;
4433
4434
4435         case DIF_SUBR_HTONLL:
4436         case DIF_SUBR_NTOHLL:
4437 #if BYTE_ORDER == BIG_ENDIAN
4438                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4439 #else
4440                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4441 #endif
4442                 break;
4443
4444
4445         case DIF_SUBR_DIRNAME:
4446         case DIF_SUBR_BASENAME: {
4447                 char *dest = (char *)mstate->dtms_scratch_ptr;
4448                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4449                 uintptr_t src = tupregs[0].dttk_value;
4450                 int i, j, len = dtrace_strlen((char *)src, size);
4451                 int lastbase = -1, firstbase = -1, lastdir = -1;
4452                 int start, end;
4453
4454                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4455                         regs[rd] = 0;
4456                         break;
4457                 }
4458
4459                 if (!DTRACE_INSCRATCH(mstate, size)) {
4460                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4461                         regs[rd] = 0;
4462                         break;
4463                 }
4464
4465                 /*
4466                  * The basename and dirname for a zero-length string is
4467                  * defined to be "."
4468                  */
4469                 if (len == 0) {
4470                         len = 1;
4471                         src = (uintptr_t)".";
4472                 }
4473
4474                 /*
4475                  * Start from the back of the string, moving back toward the
4476                  * front until we see a character that isn't a slash.  That
4477                  * character is the last character in the basename.
4478                  */
4479                 for (i = len - 1; i >= 0; i--) {
4480                         if (dtrace_load8(src + i) != '/')
4481                                 break;
4482                 }
4483
4484                 if (i >= 0)
4485                         lastbase = i;
4486
4487                 /*
4488                  * Starting from the last character in the basename, move
4489                  * towards the front until we find a slash.  The character
4490                  * that we processed immediately before that is the first
4491                  * character in the basename.
4492                  */
4493                 for (; i >= 0; i--) {
4494                         if (dtrace_load8(src + i) == '/')
4495                                 break;
4496                 }
4497
4498                 if (i >= 0)
4499                         firstbase = i + 1;
4500
4501                 /*
4502                  * Now keep going until we find a non-slash character.  That
4503                  * character is the last character in the dirname.
4504                  */
4505                 for (; i >= 0; i--) {
4506                         if (dtrace_load8(src + i) != '/')
4507                                 break;
4508                 }
4509
4510                 if (i >= 0)
4511                         lastdir = i;
4512
4513                 ASSERT(!(lastbase == -1 && firstbase != -1));
4514                 ASSERT(!(firstbase == -1 && lastdir != -1));
4515
4516                 if (lastbase == -1) {
4517                         /*
4518                          * We didn't find a non-slash character.  We know that
4519                          * the length is non-zero, so the whole string must be
4520                          * slashes.  In either the dirname or the basename
4521                          * case, we return '/'.
4522                          */
4523                         ASSERT(firstbase == -1);
4524                         firstbase = lastbase = lastdir = 0;
4525                 }
4526
4527                 if (firstbase == -1) {
4528                         /*
4529                          * The entire string consists only of a basename
4530                          * component.  If we're looking for dirname, we need
4531                          * to change our string to be just "."; if we're
4532                          * looking for a basename, we'll just set the first
4533                          * character of the basename to be 0.
4534                          */
4535                         if (subr == DIF_SUBR_DIRNAME) {
4536                                 ASSERT(lastdir == -1);
4537                                 src = (uintptr_t)".";
4538                                 lastdir = 0;
4539                         } else {
4540                                 firstbase = 0;
4541                         }
4542                 }
4543
4544                 if (subr == DIF_SUBR_DIRNAME) {
4545                         if (lastdir == -1) {
4546                                 /*
4547                                  * We know that we have a slash in the name --
4548                                  * or lastdir would be set to 0, above.  And
4549                                  * because lastdir is -1, we know that this
4550                                  * slash must be the first character.  (That
4551                                  * is, the full string must be of the form
4552                                  * "/basename".)  In this case, the last
4553                                  * character of the directory name is 0.
4554                                  */
4555                                 lastdir = 0;
4556                         }
4557
4558                         start = 0;
4559                         end = lastdir;
4560                 } else {
4561                         ASSERT(subr == DIF_SUBR_BASENAME);
4562                         ASSERT(firstbase != -1 && lastbase != -1);
4563                         start = firstbase;
4564                         end = lastbase;
4565                 }
4566
4567                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4568                         dest[j] = dtrace_load8(src + i);
4569
4570                 dest[j] = '\0';
4571                 regs[rd] = (uintptr_t)dest;
4572                 mstate->dtms_scratch_ptr += size;
4573                 break;
4574         }
4575
4576         case DIF_SUBR_CLEANPATH: {
4577                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4578                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4579                 uintptr_t src = tupregs[0].dttk_value;
4580                 int i = 0, j = 0;
4581
4582                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4583                         regs[rd] = 0;
4584                         break;
4585                 }
4586
4587                 if (!DTRACE_INSCRATCH(mstate, size)) {
4588                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4589                         regs[rd] = 0;
4590                         break;
4591                 }
4592
4593                 /*
4594                  * Move forward, loading each character.
4595                  */
4596                 do {
4597                         c = dtrace_load8(src + i++);
4598 next:
4599                         if (j + 5 >= size)      /* 5 = strlen("/..c\0") */
4600                                 break;
4601
4602                         if (c != '/') {
4603                                 dest[j++] = c;
4604                                 continue;
4605                         }
4606
4607                         c = dtrace_load8(src + i++);
4608
4609                         if (c == '/') {
4610                                 /*
4611                                  * We have two slashes -- we can just advance
4612                                  * to the next character.
4613                                  */
4614                                 goto next;
4615                         }
4616
4617                         if (c != '.') {
4618                                 /*
4619                                  * This is not "." and it's not ".." -- we can
4620                                  * just store the "/" and this character and
4621                                  * drive on.
4622                                  */
4623                                 dest[j++] = '/';
4624                                 dest[j++] = c;
4625                                 continue;
4626                         }
4627
4628                         c = dtrace_load8(src + i++);
4629
4630                         if (c == '/') {
4631                                 /*
4632                                  * This is a "/./" component.  We're not going
4633                                  * to store anything in the destination buffer;
4634                                  * we're just going to go to the next component.
4635                                  */
4636                                 goto next;
4637                         }
4638
4639                         if (c != '.') {
4640                                 /*
4641                                  * This is not ".." -- we can just store the
4642                                  * "/." and this character and continue
4643                                  * processing.
4644                                  */
4645                                 dest[j++] = '/';
4646                                 dest[j++] = '.';
4647                                 dest[j++] = c;
4648                                 continue;
4649                         }
4650
4651                         c = dtrace_load8(src + i++);
4652
4653                         if (c != '/' && c != '\0') {
4654                                 /*
4655                                  * This is not ".." -- it's "..[mumble]".
4656                                  * We'll store the "/.." and this character
4657                                  * and continue processing.
4658                                  */
4659                                 dest[j++] = '/';
4660                                 dest[j++] = '.';
4661                                 dest[j++] = '.';
4662                                 dest[j++] = c;
4663                                 continue;
4664                         }
4665
4666                         /*
4667                          * This is "/../" or "/..\0".  We need to back up
4668                          * our destination pointer until we find a "/".
4669                          */
4670                         i--;
4671                         while (j != 0 && dest[--j] != '/')
4672                                 continue;
4673
4674                         if (c == '\0')
4675                                 dest[++j] = '/';
4676                 } while (c != '\0');
4677
4678                 dest[j] = '\0';
4679                 regs[rd] = (uintptr_t)dest;
4680                 mstate->dtms_scratch_ptr += size;
4681                 break;
4682         }
4683
4684         case DIF_SUBR_INET_NTOA:
4685         case DIF_SUBR_INET_NTOA6:
4686         case DIF_SUBR_INET_NTOP: {
4687                 size_t size;
4688                 int af, argi, i;
4689                 char *base, *end;
4690
4691                 if (subr == DIF_SUBR_INET_NTOP) {
4692                         af = (int)tupregs[0].dttk_value;
4693                         argi = 1;
4694                 } else {
4695                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4696                         argi = 0;
4697                 }
4698
4699                 if (af == AF_INET) {
4700                         ipaddr_t ip4;
4701                         uint8_t *ptr8, val;
4702
4703                         /*
4704                          * Safely load the IPv4 address.
4705                          */
4706                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4707
4708                         /*
4709                          * Check an IPv4 string will fit in scratch.
4710                          */
4711                         size = INET_ADDRSTRLEN;
4712                         if (!DTRACE_INSCRATCH(mstate, size)) {
4713                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4714                                 regs[rd] = 0;
4715                                 break;
4716                         }
4717                         base = (char *)mstate->dtms_scratch_ptr;
4718                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4719
4720                         /*
4721                          * Stringify as a dotted decimal quad.
4722                          */
4723                         *end-- = '\0';
4724                         ptr8 = (uint8_t *)&ip4;
4725                         for (i = 3; i >= 0; i--) {
4726                                 val = ptr8[i];
4727
4728                                 if (val == 0) {
4729                                         *end-- = '0';
4730                                 } else {
4731                                         for (; val; val /= 10) {
4732                                                 *end-- = '0' + (val % 10);
4733                                         }
4734                                 }
4735
4736                                 if (i > 0)
4737                                         *end-- = '.';
4738                         }
4739                         ASSERT(end + 1 >= base);
4740
4741                 } else if (af == AF_INET6) {
4742                         struct in6_addr ip6;
4743                         int firstzero, tryzero, numzero, v6end;
4744                         uint16_t val;
4745                         const char digits[] = "0123456789abcdef";
4746
4747                         /*
4748                          * Stringify using RFC 1884 convention 2 - 16 bit
4749                          * hexadecimal values with a zero-run compression.
4750                          * Lower case hexadecimal digits are used.
4751                          *      eg, fe80::214:4fff:fe0b:76c8.
4752                          * The IPv4 embedded form is returned for inet_ntop,
4753                          * just the IPv4 string is returned for inet_ntoa6.
4754                          */
4755
4756                         /*
4757                          * Safely load the IPv6 address.
4758                          */
4759                         dtrace_bcopy(
4760                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4761                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4762
4763                         /*
4764                          * Check an IPv6 string will fit in scratch.
4765                          */
4766                         size = INET6_ADDRSTRLEN;
4767                         if (!DTRACE_INSCRATCH(mstate, size)) {
4768                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4769                                 regs[rd] = 0;
4770                                 break;
4771                         }
4772                         base = (char *)mstate->dtms_scratch_ptr;
4773                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4774                         *end-- = '\0';
4775
4776                         /*
4777                          * Find the longest run of 16 bit zero values
4778                          * for the single allowed zero compression - "::".
4779                          */
4780                         firstzero = -1;
4781                         tryzero = -1;
4782                         numzero = 1;
4783                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4784 #if defined(sun)
4785                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4786 #else
4787                                 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4788 #endif
4789                                     tryzero == -1 && i % 2 == 0) {
4790                                         tryzero = i;
4791                                         continue;
4792                                 }
4793
4794                                 if (tryzero != -1 &&
4795 #if defined(sun)
4796                                     (ip6._S6_un._S6_u8[i] != 0 ||
4797 #else
4798                                     (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4799 #endif
4800                                     i == sizeof (struct in6_addr) - 1)) {
4801
4802                                         if (i - tryzero <= numzero) {
4803                                                 tryzero = -1;
4804                                                 continue;
4805                                         }
4806
4807                                         firstzero = tryzero;
4808                                         numzero = i - i % 2 - tryzero;
4809                                         tryzero = -1;
4810
4811 #if defined(sun)
4812                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4813 #else
4814                                         if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4815 #endif
4816                                             i == sizeof (struct in6_addr) - 1)
4817                                                 numzero += 2;
4818                                 }
4819                         }
4820                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4821
4822                         /*
4823                          * Check for an IPv4 embedded address.
4824                          */
4825                         v6end = sizeof (struct in6_addr) - 2;
4826                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4827                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4828                                 for (i = sizeof (struct in6_addr) - 1;
4829                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4830                                         ASSERT(end >= base);
4831
4832 #if defined(sun)
4833                                         val = ip6._S6_un._S6_u8[i];
4834 #else
4835                                         val = ip6.__u6_addr.__u6_addr8[i];
4836 #endif
4837
4838                                         if (val == 0) {
4839                                                 *end-- = '0';
4840                                         } else {
4841                                                 for (; val; val /= 10) {
4842                                                         *end-- = '0' + val % 10;
4843                                                 }
4844                                         }
4845
4846                                         if (i > DTRACE_V4MAPPED_OFFSET)
4847                                                 *end-- = '.';
4848                                 }
4849
4850                                 if (subr == DIF_SUBR_INET_NTOA6)
4851                                         goto inetout;
4852
4853                                 /*
4854                                  * Set v6end to skip the IPv4 address that
4855                                  * we have already stringified.
4856                                  */
4857                                 v6end = 10;
4858                         }
4859
4860                         /*
4861                          * Build the IPv6 string by working through the
4862                          * address in reverse.
4863                          */
4864                         for (i = v6end; i >= 0; i -= 2) {
4865                                 ASSERT(end >= base);
4866
4867                                 if (i == firstzero + numzero - 2) {
4868                                         *end-- = ':';
4869                                         *end-- = ':';
4870                                         i -= numzero - 2;
4871                                         continue;
4872                                 }
4873
4874                                 if (i < 14 && i != firstzero - 2)
4875                                         *end-- = ':';
4876
4877 #if defined(sun)
4878                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4879                                     ip6._S6_un._S6_u8[i + 1];
4880 #else
4881                                 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4882                                     ip6.__u6_addr.__u6_addr8[i + 1];
4883 #endif
4884
4885                                 if (val == 0) {
4886                                         *end-- = '0';
4887                                 } else {
4888                                         for (; val; val /= 16) {
4889                                                 *end-- = digits[val % 16];
4890                                         }
4891                                 }
4892                         }
4893                         ASSERT(end + 1 >= base);
4894
4895                 } else {
4896                         /*
4897                          * The user didn't use AH_INET or AH_INET6.
4898                          */
4899                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4900                         regs[rd] = 0;
4901                         break;
4902                 }
4903
4904 inetout:        regs[rd] = (uintptr_t)end + 1;
4905                 mstate->dtms_scratch_ptr += size;
4906                 break;
4907         }
4908
4909         case DIF_SUBR_MEMREF: {
4910                 uintptr_t size = 2 * sizeof(uintptr_t);
4911                 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4912                 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4913
4914                 /* address and length */
4915                 memref[0] = tupregs[0].dttk_value;
4916                 memref[1] = tupregs[1].dttk_value;
4917
4918                 regs[rd] = (uintptr_t) memref;
4919                 mstate->dtms_scratch_ptr += scratch_size;
4920                 break;
4921         }
4922
4923         case DIF_SUBR_TYPEREF: {
4924                 uintptr_t size = 4 * sizeof(uintptr_t);
4925                 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4926                 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4927
4928                 /* address, num_elements, type_str, type_len */
4929                 typeref[0] = tupregs[0].dttk_value;
4930                 typeref[1] = tupregs[1].dttk_value;
4931                 typeref[2] = tupregs[2].dttk_value;
4932                 typeref[3] = tupregs[3].dttk_value;
4933
4934                 regs[rd] = (uintptr_t) typeref;
4935                 mstate->dtms_scratch_ptr += scratch_size;
4936                 break;
4937         }
4938         }
4939 }
4940
4941 /*
4942  * Emulate the execution of DTrace IR instructions specified by the given
4943  * DIF object.  This function is deliberately void of assertions as all of
4944  * the necessary checks are handled by a call to dtrace_difo_validate().
4945  */
4946 static uint64_t
4947 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4948     dtrace_vstate_t *vstate, dtrace_state_t *state)
4949 {
4950         const dif_instr_t *text = difo->dtdo_buf;
4951         const uint_t textlen = difo->dtdo_len;
4952         const char *strtab = difo->dtdo_strtab;
4953         const uint64_t *inttab = difo->dtdo_inttab;
4954
4955         uint64_t rval = 0;
4956         dtrace_statvar_t *svar;
4957         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4958         dtrace_difv_t *v;
4959         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4960         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4961
4962         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4963         uint64_t regs[DIF_DIR_NREGS];
4964         uint64_t *tmp;
4965
4966         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4967         int64_t cc_r;
4968         uint_t pc = 0, id, opc = 0;
4969         uint8_t ttop = 0;
4970         dif_instr_t instr;
4971         uint_t r1, r2, rd;
4972
4973         /*
4974          * We stash the current DIF object into the machine state: we need it
4975          * for subsequent access checking.
4976          */
4977         mstate->dtms_difo = difo;
4978
4979         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4980
4981         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4982                 opc = pc;
4983
4984                 instr = text[pc++];
4985                 r1 = DIF_INSTR_R1(instr);
4986                 r2 = DIF_INSTR_R2(instr);
4987                 rd = DIF_INSTR_RD(instr);
4988
4989                 switch (DIF_INSTR_OP(instr)) {
4990                 case DIF_OP_OR:
4991                         regs[rd] = regs[r1] | regs[r2];
4992                         break;
4993                 case DIF_OP_XOR:
4994                         regs[rd] = regs[r1] ^ regs[r2];
4995                         break;
4996                 case DIF_OP_AND:
4997                         regs[rd] = regs[r1] & regs[r2];
4998                         break;
4999                 case DIF_OP_SLL:
5000                         regs[rd] = regs[r1] << regs[r2];
5001                         break;
5002                 case DIF_OP_SRL:
5003                         regs[rd] = regs[r1] >> regs[r2];
5004                         break;
5005                 case DIF_OP_SUB:
5006                         regs[rd] = regs[r1] - regs[r2];
5007                         break;
5008                 case DIF_OP_ADD:
5009                         regs[rd] = regs[r1] + regs[r2];
5010                         break;
5011                 case DIF_OP_MUL:
5012                         regs[rd] = regs[r1] * regs[r2];
5013                         break;
5014                 case DIF_OP_SDIV:
5015                         if (regs[r2] == 0) {
5016                                 regs[rd] = 0;
5017                                 *flags |= CPU_DTRACE_DIVZERO;
5018                         } else {
5019                                 regs[rd] = (int64_t)regs[r1] /
5020                                     (int64_t)regs[r2];
5021                         }
5022                         break;
5023
5024                 case DIF_OP_UDIV:
5025                         if (regs[r2] == 0) {
5026                                 regs[rd] = 0;
5027                                 *flags |= CPU_DTRACE_DIVZERO;
5028                         } else {
5029                                 regs[rd] = regs[r1] / regs[r2];
5030                         }
5031                         break;
5032
5033                 case DIF_OP_SREM:
5034                         if (regs[r2] == 0) {
5035                                 regs[rd] = 0;
5036                                 *flags |= CPU_DTRACE_DIVZERO;
5037                         } else {
5038                                 regs[rd] = (int64_t)regs[r1] %
5039                                     (int64_t)regs[r2];
5040                         }
5041                         break;
5042
5043                 case DIF_OP_UREM:
5044                         if (regs[r2] == 0) {
5045                                 regs[rd] = 0;
5046                                 *flags |= CPU_DTRACE_DIVZERO;
5047                         } else {
5048                                 regs[rd] = regs[r1] % regs[r2];
5049                         }
5050                         break;
5051
5052                 case DIF_OP_NOT:
5053                         regs[rd] = ~regs[r1];
5054                         break;
5055                 case DIF_OP_MOV:
5056                         regs[rd] = regs[r1];
5057                         break;
5058                 case DIF_OP_CMP:
5059                         cc_r = regs[r1] - regs[r2];
5060                         cc_n = cc_r < 0;
5061                         cc_z = cc_r == 0;
5062                         cc_v = 0;
5063                         cc_c = regs[r1] < regs[r2];
5064                         break;
5065                 case DIF_OP_TST:
5066                         cc_n = cc_v = cc_c = 0;
5067                         cc_z = regs[r1] == 0;
5068                         break;
5069                 case DIF_OP_BA:
5070                         pc = DIF_INSTR_LABEL(instr);
5071                         break;
5072                 case DIF_OP_BE:
5073                         if (cc_z)
5074                                 pc = DIF_INSTR_LABEL(instr);
5075                         break;
5076                 case DIF_OP_BNE:
5077                         if (cc_z == 0)
5078                                 pc = DIF_INSTR_LABEL(instr);
5079                         break;
5080                 case DIF_OP_BG:
5081                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5082                                 pc = DIF_INSTR_LABEL(instr);
5083                         break;
5084                 case DIF_OP_BGU:
5085                         if ((cc_c | cc_z) == 0)
5086                                 pc = DIF_INSTR_LABEL(instr);
5087                         break;
5088                 case DIF_OP_BGE:
5089                         if ((cc_n ^ cc_v) == 0)
5090                                 pc = DIF_INSTR_LABEL(instr);
5091                         break;
5092                 case DIF_OP_BGEU:
5093                         if (cc_c == 0)
5094                                 pc = DIF_INSTR_LABEL(instr);
5095                         break;
5096                 case DIF_OP_BL:
5097                         if (cc_n ^ cc_v)
5098                                 pc = DIF_INSTR_LABEL(instr);
5099                         break;
5100                 case DIF_OP_BLU:
5101                         if (cc_c)
5102                                 pc = DIF_INSTR_LABEL(instr);
5103                         break;
5104                 case DIF_OP_BLE:
5105                         if (cc_z | (cc_n ^ cc_v))
5106                                 pc = DIF_INSTR_LABEL(instr);
5107                         break;
5108                 case DIF_OP_BLEU:
5109                         if (cc_c | cc_z)
5110                                 pc = DIF_INSTR_LABEL(instr);
5111                         break;
5112                 case DIF_OP_RLDSB:
5113                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5114                                 *flags |= CPU_DTRACE_KPRIV;
5115                                 *illval = regs[r1];
5116                                 break;
5117                         }
5118                         /*FALLTHROUGH*/
5119                 case DIF_OP_LDSB:
5120                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5121                         break;
5122                 case DIF_OP_RLDSH:
5123                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5124                                 *flags |= CPU_DTRACE_KPRIV;
5125                                 *illval = regs[r1];
5126                                 break;
5127                         }
5128                         /*FALLTHROUGH*/
5129                 case DIF_OP_LDSH:
5130                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5131                         break;
5132                 case DIF_OP_RLDSW:
5133                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5134                                 *flags |= CPU_DTRACE_KPRIV;
5135                                 *illval = regs[r1];
5136                                 break;
5137                         }
5138                         /*FALLTHROUGH*/
5139                 case DIF_OP_LDSW:
5140                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5141                         break;
5142                 case DIF_OP_RLDUB:
5143                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5144                                 *flags |= CPU_DTRACE_KPRIV;
5145                                 *illval = regs[r1];
5146                                 break;
5147                         }
5148                         /*FALLTHROUGH*/
5149                 case DIF_OP_LDUB:
5150                         regs[rd] = dtrace_load8(regs[r1]);
5151                         break;
5152                 case DIF_OP_RLDUH:
5153                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5154                                 *flags |= CPU_DTRACE_KPRIV;
5155                                 *illval = regs[r1];
5156                                 break;
5157                         }
5158                         /*FALLTHROUGH*/
5159                 case DIF_OP_LDUH:
5160                         regs[rd] = dtrace_load16(regs[r1]);
5161                         break;
5162                 case DIF_OP_RLDUW:
5163                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5164                                 *flags |= CPU_DTRACE_KPRIV;
5165                                 *illval = regs[r1];
5166                                 break;
5167                         }
5168                         /*FALLTHROUGH*/
5169                 case DIF_OP_LDUW:
5170                         regs[rd] = dtrace_load32(regs[r1]);
5171                         break;
5172                 case DIF_OP_RLDX:
5173                         if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5174                                 *flags |= CPU_DTRACE_KPRIV;
5175                                 *illval = regs[r1];
5176                                 break;
5177                         }
5178                         /*FALLTHROUGH*/
5179                 case DIF_OP_LDX:
5180                         regs[rd] = dtrace_load64(regs[r1]);
5181                         break;
5182                 case DIF_OP_ULDSB:
5183                         regs[rd] = (int8_t)
5184                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5185                         break;
5186                 case DIF_OP_ULDSH:
5187                         regs[rd] = (int16_t)
5188                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5189                         break;
5190                 case DIF_OP_ULDSW:
5191                         regs[rd] = (int32_t)
5192                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5193                         break;
5194                 case DIF_OP_ULDUB:
5195                         regs[rd] =
5196                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5197                         break;
5198                 case DIF_OP_ULDUH:
5199                         regs[rd] =
5200                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5201                         break;
5202                 case DIF_OP_ULDUW:
5203                         regs[rd] =
5204                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5205                         break;
5206                 case DIF_OP_ULDX:
5207                         regs[rd] =
5208                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5209                         break;
5210                 case DIF_OP_RET:
5211                         rval = regs[rd];
5212                         pc = textlen;
5213                         break;
5214                 case DIF_OP_NOP:
5215                         break;
5216                 case DIF_OP_SETX:
5217                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5218                         break;
5219                 case DIF_OP_SETS:
5220                         regs[rd] = (uint64_t)(uintptr_t)
5221                             (strtab + DIF_INSTR_STRING(instr));
5222                         break;
5223                 case DIF_OP_SCMP: {
5224                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5225                         uintptr_t s1 = regs[r1];
5226                         uintptr_t s2 = regs[r2];
5227
5228                         if (s1 != 0 &&
5229                             !dtrace_strcanload(s1, sz, mstate, vstate))
5230                                 break;
5231                         if (s2 != 0 &&
5232                             !dtrace_strcanload(s2, sz, mstate, vstate))
5233                                 break;
5234
5235                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5236
5237                         cc_n = cc_r < 0;
5238                         cc_z = cc_r == 0;
5239                         cc_v = cc_c = 0;
5240                         break;
5241                 }
5242                 case DIF_OP_LDGA:
5243                         regs[rd] = dtrace_dif_variable(mstate, state,
5244                             r1, regs[r2]);
5245                         break;
5246                 case DIF_OP_LDGS:
5247                         id = DIF_INSTR_VAR(instr);
5248
5249                         if (id >= DIF_VAR_OTHER_UBASE) {
5250                                 uintptr_t a;
5251
5252                                 id -= DIF_VAR_OTHER_UBASE;
5253                                 svar = vstate->dtvs_globals[id];
5254                                 ASSERT(svar != NULL);
5255                                 v = &svar->dtsv_var;
5256
5257                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5258                                         regs[rd] = svar->dtsv_data;
5259                                         break;
5260                                 }
5261
5262                                 a = (uintptr_t)svar->dtsv_data;
5263
5264                                 if (*(uint8_t *)a == UINT8_MAX) {
5265                                         /*
5266                                          * If the 0th byte is set to UINT8_MAX
5267                                          * then this is to be treated as a
5268                                          * reference to a NULL variable.
5269                                          */
5270                                         regs[rd] = 0;
5271                                 } else {
5272                                         regs[rd] = a + sizeof (uint64_t);
5273                                 }
5274
5275                                 break;
5276                         }
5277
5278                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5279                         break;
5280
5281                 case DIF_OP_STGS:
5282                         id = DIF_INSTR_VAR(instr);
5283
5284                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5285                         id -= DIF_VAR_OTHER_UBASE;
5286
5287                         svar = vstate->dtvs_globals[id];
5288                         ASSERT(svar != NULL);
5289                         v = &svar->dtsv_var;
5290
5291                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5292                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5293
5294                                 ASSERT(a != 0);
5295                                 ASSERT(svar->dtsv_size != 0);
5296
5297                                 if (regs[rd] == 0) {
5298                                         *(uint8_t *)a = UINT8_MAX;
5299                                         break;
5300                                 } else {
5301                                         *(uint8_t *)a = 0;
5302                                         a += sizeof (uint64_t);
5303                                 }
5304                                 if (!dtrace_vcanload(
5305                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5306                                     mstate, vstate))
5307                                         break;
5308
5309                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5310                                     (void *)a, &v->dtdv_type);
5311                                 break;
5312                         }
5313
5314                         svar->dtsv_data = regs[rd];
5315                         break;
5316
5317                 case DIF_OP_LDTA:
5318                         /*
5319                          * There are no DTrace built-in thread-local arrays at
5320                          * present.  This opcode is saved for future work.
5321                          */
5322                         *flags |= CPU_DTRACE_ILLOP;
5323                         regs[rd] = 0;
5324                         break;
5325
5326                 case DIF_OP_LDLS:
5327                         id = DIF_INSTR_VAR(instr);
5328
5329                         if (id < DIF_VAR_OTHER_UBASE) {
5330                                 /*
5331                                  * For now, this has no meaning.
5332                                  */
5333                                 regs[rd] = 0;
5334                                 break;
5335                         }
5336
5337                         id -= DIF_VAR_OTHER_UBASE;
5338
5339                         ASSERT(id < vstate->dtvs_nlocals);
5340                         ASSERT(vstate->dtvs_locals != NULL);
5341
5342                         svar = vstate->dtvs_locals[id];
5343                         ASSERT(svar != NULL);
5344                         v = &svar->dtsv_var;
5345
5346                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5347                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5348                                 size_t sz = v->dtdv_type.dtdt_size;
5349
5350                                 sz += sizeof (uint64_t);
5351                                 ASSERT(svar->dtsv_size == NCPU * sz);
5352                                 a += curcpu * sz;
5353
5354                                 if (*(uint8_t *)a == UINT8_MAX) {
5355                                         /*
5356                                          * If the 0th byte is set to UINT8_MAX
5357                                          * then this is to be treated as a
5358                                          * reference to a NULL variable.
5359                                          */
5360                                         regs[rd] = 0;
5361                                 } else {
5362                                         regs[rd] = a + sizeof (uint64_t);
5363                                 }
5364
5365                                 break;
5366                         }
5367
5368                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5369                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5370                         regs[rd] = tmp[curcpu];
5371                         break;
5372
5373                 case DIF_OP_STLS:
5374                         id = DIF_INSTR_VAR(instr);
5375
5376                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5377                         id -= DIF_VAR_OTHER_UBASE;
5378                         ASSERT(id < vstate->dtvs_nlocals);
5379
5380                         ASSERT(vstate->dtvs_locals != NULL);
5381                         svar = vstate->dtvs_locals[id];
5382                         ASSERT(svar != NULL);
5383                         v = &svar->dtsv_var;
5384
5385                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5386                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5387                                 size_t sz = v->dtdv_type.dtdt_size;
5388
5389                                 sz += sizeof (uint64_t);
5390                                 ASSERT(svar->dtsv_size == NCPU * sz);
5391                                 a += curcpu * sz;
5392
5393                                 if (regs[rd] == 0) {
5394                                         *(uint8_t *)a = UINT8_MAX;
5395                                         break;
5396                                 } else {
5397                                         *(uint8_t *)a = 0;
5398                                         a += sizeof (uint64_t);
5399                                 }
5400
5401                                 if (!dtrace_vcanload(
5402                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5403                                     mstate, vstate))
5404                                         break;
5405
5406                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5407                                     (void *)a, &v->dtdv_type);
5408                                 break;
5409                         }
5410
5411                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5412                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5413                         tmp[curcpu] = regs[rd];
5414                         break;
5415
5416                 case DIF_OP_LDTS: {
5417                         dtrace_dynvar_t *dvar;
5418                         dtrace_key_t *key;
5419
5420                         id = DIF_INSTR_VAR(instr);
5421                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5422                         id -= DIF_VAR_OTHER_UBASE;
5423                         v = &vstate->dtvs_tlocals[id];
5424
5425                         key = &tupregs[DIF_DTR_NREGS];
5426                         key[0].dttk_value = (uint64_t)id;
5427                         key[0].dttk_size = 0;
5428                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5429                         key[1].dttk_size = 0;
5430
5431                         dvar = dtrace_dynvar(dstate, 2, key,
5432                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5433                             mstate, vstate);
5434
5435                         if (dvar == NULL) {
5436                                 regs[rd] = 0;
5437                                 break;
5438                         }
5439
5440                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5441                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5442                         } else {
5443                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5444                         }
5445
5446                         break;
5447                 }
5448
5449                 case DIF_OP_STTS: {
5450                         dtrace_dynvar_t *dvar;
5451                         dtrace_key_t *key;
5452
5453                         id = DIF_INSTR_VAR(instr);
5454                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5455                         id -= DIF_VAR_OTHER_UBASE;
5456
5457                         key = &tupregs[DIF_DTR_NREGS];
5458                         key[0].dttk_value = (uint64_t)id;
5459                         key[0].dttk_size = 0;
5460                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5461                         key[1].dttk_size = 0;
5462                         v = &vstate->dtvs_tlocals[id];
5463
5464                         dvar = dtrace_dynvar(dstate, 2, key,
5465                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5466                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5467                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5468                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5469
5470                         /*
5471                          * Given that we're storing to thread-local data,
5472                          * we need to flush our predicate cache.
5473                          */
5474                         curthread->t_predcache = 0;
5475
5476                         if (dvar == NULL)
5477                                 break;
5478
5479                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5480                                 if (!dtrace_vcanload(
5481                                     (void *)(uintptr_t)regs[rd],
5482                                     &v->dtdv_type, mstate, vstate))
5483                                         break;
5484
5485                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5486                                     dvar->dtdv_data, &v->dtdv_type);
5487                         } else {
5488                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5489                         }
5490
5491                         break;
5492                 }
5493
5494                 case DIF_OP_SRA:
5495                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5496                         break;
5497
5498                 case DIF_OP_CALL:
5499                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5500                             regs, tupregs, ttop, mstate, state);
5501                         break;
5502
5503                 case DIF_OP_PUSHTR:
5504                         if (ttop == DIF_DTR_NREGS) {
5505                                 *flags |= CPU_DTRACE_TUPOFLOW;
5506                                 break;
5507                         }
5508
5509                         if (r1 == DIF_TYPE_STRING) {
5510                                 /*
5511                                  * If this is a string type and the size is 0,
5512                                  * we'll use the system-wide default string
5513                                  * size.  Note that we are _not_ looking at
5514                                  * the value of the DTRACEOPT_STRSIZE option;
5515                                  * had this been set, we would expect to have
5516                                  * a non-zero size value in the "pushtr".
5517                                  */
5518                                 tupregs[ttop].dttk_size =
5519                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5520                                     regs[r2] ? regs[r2] :
5521                                     dtrace_strsize_default) + 1;
5522                         } else {
5523                                 tupregs[ttop].dttk_size = regs[r2];
5524                         }
5525
5526                         tupregs[ttop++].dttk_value = regs[rd];
5527                         break;
5528
5529                 case DIF_OP_PUSHTV:
5530                         if (ttop == DIF_DTR_NREGS) {
5531                                 *flags |= CPU_DTRACE_TUPOFLOW;
5532                                 break;
5533                         }
5534
5535                         tupregs[ttop].dttk_value = regs[rd];
5536                         tupregs[ttop++].dttk_size = 0;
5537                         break;
5538
5539                 case DIF_OP_POPTS:
5540                         if (ttop != 0)
5541                                 ttop--;
5542                         break;
5543
5544                 case DIF_OP_FLUSHTS:
5545                         ttop = 0;
5546                         break;
5547
5548                 case DIF_OP_LDGAA:
5549                 case DIF_OP_LDTAA: {
5550                         dtrace_dynvar_t *dvar;
5551                         dtrace_key_t *key = tupregs;
5552                         uint_t nkeys = ttop;
5553
5554                         id = DIF_INSTR_VAR(instr);
5555                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5556                         id -= DIF_VAR_OTHER_UBASE;
5557
5558                         key[nkeys].dttk_value = (uint64_t)id;
5559                         key[nkeys++].dttk_size = 0;
5560
5561                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5562                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5563                                 key[nkeys++].dttk_size = 0;
5564                                 v = &vstate->dtvs_tlocals[id];
5565                         } else {
5566                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5567                         }
5568
5569                         dvar = dtrace_dynvar(dstate, nkeys, key,
5570                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5571                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5572                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5573
5574                         if (dvar == NULL) {
5575                                 regs[rd] = 0;
5576                                 break;
5577                         }
5578
5579                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5580                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5581                         } else {
5582                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5583                         }
5584
5585                         break;
5586                 }
5587
5588                 case DIF_OP_STGAA:
5589                 case DIF_OP_STTAA: {
5590                         dtrace_dynvar_t *dvar;
5591                         dtrace_key_t *key = tupregs;
5592                         uint_t nkeys = ttop;
5593
5594                         id = DIF_INSTR_VAR(instr);
5595                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5596                         id -= DIF_VAR_OTHER_UBASE;
5597
5598                         key[nkeys].dttk_value = (uint64_t)id;
5599                         key[nkeys++].dttk_size = 0;
5600
5601                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5602                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5603                                 key[nkeys++].dttk_size = 0;
5604                                 v = &vstate->dtvs_tlocals[id];
5605                         } else {
5606                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5607                         }
5608
5609                         dvar = dtrace_dynvar(dstate, nkeys, key,
5610                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5611                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5612                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5613                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5614
5615                         if (dvar == NULL)
5616                                 break;
5617
5618                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5619                                 if (!dtrace_vcanload(
5620                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5621                                     mstate, vstate))
5622                                         break;
5623
5624                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5625                                     dvar->dtdv_data, &v->dtdv_type);
5626                         } else {
5627                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5628                         }
5629
5630                         break;
5631                 }
5632
5633                 case DIF_OP_ALLOCS: {
5634                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5635                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5636
5637                         /*
5638                          * Rounding up the user allocation size could have
5639                          * overflowed large, bogus allocations (like -1ULL) to
5640                          * 0.
5641                          */
5642                         if (size < regs[r1] ||
5643                             !DTRACE_INSCRATCH(mstate, size)) {
5644                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5645                                 regs[rd] = 0;
5646                                 break;
5647                         }
5648
5649                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5650                         mstate->dtms_scratch_ptr += size;
5651                         regs[rd] = ptr;
5652                         break;
5653                 }
5654
5655                 case DIF_OP_COPYS:
5656                         if (!dtrace_canstore(regs[rd], regs[r2],
5657                             mstate, vstate)) {
5658                                 *flags |= CPU_DTRACE_BADADDR;
5659                                 *illval = regs[rd];
5660                                 break;
5661                         }
5662
5663                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5664                                 break;
5665
5666                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5667                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5668                         break;
5669
5670                 case DIF_OP_STB:
5671                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5672                                 *flags |= CPU_DTRACE_BADADDR;
5673                                 *illval = regs[rd];
5674                                 break;
5675                         }
5676                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5677                         break;
5678
5679                 case DIF_OP_STH:
5680                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5681                                 *flags |= CPU_DTRACE_BADADDR;
5682                                 *illval = regs[rd];
5683                                 break;
5684                         }
5685                         if (regs[rd] & 1) {
5686                                 *flags |= CPU_DTRACE_BADALIGN;
5687                                 *illval = regs[rd];
5688                                 break;
5689                         }
5690                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5691                         break;
5692
5693                 case DIF_OP_STW:
5694                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5695                                 *flags |= CPU_DTRACE_BADADDR;
5696                                 *illval = regs[rd];
5697                                 break;
5698                         }
5699                         if (regs[rd] & 3) {
5700                                 *flags |= CPU_DTRACE_BADALIGN;
5701                                 *illval = regs[rd];
5702                                 break;
5703                         }
5704                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5705                         break;
5706
5707                 case DIF_OP_STX:
5708                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5709                                 *flags |= CPU_DTRACE_BADADDR;
5710                                 *illval = regs[rd];
5711                                 break;
5712                         }
5713                         if (regs[rd] & 7) {
5714                                 *flags |= CPU_DTRACE_BADALIGN;
5715                                 *illval = regs[rd];
5716                                 break;
5717                         }
5718                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5719                         break;
5720                 }
5721         }
5722
5723         if (!(*flags & CPU_DTRACE_FAULT))
5724                 return (rval);
5725
5726         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5727         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5728
5729         return (0);
5730 }
5731
5732 static void
5733 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5734 {
5735         dtrace_probe_t *probe = ecb->dte_probe;
5736         dtrace_provider_t *prov = probe->dtpr_provider;
5737         char c[DTRACE_FULLNAMELEN + 80], *str;
5738         char *msg = "dtrace: breakpoint action at probe ";
5739         char *ecbmsg = " (ecb ";
5740         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5741         uintptr_t val = (uintptr_t)ecb;
5742         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5743
5744         if (dtrace_destructive_disallow)
5745                 return;
5746
5747         /*
5748          * It's impossible to be taking action on the NULL probe.
5749          */
5750         ASSERT(probe != NULL);
5751
5752         /*
5753          * This is a poor man's (destitute man's?) sprintf():  we want to
5754          * print the provider name, module name, function name and name of
5755          * the probe, along with the hex address of the ECB with the breakpoint
5756          * action -- all of which we must place in the character buffer by
5757          * hand.
5758          */
5759         while (*msg != '\0')
5760                 c[i++] = *msg++;
5761
5762         for (str = prov->dtpv_name; *str != '\0'; str++)
5763                 c[i++] = *str;
5764         c[i++] = ':';
5765
5766         for (str = probe->dtpr_mod; *str != '\0'; str++)
5767                 c[i++] = *str;
5768         c[i++] = ':';
5769
5770         for (str = probe->dtpr_func; *str != '\0'; str++)
5771                 c[i++] = *str;
5772         c[i++] = ':';
5773
5774         for (str = probe->dtpr_name; *str != '\0'; str++)
5775                 c[i++] = *str;
5776
5777         while (*ecbmsg != '\0')
5778                 c[i++] = *ecbmsg++;
5779
5780         while (shift >= 0) {
5781                 mask = (uintptr_t)0xf << shift;
5782
5783                 if (val >= ((uintptr_t)1 << shift))
5784                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5785                 shift -= 4;
5786         }
5787
5788         c[i++] = ')';
5789         c[i] = '\0';
5790
5791 #if defined(sun)
5792         debug_enter(c);
5793 #else
5794         kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5795 #endif
5796 }
5797
5798 static void
5799 dtrace_action_panic(dtrace_ecb_t *ecb)
5800 {
5801         dtrace_probe_t *probe = ecb->dte_probe;
5802
5803         /*
5804          * It's impossible to be taking action on the NULL probe.
5805          */
5806         ASSERT(probe != NULL);
5807
5808         if (dtrace_destructive_disallow)
5809                 return;
5810
5811         if (dtrace_panicked != NULL)
5812                 return;
5813
5814         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5815                 return;
5816
5817         /*
5818          * We won the right to panic.  (We want to be sure that only one
5819          * thread calls panic() from dtrace_probe(), and that panic() is
5820          * called exactly once.)
5821          */
5822         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5823             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5824             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5825 }
5826
5827 static void
5828 dtrace_action_raise(uint64_t sig)
5829 {
5830         if (dtrace_destructive_disallow)
5831                 return;
5832
5833         if (sig >= NSIG) {
5834                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5835                 return;
5836         }
5837
5838 #if defined(sun)
5839         /*
5840          * raise() has a queue depth of 1 -- we ignore all subsequent
5841          * invocations of the raise() action.
5842          */
5843         if (curthread->t_dtrace_sig == 0)
5844                 curthread->t_dtrace_sig = (uint8_t)sig;
5845
5846         curthread->t_sig_check = 1;
5847         aston(curthread);
5848 #else
5849         struct proc *p = curproc;
5850         PROC_LOCK(p);
5851         kern_psignal(p, sig);
5852         PROC_UNLOCK(p);
5853 #endif
5854 }
5855
5856 static void
5857 dtrace_action_stop(void)
5858 {
5859         if (dtrace_destructive_disallow)
5860                 return;
5861
5862 #if defined(sun)
5863         if (!curthread->t_dtrace_stop) {
5864                 curthread->t_dtrace_stop = 1;
5865                 curthread->t_sig_check = 1;
5866                 aston(curthread);
5867         }
5868 #else
5869         struct proc *p = curproc;
5870         PROC_LOCK(p);
5871         kern_psignal(p, SIGSTOP);
5872         PROC_UNLOCK(p);
5873 #endif
5874 }
5875
5876 static void
5877 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5878 {
5879         hrtime_t now;
5880         volatile uint16_t *flags;
5881 #if defined(sun)
5882         cpu_t *cpu = CPU;
5883 #else
5884         cpu_t *cpu = &solaris_cpu[curcpu];
5885 #endif
5886
5887         if (dtrace_destructive_disallow)
5888                 return;
5889
5890         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5891
5892         now = dtrace_gethrtime();
5893
5894         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5895                 /*
5896                  * We need to advance the mark to the current time.
5897                  */
5898                 cpu->cpu_dtrace_chillmark = now;
5899                 cpu->cpu_dtrace_chilled = 0;
5900         }
5901
5902         /*
5903          * Now check to see if the requested chill time would take us over
5904          * the maximum amount of time allowed in the chill interval.  (Or
5905          * worse, if the calculation itself induces overflow.)
5906          */
5907         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5908             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5909                 *flags |= CPU_DTRACE_ILLOP;
5910                 return;
5911         }
5912
5913         while (dtrace_gethrtime() - now < val)
5914                 continue;
5915
5916         /*
5917          * Normally, we assure that the value of the variable "timestamp" does
5918          * not change within an ECB.  The presence of chill() represents an
5919          * exception to this rule, however.
5920          */
5921         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5922         cpu->cpu_dtrace_chilled += val;
5923 }
5924
5925 static void
5926 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5927     uint64_t *buf, uint64_t arg)
5928 {
5929         int nframes = DTRACE_USTACK_NFRAMES(arg);
5930         int strsize = DTRACE_USTACK_STRSIZE(arg);
5931         uint64_t *pcs = &buf[1], *fps;
5932         char *str = (char *)&pcs[nframes];
5933         int size, offs = 0, i, j;
5934         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5935         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5936         char *sym;
5937
5938         /*
5939          * Should be taking a faster path if string space has not been
5940          * allocated.
5941          */
5942         ASSERT(strsize != 0);
5943
5944         /*
5945          * We will first allocate some temporary space for the frame pointers.
5946          */
5947         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5948         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5949             (nframes * sizeof (uint64_t));
5950
5951         if (!DTRACE_INSCRATCH(mstate, size)) {
5952                 /*
5953                  * Not enough room for our frame pointers -- need to indicate
5954                  * that we ran out of scratch space.
