]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r296519: MFV r296518: 5027 zfs large block support (add copyright)
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/trim_map.h>
49
50 SYSCTL_DECL(_vfs_zfs);
51 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
52
53 /*
54  * Virtual device management.
55  */
56
57 /*
58  * The limit for ZFS to automatically increase a top-level vdev's ashift
59  * from logical ashift to physical ashift.
60  *
61  * Example: one or more 512B emulation child vdevs
62  *          child->vdev_ashift = 9 (512 bytes)
63  *          child->vdev_physical_ashift = 12 (4096 bytes)
64  *          zfs_max_auto_ashift = 11 (2048 bytes)
65  *          zfs_min_auto_ashift = 9 (512 bytes)
66  *
67  * On pool creation or the addition of a new top-level vdev, ZFS will
68  * increase the ashift of the top-level vdev to 2048 as limited by
69  * zfs_max_auto_ashift.
70  *
71  * Example: one or more 512B emulation child vdevs
72  *          child->vdev_ashift = 9 (512 bytes)
73  *          child->vdev_physical_ashift = 12 (4096 bytes)
74  *          zfs_max_auto_ashift = 13 (8192 bytes)
75  *          zfs_min_auto_ashift = 9 (512 bytes)
76  *
77  * On pool creation or the addition of a new top-level vdev, ZFS will
78  * increase the ashift of the top-level vdev to 4096 to match the
79  * max vdev_physical_ashift.
80  *
81  * Example: one or more 512B emulation child vdevs
82  *          child->vdev_ashift = 9 (512 bytes)
83  *          child->vdev_physical_ashift = 9 (512 bytes)
84  *          zfs_max_auto_ashift = 13 (8192 bytes)
85  *          zfs_min_auto_ashift = 12 (4096 bytes)
86  *
87  * On pool creation or the addition of a new top-level vdev, ZFS will
88  * increase the ashift of the top-level vdev to 4096 to match the
89  * zfs_min_auto_ashift.
90  */
91 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
92 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
93
94 static int
95 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
96 {
97         uint64_t val;
98         int err;
99
100         val = zfs_max_auto_ashift;
101         err = sysctl_handle_64(oidp, &val, 0, req);
102         if (err != 0 || req->newptr == NULL)
103                 return (err);
104
105         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
106                 return (EINVAL);
107
108         zfs_max_auto_ashift = val;
109
110         return (0);
111 }
112 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
113     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
114     sysctl_vfs_zfs_max_auto_ashift, "QU",
115     "Max ashift used when optimising for logical -> physical sectors size on "
116     "new top-level vdevs.");
117
118 static int
119 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
120 {
121         uint64_t val;
122         int err;
123
124         val = zfs_min_auto_ashift;
125         err = sysctl_handle_64(oidp, &val, 0, req);
126         if (err != 0 || req->newptr == NULL)
127                 return (err);
128
129         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
130                 return (EINVAL);
131
132         zfs_min_auto_ashift = val;
133
134         return (0);
135 }
136 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
137     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
138     sysctl_vfs_zfs_min_auto_ashift, "QU",
139     "Min ashift used when creating new top-level vdevs.");
140
141 static vdev_ops_t *vdev_ops_table[] = {
142         &vdev_root_ops,
143         &vdev_raidz_ops,
144         &vdev_mirror_ops,
145         &vdev_replacing_ops,
146         &vdev_spare_ops,
147 #ifdef _KERNEL
148         &vdev_geom_ops,
149 #else
150         &vdev_disk_ops,
151 #endif
152         &vdev_file_ops,
153         &vdev_missing_ops,
154         &vdev_hole_ops,
155         NULL
156 };
157
158
159 /*
160  * When a vdev is added, it will be divided into approximately (but no
161  * more than) this number of metaslabs.
162  */
163 int metaslabs_per_vdev = 200;
164 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
165     &metaslabs_per_vdev, 0,
166     "When a vdev is added, how many metaslabs the vdev should be divided into");
167
168 /*
169  * Given a vdev type, return the appropriate ops vector.
170  */
171 static vdev_ops_t *
172 vdev_getops(const char *type)
173 {
174         vdev_ops_t *ops, **opspp;
175
176         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
177                 if (strcmp(ops->vdev_op_type, type) == 0)
178                         break;
179
180         return (ops);
181 }
182
183 /*
184  * Default asize function: return the MAX of psize with the asize of
185  * all children.  This is what's used by anything other than RAID-Z.
186  */
187 uint64_t
188 vdev_default_asize(vdev_t *vd, uint64_t psize)
189 {
190         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
191         uint64_t csize;
192
193         for (int c = 0; c < vd->vdev_children; c++) {
194                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
195                 asize = MAX(asize, csize);
196         }
197
198         return (asize);
199 }
200
201 /*
202  * Get the minimum allocatable size. We define the allocatable size as
203  * the vdev's asize rounded to the nearest metaslab. This allows us to
204  * replace or attach devices which don't have the same physical size but
205  * can still satisfy the same number of allocations.
206  */
207 uint64_t
208 vdev_get_min_asize(vdev_t *vd)
209 {
210         vdev_t *pvd = vd->vdev_parent;
211
212         /*
213          * If our parent is NULL (inactive spare or cache) or is the root,
214          * just return our own asize.
215          */
216         if (pvd == NULL)
217                 return (vd->vdev_asize);
218
219         /*
220          * The top-level vdev just returns the allocatable size rounded
221          * to the nearest metaslab.
222          */
223         if (vd == vd->vdev_top)
224                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
225
226         /*
227          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
228          * so each child must provide at least 1/Nth of its asize.
229          */
230         if (pvd->vdev_ops == &vdev_raidz_ops)
231                 return (pvd->vdev_min_asize / pvd->vdev_children);
232
233         return (pvd->vdev_min_asize);
234 }
235
236 void
237 vdev_set_min_asize(vdev_t *vd)
238 {
239         vd->vdev_min_asize = vdev_get_min_asize(vd);
240
241         for (int c = 0; c < vd->vdev_children; c++)
242                 vdev_set_min_asize(vd->vdev_child[c]);
243 }
244
245 vdev_t *
246 vdev_lookup_top(spa_t *spa, uint64_t vdev)
247 {
248         vdev_t *rvd = spa->spa_root_vdev;
249
250         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
251
252         if (vdev < rvd->vdev_children) {
253                 ASSERT(rvd->vdev_child[vdev] != NULL);
254                 return (rvd->vdev_child[vdev]);
255         }
256
257         return (NULL);
258 }
259
260 vdev_t *
261 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
262 {
263         vdev_t *mvd;
264
265         if (vd->vdev_guid == guid)
266                 return (vd);
267
268         for (int c = 0; c < vd->vdev_children; c++)
269                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
270                     NULL)
271                         return (mvd);
272
273         return (NULL);
274 }
275
276 static int
277 vdev_count_leaves_impl(vdev_t *vd)
278 {
279         int n = 0;
280
281         if (vd->vdev_ops->vdev_op_leaf)
282                 return (1);
283
284         for (int c = 0; c < vd->vdev_children; c++)
285                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
286
287         return (n);
288 }
289
290 int
291 vdev_count_leaves(spa_t *spa)
292 {
293         return (vdev_count_leaves_impl(spa->spa_root_vdev));
294 }
295
296 void
297 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
298 {
299         size_t oldsize, newsize;
300         uint64_t id = cvd->vdev_id;
301         vdev_t **newchild;
302         spa_t *spa = cvd->vdev_spa;
303
304         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
305         ASSERT(cvd->vdev_parent == NULL);
306
307         cvd->vdev_parent = pvd;
308
309         if (pvd == NULL)
310                 return;
311
312         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
313
314         oldsize = pvd->vdev_children * sizeof (vdev_t *);
315         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
316         newsize = pvd->vdev_children * sizeof (vdev_t *);
317
318         newchild = kmem_zalloc(newsize, KM_SLEEP);
319         if (pvd->vdev_child != NULL) {
320                 bcopy(pvd->vdev_child, newchild, oldsize);
321                 kmem_free(pvd->vdev_child, oldsize);
322         }
323
324         pvd->vdev_child = newchild;
325         pvd->vdev_child[id] = cvd;
326
327         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
328         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
329
330         /*
331          * Walk up all ancestors to update guid sum.
