]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_zfetch.c
MFC r297832: MFV r297831: 6322 ZFS indirect block predictive prefetch
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 boolean_t zfs_prefetch_disable = B_FALSE;
45
46 /* max # of streams per zfetch */
47 uint32_t        zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t        zfetch_min_sec_reap = 2;
50 /* max bytes to prefetch per stream (default 8MB) */
51 uint32_t        zfetch_max_distance = 8 * 1024 * 1024;
52 /* max bytes to prefetch indirects for per stream (default 64MB) */
53 uint32_t        zfetch_max_idistance = 64 * 1024 * 1024;
54 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
55 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
56
57 SYSCTL_DECL(_vfs_zfs);
58 SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
59     &zfs_prefetch_disable, 0, "Disable prefetch");
60 SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH");
61 TUNABLE_INT("vfs.zfs.zfetch.max_streams", &zfetch_max_streams);
62 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RW,
63     &zfetch_max_streams, 0, "Max # of streams per zfetch");
64 TUNABLE_INT("vfs.zfs.zfetch.min_sec_reap", &zfetch_min_sec_reap);
65 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
66     &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
67 TUNABLE_INT("vfs.zfs.zfetch.max_distance", &zfetch_max_distance);
68 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
69     &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
70 TUNABLE_QUAD("vfs.zfs.zfetch.array_rd_sz", &zfetch_array_rd_sz);
71 SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
72     &zfetch_array_rd_sz, 0,
73     "Number of bytes in a array_read at which we stop prefetching");
74
75 typedef struct zfetch_stats {
76         kstat_named_t zfetchstat_hits;
77         kstat_named_t zfetchstat_misses;
78         kstat_named_t zfetchstat_max_streams;
79 } zfetch_stats_t;
80
81 static zfetch_stats_t zfetch_stats = {
82         { "hits",                       KSTAT_DATA_UINT64 },
83         { "misses",                     KSTAT_DATA_UINT64 },
84         { "max_streams",                KSTAT_DATA_UINT64 },
85 };
86
87 #define ZFETCHSTAT_BUMP(stat) \
88         atomic_inc_64(&zfetch_stats.stat.value.ui64);
89
90 kstat_t         *zfetch_ksp;
91
92 void
93 zfetch_init(void)
94 {
95         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
96             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
97             KSTAT_FLAG_VIRTUAL);
98
99         if (zfetch_ksp != NULL) {
100                 zfetch_ksp->ks_data = &zfetch_stats;
101                 kstat_install(zfetch_ksp);
102         }
103 }
104
105 void
106 zfetch_fini(void)
107 {
108         if (zfetch_ksp != NULL) {
109                 kstat_delete(zfetch_ksp);
110                 zfetch_ksp = NULL;
111         }
112 }
113
114 /*
115  * This takes a pointer to a zfetch structure and a dnode.  It performs the
116  * necessary setup for the zfetch structure, grokking data from the
117  * associated dnode.
118  */
119 void
120 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
121 {
122         if (zf == NULL)
123                 return;
124
125         zf->zf_dnode = dno;
126
127         list_create(&zf->zf_stream, sizeof (zstream_t),
128             offsetof(zstream_t, zs_node));
129
130         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
131 }
132
133 static void
134 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
135 {
136         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
137         list_remove(&zf->zf_stream, zs);
138         mutex_destroy(&zs->zs_lock);
139         kmem_free(zs, sizeof (*zs));
140 }
141
142 /*
143  * Clean-up state associated with a zfetch structure (e.g. destroy the
144  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
145  */
146 void
147 dmu_zfetch_fini(zfetch_t *zf)
148 {
149         zstream_t *zs;
150
151         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
152
153         rw_enter(&zf->zf_rwlock, RW_WRITER);
154         while ((zs = list_head(&zf->zf_stream)) != NULL)
155                 dmu_zfetch_stream_remove(zf, zs);
156         rw_exit(&zf->zf_rwlock);
157         list_destroy(&zf->zf_stream);
158         rw_destroy(&zf->zf_rwlock);
159
160         zf->zf_dnode = NULL;
161 }
162
163 /*
164  * If there aren't too many streams already, create a new stream.
165  * The "blkid" argument is the next block that we expect this stream to access.
166  * While we're here, clean up old streams (which haven't been
167  * accessed for at least zfetch_min_sec_reap seconds).
168  */
169 static void
170 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
171 {
172         zstream_t *zs_next;
173         int numstreams = 0;
174
175         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
176
177         /*
178          * Clean up old streams.
179          */
180         for (zstream_t *zs = list_head(&zf->zf_stream);
181             zs != NULL; zs = zs_next) {
182                 zs_next = list_next(&zf->zf_stream, zs);
183                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
184                     zfetch_min_sec_reap)
185                         dmu_zfetch_stream_remove(zf, zs);
186                 else
187                         numstreams++;
188         }
189
190         /*
191          * The maximum number of streams is normally zfetch_max_streams,
192          * but for small files we lower it such that it's at least possible
193          * for all the streams to be non-overlapping.