5955                  */
5956                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5957                 return;
5958         }
5959
5960         mstate->dtms_scratch_ptr += size;
5961         saved = mstate->dtms_scratch_ptr;
5962
5963         /*
5964          * Now get a stack with both program counters and frame pointers.
5965          */
5966         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5967         dtrace_getufpstack(buf, fps, nframes + 1);
5968         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5969
5970         /*
5971          * If that faulted, we're cooked.
5972          */
5973         if (*flags & CPU_DTRACE_FAULT)
5974                 goto out;
5975
5976         /*
5977          * Now we want to walk up the stack, calling the USTACK helper.  For
5978          * each iteration, we restore the scratch pointer.
5979          */
5980         for (i = 0; i < nframes; i++) {
5981                 mstate->dtms_scratch_ptr = saved;
5982
5983                 if (offs >= strsize)
5984                         break;
5985
5986                 sym = (char *)(uintptr_t)dtrace_helper(
5987                     DTRACE_HELPER_ACTION_USTACK,
5988                     mstate, state, pcs[i], fps[i]);
5989
5990                 /*
5991                  * If we faulted while running the helper, we're going to
5992                  * clear the fault and null out the corresponding string.
5993                  */
5994                 if (*flags & CPU_DTRACE_FAULT) {
5995                         *flags &= ~CPU_DTRACE_FAULT;
5996                         str[offs++] = '\0';
5997                         continue;
5998                 }
5999
6000                 if (sym == NULL) {
6001                         str[offs++] = '\0';
6002                         continue;
6003                 }
6004
6005                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6006
6007                 /*
6008                  * Now copy in the string that the helper returned to us.
6009                  */
6010                 for (j = 0; offs + j < strsize; j++) {
6011                         if ((str[offs + j] = sym[j]) == '\0')
6012                                 break;
6013                 }
6014
6015                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6016
6017                 offs += j + 1;
6018         }
6019
6020         if (offs >= strsize) {
6021                 /*
6022                  * If we didn't have room for all of the strings, we don't
6023                  * abort processing -- this needn't be a fatal error -- but we
6024                  * still want to increment a counter (dts_stkstroverflows) to
6025                  * allow this condition to be warned about.  (If this is from
6026                  * a jstack() action, it is easily tuned via jstackstrsize.)
6027                  */
6028                 dtrace_error(&state->dts_stkstroverflows);
6029         }
6030
6031         while (offs < strsize)
6032                 str[offs++] = '\0';
6033
6034 out:
6035         mstate->dtms_scratch_ptr = old;
6036 }
6037
6038 /*
6039  * If you're looking for the epicenter of DTrace, you just found it.  This
6040  * is the function called by the provider to fire a probe -- from which all
6041  * subsequent probe-context DTrace activity emanates.
6042  */
6043 void
6044 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6045     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6046 {
6047         processorid_t cpuid;
6048         dtrace_icookie_t cookie;
6049         dtrace_probe_t *probe;
6050         dtrace_mstate_t mstate;
6051         dtrace_ecb_t *ecb;
6052         dtrace_action_t *act;
6053         intptr_t offs;
6054         size_t size;
6055         int vtime, onintr;
6056         volatile uint16_t *flags;
6057         hrtime_t now;
6058
6059         if (panicstr != NULL)
6060                 return;
6061
6062 #if defined(sun)
6063         /*
6064          * Kick out immediately if this CPU is still being born (in which case
6065          * curthread will be set to -1) or the current thread can't allow
6066          * probes in its current context.
6067          */
6068         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6069                 return;
6070 #endif
6071
6072         cookie = dtrace_interrupt_disable();
6073         probe = dtrace_probes[id - 1];
6074         cpuid = curcpu;
6075         onintr = CPU_ON_INTR(CPU);
6076
6077         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6078             probe->dtpr_predcache == curthread->t_predcache) {
6079                 /*
6080                  * We have hit in the predicate cache; we know that
6081                  * this predicate would evaluate to be false.
6082                  */
6083                 dtrace_interrupt_enable(cookie);
6084                 return;
6085         }
6086
6087 #if defined(sun)
6088         if (panic_quiesce) {
6089 #else
6090         if (panicstr != NULL) {
6091 #endif
6092                 /*
6093                  * We don't trace anything if we're panicking.
6094                  */
6095                 dtrace_interrupt_enable(cookie);
6096                 return;
6097         }
6098
6099         now = dtrace_gethrtime();
6100         vtime = dtrace_vtime_references != 0;
6101
6102         if (vtime && curthread->t_dtrace_start)
6103                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6104
6105         mstate.dtms_difo = NULL;
6106         mstate.dtms_probe = probe;
6107         mstate.dtms_strtok = 0;
6108         mstate.dtms_arg[0] = arg0;
6109         mstate.dtms_arg[1] = arg1;
6110         mstate.dtms_arg[2] = arg2;
6111         mstate.dtms_arg[3] = arg3;
6112         mstate.dtms_arg[4] = arg4;
6113
6114         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6115
6116         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6117                 dtrace_predicate_t *pred = ecb->dte_predicate;
6118                 dtrace_state_t *state = ecb->dte_state;
6119                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6120                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6121                 dtrace_vstate_t *vstate = &state->dts_vstate;
6122                 dtrace_provider_t *prov = probe->dtpr_provider;
6123                 uint64_t tracememsize = 0;
6124                 int committed = 0;
6125                 caddr_t tomax;
6126
6127                 /*
6128                  * A little subtlety with the following (seemingly innocuous)
6129                  * declaration of the automatic 'val':  by looking at the
6130                  * code, you might think that it could be declared in the
6131                  * action processing loop, below.  (That is, it's only used in
6132                  * the action processing loop.)  However, it must be declared
6133                  * out of that scope because in the case of DIF expression
6134                  * arguments to aggregating actions, one iteration of the
6135                  * action loop will use the last iteration's value.
6136                  */
6137                 uint64_t val = 0;
6138
6139                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6140                 *flags &= ~CPU_DTRACE_ERROR;
6141
6142                 if (prov == dtrace_provider) {
6143                         /*
6144                          * If dtrace itself is the provider of this probe,
6145                          * we're only going to continue processing the ECB if
6146                          * arg0 (the dtrace_state_t) is equal to the ECB's
6147                          * creating state.  (This prevents disjoint consumers
6148                          * from seeing one another's metaprobes.)
6149                          */
6150                         if (arg0 != (uint64_t)(uintptr_t)state)
6151                                 continue;
6152                 }
6153
6154                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6155                         /*
6156                          * We're not currently active.  If our provider isn't
6157                          * the dtrace pseudo provider, we're not interested.
6158                          */
6159                         if (prov != dtrace_provider)
6160                                 continue;
6161
6162                         /*
6163                          * Now we must further check if we are in the BEGIN
6164                          * probe.  If we are, we will only continue processing
6165                          * if we're still in WARMUP -- if one BEGIN enabling
6166                          * has invoked the exit() action, we don't want to
6167                          * evaluate subsequent BEGIN enablings.
6168                          */
6169                         if (probe->dtpr_id == dtrace_probeid_begin &&
6170                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6171                                 ASSERT(state->dts_activity ==
6172                                     DTRACE_ACTIVITY_DRAINING);
6173                                 continue;
6174                         }
6175                 }
6176
6177                 if (ecb->dte_cond) {
6178                         /*
6179                          * If the dte_cond bits indicate that this
6180                          * consumer is only allowed to see user-mode firings
6181                          * of this probe, call the provider's dtps_usermode()
6182                          * entry point to check that the probe was fired
6183                          * while in a user context. Skip this ECB if that's
6184                          * not the case.
6185                          */
6186                         if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6187                             prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6188                             probe->dtpr_id, probe->dtpr_arg) == 0)
6189                                 continue;
6190
6191 #if defined(sun)
6192                         /*
6193                          * This is more subtle than it looks. We have to be
6194                          * absolutely certain that CRED() isn't going to
6195                          * change out from under us so it's only legit to
6196                          * examine that structure if we're in constrained
6197                          * situations. Currently, the only times we'll this
6198                          * check is if a non-super-user has enabled the
6199                          * profile or syscall providers -- providers that
6200                          * allow visibility of all processes. For the
6201                          * profile case, the check above will ensure that
6202                          * we're examining a user context.
6203                          */
6204                         if (ecb->dte_cond & DTRACE_COND_OWNER) {
6205                                 cred_t *cr;
6206                                 cred_t *s_cr =
6207                                     ecb->dte_state->dts_cred.dcr_cred;
6208                                 proc_t *proc;
6209
6210                                 ASSERT(s_cr != NULL);
6211
6212                                 if ((cr = CRED()) == NULL ||
6213                                     s_cr->cr_uid != cr->cr_uid ||
6214                                     s_cr->cr_uid != cr->cr_ruid ||
6215                                     s_cr->cr_uid != cr->cr_suid ||
6216                                     s_cr->cr_gid != cr->cr_gid ||
6217                                     s_cr->cr_gid != cr->cr_rgid ||
6218                                     s_cr->cr_gid != cr->cr_sgid ||
6219                                     (proc = ttoproc(curthread)) == NULL ||
6220                                     (proc->p_flag & SNOCD))
6221                                         continue;
6222                         }
6223
6224                         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6225                                 cred_t *cr;
6226                                 cred_t *s_cr =
6227                                     ecb->dte_state->dts_cred.dcr_cred;
6228
6229                                 ASSERT(s_cr != NULL);
6230
6231                                 if ((cr = CRED()) == NULL ||
6232                                     s_cr->cr_zone->zone_id !=
6233                                     cr->cr_zone->zone_id)
6234                                         continue;
6235                         }
6236 #endif
6237                 }
6238
6239                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6240                         /*
6241                          * We seem to be dead.  Unless we (a) have kernel
6242                          * destructive permissions (b) have explicitly enabled
6243                          * destructive actions and (c) destructive actions have
6244                          * not been disabled, we're going to transition into
6245                          * the KILLED state, from which no further processing
6246                          * on this state will be performed.
6247                          */
6248                         if (!dtrace_priv_kernel_destructive(state) ||
6249                             !state->dts_cred.dcr_destructive ||
6250                             dtrace_destructive_disallow) {
6251                                 void *activity = &state->dts_activity;
6252                                 dtrace_activity_t current;
6253
6254                                 do {
6255                                         current = state->dts_activity;
6256                                 } while (dtrace_cas32(activity, current,
6257                                     DTRACE_ACTIVITY_KILLED) != current);
6258
6259                                 continue;
6260                         }
6261                 }
6262
6263                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6264                     ecb->dte_alignment, state, &mstate)) < 0)
6265                         continue;
6266
6267                 tomax = buf->dtb_tomax;
6268                 ASSERT(tomax != NULL);
6269
6270                 if (ecb->dte_size != 0) {
6271                         dtrace_rechdr_t dtrh;
6272                         if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6273                                 mstate.dtms_timestamp = dtrace_gethrtime();
6274                                 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6275                         }
6276                         ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6277                         dtrh.dtrh_epid = ecb->dte_epid;
6278                         DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6279                             mstate.dtms_timestamp);
6280                         *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6281                 }
6282
6283                 mstate.dtms_epid = ecb->dte_epid;
6284                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6285
6286                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6287                         mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6288                 else
6289                         mstate.dtms_access = 0;
6290
6291                 if (pred != NULL) {
6292                         dtrace_difo_t *dp = pred->dtp_difo;
6293                         int rval;
6294
6295                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6296
6297                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6298                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6299
6300                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6301                                         /*
6302                                          * Update the predicate cache...
6303                                          */
6304                                         ASSERT(cid == pred->dtp_cacheid);
6305                                         curthread->t_predcache = cid;
6306                                 }
6307
6308                                 continue;
6309                         }
6310                 }
6311
6312                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6313                     act != NULL; act = act->dta_next) {
6314                         size_t valoffs;
6315                         dtrace_difo_t *dp;
6316                         dtrace_recdesc_t *rec = &act->dta_rec;
6317
6318                         size = rec->dtrd_size;
6319                         valoffs = offs + rec->dtrd_offset;
6320
6321                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6322                                 uint64_t v = 0xbad;
6323                                 dtrace_aggregation_t *agg;
6324
6325                                 agg = (dtrace_aggregation_t *)act;
6326
6327                                 if ((dp = act->dta_difo) != NULL)
6328                                         v = dtrace_dif_emulate(dp,
6329                                             &mstate, vstate, state);
6330
6331                                 if (*flags & CPU_DTRACE_ERROR)
6332                                         continue;
6333
6334                                 /*
6335                                  * Note that we always pass the expression
6336                                  * value from the previous iteration of the
6337                                  * action loop.  This value will only be used
6338                                  * if there is an expression argument to the
6339                                  * aggregating action, denoted by the
6340                                  * dtag_hasarg field.
6341                                  */
6342                                 dtrace_aggregate(agg, buf,
6343                                     offs, aggbuf, v, val);
6344                                 continue;
6345                         }
6346
6347                         switch (act->dta_kind) {
6348                         case DTRACEACT_STOP:
6349                                 if (dtrace_priv_proc_destructive(state))
6350                                         dtrace_action_stop();
6351                                 continue;
6352
6353                         case DTRACEACT_BREAKPOINT:
6354                                 if (dtrace_priv_kernel_destructive(state))
6355                                         dtrace_action_breakpoint(ecb);
6356                                 continue;
6357
6358                         case DTRACEACT_PANIC:
6359                                 if (dtrace_priv_kernel_destructive(state))
6360                                         dtrace_action_panic(ecb);
6361                                 continue;
6362
6363                         case DTRACEACT_STACK:
6364                                 if (!dtrace_priv_kernel(state))
6365                                         continue;
6366
6367                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6368                                     size / sizeof (pc_t), probe->dtpr_aframes,
6369                                     DTRACE_ANCHORED(probe) ? NULL :
6370                                     (uint32_t *)arg0);
6371                                 continue;
6372
6373                         case DTRACEACT_JSTACK:
6374                         case DTRACEACT_USTACK:
6375                                 if (!dtrace_priv_proc(state))
6376                                         continue;
6377
6378                                 /*
6379                                  * See comment in DIF_VAR_PID.
6380                                  */
6381                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6382                                     CPU_ON_INTR(CPU)) {
6383                                         int depth = DTRACE_USTACK_NFRAMES(
6384                                             rec->dtrd_arg) + 1;
6385
6386                                         dtrace_bzero((void *)(tomax + valoffs),
6387                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6388                                             + depth * sizeof (uint64_t));
6389
6390                                         continue;
6391                                 }
6392
6393                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6394                                     curproc->p_dtrace_helpers != NULL) {
6395                                         /*
6396                                          * This is the slow path -- we have
6397                                          * allocated string space, and we're
6398                                          * getting the stack of a process that
6399                                          * has helpers.  Call into a separate
6400                                          * routine to perform this processing.
6401                                          */
6402                                         dtrace_action_ustack(&mstate, state,
6403                                             (uint64_t *)(tomax + valoffs),
6404                                             rec->dtrd_arg);
6405                                         continue;
6406                                 }
6407
6408                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6409                                 dtrace_getupcstack((uint64_t *)
6410                                     (tomax + valoffs),
6411                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6412                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6413                                 continue;
6414
6415                         default:
6416                                 break;
6417                         }
6418
6419                         dp = act->dta_difo;
6420                         ASSERT(dp != NULL);
6421
6422                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6423
6424                         if (*flags & CPU_DTRACE_ERROR)
6425                                 continue;
6426
6427                         switch (act->dta_kind) {
6428                         case DTRACEACT_SPECULATE: {
6429                                 dtrace_rechdr_t *dtrh;
6430
6431                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6432                                 buf = dtrace_speculation_buffer(state,
6433                                     cpuid, val);
6434
6435                                 if (buf == NULL) {
6436                                         *flags |= CPU_DTRACE_DROP;
6437                                         continue;
6438                                 }
6439
6440                                 offs = dtrace_buffer_reserve(buf,
6441                                     ecb->dte_needed, ecb->dte_alignment,
6442                                     state, NULL);
6443
6444                                 if (offs < 0) {
6445                                         *flags |= CPU_DTRACE_DROP;
6446                                         continue;
6447                                 }
6448
6449                                 tomax = buf->dtb_tomax;
6450                                 ASSERT(tomax != NULL);
6451
6452                                 if (ecb->dte_size == 0)
6453                                         continue;
6454
6455                                 ASSERT3U(ecb->dte_size, >=,
6456                                     sizeof (dtrace_rechdr_t));
6457                                 dtrh = ((void *)(tomax + offs));
6458                                 dtrh->dtrh_epid = ecb->dte_epid;
6459                                 /*
6460                                  * When the speculation is committed, all of
6461                                  * the records in the speculative buffer will
6462                                  * have their timestamps set to the commit
6463                                  * time.  Until then, it is set to a sentinel
6464                                  * value, for debugability.
6465                                  */
6466                                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6467                                 continue;
6468                         }
6469
6470                         case DTRACEACT_PRINTM: {
6471                                 /* The DIF returns a 'memref'. */
6472                                 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6473
6474                                 /* Get the size from the memref. */
6475                                 size = memref[1];
6476
6477                                 /*
6478                                  * Check if the size exceeds the allocated
6479                                  * buffer size.
6480                                  */
6481                                 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6482                                         /* Flag a drop! */
6483                                         *flags |= CPU_DTRACE_DROP;
6484                                         continue;
6485                                 }
6486
6487                                 /* Store the size in the buffer first. */
6488                                 DTRACE_STORE(uintptr_t, tomax,
6489                                     valoffs, size);
6490
6491                                 /*
6492                                  * Offset the buffer address to the start
6493                                  * of the data.
6494                                  */
6495                                 valoffs += sizeof(uintptr_t);
6496
6497                                 /*
6498                                  * Reset to the memory address rather than
6499                                  * the memref array, then let the BYREF
6500                                  * code below do the work to store the 
6501                                  * memory data in the buffer.
6502                                  */
6503                                 val = memref[0];
6504                                 break;
6505                         }
6506
6507                         case DTRACEACT_PRINTT: {
6508                                 /* The DIF returns a 'typeref'. */
6509                                 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6510                                 char c = '\0' + 1;
6511                                 size_t s;
6512
6513                                 /*
6514                                  * Get the type string length and round it
6515                                  * up so that the data that follows is
6516                                  * aligned for easy access.
6517                                  */
6518                                 size_t typs = strlen((char *) typeref[2]) + 1;
6519                                 typs = roundup(typs,  sizeof(uintptr_t));
6520
6521                                 /*
6522                                  *Get the size from the typeref using the
6523                                  * number of elements and the type size.
6524                                  */
6525                                 size = typeref[1] * typeref[3];
6526
6527                                 /*
6528                                  * Check if the size exceeds the allocated
6529                                  * buffer size.
6530                                  */
6531                                 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6532                                         /* Flag a drop! */
6533                                         *flags |= CPU_DTRACE_DROP;
6534                                 
6535                                 }
6536
6537                                 /* Store the size in the buffer first. */
6538                                 DTRACE_STORE(uintptr_t, tomax,
6539                                     valoffs, size);
6540                                 valoffs += sizeof(uintptr_t);
6541
6542                                 /* Store the type size in the buffer. */
6543                                 DTRACE_STORE(uintptr_t, tomax,
6544                                     valoffs, typeref[3]);
6545                                 valoffs += sizeof(uintptr_t);
6546
6547                                 val = typeref[2];
6548
6549                                 for (s = 0; s < typs; s++) {
6550                                         if (c != '\0')
6551                                                 c = dtrace_load8(val++);
6552
6553                                         DTRACE_STORE(uint8_t, tomax,
6554                                             valoffs++, c);
6555                                 }
6556
6557                                 /*
6558                                  * Reset to the memory address rather than
6559                                  * the typeref array, then let the BYREF
6560                                  * code below do the work to store the 
6561                                  * memory data in the buffer.
6562                                  */
6563                                 val = typeref[0];
6564                                 break;
6565                         }
6566
6567                         case DTRACEACT_CHILL:
6568                                 if (dtrace_priv_kernel_destructive(state))
6569                                         dtrace_action_chill(&mstate, val);
6570                                 continue;
6571
6572                         case DTRACEACT_RAISE:
6573                                 if (dtrace_priv_proc_destructive(state))
6574                                         dtrace_action_raise(val);
6575                                 continue;
6576
6577                         case DTRACEACT_COMMIT:
6578                                 ASSERT(!committed);
6579
6580                                 /*
6581                                  * We need to commit our buffer state.
6582                                  */
6583                                 if (ecb->dte_size)
6584                                         buf->dtb_offset = offs + ecb->dte_size;
6585                                 buf = &state->dts_buffer[cpuid];
6586                                 dtrace_speculation_commit(state, cpuid, val);
6587                                 committed = 1;
6588                                 continue;
6589
6590                         case DTRACEACT_DISCARD:
6591                                 dtrace_speculation_discard(state, cpuid, val);
6592                                 continue;
6593
6594                         case DTRACEACT_DIFEXPR:
6595                         case DTRACEACT_LIBACT:
6596                         case DTRACEACT_PRINTF:
6597                         case DTRACEACT_PRINTA:
6598                         case DTRACEACT_SYSTEM:
6599                         case DTRACEACT_FREOPEN:
6600                         case DTRACEACT_TRACEMEM:
6601                                 break;
6602
6603                         case DTRACEACT_TRACEMEM_DYNSIZE:
6604                                 tracememsize = val;
6605                                 break;
6606
6607                         case DTRACEACT_SYM:
6608                         case DTRACEACT_MOD:
6609                                 if (!dtrace_priv_kernel(state))
6610                                         continue;
6611                                 break;
6612
6613                         case DTRACEACT_USYM:
6614                         case DTRACEACT_UMOD:
6615                         case DTRACEACT_UADDR: {
6616 #if defined(sun)
6617                                 struct pid *pid = curthread->t_procp->p_pidp;
6618 #endif
6619
6620                                 if (!dtrace_priv_proc(state))
6621                                         continue;
6622
6623                                 DTRACE_STORE(uint64_t, tomax,
6624 #if defined(sun)
6625                                     valoffs, (uint64_t)pid->pid_id);
6626 #else
6627                                     valoffs, (uint64_t) curproc->p_pid);
6628 #endif
6629                                 DTRACE_STORE(uint64_t, tomax,
6630                                     valoffs + sizeof (uint64_t), val);
6631
6632                                 continue;
6633                         }
6634
6635                         case DTRACEACT_EXIT: {
6636                                 /*
6637                                  * For the exit action, we are going to attempt
6638                                  * to atomically set our activity to be
6639                                  * draining.  If this fails (either because
6640                                  * another CPU has beat us to the exit action,
6641                                  * or because our current activity is something
6642                                  * other than ACTIVE or WARMUP), we will
6643                                  * continue.  This assures that the exit action
6644                                  * can be successfully recorded at most once
6645                                  * when we're in the ACTIVE state.  If we're
6646                                  * encountering the exit() action while in
6647                                  * COOLDOWN, however, we want to honor the new
6648                                  * status code.  (We know that we're the only
6649                                  * thread in COOLDOWN, so there is no race.)
6650                                  */
6651                                 void *activity = &state->dts_activity;
6652                                 dtrace_activity_t current = state->dts_activity;
6653
6654                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6655                                         break;
6656
6657                                 if (current != DTRACE_ACTIVITY_WARMUP)
6658                                         current = DTRACE_ACTIVITY_ACTIVE;
6659
6660                                 if (dtrace_cas32(activity, current,
6661                                     DTRACE_ACTIVITY_DRAINING) != current) {
6662                                         *flags |= CPU_DTRACE_DROP;
6663                                         continue;
6664                                 }
6665
6666                                 break;
6667                         }
6668
6669                         default:
6670                                 ASSERT(0);
6671                         }
6672
6673                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6674                                 uintptr_t end = valoffs + size;
6675
6676                                 if (tracememsize != 0 &&
6677                                     valoffs + tracememsize < end) {
6678                                         end = valoffs + tracememsize;
6679                                         tracememsize = 0;
6680                                 }
6681
6682                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6683                                     &dp->dtdo_rtype, &mstate, vstate))
6684                                         continue;
6685
6686                                 /*
6687                                  * If this is a string, we're going to only
6688                                  * load until we find the zero byte -- after
6689                                  * which we'll store zero bytes.
6690                                  */
6691                                 if (dp->dtdo_rtype.dtdt_kind ==
6692                                     DIF_TYPE_STRING) {
6693                                         char c = '\0' + 1;
6694                                         int intuple = act->dta_intuple;
6695                                         size_t s;
6696
6697                                         for (s = 0; s < size; s++) {
6698                                                 if (c != '\0')
6699                                                         c = dtrace_load8(val++);
6700
6701                                                 DTRACE_STORE(uint8_t, tomax,
6702                                                     valoffs++, c);
6703
6704                                                 if (c == '\0' && intuple)
6705                                                         break;
6706                                         }
6707
6708                                         continue;
6709                                 }
6710
6711                                 while (valoffs < end) {
6712                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6713                                             dtrace_load8(val++));
6714                                 }
6715
6716                                 continue;
6717                         }
6718
6719                         switch (size) {
6720                         case 0:
6721                                 break;
6722
6723                         case sizeof (uint8_t):
6724                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6725                                 break;
6726                         case sizeof (uint16_t):
6727                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6728                                 break;
6729                         case sizeof (uint32_t):
6730                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6731                                 break;
6732                         case sizeof (uint64_t):
6733                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6734                                 break;
6735                         default:
6736                                 /*
6737                                  * Any other size should have been returned by
6738                                  * reference, not by value.
6739                                  */
6740                                 ASSERT(0);
6741                                 break;
6742                         }
6743                 }
6744
6745                 if (*flags & CPU_DTRACE_DROP)
6746                         continue;
6747
6748                 if (*flags & CPU_DTRACE_FAULT) {
6749                         int ndx;
6750                         dtrace_action_t *err;
6751
6752                         buf->dtb_errors++;
6753
6754                         if (probe->dtpr_id == dtrace_probeid_error) {
6755                                 /*
6756                                  * There's nothing we can do -- we had an
6757                                  * error on the error probe.  We bump an
6758                                  * error counter to at least indicate that
6759                                  * this condition happened.
6760                                  */
6761                                 dtrace_error(&state->dts_dblerrors);
6762                                 continue;
6763                         }
6764
6765                         if (vtime) {
6766                                 /*
6767                                  * Before recursing on dtrace_probe(), we
6768                                  * need to explicitly clear out our start
6769                                  * time to prevent it from being accumulated
6770                                  * into t_dtrace_vtime.
6771                                  */
6772                                 curthread->t_dtrace_start = 0;
6773                         }
6774
6775                         /*
6776                          * Iterate over the actions to figure out which action
6777                          * we were processing when we experienced the error.
6778                          * Note that act points _past_ the faulting action; if
6779                          * act is ecb->dte_action, the fault was in the
6780                          * predicate, if it's ecb->dte_action->dta_next it's
6781                          * in action #1, and so on.
6782                          */
6783                         for (err = ecb->dte_action, ndx = 0;
6784                             err != act; err = err->dta_next, ndx++)
6785                                 continue;
6786
6787                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6788                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6789                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6790                             cpu_core[cpuid].cpuc_dtrace_illval);
6791
6792                         continue;
6793                 }
6794
6795                 if (!committed)
6796                         buf->dtb_offset = offs + ecb->dte_size;
6797         }
6798
6799         if (vtime)
6800                 curthread->t_dtrace_start = dtrace_gethrtime();
6801
6802         dtrace_interrupt_enable(cookie);
6803 }
6804
6805 /*
6806  * DTrace Probe Hashing Functions
6807  *
6808  * The functions in this section (and indeed, the functions in remaining
6809  * sections) are not _called_ from probe context.  (Any exceptions to this are
6810  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6811  * DTrace framework to look-up probes in, add probes to and remove probes from
6812  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6813  * probe tuple -- allowing for fast lookups, regardless of what was
6814  * specified.)
6815  */
6816 static uint_t
6817 dtrace_hash_str(const char *p)
6818 {
6819         unsigned int g;
6820         uint_t hval = 0;
6821
6822         while (*p) {
6823                 hval = (hval << 4) + *p++;
6824                 if ((g = (hval & 0xf0000000)) != 0)
6825                         hval ^= g >> 24;
6826                 hval &= ~g;
6827         }
6828         return (hval);
6829 }
6830
6831 static dtrace_hash_t *
6832 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6833 {
6834         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6835
6836         hash->dth_stroffs = stroffs;
6837         hash->dth_nextoffs = nextoffs;
6838         hash->dth_prevoffs = prevoffs;
6839
6840         hash->dth_size = 1;
6841         hash->dth_mask = hash->dth_size - 1;
6842
6843         hash->dth_tab = kmem_zalloc(hash->dth_size *
6844             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6845
6846         return (hash);
6847 }
6848
6849 static void
6850 dtrace_hash_destroy(dtrace_hash_t *hash)
6851 {
6852 #ifdef DEBUG
6853         int i;
6854
6855         for (i = 0; i < hash->dth_size; i++)
6856                 ASSERT(hash->dth_tab[i] == NULL);
6857 #endif
6858
6859         kmem_free(hash->dth_tab,
6860             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6861         kmem_free(hash, sizeof (dtrace_hash_t));
6862 }
6863
6864 static void
6865 dtrace_hash_resize(dtrace_hash_t *hash)
6866 {
6867         int size = hash->dth_size, i, ndx;
6868         int new_size = hash->dth_size << 1;
6869         int new_mask = new_size - 1;
6870         dtrace_hashbucket_t **new_tab, *bucket, *next;
6871
6872         ASSERT((new_size & new_mask) == 0);
6873
6874         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6875
6876         for (i = 0; i < size; i++) {
6877                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6878                         dtrace_probe_t *probe = bucket->dthb_chain;
6879
6880                         ASSERT(probe != NULL);
6881                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6882
6883                         next = bucket->dthb_next;
6884                         bucket->dthb_next = new_tab[ndx];
6885                         new_tab[ndx] = bucket;
6886                 }
6887         }
6888
6889         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6890         hash->dth_tab = new_tab;
6891         hash->dth_size = new_size;
6892         hash->dth_mask = new_mask;
6893 }
6894
6895 static void
6896 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6897 {
6898         int hashval = DTRACE_HASHSTR(hash, new);
6899         int ndx = hashval & hash->dth_mask;
6900         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6901         dtrace_probe_t **nextp, **prevp;
6902
6903         for (; bucket != NULL; bucket = bucket->dthb_next) {
6904                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6905                         goto add;
6906         }
6907
6908         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6909                 dtrace_hash_resize(hash);
6910                 dtrace_hash_add(hash, new);
6911                 return;
6912         }
6913
6914         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6915         bucket->dthb_next = hash->dth_tab[ndx];
6916         hash->dth_tab[ndx] = bucket;
6917         hash->dth_nbuckets++;
6918
6919 add:
6920         nextp = DTRACE_HASHNEXT(hash, new);
6921         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6922         *nextp = bucket->dthb_chain;
6923
6924         if (bucket->dthb_chain != NULL) {
6925                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6926                 ASSERT(*prevp == NULL);
6927                 *prevp = new;
6928         }
6929
6930         bucket->dthb_chain = new;
6931         bucket->dthb_len++;
6932 }
6933
6934 static dtrace_probe_t *
6935 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6936 {
6937         int hashval = DTRACE_HASHSTR(hash, template);
6938         int ndx = hashval & hash->dth_mask;
6939         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6940
6941         for (; bucket != NULL; bucket = bucket->dthb_next) {
6942                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6943                         return (bucket->dthb_chain);
6944         }
6945
6946         return (NULL);
6947 }
6948
6949 static int
6950 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6951 {
6952         int hashval = DTRACE_HASHSTR(hash, template);
6953         int ndx = hashval & hash->dth_mask;
6954         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6955
6956         for (; bucket != NULL; bucket = bucket->dthb_next) {
6957                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6958                         return (bucket->dthb_len);
6959         }
6960
6961         return (0);
6962 }
6963
6964 static void
6965 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6966 {
6967         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6968         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6969
6970         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6971         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6972
6973         /*
6974          * Find the bucket that we're removing this probe from.
6975          */
6976         for (; bucket != NULL; bucket = bucket->dthb_next) {
6977                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6978                         break;
6979         }
6980
6981         ASSERT(bucket != NULL);
6982
6983         if (*prevp == NULL) {
6984                 if (*nextp == NULL) {
6985                         /*
6986                          * The removed probe was the only probe on this
6987                          * bucket; we need to remove the bucket.
6988                          */
6989                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6990
6991                         ASSERT(bucket->dthb_chain == probe);
6992                         ASSERT(b != NULL);
6993
6994                         if (b == bucket) {
6995                                 hash->dth_tab[ndx] = bucket->dthb_next;
6996                         } else {
6997                                 while (b->dthb_next != bucket)
6998                                         b = b->dthb_next;
6999                                 b->dthb_next = bucket->dthb_next;
7000                         }
7001
7002                         ASSERT(hash->dth_nbuckets > 0);
7003                         hash->dth_nbuckets--;
7004                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7005                         return;
7006                 }
7007
7008                 bucket->dthb_chain = *nextp;
7009         } else {
7010                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7011         }
7012
7013         if (*nextp != NULL)
7014                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7015 }
7016
7017 /*
7018  * DTrace Utility Functions
7019  *
7020  * These are random utility functions that are _not_ called from probe context.
7021  */
7022 static int
7023 dtrace_badattr(const dtrace_attribute_t *a)
7024 {
7025         return (a->dtat_name > DTRACE_STABILITY_MAX ||
7026             a->dtat_data > DTRACE_STABILITY_MAX ||
7027             a->dtat_class > DTRACE_CLASS_MAX);
7028 }
7029
7030 /*
7031  * Return a duplicate copy of a string.  If the specified string is NULL,
7032  * this function returns a zero-length string.
7033  */
7034 static char *
7035 dtrace_strdup(const char *str)
7036 {
7037         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7038
7039         if (str != NULL)
7040                 (void) strcpy(new, str);
7041
7042         return (new);
7043 }
7044
7045 #define DTRACE_ISALPHA(c)       \
7046         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7047
7048 static int
7049 dtrace_badname(const char *s)
7050 {
7051         char c;
7052
7053         if (s == NULL || (c = *s++) == '\0')
7054                 return (0);
7055
7056         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7057                 return (1);
7058
7059         while ((c = *s++) != '\0') {
7060                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7061                     c != '-' && c != '_' && c != '.' && c != '`')
7062                         return (1);
7063         }
7064
7065         return (0);
7066 }
7067
7068 static void
7069 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7070 {
7071         uint32_t priv;
7072
7073 #if defined(sun)
7074         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7075                 /*
7076                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7077                  */
7078                 priv = DTRACE_PRIV_ALL;
7079         } else {
7080                 *uidp = crgetuid(cr);
7081                 *zoneidp = crgetzoneid(cr);
7082
7083                 priv = 0;
7084                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7085                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7086                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7087                         priv |= DTRACE_PRIV_USER;
7088                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7089                         priv |= DTRACE_PRIV_PROC;
7090                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7091                         priv |= DTRACE_PRIV_OWNER;
7092                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7093                         priv |= DTRACE_PRIV_ZONEOWNER;
7094         }
7095 #else
7096         priv = DTRACE_PRIV_ALL;
7097 #endif
7098
7099         *privp = priv;
7100 }
7101
7102 #ifdef DTRACE_ERRDEBUG
7103 static void
7104 dtrace_errdebug(const char *str)
7105 {
7106         int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7107         int occupied = 0;
7108
7109         mutex_enter(&dtrace_errlock);
7110         dtrace_errlast = str;
7111         dtrace_errthread = curthread;
7112
7113         while (occupied++ < DTRACE_ERRHASHSZ) {
7114                 if (dtrace_errhash[hval].dter_msg == str) {
7115                         dtrace_errhash[hval].dter_count++;
7116                         goto out;
7117                 }
7118
7119                 if (dtrace_errhash[hval].dter_msg != NULL) {
7120                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7121                         continue;
7122                 }
7123
7124                 dtrace_errhash[hval].dter_msg = str;
7125                 dtrace_errhash[hval].dter_count = 1;
7126                 goto out;
7127         }
7128
7129         panic("dtrace: undersized error hash");
7130 out:
7131         mutex_exit(&dtrace_errlock);
7132 }
7133 #endif
7134
7135 /*
7136  * DTrace Matching Functions
7137  *
7138  * These functions are used to match groups of probes, given some elements of
7139  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7140  */
7141 static int
7142 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7143     zoneid_t zoneid)
7144 {
7145         if (priv != DTRACE_PRIV_ALL) {
7146                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7147                 uint32_t match = priv & ppriv;
7148
7149                 /*
7150                  * No PRIV_DTRACE_* privileges...
7151                  */
7152                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7153                     DTRACE_PRIV_KERNEL)) == 0)
7154                         return (0);
7155
7156                 /*
7157                  * No matching bits, but there were bits to match...
7158                  */
7159                 if (match == 0 && ppriv != 0)
7160                         return (0);
7161
7162                 /*
7163                  * Need to have permissions to the process, but don't...
7164                  */
7165                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7166                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7167                         return (0);
7168                 }
7169
7170                 /*
7171                  * Need to be in the same zone unless we possess the
7172                  * privilege to examine all zones.
7173                  */
7174                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7175                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7176                         return (0);
7177                 }
7178         }
7179
7180         return (1);
7181 }
7182
7183 /*
7184  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7185  * consists of input pattern strings and an ops-vector to evaluate them.
7186  * This function returns >0 for match, 0 for no match, and <0 for error.
7187  */
7188 static int
7189 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7190     uint32_t priv, uid_t uid, zoneid_t zoneid)
7191 {
7192         dtrace_provider_t *pvp = prp->dtpr_provider;
7193         int rv;
7194
7195         if (pvp->dtpv_defunct)
7196                 return (0);
7197
7198         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7199                 return (rv);
7200
7201         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7202                 return (rv);
7203
7204         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7205                 return (rv);
7206
7207         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7208                 return (rv);
7209
7210         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7211                 return (0);
7212
7213         return (rv);
7214 }
7215
7216 /*
7217  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7218  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7219  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7220  * In addition, all of the recursion cases except for '*' matching have been
7221  * unwound.  For '*', we still implement recursive evaluation, but a depth
7222  * counter is maintained and matching is aborted if we recurse too deep.
7223  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7224  */
7225 static int
7226 dtrace_match_glob(const char *s, const char *p, int depth)
7227 {
7228         const char *olds;
7229         char s1, c;
7230         int gs;
7231
7232         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7233                 return (-1);
7234
7235         if (s == NULL)
7236                 s = ""; /* treat NULL as empty string */
7237
7238 top:
7239         olds = s;
7240         s1 = *s++;
7241
7242         if (p == NULL)
7243                 return (0);
7244
7245         if ((c = *p++) == '\0')
7246                 return (s1 == '\0');
7247
7248         switch (c) {
7249         case '[': {
7250                 int ok = 0, notflag = 0;
7251                 char lc = '\0';
7252
7253                 if (s1 == '\0')
7254                         return (0);
7255
7256                 if (*p == '!') {
7257                         notflag = 1;
7258                         p++;
7259                 }
7260
7261                 if ((c = *p++) == '\0')
7262                         return (0);
7263
7264                 do {
7265                         if (c == '-' && lc != '\0' && *p != ']') {
7266                                 if ((c = *p++) == '\0')
7267                                         return (0);
7268                                 if (c == '\\' && (c = *p++) == '\0')
7269                                         return (0);
7270
7271                                 if (notflag) {
7272                                         if (s1 < lc || s1 > c)
7273                                                 ok++;
7274                                         else
7275                                                 return (0);
7276                                 } else if (lc <= s1 && s1 <= c)
7277                                         ok++;
7278
7279                         } else if (c == '\\' && (c = *p++) == '\0')
7280                                 return (0);
7281
7282                         lc = c; /* save left-hand 'c' for next iteration */
7283
7284                         if (notflag) {
7285                                 if (s1 != c)
7286                                         ok++;
7287                                 else
7288                                         return (0);
7289                         } else if (s1 == c)
7290                                 ok++;
7291
7292                         if ((c = *p++) == '\0')
7293                                 return (0);
7294
7295                 } while (c != ']');
7296
7297                 if (ok)
7298                         goto top;
7299
7300                 return (0);
7301         }
7302
7303         case '\\':
7304                 if ((c = *p++) == '\0')
7305                         return (0);
7306                 /*FALLTHRU*/
7307
7308         default:
7309                 if (c != s1)
7310                         return (0);
7311                 /*FALLTHRU*/
7312
7313         case '?':
7314                 if (s1 != '\0')
7315                         goto top;
7316                 return (0);
7317
7318         case '*':
7319                 while (*p == '*')
7320                         p++; /* consecutive *'s are identical to a single one */
7321
7322                 if (*p == '\0')
7323                         return (1);
7324
7325                 for (s = olds; *s != '\0'; s++) {
7326                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7327                                 return (gs);
7328                 }
7329
7330                 return (0);
7331         }
7332 }
7333
7334 /*ARGSUSED*/
7335 static int
7336 dtrace_match_string(const char *s, const char *p, int depth)
7337 {
7338         return (s != NULL && strcmp(s, p) == 0);
7339 }
7340
7341 /*ARGSUSED*/
7342 static int
7343 dtrace_match_nul(const char *s, const char *p, int depth)
7344 {
7345         return (1); /* always match the empty pattern */
7346 }
7347
7348 /*ARGSUSED*/
7349 static int
7350 dtrace_match_nonzero(const char *s, const char *p, int depth)
7351 {
7352         return (s != NULL && s[0] != '\0');
7353 }
7354
7355 static int
7356 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7357     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7358 {
7359         dtrace_probe_t template, *probe;
7360         dtrace_hash_t *hash = NULL;
7361         int len, best = INT_MAX, nmatched = 0;
7362         dtrace_id_t i;
7363
7364         ASSERT(MUTEX_HELD(&dtrace_lock));
7365
7366         /*
7367          * If the probe ID is specified in the key, just lookup by ID and
7368          * invoke the match callback once if a matching probe is found.
7369          */
7370         if (pkp->dtpk_id != DTRACE_IDNONE) {
7371                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7372                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7373                         (void) (*matched)(probe, arg);
7374                         nmatched++;
7375                 }
7376                 return (nmatched);
7377         }
7378
7379         template.dtpr_mod = (char *)pkp->dtpk_mod;
7380         template.dtpr_func = (char *)pkp->dtpk_func;
7381         template.dtpr_name = (char *)pkp->dtpk_name;
7382
7383         /*
7384          * We want to find the most distinct of the module name, function
7385          * name, and name.  So for each one that is not a glob pattern or
7386          * empty string, we perform a lookup in the corresponding hash and
7387          * use the hash table with the fewest collisions to do our search.
7388          */
7389         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7390             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7391                 best = len;
7392                 hash = dtrace_bymod;
7393         }
7394
7395         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7396             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7397                 best = len;
7398                 hash = dtrace_byfunc;
7399         }
7400
7401         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7402             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7403                 best = len;
7404                 hash = dtrace_byname;
7405         }
7406
7407         /*
7408          * If we did not select a hash table, iterate over every probe and
7409          * invoke our callback for each one that matches our input probe key.
7410          */
7411         if (hash == NULL) {
7412                 for (i = 0; i < dtrace_nprobes; i++) {
7413                         if ((probe = dtrace_probes[i]) == NULL ||
7414                             dtrace_match_probe(probe, pkp, priv, uid,
7415                             zoneid) <= 0)
7416                                 continue;
7417
7418                         nmatched++;
7419
7420                         if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7421                                 break;
7422                 }
7423
7424                 return (nmatched);
7425         }
7426
7427         /*
7428          * If we selected a hash table, iterate over each probe of the same key
7429          * name and invoke the callback for every probe that matches the other
7430          * attributes of our input probe key.
7431          */
7432         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7433             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7434
7435                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7436                         continue;
7437
7438                 nmatched++;
7439
7440                 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7441                         break;
7442         }
7443
7444         return (nmatched);
7445 }
7446
7447 /*
7448  * Return the function pointer dtrace_probecmp() should use to compare the
7449  * specified pattern with a string.  For NULL or empty patterns, we select
7450  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7451  * For non-empty non-glob strings, we use dtrace_match_string().
7452  */
7453 static dtrace_probekey_f *
7454 dtrace_probekey_func(const char *p)
7455 {
7456         char c;
7457
7458         if (p == NULL || *p == '\0')
7459                 return (&dtrace_match_nul);
7460
7461         while ((c = *p++) != '\0') {
7462                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7463                         return (&dtrace_match_glob);
7464         }
7465
7466         return (&dtrace_match_string);
7467 }
7468
7469 /*
7470  * Build a probe comparison key for use with dtrace_match_probe() from the
7471  * given probe description.  By convention, a null key only matches anchored
7472  * probes: if each field is the empty string, reset dtpk_fmatch to
7473  * dtrace_match_nonzero().
7474  */
7475 static void
7476 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7477 {
7478         pkp->dtpk_prov = pdp->dtpd_provider;
7479         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7480
7481         pkp->dtpk_mod = pdp->dtpd_mod;
7482         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7483
7484         pkp->dtpk_func = pdp->dtpd_func;
7485         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7486
7487         pkp->dtpk_name = pdp->dtpd_name;
7488         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7489
7490         pkp->dtpk_id = pdp->dtpd_id;
7491
7492         if (pkp->dtpk_id == DTRACE_IDNONE &&
7493             pkp->dtpk_pmatch == &dtrace_match_nul &&
7494             pkp->dtpk_mmatch == &dtrace_match_nul &&
7495             pkp->dtpk_fmatch == &dtrace_match_nul &&
7496             pkp->dtpk_nmatch == &dtrace_match_nul)
7497                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7498 }
7499
7500 /*
7501  * DTrace Provider-to-Framework API Functions
7502  *
7503  * These functions implement much of the Provider-to-Framework API, as
7504  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7505  * the functions in the API for probe management (found below), and
7506  * dtrace_probe() itself (found above).
7507  */
7508
7509 /*
7510  * Register the calling provider with the DTrace framework.  This should
7511  * generally be called by DTrace providers in their attach(9E) entry point.