332          */
333         for (; pvd != NULL; pvd = pvd->vdev_parent)
334                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
335 }
336
337 void
338 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
339 {
340         int c;
341         uint_t id = cvd->vdev_id;
342
343         ASSERT(cvd->vdev_parent == pvd);
344
345         if (pvd == NULL)
346                 return;
347
348         ASSERT(id < pvd->vdev_children);
349         ASSERT(pvd->vdev_child[id] == cvd);
350
351         pvd->vdev_child[id] = NULL;
352         cvd->vdev_parent = NULL;
353
354         for (c = 0; c < pvd->vdev_children; c++)
355                 if (pvd->vdev_child[c])
356                         break;
357
358         if (c == pvd->vdev_children) {
359                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
360                 pvd->vdev_child = NULL;
361                 pvd->vdev_children = 0;
362         }
363
364         /*
365          * Walk up all ancestors to update guid sum.
366          */
367         for (; pvd != NULL; pvd = pvd->vdev_parent)
368                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
369 }
370
371 /*
372  * Remove any holes in the child array.
373  */
374 void
375 vdev_compact_children(vdev_t *pvd)
376 {
377         vdev_t **newchild, *cvd;
378         int oldc = pvd->vdev_children;
379         int newc;
380
381         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
382
383         for (int c = newc = 0; c < oldc; c++)
384                 if (pvd->vdev_child[c])
385                         newc++;
386
387         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
388
389         for (int c = newc = 0; c < oldc; c++) {
390                 if ((cvd = pvd->vdev_child[c]) != NULL) {
391                         newchild[newc] = cvd;
392                         cvd->vdev_id = newc++;
393                 }
394         }
395
396         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
397         pvd->vdev_child = newchild;
398         pvd->vdev_children = newc;
399 }
400
401 /*
402  * Allocate and minimally initialize a vdev_t.
403  */
404 vdev_t *
405 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
406 {
407         vdev_t *vd;
408
409         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
410
411         if (spa->spa_root_vdev == NULL) {
412                 ASSERT(ops == &vdev_root_ops);
413                 spa->spa_root_vdev = vd;
414                 spa->spa_load_guid = spa_generate_guid(NULL);
415         }
416
417         if (guid == 0 && ops != &vdev_hole_ops) {
418                 if (spa->spa_root_vdev == vd) {
419                         /*
420                          * The root vdev's guid will also be the pool guid,
421                          * which must be unique among all pools.
422                          */
423                         guid = spa_generate_guid(NULL);
424                 } else {
425                         /*
426                          * Any other vdev's guid must be unique within the pool.
427                          */
428                         guid = spa_generate_guid(spa);
429                 }
430                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
431         }
432
433         vd->vdev_spa = spa;
434         vd->vdev_id = id;
435         vd->vdev_guid = guid;
436         vd->vdev_guid_sum = guid;
437         vd->vdev_ops = ops;
438         vd->vdev_state = VDEV_STATE_CLOSED;
439         vd->vdev_ishole = (ops == &vdev_hole_ops);
440
441         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
442         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
443         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
444         for (int t = 0; t < DTL_TYPES; t++) {
445                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
446                     &vd->vdev_dtl_lock);
447         }
448         txg_list_create(&vd->vdev_ms_list,
449             offsetof(struct metaslab, ms_txg_node));
450         txg_list_create(&vd->vdev_dtl_list,
451             offsetof(struct vdev, vdev_dtl_node));
452         vd->vdev_stat.vs_timestamp = gethrtime();
453         vdev_queue_init(vd);
454         vdev_cache_init(vd);
455
456         return (vd);
457 }
458
459 /*
460  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
461  * creating a new vdev or loading an existing one - the behavior is slightly
462  * different for each case.
463  */
464 int
465 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
466     int alloctype)
467 {
468         vdev_ops_t *ops;
469         char *type;
470         uint64_t guid = 0, islog, nparity;
471         vdev_t *vd;
472
473         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
474
475         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
476                 return (SET_ERROR(EINVAL));
477
478         if ((ops = vdev_getops(type)) == NULL)
479                 return (SET_ERROR(EINVAL));
480
481         /*
482          * If this is a load, get the vdev guid from the nvlist.
483          * Otherwise, vdev_alloc_common() will generate one for us.
484          */
485         if (alloctype == VDEV_ALLOC_LOAD) {
486                 uint64_t label_id;
487
488                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
489                     label_id != id)
490                         return (SET_ERROR(EINVAL));
491
492                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
493                         return (SET_ERROR(EINVAL));
494         } else if (alloctype == VDEV_ALLOC_SPARE) {
495                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
496                         return (SET_ERROR(EINVAL));
497         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
498                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
499                         return (SET_ERROR(EINVAL));
500         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
501                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
502                         return (SET_ERROR(EINVAL));
503         }
504
505         /*
506          * The first allocated vdev must be of type 'root'.
507          */
508         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
509                 return (SET_ERROR(EINVAL));
510
511         /*
512          * Determine whether we're a log vdev.
513          */
514         islog = 0;
515         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
516         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
517                 return (SET_ERROR(ENOTSUP));
518
519         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
520                 return (SET_ERROR(ENOTSUP));
521
522         /*
523          * Set the nparity property for RAID-Z vdevs.
524          */
525         nparity = -1ULL;
526         if (ops == &vdev_raidz_ops) {
527                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
528                     &nparity) == 0) {
529                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
530                                 return (SET_ERROR(EINVAL));
531                         /*
532                          * Previous versions could only support 1 or 2 parity
533                          * device.
534                          */
535                         if (nparity > 1 &&
536                             spa_version(spa) < SPA_VERSION_RAIDZ2)
537                                 return (SET_ERROR(ENOTSUP));
538                         if (nparity > 2 &&
539                             spa_version(spa) < SPA_VERSION_RAIDZ3)
540                                 return (SET_ERROR(ENOTSUP));
541                 } else {
542                         /*
543                          * We require the parity to be specified for SPAs that
544                          * support multiple parity levels.
545                          */
546                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
547                                 return (SET_ERROR(EINVAL));
548                         /*
549                          * Otherwise, we default to 1 parity device for RAID-Z.
550                          */
551                         nparity = 1;
552                 }
553         } else {
554                 nparity = 0;
555         }
556         ASSERT(nparity != -1ULL);
557
558         vd = vdev_alloc_common(spa, id, guid, ops);
559
560         vd->vdev_islog = islog;
561         vd->vdev_nparity = nparity;
562
563         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
564                 vd->vdev_path = spa_strdup(vd->vdev_path);
565         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
566                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
567         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
568             &vd->vdev_physpath) == 0)
569                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
570         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
571                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
572
573         /*
574          * Set the whole_disk property.  If it's not specified, leave the value
575          * as -1.
576          */
577         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
578             &vd->vdev_wholedisk) != 0)
579                 vd->vdev_wholedisk = -1ULL;
580
581         /*
582          * Look for the 'not present' flag.  This will only be set if the device
583          * was not present at the time of import.
584          */
585         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
586             &vd->vdev_not_present);
587
588         /*
589          * Get the alignment requirement.
590          */
591         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
592
593         /*
594          * Retrieve the vdev creation time.
595          */
596         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
597             &vd->vdev_crtxg);
598
599         /*
600          * If we're a top-level vdev, try to load the allocation parameters.
601          */
602         if (parent && !parent->vdev_parent &&
603             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
604                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
605                     &vd->vdev_ms_array);
606                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
607                     &vd->vdev_ms_shift);
608                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
609                     &vd->vdev_asize);
610                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
611                     &vd->vdev_removing);
612         }
613
614         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
615                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
616                     alloctype == VDEV_ALLOC_ADD ||
617                     alloctype == VDEV_ALLOC_SPLIT ||
618                     alloctype == VDEV_ALLOC_ROOTPOOL);
619                 vd->vdev_mg = metaslab_group_create(islog ?
620                     spa_log_class(spa) : spa_normal_class(spa), vd);
621         }
622
623         /*
624          * If we're a leaf vdev, try to load the DTL object and other state.