194          *
195          * If we are already at the maximum number of streams for this file,
196          * even after removing old streams, then don't create this stream.
197          */
198         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
199             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
200             zfetch_max_distance));
201         if (numstreams >= max_streams) {
202                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
203                 return;
204         }
205
206         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
207         zs->zs_blkid = blkid;
208         zs->zs_pf_blkid = blkid;
209         zs->zs_ipf_blkid = blkid;
210         zs->zs_atime = gethrtime();
211         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
212
213         list_insert_head(&zf->zf_stream, zs);
214 }
215
216 /*
217  * This is the predictive prefetch entry point.  It associates dnode access
218  * specified with blkid and nblks arguments with prefetch stream, predicts
219  * further accesses based on that stats and initiates speculative prefetch.
220  * fetch_data argument specifies whether actual data blocks should be fetched:
221  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
222  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
223  */
224 void
225 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
226 {
227         zstream_t *zs;
228         int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
229         int64_t pf_ahead_blks, max_blks;
230         int epbs, max_dist_blks, pf_nblks, ipf_nblks;
231         uint64_t end_of_access_blkid = blkid + nblks;
232
233         if (zfs_prefetch_disable)
234                 return;
235
236         /*
237          * As a fast path for small (single-block) files, ignore access
238          * to the first block.
239          */
240         if (blkid == 0)
241                 return;
242
243         rw_enter(&zf->zf_rwlock, RW_READER);
244
245         for (zs = list_head(&zf->zf_stream); zs != NULL;
246             zs = list_next(&zf->zf_stream, zs)) {
247                 if (blkid == zs->zs_blkid) {
248                         mutex_enter(&zs->zs_lock);
249                         /*
250                          * zs_blkid could have changed before we
251                          * acquired zs_lock; re-check them here.
252                          */
253                         if (blkid != zs->zs_blkid) {
254                                 mutex_exit(&zs->zs_lock);
255                                 continue;
256                         }
257                         break;
258                 }
259         }
260
261         if (zs == NULL) {
262                 /*
263                  * This access is not part of any existing stream.  Create
264                  * a new stream for it.
265                  */
266                 ZFETCHSTAT_BUMP(zfetchstat_misses);
267                 if (rw_tryupgrade(&zf->zf_rwlock))
268                         dmu_zfetch_stream_create(zf, end_of_access_blkid);
269                 rw_exit(&zf->zf_rwlock);
270                 return;
271         }
272
273         /*
274          * This access was to a block that we issued a prefetch for on
275          * behalf of this stream. Issue further prefetches for this stream.
276          *
277          * Normally, we start prefetching where we stopped
278          * prefetching last (zs_pf_blkid).  But when we get our first
279          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
280          * want to prefetch the block we just accessed.  In this case,
281          * start just after the block we just accessed.
282          */
283         pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
284
285         /*
286          * Double our amount of prefetched data, but don't let the
287          * prefetch get further ahead than zfetch_max_distance.
288          */
289         if (fetch_data) {
290                 max_dist_blks =
291                     zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
292                 /*
293                  * Previously, we were (zs_pf_blkid - blkid) ahead.  We
294                  * want to now be double that, so read that amount again,
295                  * plus the amount we are catching up by (i.e. the amount
296                  * read just now).
297                  */
298                 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
299                 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
300                 pf_nblks = MIN(pf_ahead_blks, max_blks);
301         } else {
302                 pf_nblks = 0;
303         }
304
305         zs->zs_pf_blkid = pf_start + pf_nblks;
306
307         /*
308          * Do the same for indirects, starting from where we stopped last,
309          * or where we will stop reading data blocks (and the indirects
310          * that point to them).
311          */
312         ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
313         max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
314         /*
315          * We want to double our distance ahead of the data prefetch
316          * (or reader, if we are not prefetching data).  Previously, we
317          * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
318          * that amount again, plus the amount we are catching up by
319          * (i.e. the amount read now + the amount of data prefetched now).
320          */
321         pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
322         max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
323         ipf_nblks = MIN(pf_ahead_blks, max_blks);
324         zs->zs_ipf_blkid = ipf_start + ipf_nblks;
325
326         epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
327         ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
328         ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
329
330         zs->zs_atime = gethrtime();
331         zs->zs_blkid = end_of_access_blkid;
332         mutex_exit(&zs->zs_lock);
333         rw_exit(&zf->zf_rwlock);
334
335         /*
336          * dbuf_prefetch() is asynchronous (even when it needs to read
337          * indirect blocks), but we still prefer to drop our locks before
338          * calling it to reduce the time we hold them.
339          */
340
341         for (int i = 0; i < pf_nblks; i++) {
342                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
343                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
344         }
345         for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
346                 dbuf_prefetch(zf->zf_dnode, 1, iblk,
347                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
348         }
349         ZFETCHSTAT_BUMP(zfetchstat_hits);
350 }