7512  */
7513 int
7514 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7515     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7516 {
7517         dtrace_provider_t *provider;
7518
7519         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7520                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7521                     "arguments", name ? name : "<NULL>");
7522                 return (EINVAL);
7523         }
7524
7525         if (name[0] == '\0' || dtrace_badname(name)) {
7526                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7527                     "provider name", name);
7528                 return (EINVAL);
7529         }
7530
7531         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7532             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7533             pops->dtps_destroy == NULL ||
7534             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7535                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7536                     "provider ops", name);
7537                 return (EINVAL);
7538         }
7539
7540         if (dtrace_badattr(&pap->dtpa_provider) ||
7541             dtrace_badattr(&pap->dtpa_mod) ||
7542             dtrace_badattr(&pap->dtpa_func) ||
7543             dtrace_badattr(&pap->dtpa_name) ||
7544             dtrace_badattr(&pap->dtpa_args)) {
7545                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7546                     "provider attributes", name);
7547                 return (EINVAL);
7548         }
7549
7550         if (priv & ~DTRACE_PRIV_ALL) {
7551                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7552                     "privilege attributes", name);
7553                 return (EINVAL);
7554         }
7555
7556         if ((priv & DTRACE_PRIV_KERNEL) &&
7557             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7558             pops->dtps_usermode == NULL) {
7559                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7560                     "dtps_usermode() op for given privilege attributes", name);
7561                 return (EINVAL);
7562         }
7563
7564         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7565         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7566         (void) strcpy(provider->dtpv_name, name);
7567
7568         provider->dtpv_attr = *pap;
7569         provider->dtpv_priv.dtpp_flags = priv;
7570         if (cr != NULL) {
7571                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7572                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7573         }
7574         provider->dtpv_pops = *pops;
7575
7576         if (pops->dtps_provide == NULL) {
7577                 ASSERT(pops->dtps_provide_module != NULL);
7578                 provider->dtpv_pops.dtps_provide =
7579                     (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7580         }
7581
7582         if (pops->dtps_provide_module == NULL) {
7583                 ASSERT(pops->dtps_provide != NULL);
7584                 provider->dtpv_pops.dtps_provide_module =
7585                     (void (*)(void *, modctl_t *))dtrace_nullop;
7586         }
7587
7588         if (pops->dtps_suspend == NULL) {
7589                 ASSERT(pops->dtps_resume == NULL);
7590                 provider->dtpv_pops.dtps_suspend =
7591                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7592                 provider->dtpv_pops.dtps_resume =
7593                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7594         }
7595
7596         provider->dtpv_arg = arg;
7597         *idp = (dtrace_provider_id_t)provider;
7598
7599         if (pops == &dtrace_provider_ops) {
7600                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7601                 ASSERT(MUTEX_HELD(&dtrace_lock));
7602                 ASSERT(dtrace_anon.dta_enabling == NULL);
7603
7604                 /*
7605                  * We make sure that the DTrace provider is at the head of
7606                  * the provider chain.
7607                  */
7608                 provider->dtpv_next = dtrace_provider;
7609                 dtrace_provider = provider;
7610                 return (0);
7611         }
7612
7613         mutex_enter(&dtrace_provider_lock);
7614         mutex_enter(&dtrace_lock);
7615
7616         /*
7617          * If there is at least one provider registered, we'll add this
7618          * provider after the first provider.
7619          */
7620         if (dtrace_provider != NULL) {
7621                 provider->dtpv_next = dtrace_provider->dtpv_next;
7622                 dtrace_provider->dtpv_next = provider;
7623         } else {
7624                 dtrace_provider = provider;
7625         }
7626
7627         if (dtrace_retained != NULL) {
7628                 dtrace_enabling_provide(provider);
7629
7630                 /*
7631                  * Now we need to call dtrace_enabling_matchall() -- which
7632                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7633                  * to drop all of our locks before calling into it...
7634                  */
7635                 mutex_exit(&dtrace_lock);
7636                 mutex_exit(&dtrace_provider_lock);
7637                 dtrace_enabling_matchall();
7638
7639                 return (0);
7640         }
7641
7642         mutex_exit(&dtrace_lock);
7643         mutex_exit(&dtrace_provider_lock);
7644
7645         return (0);
7646 }
7647
7648 /*
7649  * Unregister the specified provider from the DTrace framework.  This should
7650  * generally be called by DTrace providers in their detach(9E) entry point.
7651  */
7652 int
7653 dtrace_unregister(dtrace_provider_id_t id)
7654 {
7655         dtrace_provider_t *old = (dtrace_provider_t *)id;
7656         dtrace_provider_t *prev = NULL;
7657         int i, self = 0, noreap = 0;
7658         dtrace_probe_t *probe, *first = NULL;
7659
7660         if (old->dtpv_pops.dtps_enable ==
7661             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7662                 /*
7663                  * If DTrace itself is the provider, we're called with locks
7664                  * already held.
7665                  */
7666                 ASSERT(old == dtrace_provider);
7667 #if defined(sun)
7668                 ASSERT(dtrace_devi != NULL);
7669 #endif
7670                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7671                 ASSERT(MUTEX_HELD(&dtrace_lock));
7672                 self = 1;
7673
7674                 if (dtrace_provider->dtpv_next != NULL) {
7675                         /*
7676                          * There's another provider here; return failure.
7677                          */
7678                         return (EBUSY);
7679                 }
7680         } else {
7681                 mutex_enter(&dtrace_provider_lock);
7682 #if defined(sun)
7683                 mutex_enter(&mod_lock);
7684 #endif
7685                 mutex_enter(&dtrace_lock);
7686         }
7687
7688         /*
7689          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7690          * probes, we refuse to let providers slither away, unless this
7691          * provider has already been explicitly invalidated.
7692          */
7693         if (!old->dtpv_defunct &&
7694             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7695             dtrace_anon.dta_state->dts_necbs > 0))) {
7696                 if (!self) {
7697                         mutex_exit(&dtrace_lock);
7698 #if defined(sun)
7699                         mutex_exit(&mod_lock);
7700 #endif
7701                         mutex_exit(&dtrace_provider_lock);
7702                 }
7703                 return (EBUSY);
7704         }
7705
7706         /*
7707          * Attempt to destroy the probes associated with this provider.
7708          */
7709         for (i = 0; i < dtrace_nprobes; i++) {
7710                 if ((probe = dtrace_probes[i]) == NULL)
7711                         continue;
7712
7713                 if (probe->dtpr_provider != old)
7714                         continue;
7715
7716                 if (probe->dtpr_ecb == NULL)
7717                         continue;
7718
7719                 /*
7720                  * If we are trying to unregister a defunct provider, and the
7721                  * provider was made defunct within the interval dictated by
7722                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7723                  * attempt to reap our enablings.  To denote that the provider
7724                  * should reattempt to unregister itself at some point in the
7725                  * future, we will return a differentiable error code (EAGAIN
7726                  * instead of EBUSY) in this case.
7727                  */
7728                 if (dtrace_gethrtime() - old->dtpv_defunct >
7729                     dtrace_unregister_defunct_reap)
7730                         noreap = 1;
7731
7732                 if (!self) {
7733                         mutex_exit(&dtrace_lock);
7734 #if defined(sun)
7735                         mutex_exit(&mod_lock);
7736 #endif
7737                         mutex_exit(&dtrace_provider_lock);
7738                 }
7739
7740                 if (noreap)
7741                         return (EBUSY);
7742
7743                 (void) taskq_dispatch(dtrace_taskq,
7744                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7745
7746                 return (EAGAIN);
7747         }
7748
7749         /*
7750          * All of the probes for this provider are disabled; we can safely
7751          * remove all of them from their hash chains and from the probe array.
7752          */
7753         for (i = 0; i < dtrace_nprobes; i++) {
7754                 if ((probe = dtrace_probes[i]) == NULL)
7755                         continue;
7756
7757                 if (probe->dtpr_provider != old)
7758                         continue;
7759
7760                 dtrace_probes[i] = NULL;
7761
7762                 dtrace_hash_remove(dtrace_bymod, probe);
7763                 dtrace_hash_remove(dtrace_byfunc, probe);
7764                 dtrace_hash_remove(dtrace_byname, probe);
7765
7766                 if (first == NULL) {
7767                         first = probe;
7768                         probe->dtpr_nextmod = NULL;
7769                 } else {
7770                         probe->dtpr_nextmod = first;
7771                         first = probe;
7772                 }
7773         }
7774
7775         /*
7776          * The provider's probes have been removed from the hash chains and
7777          * from the probe array.  Now issue a dtrace_sync() to be sure that
7778          * everyone has cleared out from any probe array processing.
7779          */
7780         dtrace_sync();
7781
7782         for (probe = first; probe != NULL; probe = first) {
7783                 first = probe->dtpr_nextmod;
7784
7785                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7786                     probe->dtpr_arg);
7787                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7788                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7789                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7790 #if defined(sun)
7791                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7792 #else
7793                 free_unr(dtrace_arena, probe->dtpr_id);
7794 #endif
7795                 kmem_free(probe, sizeof (dtrace_probe_t));
7796         }
7797
7798         if ((prev = dtrace_provider) == old) {
7799 #if defined(sun)
7800                 ASSERT(self || dtrace_devi == NULL);
7801                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7802 #endif
7803                 dtrace_provider = old->dtpv_next;
7804         } else {
7805                 while (prev != NULL && prev->dtpv_next != old)
7806                         prev = prev->dtpv_next;
7807
7808                 if (prev == NULL) {
7809                         panic("attempt to unregister non-existent "
7810                             "dtrace provider %p\n", (void *)id);
7811                 }
7812
7813                 prev->dtpv_next = old->dtpv_next;
7814         }
7815
7816         if (!self) {
7817                 mutex_exit(&dtrace_lock);
7818 #if defined(sun)
7819                 mutex_exit(&mod_lock);
7820 #endif
7821                 mutex_exit(&dtrace_provider_lock);
7822         }
7823
7824         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7825         kmem_free(old, sizeof (dtrace_provider_t));
7826
7827         return (0);
7828 }
7829
7830 /*
7831  * Invalidate the specified provider.  All subsequent probe lookups for the
7832  * specified provider will fail, but its probes will not be removed.
7833  */
7834 void
7835 dtrace_invalidate(dtrace_provider_id_t id)
7836 {
7837         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7838
7839         ASSERT(pvp->dtpv_pops.dtps_enable !=
7840             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7841
7842         mutex_enter(&dtrace_provider_lock);
7843         mutex_enter(&dtrace_lock);
7844
7845         pvp->dtpv_defunct = dtrace_gethrtime();
7846
7847         mutex_exit(&dtrace_lock);
7848         mutex_exit(&dtrace_provider_lock);
7849 }
7850
7851 /*
7852  * Indicate whether or not DTrace has attached.
7853  */
7854 int
7855 dtrace_attached(void)
7856 {
7857         /*
7858          * dtrace_provider will be non-NULL iff the DTrace driver has
7859          * attached.  (It's non-NULL because DTrace is always itself a
7860          * provider.)
7861          */
7862         return (dtrace_provider != NULL);
7863 }
7864
7865 /*
7866  * Remove all the unenabled probes for the given provider.  This function is
7867  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7868  * -- just as many of its associated probes as it can.
7869  */
7870 int
7871 dtrace_condense(dtrace_provider_id_t id)
7872 {
7873         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7874         int i;
7875         dtrace_probe_t *probe;
7876
7877         /*
7878          * Make sure this isn't the dtrace provider itself.
7879          */
7880         ASSERT(prov->dtpv_pops.dtps_enable !=
7881             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7882
7883         mutex_enter(&dtrace_provider_lock);
7884         mutex_enter(&dtrace_lock);
7885
7886         /*
7887          * Attempt to destroy the probes associated with this provider.
7888          */
7889         for (i = 0; i < dtrace_nprobes; i++) {
7890                 if ((probe = dtrace_probes[i]) == NULL)
7891                         continue;
7892
7893                 if (probe->dtpr_provider != prov)
7894                         continue;
7895
7896                 if (probe->dtpr_ecb != NULL)
7897                         continue;
7898
7899                 dtrace_probes[i] = NULL;
7900
7901                 dtrace_hash_remove(dtrace_bymod, probe);
7902                 dtrace_hash_remove(dtrace_byfunc, probe);
7903                 dtrace_hash_remove(dtrace_byname, probe);
7904
7905                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7906                     probe->dtpr_arg);
7907                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7908                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7909                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7910                 kmem_free(probe, sizeof (dtrace_probe_t));
7911 #if defined(sun)
7912                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7913 #else
7914                 free_unr(dtrace_arena, i + 1);
7915 #endif
7916         }
7917
7918         mutex_exit(&dtrace_lock);
7919         mutex_exit(&dtrace_provider_lock);
7920
7921         return (0);
7922 }
7923
7924 /*
7925  * DTrace Probe Management Functions
7926  *
7927  * The functions in this section perform the DTrace probe management,
7928  * including functions to create probes, look-up probes, and call into the
7929  * providers to request that probes be provided.  Some of these functions are
7930  * in the Provider-to-Framework API; these functions can be identified by the
7931  * fact that they are not declared "static".
7932  */
7933
7934 /*
7935  * Create a probe with the specified module name, function name, and name.
7936  */
7937 dtrace_id_t
7938 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7939     const char *func, const char *name, int aframes, void *arg)
7940 {
7941         dtrace_probe_t *probe, **probes;
7942         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7943         dtrace_id_t id;
7944
7945         if (provider == dtrace_provider) {
7946                 ASSERT(MUTEX_HELD(&dtrace_lock));
7947         } else {
7948                 mutex_enter(&dtrace_lock);
7949         }
7950
7951 #if defined(sun)
7952         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7953             VM_BESTFIT | VM_SLEEP);
7954 #else
7955         id = alloc_unr(dtrace_arena);
7956 #endif
7957         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7958
7959         probe->dtpr_id = id;
7960         probe->dtpr_gen = dtrace_probegen++;
7961         probe->dtpr_mod = dtrace_strdup(mod);
7962         probe->dtpr_func = dtrace_strdup(func);
7963         probe->dtpr_name = dtrace_strdup(name);
7964         probe->dtpr_arg = arg;
7965         probe->dtpr_aframes = aframes;
7966         probe->dtpr_provider = provider;
7967
7968         dtrace_hash_add(dtrace_bymod, probe);
7969         dtrace_hash_add(dtrace_byfunc, probe);
7970         dtrace_hash_add(dtrace_byname, probe);
7971
7972         if (id - 1 >= dtrace_nprobes) {
7973                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7974                 size_t nsize = osize << 1;
7975
7976                 if (nsize == 0) {
7977                         ASSERT(osize == 0);
7978                         ASSERT(dtrace_probes == NULL);
7979                         nsize = sizeof (dtrace_probe_t *);
7980                 }
7981
7982                 probes = kmem_zalloc(nsize, KM_SLEEP);
7983
7984                 if (dtrace_probes == NULL) {
7985                         ASSERT(osize == 0);
7986                         dtrace_probes = probes;
7987                         dtrace_nprobes = 1;
7988                 } else {
7989                         dtrace_probe_t **oprobes = dtrace_probes;
7990
7991                         bcopy(oprobes, probes, osize);
7992                         dtrace_membar_producer();
7993                         dtrace_probes = probes;
7994
7995                         dtrace_sync();
7996
7997                         /*
7998                          * All CPUs are now seeing the new probes array; we can
7999                          * safely free the old array.
8000                          */
8001                         kmem_free(oprobes, osize);
8002                         dtrace_nprobes <<= 1;
8003                 }
8004
8005                 ASSERT(id - 1 < dtrace_nprobes);
8006         }
8007
8008         ASSERT(dtrace_probes[id - 1] == NULL);
8009         dtrace_probes[id - 1] = probe;
8010
8011         if (provider != dtrace_provider)
8012                 mutex_exit(&dtrace_lock);
8013
8014         return (id);
8015 }
8016
8017 static dtrace_probe_t *
8018 dtrace_probe_lookup_id(dtrace_id_t id)
8019 {
8020         ASSERT(MUTEX_HELD(&dtrace_lock));
8021
8022         if (id == 0 || id > dtrace_nprobes)
8023                 return (NULL);
8024
8025         return (dtrace_probes[id - 1]);
8026 }
8027
8028 static int
8029 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8030 {
8031         *((dtrace_id_t *)arg) = probe->dtpr_id;
8032
8033         return (DTRACE_MATCH_DONE);
8034 }
8035
8036 /*
8037  * Look up a probe based on provider and one or more of module name, function
8038  * name and probe name.
8039  */
8040 dtrace_id_t
8041 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8042     char *func, char *name)
8043 {
8044         dtrace_probekey_t pkey;
8045         dtrace_id_t id;
8046         int match;
8047
8048         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8049         pkey.dtpk_pmatch = &dtrace_match_string;
8050         pkey.dtpk_mod = mod;
8051         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8052         pkey.dtpk_func = func;
8053         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8054         pkey.dtpk_name = name;
8055         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8056         pkey.dtpk_id = DTRACE_IDNONE;
8057
8058         mutex_enter(&dtrace_lock);
8059         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8060             dtrace_probe_lookup_match, &id);
8061         mutex_exit(&dtrace_lock);
8062
8063         ASSERT(match == 1 || match == 0);
8064         return (match ? id : 0);
8065 }
8066
8067 /*
8068  * Returns the probe argument associated with the specified probe.
8069  */
8070 void *
8071 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8072 {
8073         dtrace_probe_t *probe;
8074         void *rval = NULL;
8075
8076         mutex_enter(&dtrace_lock);
8077
8078         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8079             probe->dtpr_provider == (dtrace_provider_t *)id)
8080                 rval = probe->dtpr_arg;
8081
8082         mutex_exit(&dtrace_lock);
8083
8084         return (rval);
8085 }
8086
8087 /*
8088  * Copy a probe into a probe description.
8089  */
8090 static void
8091 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8092 {
8093         bzero(pdp, sizeof (dtrace_probedesc_t));
8094         pdp->dtpd_id = prp->dtpr_id;
8095
8096         (void) strncpy(pdp->dtpd_provider,
8097             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8098
8099         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8100         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8101         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8102 }
8103
8104 /*
8105  * Called to indicate that a probe -- or probes -- should be provided by a
8106  * specfied provider.  If the specified description is NULL, the provider will
8107  * be told to provide all of its probes.  (This is done whenever a new
8108  * consumer comes along, or whenever a retained enabling is to be matched.) If
8109  * the specified description is non-NULL, the provider is given the
8110  * opportunity to dynamically provide the specified probe, allowing providers
8111  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8112  * probes.)  If the provider is NULL, the operations will be applied to all
8113  * providers; if the provider is non-NULL the operations will only be applied
8114  * to the specified provider.  The dtrace_provider_lock must be held, and the
8115  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8116  * will need to grab the dtrace_lock when it reenters the framework through
8117  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8118  */
8119 static void
8120 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8121 {
8122 #if defined(sun)
8123         modctl_t *ctl;
8124 #endif
8125         int all = 0;
8126
8127         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8128
8129         if (prv == NULL) {
8130                 all = 1;
8131                 prv = dtrace_provider;
8132         }
8133
8134         do {
8135                 /*
8136                  * First, call the blanket provide operation.
8137                  */
8138                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8139
8140 #if defined(sun)
8141                 /*
8142                  * Now call the per-module provide operation.  We will grab
8143                  * mod_lock to prevent the list from being modified.  Note
8144                  * that this also prevents the mod_busy bits from changing.
8145                  * (mod_busy can only be changed with mod_lock held.)
8146                  */
8147                 mutex_enter(&mod_lock);
8148
8149                 ctl = &modules;
8150                 do {
8151                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8152                                 continue;
8153
8154                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8155
8156                 } while ((ctl = ctl->mod_next) != &modules);
8157
8158                 mutex_exit(&mod_lock);
8159 #endif
8160         } while (all && (prv = prv->dtpv_next) != NULL);
8161 }
8162
8163 #if defined(sun)
8164 /*
8165  * Iterate over each probe, and call the Framework-to-Provider API function
8166  * denoted by offs.
8167  */
8168 static void
8169 dtrace_probe_foreach(uintptr_t offs)
8170 {
8171         dtrace_provider_t *prov;
8172         void (*func)(void *, dtrace_id_t, void *);
8173         dtrace_probe_t *probe;
8174         dtrace_icookie_t cookie;
8175         int i;
8176
8177         /*
8178          * We disable interrupts to walk through the probe array.  This is
8179          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8180          * won't see stale data.
8181          */
8182         cookie = dtrace_interrupt_disable();
8183
8184         for (i = 0; i < dtrace_nprobes; i++) {
8185                 if ((probe = dtrace_probes[i]) == NULL)
8186                         continue;
8187
8188                 if (probe->dtpr_ecb == NULL) {
8189                         /*
8190                          * This probe isn't enabled -- don't call the function.
8191                          */
8192                         continue;
8193                 }
8194
8195                 prov = probe->dtpr_provider;
8196                 func = *((void(**)(void *, dtrace_id_t, void *))
8197                     ((uintptr_t)&prov->dtpv_pops + offs));
8198
8199                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8200         }
8201
8202         dtrace_interrupt_enable(cookie);
8203 }
8204 #endif
8205
8206 static int
8207 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8208 {
8209         dtrace_probekey_t pkey;
8210         uint32_t priv;
8211         uid_t uid;
8212         zoneid_t zoneid;
8213
8214         ASSERT(MUTEX_HELD(&dtrace_lock));
8215         dtrace_ecb_create_cache = NULL;
8216
8217         if (desc == NULL) {
8218                 /*
8219                  * If we're passed a NULL description, we're being asked to
8220                  * create an ECB with a NULL probe.
8221                  */
8222                 (void) dtrace_ecb_create_enable(NULL, enab);
8223                 return (0);
8224         }
8225
8226         dtrace_probekey(desc, &pkey);
8227         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8228             &priv, &uid, &zoneid);
8229
8230         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8231             enab));
8232 }
8233
8234 /*
8235  * DTrace Helper Provider Functions
8236  */
8237 static void
8238 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8239 {
8240         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8241         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8242         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8243 }
8244
8245 static void
8246 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8247     const dof_provider_t *dofprov, char *strtab)
8248 {
8249         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8250         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8251             dofprov->dofpv_provattr);
8252         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8253             dofprov->dofpv_modattr);
8254         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8255             dofprov->dofpv_funcattr);
8256         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8257             dofprov->dofpv_nameattr);
8258         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8259             dofprov->dofpv_argsattr);
8260 }
8261
8262 static void
8263 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8264 {
8265         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8266         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8267         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8268         dof_provider_t *provider;
8269         dof_probe_t *probe;
8270         uint32_t *off, *enoff;
8271         uint8_t *arg;
8272         char *strtab;
8273         uint_t i, nprobes;
8274         dtrace_helper_provdesc_t dhpv;
8275         dtrace_helper_probedesc_t dhpb;
8276         dtrace_meta_t *meta = dtrace_meta_pid;
8277         dtrace_mops_t *mops = &meta->dtm_mops;
8278         void *parg;
8279
8280         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8281         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8282             provider->dofpv_strtab * dof->dofh_secsize);
8283         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8284             provider->dofpv_probes * dof->dofh_secsize);
8285         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8286             provider->dofpv_prargs * dof->dofh_secsize);
8287         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8288             provider->dofpv_proffs * dof->dofh_secsize);
8289
8290         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8291         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8292         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8293         enoff = NULL;
8294
8295         /*
8296          * See dtrace_helper_provider_validate().
8297          */
8298         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8299             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8300                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8301                     provider->dofpv_prenoffs * dof->dofh_secsize);
8302                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8303         }
8304
8305         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8306
8307         /*
8308          * Create the provider.
8309          */
8310         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8311
8312         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8313                 return;
8314
8315         meta->dtm_count++;
8316
8317         /*
8318          * Create the probes.
8319          */
8320         for (i = 0; i < nprobes; i++) {
8321                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8322                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8323
8324                 dhpb.dthpb_mod = dhp->dofhp_mod;
8325                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8326                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8327                 dhpb.dthpb_base = probe->dofpr_addr;
8328                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8329                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8330                 if (enoff != NULL) {
8331                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8332                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8333                 } else {
8334                         dhpb.dthpb_enoffs = NULL;
8335                         dhpb.dthpb_nenoffs = 0;
8336                 }
8337                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8338                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8339                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8340                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8341                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8342
8343                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8344         }
8345 }
8346
8347 static void
8348 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8349 {
8350         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8351         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8352         int i;
8353
8354         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8355
8356         for (i = 0; i < dof->dofh_secnum; i++) {
8357                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8358                     dof->dofh_secoff + i * dof->dofh_secsize);
8359
8360                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8361                         continue;
8362
8363                 dtrace_helper_provide_one(dhp, sec, pid);
8364         }
8365
8366         /*
8367          * We may have just created probes, so we must now rematch against
8368          * any retained enablings.  Note that this call will acquire both
8369          * cpu_lock and dtrace_lock; the fact that we are holding
8370          * dtrace_meta_lock now is what defines the ordering with respect to
8371          * these three locks.
8372          */
8373         dtrace_enabling_matchall();
8374 }
8375
8376 static void
8377 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8378 {
8379         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8380         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8381         dof_sec_t *str_sec;
8382         dof_provider_t *provider;
8383         char *strtab;
8384         dtrace_helper_provdesc_t dhpv;
8385         dtrace_meta_t *meta = dtrace_meta_pid;
8386         dtrace_mops_t *mops = &meta->dtm_mops;
8387
8388         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8389         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8390             provider->dofpv_strtab * dof->dofh_secsize);
8391
8392         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8393
8394         /*
8395          * Create the provider.
8396          */
8397         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8398
8399         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8400
8401         meta->dtm_count--;
8402 }
8403
8404 static void
8405 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8406 {
8407         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8408         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8409         int i;
8410
8411         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8412
8413         for (i = 0; i < dof->dofh_secnum; i++) {
8414                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8415                     dof->dofh_secoff + i * dof->dofh_secsize);
8416
8417                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8418                         continue;
8419
8420                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8421         }
8422 }
8423
8424 /*
8425  * DTrace Meta Provider-to-Framework API Functions
8426  *
8427  * These functions implement the Meta Provider-to-Framework API, as described
8428  * in <sys/dtrace.h>.
8429  */
8430 int
8431 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8432     dtrace_meta_provider_id_t *idp)
8433 {
8434         dtrace_meta_t *meta;
8435         dtrace_helpers_t *help, *next;
8436         int i;
8437
8438         *idp = DTRACE_METAPROVNONE;
8439
8440         /*
8441          * We strictly don't need the name, but we hold onto it for
8442          * debuggability. All hail error queues!
8443          */
8444         if (name == NULL) {
8445                 cmn_err(CE_WARN, "failed to register meta-provider: "
8446                     "invalid name");
8447                 return (EINVAL);
8448         }
8449
8450         if (mops == NULL ||
8451             mops->dtms_create_probe == NULL ||
8452             mops->dtms_provide_pid == NULL ||
8453             mops->dtms_remove_pid == NULL) {
8454                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8455                     "invalid ops", name);
8456                 return (EINVAL);
8457         }
8458
8459         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8460         meta->dtm_mops = *mops;
8461         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8462         (void) strcpy(meta->dtm_name, name);
8463         meta->dtm_arg = arg;
8464
8465         mutex_enter(&dtrace_meta_lock);
8466         mutex_enter(&dtrace_lock);
8467
8468         if (dtrace_meta_pid != NULL) {
8469                 mutex_exit(&dtrace_lock);
8470                 mutex_exit(&dtrace_meta_lock);
8471                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8472                     "user-land meta-provider exists", name);
8473                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8474                 kmem_free(meta, sizeof (dtrace_meta_t));
8475                 return (EINVAL);
8476         }
8477
8478         dtrace_meta_pid = meta;
8479         *idp = (dtrace_meta_provider_id_t)meta;
8480
8481         /*
8482          * If there are providers and probes ready to go, pass them
8483          * off to the new meta provider now.
8484          */
8485
8486         help = dtrace_deferred_pid;
8487         dtrace_deferred_pid = NULL;
8488
8489         mutex_exit(&dtrace_lock);
8490
8491         while (help != NULL) {
8492                 for (i = 0; i < help->dthps_nprovs; i++) {
8493                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8494                             help->dthps_pid);
8495                 }
8496
8497                 next = help->dthps_next;
8498                 help->dthps_next = NULL;
8499                 help->dthps_prev = NULL;
8500                 help->dthps_deferred = 0;
8501                 help = next;
8502         }
8503
8504         mutex_exit(&dtrace_meta_lock);
8505
8506         return (0);
8507 }
8508
8509 int
8510 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8511 {
8512         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8513
8514         mutex_enter(&dtrace_meta_lock);
8515         mutex_enter(&dtrace_lock);
8516
8517         if (old == dtrace_meta_pid) {
8518                 pp = &dtrace_meta_pid;
8519         } else {
8520                 panic("attempt to unregister non-existent "
8521                     "dtrace meta-provider %p\n", (void *)old);
8522         }
8523
8524         if (old->dtm_count != 0) {
8525                 mutex_exit(&dtrace_lock);
8526                 mutex_exit(&dtrace_meta_lock);
8527                 return (EBUSY);
8528         }
8529
8530         *pp = NULL;
8531
8532         mutex_exit(&dtrace_lock);
8533         mutex_exit(&dtrace_meta_lock);
8534
8535         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8536         kmem_free(old, sizeof (dtrace_meta_t));
8537
8538         return (0);
8539 }
8540
8541
8542 /*
8543  * DTrace DIF Object Functions
8544  */
8545 static int
8546 dtrace_difo_err(uint_t pc, const char *format, ...)
8547 {
8548         if (dtrace_err_verbose) {
8549                 va_list alist;
8550
8551                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8552                 va_start(alist, format);
8553                 (void) vuprintf(format, alist);
8554                 va_end(alist);
8555         }
8556
8557 #ifdef DTRACE_ERRDEBUG
8558         dtrace_errdebug(format);
8559 #endif
8560         return (1);
8561 }
8562
8563 /*
8564  * Validate a DTrace DIF object by checking the IR instructions.  The following
8565  * rules are currently enforced by dtrace_difo_validate():
8566  *
8567  * 1. Each instruction must have a valid opcode
8568  * 2. Each register, string, variable, or subroutine reference must be valid
8569  * 3. No instruction can modify register %r0 (must be zero)
8570  * 4. All instruction reserved bits must be set to zero
8571  * 5. The last instruction must be a "ret" instruction
8572  * 6. All branch targets must reference a valid instruction _after_ the branch
8573  */
8574 static int
8575 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8576     cred_t *cr)
8577 {
8578         int err = 0, i;
8579         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8580         int kcheckload;
8581         uint_t pc;
8582
8583         kcheckload = cr == NULL ||
8584             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8585
8586         dp->dtdo_destructive = 0;
8587
8588         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8589                 dif_instr_t instr = dp->dtdo_buf[pc];
8590
8591                 uint_t r1 = DIF_INSTR_R1(instr);
8592                 uint_t r2 = DIF_INSTR_R2(instr);
8593                 uint_t rd = DIF_INSTR_RD(instr);
8594                 uint_t rs = DIF_INSTR_RS(instr);
8595                 uint_t label = DIF_INSTR_LABEL(instr);
8596                 uint_t v = DIF_INSTR_VAR(instr);
8597                 uint_t subr = DIF_INSTR_SUBR(instr);
8598                 uint_t type = DIF_INSTR_TYPE(instr);
8599                 uint_t op = DIF_INSTR_OP(instr);
8600
8601                 switch (op) {
8602                 case DIF_OP_OR:
8603                 case DIF_OP_XOR:
8604                 case DIF_OP_AND:
8605                 case DIF_OP_SLL:
8606                 case DIF_OP_SRL:
8607                 case DIF_OP_SRA:
8608                 case DIF_OP_SUB:
8609                 case DIF_OP_ADD:
8610                 case DIF_OP_MUL:
8611                 case DIF_OP_SDIV:
8612                 case DIF_OP_UDIV:
8613                 case DIF_OP_SREM:
8614                 case DIF_OP_UREM:
8615                 case DIF_OP_COPYS:
8616                         if (r1 >= nregs)
8617                                 err += efunc(pc, "invalid register %u\n", r1);
8618                         if (r2 >= nregs)
8619                                 err += efunc(pc, "invalid register %u\n", r2);
8620                         if (rd >= nregs)
8621                                 err += efunc(pc, "invalid register %u\n", rd);
8622                         if (rd == 0)
8623                                 err += efunc(pc, "cannot write to %r0\n");
8624                         break;
8625                 case DIF_OP_NOT:
8626                 case DIF_OP_MOV:
8627                 case DIF_OP_ALLOCS:
8628                         if (r1 >= nregs)
8629                                 err += efunc(pc, "invalid register %u\n", r1);
8630                         if (r2 != 0)
8631                                 err += efunc(pc, "non-zero reserved bits\n");
8632                         if (rd >= nregs)
8633                                 err += efunc(pc, "invalid register %u\n", rd);
8634                         if (rd == 0)
8635                                 err += efunc(pc, "cannot write to %r0\n");
8636                         break;
8637                 case DIF_OP_LDSB:
8638                 case DIF_OP_LDSH:
8639                 case DIF_OP_LDSW:
8640                 case DIF_OP_LDUB:
8641                 case DIF_OP_LDUH:
8642                 case DIF_OP_LDUW:
8643                 case DIF_OP_LDX:
8644                         if (r1 >= nregs)
8645                                 err += efunc(pc, "invalid register %u\n", r1);
8646                         if (r2 != 0)
8647                                 err += efunc(pc, "non-zero reserved bits\n");
8648                         if (rd >= nregs)
8649                                 err += efunc(pc, "invalid register %u\n", rd);
8650                         if (rd == 0)
8651                                 err += efunc(pc, "cannot write to %r0\n");
8652                         if (kcheckload)
8653                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8654                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8655                         break;
8656                 case DIF_OP_RLDSB:
8657                 case DIF_OP_RLDSH:
8658                 case DIF_OP_RLDSW:
8659                 case DIF_OP_RLDUB:
8660                 case DIF_OP_RLDUH:
8661                 case DIF_OP_RLDUW:
8662                 case DIF_OP_RLDX:
8663                         if (r1 >= nregs)
8664                                 err += efunc(pc, "invalid register %u\n", r1);
8665                         if (r2 != 0)
8666                                 err += efunc(pc, "non-zero reserved bits\n");
8667                         if (rd >= nregs)
8668                                 err += efunc(pc, "invalid register %u\n", rd);
8669                         if (rd == 0)
8670                                 err += efunc(pc, "cannot write to %r0\n");
8671                         break;
8672                 case DIF_OP_ULDSB:
8673                 case DIF_OP_ULDSH:
8674                 case DIF_OP_ULDSW:
8675                 case DIF_OP_ULDUB:
8676                 case DIF_OP_ULDUH:
8677                 case DIF_OP_ULDUW:
8678                 case DIF_OP_ULDX:
8679                         if (r1 >= nregs)
8680                                 err += efunc(pc, "invalid register %u\n", r1);
8681                         if (r2 != 0)
8682                                 err += efunc(pc, "non-zero reserved bits\n");
8683                         if (rd >= nregs)
8684                                 err += efunc(pc, "invalid register %u\n", rd);
8685                         if (rd == 0)
8686                                 err += efunc(pc, "cannot write to %r0\n");
8687                         break;
8688                 case DIF_OP_STB:
8689                 case DIF_OP_STH:
8690                 case DIF_OP_STW:
8691                 case DIF_OP_STX:
8692                         if (r1 >= nregs)
8693                                 err += efunc(pc, "invalid register %u\n", r1);
8694                         if (r2 != 0)
8695                                 err += efunc(pc, "non-zero reserved bits\n");
8696                         if (rd >= nregs)
8697                                 err += efunc(pc, "invalid register %u\n", rd);
8698                         if (rd == 0)
8699                                 err += efunc(pc, "cannot write to 0 address\n");
8700                         break;
8701                 case DIF_OP_CMP:
8702                 case DIF_OP_SCMP:
8703                         if (r1 >= nregs)
8704                                 err += efunc(pc, "invalid register %u\n", r1);
8705                         if (r2 >= nregs)
8706                                 err += efunc(pc, "invalid register %u\n", r2);
8707                         if (rd != 0)
8708                                 err += efunc(pc, "non-zero reserved bits\n");
8709                         break;
8710                 case DIF_OP_TST:
8711                         if (r1 >= nregs)
8712                                 err += efunc(pc, "invalid register %u\n", r1);
8713                         if (r2 != 0 || rd != 0)
8714                                 err += efunc(pc, "non-zero reserved bits\n");
8715                         break;
8716                 case DIF_OP_BA:
8717                 case DIF_OP_BE:
8718                 case DIF_OP_BNE:
8719                 case DIF_OP_BG:
8720                 case DIF_OP_BGU:
8721                 case DIF_OP_BGE:
8722                 case DIF_OP_BGEU:
8723                 case DIF_OP_BL:
8724                 case DIF_OP_BLU:
8725                 case DIF_OP_BLE:
8726                 case DIF_OP_BLEU:
8727                         if (label >= dp->dtdo_len) {
8728                                 err += efunc(pc, "invalid branch target %u\n",
8729                                     label);
8730                         }
8731                         if (label <= pc) {
8732                                 err += efunc(pc, "backward branch to %u\n",
8733                                     label);
8734                         }
8735                         break;
8736                 case DIF_OP_RET:
8737                         if (r1 != 0 || r2 != 0)
8738                                 err += efunc(pc, "non-zero reserved bits\n");
8739                         if (rd >= nregs)
8740                                 err += efunc(pc, "invalid register %u\n", rd);
8741                         break;
8742                 case DIF_OP_NOP:
8743                 case DIF_OP_POPTS:
8744                 case DIF_OP_FLUSHTS:
8745                         if (r1 != 0 || r2 != 0 || rd != 0)
8746                                 err += efunc(pc, "non-zero reserved bits\n");
8747                         break;
8748                 case DIF_OP_SETX:
8749                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8750                                 err += efunc(pc, "invalid integer ref %u\n",
8751                                     DIF_INSTR_INTEGER(instr));
8752                         }
8753                         if (rd >= nregs)
8754                                 err += efunc(pc, "invalid register %u\n", rd);
8755                         if (rd == 0)
8756                                 err += efunc(pc, "cannot write to %r0\n");
8757                         break;
8758                 case DIF_OP_SETS:
8759                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8760                                 err += efunc(pc, "invalid string ref %u\n",
8761                                     DIF_INSTR_STRING(instr));
8762                         }
8763                         if (rd >= nregs)
8764                                 err += efunc(pc, "invalid register %u\n", rd);
8765                         if (rd == 0)
8766                                 err += efunc(pc, "cannot write to %r0\n");
8767                         break;
8768                 case DIF_OP_LDGA:
8769                 case DIF_OP_LDTA:
8770                         if (r1 > DIF_VAR_ARRAY_MAX)
8771                                 err += efunc(pc, "invalid array %u\n", r1);
8772                         if (r2 >= nregs)
8773                                 err += efunc(pc, "invalid register %u\n", r2);
8774                         if (rd >= nregs)
8775                                 err += efunc(pc, "invalid register %u\n", rd);
8776                         if (rd == 0)
8777                                 err += efunc(pc, "cannot write to %r0\n");
8778                         break;
8779                 case DIF_OP_LDGS:
8780                 case DIF_OP_LDTS:
8781                 case DIF_OP_LDLS:
8782                 case DIF_OP_LDGAA:
8783                 case DIF_OP_LDTAA:
8784                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8785                                 err += efunc(pc, "invalid variable %u\n", v);
8786                         if (rd >= nregs)
8787                                 err += efunc(pc, "invalid register %u\n", rd);
8788                         if (rd == 0)
8789                                 err += efunc(pc, "cannot write to %r0\n");
8790                         break;
8791                 case DIF_OP_STGS:
8792                 case DIF_OP_STTS:
8793                 case DIF_OP_STLS:
8794                 case DIF_OP_STGAA:
8795                 case DIF_OP_STTAA:
8796                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8797                                 err += efunc(pc, "invalid variable %u\n", v);
8798                         if (rs >= nregs)
8799                                 err += efunc(pc, "invalid register %u\n", rd);
8800                         break;
8801                 case DIF_OP_CALL:
8802                         if (subr > DIF_SUBR_MAX)
8803                                 err += efunc(pc, "invalid subr %u\n", subr);
8804                         if (rd >= nregs)
8805                                 err += efunc(pc, "invalid register %u\n", rd);
8806                         if (rd == 0)
8807                                 err += efunc(pc, "cannot write to %r0\n");
8808
8809                         if (subr == DIF_SUBR_COPYOUT ||
8810                             subr == DIF_SUBR_COPYOUTSTR) {
8811                                 dp->dtdo_destructive = 1;
8812                         }
8813                         break;
8814                 case DIF_OP_PUSHTR:
8815                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8816                                 err += efunc(pc, "invalid ref type %u\n", type);
8817                         if (r2 >= nregs)
8818                                 err += efunc(pc, "invalid register %u\n", r2);
8819                         if (rs >= nregs)
8820                                 err += efunc(pc, "invalid register %u\n", rs);
8821                         break;
8822                 case DIF_OP_PUSHTV:
8823                         if (type != DIF_TYPE_CTF)
8824                                 err += efunc(pc, "invalid val type %u\n", type);
8825                         if (r2 >= nregs)
8826                                 err += efunc(pc, "invalid register %u\n", r2);
8827                         if (rs >= nregs)
8828                                 err += efunc(pc, "invalid register %u\n", rs);
8829                         break;
8830                 default:
8831                         err += efunc(pc, "invalid opcode %u\n",
8832                             DIF_INSTR_OP(instr));
8833                 }
8834         }
8835
8836         if (dp->dtdo_len != 0 &&
8837             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8838                 err += efunc(dp->dtdo_len - 1,
8839                     "expected 'ret' as last DIF instruction\n");
8840         }
8841
8842         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8843                 /*
8844                  * If we're not returning by reference, the size must be either
8845                  * 0 or the size of one of the base types.
8846                  */
8847                 switch (dp->dtdo_rtype.dtdt_size) {
8848                 case 0:
8849                 case sizeof (uint8_t):
8850                 case sizeof (uint16_t):
8851                 case sizeof (uint32_t):
8852                 case sizeof (uint64_t):
8853                         break;
8854
8855                 default:
8856                         err += efunc(dp->dtdo_len - 1, "bad return size");
8857                 }
8858         }
8859
8860         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8861                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8862                 dtrace_diftype_t *vt, *et;
8863                 uint_t id, ndx;
8864
8865                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8866                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8867                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8868                         err += efunc(i, "unrecognized variable scope %d\n",
8869                             v->dtdv_scope);
8870                         break;
8871                 }
8872
8873                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8874                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8875                         err += efunc(i, "unrecognized variable type %d\n",
8876                             v->dtdv_kind);
8877                         break;
8878                 }
8879
8880                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8881                         err += efunc(i, "%d exceeds variable id limit\n", id);
8882                         break;
8883                 }
8884
8885                 if (id < DIF_VAR_OTHER_UBASE)
8886                         continue;
8887
8888                 /*
8889                  * For user-defined variables, we need to check that this
8890                  * definition is identical to any previous definition that we
8891                  * encountered.
8892                  */
8893                 ndx = id - DIF_VAR_OTHER_UBASE;
8894
8895                 switch (v->dtdv_scope) {
8896                 case DIFV_SCOPE_GLOBAL:
8897                         if (ndx < vstate->dtvs_nglobals) {
8898                                 dtrace_statvar_t *svar;
8899
8900                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8901                                         existing = &svar->dtsv_var;
8902                         }
8903
8904                         break;
8905
8906                 case DIFV_SCOPE_THREAD:
8907                         if (ndx < vstate->dtvs_ntlocals)
8908                                 existing = &vstate->dtvs_tlocals[ndx];
8909                         break;
8910
8911                 case DIFV_SCOPE_LOCAL:
8912                         if (ndx < vstate->dtvs_nlocals) {
8913                                 dtrace_statvar_t *svar;
8914
8915                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8916                                         existing = &svar->dtsv_var;
8917                         }
8918
8919                         break;
8920                 }
8921
8922                 vt = &v->dtdv_type;
8923
8924                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8925                         if (vt->dtdt_size == 0) {
8926                                 err += efunc(i, "zero-sized variable\n");
8927                                 break;
8928                         }
8929
8930                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8931                             vt->dtdt_size > dtrace_global_maxsize) {
8932                                 err += efunc(i, "oversized by-ref global\n");
8933                                 break;
8934                         }
8935                 }
8936
8937                 if (existing == NULL || existing->dtdv_id == 0)
8938                         continue;
8939
8940                 ASSERT(existing->dtdv_id == v->dtdv_id);
8941                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8942
8943                 if (existing->dtdv_kind != v->dtdv_kind)
8944                         err += efunc(i, "%d changed variable kind\n", id);
8945
8946                 et = &existing->dtdv_type;
8947
8948                 if (vt->dtdt_flags != et->dtdt_flags) {
8949                         err += efunc(i, "%d changed variable type flags\n", id);
8950                         break;
8951                 }
8952
8953                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8954                         err += efunc(i, "%d changed variable type size\n", id);
8955                         break;
8956                 }
8957         }
8958
8959         return (err);
8960 }
8961
8962 /*
8963  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8964  * are much more constrained than normal DIFOs.  Specifically, they may
8965  * not:
8966  *
8967  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8968  *    miscellaneous string routines
8969  * 2. Access DTrace variables other than the args[] array, and the
8970  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8971  * 3. Have thread-local variables.
8972  * 4. Have dynamic variables.