625          */
626         if (vd->vdev_ops->vdev_op_leaf &&
627             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
628             alloctype == VDEV_ALLOC_ROOTPOOL)) {
629                 if (alloctype == VDEV_ALLOC_LOAD) {
630                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
631                             &vd->vdev_dtl_object);
632                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
633                             &vd->vdev_unspare);
634                 }
635
636                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
637                         uint64_t spare = 0;
638
639                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
640                             &spare) == 0 && spare)
641                                 spa_spare_add(vd);
642                 }
643
644                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
645                     &vd->vdev_offline);
646
647                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
648                     &vd->vdev_resilver_txg);
649
650                 /*
651                  * When importing a pool, we want to ignore the persistent fault
652                  * state, as the diagnosis made on another system may not be
653                  * valid in the current context.  Local vdevs will
654                  * remain in the faulted state.
655                  */
656                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
657                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
658                             &vd->vdev_faulted);
659                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
660                             &vd->vdev_degraded);
661                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
662                             &vd->vdev_removed);
663
664                         if (vd->vdev_faulted || vd->vdev_degraded) {
665                                 char *aux;
666
667                                 vd->vdev_label_aux =
668                                     VDEV_AUX_ERR_EXCEEDED;
669                                 if (nvlist_lookup_string(nv,
670                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
671                                     strcmp(aux, "external") == 0)
672                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
673                         }
674                 }
675         }
676
677         /*
678          * Add ourselves to the parent's list of children.
679          */
680         vdev_add_child(parent, vd);
681
682         *vdp = vd;
683
684         return (0);
685 }
686
687 void
688 vdev_free(vdev_t *vd)
689 {
690         spa_t *spa = vd->vdev_spa;
691
692         /*
693          * vdev_free() implies closing the vdev first.  This is simpler than
694          * trying to ensure complicated semantics for all callers.
695          */
696         vdev_close(vd);
697
698         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
699         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
700
701         /*
702          * Free all children.
703          */
704         for (int c = 0; c < vd->vdev_children; c++)
705                 vdev_free(vd->vdev_child[c]);
706
707         ASSERT(vd->vdev_child == NULL);
708         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
709
710         /*
711          * Discard allocation state.
712          */
713         if (vd->vdev_mg != NULL) {
714                 vdev_metaslab_fini(vd);
715                 metaslab_group_destroy(vd->vdev_mg);
716         }
717
718         ASSERT0(vd->vdev_stat.vs_space);
719         ASSERT0(vd->vdev_stat.vs_dspace);
720         ASSERT0(vd->vdev_stat.vs_alloc);
721
722         /*
723          * Remove this vdev from its parent's child list.
724          */
725         vdev_remove_child(vd->vdev_parent, vd);
726
727         ASSERT(vd->vdev_parent == NULL);
728
729         /*
730          * Clean up vdev structure.
731          */
732         vdev_queue_fini(vd);
733         vdev_cache_fini(vd);
734
735         if (vd->vdev_path)
736                 spa_strfree(vd->vdev_path);
737         if (vd->vdev_devid)
738                 spa_strfree(vd->vdev_devid);
739         if (vd->vdev_physpath)
740                 spa_strfree(vd->vdev_physpath);
741         if (vd->vdev_fru)
742                 spa_strfree(vd->vdev_fru);
743
744         if (vd->vdev_isspare)
745                 spa_spare_remove(vd);
746         if (vd->vdev_isl2cache)
747                 spa_l2cache_remove(vd);
748
749         txg_list_destroy(&vd->vdev_ms_list);
750         txg_list_destroy(&vd->vdev_dtl_list);
751
752         mutex_enter(&vd->vdev_dtl_lock);
753         space_map_close(vd->vdev_dtl_sm);
754         for (int t = 0; t < DTL_TYPES; t++) {
755                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
756                 range_tree_destroy(vd->vdev_dtl[t]);
757         }
758         mutex_exit(&vd->vdev_dtl_lock);
759
760         mutex_destroy(&vd->vdev_dtl_lock);
761         mutex_destroy(&vd->vdev_stat_lock);
762         mutex_destroy(&vd->vdev_probe_lock);
763
764         if (vd == spa->spa_root_vdev)
765                 spa->spa_root_vdev = NULL;
766
767         kmem_free(vd, sizeof (vdev_t));
768 }
769
770 /*
771  * Transfer top-level vdev state from svd to tvd.
772  */
773 static void
774 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
775 {
776         spa_t *spa = svd->vdev_spa;
777         metaslab_t *msp;
778         vdev_t *vd;
779         int t;
780
781         ASSERT(tvd == tvd->vdev_top);
782
783         tvd->vdev_ms_array = svd->vdev_ms_array;
784         tvd->vdev_ms_shift = svd->vdev_ms_shift;
785         tvd->vdev_ms_count = svd->vdev_ms_count;
786
787         svd->vdev_ms_array = 0;
788         svd->vdev_ms_shift = 0;
789         svd->vdev_ms_count = 0;
790
791         if (tvd->vdev_mg)
792                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
793         tvd->vdev_mg = svd->vdev_mg;
794         tvd->vdev_ms = svd->vdev_ms;
795
796         svd->vdev_mg = NULL;
797         svd->vdev_ms = NULL;
798
799         if (tvd->vdev_mg != NULL)
800                 tvd->vdev_mg->mg_vd = tvd;
801
802         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
803         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
804         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
805
806         svd->vdev_stat.vs_alloc = 0;
807         svd->vdev_stat.vs_space = 0;
808         svd->vdev_stat.vs_dspace = 0;
809
810         for (t = 0; t < TXG_SIZE; t++) {
811                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
812                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
813                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
814                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
815                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
816                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
817         }
818
819         if (list_link_active(&svd->vdev_config_dirty_node)) {
820                 vdev_config_clean(svd);
821                 vdev_config_dirty(tvd);
822         }
823
824         if (list_link_active(&svd->vdev_state_dirty_node)) {
825                 vdev_state_clean(svd);
826                 vdev_state_dirty(tvd);
827         }
828
829         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
830         svd->vdev_deflate_ratio = 0;
831
832         tvd->vdev_islog = svd->vdev_islog;
833         svd->vdev_islog = 0;
834 }
835
836 static void
837 vdev_top_update(vdev_t *tvd, vdev_t *vd)
838 {
839         if (vd == NULL)
840                 return;
841
842         vd->vdev_top = tvd;
843
844         for (int c = 0; c < vd->vdev_children; c++)
845                 vdev_top_update(tvd, vd->vdev_child[c]);
846 }
847
848 /*
849  * Add a mirror/replacing vdev above an existing vdev.
850  */
851 vdev_t *
852 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
853 {
854         spa_t *spa = cvd->vdev_spa;
855         vdev_t *pvd = cvd->vdev_parent;
856         vdev_t *mvd;
857
858         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
859
860         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
861
862         mvd->vdev_asize = cvd->vdev_asize;
863         mvd->vdev_min_asize = cvd->vdev_min_asize;
864         mvd->vdev_max_asize = cvd->vdev_max_asize;
865         mvd->vdev_ashift = cvd->vdev_ashift;
866         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
867         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
868         mvd->vdev_state = cvd->vdev_state;
869         mvd->vdev_crtxg = cvd->vdev_crtxg;
870
871         vdev_remove_child(pvd, cvd);
872         vdev_add_child(pvd, mvd);
873         cvd->vdev_id = mvd->vdev_children;
874         vdev_add_child(mvd, cvd);
875         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
876
877         if (mvd == mvd->vdev_top)
878                 vdev_top_transfer(cvd, mvd);
879
880         return (mvd);
881 }
882
883 /*
884  * Remove a 1-way mirror/replacing vdev from the tree.
885  */
886 void
887 vdev_remove_parent(vdev_t *cvd)
888 {
889         vdev_t *mvd = cvd->vdev_parent;
890         vdev_t *pvd = mvd->vdev_parent;
891
892         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
893
894         ASSERT(mvd->vdev_children == 1);
895         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
896             mvd->vdev_ops == &vdev_replacing_ops ||
897             mvd->vdev_ops == &vdev_spare_ops);
898         cvd->vdev_ashift = mvd->vdev_ashift;
899         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
900         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
901
902         vdev_remove_child(mvd, cvd);
903         vdev_remove_child(pvd, mvd);
904
905         /*
906          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
907          * Otherwise, we could have detached an offline device, and when we
908          * go to import the pool we'll think we have two top-level vdevs,
909          * instead of a different version of the same top-level vdev.
910          */
911         if (mvd->vdev_top == mvd) {
912                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
913                 cvd->vdev_orig_guid = cvd->vdev_guid;
914                 cvd->vdev_guid += guid_delta;
915                 cvd->vdev_guid_sum += guid_delta;
916         }
917         cvd->vdev_id = mvd->vdev_id;
918         vdev_add_child(pvd, cvd);
919         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
920
921         if (cvd == cvd->vdev_top)
922                 vdev_top_transfer(mvd, cvd);
923
924         ASSERT(mvd->vdev_children == 0);
925         vdev_free(mvd);
926 }
927
928 int
929 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
930 {
931         spa_t *spa = vd->vdev_spa;
932         objset_t *mos = spa->spa_meta_objset;
933         uint64_t m;
934         uint64_t oldc = vd->vdev_ms_count;
935         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
936         metaslab_t **mspp;
937         int error;
938
939         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
940
941         /*
942          * This vdev is not being allocated from yet or is a hole.
943          */
944         if (vd->vdev_ms_shift == 0)
945                 return (0);
946
947         ASSERT(!vd->vdev_ishole);
948
949         /*
950          * Compute the raidz-deflation ratio.  Note, we hard-code
951          * in 128k (1 << 17) because it is the "typical" blocksize.
952          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
953          * otherwise it would inconsistently account for existing bp's.
954          */
955         vd->vdev_deflate_ratio = (1 << 17) /
956             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
957
958         ASSERT(oldc <= newc);
959
960         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
961
962         if (oldc != 0) {
963                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
964                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
965         }
966
967         vd->vdev_ms = mspp;
968         vd->vdev_ms_count = newc;
969
970         for (m = oldc; m < newc; m++) {
971                 uint64_t object = 0;
972
973                 if (txg == 0) {
974                         error = dmu_read(mos, vd->vdev_ms_array,
975                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
976                             DMU_READ_PREFETCH);
977                         if (error)
978                                 return (error);
979                 }
980
981                 error = metaslab_init(vd->vdev_mg, m, object, txg,
982                     &(vd->vdev_ms[m]));
983                 if (error)
984                         return (error);
985         }
986
987         if (txg == 0)
988                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
989
990         /*
991          * If the vdev is being removed we don't activate
992          * the metaslabs since we want to ensure that no new
993          * allocations are performed on this device.
994          */
995         if (oldc == 0 && !vd->vdev_removing)
996                 metaslab_group_activate(vd->vdev_mg);
997
998         if (txg == 0)
999                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1000
1001         return (0);
1002 }
1003
1004 void
1005 vdev_metaslab_fini(vdev_t *vd)
1006 {
1007         uint64_t m;
1008         uint64_t count = vd->vdev_ms_count;
1009
1010         if (vd->vdev_ms != NULL) {
1011                 metaslab_group_passivate(vd->vdev_mg);
1012                 for (m = 0; m < count; m++) {
1013                         metaslab_t *msp = vd->vdev_ms[m];
1014
1015                         if (msp != NULL)
1016                                 metaslab_fini(msp);
1017                 }
1018                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1019                 vd->vdev_ms = NULL;
1020         }
1021 }
1022
1023 typedef struct vdev_probe_stats {
1024         boolean_t       vps_readable;
1025         boolean_t       vps_writeable;
1026         int             vps_flags;
1027 } vdev_probe_stats_t;
1028
1029 static void
1030 vdev_probe_done(zio_t *zio)
1031 {
1032         spa_t *spa = zio->io_spa;
1033         vdev_t *vd = zio->io_vd;
1034         vdev_probe_stats_t *vps = zio->io_private;
1035
1036         ASSERT(vd->vdev_probe_zio != NULL);
1037
1038         if (zio->io_type == ZIO_TYPE_READ) {
1039                 if (zio->io_error == 0)
1040                         vps->vps_readable = 1;
1041                 if (zio->io_error == 0 && spa_writeable(spa)) {
1042                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1043                             zio->io_offset, zio->io_size, zio->io_data,
1044                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1045                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1046                 } else {
1047                         zio_buf_free(zio->io_data, zio->io_size);
1048                 }
1049         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1050                 if (zio->io_error == 0)
1051                         vps->vps_writeable = 1;
1052                 zio_buf_free(zio->io_data, zio->io_size);
1053         } else if (zio->io_type == ZIO_TYPE_NULL) {
1054                 zio_t *pio;
1055
1056                 vd->vdev_cant_read |= !vps->vps_readable;
1057                 vd->vdev_cant_write |= !vps->vps_writeable;
1058
1059                 if (vdev_readable(vd) &&
1060                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1061                         zio->io_error = 0;
1062                 } else {
1063                         ASSERT(zio->io_error != 0);
1064                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1065                             spa, vd, NULL, 0, 0);
1066                         zio->io_error = SET_ERROR(ENXIO);
1067                 }
1068
1069                 mutex_enter(&vd->vdev_probe_lock);
1070                 ASSERT(vd->vdev_probe_zio == zio);
1071                 vd->vdev_probe_zio = NULL;
1072                 mutex_exit(&vd->vdev_probe_lock);
1073
1074                 while ((pio = zio_walk_parents(zio)) != NULL)
1075                         if (!vdev_accessible(vd, pio))
1076                                 pio->io_error = SET_ERROR(ENXIO);
1077
1078                 kmem_free(vps, sizeof (*vps));
1079         }
1080 }
1081
1082 /*
1083  * Determine whether this device is accessible.
1084  *
1085  * Read and write to several known locations: the pad regions of each
1086  * vdev label but the first, which we leave alone in case it contains
1087  * a VTOC.
1088  */
1089 zio_t *
1090 vdev_probe(vdev_t *vd, zio_t *zio)
1091 {
1092         spa_t *spa = vd->vdev_spa;
1093         vdev_probe_stats_t *vps = NULL;
1094         zio_t *pio;
1095
1096         ASSERT(vd->vdev_ops->vdev_op_leaf);
1097
1098         /*
1099          * Don't probe the probe.
1100          */
1101         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1102                 return (NULL);
1103
1104         /*
1105          * To prevent 'probe storms' when a device fails, we create
1106          * just one probe i/o at a time.  All zios that want to probe
1107          * this vdev will become parents of the probe io.
1108          */
1109         mutex_enter(&vd->vdev_probe_lock);
1110
1111         if ((pio = vd->vdev_probe_zio) == NULL) {
1112                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1113
1114                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1115                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1116                     ZIO_FLAG_TRYHARD;
1117
1118                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1119                         /*
1120                          * vdev_cant_read and vdev_cant_write can only
1121                          * transition from TRUE to FALSE when we have the
1122                          * SCL_ZIO lock as writer; otherwise they can only
1123                          * transition from FALSE to TRUE.  This ensures that
1124                          * any zio looking at these values can assume that
1125                          * failures persist for the life of the I/O.  That's
1126                          * important because when a device has intermittent
1127                          * connectivity problems, we want to ensure that
1128                          * they're ascribed to the device (ENXIO) and not
1129                          * the zio (EIO).
1130                          *
1131                          * Since we hold SCL_ZIO as writer here, clear both
1132                          * values so the probe can reevaluate from first
1133                          * principles.
1134                          */
1135                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1136                         vd->vdev_cant_read = B_FALSE;
1137                         vd->vdev_cant_write = B_FALSE;
1138                 }
1139
1140                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1141                     vdev_probe_done, vps,
1142                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1143
1144                 /*
1145                  * We can't change the vdev state in this context, so we
1146                  * kick off an async task to do it on our behalf.