8973  */
8974 static int
8975 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8976 {
8977         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8978         int err = 0;
8979         uint_t pc;
8980
8981         for (pc = 0; pc < dp->dtdo_len; pc++) {
8982                 dif_instr_t instr = dp->dtdo_buf[pc];
8983
8984                 uint_t v = DIF_INSTR_VAR(instr);
8985                 uint_t subr = DIF_INSTR_SUBR(instr);
8986                 uint_t op = DIF_INSTR_OP(instr);
8987
8988                 switch (op) {
8989                 case DIF_OP_OR:
8990                 case DIF_OP_XOR:
8991                 case DIF_OP_AND:
8992                 case DIF_OP_SLL:
8993                 case DIF_OP_SRL:
8994                 case DIF_OP_SRA:
8995                 case DIF_OP_SUB:
8996                 case DIF_OP_ADD:
8997                 case DIF_OP_MUL:
8998                 case DIF_OP_SDIV:
8999                 case DIF_OP_UDIV:
9000                 case DIF_OP_SREM:
9001                 case DIF_OP_UREM:
9002                 case DIF_OP_COPYS:
9003                 case DIF_OP_NOT:
9004                 case DIF_OP_MOV:
9005                 case DIF_OP_RLDSB:
9006                 case DIF_OP_RLDSH:
9007                 case DIF_OP_RLDSW:
9008                 case DIF_OP_RLDUB:
9009                 case DIF_OP_RLDUH:
9010                 case DIF_OP_RLDUW:
9011                 case DIF_OP_RLDX:
9012                 case DIF_OP_ULDSB:
9013                 case DIF_OP_ULDSH:
9014                 case DIF_OP_ULDSW:
9015                 case DIF_OP_ULDUB:
9016                 case DIF_OP_ULDUH:
9017                 case DIF_OP_ULDUW:
9018                 case DIF_OP_ULDX:
9019                 case DIF_OP_STB:
9020                 case DIF_OP_STH:
9021                 case DIF_OP_STW:
9022                 case DIF_OP_STX:
9023                 case DIF_OP_ALLOCS:
9024                 case DIF_OP_CMP:
9025                 case DIF_OP_SCMP:
9026                 case DIF_OP_TST:
9027                 case DIF_OP_BA:
9028                 case DIF_OP_BE:
9029                 case DIF_OP_BNE:
9030                 case DIF_OP_BG:
9031                 case DIF_OP_BGU:
9032                 case DIF_OP_BGE:
9033                 case DIF_OP_BGEU:
9034                 case DIF_OP_BL:
9035                 case DIF_OP_BLU:
9036                 case DIF_OP_BLE:
9037                 case DIF_OP_BLEU:
9038                 case DIF_OP_RET:
9039                 case DIF_OP_NOP:
9040                 case DIF_OP_POPTS:
9041                 case DIF_OP_FLUSHTS:
9042                 case DIF_OP_SETX:
9043                 case DIF_OP_SETS:
9044                 case DIF_OP_LDGA:
9045                 case DIF_OP_LDLS:
9046                 case DIF_OP_STGS:
9047                 case DIF_OP_STLS:
9048                 case DIF_OP_PUSHTR:
9049                 case DIF_OP_PUSHTV:
9050                         break;
9051
9052                 case DIF_OP_LDGS:
9053                         if (v >= DIF_VAR_OTHER_UBASE)
9054                                 break;
9055
9056                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9057                                 break;
9058
9059                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9060                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9061                             v == DIF_VAR_EXECARGS ||
9062                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9063                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9064                                 break;
9065
9066                         err += efunc(pc, "illegal variable %u\n", v);
9067                         break;
9068
9069                 case DIF_OP_LDTA:
9070                 case DIF_OP_LDTS:
9071                 case DIF_OP_LDGAA:
9072                 case DIF_OP_LDTAA:
9073                         err += efunc(pc, "illegal dynamic variable load\n");
9074                         break;
9075
9076                 case DIF_OP_STTS:
9077                 case DIF_OP_STGAA:
9078                 case DIF_OP_STTAA:
9079                         err += efunc(pc, "illegal dynamic variable store\n");
9080                         break;
9081
9082                 case DIF_OP_CALL:
9083                         if (subr == DIF_SUBR_ALLOCA ||
9084                             subr == DIF_SUBR_BCOPY ||
9085                             subr == DIF_SUBR_COPYIN ||
9086                             subr == DIF_SUBR_COPYINTO ||
9087                             subr == DIF_SUBR_COPYINSTR ||
9088                             subr == DIF_SUBR_INDEX ||
9089                             subr == DIF_SUBR_INET_NTOA ||
9090                             subr == DIF_SUBR_INET_NTOA6 ||
9091                             subr == DIF_SUBR_INET_NTOP ||
9092                             subr == DIF_SUBR_LLTOSTR ||
9093                             subr == DIF_SUBR_RINDEX ||
9094                             subr == DIF_SUBR_STRCHR ||
9095                             subr == DIF_SUBR_STRJOIN ||
9096                             subr == DIF_SUBR_STRRCHR ||
9097                             subr == DIF_SUBR_STRSTR ||
9098                             subr == DIF_SUBR_HTONS ||
9099                             subr == DIF_SUBR_HTONL ||
9100                             subr == DIF_SUBR_HTONLL ||
9101                             subr == DIF_SUBR_NTOHS ||
9102                             subr == DIF_SUBR_NTOHL ||
9103                             subr == DIF_SUBR_NTOHLL ||
9104                             subr == DIF_SUBR_MEMREF ||
9105                             subr == DIF_SUBR_TYPEREF)
9106                                 break;
9107
9108                         err += efunc(pc, "invalid subr %u\n", subr);
9109                         break;
9110
9111                 default:
9112                         err += efunc(pc, "invalid opcode %u\n",
9113                             DIF_INSTR_OP(instr));
9114                 }
9115         }
9116
9117         return (err);
9118 }
9119
9120 /*
9121  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9122  * basis; 0 if not.
9123  */
9124 static int
9125 dtrace_difo_cacheable(dtrace_difo_t *dp)
9126 {
9127         int i;
9128
9129         if (dp == NULL)
9130                 return (0);
9131
9132         for (i = 0; i < dp->dtdo_varlen; i++) {
9133                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9134
9135                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9136                         continue;
9137
9138                 switch (v->dtdv_id) {
9139                 case DIF_VAR_CURTHREAD:
9140                 case DIF_VAR_PID:
9141                 case DIF_VAR_TID:
9142                 case DIF_VAR_EXECARGS:
9143                 case DIF_VAR_EXECNAME:
9144                 case DIF_VAR_ZONENAME:
9145                         break;
9146
9147                 default:
9148                         return (0);
9149                 }
9150         }
9151
9152         /*
9153          * This DIF object may be cacheable.  Now we need to look for any
9154          * array loading instructions, any memory loading instructions, or
9155          * any stores to thread-local variables.
9156          */
9157         for (i = 0; i < dp->dtdo_len; i++) {
9158                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9159
9160                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9161                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9162                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9163                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9164                         return (0);
9165         }
9166
9167         return (1);
9168 }
9169
9170 static void
9171 dtrace_difo_hold(dtrace_difo_t *dp)
9172 {
9173         int i;
9174
9175         ASSERT(MUTEX_HELD(&dtrace_lock));
9176
9177         dp->dtdo_refcnt++;
9178         ASSERT(dp->dtdo_refcnt != 0);
9179
9180         /*
9181          * We need to check this DIF object for references to the variable
9182          * DIF_VAR_VTIMESTAMP.
9183          */
9184         for (i = 0; i < dp->dtdo_varlen; i++) {
9185                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9186
9187                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9188                         continue;
9189
9190                 if (dtrace_vtime_references++ == 0)
9191                         dtrace_vtime_enable();
9192         }
9193 }
9194
9195 /*
9196  * This routine calculates the dynamic variable chunksize for a given DIF
9197  * object.  The calculation is not fool-proof, and can probably be tricked by
9198  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9199  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9200  * if a dynamic variable size exceeds the chunksize.
9201  */
9202 static void
9203 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9204 {
9205         uint64_t sval = 0;
9206         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9207         const dif_instr_t *text = dp->dtdo_buf;
9208         uint_t pc, srd = 0;
9209         uint_t ttop = 0;
9210         size_t size, ksize;
9211         uint_t id, i;
9212
9213         for (pc = 0; pc < dp->dtdo_len; pc++) {
9214                 dif_instr_t instr = text[pc];
9215                 uint_t op = DIF_INSTR_OP(instr);
9216                 uint_t rd = DIF_INSTR_RD(instr);
9217                 uint_t r1 = DIF_INSTR_R1(instr);
9218                 uint_t nkeys = 0;
9219                 uchar_t scope = 0;
9220
9221                 dtrace_key_t *key = tupregs;
9222
9223                 switch (op) {
9224                 case DIF_OP_SETX:
9225                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9226                         srd = rd;
9227                         continue;
9228
9229                 case DIF_OP_STTS:
9230                         key = &tupregs[DIF_DTR_NREGS];
9231                         key[0].dttk_size = 0;
9232                         key[1].dttk_size = 0;
9233                         nkeys = 2;
9234                         scope = DIFV_SCOPE_THREAD;
9235                         break;
9236
9237                 case DIF_OP_STGAA:
9238                 case DIF_OP_STTAA:
9239                         nkeys = ttop;
9240
9241                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9242                                 key[nkeys++].dttk_size = 0;
9243
9244                         key[nkeys++].dttk_size = 0;
9245
9246                         if (op == DIF_OP_STTAA) {
9247                                 scope = DIFV_SCOPE_THREAD;
9248                         } else {
9249                                 scope = DIFV_SCOPE_GLOBAL;
9250                         }
9251
9252                         break;
9253
9254                 case DIF_OP_PUSHTR:
9255                         if (ttop == DIF_DTR_NREGS)
9256                                 return;
9257
9258                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9259                                 /*
9260                                  * If the register for the size of the "pushtr"
9261                                  * is %r0 (or the value is 0) and the type is
9262                                  * a string, we'll use the system-wide default
9263                                  * string size.
9264                                  */
9265                                 tupregs[ttop++].dttk_size =
9266                                     dtrace_strsize_default;
9267                         } else {
9268                                 if (srd == 0)
9269                                         return;
9270
9271                                 tupregs[ttop++].dttk_size = sval;
9272                         }
9273
9274                         break;
9275
9276                 case DIF_OP_PUSHTV:
9277                         if (ttop == DIF_DTR_NREGS)
9278                                 return;
9279
9280                         tupregs[ttop++].dttk_size = 0;
9281                         break;
9282
9283                 case DIF_OP_FLUSHTS:
9284                         ttop = 0;
9285                         break;
9286
9287                 case DIF_OP_POPTS:
9288                         if (ttop != 0)
9289                                 ttop--;
9290                         break;
9291                 }
9292
9293                 sval = 0;
9294                 srd = 0;
9295
9296                 if (nkeys == 0)
9297                         continue;
9298
9299                 /*
9300                  * We have a dynamic variable allocation; calculate its size.
9301                  */
9302                 for (ksize = 0, i = 0; i < nkeys; i++)
9303                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9304
9305                 size = sizeof (dtrace_dynvar_t);
9306                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9307                 size += ksize;
9308
9309                 /*
9310                  * Now we need to determine the size of the stored data.
9311                  */
9312                 id = DIF_INSTR_VAR(instr);
9313
9314                 for (i = 0; i < dp->dtdo_varlen; i++) {
9315                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9316
9317                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9318                                 size += v->dtdv_type.dtdt_size;
9319                                 break;
9320                         }
9321                 }
9322
9323                 if (i == dp->dtdo_varlen)
9324                         return;
9325
9326                 /*
9327                  * We have the size.  If this is larger than the chunk size
9328                  * for our dynamic variable state, reset the chunk size.
9329                  */
9330                 size = P2ROUNDUP(size, sizeof (uint64_t));
9331
9332                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9333                         vstate->dtvs_dynvars.dtds_chunksize = size;
9334         }
9335 }
9336
9337 static void
9338 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9339 {
9340         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9341         uint_t id;
9342
9343         ASSERT(MUTEX_HELD(&dtrace_lock));
9344         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9345
9346         for (i = 0; i < dp->dtdo_varlen; i++) {
9347                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9348                 dtrace_statvar_t *svar, ***svarp = NULL;
9349                 size_t dsize = 0;
9350                 uint8_t scope = v->dtdv_scope;
9351                 int *np = NULL;
9352
9353                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9354                         continue;
9355
9356                 id -= DIF_VAR_OTHER_UBASE;
9357
9358                 switch (scope) {
9359                 case DIFV_SCOPE_THREAD:
9360                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9361                                 dtrace_difv_t *tlocals;
9362
9363                                 if ((ntlocals = (otlocals << 1)) == 0)
9364                                         ntlocals = 1;
9365
9366                                 osz = otlocals * sizeof (dtrace_difv_t);
9367                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9368
9369                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9370
9371                                 if (osz != 0) {
9372                                         bcopy(vstate->dtvs_tlocals,
9373                                             tlocals, osz);
9374                                         kmem_free(vstate->dtvs_tlocals, osz);
9375                                 }
9376
9377                                 vstate->dtvs_tlocals = tlocals;
9378                                 vstate->dtvs_ntlocals = ntlocals;
9379                         }
9380
9381                         vstate->dtvs_tlocals[id] = *v;
9382                         continue;
9383
9384                 case DIFV_SCOPE_LOCAL:
9385                         np = &vstate->dtvs_nlocals;
9386                         svarp = &vstate->dtvs_locals;
9387
9388                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9389                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9390                                     sizeof (uint64_t));
9391                         else
9392                                 dsize = NCPU * sizeof (uint64_t);
9393
9394                         break;
9395
9396                 case DIFV_SCOPE_GLOBAL:
9397                         np = &vstate->dtvs_nglobals;
9398                         svarp = &vstate->dtvs_globals;
9399
9400                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9401                                 dsize = v->dtdv_type.dtdt_size +
9402                                     sizeof (uint64_t);
9403
9404                         break;
9405
9406                 default:
9407                         ASSERT(0);
9408                 }
9409
9410                 while (id >= (oldsvars = *np)) {
9411                         dtrace_statvar_t **statics;
9412                         int newsvars, oldsize, newsize;
9413
9414                         if ((newsvars = (oldsvars << 1)) == 0)
9415                                 newsvars = 1;
9416
9417                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9418                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9419
9420                         statics = kmem_zalloc(newsize, KM_SLEEP);
9421
9422                         if (oldsize != 0) {
9423                                 bcopy(*svarp, statics, oldsize);
9424                                 kmem_free(*svarp, oldsize);
9425                         }
9426
9427                         *svarp = statics;
9428                         *np = newsvars;
9429                 }
9430
9431                 if ((svar = (*svarp)[id]) == NULL) {
9432                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9433                         svar->dtsv_var = *v;
9434
9435                         if ((svar->dtsv_size = dsize) != 0) {
9436                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9437                                     kmem_zalloc(dsize, KM_SLEEP);
9438                         }
9439
9440                         (*svarp)[id] = svar;
9441                 }
9442
9443                 svar->dtsv_refcnt++;
9444         }
9445
9446         dtrace_difo_chunksize(dp, vstate);
9447         dtrace_difo_hold(dp);
9448 }
9449
9450 static dtrace_difo_t *
9451 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9452 {
9453         dtrace_difo_t *new;
9454         size_t sz;
9455
9456         ASSERT(dp->dtdo_buf != NULL);
9457         ASSERT(dp->dtdo_refcnt != 0);
9458
9459         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9460
9461         ASSERT(dp->dtdo_buf != NULL);
9462         sz = dp->dtdo_len * sizeof (dif_instr_t);
9463         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9464         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9465         new->dtdo_len = dp->dtdo_len;
9466
9467         if (dp->dtdo_strtab != NULL) {
9468                 ASSERT(dp->dtdo_strlen != 0);
9469                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9470                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9471                 new->dtdo_strlen = dp->dtdo_strlen;
9472         }
9473
9474         if (dp->dtdo_inttab != NULL) {
9475                 ASSERT(dp->dtdo_intlen != 0);
9476                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9477                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9478                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9479                 new->dtdo_intlen = dp->dtdo_intlen;
9480         }
9481
9482         if (dp->dtdo_vartab != NULL) {
9483                 ASSERT(dp->dtdo_varlen != 0);
9484                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9485                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9486                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9487                 new->dtdo_varlen = dp->dtdo_varlen;
9488         }
9489
9490         dtrace_difo_init(new, vstate);
9491         return (new);
9492 }
9493
9494 static void
9495 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9496 {
9497         int i;
9498
9499         ASSERT(dp->dtdo_refcnt == 0);
9500
9501         for (i = 0; i < dp->dtdo_varlen; i++) {
9502                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9503                 dtrace_statvar_t *svar, **svarp = NULL;
9504                 uint_t id;
9505                 uint8_t scope = v->dtdv_scope;
9506                 int *np = NULL;
9507
9508                 switch (scope) {
9509                 case DIFV_SCOPE_THREAD:
9510                         continue;
9511
9512                 case DIFV_SCOPE_LOCAL:
9513                         np = &vstate->dtvs_nlocals;
9514                         svarp = vstate->dtvs_locals;
9515                         break;
9516
9517                 case DIFV_SCOPE_GLOBAL:
9518                         np = &vstate->dtvs_nglobals;
9519                         svarp = vstate->dtvs_globals;
9520                         break;
9521
9522                 default:
9523                         ASSERT(0);
9524                 }
9525
9526                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9527                         continue;
9528
9529                 id -= DIF_VAR_OTHER_UBASE;
9530                 ASSERT(id < *np);
9531
9532                 svar = svarp[id];
9533                 ASSERT(svar != NULL);
9534                 ASSERT(svar->dtsv_refcnt > 0);
9535
9536                 if (--svar->dtsv_refcnt > 0)
9537                         continue;
9538
9539                 if (svar->dtsv_size != 0) {
9540                         ASSERT(svar->dtsv_data != 0);
9541                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9542                             svar->dtsv_size);
9543                 }
9544
9545                 kmem_free(svar, sizeof (dtrace_statvar_t));
9546                 svarp[id] = NULL;
9547         }
9548
9549         if (dp->dtdo_buf != NULL)
9550                 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9551         if (dp->dtdo_inttab != NULL)
9552                 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9553         if (dp->dtdo_strtab != NULL)
9554                 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9555         if (dp->dtdo_vartab != NULL)
9556                 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9557
9558         kmem_free(dp, sizeof (dtrace_difo_t));
9559 }
9560
9561 static void
9562 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9563 {
9564         int i;
9565
9566         ASSERT(MUTEX_HELD(&dtrace_lock));
9567         ASSERT(dp->dtdo_refcnt != 0);
9568
9569         for (i = 0; i < dp->dtdo_varlen; i++) {
9570                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9571
9572                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9573                         continue;
9574
9575                 ASSERT(dtrace_vtime_references > 0);
9576                 if (--dtrace_vtime_references == 0)
9577                         dtrace_vtime_disable();
9578         }
9579
9580         if (--dp->dtdo_refcnt == 0)
9581                 dtrace_difo_destroy(dp, vstate);
9582 }
9583
9584 /*
9585  * DTrace Format Functions
9586  */
9587 static uint16_t
9588 dtrace_format_add(dtrace_state_t *state, char *str)
9589 {
9590         char *fmt, **new;
9591         uint16_t ndx, len = strlen(str) + 1;
9592
9593         fmt = kmem_zalloc(len, KM_SLEEP);
9594         bcopy(str, fmt, len);
9595
9596         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9597                 if (state->dts_formats[ndx] == NULL) {
9598                         state->dts_formats[ndx] = fmt;
9599                         return (ndx + 1);
9600                 }
9601         }
9602
9603         if (state->dts_nformats == USHRT_MAX) {
9604                 /*
9605                  * This is only likely if a denial-of-service attack is being
9606                  * attempted.  As such, it's okay to fail silently here.
9607                  */
9608                 kmem_free(fmt, len);
9609                 return (0);
9610         }
9611
9612         /*
9613          * For simplicity, we always resize the formats array to be exactly the
9614          * number of formats.
9615          */
9616         ndx = state->dts_nformats++;
9617         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9618
9619         if (state->dts_formats != NULL) {
9620                 ASSERT(ndx != 0);
9621                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9622                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9623         }
9624
9625         state->dts_formats = new;
9626         state->dts_formats[ndx] = fmt;
9627
9628         return (ndx + 1);
9629 }
9630
9631 static void
9632 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9633 {
9634         char *fmt;
9635
9636         ASSERT(state->dts_formats != NULL);
9637         ASSERT(format <= state->dts_nformats);
9638         ASSERT(state->dts_formats[format - 1] != NULL);
9639
9640         fmt = state->dts_formats[format - 1];
9641         kmem_free(fmt, strlen(fmt) + 1);
9642         state->dts_formats[format - 1] = NULL;
9643 }
9644
9645 static void
9646 dtrace_format_destroy(dtrace_state_t *state)
9647 {
9648         int i;
9649
9650         if (state->dts_nformats == 0) {
9651                 ASSERT(state->dts_formats == NULL);
9652                 return;
9653         }
9654
9655         ASSERT(state->dts_formats != NULL);
9656
9657         for (i = 0; i < state->dts_nformats; i++) {
9658                 char *fmt = state->dts_formats[i];
9659
9660                 if (fmt == NULL)
9661                         continue;
9662
9663                 kmem_free(fmt, strlen(fmt) + 1);
9664         }
9665
9666         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9667         state->dts_nformats = 0;
9668         state->dts_formats = NULL;
9669 }
9670
9671 /*
9672  * DTrace Predicate Functions
9673  */
9674 static dtrace_predicate_t *
9675 dtrace_predicate_create(dtrace_difo_t *dp)
9676 {
9677         dtrace_predicate_t *pred;
9678
9679         ASSERT(MUTEX_HELD(&dtrace_lock));
9680         ASSERT(dp->dtdo_refcnt != 0);
9681
9682         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9683         pred->dtp_difo = dp;
9684         pred->dtp_refcnt = 1;
9685
9686         if (!dtrace_difo_cacheable(dp))
9687                 return (pred);
9688
9689         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9690                 /*
9691                  * This is only theoretically possible -- we have had 2^32
9692                  * cacheable predicates on this machine.  We cannot allow any
9693                  * more predicates to become cacheable:  as unlikely as it is,
9694                  * there may be a thread caching a (now stale) predicate cache
9695                  * ID. (N.B.: the temptation is being successfully resisted to
9696                  * have this cmn_err() "Holy shit -- we executed this code!")
9697                  */
9698                 return (pred);
9699         }
9700
9701         pred->dtp_cacheid = dtrace_predcache_id++;
9702
9703         return (pred);
9704 }
9705
9706 static void
9707 dtrace_predicate_hold(dtrace_predicate_t *pred)
9708 {
9709         ASSERT(MUTEX_HELD(&dtrace_lock));
9710         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9711         ASSERT(pred->dtp_refcnt > 0);
9712
9713         pred->dtp_refcnt++;
9714 }
9715
9716 static void
9717 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9718 {
9719         dtrace_difo_t *dp = pred->dtp_difo;
9720
9721         ASSERT(MUTEX_HELD(&dtrace_lock));
9722         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9723         ASSERT(pred->dtp_refcnt > 0);
9724
9725         if (--pred->dtp_refcnt == 0) {
9726                 dtrace_difo_release(pred->dtp_difo, vstate);
9727                 kmem_free(pred, sizeof (dtrace_predicate_t));
9728         }
9729 }
9730
9731 /*
9732  * DTrace Action Description Functions
9733  */
9734 static dtrace_actdesc_t *
9735 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9736     uint64_t uarg, uint64_t arg)
9737 {
9738         dtrace_actdesc_t *act;
9739
9740 #if defined(sun)
9741         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9742             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9743 #endif
9744
9745         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9746         act->dtad_kind = kind;
9747         act->dtad_ntuple = ntuple;
9748         act->dtad_uarg = uarg;
9749         act->dtad_arg = arg;
9750         act->dtad_refcnt = 1;
9751
9752         return (act);
9753 }
9754
9755 static void
9756 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9757 {
9758         ASSERT(act->dtad_refcnt >= 1);
9759         act->dtad_refcnt++;
9760 }
9761
9762 static void
9763 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9764 {
9765         dtrace_actkind_t kind = act->dtad_kind;
9766         dtrace_difo_t *dp;
9767
9768         ASSERT(act->dtad_refcnt >= 1);
9769
9770         if (--act->dtad_refcnt != 0)
9771                 return;
9772
9773         if ((dp = act->dtad_difo) != NULL)
9774                 dtrace_difo_release(dp, vstate);
9775
9776         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9777                 char *str = (char *)(uintptr_t)act->dtad_arg;
9778
9779 #if defined(sun)
9780                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9781                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9782 #endif
9783
9784                 if (str != NULL)
9785                         kmem_free(str, strlen(str) + 1);
9786         }
9787
9788         kmem_free(act, sizeof (dtrace_actdesc_t));
9789 }
9790
9791 /*
9792  * DTrace ECB Functions
9793  */
9794 static dtrace_ecb_t *
9795 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9796 {
9797         dtrace_ecb_t *ecb;
9798         dtrace_epid_t epid;
9799
9800         ASSERT(MUTEX_HELD(&dtrace_lock));
9801
9802         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9803         ecb->dte_predicate = NULL;
9804         ecb->dte_probe = probe;
9805
9806         /*
9807          * The default size is the size of the default action: recording
9808          * the header.
9809          */
9810         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9811         ecb->dte_alignment = sizeof (dtrace_epid_t);
9812
9813         epid = state->dts_epid++;
9814
9815         if (epid - 1 >= state->dts_necbs) {
9816                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9817                 int necbs = state->dts_necbs << 1;
9818
9819                 ASSERT(epid == state->dts_necbs + 1);
9820
9821                 if (necbs == 0) {
9822                         ASSERT(oecbs == NULL);
9823                         necbs = 1;
9824                 }
9825
9826                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9827
9828                 if (oecbs != NULL)
9829                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9830
9831                 dtrace_membar_producer();
9832                 state->dts_ecbs = ecbs;
9833
9834                 if (oecbs != NULL) {
9835                         /*
9836                          * If this state is active, we must dtrace_sync()
9837                          * before we can free the old dts_ecbs array:  we're
9838                          * coming in hot, and there may be active ring
9839                          * buffer processing (which indexes into the dts_ecbs
9840                          * array) on another CPU.
9841                          */
9842                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9843                                 dtrace_sync();
9844
9845                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9846                 }
9847
9848                 dtrace_membar_producer();
9849                 state->dts_necbs = necbs;
9850         }
9851
9852         ecb->dte_state = state;
9853
9854         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9855         dtrace_membar_producer();
9856         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9857
9858         return (ecb);
9859 }
9860
9861 static void
9862 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9863 {
9864         dtrace_probe_t *probe = ecb->dte_probe;
9865
9866         ASSERT(MUTEX_HELD(&cpu_lock));
9867         ASSERT(MUTEX_HELD(&dtrace_lock));
9868         ASSERT(ecb->dte_next == NULL);
9869
9870         if (probe == NULL) {
9871                 /*
9872                  * This is the NULL probe -- there's nothing to do.
9873                  */
9874                 return;
9875         }
9876
9877         if (probe->dtpr_ecb == NULL) {
9878                 dtrace_provider_t *prov = probe->dtpr_provider;
9879
9880                 /*
9881                  * We're the first ECB on this probe.
9882                  */
9883                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9884
9885                 if (ecb->dte_predicate != NULL)
9886                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9887
9888                 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9889                     probe->dtpr_id, probe->dtpr_arg);
9890         } else {
9891                 /*
9892                  * This probe is already active.  Swing the last pointer to
9893                  * point to the new ECB, and issue a dtrace_sync() to assure
9894                  * that all CPUs have seen the change.
9895                  */
9896                 ASSERT(probe->dtpr_ecb_last != NULL);
9897                 probe->dtpr_ecb_last->dte_next = ecb;
9898                 probe->dtpr_ecb_last = ecb;
9899                 probe->dtpr_predcache = 0;
9900
9901                 dtrace_sync();
9902         }
9903 }
9904
9905 static void
9906 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9907 {
9908         dtrace_action_t *act;
9909         uint32_t curneeded = UINT32_MAX;
9910         uint32_t aggbase = UINT32_MAX;
9911
9912         /*
9913          * If we record anything, we always record the dtrace_rechdr_t.  (And
9914          * we always record it first.)
9915          */
9916         ecb->dte_size = sizeof (dtrace_rechdr_t);
9917         ecb->dte_alignment = sizeof (dtrace_epid_t);
9918
9919         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9920                 dtrace_recdesc_t *rec = &act->dta_rec;
9921                 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9922
9923                 ecb->dte_alignment = MAX(ecb->dte_alignment,
9924                     rec->dtrd_alignment);
9925
9926                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9927                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9928
9929                         ASSERT(rec->dtrd_size != 0);
9930                         ASSERT(agg->dtag_first != NULL);
9931                         ASSERT(act->dta_prev->dta_intuple);
9932                         ASSERT(aggbase != UINT32_MAX);
9933                         ASSERT(curneeded != UINT32_MAX);
9934
9935                         agg->dtag_base = aggbase;
9936
9937                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9938                         rec->dtrd_offset = curneeded;
9939                         curneeded += rec->dtrd_size;
9940                         ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9941
9942                         aggbase = UINT32_MAX;
9943                         curneeded = UINT32_MAX;
9944                 } else if (act->dta_intuple) {
9945                         if (curneeded == UINT32_MAX) {
9946                                 /*
9947                                  * This is the first record in a tuple.  Align
9948                                  * curneeded to be at offset 4 in an 8-byte
9949                                  * aligned block.
9950                                  */
9951                                 ASSERT(act->dta_prev == NULL ||
9952                                     !act->dta_prev->dta_intuple);
9953                                 ASSERT3U(aggbase, ==, UINT32_MAX);
9954                                 curneeded = P2PHASEUP(ecb->dte_size,
9955                                     sizeof (uint64_t), sizeof (dtrace_aggid_t));
9956
9957                                 aggbase = curneeded - sizeof (dtrace_aggid_t);
9958                                 ASSERT(IS_P2ALIGNED(aggbase,
9959                                     sizeof (uint64_t)));
9960                         }
9961                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9962                         rec->dtrd_offset = curneeded;
9963                         curneeded += rec->dtrd_size;
9964                 } else {
9965                         /* tuples must be followed by an aggregation */
9966                         ASSERT(act->dta_prev == NULL ||
9967                             !act->dta_prev->dta_intuple);
9968
9969                         ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9970                             rec->dtrd_alignment);
9971                         rec->dtrd_offset = ecb->dte_size;
9972                         ecb->dte_size += rec->dtrd_size;
9973                         ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9974                 }
9975         }
9976
9977         if ((act = ecb->dte_action) != NULL &&
9978             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9979             ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9980                 /*
9981                  * If the size is still sizeof (dtrace_rechdr_t), then all
9982                  * actions store no data; set the size to 0.
9983                  */
9984                 ecb->dte_size = 0;
9985         }
9986
9987         ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9988         ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9989         ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9990             ecb->dte_needed);
9991 }
9992
9993 static dtrace_action_t *
9994 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9995 {
9996         dtrace_aggregation_t *agg;
9997         size_t size = sizeof (uint64_t);
9998         int ntuple = desc->dtad_ntuple;
9999         dtrace_action_t *act;
10000         dtrace_recdesc_t *frec;
10001         dtrace_aggid_t aggid;
10002         dtrace_state_t *state = ecb->dte_state;
10003
10004         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10005         agg->dtag_ecb = ecb;
10006
10007         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10008
10009         switch (desc->dtad_kind) {
10010         case DTRACEAGG_MIN:
10011                 agg->dtag_initial = INT64_MAX;
10012                 agg->dtag_aggregate = dtrace_aggregate_min;
10013                 break;
10014
10015         case DTRACEAGG_MAX:
10016                 agg->dtag_initial = INT64_MIN;
10017                 agg->dtag_aggregate = dtrace_aggregate_max;
10018                 break;
10019
10020         case DTRACEAGG_COUNT:
10021                 agg->dtag_aggregate = dtrace_aggregate_count;
10022                 break;
10023
10024         case DTRACEAGG_QUANTIZE:
10025                 agg->dtag_aggregate = dtrace_aggregate_quantize;
10026                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10027                     sizeof (uint64_t);
10028                 break;
10029
10030         case DTRACEAGG_LQUANTIZE: {
10031                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10032                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10033
10034                 agg->dtag_initial = desc->dtad_arg;
10035                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10036
10037                 if (step == 0 || levels == 0)
10038                         goto err;
10039
10040                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10041                 break;
10042         }
10043
10044         case DTRACEAGG_LLQUANTIZE: {
10045                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10046                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10047                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10048                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10049                 int64_t v;
10050
10051                 agg->dtag_initial = desc->dtad_arg;
10052                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10053
10054                 if (factor < 2 || low >= high || nsteps < factor)
10055                         goto err;
10056
10057                 /*
10058                  * Now check that the number of steps evenly divides a power
10059                  * of the factor.  (This assures both integer bucket size and
10060                  * linearity within each magnitude.)
10061                  */
10062                 for (v = factor; v < nsteps; v *= factor)
10063                         continue;
10064
10065                 if ((v % nsteps) || (nsteps % factor))
10066                         goto err;
10067
10068                 size = (dtrace_aggregate_llquantize_bucket(factor,
10069                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10070                 break;
10071         }
10072
10073         case DTRACEAGG_AVG:
10074                 agg->dtag_aggregate = dtrace_aggregate_avg;
10075                 size = sizeof (uint64_t) * 2;
10076                 break;
10077
10078         case DTRACEAGG_STDDEV:
10079                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10080                 size = sizeof (uint64_t) * 4;
10081                 break;
10082
10083         case DTRACEAGG_SUM:
10084                 agg->dtag_aggregate = dtrace_aggregate_sum;
10085                 break;
10086
10087         default:
10088                 goto err;
10089         }
10090
10091         agg->dtag_action.dta_rec.dtrd_size = size;
10092
10093         if (ntuple == 0)
10094                 goto err;
10095
10096         /*
10097          * We must make sure that we have enough actions for the n-tuple.
10098          */
10099         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10100                 if (DTRACEACT_ISAGG(act->dta_kind))
10101                         break;
10102
10103                 if (--ntuple == 0) {
10104                         /*
10105                          * This is the action with which our n-tuple begins.
10106                          */
10107                         agg->dtag_first = act;
10108                         goto success;
10109                 }
10110         }
10111
10112         /*
10113          * This n-tuple is short by ntuple elements.  Return failure.
10114          */
10115         ASSERT(ntuple != 0);
10116 err:
10117         kmem_free(agg, sizeof (dtrace_aggregation_t));
10118         return (NULL);
10119
10120 success:
10121         /*
10122          * If the last action in the tuple has a size of zero, it's actually
10123          * an expression argument for the aggregating action.
10124          */
10125         ASSERT(ecb->dte_action_last != NULL);
10126         act = ecb->dte_action_last;
10127
10128         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10129                 ASSERT(act->dta_difo != NULL);
10130
10131                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10132                         agg->dtag_hasarg = 1;
10133         }
10134
10135         /*
10136          * We need to allocate an id for this aggregation.
10137          */
10138 #if defined(sun)
10139         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10140             VM_BESTFIT | VM_SLEEP);
10141 #else
10142         aggid = alloc_unr(state->dts_aggid_arena);
10143 #endif
10144
10145         if (aggid - 1 >= state->dts_naggregations) {
10146                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10147                 dtrace_aggregation_t **aggs;
10148                 int naggs = state->dts_naggregations << 1;
10149                 int onaggs = state->dts_naggregations;
10150
10151                 ASSERT(aggid == state->dts_naggregations + 1);
10152
10153                 if (naggs == 0) {
10154                         ASSERT(oaggs == NULL);
10155                         naggs = 1;
10156                 }
10157
10158                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10159
10160                 if (oaggs != NULL) {
10161                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10162                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10163                 }
10164
10165                 state->dts_aggregations = aggs;
10166                 state->dts_naggregations = naggs;
10167         }
10168
10169         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10170         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10171
10172         frec = &agg->dtag_first->dta_rec;
10173         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10174                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10175
10176         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10177                 ASSERT(!act->dta_intuple);
10178                 act->dta_intuple = 1;
10179         }
10180
10181         return (&agg->dtag_action);
10182 }
10183
10184 static void
10185 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10186 {
10187         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10188         dtrace_state_t *state = ecb->dte_state;
10189         dtrace_aggid_t aggid = agg->dtag_id;
10190
10191         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10192 #if defined(sun)
10193         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10194 #else
10195         free_unr(state->dts_aggid_arena, aggid);
10196 #endif
10197
10198         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10199         state->dts_aggregations[aggid - 1] = NULL;
10200
10201         kmem_free(agg, sizeof (dtrace_aggregation_t));
10202 }
10203
10204 static int
10205 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10206 {
10207         dtrace_action_t *action, *last;
10208         dtrace_difo_t *dp = desc->dtad_difo;
10209         uint32_t size = 0, align = sizeof (uint8_t), mask;
10210         uint16_t format = 0;
10211         dtrace_recdesc_t *rec;
10212         dtrace_state_t *state = ecb->dte_state;
10213         dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10214         uint64_t arg = desc->dtad_arg;
10215
10216         ASSERT(MUTEX_HELD(&dtrace_lock));
10217         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10218
10219         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10220                 /*
10221                  * If this is an aggregating action, there must be neither
10222                  * a speculate nor a commit on the action chain.
10223                  */
10224                 dtrace_action_t *act;
10225
10226                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10227                         if (act->dta_kind == DTRACEACT_COMMIT)
10228                                 return (EINVAL);
10229
10230                         if (act->dta_kind == DTRACEACT_SPECULATE)
10231                                 return (EINVAL);
10232                 }
10233
10234                 action = dtrace_ecb_aggregation_create(ecb, desc);
10235
10236                 if (action == NULL)
10237                         return (EINVAL);
10238         } else {
10239                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10240                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10241                     dp != NULL && dp->dtdo_destructive)) {
10242                         state->dts_destructive = 1;
10243                 }
10244
10245                 switch (desc->dtad_kind) {
10246                 case DTRACEACT_PRINTF:
10247                 case DTRACEACT_PRINTA:
10248                 case DTRACEACT_SYSTEM:
10249                 case DTRACEACT_FREOPEN:
10250                 case DTRACEACT_DIFEXPR:
10251                         /*
10252                          * We know that our arg is a string -- turn it into a
10253                          * format.
10254                          */
10255                         if (arg == 0) {
10256                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10257                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10258                                 format = 0;
10259                         } else {
10260                                 ASSERT(arg != 0);
10261 #if defined(sun)
10262                                 ASSERT(arg > KERNELBASE);
10263 #endif
10264                                 format = dtrace_format_add(state,
10265                                     (char *)(uintptr_t)arg);
10266                         }
10267
10268                         /*FALLTHROUGH*/
10269                 case DTRACEACT_LIBACT:
10270                 case DTRACEACT_TRACEMEM:
10271                 case DTRACEACT_TRACEMEM_DYNSIZE:
10272                         if (dp == NULL)
10273                                 return (EINVAL);
10274
10275                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10276                                 break;
10277
10278                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10279                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10280                                         return (EINVAL);
10281
10282                                 size = opt[DTRACEOPT_STRSIZE];
10283                         }
10284
10285                         break;
10286
10287                 case DTRACEACT_STACK:
10288                         if ((nframes = arg) == 0) {
10289                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10290                                 ASSERT(nframes > 0);
10291                                 arg = nframes;
10292                         }
10293
10294                         size = nframes * sizeof (pc_t);
10295                         break;
10296
10297                 case DTRACEACT_JSTACK:
10298                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10299                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10300
10301                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10302                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10303
10304                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10305
10306                         /*FALLTHROUGH*/
10307                 case DTRACEACT_USTACK:
10308                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10309                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10310                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10311                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10312                                 ASSERT(nframes > 0);
10313                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10314                         }
10315
10316                         /*
10317                          * Save a slot for the pid.
10318                          */
10319                         size = (nframes + 1) * sizeof (uint64_t);
10320                         size += DTRACE_USTACK_STRSIZE(arg);
10321                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10322
10323                         break;
10324
10325                 case DTRACEACT_SYM:
10326                 case DTRACEACT_MOD:
10327                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10328                             sizeof (uint64_t)) ||
10329                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10330                                 return (EINVAL);
10331                         break;
10332
10333                 case DTRACEACT_USYM:
10334                 case DTRACEACT_UMOD:
10335                 case DTRACEACT_UADDR:
10336                         if (dp == NULL ||
10337                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10338                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10339                                 return (EINVAL);
10340
10341                         /*
10342                          * We have a slot for the pid, plus a slot for the
10343                          * argument.  To keep things simple (aligned with
10344                          * bitness-neutral sizing), we store each as a 64-bit
10345                          * quantity.
10346                          */
10347                         size = 2 * sizeof (uint64_t);
10348                         break;
10349
10350                 case DTRACEACT_STOP:
10351                 case DTRACEACT_BREAKPOINT:
10352                 case DTRACEACT_PANIC:
10353                         break;
10354
10355                 case DTRACEACT_CHILL:
10356                 case DTRACEACT_DISCARD:
10357                 case DTRACEACT_RAISE:
10358                         if (dp == NULL)
10359                                 return (EINVAL);
10360                         break;
10361
10362                 case DTRACEACT_EXIT:
10363                         if (dp == NULL ||
10364                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10365                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10366                                 return (EINVAL);
10367                         break;
10368
10369                 case DTRACEACT_SPECULATE:
10370                         if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10371                                 return (EINVAL);
10372
10373                         if (dp == NULL)
10374                                 return (EINVAL);
10375
10376                         state->dts_speculates = 1;
10377                         break;
10378
10379                 case DTRACEACT_PRINTM:
10380                         size = dp->dtdo_rtype.dtdt_size;
10381                         break;
10382
10383                 case DTRACEACT_PRINTT:
10384                         size = dp->dtdo_rtype.dtdt_size;
10385                         break;
10386
10387                 case DTRACEACT_COMMIT: {
10388                         dtrace_action_t *act = ecb->dte_action;
10389
10390                         for (; act != NULL; act = act->dta_next) {
10391                                 if (act->dta_kind == DTRACEACT_COMMIT)
10392                                         return (EINVAL);
10393                         }
10394
10395                         if (dp == NULL)
10396                                 return (EINVAL);
10397                         break;
10398                 }
10399
10400                 default:
10401                         return (EINVAL);
10402                 }
10403
10404                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10405                         /*
10406                          * If this is a data-storing action or a speculate,
10407                          * we must be sure that there isn't a commit on the
10408                          * action chain.
10409                          */
10410                         dtrace_action_t *act = ecb->dte_action;
10411
10412                         for (; act != NULL; act = act->dta_next) {
10413                                 if (act->dta_kind == DTRACEACT_COMMIT)
10414                                         return (EINVAL);
10415                         }
10416                 }
10417
10418                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10419                 action->dta_rec.dtrd_size = size;
10420         }
10421
10422         action->dta_refcnt = 1;
10423         rec = &action->dta_rec;
10424         size = rec->dtrd_size;
10425
10426         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10427                 if (!(size & mask)) {
10428                         align = mask + 1;
10429                         break;
10430                 }
10431         }
10432
10433         action->dta_kind = desc->dtad_kind;
10434
10435         if ((action->dta_difo = dp) != NULL)
10436                 dtrace_difo_hold(dp);
10437
10438         rec->dtrd_action = action->dta_kind;
10439         rec->dtrd_arg = arg;
10440         rec->dtrd_uarg = desc->dtad_uarg;
10441         rec->dtrd_alignment = (uint16_t)align;
10442         rec->dtrd_format = format;
10443
10444         if ((last = ecb->dte_action_last) != NULL) {
10445                 ASSERT(ecb->dte_action != NULL);
10446                 action->dta_prev = last;
10447                 last->dta_next = action;
10448         } else {
10449                 ASSERT(ecb->dte_action == NULL);
10450                 ecb->dte_action = action;
10451         }
10452
10453         ecb->dte_action_last = action;
10454
10455         return (0);
10456 }
10457
10458 static void
10459 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10460 {
10461         dtrace_action_t *act = ecb->dte_action, *next;
10462         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10463         dtrace_difo_t *dp;
10464         uint16_t format;
10465
10466         if (act != NULL && act->dta_refcnt > 1) {
10467                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10468                 act->dta_refcnt--;
10469         } else {
10470                 for (; act != NULL; act = next) {
10471                         next = act->dta_next;
10472                         ASSERT(next != NULL || act == ecb->dte_action_last);
10473                         ASSERT(act->dta_refcnt == 1);
10474
10475                         if ((format = act->dta_rec.dtrd_format) != 0)
10476                                 dtrace_format_remove(ecb->dte_state, format);
10477
10478                         if ((dp = act->dta_difo) != NULL)
10479                                 dtrace_difo_release(dp, vstate);
10480
10481                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10482                                 dtrace_ecb_aggregation_destroy(ecb, act);
10483                         } else {
10484                                 kmem_free(act, sizeof (dtrace_action_t));
10485                         }
10486                 }
10487         }
10488
10489         ecb->dte_action = NULL;
10490         ecb->dte_action_last = NULL;
10491         ecb->dte_size = 0;
10492 }
10493
10494 static void
10495 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10496 {
10497         /*
10498          * We disable the ECB by removing it from its probe.
10499          */
10500         dtrace_ecb_t *pecb, *prev = NULL;
10501         dtrace_probe_t *probe = ecb->dte_probe;
10502
10503         ASSERT(MUTEX_HELD(&dtrace_lock));
10504
10505         if (probe == NULL) {
10506                 /*
10507                  * This is the NULL probe; there is nothing to disable.
10508                  */
10509                 return;
10510         }
10511
10512         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10513                 if (pecb == ecb)
10514                         break;
10515                 prev = pecb;
10516         }
10517
10518         ASSERT(pecb != NULL);
10519
10520         if (prev == NULL) {
10521                 probe->dtpr_ecb = ecb->dte_next;
10522         } else {
10523                 prev->dte_next = ecb->dte_next;
10524         }
10525
10526         if (ecb == probe->dtpr_ecb_last) {
10527                 ASSERT(ecb->dte_next == NULL);
10528                 probe->dtpr_ecb_last = prev;
10529         }
10530
10531         /*
10532          * The ECB has been disconnected from the probe; now sync to assure
10533          * that all CPUs have seen the change before returning.
10534          */
10535         dtrace_sync();
10536
10537         if (probe->dtpr_ecb == NULL) {
10538                 /*
10539                  * That was the last ECB on the probe; clear the predicate
10540                  * cache ID for the probe, disable it and sync one more time
10541                  * to assure that we'll never hit it again.