1147                  */
1148                 if (zio != NULL) {
1149                         vd->vdev_probe_wanted = B_TRUE;
1150                         spa_async_request(spa, SPA_ASYNC_PROBE);
1151                 }
1152         }
1153
1154         if (zio != NULL)
1155                 zio_add_child(zio, pio);
1156
1157         mutex_exit(&vd->vdev_probe_lock);
1158
1159         if (vps == NULL) {
1160                 ASSERT(zio != NULL);
1161                 return (NULL);
1162         }
1163
1164         for (int l = 1; l < VDEV_LABELS; l++) {
1165                 zio_nowait(zio_read_phys(pio, vd,
1166                     vdev_label_offset(vd->vdev_psize, l,
1167                     offsetof(vdev_label_t, vl_pad2)),
1168                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1169                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1170                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1171         }
1172
1173         if (zio == NULL)
1174                 return (pio);
1175
1176         zio_nowait(pio);
1177         return (NULL);
1178 }
1179
1180 static void
1181 vdev_open_child(void *arg)
1182 {
1183         vdev_t *vd = arg;
1184
1185         vd->vdev_open_thread = curthread;
1186         vd->vdev_open_error = vdev_open(vd);
1187         vd->vdev_open_thread = NULL;
1188 }
1189
1190 boolean_t
1191 vdev_uses_zvols(vdev_t *vd)
1192 {
1193         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1194             strlen(ZVOL_DIR)) == 0)
1195                 return (B_TRUE);
1196         for (int c = 0; c < vd->vdev_children; c++)
1197                 if (vdev_uses_zvols(vd->vdev_child[c]))
1198                         return (B_TRUE);
1199         return (B_FALSE);
1200 }
1201
1202 void
1203 vdev_open_children(vdev_t *vd)
1204 {
1205         taskq_t *tq;
1206         int children = vd->vdev_children;
1207
1208         /*
1209          * in order to handle pools on top of zvols, do the opens
1210          * in a single thread so that the same thread holds the
1211          * spa_namespace_lock
1212          */
1213         if (B_TRUE || vdev_uses_zvols(vd)) {
1214                 for (int c = 0; c < children; c++)
1215                         vd->vdev_child[c]->vdev_open_error =
1216                             vdev_open(vd->vdev_child[c]);
1217                 return;
1218         }
1219         tq = taskq_create("vdev_open", children, minclsyspri,
1220             children, children, TASKQ_PREPOPULATE);
1221
1222         for (int c = 0; c < children; c++)
1223                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1224                     TQ_SLEEP) != 0);
1225
1226         taskq_destroy(tq);
1227 }
1228
1229 /*
1230  * Prepare a virtual device for access.
1231  */
1232 int
1233 vdev_open(vdev_t *vd)
1234 {
1235         spa_t *spa = vd->vdev_spa;
1236         int error;
1237         uint64_t osize = 0;
1238         uint64_t max_osize = 0;
1239         uint64_t asize, max_asize, psize;
1240         uint64_t logical_ashift = 0;
1241         uint64_t physical_ashift = 0;
1242
1243         ASSERT(vd->vdev_open_thread == curthread ||
1244             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1245         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1246             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1247             vd->vdev_state == VDEV_STATE_OFFLINE);
1248
1249         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1250         vd->vdev_cant_read = B_FALSE;
1251         vd->vdev_cant_write = B_FALSE;
1252         vd->vdev_notrim = B_FALSE;
1253         vd->vdev_min_asize = vdev_get_min_asize(vd);
1254
1255         /*
1256          * If this vdev is not removed, check its fault status.  If it's
1257          * faulted, bail out of the open.
1258          */
1259         if (!vd->vdev_removed && vd->vdev_faulted) {
1260                 ASSERT(vd->vdev_children == 0);
1261                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1262                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1263                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1264                     vd->vdev_label_aux);
1265                 return (SET_ERROR(ENXIO));
1266         } else if (vd->vdev_offline) {
1267                 ASSERT(vd->vdev_children == 0);
1268                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1269                 return (SET_ERROR(ENXIO));
1270         }
1271
1272         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1273             &logical_ashift, &physical_ashift);
1274
1275         /*
1276          * Reset the vdev_reopening flag so that we actually close
1277          * the vdev on error.
1278          */
1279         vd->vdev_reopening = B_FALSE;
1280         if (zio_injection_enabled && error == 0)
1281                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1282
1283         if (error) {
1284                 if (vd->vdev_removed &&
1285                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1286                         vd->vdev_removed = B_FALSE;
1287
1288                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1289                     vd->vdev_stat.vs_aux);
1290                 return (error);
1291         }
1292
1293         vd->vdev_removed = B_FALSE;
1294
1295         /*
1296          * Recheck the faulted flag now that we have confirmed that
1297          * the vdev is accessible.  If we're faulted, bail.
1298          */
1299         if (vd->vdev_faulted) {
1300                 ASSERT(vd->vdev_children == 0);
1301                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1302                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1303                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1304                     vd->vdev_label_aux);
1305                 return (SET_ERROR(ENXIO));
1306         }
1307
1308         if (vd->vdev_degraded) {
1309                 ASSERT(vd->vdev_children == 0);
1310                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1311                     VDEV_AUX_ERR_EXCEEDED);
1312         } else {
1313                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1314         }
1315
1316         /*
1317          * For hole or missing vdevs we just return success.
1318          */
1319         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1320                 return (0);
1321
1322         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1323                 trim_map_create(vd);
1324
1325         for (int c = 0; c < vd->vdev_children; c++) {
1326                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1327                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1328                             VDEV_AUX_NONE);
1329                         break;
1330                 }
1331         }
1332
1333         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1334         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1335
1336         if (vd->vdev_children == 0) {
1337                 if (osize < SPA_MINDEVSIZE) {
1338                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1339                             VDEV_AUX_TOO_SMALL);
1340                         return (SET_ERROR(EOVERFLOW));
1341                 }
1342                 psize = osize;
1343                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1344                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1345                     VDEV_LABEL_END_SIZE);
1346         } else {
1347                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1348                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1349                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1350                             VDEV_AUX_TOO_SMALL);
1351                         return (SET_ERROR(EOVERFLOW));
1352                 }
1353                 psize = 0;
1354                 asize = osize;
1355                 max_asize = max_osize;
1356         }
1357
1358         vd->vdev_psize = psize;
1359
1360         /*
1361          * Make sure the allocatable size hasn't shrunk.
1362          */
1363         if (asize < vd->vdev_min_asize) {
1364                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1365                     VDEV_AUX_BAD_LABEL);
1366                 return (SET_ERROR(EINVAL));
1367         }
1368
1369         vd->vdev_physical_ashift =
1370             MAX(physical_ashift, vd->vdev_physical_ashift);
1371         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1372         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1373
1374         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1375                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1376                     VDEV_AUX_ASHIFT_TOO_BIG);
1377                 return (EINVAL);
1378         }
1379
1380         if (vd->vdev_asize == 0) {
1381                 /*
1382                  * This is the first-ever open, so use the computed values.
1383                  * For testing purposes, a higher ashift can be requested.
1384                  */
1385                 vd->vdev_asize = asize;
1386                 vd->vdev_max_asize = max_asize;
1387         } else {
1388                 /*
1389                  * Make sure the alignment requirement hasn't increased.
1390                  */
1391                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1392                     vd->vdev_ops->vdev_op_leaf) {
1393                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1394                             VDEV_AUX_BAD_LABEL);
1395                         return (EINVAL);
1396                 }
1397                 vd->vdev_max_asize = max_asize;
1398         }
1399
1400         /*
1401          * If all children are healthy and the asize has increased,
1402          * then we've experienced dynamic LUN growth.  If automatic
1403          * expansion is enabled then use the additional space.
1404          */
1405         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1406             (vd->vdev_expanding || spa->spa_autoexpand))
1407                 vd->vdev_asize = asize;
1408
1409         vdev_set_min_asize(vd);
1410
1411         /*
1412          * Ensure we can issue some IO before declaring the
1413          * vdev open for business.
1414          */
1415         if (vd->vdev_ops->vdev_op_leaf &&
1416             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1417                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1418                     VDEV_AUX_ERR_EXCEEDED);
1419                 return (error);
1420         }
1421
1422         /*
1423          * Track the min and max ashift values for normal data devices.
1424          */
1425         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1426             !vd->vdev_islog && vd->vdev_aux == NULL) {
1427                 if (vd->vdev_ashift > spa->spa_max_ashift)
1428                         spa->spa_max_ashift = vd->vdev_ashift;
1429                 if (vd->vdev_ashift < spa->spa_min_ashift)
1430                         spa->spa_min_ashift = vd->vdev_ashift;
1431         }
1432
1433         /*
1434          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1435          * resilver.  But don't do this if we are doing a reopen for a scrub,
1436          * since this would just restart the scrub we are already doing.
1437          */
1438         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1439             vdev_resilver_needed(vd, NULL, NULL))
1440                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1441
1442         return (0);
1443 }
1444
1445 /*
1446  * Called once the vdevs are all opened, this routine validates the label
1447  * contents.  This needs to be done before vdev_load() so that we don't
1448  * inadvertently do repair I/Os to the wrong device.
1449  *
1450  * If 'strict' is false ignore the spa guid check. This is necessary because
1451  * if the machine crashed during a re-guid the new guid might have been written
1452  * to all of the vdev labels, but not the cached config. The strict check
1453  * will be performed when the pool is opened again using the mos config.
1454  *
1455  * This function will only return failure if one of the vdevs indicates that it
1456  * has since been destroyed or exported.  This is only possible if
1457  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1458  * will be updated but the function will return 0.
1459  */
1460 int
1461 vdev_validate(vdev_t *vd, boolean_t strict)
1462 {
1463         spa_t *spa = vd->vdev_spa;
1464         nvlist_t *label;
1465         uint64_t guid = 0, top_guid;
1466         uint64_t state;
1467
1468         for (int c = 0; c < vd->vdev_children; c++)
1469                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1470                         return (SET_ERROR(EBADF));
1471
1472         /*
1473          * If the device has already failed, or was marked offline, don't do
1474          * any further validation.  Otherwise, label I/O will fail and we will
1475          * overwrite the previous state.
1476          */
1477         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1478                 uint64_t aux_guid = 0;
1479                 nvlist_t *nvl;
1480                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1481                     spa_last_synced_txg(spa) : -1ULL;
1482
1483                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1484                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1485                             VDEV_AUX_BAD_LABEL);
1486                         return (0);
1487                 }
1488
1489                 /*
1490                  * Determine if this vdev has been split off into another
1491                  * pool.  If so, then refuse to open it.
1492                  */
1493                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1494                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1495                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1496                             VDEV_AUX_SPLIT_POOL);
1497                         nvlist_free(label);
1498                         return (0);
1499                 }
1500
1501                 if (strict && (nvlist_lookup_uint64(label,
1502                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1503                     guid != spa_guid(spa))) {
1504                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1505                             VDEV_AUX_CORRUPT_DATA);
1506                         nvlist_free(label);
1507                         return (0);
1508                 }
1509
1510                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1511                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1512                     &aux_guid) != 0)
1513                         aux_guid = 0;
1514
1515                 /*
1516                  * If this vdev just became a top-level vdev because its
1517                  * sibling was detached, it will have adopted the parent's
1518                  * vdev guid -- but the label may or may not be on disk yet.
1519                  * Fortunately, either version of the label will have the
1520                  * same top guid, so if we're a top-level vdev, we can
1521                  * safely compare to that instead.
1522                  *
1523                  * If we split this vdev off instead, then we also check the
1524                  * original pool's guid.  We don't want to consider the vdev
1525                  * corrupt if it is partway through a split operation.
1526                  */
1527                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1528                     &guid) != 0 ||
1529                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1530                     &top_guid) != 0 ||
1531                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1532                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1533                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1534                             VDEV_AUX_CORRUPT_DATA);
1535                         nvlist_free(label);
1536                         return (0);
1537                 }
1538
1539                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1540                     &state) != 0) {
1541                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1542                             VDEV_AUX_CORRUPT_DATA);
1543                         nvlist_free(label);
1544                         return (0);
1545                 }
1546
1547                 nvlist_free(label);
1548
1549                 /*
1550                  * If this is a verbatim import, no need to check the
1551                  * state of the pool.
1552                  */
1553                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1554                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1555                     state != POOL_STATE_ACTIVE)
1556                         return (SET_ERROR(EBADF));
1557
1558                 /*
1559                  * If we were able to open and validate a vdev that was
1560                  * previously marked permanently unavailable, clear that state
1561                  * now.
1562                  */
1563                 if (vd->vdev_not_present)
1564                         vd->vdev_not_present = 0;
1565         }
1566
1567         return (0);
1568 }
1569
1570 /*
1571  * Close a virtual device.
1572  */
1573 void
1574 vdev_close(vdev_t *vd)
1575 {
1576         spa_t *spa = vd->vdev_spa;
1577         vdev_t *pvd = vd->vdev_parent;
1578
1579         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1580
1581         /*
1582          * If our parent is reopening, then we are as well, unless we are
1583          * going offline.
1584          */
1585         if (pvd != NULL && pvd->vdev_reopening)
1586                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1587
1588         vd->vdev_ops->vdev_op_close(vd);
1589
1590         vdev_cache_purge(vd);
1591
1592         if (vd->vdev_ops->vdev_op_leaf)
1593                 trim_map_destroy(vd);
1594
1595         /*
1596          * We record the previous state before we close it, so that if we are
1597          * doing a reopen(), we don't generate FMA ereports if we notice that
1598          * it's still faulted.
1599          */
1600         vd->vdev_prevstate = vd->vdev_state;
1601
1602         if (vd->vdev_offline)
1603                 vd->vdev_state = VDEV_STATE_OFFLINE;
1604         else
1605                 vd->vdev_state = VDEV_STATE_CLOSED;
1606         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1607 }
1608
1609 void
1610 vdev_hold(vdev_t *vd)
1611 {
1612         spa_t *spa = vd->vdev_spa;
1613
1614         ASSERT(spa_is_root(spa));
1615         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1616                 return;
1617
1618         for (int c = 0; c < vd->vdev_children; c++)
1619                 vdev_hold(vd->vdev_child[c]);
1620
1621         if (vd->vdev_ops->vdev_op_leaf)
1622                 vd->vdev_ops->vdev_op_hold(vd);
1623 }
1624
1625 void
1626 vdev_rele(vdev_t *vd)
1627 {
1628         spa_t *spa = vd->vdev_spa;
1629
1630         ASSERT(spa_is_root(spa));
1631         for (int c = 0; c < vd->vdev_children; c++)
1632                 vdev_rele(vd->vdev_child[c]);
1633
1634         if (vd->vdev_ops->vdev_op_leaf)
1635                 vd->vdev_ops->vdev_op_rele(vd);
1636 }
1637
1638 /*
1639  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1640  * reopen leaf vdevs which had previously been opened as they might deadlock
1641  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1642  * If the leaf has never been opened then open it, as usual.
1643  */
1644 void
1645 vdev_reopen(vdev_t *vd)
1646 {
1647         spa_t *spa = vd->vdev_spa;
1648
1649         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1650
1651         /* set the reopening flag unless we're taking the vdev offline */
1652         vd->vdev_reopening = !vd->vdev_offline;
1653         vdev_close(vd);
1654         (void) vdev_open(vd);
1655
1656         /*
1657          * Call vdev_validate() here to make sure we have the same device.
1658          * Otherwise, a device with an invalid label could be successfully
1659          * opened in response to vdev_reopen().
1660          */
1661         if (vd->vdev_aux) {
1662                 (void) vdev_validate_aux(vd);
1663                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1664                     vd->vdev_aux == &spa->spa_l2cache &&
1665                     !l2arc_vdev_present(vd))
1666                         l2arc_add_vdev(spa, vd);
1667         } else {
1668                 (void) vdev_validate(vd, B_TRUE);
1669         }
1670
1671         /*
1672          * Reassess parent vdev's health.
1673          */
1674         vdev_propagate_state(vd);
1675 }
1676
1677 int
1678 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1679 {
1680         int error;
1681
1682         /*
1683          * Normally, partial opens (e.g. of a mirror) are allowed.
1684          * For a create, however, we want to fail the request if
1685          * there are any components we can't open.
1686          */
1687         error = vdev_open(vd);
1688
1689         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1690                 vdev_close(vd);
1691                 return (error ? error : ENXIO);
1692         }
1693
1694         /*
1695          * Recursively load DTLs and initialize all labels.
1696          */
1697         if ((error = vdev_dtl_load(vd)) != 0 ||
1698             (error = vdev_label_init(vd, txg, isreplacing ?
1699             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1700                 vdev_close(vd);
1701                 return (error);
1702         }
1703
1704         return (0);
1705 }
1706
1707 void
1708 vdev_metaslab_set_size(vdev_t *vd)
1709 {
1710         /*
1711          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1712          */
1713         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1714         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1715 }
1716
1717 /*
1718  * Maximize performance by inflating the configured ashift for top level
1719  * vdevs to be as close to the physical ashift as possible while maintaining
1720  * administrator defined limits and ensuring it doesn't go below the
1721  * logical ashift.