10542                  */
10543                 dtrace_provider_t *prov = probe->dtpr_provider;
10544
10545                 ASSERT(ecb->dte_next == NULL);
10546                 ASSERT(probe->dtpr_ecb_last == NULL);
10547                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10548                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10549                     probe->dtpr_id, probe->dtpr_arg);
10550                 dtrace_sync();
10551         } else {
10552                 /*
10553                  * There is at least one ECB remaining on the probe.  If there
10554                  * is _exactly_ one, set the probe's predicate cache ID to be
10555                  * the predicate cache ID of the remaining ECB.
10556                  */
10557                 ASSERT(probe->dtpr_ecb_last != NULL);
10558                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10559
10560                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10561                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10562
10563                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10564
10565                         if (p != NULL)
10566                                 probe->dtpr_predcache = p->dtp_cacheid;
10567                 }
10568
10569                 ecb->dte_next = NULL;
10570         }
10571 }
10572
10573 static void
10574 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10575 {
10576         dtrace_state_t *state = ecb->dte_state;
10577         dtrace_vstate_t *vstate = &state->dts_vstate;
10578         dtrace_predicate_t *pred;
10579         dtrace_epid_t epid = ecb->dte_epid;
10580
10581         ASSERT(MUTEX_HELD(&dtrace_lock));
10582         ASSERT(ecb->dte_next == NULL);
10583         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10584
10585         if ((pred = ecb->dte_predicate) != NULL)
10586                 dtrace_predicate_release(pred, vstate);
10587
10588         dtrace_ecb_action_remove(ecb);
10589
10590         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10591         state->dts_ecbs[epid - 1] = NULL;
10592
10593         kmem_free(ecb, sizeof (dtrace_ecb_t));
10594 }
10595
10596 static dtrace_ecb_t *
10597 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10598     dtrace_enabling_t *enab)
10599 {
10600         dtrace_ecb_t *ecb;
10601         dtrace_predicate_t *pred;
10602         dtrace_actdesc_t *act;
10603         dtrace_provider_t *prov;
10604         dtrace_ecbdesc_t *desc = enab->dten_current;
10605
10606         ASSERT(MUTEX_HELD(&dtrace_lock));
10607         ASSERT(state != NULL);
10608
10609         ecb = dtrace_ecb_add(state, probe);
10610         ecb->dte_uarg = desc->dted_uarg;
10611
10612         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10613                 dtrace_predicate_hold(pred);
10614                 ecb->dte_predicate = pred;
10615         }
10616
10617         if (probe != NULL) {
10618                 /*
10619                  * If the provider shows more leg than the consumer is old
10620                  * enough to see, we need to enable the appropriate implicit
10621                  * predicate bits to prevent the ecb from activating at
10622                  * revealing times.
10623                  *
10624                  * Providers specifying DTRACE_PRIV_USER at register time
10625                  * are stating that they need the /proc-style privilege
10626                  * model to be enforced, and this is what DTRACE_COND_OWNER
10627                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10628                  */
10629                 prov = probe->dtpr_provider;
10630                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10631                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10632                         ecb->dte_cond |= DTRACE_COND_OWNER;
10633
10634                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10635                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10636                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10637
10638                 /*
10639                  * If the provider shows us kernel innards and the user
10640                  * is lacking sufficient privilege, enable the
10641                  * DTRACE_COND_USERMODE implicit predicate.
10642                  */
10643                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10644                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10645                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10646         }
10647
10648         if (dtrace_ecb_create_cache != NULL) {
10649                 /*
10650                  * If we have a cached ecb, we'll use its action list instead
10651                  * of creating our own (saving both time and space).
10652                  */
10653                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10654                 dtrace_action_t *act = cached->dte_action;
10655
10656                 if (act != NULL) {
10657                         ASSERT(act->dta_refcnt > 0);
10658                         act->dta_refcnt++;
10659                         ecb->dte_action = act;
10660                         ecb->dte_action_last = cached->dte_action_last;
10661                         ecb->dte_needed = cached->dte_needed;
10662                         ecb->dte_size = cached->dte_size;
10663                         ecb->dte_alignment = cached->dte_alignment;
10664                 }
10665
10666                 return (ecb);
10667         }
10668
10669         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10670                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10671                         dtrace_ecb_destroy(ecb);
10672                         return (NULL);
10673                 }
10674         }
10675
10676         dtrace_ecb_resize(ecb);
10677
10678         return (dtrace_ecb_create_cache = ecb);
10679 }
10680
10681 static int
10682 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10683 {
10684         dtrace_ecb_t *ecb;
10685         dtrace_enabling_t *enab = arg;
10686         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10687
10688         ASSERT(state != NULL);
10689
10690         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10691                 /*
10692                  * This probe was created in a generation for which this
10693                  * enabling has previously created ECBs; we don't want to
10694                  * enable it again, so just kick out.
10695                  */
10696                 return (DTRACE_MATCH_NEXT);
10697         }
10698
10699         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10700                 return (DTRACE_MATCH_DONE);
10701
10702         dtrace_ecb_enable(ecb);
10703         return (DTRACE_MATCH_NEXT);
10704 }
10705
10706 static dtrace_ecb_t *
10707 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10708 {
10709         dtrace_ecb_t *ecb;
10710
10711         ASSERT(MUTEX_HELD(&dtrace_lock));
10712
10713         if (id == 0 || id > state->dts_necbs)
10714                 return (NULL);
10715
10716         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10717         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10718
10719         return (state->dts_ecbs[id - 1]);
10720 }
10721
10722 static dtrace_aggregation_t *
10723 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10724 {
10725         dtrace_aggregation_t *agg;
10726
10727         ASSERT(MUTEX_HELD(&dtrace_lock));
10728
10729         if (id == 0 || id > state->dts_naggregations)
10730                 return (NULL);
10731
10732         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10733         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10734             agg->dtag_id == id);
10735
10736         return (state->dts_aggregations[id - 1]);
10737 }
10738
10739 /*
10740  * DTrace Buffer Functions
10741  *
10742  * The following functions manipulate DTrace buffers.  Most of these functions
10743  * are called in the context of establishing or processing consumer state;
10744  * exceptions are explicitly noted.
10745  */
10746
10747 /*
10748  * Note:  called from cross call context.  This function switches the two
10749  * buffers on a given CPU.  The atomicity of this operation is assured by
10750  * disabling interrupts while the actual switch takes place; the disabling of
10751  * interrupts serializes the execution with any execution of dtrace_probe() on
10752  * the same CPU.
10753  */
10754 static void
10755 dtrace_buffer_switch(dtrace_buffer_t *buf)
10756 {
10757         caddr_t tomax = buf->dtb_tomax;
10758         caddr_t xamot = buf->dtb_xamot;
10759         dtrace_icookie_t cookie;
10760         hrtime_t now;
10761
10762         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10763         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10764
10765         cookie = dtrace_interrupt_disable();
10766         now = dtrace_gethrtime();
10767         buf->dtb_tomax = xamot;
10768         buf->dtb_xamot = tomax;
10769         buf->dtb_xamot_drops = buf->dtb_drops;
10770         buf->dtb_xamot_offset = buf->dtb_offset;
10771         buf->dtb_xamot_errors = buf->dtb_errors;
10772         buf->dtb_xamot_flags = buf->dtb_flags;
10773         buf->dtb_offset = 0;
10774         buf->dtb_drops = 0;
10775         buf->dtb_errors = 0;
10776         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10777         buf->dtb_interval = now - buf->dtb_switched;
10778         buf->dtb_switched = now;
10779         dtrace_interrupt_enable(cookie);
10780 }
10781
10782 /*
10783  * Note:  called from cross call context.  This function activates a buffer
10784  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10785  * is guaranteed by the disabling of interrupts.
10786  */
10787 static void
10788 dtrace_buffer_activate(dtrace_state_t *state)
10789 {
10790         dtrace_buffer_t *buf;
10791         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10792
10793         buf = &state->dts_buffer[curcpu];
10794
10795         if (buf->dtb_tomax != NULL) {
10796                 /*
10797                  * We might like to assert that the buffer is marked inactive,
10798                  * but this isn't necessarily true:  the buffer for the CPU
10799                  * that processes the BEGIN probe has its buffer activated
10800                  * manually.  In this case, we take the (harmless) action
10801                  * re-clearing the bit INACTIVE bit.
10802                  */
10803                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10804         }
10805
10806         dtrace_interrupt_enable(cookie);
10807 }
10808
10809 static int
10810 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10811     processorid_t cpu)
10812 {
10813 #if defined(sun)
10814         cpu_t *cp;
10815 #endif
10816         dtrace_buffer_t *buf;
10817
10818 #if defined(sun)
10819         ASSERT(MUTEX_HELD(&cpu_lock));
10820         ASSERT(MUTEX_HELD(&dtrace_lock));
10821
10822         if (size > dtrace_nonroot_maxsize &&
10823             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10824                 return (EFBIG);
10825
10826         cp = cpu_list;
10827
10828         do {
10829                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10830                         continue;
10831
10832                 buf = &bufs[cp->cpu_id];
10833
10834                 /*
10835                  * If there is already a buffer allocated for this CPU, it
10836                  * is only possible that this is a DR event.  In this case,
10837                  */
10838                 if (buf->dtb_tomax != NULL) {
10839                         ASSERT(buf->dtb_size == size);
10840                         continue;
10841                 }
10842
10843                 ASSERT(buf->dtb_xamot == NULL);
10844
10845                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10846                         goto err;
10847
10848                 buf->dtb_size = size;
10849                 buf->dtb_flags = flags;
10850                 buf->dtb_offset = 0;
10851                 buf->dtb_drops = 0;
10852
10853                 if (flags & DTRACEBUF_NOSWITCH)
10854                         continue;
10855
10856                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10857                         goto err;
10858         } while ((cp = cp->cpu_next) != cpu_list);
10859
10860         return (0);
10861
10862 err:
10863         cp = cpu_list;
10864
10865         do {
10866                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10867                         continue;
10868
10869                 buf = &bufs[cp->cpu_id];
10870
10871                 if (buf->dtb_xamot != NULL) {
10872                         ASSERT(buf->dtb_tomax != NULL);
10873                         ASSERT(buf->dtb_size == size);
10874                         kmem_free(buf->dtb_xamot, size);
10875                 }
10876
10877                 if (buf->dtb_tomax != NULL) {
10878                         ASSERT(buf->dtb_size == size);
10879                         kmem_free(buf->dtb_tomax, size);
10880                 }
10881
10882                 buf->dtb_tomax = NULL;
10883                 buf->dtb_xamot = NULL;
10884                 buf->dtb_size = 0;
10885         } while ((cp = cp->cpu_next) != cpu_list);
10886
10887         return (ENOMEM);
10888 #else
10889         int i;
10890
10891 #if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10892         /*
10893          * FreeBSD isn't good at limiting the amount of memory we
10894          * ask to malloc, so let's place a limit here before trying
10895          * to do something that might well end in tears at bedtime.
10896          */
10897         if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10898                 return(ENOMEM);
10899 #endif
10900
10901         ASSERT(MUTEX_HELD(&dtrace_lock));
10902         CPU_FOREACH(i) {
10903                 if (cpu != DTRACE_CPUALL && cpu != i)
10904                         continue;
10905
10906                 buf = &bufs[i];
10907
10908                 /*
10909                  * If there is already a buffer allocated for this CPU, it
10910                  * is only possible that this is a DR event.  In this case,
10911                  * the buffer size must match our specified size.
10912                  */
10913                 if (buf->dtb_tomax != NULL) {
10914                         ASSERT(buf->dtb_size == size);
10915                         continue;
10916                 }
10917
10918                 ASSERT(buf->dtb_xamot == NULL);
10919
10920                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10921                         goto err;
10922
10923                 buf->dtb_size = size;
10924                 buf->dtb_flags = flags;
10925                 buf->dtb_offset = 0;
10926                 buf->dtb_drops = 0;
10927
10928                 if (flags & DTRACEBUF_NOSWITCH)
10929                         continue;
10930
10931                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10932                         goto err;
10933         }
10934
10935         return (0);
10936
10937 err:
10938         /*
10939          * Error allocating memory, so free the buffers that were
10940          * allocated before the failed allocation.
10941          */
10942         CPU_FOREACH(i) {
10943                 if (cpu != DTRACE_CPUALL && cpu != i)
10944                         continue;
10945
10946                 buf = &bufs[i];
10947
10948                 if (buf->dtb_xamot != NULL) {
10949                         ASSERT(buf->dtb_tomax != NULL);
10950                         ASSERT(buf->dtb_size == size);
10951                         kmem_free(buf->dtb_xamot, size);
10952                 }
10953
10954                 if (buf->dtb_tomax != NULL) {
10955                         ASSERT(buf->dtb_size == size);
10956                         kmem_free(buf->dtb_tomax, size);
10957                 }
10958
10959                 buf->dtb_tomax = NULL;
10960                 buf->dtb_xamot = NULL;
10961                 buf->dtb_size = 0;
10962
10963         }
10964
10965         return (ENOMEM);
10966 #endif
10967 }
10968
10969 /*
10970  * Note:  called from probe context.  This function just increments the drop
10971  * count on a buffer.  It has been made a function to allow for the
10972  * possibility of understanding the source of mysterious drop counts.  (A
10973  * problem for which one may be particularly disappointed that DTrace cannot
10974  * be used to understand DTrace.)
10975  */
10976 static void
10977 dtrace_buffer_drop(dtrace_buffer_t *buf)
10978 {
10979         buf->dtb_drops++;
10980 }
10981
10982 /*
10983  * Note:  called from probe context.  This function is called to reserve space
10984  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10985  * mstate.  Returns the new offset in the buffer, or a negative value if an
10986  * error has occurred.
10987  */
10988 static intptr_t
10989 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10990     dtrace_state_t *state, dtrace_mstate_t *mstate)
10991 {
10992         intptr_t offs = buf->dtb_offset, soffs;
10993         intptr_t woffs;
10994         caddr_t tomax;
10995         size_t total;
10996
10997         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10998                 return (-1);
10999
11000         if ((tomax = buf->dtb_tomax) == NULL) {
11001                 dtrace_buffer_drop(buf);
11002                 return (-1);
11003         }
11004
11005         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11006                 while (offs & (align - 1)) {
11007                         /*
11008                          * Assert that our alignment is off by a number which
11009                          * is itself sizeof (uint32_t) aligned.
11010                          */
11011                         ASSERT(!((align - (offs & (align - 1))) &
11012                             (sizeof (uint32_t) - 1)));
11013                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11014                         offs += sizeof (uint32_t);
11015                 }
11016
11017                 if ((soffs = offs + needed) > buf->dtb_size) {
11018                         dtrace_buffer_drop(buf);
11019                         return (-1);
11020                 }
11021
11022                 if (mstate == NULL)
11023                         return (offs);
11024
11025                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11026                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11027                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11028
11029                 return (offs);
11030         }
11031
11032         if (buf->dtb_flags & DTRACEBUF_FILL) {
11033                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11034                     (buf->dtb_flags & DTRACEBUF_FULL))
11035                         return (-1);
11036                 goto out;
11037         }
11038
11039         total = needed + (offs & (align - 1));
11040
11041         /*
11042          * For a ring buffer, life is quite a bit more complicated.  Before
11043          * we can store any padding, we need to adjust our wrapping offset.
11044          * (If we've never before wrapped or we're not about to, no adjustment
11045          * is required.)
11046          */
11047         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11048             offs + total > buf->dtb_size) {
11049                 woffs = buf->dtb_xamot_offset;
11050
11051                 if (offs + total > buf->dtb_size) {
11052                         /*
11053                          * We can't fit in the end of the buffer.  First, a
11054                          * sanity check that we can fit in the buffer at all.
11055                          */
11056                         if (total > buf->dtb_size) {
11057                                 dtrace_buffer_drop(buf);
11058                                 return (-1);
11059                         }
11060
11061                         /*
11062                          * We're going to be storing at the top of the buffer,
11063                          * so now we need to deal with the wrapped offset.  We
11064                          * only reset our wrapped offset to 0 if it is
11065                          * currently greater than the current offset.  If it
11066                          * is less than the current offset, it is because a
11067                          * previous allocation induced a wrap -- but the
11068                          * allocation didn't subsequently take the space due
11069                          * to an error or false predicate evaluation.  In this
11070                          * case, we'll just leave the wrapped offset alone: if
11071                          * the wrapped offset hasn't been advanced far enough
11072                          * for this allocation, it will be adjusted in the
11073                          * lower loop.
11074                          */
11075                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11076                                 if (woffs >= offs)
11077                                         woffs = 0;
11078                         } else {
11079                                 woffs = 0;
11080                         }
11081
11082                         /*
11083                          * Now we know that we're going to be storing to the
11084                          * top of the buffer and that there is room for us
11085                          * there.  We need to clear the buffer from the current
11086                          * offset to the end (there may be old gunk there).
11087                          */
11088                         while (offs < buf->dtb_size)
11089                                 tomax[offs++] = 0;
11090
11091                         /*
11092                          * We need to set our offset to zero.  And because we
11093                          * are wrapping, we need to set the bit indicating as
11094                          * much.  We can also adjust our needed space back
11095                          * down to the space required by the ECB -- we know
11096                          * that the top of the buffer is aligned.
11097                          */
11098                         offs = 0;
11099                         total = needed;
11100                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11101                 } else {
11102                         /*
11103                          * There is room for us in the buffer, so we simply
11104                          * need to check the wrapped offset.
11105                          */
11106                         if (woffs < offs) {
11107                                 /*
11108                                  * The wrapped offset is less than the offset.
11109                                  * This can happen if we allocated buffer space
11110                                  * that induced a wrap, but then we didn't
11111                                  * subsequently take the space due to an error
11112                                  * or false predicate evaluation.  This is
11113                                  * okay; we know that _this_ allocation isn't
11114                                  * going to induce a wrap.  We still can't
11115                                  * reset the wrapped offset to be zero,
11116                                  * however: the space may have been trashed in
11117                                  * the previous failed probe attempt.  But at
11118                                  * least the wrapped offset doesn't need to
11119                                  * be adjusted at all...
11120                                  */
11121                                 goto out;
11122                         }
11123                 }
11124
11125                 while (offs + total > woffs) {
11126                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11127                         size_t size;
11128
11129                         if (epid == DTRACE_EPIDNONE) {
11130                                 size = sizeof (uint32_t);
11131                         } else {
11132                                 ASSERT3U(epid, <=, state->dts_necbs);
11133                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11134
11135                                 size = state->dts_ecbs[epid - 1]->dte_size;
11136                         }
11137
11138                         ASSERT(woffs + size <= buf->dtb_size);
11139                         ASSERT(size != 0);
11140
11141                         if (woffs + size == buf->dtb_size) {
11142                                 /*
11143                                  * We've reached the end of the buffer; we want
11144                                  * to set the wrapped offset to 0 and break
11145                                  * out.  However, if the offs is 0, then we're
11146                                  * in a strange edge-condition:  the amount of
11147                                  * space that we want to reserve plus the size
11148                                  * of the record that we're overwriting is
11149                                  * greater than the size of the buffer.  This
11150                                  * is problematic because if we reserve the
11151                                  * space but subsequently don't consume it (due
11152                                  * to a failed predicate or error) the wrapped
11153                                  * offset will be 0 -- yet the EPID at offset 0
11154                                  * will not be committed.  This situation is
11155                                  * relatively easy to deal with:  if we're in
11156                                  * this case, the buffer is indistinguishable
11157                                  * from one that hasn't wrapped; we need only
11158                                  * finish the job by clearing the wrapped bit,
11159                                  * explicitly setting the offset to be 0, and
11160                                  * zero'ing out the old data in the buffer.
11161                                  */
11162                                 if (offs == 0) {
11163                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11164                                         buf->dtb_offset = 0;
11165                                         woffs = total;
11166
11167                                         while (woffs < buf->dtb_size)
11168                                                 tomax[woffs++] = 0;
11169                                 }
11170
11171                                 woffs = 0;
11172                                 break;
11173                         }
11174
11175                         woffs += size;
11176                 }
11177
11178                 /*
11179                  * We have a wrapped offset.  It may be that the wrapped offset
11180                  * has become zero -- that's okay.
11181                  */
11182                 buf->dtb_xamot_offset = woffs;
11183         }
11184
11185 out:
11186         /*
11187          * Now we can plow the buffer with any necessary padding.
11188          */
11189         while (offs & (align - 1)) {
11190                 /*
11191                  * Assert that our alignment is off by a number which
11192                  * is itself sizeof (uint32_t) aligned.
11193                  */
11194                 ASSERT(!((align - (offs & (align - 1))) &
11195                     (sizeof (uint32_t) - 1)));
11196                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11197                 offs += sizeof (uint32_t);
11198         }
11199
11200         if (buf->dtb_flags & DTRACEBUF_FILL) {
11201                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11202                         buf->dtb_flags |= DTRACEBUF_FULL;
11203                         return (-1);
11204                 }
11205         }
11206
11207         if (mstate == NULL)
11208                 return (offs);
11209
11210         /*
11211          * For ring buffers and fill buffers, the scratch space is always
11212          * the inactive buffer.
11213          */
11214         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11215         mstate->dtms_scratch_size = buf->dtb_size;
11216         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11217
11218         return (offs);
11219 }
11220
11221 static void
11222 dtrace_buffer_polish(dtrace_buffer_t *buf)
11223 {
11224         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11225         ASSERT(MUTEX_HELD(&dtrace_lock));
11226
11227         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11228                 return;
11229
11230         /*
11231          * We need to polish the ring buffer.  There are three cases:
11232          *
11233          * - The first (and presumably most common) is that there is no gap
11234          *   between the buffer offset and the wrapped offset.  In this case,
11235          *   there is nothing in the buffer that isn't valid data; we can
11236          *   mark the buffer as polished and return.
11237          *
11238          * - The second (less common than the first but still more common
11239          *   than the third) is that there is a gap between the buffer offset
11240          *   and the wrapped offset, and the wrapped offset is larger than the
11241          *   buffer offset.  This can happen because of an alignment issue, or
11242          *   can happen because of a call to dtrace_buffer_reserve() that
11243          *   didn't subsequently consume the buffer space.  In this case,
11244          *   we need to zero the data from the buffer offset to the wrapped
11245          *   offset.
11246          *
11247          * - The third (and least common) is that there is a gap between the
11248          *   buffer offset and the wrapped offset, but the wrapped offset is
11249          *   _less_ than the buffer offset.  This can only happen because a
11250          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11251          *   was not subsequently consumed.  In this case, we need to zero the
11252          *   space from the offset to the end of the buffer _and_ from the
11253          *   top of the buffer to the wrapped offset.
11254          */
11255         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11256                 bzero(buf->dtb_tomax + buf->dtb_offset,
11257                     buf->dtb_xamot_offset - buf->dtb_offset);
11258         }
11259
11260         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11261                 bzero(buf->dtb_tomax + buf->dtb_offset,
11262                     buf->dtb_size - buf->dtb_offset);
11263                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11264         }
11265 }
11266
11267 /*
11268  * This routine determines if data generated at the specified time has likely
11269  * been entirely consumed at user-level.  This routine is called to determine
11270  * if an ECB on a defunct probe (but for an active enabling) can be safely
11271  * disabled and destroyed.
11272  */
11273 static int
11274 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11275 {
11276         int i;
11277
11278         for (i = 0; i < NCPU; i++) {
11279                 dtrace_buffer_t *buf = &bufs[i];
11280
11281                 if (buf->dtb_size == 0)
11282                         continue;
11283
11284                 if (buf->dtb_flags & DTRACEBUF_RING)
11285                         return (0);
11286
11287                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11288                         return (0);
11289
11290                 if (buf->dtb_switched - buf->dtb_interval < when)
11291                         return (0);
11292         }
11293
11294         return (1);
11295 }
11296
11297 static void
11298 dtrace_buffer_free(dtrace_buffer_t *bufs)
11299 {
11300         int i;
11301
11302         for (i = 0; i < NCPU; i++) {
11303                 dtrace_buffer_t *buf = &bufs[i];
11304
11305                 if (buf->dtb_tomax == NULL) {
11306                         ASSERT(buf->dtb_xamot == NULL);
11307                         ASSERT(buf->dtb_size == 0);
11308                         continue;
11309                 }
11310
11311                 if (buf->dtb_xamot != NULL) {
11312                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11313                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11314                 }
11315
11316                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11317                 buf->dtb_size = 0;
11318                 buf->dtb_tomax = NULL;
11319                 buf->dtb_xamot = NULL;
11320         }
11321 }
11322
11323 /*
11324  * DTrace Enabling Functions
11325  */
11326 static dtrace_enabling_t *
11327 dtrace_enabling_create(dtrace_vstate_t *vstate)
11328 {
11329         dtrace_enabling_t *enab;
11330
11331         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11332         enab->dten_vstate = vstate;
11333
11334         return (enab);
11335 }
11336
11337 static void
11338 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11339 {
11340         dtrace_ecbdesc_t **ndesc;
11341         size_t osize, nsize;
11342
11343         /*
11344          * We can't add to enablings after we've enabled them, or after we've
11345          * retained them.
11346          */
11347         ASSERT(enab->dten_probegen == 0);
11348         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11349
11350         if (enab->dten_ndesc < enab->dten_maxdesc) {
11351                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11352                 return;
11353         }
11354
11355         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11356
11357         if (enab->dten_maxdesc == 0) {
11358                 enab->dten_maxdesc = 1;
11359         } else {
11360                 enab->dten_maxdesc <<= 1;
11361         }
11362
11363         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11364
11365         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11366         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11367         bcopy(enab->dten_desc, ndesc, osize);
11368         if (enab->dten_desc != NULL)
11369                 kmem_free(enab->dten_desc, osize);
11370
11371         enab->dten_desc = ndesc;
11372         enab->dten_desc[enab->dten_ndesc++] = ecb;
11373 }
11374
11375 static void
11376 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11377     dtrace_probedesc_t *pd)
11378 {
11379         dtrace_ecbdesc_t *new;
11380         dtrace_predicate_t *pred;
11381         dtrace_actdesc_t *act;
11382
11383         /*
11384          * We're going to create a new ECB description that matches the
11385          * specified ECB in every way, but has the specified probe description.
11386          */
11387         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11388
11389         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11390                 dtrace_predicate_hold(pred);
11391
11392         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11393                 dtrace_actdesc_hold(act);
11394
11395         new->dted_action = ecb->dted_action;
11396         new->dted_pred = ecb->dted_pred;
11397         new->dted_probe = *pd;
11398         new->dted_uarg = ecb->dted_uarg;
11399
11400         dtrace_enabling_add(enab, new);
11401 }
11402
11403 static void
11404 dtrace_enabling_dump(dtrace_enabling_t *enab)
11405 {
11406         int i;
11407
11408         for (i = 0; i < enab->dten_ndesc; i++) {
11409                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11410
11411                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11412                     desc->dtpd_provider, desc->dtpd_mod,
11413                     desc->dtpd_func, desc->dtpd_name);
11414         }
11415 }
11416
11417 static void
11418 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11419 {
11420         int i;
11421         dtrace_ecbdesc_t *ep;
11422         dtrace_vstate_t *vstate = enab->dten_vstate;
11423
11424         ASSERT(MUTEX_HELD(&dtrace_lock));
11425
11426         for (i = 0; i < enab->dten_ndesc; i++) {
11427                 dtrace_actdesc_t *act, *next;
11428                 dtrace_predicate_t *pred;
11429
11430                 ep = enab->dten_desc[i];
11431
11432                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11433                         dtrace_predicate_release(pred, vstate);
11434
11435                 for (act = ep->dted_action; act != NULL; act = next) {
11436                         next = act->dtad_next;
11437                         dtrace_actdesc_release(act, vstate);
11438                 }
11439
11440                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11441         }
11442
11443         if (enab->dten_desc != NULL)
11444                 kmem_free(enab->dten_desc,
11445                     enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11446
11447         /*
11448          * If this was a retained enabling, decrement the dts_nretained count
11449          * and take it off of the dtrace_retained list.
11450          */
11451         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11452             dtrace_retained == enab) {
11453                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11454                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11455                 enab->dten_vstate->dtvs_state->dts_nretained--;
11456         }
11457
11458         if (enab->dten_prev == NULL) {
11459                 if (dtrace_retained == enab) {
11460                         dtrace_retained = enab->dten_next;
11461
11462                         if (dtrace_retained != NULL)
11463                                 dtrace_retained->dten_prev = NULL;
11464                 }
11465         } else {
11466                 ASSERT(enab != dtrace_retained);
11467                 ASSERT(dtrace_retained != NULL);
11468                 enab->dten_prev->dten_next = enab->dten_next;
11469         }
11470
11471         if (enab->dten_next != NULL) {
11472                 ASSERT(dtrace_retained != NULL);
11473                 enab->dten_next->dten_prev = enab->dten_prev;
11474         }
11475
11476         kmem_free(enab, sizeof (dtrace_enabling_t));
11477 }
11478
11479 static int
11480 dtrace_enabling_retain(dtrace_enabling_t *enab)
11481 {
11482         dtrace_state_t *state;
11483
11484         ASSERT(MUTEX_HELD(&dtrace_lock));
11485         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11486         ASSERT(enab->dten_vstate != NULL);
11487
11488         state = enab->dten_vstate->dtvs_state;
11489         ASSERT(state != NULL);
11490
11491         /*
11492          * We only allow each state to retain dtrace_retain_max enablings.
11493          */
11494         if (state->dts_nretained >= dtrace_retain_max)
11495                 return (ENOSPC);
11496
11497         state->dts_nretained++;
11498
11499         if (dtrace_retained == NULL) {
11500                 dtrace_retained = enab;
11501                 return (0);
11502         }
11503
11504         enab->dten_next = dtrace_retained;
11505         dtrace_retained->dten_prev = enab;
11506         dtrace_retained = enab;
11507
11508         return (0);
11509 }
11510
11511 static int
11512 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11513     dtrace_probedesc_t *create)
11514 {
11515         dtrace_enabling_t *new, *enab;
11516         int found = 0, err = ENOENT;
11517
11518         ASSERT(MUTEX_HELD(&dtrace_lock));
11519         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11520         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11521         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11522         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11523
11524         new = dtrace_enabling_create(&state->dts_vstate);
11525
11526         /*
11527          * Iterate over all retained enablings, looking for enablings that
11528          * match the specified state.
11529          */
11530         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11531                 int i;
11532
11533                 /*
11534                  * dtvs_state can only be NULL for helper enablings -- and
11535                  * helper enablings can't be retained.
11536                  */
11537                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11538
11539                 if (enab->dten_vstate->dtvs_state != state)
11540                         continue;
11541
11542                 /*
11543                  * Now iterate over each probe description; we're looking for
11544                  * an exact match to the specified probe description.
11545                  */
11546                 for (i = 0; i < enab->dten_ndesc; i++) {
11547                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11548                         dtrace_probedesc_t *pd = &ep->dted_probe;
11549
11550                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11551                                 continue;
11552
11553                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11554                                 continue;
11555
11556                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11557                                 continue;
11558
11559                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11560                                 continue;
11561
11562                         /*
11563                          * We have a winning probe!  Add it to our growing
11564                          * enabling.
11565                          */
11566                         found = 1;
11567                         dtrace_enabling_addlike(new, ep, create);
11568                 }
11569         }
11570
11571         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11572                 dtrace_enabling_destroy(new);
11573                 return (err);
11574         }
11575
11576         return (0);
11577 }
11578
11579 static void
11580 dtrace_enabling_retract(dtrace_state_t *state)
11581 {
11582         dtrace_enabling_t *enab, *next;
11583
11584         ASSERT(MUTEX_HELD(&dtrace_lock));
11585
11586         /*
11587          * Iterate over all retained enablings, destroy the enablings retained
11588          * for the specified state.
11589          */
11590         for (enab = dtrace_retained; enab != NULL; enab = next) {
11591                 next = enab->dten_next;
11592
11593                 /*
11594                  * dtvs_state can only be NULL for helper enablings -- and
11595                  * helper enablings can't be retained.
11596                  */
11597                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11598
11599                 if (enab->dten_vstate->dtvs_state == state) {
11600                         ASSERT(state->dts_nretained > 0);
11601                         dtrace_enabling_destroy(enab);
11602                 }
11603         }
11604
11605         ASSERT(state->dts_nretained == 0);
11606 }
11607
11608 static int
11609 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11610 {
11611         int i = 0;
11612         int matched = 0;
11613
11614         ASSERT(MUTEX_HELD(&cpu_lock));
11615         ASSERT(MUTEX_HELD(&dtrace_lock));
11616
11617         for (i = 0; i < enab->dten_ndesc; i++) {
11618                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11619
11620                 enab->dten_current = ep;
11621                 enab->dten_error = 0;
11622
11623                 matched += dtrace_probe_enable(&ep->dted_probe, enab);
11624
11625                 if (enab->dten_error != 0) {
11626                         /*
11627                          * If we get an error half-way through enabling the
11628                          * probes, we kick out -- perhaps with some number of
11629                          * them enabled.  Leaving enabled probes enabled may
11630                          * be slightly confusing for user-level, but we expect
11631                          * that no one will attempt to actually drive on in
11632                          * the face of such errors.  If this is an anonymous
11633                          * enabling (indicated with a NULL nmatched pointer),
11634                          * we cmn_err() a message.  We aren't expecting to
11635                          * get such an error -- such as it can exist at all,
11636                          * it would be a result of corrupted DOF in the driver
11637                          * properties.
11638                          */
11639                         if (nmatched == NULL) {
11640                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11641                                     "error on %p: %d", (void *)ep,
11642                                     enab->dten_error);
11643                         }
11644
11645                         return (enab->dten_error);
11646                 }
11647         }
11648
11649         enab->dten_probegen = dtrace_probegen;
11650         if (nmatched != NULL)
11651                 *nmatched = matched;
11652
11653         return (0);
11654 }
11655
11656 static void
11657 dtrace_enabling_matchall(void)
11658 {
11659         dtrace_enabling_t *enab;
11660
11661         mutex_enter(&cpu_lock);
11662         mutex_enter(&dtrace_lock);
11663
11664         /*
11665          * Iterate over all retained enablings to see if any probes match
11666          * against them.  We only perform this operation on enablings for which
11667          * we have sufficient permissions by virtue of being in the global zone
11668          * or in the same zone as the DTrace client.  Because we can be called
11669          * after dtrace_detach() has been called, we cannot assert that there
11670          * are retained enablings.  We can safely load from dtrace_retained,
11671          * however:  the taskq_destroy() at the end of dtrace_detach() will
11672          * block pending our completion.
11673          */
11674         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11675 #if defined(sun)
11676                 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11677
11678                 if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11679 #endif
11680                         (void) dtrace_enabling_match(enab, NULL);
11681         }
11682
11683         mutex_exit(&dtrace_lock);
11684         mutex_exit(&cpu_lock);
11685 }
11686
11687 /*
11688  * If an enabling is to be enabled without having matched probes (that is, if
11689  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11690  * enabling must be _primed_ by creating an ECB for every ECB description.
11691  * This must be done to assure that we know the number of speculations, the
11692  * number of aggregations, the minimum buffer size needed, etc. before we
11693  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11694  * enabling any probes, we create ECBs for every ECB decription, but with a
11695  * NULL probe -- which is exactly what this function does.
11696  */
11697 static void
11698 dtrace_enabling_prime(dtrace_state_t *state)
11699 {
11700         dtrace_enabling_t *enab;
11701         int i;
11702
11703         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11704                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11705
11706                 if (enab->dten_vstate->dtvs_state != state)
11707                         continue;
11708
11709                 /*
11710                  * We don't want to prime an enabling more than once, lest
11711                  * we allow a malicious user to induce resource exhaustion.
11712                  * (The ECBs that result from priming an enabling aren't
11713                  * leaked -- but they also aren't deallocated until the
11714                  * consumer state is destroyed.)
11715                  */
11716                 if (enab->dten_primed)
11717                         continue;
11718
11719                 for (i = 0; i < enab->dten_ndesc; i++) {
11720                         enab->dten_current = enab->dten_desc[i];
11721                         (void) dtrace_probe_enable(NULL, enab);
11722                 }
11723
11724                 enab->dten_primed = 1;
11725         }
11726 }
11727
11728 /*
11729  * Called to indicate that probes should be provided due to retained
11730  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11731  * must take an initial lap through the enabling calling the dtps_provide()
11732  * entry point explicitly to allow for autocreated probes.
11733  */
11734 static void
11735 dtrace_enabling_provide(dtrace_provider_t *prv)
11736 {
11737         int i, all = 0;
11738         dtrace_probedesc_t desc;
11739
11740         ASSERT(MUTEX_HELD(&dtrace_lock));
11741         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11742
11743         if (prv == NULL) {
11744                 all = 1;
11745                 prv = dtrace_provider;
11746         }
11747
11748         do {
11749                 dtrace_enabling_t *enab = dtrace_retained;
11750                 void *parg = prv->dtpv_arg;
11751
11752                 for (; enab != NULL; enab = enab->dten_next) {
11753                         for (i = 0; i < enab->dten_ndesc; i++) {
11754                                 desc = enab->dten_desc[i]->dted_probe;
11755                                 mutex_exit(&dtrace_lock);
11756                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11757                                 mutex_enter(&dtrace_lock);
11758                         }
11759                 }
11760         } while (all && (prv = prv->dtpv_next) != NULL);
11761
11762         mutex_exit(&dtrace_lock);
11763         dtrace_probe_provide(NULL, all ? NULL : prv);
11764         mutex_enter(&dtrace_lock);
11765 }
11766
11767 /*
11768  * Called to reap ECBs that are attached to probes from defunct providers.
11769  */
11770 static void
11771 dtrace_enabling_reap(void)
11772 {
11773         dtrace_provider_t *prov;
11774         dtrace_probe_t *probe;
11775         dtrace_ecb_t *ecb;
11776         hrtime_t when;
11777         int i;
11778
11779         mutex_enter(&cpu_lock);
11780         mutex_enter(&dtrace_lock);
11781
11782         for (i = 0; i < dtrace_nprobes; i++) {
11783                 if ((probe = dtrace_probes[i]) == NULL)
11784                         continue;
11785
11786                 if (probe->dtpr_ecb == NULL)
11787                         continue;
11788
11789                 prov = probe->dtpr_provider;
11790
11791                 if ((when = prov->dtpv_defunct) == 0)
11792                         continue;
11793
11794                 /*
11795                  * We have ECBs on a defunct provider:  we want to reap these
11796                  * ECBs to allow the provider to unregister.  The destruction
11797                  * of these ECBs must be done carefully:  if we destroy the ECB
11798                  * and the consumer later wishes to consume an EPID that
11799                  * corresponds to the destroyed ECB (and if the EPID metadata
11800                  * has not been previously consumed), the consumer will abort
11801                  * processing on the unknown EPID.  To reduce (but not, sadly,
11802                  * eliminate) the possibility of this, we will only destroy an
11803                  * ECB for a defunct provider if, for the state that
11804                  * corresponds to the ECB:
11805                  *
11806                  *  (a) There is no speculative tracing (which can effectively
11807                  *      cache an EPID for an arbitrary amount of time).
11808                  *
11809                  *  (b) The principal buffers have been switched twice since the
11810                  *      provider became defunct.
11811                  *
11812                  *  (c) The aggregation buffers are of zero size or have been
11813                  *      switched twice since the provider became defunct.
11814                  *
11815                  * We use dts_speculates to determine (a) and call a function
11816                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11817                  * that as soon as we've been unable to destroy one of the ECBs
11818                  * associated with the probe, we quit trying -- reaping is only
11819                  * fruitful in as much as we can destroy all ECBs associated
11820                  * with the defunct provider's probes.
11821                  */
11822                 while ((ecb = probe->dtpr_ecb) != NULL) {
11823                         dtrace_state_t *state = ecb->dte_state;
11824                         dtrace_buffer_t *buf = state->dts_buffer;
11825                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11826
11827                         if (state->dts_speculates)
11828                                 break;
11829
11830                         if (!dtrace_buffer_consumed(buf, when))
11831                                 break;
11832
11833                         if (!dtrace_buffer_consumed(aggbuf, when))
11834                                 break;
11835
11836                         dtrace_ecb_disable(ecb);
11837                         ASSERT(probe->dtpr_ecb != ecb);
11838                         dtrace_ecb_destroy(ecb);
11839                 }
11840         }
11841
11842         mutex_exit(&dtrace_lock);
11843         mutex_exit(&cpu_lock);
11844 }
11845
11846 /*
11847  * DTrace DOF Functions
11848  */
11849 /*ARGSUSED*/
11850 static void
11851 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11852 {
11853         if (dtrace_err_verbose)
11854                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11855
11856 #ifdef DTRACE_ERRDEBUG
11857         dtrace_errdebug(str);
11858 #endif
11859 }
11860
11861 /*
11862  * Create DOF out of a currently enabled state.  Right now, we only create
11863  * DOF containing the run-time options -- but this could be expanded to create
11864  * complete DOF representing the enabled state.
11865  */
11866 static dof_hdr_t *
11867 dtrace_dof_create(dtrace_state_t *state)
11868 {
11869         dof_hdr_t *dof;
11870         dof_sec_t *sec;
11871         dof_optdesc_t *opt;
11872         int i, len = sizeof (dof_hdr_t) +
11873             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11874             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11875
11876         ASSERT(MUTEX_HELD(&dtrace_lock));
11877
11878         dof = kmem_zalloc(len, KM_SLEEP);
11879         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11880         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11881         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11882         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11883
11884         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11885         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11886         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11887         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11888         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11889         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11890
11891         dof->dofh_flags = 0;
11892         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11893         dof->dofh_secsize = sizeof (dof_sec_t);
11894         dof->dofh_secnum = 1;   /* only DOF_SECT_OPTDESC */
11895         dof->dofh_secoff = sizeof (dof_hdr_t);
11896         dof->dofh_loadsz = len;
11897         dof->dofh_filesz = len;
11898         dof->dofh_pad = 0;
11899
11900         /*
11901          * Fill in the option section header...
11902          */
11903         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11904         sec->dofs_type = DOF_SECT_OPTDESC;
11905         sec->dofs_align = sizeof (uint64_t);
11906         sec->dofs_flags = DOF_SECF_LOAD;
11907         sec->dofs_entsize = sizeof (dof_optdesc_t);
11908
11909         opt = (dof_optdesc_t *)((uintptr_t)sec +
11910             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11911
11912         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11913         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11914
11915         for (i = 0; i < DTRACEOPT_MAX; i++) {
11916                 opt[i].dofo_option = i;
11917                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11918                 opt[i].dofo_value = state->dts_options[i];
11919         }
11920
11921         return (dof);
11922 }
11923
11924 static dof_hdr_t *
11925 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11926 {
11927         dof_hdr_t hdr, *dof;
11928
11929         ASSERT(!MUTEX_HELD(&dtrace_lock));
11930
11931         /*
11932          * First, we're going to copyin() the sizeof (dof_hdr_t).
11933          */
11934         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11935                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11936                 *errp = EFAULT;
11937                 return (NULL);
11938         }
11939
11940         /*
11941          * Now we'll allocate the entire DOF and copy it in -- provided
11942          * that the length isn't outrageous.
11943          */
11944         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11945                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11946                 *errp = E2BIG;
11947                 return (NULL);
11948         }
11949
11950         if (hdr.dofh_loadsz < sizeof (hdr)) {
11951                 dtrace_dof_error(&hdr, "invalid load size");
11952                 *errp = EINVAL;
11953                 return (NULL);
11954         }
11955
11956         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11957
11958         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11959                 kmem_free(dof, hdr.dofh_loadsz);
11960                 *errp = EFAULT;
11961                 return (NULL);
11962         }
11963
11964         return (dof);
11965 }
11966
11967 #if !defined(sun)
11968 static __inline uchar_t
11969 dtrace_dof_char(char c) {
11970         switch (c) {
11971         case '0':
11972         case '1':
11973         case '2':
11974         case '3':
11975         case '4':
11976         case '5':
11977         case '6':
11978         case '7':
11979         case '8':
11980         case '9':
11981                 return (c - '0');
11982         case 'A':
11983         case 'B':
11984         case 'C':
11985         case 'D':
11986         case 'E':
11987         case 'F':
11988                 return (c - 'A' + 10);
11989         case 'a':
11990         case 'b':
11991         case 'c':
11992         case 'd':
11993         case 'e':
11994         case 'f':
11995                 return (c - 'a' + 10);
11996         }
11997         /* Should not reach here. */
11998         return (0);
11999 }
12000 #endif
12001
12002 static dof_hdr_t *
12003 dtrace_dof_property(const char *name)
12004 {
12005         uchar_t *buf;
12006         uint64_t loadsz;
12007         unsigned int len, i;
12008         dof_hdr_t *dof;
12009
12010 #if defined(sun)
12011         /*
12012          * Unfortunately, array of values in .conf files are always (and
12013          * only) interpreted to be integer arrays.  We must read our DOF
12014          * as an integer array, and then squeeze it into a byte array.
12015          */
12016         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12017             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12018                 return (NULL);
12019
12020         for (i = 0; i < len; i++)
12021                 buf[i] = (uchar_t)(((int *)buf)[i]);
12022
12023         if (len < sizeof (dof_hdr_t)) {
12024                 ddi_prop_free(buf);
12025                 dtrace_dof_error(NULL, "truncated header");
12026                 return (NULL);
12027         }
12028
12029         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12030                 ddi_prop_free(buf);
12031                 dtrace_dof_error(NULL, "truncated DOF");
12032                 return (NULL);
12033         }
12034
12035         if (loadsz >= dtrace_dof_maxsize) {
12036                 ddi_prop_free(buf);
12037                 dtrace_dof_error(NULL, "oversized DOF");
12038                 return (NULL);
12039         }
12040
12041         dof = kmem_alloc(loadsz, KM_SLEEP);
12042         bcopy(buf, dof, loadsz);
12043         ddi_prop_free(buf);
12044 #else
12045         char *p;
12046         char *p_env;
12047
12048         if ((p_env = getenv(name)) == NULL)
12049                 return (NULL);
12050
12051         len = strlen(p_env) / 2;
12052
12053         buf = kmem_alloc(len, KM_SLEEP);
12054
12055         dof = (dof_hdr_t *) buf;
12056
12057         p = p_env;
12058
12059         for (i = 0; i < len; i++) {
12060                 buf[i] = (dtrace_dof_char(p[0]) << 4) |
12061                      dtrace_dof_char(p[1]);
12062                 p += 2;
12063         }
12064
12065         freeenv(p_env);
12066
12067         if (len < sizeof (dof_hdr_t)) {
12068                 kmem_free(buf, 0);
12069                 dtrace_dof_error(NULL, "truncated header");
12070                 return (NULL);
12071         }
12072
12073         if (len < (loadsz = dof->dofh_loadsz)) {
12074                 kmem_free(buf, 0);
12075                 dtrace_dof_error(NULL, "truncated DOF");
12076                 return (NULL);
12077         }
12078
12079         if (loadsz >= dtrace_dof_maxsize) {
12080                 kmem_free(buf, 0);
12081                 dtrace_dof_error(NULL, "oversized DOF");
12082                 return (NULL);
12083         }
12084 #endif
12085
12086         return (dof);
12087 }
12088
12089 static void
12090 dtrace_dof_destroy(dof_hdr_t *dof)
12091 {
12092         kmem_free(dof, dof->dofh_loadsz);
12093 }
12094
12095 /*
12096  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12097  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12098  * a type other than DOF_SECT_NONE is specified, the header is checked against
12099  * this type and NULL is returned if the types do not match.