1722  */
1723 void
1724 vdev_ashift_optimize(vdev_t *vd)
1725 {
1726         if (vd == vd->vdev_top) {
1727                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1728                         vd->vdev_ashift = MIN(
1729                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1730                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1731                 } else {
1732                         /*
1733                          * Unusual case where logical ashift > physical ashift
1734                          * so we can't cap the calculated ashift based on max
1735                          * ashift as that would cause failures.
1736                          * We still check if we need to increase it to match
1737                          * the min ashift.
1738                          */
1739                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1740                             vd->vdev_ashift);
1741                 }
1742         }
1743 }
1744
1745 void
1746 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1747 {
1748         ASSERT(vd == vd->vdev_top);
1749         ASSERT(!vd->vdev_ishole);
1750         ASSERT(ISP2(flags));
1751         ASSERT(spa_writeable(vd->vdev_spa));
1752
1753         if (flags & VDD_METASLAB)
1754                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1755
1756         if (flags & VDD_DTL)
1757                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1758
1759         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1760 }
1761
1762 void
1763 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1764 {
1765         for (int c = 0; c < vd->vdev_children; c++)
1766                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1767
1768         if (vd->vdev_ops->vdev_op_leaf)
1769                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1770 }
1771
1772 /*
1773  * DTLs.
1774  *
1775  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1776  * the vdev has less than perfect replication.  There are four kinds of DTL:
1777  *
1778  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1779  *
1780  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1781  *
1782  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1783  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1784  *      txgs that was scrubbed.
1785  *
1786  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1787  *      persistent errors or just some device being offline.
1788  *      Unlike the other three, the DTL_OUTAGE map is not generally
1789  *      maintained; it's only computed when needed, typically to
1790  *      determine whether a device can be detached.
1791  *
1792  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1793  * either has the data or it doesn't.
1794  *
1795  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1796  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1797  * if any child is less than fully replicated, then so is its parent.
1798  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1799  * comprising only those txgs which appear in 'maxfaults' or more children;
1800  * those are the txgs we don't have enough replication to read.  For example,
1801  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1802  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1803  * two child DTL_MISSING maps.
1804  *
1805  * It should be clear from the above that to compute the DTLs and outage maps
1806  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1807  * Therefore, that is all we keep on disk.  When loading the pool, or after
1808  * a configuration change, we generate all other DTLs from first principles.
1809  */
1810 void
1811 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1812 {
1813         range_tree_t *rt = vd->vdev_dtl[t];
1814
1815         ASSERT(t < DTL_TYPES);
1816         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1817         ASSERT(spa_writeable(vd->vdev_spa));
1818
1819         mutex_enter(rt->rt_lock);
1820         if (!range_tree_contains(rt, txg, size))
1821                 range_tree_add(rt, txg, size);
1822         mutex_exit(rt->rt_lock);
1823 }
1824
1825 boolean_t
1826 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1827 {
1828         range_tree_t *rt = vd->vdev_dtl[t];
1829         boolean_t dirty = B_FALSE;
1830
1831         ASSERT(t < DTL_TYPES);
1832         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1833
1834         mutex_enter(rt->rt_lock);
1835         if (range_tree_space(rt) != 0)
1836                 dirty = range_tree_contains(rt, txg, size);
1837         mutex_exit(rt->rt_lock);
1838
1839         return (dirty);
1840 }
1841
1842 boolean_t
1843 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1844 {
1845         range_tree_t *rt = vd->vdev_dtl[t];
1846         boolean_t empty;
1847
1848         mutex_enter(rt->rt_lock);
1849         empty = (range_tree_space(rt) == 0);
1850         mutex_exit(rt->rt_lock);
1851
1852         return (empty);
1853 }
1854
1855 /*
1856  * Returns the lowest txg in the DTL range.
1857  */
1858 static uint64_t
1859 vdev_dtl_min(vdev_t *vd)
1860 {
1861         range_seg_t *rs;
1862
1863         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1864         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1865         ASSERT0(vd->vdev_children);
1866
1867         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1868         return (rs->rs_start - 1);
1869 }
1870
1871 /*
1872  * Returns the highest txg in the DTL.
1873  */
1874 static uint64_t
1875 vdev_dtl_max(vdev_t *vd)
1876 {
1877         range_seg_t *rs;
1878
1879         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1880         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1881         ASSERT0(vd->vdev_children);
1882
1883         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1884         return (rs->rs_end);
1885 }
1886
1887 /*
1888  * Determine if a resilvering vdev should remove any DTL entries from
1889  * its range. If the vdev was resilvering for the entire duration of the
1890  * scan then it should excise that range from its DTLs. Otherwise, this
1891  * vdev is considered partially resilvered and should leave its DTL
1892  * entries intact. The comment in vdev_dtl_reassess() describes how we
1893  * excise the DTLs.
1894  */
1895 static boolean_t
1896 vdev_dtl_should_excise(vdev_t *vd)
1897 {
1898         spa_t *spa = vd->vdev_spa;
1899         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1900
1901         ASSERT0(scn->scn_phys.scn_errors);
1902         ASSERT0(vd->vdev_children);
1903
1904         if (vd->vdev_resilver_txg == 0 ||
1905             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1906                 return (B_TRUE);
1907
1908         /*
1909          * When a resilver is initiated the scan will assign the scn_max_txg
1910          * value to the highest txg value that exists in all DTLs. If this
1911          * device's max DTL is not part of this scan (i.e. it is not in
1912          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1913          * for excision.
1914          */
1915         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1916                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1917                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1918                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1919                 return (B_TRUE);
1920         }
1921         return (B_FALSE);
1922 }
1923
1924 /*
1925  * Reassess DTLs after a config change or scrub completion.
1926  */
1927 void
1928 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1929 {
1930         spa_t *spa = vd->vdev_spa;
1931         avl_tree_t reftree;
1932         int minref;
1933
1934         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1935
1936         for (int c = 0; c < vd->vdev_children; c++)
1937                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1938                     scrub_txg, scrub_done);
1939
1940         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1941                 return;
1942
1943         if (vd->vdev_ops->vdev_op_leaf) {
1944                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1945
1946                 mutex_enter(&vd->vdev_dtl_lock);
1947
1948                 /*
1949                  * If we've completed a scan cleanly then determine
1950                  * if this vdev should remove any DTLs. We only want to
1951                  * excise regions on vdevs that were available during
1952                  * the entire duration of this scan.
1953                  */
1954                 if (scrub_txg != 0 &&
1955                     (spa->spa_scrub_started ||
1956                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1957                     vdev_dtl_should_excise(vd)) {
1958                         /*
1959                          * We completed a scrub up to scrub_txg.  If we
1960                          * did it without rebooting, then the scrub dtl
1961                          * will be valid, so excise the old region and
1962                          * fold in the scrub dtl.  Otherwise, leave the
1963                          * dtl as-is if there was an error.
1964                          *
1965                          * There's little trick here: to excise the beginning
1966                          * of the DTL_MISSING map, we put it into a reference
1967                          * tree and then add a segment with refcnt -1 that
1968                          * covers the range [0, scrub_txg).  This means
1969                          * that each txg in that range has refcnt -1 or 0.
1970                          * We then add DTL_SCRUB with a refcnt of 2, so that
1971                          * entries in the range [0, scrub_txg) will have a
1972                          * positive refcnt -- either 1 or 2.  We then convert
1973                          * the reference tree into the new DTL_MISSING map.
1974                          */
1975                         space_reftree_create(&reftree);
1976                         space_reftree_add_map(&reftree,
1977                             vd->vdev_dtl[DTL_MISSING], 1);
1978                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1979                         space_reftree_add_map(&reftree,
1980                             vd->vdev_dtl[DTL_SCRUB], 2);
1981                         space_reftree_generate_map(&reftree,
1982                             vd->vdev_dtl[DTL_MISSING], 1);
1983                         space_reftree_destroy(&reftree);
1984                 }
1985                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1986                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1987                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1988                 if (scrub_done)
1989                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1990                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1991                 if (!vdev_readable(vd))
1992                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1993                 else
1994                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1995                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1996
1997                 /*
1998                  * If the vdev was resilvering and no longer has any
1999                  * DTLs then reset its resilvering flag and dirty
2000                  * the top level so that we persist the change.