12100  */
12101 static dof_sec_t *
12102 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12103 {
12104         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12105             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12106
12107         if (i >= dof->dofh_secnum) {
12108                 dtrace_dof_error(dof, "referenced section index is invalid");
12109                 return (NULL);
12110         }
12111
12112         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12113                 dtrace_dof_error(dof, "referenced section is not loadable");
12114                 return (NULL);
12115         }
12116
12117         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12118                 dtrace_dof_error(dof, "referenced section is the wrong type");
12119                 return (NULL);
12120         }
12121
12122         return (sec);
12123 }
12124
12125 static dtrace_probedesc_t *
12126 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12127 {
12128         dof_probedesc_t *probe;
12129         dof_sec_t *strtab;
12130         uintptr_t daddr = (uintptr_t)dof;
12131         uintptr_t str;
12132         size_t size;
12133
12134         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12135                 dtrace_dof_error(dof, "invalid probe section");
12136                 return (NULL);
12137         }
12138
12139         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12140                 dtrace_dof_error(dof, "bad alignment in probe description");
12141                 return (NULL);
12142         }
12143
12144         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12145                 dtrace_dof_error(dof, "truncated probe description");
12146                 return (NULL);
12147         }
12148
12149         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12150         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12151
12152         if (strtab == NULL)
12153                 return (NULL);
12154
12155         str = daddr + strtab->dofs_offset;
12156         size = strtab->dofs_size;
12157
12158         if (probe->dofp_provider >= strtab->dofs_size) {
12159                 dtrace_dof_error(dof, "corrupt probe provider");
12160                 return (NULL);
12161         }
12162
12163         (void) strncpy(desc->dtpd_provider,
12164             (char *)(str + probe->dofp_provider),
12165             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12166
12167         if (probe->dofp_mod >= strtab->dofs_size) {
12168                 dtrace_dof_error(dof, "corrupt probe module");
12169                 return (NULL);
12170         }
12171
12172         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12173             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12174
12175         if (probe->dofp_func >= strtab->dofs_size) {
12176                 dtrace_dof_error(dof, "corrupt probe function");
12177                 return (NULL);
12178         }
12179
12180         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12181             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12182
12183         if (probe->dofp_name >= strtab->dofs_size) {
12184                 dtrace_dof_error(dof, "corrupt probe name");
12185                 return (NULL);
12186         }
12187
12188         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12189             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12190
12191         return (desc);
12192 }
12193
12194 static dtrace_difo_t *
12195 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12196     cred_t *cr)
12197 {
12198         dtrace_difo_t *dp;
12199         size_t ttl = 0;
12200         dof_difohdr_t *dofd;
12201         uintptr_t daddr = (uintptr_t)dof;
12202         size_t max = dtrace_difo_maxsize;
12203         int i, l, n;
12204
12205         static const struct {
12206                 int section;
12207                 int bufoffs;
12208                 int lenoffs;
12209                 int entsize;
12210                 int align;
12211                 const char *msg;
12212         } difo[] = {
12213                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12214                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12215                 sizeof (dif_instr_t), "multiple DIF sections" },
12216
12217                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12218                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12219                 sizeof (uint64_t), "multiple integer tables" },
12220
12221                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12222                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12223                 sizeof (char), "multiple string tables" },
12224
12225                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12226                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12227                 sizeof (uint_t), "multiple variable tables" },
12228
12229                 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12230         };
12231
12232         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12233                 dtrace_dof_error(dof, "invalid DIFO header section");
12234                 return (NULL);
12235         }
12236
12237         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12238                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12239                 return (NULL);
12240         }
12241
12242         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12243             sec->dofs_size % sizeof (dof_secidx_t)) {
12244                 dtrace_dof_error(dof, "bad size in DIFO header");
12245                 return (NULL);
12246         }
12247
12248         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12249         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12250
12251         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12252         dp->dtdo_rtype = dofd->dofd_rtype;
12253
12254         for (l = 0; l < n; l++) {
12255                 dof_sec_t *subsec;
12256                 void **bufp;
12257                 uint32_t *lenp;
12258
12259                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12260                     dofd->dofd_links[l])) == NULL)
12261                         goto err; /* invalid section link */
12262
12263                 if (ttl + subsec->dofs_size > max) {
12264                         dtrace_dof_error(dof, "exceeds maximum size");
12265                         goto err;
12266                 }
12267
12268                 ttl += subsec->dofs_size;
12269
12270                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12271                         if (subsec->dofs_type != difo[i].section)
12272                                 continue;
12273
12274                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12275                                 dtrace_dof_error(dof, "section not loaded");
12276                                 goto err;
12277                         }
12278
12279                         if (subsec->dofs_align != difo[i].align) {
12280                                 dtrace_dof_error(dof, "bad alignment");
12281                                 goto err;
12282                         }
12283
12284                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12285                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12286
12287                         if (*bufp != NULL) {
12288                                 dtrace_dof_error(dof, difo[i].msg);
12289                                 goto err;
12290                         }
12291
12292                         if (difo[i].entsize != subsec->dofs_entsize) {
12293                                 dtrace_dof_error(dof, "entry size mismatch");
12294                                 goto err;
12295                         }
12296
12297                         if (subsec->dofs_entsize != 0 &&
12298                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12299                                 dtrace_dof_error(dof, "corrupt entry size");
12300                                 goto err;
12301                         }
12302
12303                         *lenp = subsec->dofs_size;
12304                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12305                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12306                             *bufp, subsec->dofs_size);
12307
12308                         if (subsec->dofs_entsize != 0)
12309                                 *lenp /= subsec->dofs_entsize;
12310
12311                         break;
12312                 }
12313
12314                 /*
12315                  * If we encounter a loadable DIFO sub-section that is not
12316                  * known to us, assume this is a broken program and fail.
12317                  */
12318                 if (difo[i].section == DOF_SECT_NONE &&
12319                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12320                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12321                         goto err;
12322                 }
12323         }
12324
12325         if (dp->dtdo_buf == NULL) {
12326                 /*
12327                  * We can't have a DIF object without DIF text.
12328                  */
12329                 dtrace_dof_error(dof, "missing DIF text");
12330                 goto err;
12331         }
12332
12333         /*
12334          * Before we validate the DIF object, run through the variable table
12335          * looking for the strings -- if any of their size are under, we'll set
12336          * their size to be the system-wide default string size.  Note that
12337          * this should _not_ happen if the "strsize" option has been set --
12338          * in this case, the compiler should have set the size to reflect the
12339          * setting of the option.
12340          */
12341         for (i = 0; i < dp->dtdo_varlen; i++) {
12342                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12343                 dtrace_diftype_t *t = &v->dtdv_type;
12344
12345                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12346                         continue;
12347
12348                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12349                         t->dtdt_size = dtrace_strsize_default;
12350         }
12351
12352         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12353                 goto err;
12354
12355         dtrace_difo_init(dp, vstate);
12356         return (dp);
12357
12358 err:
12359         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12360         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12361         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12362         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12363
12364         kmem_free(dp, sizeof (dtrace_difo_t));
12365         return (NULL);
12366 }
12367
12368 static dtrace_predicate_t *
12369 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12370     cred_t *cr)
12371 {
12372         dtrace_difo_t *dp;
12373
12374         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12375                 return (NULL);
12376
12377         return (dtrace_predicate_create(dp));
12378 }
12379
12380 static dtrace_actdesc_t *
12381 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12382     cred_t *cr)
12383 {
12384         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12385         dof_actdesc_t *desc;
12386         dof_sec_t *difosec;
12387         size_t offs;
12388         uintptr_t daddr = (uintptr_t)dof;
12389         uint64_t arg;
12390         dtrace_actkind_t kind;
12391
12392         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12393                 dtrace_dof_error(dof, "invalid action section");
12394                 return (NULL);
12395         }
12396
12397         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12398                 dtrace_dof_error(dof, "truncated action description");
12399                 return (NULL);
12400         }
12401
12402         if (sec->dofs_align != sizeof (uint64_t)) {
12403                 dtrace_dof_error(dof, "bad alignment in action description");
12404                 return (NULL);
12405         }
12406
12407         if (sec->dofs_size < sec->dofs_entsize) {
12408                 dtrace_dof_error(dof, "section entry size exceeds total size");
12409                 return (NULL);
12410         }
12411
12412         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12413                 dtrace_dof_error(dof, "bad entry size in action description");
12414                 return (NULL);
12415         }
12416
12417         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12418                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12419                 return (NULL);
12420         }
12421
12422         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12423                 desc = (dof_actdesc_t *)(daddr +
12424                     (uintptr_t)sec->dofs_offset + offs);
12425                 kind = (dtrace_actkind_t)desc->dofa_kind;
12426
12427                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12428                     (kind != DTRACEACT_PRINTA ||
12429                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12430                     (kind == DTRACEACT_DIFEXPR &&
12431                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12432                         dof_sec_t *strtab;
12433                         char *str, *fmt;
12434                         uint64_t i;
12435
12436                         /*
12437                          * The argument to these actions is an index into the
12438                          * DOF string table.  For printf()-like actions, this
12439                          * is the format string.  For print(), this is the
12440                          * CTF type of the expression result.
12441                          */
12442                         if ((strtab = dtrace_dof_sect(dof,
12443                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12444                                 goto err;
12445
12446                         str = (char *)((uintptr_t)dof +
12447                             (uintptr_t)strtab->dofs_offset);
12448
12449                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12450                                 if (str[i] == '\0')
12451                                         break;
12452                         }
12453
12454                         if (i >= strtab->dofs_size) {
12455                                 dtrace_dof_error(dof, "bogus format string");
12456                                 goto err;
12457                         }
12458
12459                         if (i == desc->dofa_arg) {
12460                                 dtrace_dof_error(dof, "empty format string");
12461                                 goto err;
12462                         }
12463
12464                         i -= desc->dofa_arg;
12465                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12466                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12467                         arg = (uint64_t)(uintptr_t)fmt;
12468                 } else {
12469                         if (kind == DTRACEACT_PRINTA) {
12470                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12471                                 arg = 0;
12472                         } else {
12473                                 arg = desc->dofa_arg;
12474                         }
12475                 }
12476
12477                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12478                     desc->dofa_uarg, arg);
12479
12480                 if (last != NULL) {
12481                         last->dtad_next = act;
12482                 } else {
12483                         first = act;
12484                 }
12485
12486                 last = act;
12487
12488                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12489                         continue;
12490
12491                 if ((difosec = dtrace_dof_sect(dof,
12492                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12493                         goto err;
12494
12495                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12496
12497                 if (act->dtad_difo == NULL)
12498                         goto err;
12499         }
12500
12501         ASSERT(first != NULL);
12502         return (first);
12503
12504 err:
12505         for (act = first; act != NULL; act = next) {
12506                 next = act->dtad_next;
12507                 dtrace_actdesc_release(act, vstate);
12508         }
12509
12510         return (NULL);
12511 }
12512
12513 static dtrace_ecbdesc_t *
12514 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12515     cred_t *cr)
12516 {
12517         dtrace_ecbdesc_t *ep;
12518         dof_ecbdesc_t *ecb;
12519         dtrace_probedesc_t *desc;
12520         dtrace_predicate_t *pred = NULL;
12521
12522         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12523                 dtrace_dof_error(dof, "truncated ECB description");
12524                 return (NULL);
12525         }
12526
12527         if (sec->dofs_align != sizeof (uint64_t)) {
12528                 dtrace_dof_error(dof, "bad alignment in ECB description");
12529                 return (NULL);
12530         }
12531
12532         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12533         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12534
12535         if (sec == NULL)
12536                 return (NULL);
12537
12538         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12539         ep->dted_uarg = ecb->dofe_uarg;
12540         desc = &ep->dted_probe;
12541
12542         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12543                 goto err;
12544
12545         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12546                 if ((sec = dtrace_dof_sect(dof,
12547                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12548                         goto err;
12549
12550                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12551                         goto err;
12552
12553                 ep->dted_pred.dtpdd_predicate = pred;
12554         }
12555
12556         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12557                 if ((sec = dtrace_dof_sect(dof,
12558                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12559                         goto err;
12560
12561                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12562
12563                 if (ep->dted_action == NULL)
12564                         goto err;
12565         }
12566
12567         return (ep);
12568
12569 err:
12570         if (pred != NULL)
12571                 dtrace_predicate_release(pred, vstate);
12572         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12573         return (NULL);
12574 }
12575
12576 /*
12577  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12578  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12579  * site of any user SETX relocations to account for load object base address.
12580  * In the future, if we need other relocations, this function can be extended.
12581  */
12582 static int
12583 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12584 {
12585         uintptr_t daddr = (uintptr_t)dof;
12586         dof_relohdr_t *dofr =
12587             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12588         dof_sec_t *ss, *rs, *ts;
12589         dof_relodesc_t *r;
12590         uint_t i, n;
12591
12592         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12593             sec->dofs_align != sizeof (dof_secidx_t)) {
12594                 dtrace_dof_error(dof, "invalid relocation header");
12595                 return (-1);
12596         }
12597
12598         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12599         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12600         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12601
12602         if (ss == NULL || rs == NULL || ts == NULL)
12603                 return (-1); /* dtrace_dof_error() has been called already */
12604
12605         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12606             rs->dofs_align != sizeof (uint64_t)) {
12607                 dtrace_dof_error(dof, "invalid relocation section");
12608                 return (-1);
12609         }
12610
12611         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12612         n = rs->dofs_size / rs->dofs_entsize;
12613
12614         for (i = 0; i < n; i++) {
12615                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12616
12617                 switch (r->dofr_type) {
12618                 case DOF_RELO_NONE:
12619                         break;
12620                 case DOF_RELO_SETX:
12621                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12622                             sizeof (uint64_t) > ts->dofs_size) {
12623                                 dtrace_dof_error(dof, "bad relocation offset");
12624                                 return (-1);
12625                         }
12626
12627                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12628                                 dtrace_dof_error(dof, "misaligned setx relo");
12629                                 return (-1);
12630                         }
12631
12632                         *(uint64_t *)taddr += ubase;
12633                         break;
12634                 default:
12635                         dtrace_dof_error(dof, "invalid relocation type");
12636                         return (-1);
12637                 }
12638
12639                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12640         }
12641
12642         return (0);
12643 }
12644
12645 /*
12646  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12647  * header:  it should be at the front of a memory region that is at least
12648  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12649  * size.  It need not be validated in any other way.
12650  */
12651 static int
12652 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12653     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12654 {
12655         uint64_t len = dof->dofh_loadsz, seclen;
12656         uintptr_t daddr = (uintptr_t)dof;
12657         dtrace_ecbdesc_t *ep;
12658         dtrace_enabling_t *enab;
12659         uint_t i;
12660
12661         ASSERT(MUTEX_HELD(&dtrace_lock));
12662         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12663
12664         /*
12665          * Check the DOF header identification bytes.  In addition to checking
12666          * valid settings, we also verify that unused bits/bytes are zeroed so
12667          * we can use them later without fear of regressing existing binaries.
12668          */
12669         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12670             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12671                 dtrace_dof_error(dof, "DOF magic string mismatch");
12672                 return (-1);
12673         }
12674
12675         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12676             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12677                 dtrace_dof_error(dof, "DOF has invalid data model");
12678                 return (-1);
12679         }
12680
12681         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12682                 dtrace_dof_error(dof, "DOF encoding mismatch");
12683                 return (-1);
12684         }
12685
12686         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12687             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12688                 dtrace_dof_error(dof, "DOF version mismatch");
12689                 return (-1);
12690         }
12691
12692         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12693                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12694                 return (-1);
12695         }
12696
12697         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12698                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12699                 return (-1);
12700         }
12701
12702         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12703                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12704                 return (-1);
12705         }
12706
12707         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12708                 if (dof->dofh_ident[i] != 0) {
12709                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12710                         return (-1);
12711                 }
12712         }
12713
12714         if (dof->dofh_flags & ~DOF_FL_VALID) {
12715                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12716                 return (-1);
12717         }
12718
12719         if (dof->dofh_secsize == 0) {
12720                 dtrace_dof_error(dof, "zero section header size");
12721                 return (-1);
12722         }
12723
12724         /*
12725          * Check that the section headers don't exceed the amount of DOF
12726          * data.  Note that we cast the section size and number of sections
12727          * to uint64_t's to prevent possible overflow in the multiplication.
12728          */
12729         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12730
12731         if (dof->dofh_secoff > len || seclen > len ||
12732             dof->dofh_secoff + seclen > len) {
12733                 dtrace_dof_error(dof, "truncated section headers");
12734                 return (-1);
12735         }
12736
12737         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12738                 dtrace_dof_error(dof, "misaligned section headers");
12739                 return (-1);
12740         }
12741
12742         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12743                 dtrace_dof_error(dof, "misaligned section size");
12744                 return (-1);
12745         }
12746
12747         /*
12748          * Take an initial pass through the section headers to be sure that
12749          * the headers don't have stray offsets.  If the 'noprobes' flag is
12750          * set, do not permit sections relating to providers, probes, or args.
12751          */
12752         for (i = 0; i < dof->dofh_secnum; i++) {
12753                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12754                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12755
12756                 if (noprobes) {
12757                         switch (sec->dofs_type) {
12758                         case DOF_SECT_PROVIDER:
12759                         case DOF_SECT_PROBES:
12760                         case DOF_SECT_PRARGS:
12761                         case DOF_SECT_PROFFS:
12762                                 dtrace_dof_error(dof, "illegal sections "
12763                                     "for enabling");
12764                                 return (-1);
12765                         }
12766                 }
12767
12768                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12769                         continue; /* just ignore non-loadable sections */
12770
12771                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12772                         dtrace_dof_error(dof, "bad section alignment");
12773                         return (-1);
12774                 }
12775
12776                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12777                         dtrace_dof_error(dof, "misaligned section");
12778                         return (-1);
12779                 }
12780
12781                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12782                     sec->dofs_offset + sec->dofs_size > len) {
12783                         dtrace_dof_error(dof, "corrupt section header");
12784                         return (-1);
12785                 }
12786
12787                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12788                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12789                         dtrace_dof_error(dof, "non-terminating string table");
12790                         return (-1);
12791                 }
12792         }
12793
12794         /*
12795          * Take a second pass through the sections and locate and perform any
12796          * relocations that are present.  We do this after the first pass to
12797          * be sure that all sections have had their headers validated.
12798          */
12799         for (i = 0; i < dof->dofh_secnum; i++) {
12800                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12801                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12802
12803                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12804                         continue; /* skip sections that are not loadable */
12805
12806                 switch (sec->dofs_type) {
12807                 case DOF_SECT_URELHDR:
12808                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12809                                 return (-1);
12810                         break;
12811                 }
12812         }
12813
12814         if ((enab = *enabp) == NULL)
12815                 enab = *enabp = dtrace_enabling_create(vstate);
12816
12817         for (i = 0; i < dof->dofh_secnum; i++) {
12818                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12819                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12820
12821                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12822                         continue;
12823
12824                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12825                         dtrace_enabling_destroy(enab);
12826                         *enabp = NULL;
12827                         return (-1);
12828                 }
12829
12830                 dtrace_enabling_add(enab, ep);
12831         }
12832
12833         return (0);
12834 }
12835
12836 /*
12837  * Process DOF for any options.  This routine assumes that the DOF has been
12838  * at least processed by dtrace_dof_slurp().
12839  */
12840 static int
12841 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12842 {
12843         int i, rval;
12844         uint32_t entsize;
12845         size_t offs;
12846         dof_optdesc_t *desc;
12847
12848         for (i = 0; i < dof->dofh_secnum; i++) {
12849                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12850                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12851
12852                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12853                         continue;
12854
12855                 if (sec->dofs_align != sizeof (uint64_t)) {
12856                         dtrace_dof_error(dof, "bad alignment in "
12857                             "option description");
12858                         return (EINVAL);
12859                 }
12860
12861                 if ((entsize = sec->dofs_entsize) == 0) {
12862                         dtrace_dof_error(dof, "zeroed option entry size");
12863                         return (EINVAL);
12864                 }
12865
12866                 if (entsize < sizeof (dof_optdesc_t)) {
12867                         dtrace_dof_error(dof, "bad option entry size");
12868                         return (EINVAL);
12869                 }
12870
12871                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12872                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12873                             (uintptr_t)sec->dofs_offset + offs);
12874
12875                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12876                                 dtrace_dof_error(dof, "non-zero option string");
12877                                 return (EINVAL);
12878                         }
12879
12880                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12881                                 dtrace_dof_error(dof, "unset option");
12882                                 return (EINVAL);
12883                         }
12884
12885                         if ((rval = dtrace_state_option(state,
12886                             desc->dofo_option, desc->dofo_value)) != 0) {
12887                                 dtrace_dof_error(dof, "rejected option");
12888                                 return (rval);
12889                         }
12890                 }
12891         }
12892
12893         return (0);
12894 }
12895
12896 /*
12897  * DTrace Consumer State Functions
12898  */
12899 static int
12900 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12901 {
12902         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12903         void *base;
12904         uintptr_t limit;
12905         dtrace_dynvar_t *dvar, *next, *start;
12906         int i;
12907
12908         ASSERT(MUTEX_HELD(&dtrace_lock));
12909         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12910
12911         bzero(dstate, sizeof (dtrace_dstate_t));
12912
12913         if ((dstate->dtds_chunksize = chunksize) == 0)
12914                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12915
12916         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12917                 size = min;
12918
12919         if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12920                 return (ENOMEM);
12921
12922         dstate->dtds_size = size;
12923         dstate->dtds_base = base;
12924         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12925         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12926
12927         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12928
12929         if (hashsize != 1 && (hashsize & 1))
12930                 hashsize--;
12931
12932         dstate->dtds_hashsize = hashsize;
12933         dstate->dtds_hash = dstate->dtds_base;
12934
12935         /*
12936          * Set all of our hash buckets to point to the single sink, and (if
12937          * it hasn't already been set), set the sink's hash value to be the
12938          * sink sentinel value.  The sink is needed for dynamic variable
12939          * lookups to know that they have iterated over an entire, valid hash
12940          * chain.
12941          */
12942         for (i = 0; i < hashsize; i++)
12943                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12944
12945         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12946                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12947
12948         /*
12949          * Determine number of active CPUs.  Divide free list evenly among
12950          * active CPUs.
12951          */
12952         start = (dtrace_dynvar_t *)
12953             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12954         limit = (uintptr_t)base + size;
12955
12956         maxper = (limit - (uintptr_t)start) / NCPU;
12957         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12958
12959 #if !defined(sun)
12960         CPU_FOREACH(i) {
12961 #else
12962         for (i = 0; i < NCPU; i++) {
12963 #endif
12964                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12965
12966                 /*
12967                  * If we don't even have enough chunks to make it once through
12968                  * NCPUs, we're just going to allocate everything to the first
12969                  * CPU.  And if we're on the last CPU, we're going to allocate
12970                  * whatever is left over.  In either case, we set the limit to
12971                  * be the limit of the dynamic variable space.
12972                  */
12973                 if (maxper == 0 || i == NCPU - 1) {
12974                         limit = (uintptr_t)base + size;
12975                         start = NULL;
12976                 } else {
12977                         limit = (uintptr_t)start + maxper;
12978                         start = (dtrace_dynvar_t *)limit;
12979                 }
12980
12981                 ASSERT(limit <= (uintptr_t)base + size);
12982
12983                 for (;;) {
12984                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12985                             dstate->dtds_chunksize);
12986
12987                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12988                                 break;
12989
12990                         dvar->dtdv_next = next;
12991                         dvar = next;
12992                 }
12993
12994                 if (maxper == 0)
12995                         break;
12996         }
12997
12998         return (0);
12999 }
13000
13001 static void
13002 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13003 {
13004         ASSERT(MUTEX_HELD(&cpu_lock));
13005
13006         if (dstate->dtds_base == NULL)
13007                 return;
13008
13009         kmem_free(dstate->dtds_base, dstate->dtds_size);
13010         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13011 }
13012
13013 static void
13014 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13015 {
13016         /*
13017          * Logical XOR, where are you?
13018          */
13019         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13020
13021         if (vstate->dtvs_nglobals > 0) {
13022                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13023                     sizeof (dtrace_statvar_t *));
13024         }
13025
13026         if (vstate->dtvs_ntlocals > 0) {
13027                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13028                     sizeof (dtrace_difv_t));
13029         }
13030
13031         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13032
13033         if (vstate->dtvs_nlocals > 0) {
13034                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13035                     sizeof (dtrace_statvar_t *));
13036         }
13037 }
13038
13039 #if defined(sun)
13040 static void
13041 dtrace_state_clean(dtrace_state_t *state)
13042 {
13043         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13044                 return;
13045
13046         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13047         dtrace_speculation_clean(state);
13048 }
13049
13050 static void
13051 dtrace_state_deadman(dtrace_state_t *state)
13052 {
13053         hrtime_t now;
13054
13055         dtrace_sync();
13056
13057         now = dtrace_gethrtime();
13058
13059         if (state != dtrace_anon.dta_state &&
13060             now - state->dts_laststatus >= dtrace_deadman_user)
13061                 return;
13062
13063         /*
13064          * We must be sure that dts_alive never appears to be less than the
13065          * value upon entry to dtrace_state_deadman(), and because we lack a
13066          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13067          * store INT64_MAX to it, followed by a memory barrier, followed by
13068          * the new value.  This assures that dts_alive never appears to be
13069          * less than its true value, regardless of the order in which the
13070          * stores to the underlying storage are issued.
13071          */
13072         state->dts_alive = INT64_MAX;
13073         dtrace_membar_producer();
13074         state->dts_alive = now;
13075 }
13076 #else
13077 static void
13078 dtrace_state_clean(void *arg)
13079 {
13080         dtrace_state_t *state = arg;
13081         dtrace_optval_t *opt = state->dts_options;
13082
13083         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13084                 return;
13085
13086         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13087         dtrace_speculation_clean(state);
13088
13089         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13090             dtrace_state_clean, state);
13091 }
13092
13093 static void
13094 dtrace_state_deadman(void *arg)
13095 {
13096         dtrace_state_t *state = arg;
13097         hrtime_t now;
13098
13099         dtrace_sync();
13100
13101         dtrace_debug_output();
13102
13103         now = dtrace_gethrtime();
13104
13105         if (state != dtrace_anon.dta_state &&
13106             now - state->dts_laststatus >= dtrace_deadman_user)
13107                 return;
13108
13109         /*
13110          * We must be sure that dts_alive never appears to be less than the
13111          * value upon entry to dtrace_state_deadman(), and because we lack a
13112          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13113          * store INT64_MAX to it, followed by a memory barrier, followed by
13114          * the new value.  This assures that dts_alive never appears to be
13115          * less than its true value, regardless of the order in which the
13116          * stores to the underlying storage are issued.
13117          */
13118         state->dts_alive = INT64_MAX;
13119         dtrace_membar_producer();
13120         state->dts_alive = now;
13121
13122         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13123             dtrace_state_deadman, state);
13124 }
13125 #endif
13126
13127 static dtrace_state_t *
13128 #if defined(sun)
13129 dtrace_state_create(dev_t *devp, cred_t *cr)
13130 #else
13131 dtrace_state_create(struct cdev *dev)
13132 #endif
13133 {
13134 #if defined(sun)
13135         minor_t minor;
13136         major_t major;
13137 #else
13138         cred_t *cr = NULL;
13139         int m = 0;
13140 #endif
13141         char c[30];
13142         dtrace_state_t *state;
13143         dtrace_optval_t *opt;
13144         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13145
13146         ASSERT(MUTEX_HELD(&dtrace_lock));
13147         ASSERT(MUTEX_HELD(&cpu_lock));
13148
13149 #if defined(sun)
13150         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13151             VM_BESTFIT | VM_SLEEP);
13152
13153         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13154                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13155                 return (NULL);
13156         }
13157
13158         state = ddi_get_soft_state(dtrace_softstate, minor);
13159 #else
13160         if (dev != NULL) {
13161                 cr = dev->si_cred;
13162                 m = dev2unit(dev);
13163                 }
13164
13165         /* Allocate memory for the state. */
13166         state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13167 #endif
13168
13169         state->dts_epid = DTRACE_EPIDNONE + 1;
13170
13171         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13172 #if defined(sun)
13173         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13174             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13175
13176         if (devp != NULL) {
13177                 major = getemajor(*devp);
13178         } else {
13179                 major = ddi_driver_major(dtrace_devi);
13180         }
13181
13182         state->dts_dev = makedevice(major, minor);
13183
13184         if (devp != NULL)
13185                 *devp = state->dts_dev;
13186 #else
13187         state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13188         state->dts_dev = dev;
13189 #endif
13190
13191         /*
13192          * We allocate NCPU buffers.  On the one hand, this can be quite
13193          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13194          * other hand, it saves an additional memory reference in the probe
13195          * path.
13196          */
13197         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13198         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13199
13200 #if defined(sun)
13201         state->dts_cleaner = CYCLIC_NONE;
13202         state->dts_deadman = CYCLIC_NONE;
13203 #else
13204         callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13205         callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13206 #endif
13207         state->dts_vstate.dtvs_state = state;
13208
13209         for (i = 0; i < DTRACEOPT_MAX; i++)
13210                 state->dts_options[i] = DTRACEOPT_UNSET;
13211
13212         /*
13213          * Set the default options.
13214          */
13215         opt = state->dts_options;
13216         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13217         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13218         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13219         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13220         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13221         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13222         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13223         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13224         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13225         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13226         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13227         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13228         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13229         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13230
13231         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13232
13233         /*
13234          * Depending on the user credentials, we set flag bits which alter probe
13235          * visibility or the amount of destructiveness allowed.  In the case of
13236          * actual anonymous tracing, or the possession of all privileges, all of
13237          * the normal checks are bypassed.
13238          */
13239         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13240                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13241                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13242         } else {
13243                 /*
13244                  * Set up the credentials for this instantiation.  We take a
13245                  * hold on the credential to prevent it from disappearing on
13246                  * us; this in turn prevents the zone_t referenced by this
13247                  * credential from disappearing.  This means that we can
13248                  * examine the credential and the zone from probe context.
13249                  */
13250                 crhold(cr);
13251                 state->dts_cred.dcr_cred = cr;
13252
13253                 /*
13254                  * CRA_PROC means "we have *some* privilege for dtrace" and
13255                  * unlocks the use of variables like pid, zonename, etc.
13256                  */
13257                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13258                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13259                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13260                 }
13261
13262                 /*
13263                  * dtrace_user allows use of syscall and profile providers.
13264                  * If the user also has proc_owner and/or proc_zone, we
13265                  * extend the scope to include additional visibility and
13266                  * destructive power.
13267                  */
13268                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13269                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13270                                 state->dts_cred.dcr_visible |=
13271                                     DTRACE_CRV_ALLPROC;
13272
13273                                 state->dts_cred.dcr_action |=
13274                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13275                         }
13276
13277                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13278                                 state->dts_cred.dcr_visible |=
13279                                     DTRACE_CRV_ALLZONE;
13280
13281                                 state->dts_cred.dcr_action |=
13282                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13283                         }
13284
13285                         /*
13286                          * If we have all privs in whatever zone this is,
13287                          * we can do destructive things to processes which
13288                          * have altered credentials.
13289                          */
13290 #if defined(sun)
13291                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13292                             cr->cr_zone->zone_privset)) {
13293                                 state->dts_cred.dcr_action |=
13294                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13295                         }
13296 #endif
13297                 }
13298
13299                 /*
13300                  * Holding the dtrace_kernel privilege also implies that
13301                  * the user has the dtrace_user privilege from a visibility
13302                  * perspective.  But without further privileges, some
13303                  * destructive actions are not available.
13304                  */
13305                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13306                         /*
13307                          * Make all probes in all zones visible.  However,
13308                          * this doesn't mean that all actions become available
13309                          * to all zones.
13310                          */
13311                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13312                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13313
13314                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13315                             DTRACE_CRA_PROC;
13316                         /*
13317                          * Holding proc_owner means that destructive actions
13318                          * for *this* zone are allowed.
13319                          */
13320                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13321                                 state->dts_cred.dcr_action |=
13322                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13323
13324                         /*
13325                          * Holding proc_zone means that destructive actions
13326                          * for this user/group ID in all zones is allowed.
13327                          */
13328                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13329                                 state->dts_cred.dcr_action |=
13330                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13331
13332 #if defined(sun)
13333                         /*
13334                          * If we have all privs in whatever zone this is,
13335                          * we can do destructive things to processes which
13336                          * have altered credentials.
13337                          */
13338                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13339                             cr->cr_zone->zone_privset)) {
13340                                 state->dts_cred.dcr_action |=
13341                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13342                         }
13343 #endif
13344                 }
13345
13346                 /*
13347                  * Holding the dtrace_proc privilege gives control over fasttrap
13348                  * and pid providers.  We need to grant wider destructive
13349                  * privileges in the event that the user has proc_owner and/or
13350                  * proc_zone.
13351                  */
13352                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13353                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13354                                 state->dts_cred.dcr_action |=
13355                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13356
13357                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13358                                 state->dts_cred.dcr_action |=
13359                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13360                 }
13361         }
13362
13363         return (state);
13364 }
13365
13366 static int
13367 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13368 {
13369         dtrace_optval_t *opt = state->dts_options, size;
13370         processorid_t cpu = 0;;
13371         int flags = 0, rval;
13372
13373         ASSERT(MUTEX_HELD(&dtrace_lock));
13374         ASSERT(MUTEX_HELD(&cpu_lock));
13375         ASSERT(which < DTRACEOPT_MAX);
13376         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13377             (state == dtrace_anon.dta_state &&
13378             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13379
13380         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13381                 return (0);
13382
13383         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13384                 cpu = opt[DTRACEOPT_CPU];
13385
13386         if (which == DTRACEOPT_SPECSIZE)
13387                 flags |= DTRACEBUF_NOSWITCH;
13388
13389         if (which == DTRACEOPT_BUFSIZE) {
13390                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13391                         flags |= DTRACEBUF_RING;
13392
13393                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13394                         flags |= DTRACEBUF_FILL;
13395
13396                 if (state != dtrace_anon.dta_state ||
13397                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13398                         flags |= DTRACEBUF_INACTIVE;
13399         }
13400
13401         for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13402                 /*
13403                  * The size must be 8-byte aligned.  If the size is not 8-byte
13404                  * aligned, drop it down by the difference.
13405                  */
13406                 if (size & (sizeof (uint64_t) - 1))
13407                         size -= size & (sizeof (uint64_t) - 1);
13408
13409                 if (size < state->dts_reserve) {
13410                         /*
13411                          * Buffers always must be large enough to accommodate
13412                          * their prereserved space.  We return E2BIG instead
13413                          * of ENOMEM in this case to allow for user-level
13414                          * software to differentiate the cases.
13415                          */
13416                         return (E2BIG);
13417                 }
13418
13419                 rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13420
13421                 if (rval != ENOMEM) {
13422                         opt[which] = size;
13423                         return (rval);
13424                 }
13425
13426                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13427                         return (rval);
13428         }
13429
13430         return (ENOMEM);
13431 }
13432
13433 static int
13434 dtrace_state_buffers(dtrace_state_t *state)
13435 {
13436         dtrace_speculation_t *spec = state->dts_speculations;
13437         int rval, i;
13438
13439         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13440             DTRACEOPT_BUFSIZE)) != 0)
13441                 return (rval);
13442
13443         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13444             DTRACEOPT_AGGSIZE)) != 0)
13445                 return (rval);
13446
13447         for (i = 0; i < state->dts_nspeculations; i++) {
13448                 if ((rval = dtrace_state_buffer(state,
13449                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13450                         return (rval);
13451         }
13452
13453         return (0);
13454 }
13455
13456 static void
13457 dtrace_state_prereserve(dtrace_state_t *state)
13458 {
13459         dtrace_ecb_t *ecb;
13460         dtrace_probe_t *probe;
13461
13462         state->dts_reserve = 0;
13463
13464         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13465                 return;
13466
13467         /*
13468          * If our buffer policy is a "fill" buffer policy, we need to set the
13469          * prereserved space to be the space required by the END probes.
13470          */
13471         probe = dtrace_probes[dtrace_probeid_end - 1];
13472         ASSERT(probe != NULL);
13473
13474         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13475                 if (ecb->dte_state != state)
13476                         continue;
13477
13478                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13479         }
13480 }
13481
13482 static int
13483 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13484 {
13485         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13486         dtrace_speculation_t *spec;
13487         dtrace_buffer_t *buf;
13488 #if defined(sun)
13489         cyc_handler_t hdlr;
13490         cyc_time_t when;
13491 #endif
13492         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13493         dtrace_icookie_t cookie;
13494
13495         mutex_enter(&cpu_lock);
13496         mutex_enter(&dtrace_lock);
13497
13498         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13499                 rval = EBUSY;
13500                 goto out;
13501         }
13502
13503         /*
13504          * Before we can perform any checks, we must prime all of the
13505          * retained enablings that correspond to this state.
13506          */
13507         dtrace_enabling_prime(state);
13508
13509         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13510                 rval = EACCES;
13511                 goto out;
13512         }
13513
13514         dtrace_state_prereserve(state);
13515
13516         /*
13517          * Now we want to do is try to allocate our speculations.
13518          * We do not automatically resize the number of speculations; if
13519          * this fails, we will fail the operation.
13520          */
13521         nspec = opt[DTRACEOPT_NSPEC];
13522         ASSERT(nspec != DTRACEOPT_UNSET);
13523
13524         if (nspec > INT_MAX) {
13525                 rval = ENOMEM;
13526                 goto out;
13527         }
13528
13529         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13530
13531         if (spec == NULL) {
13532                 rval = ENOMEM;
13533                 goto out;
13534         }
13535
13536         state->dts_speculations = spec;
13537         state->dts_nspeculations = (int)nspec;
13538
13539         for (i = 0; i < nspec; i++) {
13540                 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13541                         rval = ENOMEM;
13542                         goto err;
13543                 }
13544
13545                 spec[i].dtsp_buffer = buf;
13546         }
13547
13548         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13549                 if (dtrace_anon.dta_state == NULL) {
13550                         rval = ENOENT;
13551                         goto out;
13552                 }
13553
13554                 if (state->dts_necbs != 0) {
13555                         rval = EALREADY;
13556                         goto out;
13557                 }
13558
13559                 state->dts_anon = dtrace_anon_grab();
13560                 ASSERT(state->dts_anon != NULL);
13561                 state = state->dts_anon;
13562
13563                 /*
13564                  * We want "grabanon" to be set in the grabbed state, so we'll
13565                  * copy that option value from the grabbing state into the
13566                  * grabbed state.
13567                  */
13568                 state->dts_options[DTRACEOPT_GRABANON] =
13569                     opt[DTRACEOPT_GRABANON];
13570
13571                 *cpu = dtrace_anon.dta_beganon;
13572
13573                 /*
13574                  * If the anonymous state is active (as it almost certainly
13575                  * is if the anonymous enabling ultimately matched anything),
13576                  * we don't allow any further option processing -- but we
13577                  * don't return failure.
13578                  */
13579                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13580                         goto out;
13581         }
13582
13583         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13584             opt[DTRACEOPT_AGGSIZE] != 0) {
13585                 if (state->dts_aggregations == NULL) {
13586                         /*
13587                          * We're not going to create an aggregation buffer
13588                          * because we don't have any ECBs that contain
13589                          * aggregations -- set this option to 0.
13590                          */
13591                         opt[DTRACEOPT_AGGSIZE] = 0;
13592                 } else {
13593                         /*
13594                          * If we have an aggregation buffer, we must also have
13595                          * a buffer to use as scratch.
13596                          */
13597                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13598                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13599                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13600                         }
13601                 }
13602         }
13603
13604         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13605             opt[DTRACEOPT_SPECSIZE] != 0) {
13606                 if (!state->dts_speculates) {
13607                         /*
13608                          * We're not going to create speculation buffers
13609                          * because we don't have any ECBs that actually
13610                          * speculate -- set the speculation size to 0.
13611                          */
13612                         opt[DTRACEOPT_SPECSIZE] = 0;
13613                 }
13614         }
13615
13616         /*
13617          * The bare minimum size for any buffer that we're actually going to
13618          * do anything to is sizeof (uint64_t).
13619          */
13620         sz = sizeof (uint64_t);
13621
13622         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13623             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13624             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13625                 /*
13626                  * A buffer size has been explicitly set to 0 (or to a size
13627                  * that will be adjusted to 0) and we need the space -- we
13628                  * need to return failure.  We return ENOSPC to differentiate
13629                  * it from failing to allocate a buffer due to failure to meet
13630                  * the reserve (for which we return E2BIG).
13631                  */
13632                 rval = ENOSPC;
13633                 goto out;
13634         }
13635
13636         if ((rval = dtrace_state_buffers(state)) != 0)
13637                 goto err;
13638
13639         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13640                 sz = dtrace_dstate_defsize;
13641
13642         do {
13643                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13644
13645                 if (rval == 0)
13646                         break;
13647
13648                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13649                         goto err;
13650         } while (sz >>= 1);
13651
13652         opt[DTRACEOPT_DYNVARSIZE] = sz;
13653
13654         if (rval != 0)
13655                 goto err;
13656
13657         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13658                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13659
13660         if (opt[DTRACEOPT_CLEANRATE] == 0)
13661                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13662
13663         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13664                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13665
13666         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13667                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13668
13669         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13670 #if defined(sun)
13671         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13672         hdlr.cyh_arg = state;
13673         hdlr.cyh_level = CY_LOW_LEVEL;
13674
13675         when.cyt_when = 0;
13676         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13677
13678         state->dts_cleaner = cyclic_add(&hdlr, &when);
13679
13680         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13681         hdlr.cyh_arg = state;
13682         hdlr.cyh_level = CY_LOW_LEVEL;
13683
13684         when.cyt_when = 0;
13685         when.cyt_interval = dtrace_deadman_interval;
13686
13687         state->dts_deadman = cyclic_add(&hdlr, &when);
13688 #else
13689         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13690             dtrace_state_clean, state);
13691         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13692             dtrace_state_deadman, state);
13693 #endif
13694
13695         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13696
13697         /*
13698          * Now it's time to actually fire the BEGIN probe.  We need to disable
13699          * interrupts here both to record the CPU on which we fired the BEGIN
13700          * probe (the data from this CPU will be processed first at user
13701          * level) and to manually activate the buffer for this CPU.
13702          */
13703         cookie = dtrace_interrupt_disable();
13704         *cpu = curcpu;
13705         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13706         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13707
13708         dtrace_probe(dtrace_probeid_begin,
13709             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13710         dtrace_interrupt_enable(cookie);
13711         /*
13712          * We may have had an exit action from a BEGIN probe; only change our
13713          * state to ACTIVE if we're still in WARMUP.
13714          */
13715         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13716             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13717
13718         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13719                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13720
13721         /*
13722          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13723          * want each CPU to transition its principal buffer out of the
13724          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13725          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13726          * atomically transition from processing none of a state's ECBs to
13727          * processing all of them.
13728          */
13729         dtrace_xcall(DTRACE_CPUALL,
13730             (dtrace_xcall_t)dtrace_buffer_activate, state);
13731         goto out;
13732
13733 err:
13734         dtrace_buffer_free(state->dts_buffer);
13735         dtrace_buffer_free(state->dts_aggbuffer);
13736
13737         if ((nspec = state->dts_nspeculations) == 0) {
13738                 ASSERT(state->dts_speculations == NULL);
13739                 goto out;
13740         }
13741
13742         spec = state->dts_speculations;
13743         ASSERT(spec != NULL);
13744
13745         for (i = 0; i < state->dts_nspeculations; i++) {
13746                 if ((buf = spec[i].dtsp_buffer) == NULL)
13747                         break;
13748
13749                 dtrace_buffer_free(buf);
13750                 kmem_free(buf, bufsize);
13751         }
13752
13753         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13754         state->dts_nspeculations = 0;
13755         state->dts_speculations = NULL;
13756
13757 out:
13758         mutex_exit(&dtrace_lock);
13759         mutex_exit(&cpu_lock);
13760
13761         return (rval);
13762 }
13763
13764 static int
13765 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13766 {
13767         dtrace_icookie_t cookie;
13768
13769         ASSERT(MUTEX_HELD(&dtrace_lock));
13770
13771         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13772             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13773                 return (EINVAL);
13774
13775         /*
13776          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13777          * to be sure that every CPU has seen it.  See below for the details
13778          * on why this is done.
13779          */
13780         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13781         dtrace_sync();
13782
13783         /*
13784          * By this point, it is impossible for any CPU to be still processing
13785          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13786          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13787          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13788          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13789          * iff we're in the END probe.
13790          */
13791         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13792         dtrace_sync();
13793         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13794
13795         /*
13796          * Finally, we can release the reserve and call the END probe.  We
13797          * disable interrupts across calling the END probe to allow us to
13798          * return the CPU on which we actually called the END probe.  This
13799          * allows user-land to be sure that this CPU's principal buffer is
13800          * processed last.
13801          */
13802         state->dts_reserve = 0;
13803
13804         cookie = dtrace_interrupt_disable();
13805         *cpu = curcpu;
13806         dtrace_probe(dtrace_probeid_end,
13807             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13808         dtrace_interrupt_enable(cookie);
13809
13810         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13811         dtrace_sync();
13812
13813         return (0);
13814 }
13815
13816 static int
13817 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13818     dtrace_optval_t val)
13819 {
13820         ASSERT(MUTEX_HELD(&dtrace_lock));
13821
13822         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13823                 return (EBUSY);
13824
13825         if (option >= DTRACEOPT_MAX)
13826                 return (EINVAL);
13827
13828         if (option != DTRACEOPT_CPU && val < 0)
13829                 return (EINVAL);
13830
13831         switch (option) {
13832         case DTRACEOPT_DESTRUCTIVE:
13833                 if (dtrace_destructive_disallow)
13834                         return (EACCES);
13835
13836                 state->dts_cred.dcr_destructive = 1;
13837                 break;
13838
13839         case DTRACEOPT_BUFSIZE:
13840         case DTRACEOPT_DYNVARSIZE:
13841         case DTRACEOPT_AGGSIZE:
13842         case DTRACEOPT_SPECSIZE:
13843         case DTRACEOPT_STRSIZE:
13844                 if (val < 0)
13845                         return (EINVAL);
13846
13847                 if (val >= LONG_MAX) {
13848                         /*
13849                          * If this is an otherwise negative value, set it to
13850                          * the highest multiple of 128m less than LONG_MAX.
13851                          * Technically, we're adjusting the size without
13852                          * regard to the buffer resizing policy, but in fact,
13853                          * this has no effect -- if we set the buffer size to
13854                          * ~LONG_MAX and the buffer policy is ultimately set to
13855                          * be "manual", the buffer allocation is guaranteed to
13856                          * fail, if only because the allocation requires two
13857                          * buffers.  (We set the the size to the highest
13858                          * multiple of 128m because it ensures that the size
13859                          * will remain a multiple of a megabyte when
13860                          * repeatedly halved -- all the way down to 15m.)
13861                          */
13862                         val = LONG_MAX - (1 << 27) + 1;
13863                 }
13864         }
13865
13866         state->dts_options[option] = val;
13867
13868         return (0);
13869 }
13870
13871 static void
13872 dtrace_state_destroy(dtrace_state_t *state)
13873 {
13874         dtrace_ecb_t *ecb;
13875         dtrace_vstate_t *vstate = &state->dts_vstate;
13876 #if defined(sun)
13877         minor_t minor = getminor(state->dts_dev);
13878 #endif
13879         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13880         dtrace_speculation_t *spec = state->dts_speculations;
13881         int nspec = state->dts_nspeculations;
13882         uint32_t match;
13883
13884         ASSERT(MUTEX_HELD(&dtrace_lock));
13885         ASSERT(MUTEX_HELD(&cpu_lock));
13886
13887         /*
13888          * First, retract any retained enablings for this state.
13889          */
13890         dtrace_enabling_retract(state);
13891         ASSERT(state->dts_nretained == 0);
13892
13893         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13894             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13895                 /*
13896                  * We have managed to come into dtrace_state_destroy() on a
13897                  * hot enabling -- almost certainly because of a disorderly
13898                  * shutdown of a consumer.  (That is, a consumer that is
13899                  * exiting without having called dtrace_stop().) In this case,
13900                  * we're going to set our activity to be KILLED, and then
13901                  * issue a sync to be sure that everyone is out of probe
13902                  * context before we start blowing away ECBs.
13903                  */
13904                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13905                 dtrace_sync();
13906         }
13907
13908         /*
13909          * Release the credential hold we took in dtrace_state_create().
13910          */
13911         if (state->dts_cred.dcr_cred != NULL)
13912                 crfree(state->dts_cred.dcr_cred);
13913
13914         /*
13915          * Now we can safely disable and destroy any enabled probes.  Because
13916          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13917          * (especially if they're all enabled), we take two passes through the
13918          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13919          * in the second we disable whatever is left over.
13920          */
13921         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13922                 for (i = 0; i < state->dts_necbs; i++) {
13923                         if ((ecb = state->dts_ecbs[i]) == NULL)
13924                                 continue;
13925
13926                         if (match && ecb->dte_probe != NULL) {
13927                                 dtrace_probe_t *probe = ecb->dte_probe;
13928                                 dtrace_provider_t *prov = probe->dtpr_provider;
13929
13930                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13931                                         continue;
13932                         }
13933
13934                         dtrace_ecb_disable(ecb);
13935                         dtrace_ecb_destroy(ecb);
13936                 }
13937
13938                 if (!match)
13939                         break;
13940         }
13941
13942         /*
13943          * Before we free the buffers, perform one more sync to assure that
13944          * every CPU is out of probe context.
13945          */
13946         dtrace_sync();
13947
13948         dtrace_buffer_free(state->dts_buffer);
13949         dtrace_buffer_free(state->dts_aggbuffer);
13950
13951         for (i = 0; i < nspec; i++)
13952                 dtrace_buffer_free(spec[i].dtsp_buffer);
13953
13954 #if defined(sun)
13955         if (state->dts_cleaner != CYCLIC_NONE)
13956                 cyclic_remove(state->dts_cleaner);
13957
13958         if (state->dts_deadman != CYCLIC_NONE)
13959                 cyclic_remove(state->dts_deadman);
13960 #else
13961         callout_stop(&state->dts_cleaner);
13962         callout_drain(&state->dts_cleaner);
13963         callout_stop(&state->dts_deadman);
13964         callout_drain(&state->dts_deadman);
13965 #endif
13966
13967         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13968         dtrace_vstate_fini(vstate);
13969         if (state->dts_ecbs != NULL)
13970                 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13971
13972         if (state->dts_aggregations != NULL) {
13973 #ifdef DEBUG
13974                 for (i = 0; i < state->dts_naggregations; i++)
13975                         ASSERT(state->dts_aggregations[i] == NULL);
13976 #endif
13977                 ASSERT(state->dts_naggregations > 0);
13978                 kmem_free(state->dts_aggregations,
13979                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13980         }
13981
13982         kmem_free(state->dts_buffer, bufsize);
13983         kmem_free(state->dts_aggbuffer, bufsize);
13984
13985         for (i = 0; i < nspec; i++)
13986                 kmem_free(spec[i].dtsp_buffer, bufsize);
13987
13988         if (spec != NULL)
13989                 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13990
13991         dtrace_format_destroy(state);
13992
13993         if (state->dts_aggid_arena != NULL) {
13994 #if defined(sun)
13995                 vmem_destroy(state->dts_aggid_arena);
13996 #else
13997                 delete_unrhdr(state->dts_aggid_arena);
13998 #endif
13999                 state->dts_aggid_arena = NULL;
14000         }
14001 #if defined(sun)
14002         ddi_soft_state_free(dtrace_softstate, minor);
14003         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14004 #endif
14005 }
14006
14007 /*
14008  * DTrace Anonymous Enabling Functions
14009  */
14010 static dtrace_state_t *
14011 dtrace_anon_grab(void)
14012 {
14013         dtrace_state_t *state;
14014
14015         ASSERT(MUTEX_HELD(&dtrace_lock));
14016
14017         if ((state = dtrace_anon.dta_state) == NULL) {
14018                 ASSERT(dtrace_anon.dta_enabling == NULL);
14019                 return (NULL);
14020         }
14021
14022         ASSERT(dtrace_anon.dta_enabling != NULL);
14023         ASSERT(dtrace_retained != NULL);
14024
14025         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14026         dtrace_anon.dta_enabling = NULL;
14027         dtrace_anon.dta_state = NULL;
14028
14029         return (state);
14030 }
14031
14032 static void
14033 dtrace_anon_property(void)
14034 {
14035         int i, rv;
14036         dtrace_state_t *state;
14037         dof_hdr_t *dof;
14038         char c[32];             /* enough for "dof-data-" + digits */
14039
14040         ASSERT(MUTEX_HELD(&dtrace_lock));
14041         ASSERT(MUTEX_HELD(&cpu_lock));
14042
14043         for (i = 0; ; i++) {
14044                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14045
14046                 dtrace_err_verbose = 1;
14047
14048                 if ((dof = dtrace_dof_property(c)) == NULL) {
14049                         dtrace_err_verbose = 0;
14050                         break;
14051                 }
14052
14053 #if defined(sun)
14054                 /*
14055                  * We want to create anonymous state, so we need to transition
14056                  * the kernel debugger to indicate that DTrace is active.  If
14057                  * this fails (e.g. because the debugger has modified text in
14058                  * some way), we won't continue with the processing.
14059                  */
14060                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14061                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14062                             "enabling ignored.");
14063                         dtrace_dof_destroy(dof);
14064                         break;
14065                 }
14066 #endif
14067
14068                 /*
14069                  * If we haven't allocated an anonymous state, we'll do so now.
14070                  */
14071                 if ((state = dtrace_anon.dta_state) == NULL) {
14072 #if defined(sun)
14073                         state = dtrace_state_create(NULL, NULL);
14074 #else
14075                         state = dtrace_state_create(NULL);
14076 #endif
14077                         dtrace_anon.dta_state = state;
14078
14079                         if (state == NULL) {
14080                                 /*
14081                                  * This basically shouldn't happen:  the only
14082                                  * failure mode from dtrace_state_create() is a
14083                                  * failure of ddi_soft_state_zalloc() that
14084                                  * itself should never happen.  Still, the
14085                                  * interface allows for a failure mode, and
14086                                  * we want to fail as gracefully as possible:
14087                                  * we'll emit an error message and cease
14088                                  * processing anonymous state in this case.
14089                                  */
14090                                 cmn_err(CE_WARN, "failed to create "
14091                                     "anonymous state");
14092                                 dtrace_dof_destroy(dof);
14093                                 break;
14094                         }
14095                 }
14096
14097                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14098                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14099
14100                 if (rv == 0)
14101                         rv = dtrace_dof_options(dof, state);
14102
14103                 dtrace_err_verbose = 0;
14104                 dtrace_dof_destroy(dof);
14105
14106                 if (rv != 0) {
14107                         /*
14108                          * This is malformed DOF; chuck any anonymous state
14109                          * that we created.
14110                          */
14111                         ASSERT(dtrace_anon.dta_enabling == NULL);
14112                         dtrace_state_destroy(state);
14113                         dtrace_anon.dta_state = NULL;
14114                         break;
14115                 }
14116
14117                 ASSERT(dtrace_anon.dta_enabling != NULL);
14118         }
14119
14120         if (dtrace_anon.dta_enabling != NULL) {
14121                 int rval;
14122
14123                 /*
14124                  * dtrace_enabling_retain() can only fail because we are
14125                  * trying to retain more enablings than are allowed -- but
14126                  * we only have one anonymous enabling, and we are guaranteed
14127                  * to be allowed at least one retained enabling; we assert
14128                  * that dtrace_enabling_retain() returns success.
14129                  */
14130                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14131                 ASSERT(rval == 0);
14132
14133                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14134         }
14135 }
14136
14137 /*
14138  * DTrace Helper Functions
14139  */
14140 static void
14141 dtrace_helper_trace(dtrace_helper_action_t *helper,
14142     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14143 {
14144         uint32_t size, next, nnext, i;
14145         dtrace_helptrace_t *ent;
14146         uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14147
14148         if (!dtrace_helptrace_enabled)
14149                 return;
14150
14151         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14152
14153         /*
14154          * What would a tracing framework be without its own tracing
14155          * framework?  (Well, a hell of a lot simpler, for starters...)
14156          */
14157         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14158             sizeof (uint64_t) - sizeof (uint64_t);
14159
14160         /*
14161          * Iterate until we can allocate a slot in the trace buffer.
14162          */
14163         do {
14164                 next = dtrace_helptrace_next;
14165
14166                 if (next + size < dtrace_helptrace_bufsize) {
14167                         nnext = next + size;
14168                 } else {
14169                         nnext = size;
14170                 }
14171         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14172
14173         /*
14174          * We have our slot; fill it in.
14175          */
14176         if (nnext == size)
14177                 next = 0;
14178
14179         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14180         ent->dtht_helper = helper;
14181         ent->dtht_where = where;
14182         ent->dtht_nlocals = vstate->dtvs_nlocals;
14183
14184         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14185             mstate->dtms_fltoffs : -1;
14186         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14187         ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14188
14189         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14190                 dtrace_statvar_t *svar;
14191
14192                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14193                         continue;
14194
14195                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14196                 ent->dtht_locals[i] =
14197                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14198         }
14199 }
14200
14201 static uint64_t
14202 dtrace_helper(int which, dtrace_mstate_t *mstate,
14203     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14204 {
14205         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14206         uint64_t sarg0 = mstate->dtms_arg[0];
14207         uint64_t sarg1 = mstate->dtms_arg[1];
14208         uint64_t rval = 0;
14209         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14210         dtrace_helper_action_t *helper;
14211         dtrace_vstate_t *vstate;
14212         dtrace_difo_t *pred;
14213         int i, trace = dtrace_helptrace_enabled;
14214
14215         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14216
14217         if (helpers == NULL)
14218                 return (0);
14219
14220         if ((helper = helpers->dthps_actions[which]) == NULL)
14221                 return (0);
14222
14223         vstate = &helpers->dthps_vstate;
14224         mstate->dtms_arg[0] = arg0;
14225         mstate->dtms_arg[1] = arg1;
14226
14227         /*
14228          * Now iterate over each helper.  If its predicate evaluates to 'true',
14229          * we'll call the corresponding actions.  Note that the below calls
14230          * to dtrace_dif_emulate() may set faults in machine state.  This is
14231          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14232          * the stored DIF offset with its own (which is the desired behavior).
14233          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14234          * from machine state; this is okay, too.
14235          */
14236         for (; helper != NULL; helper = helper->dtha_next) {
14237                 if ((pred = helper->dtha_predicate) != NULL) {
14238                         if (trace)
14239                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14240
14241                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14242                                 goto next;
14243
14244                         if (*flags & CPU_DTRACE_FAULT)
14245                                 goto err;
14246                 }
14247
14248                 for (i = 0; i < helper->dtha_nactions; i++) {
14249                         if (trace)
14250                                 dtrace_helper_trace(helper,
14251                                     mstate, vstate, i + 1);
14252
14253                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14254                             mstate, vstate, state);
14255
14256                         if (*flags & CPU_DTRACE_FAULT)
14257                                 goto err;
14258                 }
14259
14260 next:
14261                 if (trace)
14262                         dtrace_helper_trace(helper, mstate, vstate,
14263                             DTRACE_HELPTRACE_NEXT);
14264         }
14265
14266         if (trace)
14267                 dtrace_helper_trace(helper, mstate, vstate,
14268                     DTRACE_HELPTRACE_DONE);
14269
14270         /*
14271          * Restore the arg0 that we saved upon entry.
14272          */
14273         mstate->dtms_arg[0] = sarg0;
14274         mstate->dtms_arg[1] = sarg1;
14275
14276         return (rval);
14277
14278 err:
14279         if (trace)
14280                 dtrace_helper_trace(helper, mstate, vstate,
14281                     DTRACE_HELPTRACE_ERR);
14282
14283         /*
14284          * Restore the arg0 that we saved upon entry.
14285          */
14286         mstate->dtms_arg[0] = sarg0;
14287         mstate->dtms_arg[1] = sarg1;
14288
14289         return (0);
14290 }
14291
14292 static void
14293 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14294     dtrace_vstate_t *vstate)
14295 {
14296         int i;
14297
14298         if (helper->dtha_predicate != NULL)
14299                 dtrace_difo_release(helper->dtha_predicate, vstate);
14300
14301         for (i = 0; i < helper->dtha_nactions; i++) {
14302                 ASSERT(helper->dtha_actions[i] != NULL);
14303                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14304         }
14305
14306         kmem_free(helper->dtha_actions,
14307             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14308         kmem_free(helper, sizeof (dtrace_helper_action_t));
14309 }
14310
14311 static int
14312 dtrace_helper_destroygen(int gen)
14313 {
14314         proc_t *p = curproc;
14315         dtrace_helpers_t *help = p->p_dtrace_helpers;
14316         dtrace_vstate_t *vstate;
14317         int i;
14318
14319         ASSERT(MUTEX_HELD(&dtrace_lock));
14320
14321         if (help == NULL || gen > help->dthps_generation)
14322                 return (EINVAL);
14323
14324         vstate = &help->dthps_vstate;
14325
14326         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14327                 dtrace_helper_action_t *last = NULL, *h, *next;
14328
14329                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14330                         next = h->dtha_next;
14331
14332                         if (h->dtha_generation == gen) {
14333                                 if (last != NULL) {
14334                                         last->dtha_next = next;
14335                                 } else {
14336                                         help->dthps_actions[i] = next;
14337                                 }
14338
14339                                 dtrace_helper_action_destroy(h, vstate);
14340                         } else {
14341                                 last = h;
14342                         }
14343                 }
14344         }
14345
14346         /*
14347          * Interate until we've cleared out all helper providers with the
14348          * given generation number.
14349          */
14350         for (;;) {
14351                 dtrace_helper_provider_t *prov;
14352
14353                 /*
14354                  * Look for a helper provider with the right generation. We
14355                  * have to start back at the beginning of the list each time
14356                  * because we drop dtrace_lock. It's unlikely that we'll make
14357                  * more than two passes.
14358                  */
14359                 for (i = 0; i < help->dthps_nprovs; i++) {
14360                         prov = help->dthps_provs[i];
14361
14362                         if (prov->dthp_generation == gen)
14363                                 break;
14364                 }
14365
14366                 /*
14367                  * If there were no matches, we're done.
14368                  */
14369                 if (i == help->dthps_nprovs)
14370                         break;
14371
14372                 /*
14373                  * Move the last helper provider into this slot.
14374                  */
14375                 help->dthps_nprovs--;
14376                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14377                 help->dthps_provs[help->dthps_nprovs] = NULL;
14378
14379                 mutex_exit(&dtrace_lock);
14380
14381                 /*
14382                  * If we have a meta provider, remove this helper provider.
14383                  */
14384                 mutex_enter(&dtrace_meta_lock);
14385                 if (dtrace_meta_pid != NULL) {
14386                         ASSERT(dtrace_deferred_pid == NULL);
14387                         dtrace_helper_provider_remove(&prov->dthp_prov,
14388                             p->p_pid);
14389                 }
14390                 mutex_exit(&dtrace_meta_lock);
14391
14392                 dtrace_helper_provider_destroy(prov);
14393
14394                 mutex_enter(&dtrace_lock);
14395         }
14396
14397         return (0);
14398 }
14399
14400 static int
14401 dtrace_helper_validate(dtrace_helper_action_t *helper)
14402 {
14403         int err = 0, i;
14404         dtrace_difo_t *dp;
14405
14406         if ((dp = helper->dtha_predicate) != NULL)
14407                 err += dtrace_difo_validate_helper(dp);
14408
14409         for (i = 0; i < helper->dtha_nactions; i++)
14410                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14411
14412         return (err == 0);
14413 }
14414
14415 static int
14416 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14417 {
14418         dtrace_helpers_t *help;
14419         dtrace_helper_action_t *helper, *last;
14420         dtrace_actdesc_t *act;
14421         dtrace_vstate_t *vstate;
14422         dtrace_predicate_t *pred;
14423         int count = 0, nactions = 0, i;
14424
14425         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14426                 return (EINVAL);
14427
14428         help = curproc->p_dtrace_helpers;
14429         last = help->dthps_actions[which];
14430         vstate = &help->dthps_vstate;
14431
14432         for (count = 0; last != NULL; last = last->dtha_next) {
14433                 count++;
14434                 if (last->dtha_next == NULL)
14435                         break;
14436         }
14437
14438         /*
14439          * If we already have dtrace_helper_actions_max helper actions for this
14440          * helper action type, we'll refuse to add a new one.
14441          */
14442         if (count >= dtrace_helper_actions_max)
14443                 return (ENOSPC);
14444
14445         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14446         helper->dtha_generation = help->dthps_generation;
14447
14448         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14449                 ASSERT(pred->dtp_difo != NULL);
14450                 dtrace_difo_hold(pred->dtp_difo);
14451                 helper->dtha_predicate = pred->dtp_difo;
14452         }
14453
14454         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14455                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14456                         goto err;
14457
14458                 if (act->dtad_difo == NULL)
14459                         goto err;
14460
14461                 nactions++;
14462         }
14463
14464         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14465             (helper->dtha_nactions = nactions), KM_SLEEP);
14466
14467         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14468                 dtrace_difo_hold(act->dtad_difo);
14469                 helper->dtha_actions[i++] = act->dtad_difo;
14470         }
14471
14472         if (!dtrace_helper_validate(helper))
14473                 goto err;
14474
14475         if (last == NULL) {
14476                 help->dthps_actions[which] = helper;
14477         } else {
14478                 last->dtha_next = helper;
14479         }
14480
14481         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14482                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14483                 dtrace_helptrace_next = 0;
14484         }
14485
14486         return (0);
14487 err:
14488         dtrace_helper_action_destroy(helper, vstate);
14489         return (EINVAL);
14490 }
14491
14492 static void
14493 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14494     dof_helper_t *dofhp)
14495 {
14496         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14497
14498         mutex_enter(&dtrace_meta_lock);
14499         mutex_enter(&dtrace_lock);
14500
14501         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14502                 /*
14503                  * If the dtrace module is loaded but not attached, or if
14504                  * there aren't isn't a meta provider registered to deal with
14505                  * these provider descriptions, we need to postpone creating
14506                  * the actual providers until later.
14507                  */
14508
14509                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14510                     dtrace_deferred_pid != help) {
14511                         help->dthps_deferred = 1;
14512                         help->dthps_pid = p->p_pid;
14513                         help->dthps_next = dtrace_deferred_pid;
14514                         help->dthps_prev = NULL;
14515                         if (dtrace_deferred_pid != NULL)
14516                                 dtrace_deferred_pid->dthps_prev = help;
14517                         dtrace_deferred_pid = help;
14518                 }
14519
14520                 mutex_exit(&dtrace_lock);
14521
14522         } else if (dofhp != NULL) {
14523                 /*
14524                  * If the dtrace module is loaded and we have a particular
14525                  * helper provider description, pass that off to the
14526                  * meta provider.
14527                  */
14528
14529                 mutex_exit(&dtrace_lock);
14530
14531                 dtrace_helper_provide(dofhp, p->p_pid);
14532
14533         } else {
14534                 /*
14535                  * Otherwise, just pass all the helper provider descriptions
14536                  * off to the meta provider.
14537                  */
14538
14539                 int i;
14540                 mutex_exit(&dtrace_lock);
14541
14542                 for (i = 0; i < help->dthps_nprovs; i++) {
14543                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14544                             p->p_pid);
14545                 }
14546         }
14547
14548         mutex_exit(&dtrace_meta_lock);
14549 }
14550
14551 static int
14552 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14553 {
14554         dtrace_helpers_t *help;
14555         dtrace_helper_provider_t *hprov, **tmp_provs;
14556         uint_t tmp_maxprovs, i;
14557
14558         ASSERT(MUTEX_HELD(&dtrace_lock));
14559
14560         help = curproc->p_dtrace_helpers;
14561         ASSERT(help != NULL);
14562
14563         /*
14564          * If we already have dtrace_helper_providers_max helper providers,
14565          * we're refuse to add a new one.
14566          */
14567         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14568                 return (ENOSPC);
14569
14570         /*
14571          * Check to make sure this isn't a duplicate.
14572          */
14573         for (i = 0; i < help->dthps_nprovs; i++) {
14574                 if (dofhp->dofhp_addr ==
14575                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
14576                         return (EALREADY);
14577         }
14578
14579         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14580         hprov->dthp_prov = *dofhp;
14581         hprov->dthp_ref = 1;
14582         hprov->dthp_generation = gen;
14583
14584         /*
14585          * Allocate a bigger table for helper providers if it's already full.
14586          */
14587         if (help->dthps_maxprovs == help->dthps_nprovs) {
14588                 tmp_maxprovs = help->dthps_maxprovs;
14589                 tmp_provs = help->dthps_provs;
14590
14591                 if (help->dthps_maxprovs == 0)
14592                         help->dthps_maxprovs = 2;
14593                 else
14594                         help->dthps_maxprovs *= 2;
14595                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14596                         help->dthps_maxprovs = dtrace_helper_providers_max;
14597
14598                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14599
14600                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14601                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14602
14603                 if (tmp_provs != NULL) {
14604                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14605                             sizeof (dtrace_helper_provider_t *));
14606                         kmem_free(tmp_provs, tmp_maxprovs *
14607                             sizeof (dtrace_helper_provider_t *));
14608                 }
14609         }
14610
14611         help->dthps_provs[help->dthps_nprovs] = hprov;
14612         help->dthps_nprovs++;
14613
14614         return (0);
14615 }
14616
14617 static void
14618 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14619 {
14620         mutex_enter(&dtrace_lock);
14621
14622         if (--hprov->dthp_ref == 0) {
14623                 dof_hdr_t *dof;
14624                 mutex_exit(&dtrace_lock);
14625                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14626                 dtrace_dof_destroy(dof);
14627                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14628         } else {
14629                 mutex_exit(&dtrace_lock);
14630         }
14631 }
14632
14633 static int
14634 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14635 {
14636         uintptr_t daddr = (uintptr_t)dof;
14637         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14638         dof_provider_t *provider;
14639         dof_probe_t *probe;
14640         uint8_t *arg;
14641         char *strtab, *typestr;
14642         dof_stridx_t typeidx;
14643         size_t typesz;
14644         uint_t nprobes, j, k;
14645
14646         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14647
14648         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14649                 dtrace_dof_error(dof, "misaligned section offset");
14650                 return (-1);
14651         }
14652
14653         /*
14654          * The section needs to be large enough to contain the DOF provider
14655          * structure appropriate for the given version.
14656          */
14657         if (sec->dofs_size <
14658             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14659             offsetof(dof_provider_t, dofpv_prenoffs) :
14660             sizeof (dof_provider_t))) {
14661                 dtrace_dof_error(dof, "provider section too small");
14662                 return (-1);
14663         }
14664
14665         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14666         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14667         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14668         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14669         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14670
14671         if (str_sec == NULL || prb_sec == NULL ||
14672             arg_sec == NULL || off_sec == NULL)
14673                 return (-1);
14674
14675         enoff_sec = NULL;
14676
14677         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14678             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14679             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14680             provider->dofpv_prenoffs)) == NULL)
14681                 return (-1);
14682
14683         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14684
14685         if (provider->dofpv_name >= str_sec->dofs_size ||
14686             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14687                 dtrace_dof_error(dof, "invalid provider name");
14688                 return (-1);
14689         }
14690
14691         if (prb_sec->dofs_entsize == 0 ||
14692             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14693                 dtrace_dof_error(dof, "invalid entry size");
14694                 return (-1);
14695         }
14696
14697         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14698                 dtrace_dof_error(dof, "misaligned entry size");
14699                 return (-1);
14700         }
14701
14702         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14703                 dtrace_dof_error(dof, "invalid entry size");
14704                 return (-1);
14705         }
14706
14707         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14708                 dtrace_dof_error(dof, "misaligned section offset");
14709                 return (-1);
14710         }
14711
14712         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14713                 dtrace_dof_error(dof, "invalid entry size");
14714                 return (-1);
14715         }
14716
14717         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14718
14719         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14720
14721         /*
14722          * Take a pass through the probes to check for errors.
14723          */
14724         for (j = 0; j < nprobes; j++) {
14725                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14726                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14727
14728                 if (probe->dofpr_func >= str_sec->dofs_size) {
14729                         dtrace_dof_error(dof, "invalid function name");
14730                         return (-1);
14731                 }
14732
14733                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14734                         dtrace_dof_error(dof, "function name too long");
14735                         return (-1);
14736                 }
14737
14738                 if (probe->dofpr_name >= str_sec->dofs_size ||
14739                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14740                         dtrace_dof_error(dof, "invalid probe name");
14741                         return (-1);
14742                 }
14743
14744                 /*
14745                  * The offset count must not wrap the index, and the offsets
14746                  * must also not overflow the section's data.
14747                  */
14748                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14749                     probe->dofpr_offidx ||
14750                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14751                     off_sec->dofs_entsize > off_sec->dofs_size) {
14752                         dtrace_dof_error(dof, "invalid probe offset");
14753                         return (-1);
14754                 }
14755
14756                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14757                         /*
14758                          * If there's no is-enabled offset section, make sure
14759                          * there aren't any is-enabled offsets. Otherwise
14760                          * perform the same checks as for probe offsets
14761                          * (immediately above).
14762                          */
14763                         if (enoff_sec == NULL) {
14764                                 if (probe->dofpr_enoffidx != 0 ||
14765                                     probe->dofpr_nenoffs != 0) {
14766                                         dtrace_dof_error(dof, "is-enabled "
14767                                             "offsets with null section");
14768                                         return (-1);
14769                                 }
14770                         } else if (probe->dofpr_enoffidx +
14771                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14772                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14773                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14774                                 dtrace_dof_error(dof, "invalid is-enabled "
14775                                     "offset");
14776                                 return (-1);
14777                         }
14778
14779                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14780                                 dtrace_dof_error(dof, "zero probe and "
14781                                     "is-enabled offsets");
14782                                 return (-1);
14783                         }
14784                 } else if (probe->dofpr_noffs == 0) {
14785                         dtrace_dof_error(dof, "zero probe offsets");
14786                         return (-1);
14787                 }
14788
14789                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14790                     probe->dofpr_argidx ||
14791                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14792                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14793                         dtrace_dof_error(dof, "invalid args");
14794                         return (-1);
14795                 }
14796
14797                 typeidx = probe->dofpr_nargv;
14798                 typestr = strtab + probe->dofpr_nargv;
14799                 for (k = 0; k < probe->dofpr_nargc; k++) {
14800                         if (typeidx >= str_sec->dofs_size) {
14801                                 dtrace_dof_error(dof, "bad "
14802                                     "native argument type");
14803                                 return (-1);
14804                         }
14805
14806                         typesz = strlen(typestr) + 1;
14807                         if (typesz > DTRACE_ARGTYPELEN) {
14808                                 dtrace_dof_error(dof, "native "
14809                                     "argument type too long");
14810                                 return (-1);
14811                         }
14812                         typeidx += typesz;
14813                         typestr += typesz;
14814                 }
14815
14816                 typeidx = probe->dofpr_xargv;
14817                 typestr = strtab + probe->dofpr_xargv;
14818                 for (k = 0; k < probe->dofpr_xargc; k++) {
14819                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14820                                 dtrace_dof_error(dof, "bad "
14821                                     "native argument index");
14822                                 return (-1);
14823                         }
14824
14825                         if (typeidx >= str_sec->dofs_size) {
14826                                 dtrace_dof_error(dof, "bad "
14827                                     "translated argument type");
14828                                 return (-1);
14829                         }
14830
14831                         typesz = strlen(typestr) + 1;
14832                         if (typesz > DTRACE_ARGTYPELEN) {
14833                                 dtrace_dof_error(dof, "translated argument "
14834                                     "type too long");
14835                                 return (-1);
14836                         }
14837
14838                         typeidx += typesz;
14839                         typestr += typesz;
14840                 }
14841         }
14842
14843         return (0);
14844 }
14845
14846 static int
14847 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14848 {
14849         dtrace_helpers_t *help;
14850         dtrace_vstate_t *vstate;
14851         dtrace_enabling_t *enab = NULL;
14852         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14853         uintptr_t daddr = (uintptr_t)dof;
14854
14855         ASSERT(MUTEX_HELD(&dtrace_lock));
14856
14857         if ((help = curproc->p_dtrace_helpers) == NULL)
14858                 help = dtrace_helpers_create(curproc);
14859
14860         vstate = &help->dthps_vstate;
14861
14862         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14863             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14864                 dtrace_dof_destroy(dof);
14865                 return (rv);
14866         }
14867
14868         /*
14869          * Look for helper providers and validate their descriptions.
14870          */
14871         if (dhp != NULL) {
14872                 for (i = 0; i < dof->dofh_secnum; i++) {
14873                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14874                             dof->dofh_secoff + i * dof->dofh_secsize);
14875
14876                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14877                                 continue;
14878
14879                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14880                                 dtrace_enabling_destroy(enab);
14881                                 dtrace_dof_destroy(dof);
14882                                 return (-1);
14883                         }
14884
14885                         nprovs++;
14886                 }
14887         }
14888
14889         /*
14890          * Now we need to walk through the ECB descriptions in the enabling.
14891          */
14892         for (i = 0; i < enab->dten_ndesc; i++) {
14893                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14894                 dtrace_probedesc_t *desc = &ep->dted_probe;
14895
14896                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14897                         continue;
14898
14899                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14900                         continue;
14901
14902                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14903                         continue;
14904
14905                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14906                     ep)) != 0) {
14907                         /*
14908                          * Adding this helper action failed -- we are now going
14909                          * to rip out the entire generation and return failure.
14910                          */
14911                         (void) dtrace_helper_destroygen(help->dthps_generation);
14912                         dtrace_enabling_destroy(enab);
14913                         dtrace_dof_destroy(dof);
14914                         return (-1);
14915                 }
14916
14917                 nhelpers++;
14918         }
14919
14920         if (nhelpers < enab->dten_ndesc)
14921                 dtrace_dof_error(dof, "unmatched helpers");
14922
14923         gen = help->dthps_generation++;
14924         dtrace_enabling_destroy(enab);
14925
14926         if (dhp != NULL && nprovs > 0) {
14927                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14928                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14929                         mutex_exit(&dtrace_lock);
14930                         dtrace_helper_provider_register(curproc, help, dhp);
14931                         mutex_enter(&dtrace_lock);
14932
14933                         destroy = 0;
14934                 }
14935         }
14936
14937         if (destroy)
14938                 dtrace_dof_destroy(dof);
14939
14940         return (gen);
14941 }
14942
14943 static dtrace_helpers_t *
14944 dtrace_helpers_create(proc_t *p)
14945 {
14946         dtrace_helpers_t *help;
14947
14948         ASSERT(MUTEX_HELD(&dtrace_lock));
14949         ASSERT(p->p_dtrace_helpers == NULL);
14950
14951         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14952         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14953             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14954
14955         p->p_dtrace_helpers = help;
14956         dtrace_helpers++;
14957
14958         return (help);
14959 }
14960
14961 #if defined(sun)
14962 static
14963 #endif
14964 void
14965 dtrace_helpers_destroy(proc_t *p)
14966 {
14967         dtrace_helpers_t *help;
14968         dtrace_vstate_t *vstate;
14969 #if defined(sun)
14970         proc_t *p = curproc;
14971 #endif
14972         int i;
14973
14974         mutex_enter(&dtrace_lock);
14975
14976         ASSERT(p->p_dtrace_helpers != NULL);
14977         ASSERT(dtrace_helpers > 0);
14978
14979         help = p->p_dtrace_helpers;
14980         vstate = &help->dthps_vstate;
14981
14982         /*
14983          * We're now going to lose the help from this process.
14984          */
14985         p->p_dtrace_helpers = NULL;
14986         dtrace_sync();
14987
14988         /*
14989          * Destory the helper actions.
14990          */
14991         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14992                 dtrace_helper_action_t *h, *next;
14993
14994                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14995                         next = h->dtha_next;
14996                         dtrace_helper_action_destroy(h, vstate);
14997                         h = next;
14998                 }
14999         }
15000
15001         mutex_exit(&dtrace_lock);
15002
15003         /*
15004          * Destroy the helper providers.
15005          */
15006         if (help->dthps_maxprovs > 0) {
15007                 mutex_enter(&dtrace_meta_lock);
15008                 if (dtrace_meta_pid != NULL) {
15009                         ASSERT(dtrace_deferred_pid == NULL);
15010
15011                         for (i = 0; i < help->dthps_nprovs; i++) {
15012                                 dtrace_helper_provider_remove(
15013                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
15014                         }
15015                 } else {
15016                         mutex_enter(&dtrace_lock);
15017                         ASSERT(help->dthps_deferred == 0 ||
15018                             help->dthps_next != NULL ||
15019                             help->dthps_prev != NULL ||
15020                             help == dtrace_deferred_pid);
15021
15022                         /*
15023                          * Remove the helper from the deferred list.
15024                          */
15025                         if (help->dthps_next != NULL)
15026                                 help->dthps_next->dthps_prev = help->dthps_prev;
15027                         if (help->dthps_prev != NULL)
15028                                 help->dthps_prev->dthps_next = help->dthps_next;
15029                         if (dtrace_deferred_pid == help) {
15030                                 dtrace_deferred_pid = help->dthps_next;
15031                                 ASSERT(help->dthps_prev == NULL);
15032                         }
15033
15034                         mutex_exit(&dtrace_lock);
15035                 }
15036
15037                 mutex_exit(&dtrace_meta_lock);
15038
15039                 for (i = 0; i < help->dthps_nprovs; i++) {
15040                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15041                 }
15042
15043                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15044                     sizeof (dtrace_helper_provider_t *));
15045         }
15046
15047         mutex_enter(&dtrace_lock);
15048
15049         dtrace_vstate_fini(&help->dthps_vstate);
15050         kmem_free(help->dthps_actions,
15051             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15052         kmem_free(help, sizeof (dtrace_helpers_t));
15053
15054         --dtrace_helpers;
15055         mutex_exit(&dtrace_lock);
15056 }
15057
15058 #if defined(sun)
15059 static
15060 #endif
15061 void
15062 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15063 {
15064         dtrace_helpers_t *help, *newhelp;
15065         dtrace_helper_action_t *helper, *new, *last;
15066         dtrace_difo_t *dp;
15067         dtrace_vstate_t *vstate;
15068         int i, j, sz, hasprovs = 0;
15069
15070         mutex_enter(&dtrace_lock);
15071         ASSERT(from->p_dtrace_helpers != NULL);
15072         ASSERT(dtrace_helpers > 0);
15073
15074         help = from->p_dtrace_helpers;
15075         newhelp = dtrace_helpers_create(to);
15076         ASSERT(to->p_dtrace_helpers != NULL);
15077
15078         newhelp->dthps_generation = help->dthps_generation;
15079         vstate = &newhelp->dthps_vstate;
15080
15081         /*
15082          * Duplicate the helper actions.
15083          */
15084         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15085                 if ((helper = help->dthps_actions[i]) == NULL)
15086                         continue;
15087
15088                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15089                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15090                             KM_SLEEP);
15091                         new->dtha_generation = helper->dtha_generation;
15092
15093                         if ((dp = helper->dtha_predicate) != NULL) {
15094                                 dp = dtrace_difo_duplicate(dp, vstate);
15095                                 new->dtha_predicate = dp;
15096                         }
15097
15098                         new->dtha_nactions = helper->dtha_nactions;
15099                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15100                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15101
15102                         for (j = 0; j < new->dtha_nactions; j++) {
15103                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15104
15105                                 ASSERT(dp != NULL);
15106                                 dp = dtrace_difo_duplicate(dp, vstate);
15107                                 new->dtha_actions[j] = dp;
15108                         }
15109
15110                         if (last != NULL) {
15111                                 last->dtha_next = new;
15112                         } else {
15113                                 newhelp->dthps_actions[i] = new;
15114                         }
15115
15116                         last = new;
15117                 }
15118         }
15119
15120         /*
15121          * Duplicate the helper providers and register them with the
15122          * DTrace framework.
15123          */
15124         if (help->dthps_nprovs > 0) {
15125                 newhelp->dthps_nprovs = help->dthps_nprovs;
15126                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15127                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15128                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15129                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15130                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15131                         newhelp->dthps_provs[i]->dthp_ref++;
15132                 }
15133
15134                 hasprovs = 1;
15135         }
15136
15137         mutex_exit(&dtrace_lock);
15138
15139         if (hasprovs)
15140                 dtrace_helper_provider_register(to, newhelp, NULL);
15141 }
15142
15143 /*
15144  * DTrace Hook Functions
15145  */
15146 static void
15147 dtrace_module_loaded(modctl_t *ctl)
15148 {
15149         dtrace_provider_t *prv;
15150
15151         mutex_enter(&dtrace_provider_lock);
15152 #if defined(sun)
15153         mutex_enter(&mod_lock);
15154 #endif
15155
15156 #if defined(sun)
15157         ASSERT(ctl->mod_busy);
15158 #endif
15159
15160         /*
15161          * We're going to call each providers per-module provide operation
15162          * specifying only this module.
15163          */
15164         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15165                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15166
15167 #if defined(sun)
15168         mutex_exit(&mod_lock);
15169 #endif
15170         mutex_exit(&dtrace_provider_lock);
15171
15172         /*
15173          * If we have any retained enablings, we need to match against them.
15174          * Enabling probes requires that cpu_lock be held, and we cannot hold
15175          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15176          * module.  (In particular, this happens when loading scheduling
15177          * classes.)  So if we have any retained enablings, we need to dispatch
15178          * our task queue to do the match for us.
15179          */
15180         mutex_enter(&dtrace_lock);
15181
15182         if (dtrace_retained == NULL) {
15183                 mutex_exit(&dtrace_lock);
15184                 return;
15185         }
15186
15187         (void) taskq_dispatch(dtrace_taskq,
15188             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15189
15190         mutex_exit(&dtrace_lock);
15191
15192         /*
15193          * And now, for a little heuristic sleaze:  in general, we want to
15194          * match modules as soon as they load.  However, we cannot guarantee
15195          * this, because it would lead us to the lock ordering violation
15196          * outlined above.  The common case, of course, is that cpu_lock is
15197          * _not_ held -- so we delay here for a clock tick, hoping that that's
15198          * long enough for the task queue to do its work.  If it's not, it's
15199          * not a serious problem -- it just means that the module that we
15200          * just loaded may not be immediately instrumentable.
15201          */
15202         delay(1);
15203 }
15204
15205 static void
15206 #if defined(sun)
15207 dtrace_module_unloaded(modctl_t *ctl)
15208 #else
15209 dtrace_module_unloaded(modctl_t *ctl, int *error)
15210 #endif
15211 {
15212         dtrace_probe_t template, *probe, *first, *next;
15213         dtrace_provider_t *prov;
15214 #if !defined(sun)
15215         char modname[DTRACE_MODNAMELEN];
15216         size_t len;
15217 #endif
15218
15219 #if defined(sun)
15220         template.dtpr_mod = ctl->mod_modname;
15221 #else
15222         /* Handle the fact that ctl->filename may end in ".ko". */
15223         strlcpy(modname, ctl->filename, sizeof(modname));
15224         len = strlen(ctl->filename);
15225         if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15226                 modname[len - 3] = '\0';
15227         template.dtpr_mod = modname;
15228 #endif
15229
15230         mutex_enter(&dtrace_provider_lock);
15231 #if defined(sun)
15232         mutex_enter(&mod_lock);
15233 #endif
15234         mutex_enter(&dtrace_lock);
15235
15236 #if !defined(sun)
15237         if (ctl->nenabled > 0) {
15238                 /* Don't allow unloads if a probe is enabled. */
15239                 mutex_exit(&dtrace_provider_lock);
15240                 mutex_exit(&dtrace_lock);
15241                 *error = -1;
15242                 printf(
15243         "kldunload: attempt to unload module that has DTrace probes enabled\n");
15244                 return;
15245         }
15246 #endif
15247
15248         if (dtrace_bymod == NULL) {
15249                 /*
15250                  * The DTrace module is loaded (obviously) but not attached;
15251                  * we don't have any work to do.
15252                  */
15253                 mutex_exit(&dtrace_provider_lock);
15254 #if defined(sun)
15255                 mutex_exit(&mod_lock);
15256 #endif
15257                 mutex_exit(&dtrace_lock);
15258                 return;
15259         }
15260
15261         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15262             probe != NULL; probe = probe->dtpr_nextmod) {
15263                 if (probe->dtpr_ecb != NULL) {
15264                         mutex_exit(&dtrace_provider_lock);
15265 #if defined(sun)
15266                         mutex_exit(&mod_lock);
15267 #endif
15268                         mutex_exit(&dtrace_lock);
15269
15270                         /*
15271                          * This shouldn't _actually_ be possible -- we're
15272                          * unloading a module that has an enabled probe in it.
15273                          * (It's normally up to the provider to make sure that
15274                          * this can't happen.)  However, because dtps_enable()
15275                          * doesn't have a failure mode, there can be an
15276                          * enable/unload race.  Upshot:  we don't want to
15277                          * assert, but we're not going to disable the
15278                          * probe, either.
15279                          */
15280                         if (dtrace_err_verbose) {
15281 #if defined(sun)
15282                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15283                                     "enabled probes", ctl->mod_modname);
15284 #else
15285                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15286                                     "enabled probes", modname);
15287 #endif
15288                         }
15289
15290                         return;
15291                 }
15292         }
15293
15294         probe = first;
15295
15296         for (first = NULL; probe != NULL; probe = next) {
15297                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15298
15299                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15300
15301                 next = probe->dtpr_nextmod;
15302                 dtrace_hash_remove(dtrace_bymod, probe);
15303                 dtrace_hash_remove(dtrace_byfunc, probe);
15304                 dtrace_hash_remove(dtrace_byname, probe);
15305
15306                 if (first == NULL) {
15307                         first = probe;
15308                         probe->dtpr_nextmod = NULL;
15309                 } else {
15310                         probe->dtpr_nextmod = first;
15311                         first = probe;
15312                 }
15313         }
15314
15315         /*
15316          * We've removed all of the module's probes from the hash chains and
15317          * from the probe array.  Now issue a dtrace_sync() to be sure that
15318          * everyone has cleared out from any probe array processing.
15319          */
15320         dtrace_sync();
15321
15322         for (probe = first; probe != NULL; probe = first) {
15323                 first = probe->dtpr_nextmod;
15324                 prov = probe->dtpr_provider;
15325                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15326                     probe->dtpr_arg);
15327                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15328                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15329                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15330 #if defined(sun)
15331                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15332 #else
15333                 free_unr(dtrace_arena, probe->dtpr_id);
15334 #endif
15335                 kmem_free(probe, sizeof (dtrace_probe_t));
15336         }
15337
15338         mutex_exit(&dtrace_lock);
15339 #if defined(sun)
15340         mutex_exit(&mod_lock);
15341 #endif
15342         mutex_exit(&dtrace_provider_lock);
15343 }
15344
15345 #if !defined(sun)
15346 static void
15347 dtrace_kld_load(void *arg __unused, linker_file_t lf)
15348 {
15349
15350         dtrace_module_loaded(lf);
15351 }
15352
15353 static void
15354 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
15355 {
15356
15357         if (*error != 0)
15358                 /* We already have an error, so don't do anything. */
15359                 return;
15360         dtrace_module_unloaded(lf, error);
15361 }
15362 #endif
15363
15364 #if defined(sun)
15365 static void
15366 dtrace_suspend(void)
15367 {
15368         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15369 }
15370
15371 static void
15372 dtrace_resume(void)
15373 {
15374         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15375 }
15376 #endif
15377
15378 static int
15379 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15380 {
15381         ASSERT(MUTEX_HELD(&cpu_lock));
15382         mutex_enter(&dtrace_lock);
15383
15384         switch (what) {
15385         case CPU_CONFIG: {
15386                 dtrace_state_t *state;
15387                 dtrace_optval_t *opt, rs, c;
15388
15389                 /*
15390                  * For now, we only allocate a new buffer for anonymous state.
15391                  */
15392                 if ((state = dtrace_anon.dta_state) == NULL)
15393                         break;
15394
15395                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15396                         break;
15397
15398                 opt = state->dts_options;
15399                 c = opt[DTRACEOPT_CPU];
15400
15401                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15402                         break;
15403
15404                 /*
15405                  * Regardless of what the actual policy is, we're going to
15406                  * temporarily set our resize policy to be manual.  We're
15407                  * also going to temporarily set our CPU option to denote
15408                  * the newly configured CPU.
15409                  */
15410                 rs = opt[DTRACEOPT_BUFRESIZE];
15411                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15412                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15413
15414                 (void) dtrace_state_buffers(state);
15415
15416                 opt[DTRACEOPT_BUFRESIZE] = rs;
15417                 opt[DTRACEOPT_CPU] = c;
15418
15419                 break;
15420         }
15421
15422         case CPU_UNCONFIG:
15423                 /*
15424                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15425                  * buffer will be freed when the consumer exits.)
15426                  */
15427                 break;
15428
15429         default:
15430                 break;
15431         }
15432
15433         mutex_exit(&dtrace_lock);
15434         return (0);
15435 }
15436
15437 #if defined(sun)
15438 static void
15439 dtrace_cpu_setup_initial(processorid_t cpu)
15440 {
15441         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15442 }
15443 #endif
15444
15445 static void
15446 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15447 {
15448         if (dtrace_toxranges >= dtrace_toxranges_max) {
15449                 int osize, nsize;
15450                 dtrace_toxrange_t *range;
15451
15452                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15453
15454                 if (osize == 0) {
15455                         ASSERT(dtrace_toxrange == NULL);
15456                         ASSERT(dtrace_toxranges_max == 0);
15457                         dtrace_toxranges_max = 1;
15458                 } else {
15459                         dtrace_toxranges_max <<= 1;
15460                 }
15461
15462                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15463                 range = kmem_zalloc(nsize, KM_SLEEP);
15464
15465                 if (dtrace_toxrange != NULL) {
15466                         ASSERT(osize != 0);
15467                         bcopy(dtrace_toxrange, range, osize);
15468                         kmem_free(dtrace_toxrange, osize);
15469                 }
15470
15471                 dtrace_toxrange = range;
15472         }
15473
15474         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15475         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15476
15477         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15478         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15479         dtrace_toxranges++;
15480 }
15481
15482 /*
15483  * DTrace Driver Cookbook Functions
15484  */
15485 #if defined(sun)
15486 /*ARGSUSED*/
15487 static int
15488 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15489 {
15490         dtrace_provider_id_t id;
15491         dtrace_state_t *state = NULL;
15492         dtrace_enabling_t *enab;
15493
15494         mutex_enter(&cpu_lock);
15495         mutex_enter(&dtrace_provider_lock);
15496         mutex_enter(&dtrace_lock);
15497
15498         if (ddi_soft_state_init(&dtrace_softstate,
15499             sizeof (dtrace_state_t), 0) != 0) {
15500                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15501                 mutex_exit(&cpu_lock);
15502                 mutex_exit(&dtrace_provider_lock);
15503                 mutex_exit(&dtrace_lock);
15504                 return (DDI_FAILURE);
15505         }
15506
15507         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15508             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15509             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15510             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15511                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15512                 ddi_remove_minor_node(devi, NULL);
15513                 ddi_soft_state_fini(&dtrace_softstate);
15514                 mutex_exit(&cpu_lock);
15515                 mutex_exit(&dtrace_provider_lock);
15516                 mutex_exit(&dtrace_lock);
15517                 return (DDI_FAILURE);
15518         }
15519
15520         ddi_report_dev(devi);
15521         dtrace_devi = devi;
15522
15523         dtrace_modload = dtrace_module_loaded;
15524         dtrace_modunload = dtrace_module_unloaded;
15525         dtrace_cpu_init = dtrace_cpu_setup_initial;
15526         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15527         dtrace_helpers_fork = dtrace_helpers_duplicate;
15528         dtrace_cpustart_init = dtrace_suspend;
15529         dtrace_cpustart_fini = dtrace_resume;
15530         dtrace_debugger_init = dtrace_suspend;
15531         dtrace_debugger_fini = dtrace_resume;
15532
15533         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15534
15535         ASSERT(MUTEX_HELD(&cpu_lock));
15536
15537         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15538             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15539         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15540             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15541             VM_SLEEP | VMC_IDENTIFIER);
15542         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15543             1, INT_MAX, 0);
15544
15545         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15546             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15547             NULL, NULL, NULL, NULL, NULL, 0);
15548
15549         ASSERT(MUTEX_HELD(&cpu_lock));
15550         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15551             offsetof(dtrace_probe_t, dtpr_nextmod),
15552             offsetof(dtrace_probe_t, dtpr_prevmod));
15553
15554         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15555             offsetof(dtrace_probe_t, dtpr_nextfunc),
15556             offsetof(dtrace_probe_t, dtpr_prevfunc));
15557
15558         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15559             offsetof(dtrace_probe_t, dtpr_nextname),
15560             offsetof(dtrace_probe_t, dtpr_prevname));
15561
15562         if (dtrace_retain_max < 1) {
15563                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15564                     "setting to 1", dtrace_retain_max);
15565                 dtrace_retain_max = 1;
15566         }
15567
15568         /*
15569          * Now discover our toxic ranges.
15570          */
15571         dtrace_toxic_ranges(dtrace_toxrange_add);
15572
15573         /*
15574          * Before we register ourselves as a provider to our own framework,
15575          * we would like to assert that dtrace_provider is NULL -- but that's
15576          * not true if we were loaded as a dependency of a DTrace provider.
15577          * Once we've registered, we can assert that dtrace_provider is our
15578          * pseudo provider.
15579          */
15580         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15581             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15582
15583         ASSERT(dtrace_provider != NULL);
15584         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15585
15586         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15587             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15588         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15589             dtrace_provider, NULL, NULL, "END", 0, NULL);
15590         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15591             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15592
15593         dtrace_anon_property();
15594         mutex_exit(&cpu_lock);
15595
15596         /*
15597          * If DTrace helper tracing is enabled, we need to allocate the
15598          * trace buffer and initialize the values.
15599          */
15600         if (dtrace_helptrace_enabled) {
15601                 ASSERT(dtrace_helptrace_buffer == NULL);
15602                 dtrace_helptrace_buffer =
15603                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15604                 dtrace_helptrace_next = 0;
15605         }
15606
15607         /*
15608          * If there are already providers, we must ask them to provide their
15609          * probes, and then match any anonymous enabling against them.  Note
15610          * that there should be no other retained enablings at this time:
15611          * the only retained enablings at this time should be the anonymous
15612          * enabling.
15613          */
15614         if (dtrace_anon.dta_enabling != NULL) {
15615                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15616
15617                 dtrace_enabling_provide(NULL);
15618                 state = dtrace_anon.dta_state;
15619
15620                 /*
15621                  * We couldn't hold cpu_lock across the above call to
15622                  * dtrace_enabling_provide(), but we must hold it to actually
15623                  * enable the probes.  We have to drop all of our locks, pick
15624                  * up cpu_lock, and regain our locks before matching the
15625                  * retained anonymous enabling.
15626                  */
15627                 mutex_exit(&dtrace_lock);
15628                 mutex_exit(&dtrace_provider_lock);
15629
15630                 mutex_enter(&cpu_lock);
15631                 mutex_enter(&dtrace_provider_lock);
15632                 mutex_enter(&dtrace_lock);
15633
15634                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15635                         (void) dtrace_enabling_match(enab, NULL);
15636
15637                 mutex_exit(&cpu_lock);
15638         }
15639
15640         mutex_exit(&dtrace_lock);
15641         mutex_exit(&dtrace_provider_lock);
15642
15643         if (state != NULL) {
15644                 /*
15645                  * If we created any anonymous state, set it going now.
15646                  */
15647                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15648         }
15649
15650         return (DDI_SUCCESS);
15651 }
15652 #endif
15653
15654 #if !defined(sun)
15655 #if __FreeBSD_version >= 800039
15656 static void dtrace_dtr(void *);
15657 #endif
15658 #endif
15659
15660 /*ARGSUSED*/
15661 static int
15662 #if defined(sun)
15663 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15664 #else
15665 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15666 #endif
15667 {
15668         dtrace_state_t *state;
15669         uint32_t priv;
15670         uid_t uid;
15671         zoneid_t zoneid;
15672
15673 #if defined(sun)
15674         if (getminor(*devp) == DTRACEMNRN_HELPER)
15675                 return (0);
15676
15677         /*
15678          * If this wasn't an open with the "helper" minor, then it must be
15679          * the "dtrace" minor.
15680          */
15681         ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15682 #else
15683         cred_t *cred_p = NULL;
15684
15685 #if __FreeBSD_version < 800039
15686         /*
15687          * The first minor device is the one that is cloned so there is
15688          * nothing more to do here.
15689          */
15690         if (dev2unit(dev) == 0)
15691                 return 0;
15692
15693         /*
15694          * Devices are cloned, so if the DTrace state has already
15695          * been allocated, that means this device belongs to a
15696          * different client. Each client should open '/dev/dtrace'
15697          * to get a cloned device.
15698          */
15699         if (dev->si_drv1 != NULL)
15700                 return (EBUSY);
15701 #endif
15702
15703         cred_p = dev->si_cred;
15704 #endif
15705
15706         /*
15707          * If no DTRACE_PRIV_* bits are set in the credential, then the
15708          * caller lacks sufficient permission to do anything with DTrace.
15709          */
15710         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15711         if (priv == DTRACE_PRIV_NONE) {
15712 #if !defined(sun)
15713 #if __FreeBSD_version < 800039
15714                 /* Destroy the cloned device. */
15715                 destroy_dev(dev);
15716 #endif
15717 #endif
15718
15719                 return (EACCES);
15720         }
15721
15722         /*
15723          * Ask all providers to provide all their probes.
15724          */
15725         mutex_enter(&dtrace_provider_lock);
15726         dtrace_probe_provide(NULL, NULL);
15727         mutex_exit(&dtrace_provider_lock);
15728
15729         mutex_enter(&cpu_lock);
15730         mutex_enter(&dtrace_lock);
15731         dtrace_opens++;
15732         dtrace_membar_producer();
15733
15734 #if defined(sun)
15735         /*
15736          * If the kernel debugger is active (that is, if the kernel debugger
15737          * modified text in some way), we won't allow the open.
15738          */
15739         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15740                 dtrace_opens--;
15741                 mutex_exit(&cpu_lock);
15742                 mutex_exit(&dtrace_lock);
15743                 return (EBUSY);
15744         }
15745
15746         state = dtrace_state_create(devp, cred_p);
15747 #else
15748         state = dtrace_state_create(dev);
15749 #if __FreeBSD_version < 800039
15750         dev->si_drv1 = state;
15751 #else
15752         devfs_set_cdevpriv(state, dtrace_dtr);
15753 #endif
15754 #endif
15755
15756         mutex_exit(&cpu_lock);
15757
15758         if (state == NULL) {
15759 #if defined(sun)
15760                 if (--dtrace_opens == 0)
15761                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15762 #else
15763                 --dtrace_opens;
15764 #endif
15765                 mutex_exit(&dtrace_lock);
15766 #if !defined(sun)
15767 #if __FreeBSD_version < 800039
15768                 /* Destroy the cloned device. */
15769                 destroy_dev(dev);
15770 #endif
15771 #endif
15772                 return (EAGAIN);
15773         }
15774
15775         mutex_exit(&dtrace_lock);
15776
15777         return (0);
15778 }
15779
15780 /*ARGSUSED*/
15781 #if defined(sun)
15782 static int
15783 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15784 #elif __FreeBSD_version < 800039
15785 static int
15786 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15787 #else
15788 static void
15789 dtrace_dtr(void *data)
15790 #endif
15791 {
15792 #if defined(sun)
15793         minor_t minor = getminor(dev);
15794         dtrace_state_t *state;
15795
15796         if (minor == DTRACEMNRN_HELPER)
15797                 return (0);
15798
15799         state = ddi_get_soft_state(dtrace_softstate, minor);
15800 #else
15801 #if __FreeBSD_version < 800039
15802         dtrace_state_t *state = dev->si_drv1;
15803
15804         /* Check if this is not a cloned device. */
15805         if (dev2unit(dev) == 0)
15806                 return (0);
15807 #else
15808         dtrace_state_t *state = data;
15809 #endif
15810
15811 #endif
15812
15813         mutex_enter(&cpu_lock);
15814         mutex_enter(&dtrace_lock);
15815
15816         if (state != NULL) {
15817                 if (state->dts_anon) {
15818                         /*
15819                          * There is anonymous state. Destroy that first.
15820                          */
15821                         ASSERT(dtrace_anon.dta_state == NULL);
15822                         dtrace_state_destroy(state->dts_anon);
15823                 }
15824
15825                 dtrace_state_destroy(state);
15826
15827 #if !defined(sun)
15828                 kmem_free(state, 0);
15829 #if __FreeBSD_version < 800039
15830                 dev->si_drv1 = NULL;
15831 #endif
15832 #endif
15833         }
15834
15835         ASSERT(dtrace_opens > 0);
15836 #if defined(sun)
15837         if (--dtrace_opens == 0)
15838                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15839 #else
15840         --dtrace_opens;
15841 #endif
15842
15843         mutex_exit(&dtrace_lock);
15844         mutex_exit(&cpu_lock);
15845
15846 #if __FreeBSD_version < 800039
15847         /* Schedule this cloned device to be destroyed. */
15848         destroy_dev_sched(dev);
15849 #endif
15850
15851 #if defined(sun) || __FreeBSD_version < 800039
15852         return (0);
15853 #endif
15854 }
15855
15856 #if defined(sun)
15857 /*ARGSUSED*/
15858 static int
15859 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15860 {
15861         int rval;
15862         dof_helper_t help, *dhp = NULL;
15863
15864         switch (cmd) {
15865         case DTRACEHIOC_ADDDOF:
15866                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15867                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15868                         return (EFAULT);
15869                 }
15870
15871                 dhp = &help;
15872                 arg = (intptr_t)help.dofhp_dof;
15873                 /*FALLTHROUGH*/
15874
15875         case DTRACEHIOC_ADD: {
15876                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15877
15878                 if (dof == NULL)
15879                         return (rval);
15880
15881                 mutex_enter(&dtrace_lock);
15882
15883                 /*
15884                  * dtrace_helper_slurp() takes responsibility for the dof --
15885                  * it may free it now or it may save it and free it later.
15886                  */
15887                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15888                         *rv = rval;
15889                         rval = 0;
15890                 } else {
15891                         rval = EINVAL;
15892                 }
15893
15894                 mutex_exit(&dtrace_lock);
15895                 return (rval);
15896         }
15897
15898         case DTRACEHIOC_REMOVE: {
15899                 mutex_enter(&dtrace_lock);
15900                 rval = dtrace_helper_destroygen(arg);
15901                 mutex_exit(&dtrace_lock);
15902
15903                 return (rval);
15904         }
15905
15906         default:
15907                 break;
15908         }
15909
15910         return (ENOTTY);
15911 }
15912
15913 /*ARGSUSED*/
15914 static int
15915 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15916 {
15917         minor_t minor = getminor(dev);
15918         dtrace_state_t *state;
15919         int rval;
15920
15921         if (minor == DTRACEMNRN_HELPER)
15922                 return (dtrace_ioctl_helper(cmd, arg, rv));
15923
15924         state = ddi_get_soft_state(dtrace_softstate, minor);
15925
15926         if (state->dts_anon) {
15927                 ASSERT(dtrace_anon.dta_state == NULL);
15928                 state = state->dts_anon;
15929         }
15930
15931         switch (cmd) {
15932         case DTRACEIOC_PROVIDER: {
15933                 dtrace_providerdesc_t pvd;
15934                 dtrace_provider_t *pvp;
15935
15936                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15937                         return (EFAULT);
15938
15939                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15940                 mutex_enter(&dtrace_provider_lock);
15941
15942                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15943                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15944                                 break;
15945                 }
15946
15947                 mutex_exit(&dtrace_provider_lock);
15948
15949                 if (pvp == NULL)
15950                         return (ESRCH);
15951
15952                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15953                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15954
15955                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15956                         return (EFAULT);
15957
15958                 return (0);
15959         }
15960
15961         case DTRACEIOC_EPROBE: {
15962                 dtrace_eprobedesc_t epdesc;
15963                 dtrace_ecb_t *ecb;
15964                 dtrace_action_t *act;
15965                 void *buf;
15966                 size_t size;
15967                 uintptr_t dest;
15968                 int nrecs;
15969
15970                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15971                         return (EFAULT);
15972
15973                 mutex_enter(&dtrace_lock);
15974
15975                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15976                         mutex_exit(&dtrace_lock);
15977                         return (EINVAL);
15978                 }
15979
15980                 if (ecb->dte_probe == NULL) {
15981                         mutex_exit(&dtrace_lock);
15982                         return (EINVAL);
15983                 }
15984
15985                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15986                 epdesc.dtepd_uarg = ecb->dte_uarg;
15987                 epdesc.dtepd_size = ecb->dte_size;
15988
15989                 nrecs = epdesc.dtepd_nrecs;
15990                 epdesc.dtepd_nrecs = 0;
15991                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15992                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15993                                 continue;
15994
15995                         epdesc.dtepd_nrecs++;
15996                 }
15997
15998                 /*
15999                  * Now that we have the size, we need to allocate a temporary
16000                  * buffer in which to store the complete description.  We need
16001                  * the temporary buffer to be able to drop dtrace_lock()
16002                  * across the copyout(), below.
16003                  */
16004                 size = sizeof (dtrace_eprobedesc_t) +
16005                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16006
16007                 buf = kmem_alloc(size, KM_SLEEP);
16008                 dest = (uintptr_t)buf;
16009
16010                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16011                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16012
16013                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16014                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16015                                 continue;
16016
16017                         if (nrecs-- == 0)
16018                                 break;
16019
16020                         bcopy(&act->dta_rec, (void *)dest,
16021                             sizeof (dtrace_recdesc_t));
16022                         dest += sizeof (dtrace_recdesc_t);
16023                 }
16024
16025                 mutex_exit(&dtrace_lock);
16026
16027                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16028                         kmem_free(buf, size);
16029                         return (EFAULT);
16030                 }
16031
16032                 kmem_free(buf, size);
16033                 return (0);
16034         }
16035
16036         case DTRACEIOC_AGGDESC: {
16037                 dtrace_aggdesc_t aggdesc;
16038                 dtrace_action_t *act;
16039                 dtrace_aggregation_t *agg;
16040                 int nrecs;
16041                 uint32_t offs;
16042                 dtrace_recdesc_t *lrec;
16043                 void *buf;
16044                 size_t size;
16045                 uintptr_t dest;
16046
16047                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16048                         return (EFAULT);
16049
16050                 mutex_enter(&dtrace_lock);
16051
16052                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16053                         mutex_exit(&dtrace_lock);
16054                         return (EINVAL);
16055                 }
16056
16057                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16058
16059                 nrecs = aggdesc.dtagd_nrecs;
16060                 aggdesc.dtagd_nrecs = 0;
16061
16062                 offs = agg->dtag_base;
16063                 lrec = &agg->dtag_action.dta_rec;
16064                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16065
16066                 for (act = agg->dtag_first; ; act = act->dta_next) {
16067                         ASSERT(act->dta_intuple ||
16068                             DTRACEACT_ISAGG(act->dta_kind));
16069
16070                         /*
16071                          * If this action has a record size of zero, it
16072                          * denotes an argument to the aggregating action.
16073                          * Because the presence of this record doesn't (or
16074                          * shouldn't) affect the way the data is interpreted,
16075                          * we don't copy it out to save user-level the
16076                          * confusion of dealing with a zero-length record.
16077                          */
16078                         if (act->dta_rec.dtrd_size == 0) {
16079                                 ASSERT(agg->dtag_hasarg);
16080                                 continue;
16081                         }
16082
16083                         aggdesc.dtagd_nrecs++;
16084
16085                         if (act == &agg->dtag_action)
16086                                 break;
16087                 }
16088
16089                 /*
16090                  * Now that we have the size, we need to allocate a temporary
16091                  * buffer in which to store the complete description.  We need
16092                  * the temporary buffer to be able to drop dtrace_lock()
16093                  * across the copyout(), below.
16094                  */
16095                 size = sizeof (dtrace_aggdesc_t) +
16096                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16097
16098                 buf = kmem_alloc(size, KM_SLEEP);
16099                 dest = (uintptr_t)buf;
16100
16101                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16102                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16103
16104                 for (act = agg->dtag_first; ; act = act->dta_next) {
16105                         dtrace_recdesc_t rec = act->dta_rec;
16106
16107                         /*
16108                          * See the comment in the above loop for why we pass
16109                          * over zero-length records.
16110                          */
16111                         if (rec.dtrd_size == 0) {
16112                                 ASSERT(agg->dtag_hasarg);
16113                                 continue;
16114                         }
16115
16116                         if (nrecs-- == 0)
16117                                 break;
16118
16119                         rec.dtrd_offset -= offs;
16120                         bcopy(&rec, (void *)dest, sizeof (rec));
16121                         dest += sizeof (dtrace_recdesc_t);
16122
16123                         if (act == &agg->dtag_action)
16124                                 break;
16125                 }
16126
16127                 mutex_exit(&dtrace_lock);
16128
16129                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16130                         kmem_free(buf, size);
16131                         return (EFAULT);
16132                 }
16133
16134                 kmem_free(buf, size);
16135                 return (0);
16136         }
16137
16138         case DTRACEIOC_ENABLE: {
16139                 dof_hdr_t *dof;
16140                 dtrace_enabling_t *enab = NULL;
16141                 dtrace_vstate_t *vstate;
16142                 int err = 0;
16143
16144                 *rv = 0;
16145
16146                 /*
16147                  * If a NULL argument has been passed, we take this as our
16148                  * cue to reevaluate our enablings.
16149                  */
16150                 if (arg == NULL) {
16151                         dtrace_enabling_matchall();
16152
16153                         return (0);
16154                 }
16155
16156                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16157                         return (rval);
16158
16159                 mutex_enter(&cpu_lock);
16160                 mutex_enter(&dtrace_lock);
16161                 vstate = &state->dts_vstate;
16162
16163                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16164                         mutex_exit(&dtrace_lock);
16165                         mutex_exit(&cpu_lock);
16166                         dtrace_dof_destroy(dof);
16167                         return (EBUSY);
16168                 }
16169
16170                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16171                         mutex_exit(&dtrace_lock);
16172                         mutex_exit(&cpu_lock);
16173                         dtrace_dof_destroy(dof);
16174                         return (EINVAL);
16175                 }
16176
16177                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16178                         dtrace_enabling_destroy(enab);
16179                         mutex_exit(&dtrace_lock);
16180                         mutex_exit(&cpu_lock);
16181                         dtrace_dof_destroy(dof);
16182                         return (rval);
16183                 }
16184
16185                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16186                         err = dtrace_enabling_retain(enab);
16187                 } else {
16188                         dtrace_enabling_destroy(enab);
16189                 }
16190
16191                 mutex_exit(&cpu_lock);
16192                 mutex_exit(&dtrace_lock);
16193                 dtrace_dof_destroy(dof);
16194
16195                 return (err);
16196         }
16197
16198         case DTRACEIOC_REPLICATE: {
16199                 dtrace_repldesc_t desc;
16200                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16201                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16202                 int err;
16203
16204                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16205                         return (EFAULT);
16206
16207                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16208                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16209                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16210                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16211
16212                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16213                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16214                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16215                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16216
16217                 mutex_enter(&dtrace_lock);
16218                 err = dtrace_enabling_replicate(state, match, create);
16219                 mutex_exit(&dtrace_lock);
16220
16221                 return (err);
16222         }
16223
16224         case DTRACEIOC_PROBEMATCH:
16225         case DTRACEIOC_PROBES: {
16226                 dtrace_probe_t *probe = NULL;
16227                 dtrace_probedesc_t desc;
16228                 dtrace_probekey_t pkey;
16229                 dtrace_id_t i;
16230                 int m = 0;
16231                 uint32_t priv;
16232                 uid_t uid;
16233                 zoneid_t zoneid;
16234
16235                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16236                         return (EFAULT);
16237
16238                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16239                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16240                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16241                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16242
16243                 /*
16244                  * Before we attempt to match this probe, we want to give
16245                  * all providers the opportunity to provide it.
16246                  */
16247                 if (desc.dtpd_id == DTRACE_IDNONE) {
16248                         mutex_enter(&dtrace_provider_lock);
16249                         dtrace_probe_provide(&desc, NULL);
16250                         mutex_exit(&dtrace_provider_lock);
16251                         desc.dtpd_id++;
16252                 }
16253
16254                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16255                         dtrace_probekey(&desc, &pkey);
16256                         pkey.dtpk_id = DTRACE_IDNONE;
16257                 }
16258
16259                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16260
16261                 mutex_enter(&dtrace_lock);
16262
16263                 if (cmd == DTRACEIOC_PROBEMATCH) {
16264                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16265                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16266                                     (m = dtrace_match_probe(probe, &pkey,
16267                                     priv, uid, zoneid)) != 0)
16268                                         break;
16269                         }
16270
16271                         if (m < 0) {
16272                                 mutex_exit(&dtrace_lock);
16273                                 return (EINVAL);
16274                         }
16275
16276                 } else {
16277                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16278                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16279                                     dtrace_match_priv(probe, priv, uid, zoneid))
16280                                         break;
16281                         }
16282                 }
16283
16284                 if (probe == NULL) {
16285                         mutex_exit(&dtrace_lock);
16286                         return (ESRCH);
16287                 }
16288
16289                 dtrace_probe_description(probe, &desc);
16290                 mutex_exit(&dtrace_lock);
16291
16292                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16293                         return (EFAULT);
16294
16295                 return (0);
16296         }
16297
16298         case DTRACEIOC_PROBEARG: {
16299                 dtrace_argdesc_t desc;
16300                 dtrace_probe_t *probe;
16301                 dtrace_provider_t *prov;
16302
16303                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16304                         return (EFAULT);
16305
16306                 if (desc.dtargd_id == DTRACE_IDNONE)
16307                         return (EINVAL);
16308
16309                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16310                         return (EINVAL);
16311
16312                 mutex_enter(&dtrace_provider_lock);
16313                 mutex_enter(&mod_lock);
16314                 mutex_enter(&dtrace_lock);
16315
16316                 if (desc.dtargd_id > dtrace_nprobes) {
16317                         mutex_exit(&dtrace_lock);
16318                         mutex_exit(&mod_lock);
16319                         mutex_exit(&dtrace_provider_lock);
16320                         return (EINVAL);
16321                 }
16322
16323                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16324                         mutex_exit(&dtrace_lock);
16325                         mutex_exit(&mod_lock);
16326                         mutex_exit(&dtrace_provider_lock);
16327                         return (EINVAL);
16328                 }
16329
16330                 mutex_exit(&dtrace_lock);
16331
16332                 prov = probe->dtpr_provider;
16333
16334                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16335                         /*
16336                          * There isn't any typed information for this probe.
16337                          * Set the argument number to DTRACE_ARGNONE.
16338                          */
16339                         desc.dtargd_ndx = DTRACE_ARGNONE;
16340                 } else {
16341                         desc.dtargd_native[0] = '\0';
16342                         desc.dtargd_xlate[0] = '\0';
16343                         desc.dtargd_mapping = desc.dtargd_ndx;
16344
16345                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16346                             probe->dtpr_id, probe->dtpr_arg, &desc);
16347                 }
16348
16349                 mutex_exit(&mod_lock);
16350                 mutex_exit(&dtrace_provider_lock);
16351
16352                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16353                         return (EFAULT);
16354
16355                 return (0);
16356         }
16357
16358         case DTRACEIOC_GO: {
16359                 processorid_t cpuid;
16360                 rval = dtrace_state_go(state, &cpuid);
16361
16362                 if (rval != 0)
16363                         return (rval);
16364
16365                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16366                         return (EFAULT);
16367
16368                 return (0);
16369         }
16370
16371         case DTRACEIOC_STOP: {
16372                 processorid_t cpuid;
16373
16374                 mutex_enter(&dtrace_lock);
16375                 rval = dtrace_state_stop(state, &cpuid);
16376                 mutex_exit(&dtrace_lock);
16377
16378                 if (rval != 0)
16379                         return (rval);
16380
16381                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16382                         return (EFAULT);
16383
16384                 return (0);
16385         }
16386
16387         case DTRACEIOC_DOFGET: {
16388                 dof_hdr_t hdr, *dof;
16389                 uint64_t len;
16390
16391                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16392                         return (EFAULT);
16393
16394                 mutex_enter(&dtrace_lock);
16395                 dof = dtrace_dof_create(state);
16396                 mutex_exit(&dtrace_lock);
16397
16398                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16399                 rval = copyout(dof, (void *)arg, len);
16400                 dtrace_dof_destroy(dof);
16401
16402                 return (rval == 0 ? 0 : EFAULT);
16403         }
16404
16405         case DTRACEIOC_AGGSNAP:
16406         case DTRACEIOC_BUFSNAP: {
16407                 dtrace_bufdesc_t desc;
16408                 caddr_t cached;
16409                 dtrace_buffer_t *buf;
16410
16411                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16412                         return (EFAULT);
16413
16414                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16415                         return (EINVAL);
16416
16417                 mutex_enter(&dtrace_lock);
16418
16419                 if (cmd == DTRACEIOC_BUFSNAP) {
16420                         buf = &state->dts_buffer[desc.dtbd_cpu];
16421                 } else {
16422                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16423                 }
16424
16425                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16426                         size_t sz = buf->dtb_offset;
16427
16428                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16429                                 mutex_exit(&dtrace_lock);
16430                                 return (EBUSY);
16431                         }
16432
16433                         /*
16434                          * If this buffer has already been consumed, we're
16435                          * going to indicate that there's nothing left here
16436                          * to consume.
16437                          */
16438                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16439                                 mutex_exit(&dtrace_lock);
16440
16441                                 desc.dtbd_size = 0;
16442                                 desc.dtbd_drops = 0;
16443                                 desc.dtbd_errors = 0;
16444                                 desc.dtbd_oldest = 0;
16445                                 sz = sizeof (desc);
16446
16447                                 if (copyout(&desc, (void *)arg, sz) != 0)
16448                                         return (EFAULT);
16449
16450                                 return (0);
16451                         }
16452
16453                         /*
16454                          * If this is a ring buffer that has wrapped, we want
16455                          * to copy the whole thing out.
16456                          */
16457                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16458                                 dtrace_buffer_polish(buf);
16459                                 sz = buf->dtb_size;
16460                         }
16461
16462                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16463                                 mutex_exit(&dtrace_lock);
16464                                 return (EFAULT);
16465                         }
16466
16467                         desc.dtbd_size = sz;
16468                         desc.dtbd_drops = buf->dtb_drops;
16469                         desc.dtbd_errors = buf->dtb_errors;
16470                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16471                         desc.dtbd_timestamp = dtrace_gethrtime();
16472
16473                         mutex_exit(&dtrace_lock);
16474
16475                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16476                                 return (EFAULT);
16477
16478                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16479
16480                         return (0);
16481                 }
16482
16483                 if (buf->dtb_tomax == NULL) {
16484                         ASSERT(buf->dtb_xamot == NULL);
16485                         mutex_exit(&dtrace_lock);
16486                         return (ENOENT);
16487                 }
16488
16489                 cached = buf->dtb_tomax;
16490                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16491
16492                 dtrace_xcall(desc.dtbd_cpu,
16493                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16494
16495                 state->dts_errors += buf->dtb_xamot_errors;
16496
16497                 /*
16498                  * If the buffers did not actually switch, then the cross call
16499                  * did not take place -- presumably because the given CPU is
16500                  * not in the ready set.  If this is the case, we'll return
16501                  * ENOENT.
16502                  */
16503                 if (buf->dtb_tomax == cached) {
16504                         ASSERT(buf->dtb_xamot != cached);
16505                         mutex_exit(&dtrace_lock);
16506                         return (ENOENT);
16507                 }
16508
16509                 ASSERT(cached == buf->dtb_xamot);
16510
16511                 /*
16512                  * We have our snapshot; now copy it out.
16513                  */
16514                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16515                     buf->dtb_xamot_offset) != 0) {
16516                         mutex_exit(&dtrace_lock);
16517                         return (EFAULT);
16518                 }
16519
16520                 desc.dtbd_size = buf->dtb_xamot_offset;
16521                 desc.dtbd_drops = buf->dtb_xamot_drops;
16522                 desc.dtbd_errors = buf->dtb_xamot_errors;
16523                 desc.dtbd_oldest = 0;
16524                 desc.dtbd_timestamp = buf->dtb_switched;
16525
16526                 mutex_exit(&dtrace_lock);
16527
16528                 /*
16529                  * Finally, copy out the buffer description.
16530                  */
16531                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16532                         return (EFAULT);
16533
16534                 return (0);
16535         }
16536
16537         case DTRACEIOC_CONF: {
16538                 dtrace_conf_t conf;
16539
16540                 bzero(&conf, sizeof (conf));
16541                 conf.dtc_difversion = DIF_VERSION;
16542                 conf.dtc_difintregs = DIF_DIR_NREGS;
16543                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16544                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16545
16546                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16547                         return (EFAULT);
16548
16549                 return (0);
16550         }
16551
16552         case DTRACEIOC_STATUS: {
16553                 dtrace_status_t stat;
16554                 dtrace_dstate_t *dstate;
16555                 int i, j;
16556                 uint64_t nerrs;
16557
16558                 /*
16559                  * See the comment in dtrace_state_deadman() for the reason
16560                  * for setting dts_laststatus to INT64_MAX before setting
16561                  * it to the correct value.
16562                  */
16563                 state->dts_laststatus = INT64_MAX;
16564                 dtrace_membar_producer();
16565                 state->dts_laststatus = dtrace_gethrtime();
16566
16567                 bzero(&stat, sizeof (stat));
16568
16569                 mutex_enter(&dtrace_lock);
16570
16571                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16572                         mutex_exit(&dtrace_lock);
16573                         return (ENOENT);
16574                 }
16575
16576                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16577                         stat.dtst_exiting = 1;
16578
16579                 nerrs = state->dts_errors;
16580                 dstate = &state->dts_vstate.dtvs_dynvars;
16581
16582                 for (i = 0; i < NCPU; i++) {
16583                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16584
16585                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16586                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16587                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16588
16589                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16590                                 stat.dtst_filled++;
16591
16592                         nerrs += state->dts_buffer[i].dtb_errors;
16593
16594                         for (j = 0; j < state->dts_nspeculations; j++) {
16595                                 dtrace_speculation_t *spec;
16596                                 dtrace_buffer_t *buf;
16597
16598                                 spec = &state->dts_speculations[j];
16599                                 buf = &spec->dtsp_buffer[i];
16600                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16601                         }
16602                 }
16603
16604                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16605                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16606                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16607                 stat.dtst_dblerrors = state->dts_dblerrors;
16608                 stat.dtst_killed =
16609                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16610                 stat.dtst_errors = nerrs;
16611
16612                 mutex_exit(&dtrace_lock);
16613
16614                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16615                         return (EFAULT);
16616
16617                 return (0);
16618         }
16619
16620         case DTRACEIOC_FORMAT: {
16621                 dtrace_fmtdesc_t fmt;
16622                 char *str;
16623                 int len;
16624
16625                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16626                         return (EFAULT);
16627
16628                 mutex_enter(&dtrace_lock);
16629
16630                 if (fmt.dtfd_format == 0 ||
16631                     fmt.dtfd_format > state->dts_nformats) {
16632                         mutex_exit(&dtrace_lock);
16633                         return (EINVAL);
16634                 }
16635
16636                 /*
16637                  * Format strings are allocated contiguously and they are
16638                  * never freed; if a format index is less than the number
16639                  * of formats, we can assert that the format map is non-NULL
16640                  * and that the format for the specified index is non-NULL.
16641                  */
16642                 ASSERT(state->dts_formats != NULL);
16643                 str = state->dts_formats[fmt.dtfd_format - 1];
16644                 ASSERT(str != NULL);
16645
16646                 len = strlen(str) + 1;
16647
16648                 if (len > fmt.dtfd_length) {
16649                         fmt.dtfd_length = len;
16650
16651                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16652                                 mutex_exit(&dtrace_lock);
16653                                 return (EINVAL);
16654                         }
16655                 } else {
16656                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16657                                 mutex_exit(&dtrace_lock);
16658                                 return (EINVAL);
16659                         }
16660                 }
16661
16662                 mutex_exit(&dtrace_lock);
16663                 return (0);
16664         }
16665
16666         default:
16667                 break;
16668         }
16669
16670         return (ENOTTY);
16671 }
16672
16673 /*ARGSUSED*/
16674 static int
16675 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16676 {
16677         dtrace_state_t *state;
16678
16679         switch (cmd) {
16680         case DDI_DETACH:
16681                 break;
16682
16683         case DDI_SUSPEND:
16684                 return (DDI_SUCCESS);
16685
16686         default:
16687                 return (DDI_FAILURE);
16688         }
16689
16690         mutex_enter(&cpu_lock);
16691         mutex_enter(&dtrace_provider_lock);
16692         mutex_enter(&dtrace_lock);
16693
16694         ASSERT(dtrace_opens == 0);
16695
16696         if (dtrace_helpers > 0) {
16697                 mutex_exit(&dtrace_provider_lock);
16698                 mutex_exit(&dtrace_lock);
16699                 mutex_exit(&cpu_lock);
16700                 return (DDI_FAILURE);
16701         }
16702
16703         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16704                 mutex_exit(&dtrace_provider_lock);
16705                 mutex_exit(&dtrace_lock);
16706                 mutex_exit(&cpu_lock);
16707                 return (DDI_FAILURE);
16708         }
16709
16710         dtrace_provider = NULL;
16711
16712         if ((state = dtrace_anon_grab()) != NULL) {
16713                 /*
16714                  * If there were ECBs on this state, the provider should
16715                  * have not been allowed to detach; assert that there is
16716                  * none.
16717                  */
16718                 ASSERT(state->dts_necbs == 0);
16719                 dtrace_state_destroy(state);
16720
16721                 /*
16722                  * If we're being detached with anonymous state, we need to
16723                  * indicate to the kernel debugger that DTrace is now inactive.
16724                  */
16725                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16726         }
16727
16728         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16729         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16730         dtrace_cpu_init = NULL;
16731         dtrace_helpers_cleanup = NULL;
16732         dtrace_helpers_fork = NULL;
16733         dtrace_cpustart_init = NULL;
16734         dtrace_cpustart_fini = NULL;
16735         dtrace_debugger_init = NULL;
16736         dtrace_debugger_fini = NULL;
16737         dtrace_modload = NULL;
16738         dtrace_modunload = NULL;
16739
16740         mutex_exit(&cpu_lock);
16741
16742         if (dtrace_helptrace_enabled) {
16743                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16744                 dtrace_helptrace_buffer = NULL;
16745         }
16746
16747         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16748         dtrace_probes = NULL;
16749         dtrace_nprobes = 0;
16750
16751         dtrace_hash_destroy(dtrace_bymod);
16752         dtrace_hash_destroy(dtrace_byfunc);
16753         dtrace_hash_destroy(dtrace_byname);
16754         dtrace_bymod = NULL;
16755         dtrace_byfunc = NULL;
16756         dtrace_byname = NULL;
16757
16758         kmem_cache_destroy(dtrace_state_cache);
16759         vmem_destroy(dtrace_minor);
16760         vmem_destroy(dtrace_arena);
16761
16762         if (dtrace_toxrange != NULL) {
16763                 kmem_free(dtrace_toxrange,
16764                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16765                 dtrace_toxrange = NULL;
16766                 dtrace_toxranges = 0;
16767                 dtrace_toxranges_max = 0;
16768         }
16769
16770         ddi_remove_minor_node(dtrace_devi, NULL);
16771         dtrace_devi = NULL;
16772
16773         ddi_soft_state_fini(&dtrace_softstate);
16774
16775         ASSERT(dtrace_vtime_references == 0);
16776         ASSERT(dtrace_opens == 0);
16777         ASSERT(dtrace_retained == NULL);
16778
16779         mutex_exit(&dtrace_lock);
16780         mutex_exit(&dtrace_provider_lock);
16781
16782         /*
16783          * We don't destroy the task queue until after we have dropped our
16784          * locks (taskq_destroy() may block on running tasks).  To prevent
16785          * attempting to do work after we have effectively detached but before
16786          * the task queue has been destroyed, all tasks dispatched via the
16787          * task queue must check that DTrace is still attached before
16788          * performing any operation.
16789          */
16790         taskq_destroy(dtrace_taskq);
16791         dtrace_taskq = NULL;
16792
16793         return (DDI_SUCCESS);
16794 }
16795 #endif
16796
16797 #if defined(sun)
16798 /*ARGSUSED*/
16799 static int
16800 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16801 {
16802         int error;
16803
16804         switch (infocmd) {
16805         case DDI_INFO_DEVT2DEVINFO:
16806                 *result = (void *)dtrace_devi;
16807                 error = DDI_SUCCESS;
16808                 break;
16809         case DDI_INFO_DEVT2INSTANCE:
16810                 *result = (void *)0;
16811                 error = DDI_SUCCESS;
16812                 break;
16813         default:
16814                 error = DDI_FAILURE;
16815         }
16816         return (error);
16817 }
16818 #endif
16819
16820 #if defined(sun)
16821 static struct cb_ops dtrace_cb_ops = {
16822         dtrace_open,            /* open */
16823         dtrace_close,           /* close */
16824         nulldev,                /* strategy */
16825         nulldev,                /* print */
16826         nodev,                  /* dump */
16827         nodev,                  /* read */
16828         nodev,                  /* write */
16829         dtrace_ioctl,           /* ioctl */
16830         nodev,                  /* devmap */
16831         nodev,                  /* mmap */
16832         nodev,                  /* segmap */
16833         nochpoll,               /* poll */
16834         ddi_prop_op,            /* cb_prop_op */
16835         0,                      /* streamtab  */
16836         D_NEW | D_MP            /* Driver compatibility flag */
16837 };
16838
16839 static struct dev_ops dtrace_ops = {
16840         DEVO_REV,               /* devo_rev */
16841         0,                      /* refcnt */
16842         dtrace_info,            /* get_dev_info */
16843         nulldev,                /* identify */
16844         nulldev,                /* probe */
16845         dtrace_attach,          /* attach */
16846         dtrace_detach,          /* detach */
16847         nodev,                  /* reset */
16848         &dtrace_cb_ops,         /* driver operations */
16849         NULL,                   /* bus operations */
16850         nodev                   /* dev power */
16851 };
16852
16853 static struct modldrv modldrv = {
16854         &mod_driverops,         /* module type (this is a pseudo driver) */
16855         "Dynamic Tracing",      /* name of module */
16856         &dtrace_ops,            /* driver ops */
16857 };
16858
16859 static struct modlinkage modlinkage = {
16860         MODREV_1,
16861         (void *)&modldrv,
16862         NULL
16863 };
16864
16865 int
16866 _init(void)
16867 {
16868         return (mod_install(&modlinkage));
16869 }
16870
16871 int
16872 _info(struct modinfo *modinfop)
16873 {
16874         return (mod_info(&modlinkage, modinfop));
16875 }
16876
16877 int
16878 _fini(void)
16879 {
16880         return (mod_remove(&modlinkage));
16881 }
16882 #else
16883
16884 static d_ioctl_t        dtrace_ioctl;
16885 static d_ioctl_t        dtrace_ioctl_helper;
16886 static void             dtrace_load(void *);
16887 static int              dtrace_unload(void);
16888 #if __FreeBSD_version < 800039
16889 static void             dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16890 static struct clonedevs *dtrace_clones;         /* Ptr to the array of cloned devices. */
16891 static eventhandler_tag eh_tag;                 /* Event handler tag. */
16892 #else
16893 static struct cdev      *dtrace_dev;
16894 static struct cdev      *helper_dev;
16895 #endif
16896
16897 void dtrace_invop_init(void);
16898 void dtrace_invop_uninit(void);
16899
16900 static struct cdevsw dtrace_cdevsw = {
16901         .d_version      = D_VERSION,
16902 #if __FreeBSD_version < 800039
16903         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16904         .d_close        = dtrace_close,
16905 #endif
16906         .d_ioctl        = dtrace_ioctl,
16907         .d_open         = dtrace_open,
16908         .d_name         = "dtrace",
16909 };
16910
16911 static struct cdevsw helper_cdevsw = {
16912         .d_version      = D_VERSION,
16913         .d_ioctl        = dtrace_ioctl_helper,
16914         .d_name         = "helper",
16915 };
16916
16917 #include <dtrace_anon.c>
16918 #if __FreeBSD_version < 800039
16919 #include <dtrace_clone.c>
16920 #endif
16921 #include <dtrace_ioctl.c>
16922 #include <dtrace_load.c>
16923 #include <dtrace_modevent.c>
16924 #include <dtrace_sysctl.c>
16925 #include <dtrace_unload.c>
16926 #include <dtrace_vtime.c>
16927 #include <dtrace_hacks.c>
16928 #include <dtrace_isa.c>
16929
16930 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16931 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16932 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16933
16934 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16935 MODULE_VERSION(dtrace, 1);
16936 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16937 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16938 #endif