2001                  */
2002                 if (vd->vdev_resilver_txg != 0 &&
2003                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2004                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2005                         vd->vdev_resilver_txg = 0;
2006                         vdev_config_dirty(vd->vdev_top);
2007                 }
2008
2009                 mutex_exit(&vd->vdev_dtl_lock);
2010
2011                 if (txg != 0)
2012                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2013                 return;
2014         }
2015
2016         mutex_enter(&vd->vdev_dtl_lock);
2017         for (int t = 0; t < DTL_TYPES; t++) {
2018                 /* account for child's outage in parent's missing map */
2019                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2020                 if (t == DTL_SCRUB)
2021                         continue;                       /* leaf vdevs only */
2022                 if (t == DTL_PARTIAL)
2023                         minref = 1;                     /* i.e. non-zero */
2024                 else if (vd->vdev_nparity != 0)
2025                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2026                 else
2027                         minref = vd->vdev_children;     /* any kind of mirror */
2028                 space_reftree_create(&reftree);
2029                 for (int c = 0; c < vd->vdev_children; c++) {
2030                         vdev_t *cvd = vd->vdev_child[c];
2031                         mutex_enter(&cvd->vdev_dtl_lock);
2032                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2033                         mutex_exit(&cvd->vdev_dtl_lock);
2034                 }
2035                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2036                 space_reftree_destroy(&reftree);
2037         }
2038         mutex_exit(&vd->vdev_dtl_lock);
2039 }
2040
2041 int
2042 vdev_dtl_load(vdev_t *vd)
2043 {
2044         spa_t *spa = vd->vdev_spa;
2045         objset_t *mos = spa->spa_meta_objset;
2046         int error = 0;
2047
2048         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2049                 ASSERT(!vd->vdev_ishole);
2050
2051                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2052                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2053                 if (error)
2054                         return (error);
2055                 ASSERT(vd->vdev_dtl_sm != NULL);
2056
2057                 mutex_enter(&vd->vdev_dtl_lock);
2058
2059                 /*
2060                  * Now that we've opened the space_map we need to update
2061                  * the in-core DTL.
2062                  */
2063                 space_map_update(vd->vdev_dtl_sm);
2064
2065                 error = space_map_load(vd->vdev_dtl_sm,
2066                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2067                 mutex_exit(&vd->vdev_dtl_lock);
2068
2069                 return (error);
2070         }
2071
2072         for (int c = 0; c < vd->vdev_children; c++) {
2073                 error = vdev_dtl_load(vd->vdev_child[c]);
2074                 if (error != 0)
2075                         break;
2076         }
2077
2078         return (error);
2079 }
2080
2081 void
2082 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2083 {
2084         spa_t *spa = vd->vdev_spa;
2085         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2086         objset_t *mos = spa->spa_meta_objset;
2087         range_tree_t *rtsync;
2088         kmutex_t rtlock;
2089         dmu_tx_t *tx;
2090         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2091
2092         ASSERT(!vd->vdev_ishole);
2093         ASSERT(vd->vdev_ops->vdev_op_leaf);
2094
2095         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2096
2097         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2098                 mutex_enter(&vd->vdev_dtl_lock);
2099                 space_map_free(vd->vdev_dtl_sm, tx);
2100                 space_map_close(vd->vdev_dtl_sm);
2101                 vd->vdev_dtl_sm = NULL;
2102                 mutex_exit(&vd->vdev_dtl_lock);
2103                 dmu_tx_commit(tx);
2104                 return;
2105         }
2106
2107         if (vd->vdev_dtl_sm == NULL) {
2108                 uint64_t new_object;
2109
2110                 new_object = space_map_alloc(mos, tx);
2111                 VERIFY3U(new_object, !=, 0);
2112
2113                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2114                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2115                 ASSERT(vd->vdev_dtl_sm != NULL);
2116         }
2117
2118         bzero(&rtlock, sizeof(rtlock));
2119         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2120
2121         rtsync = range_tree_create(NULL, NULL, &rtlock);
2122
2123         mutex_enter(&rtlock);
2124
2125         mutex_enter(&vd->vdev_dtl_lock);
2126         range_tree_walk(rt, range_tree_add, rtsync);
2127         mutex_exit(&vd->vdev_dtl_lock);
2128
2129         space_map_truncate(vd->vdev_dtl_sm, tx);
2130         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2131         range_tree_vacate(rtsync, NULL, NULL);
2132
2133         range_tree_destroy(rtsync);
2134
2135         mutex_exit(&rtlock);
2136         mutex_destroy(&rtlock);
2137
2138         /*
2139          * If the object for the space map has changed then dirty
2140          * the top level so that we update the config.
2141          */
2142         if (object != space_map_object(vd->vdev_dtl_sm)) {
2143                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2144                     "new object %llu", txg, spa_name(spa), object,
2145                     space_map_object(vd->vdev_dtl_sm));
2146                 vdev_config_dirty(vd->vdev_top);
2147         }
2148
2149         dmu_tx_commit(tx);
2150
2151         mutex_enter(&vd->vdev_dtl_lock);
2152         space_map_update(vd->vdev_dtl_sm);
2153         mutex_exit(&vd->vdev_dtl_lock);
2154 }
2155
2156 /*
2157  * Determine whether the specified vdev can be offlined/detached/removed
2158  * without losing data.
2159  */
2160 boolean_t
2161 vdev_dtl_required(vdev_t *vd)
2162 {
2163         spa_t *spa = vd->vdev_spa;
2164         vdev_t *tvd = vd->vdev_top;
2165         uint8_t cant_read = vd->vdev_cant_read;
2166         boolean_t required;
2167
2168         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2169
2170         if (vd == spa->spa_root_vdev || vd == tvd)
2171                 return (B_TRUE);
2172
2173         /*
2174          * Temporarily mark the device as unreadable, and then determine
2175          * whether this results in any DTL outages in the top-level vdev.
2176          * If not, we can safely offline/detach/remove the device.
2177          */
2178         vd->vdev_cant_read = B_TRUE;
2179         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2180         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2181         vd->vdev_cant_read = cant_read;
2182         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2183
2184         if (!required && zio_injection_enabled)
2185                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2186
2187         return (required);
2188 }
2189
2190 /*
2191  * Determine if resilver is needed, and if so the txg range.
2192  */
2193 boolean_t
2194 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2195 {
2196         boolean_t needed = B_FALSE;
2197         uint64_t thismin = UINT64_MAX;
2198         uint64_t thismax = 0;
2199
2200         if (vd->vdev_children == 0) {
2201                 mutex_enter(&vd->vdev_dtl_lock);
2202                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2203                     vdev_writeable(vd)) {
2204
2205                         thismin = vdev_dtl_min(vd);
2206                         thismax = vdev_dtl_max(vd);
2207                         needed = B_TRUE;
2208                 }
2209                 mutex_exit(&vd->vdev_dtl_lock);
2210         } else {
2211                 for (int c = 0; c < vd->vdev_children; c++) {
2212                         vdev_t *cvd = vd->vdev_child[c];
2213                         uint64_t cmin, cmax;
2214
2215                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2216                                 thismin = MIN(thismin, cmin);
2217                                 thismax = MAX(thismax, cmax);
2218                                 needed = B_TRUE;
2219                         }
2220                 }
2221         }
2222
2223         if (needed && minp) {
2224                 *minp = thismin;
2225                 *maxp = thismax;
2226         }
2227         return (needed);
2228 }
2229
2230 void
2231 vdev_load(vdev_t *vd)
2232 {
2233         /*
2234          * Recursively load all children.
2235          */
2236         for (int c = 0; c < vd->vdev_children; c++)
2237                 vdev_load(vd->vdev_child[c]);
2238
2239         /*
2240          * If this is a top-level vdev, initialize its metaslabs.
2241          */
2242         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2243             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2244             vdev_metaslab_init(vd, 0) != 0))
2245                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2246                     VDEV_AUX_CORRUPT_DATA);
2247
2248         /*
2249          * If this is a leaf vdev, load its DTL.
2250          */
2251         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2252                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2253                     VDEV_AUX_CORRUPT_DATA);
2254 }
2255
2256 /*
2257  * The special vdev case is used for hot spares and l2cache devices.  Its
2258  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2259  * we make sure that we can open the underlying device, then try to read the
2260  * label, and make sure that the label is sane and that it hasn't been
2261  * repurposed to another pool.
2262  */
2263 int
2264 vdev_validate_aux(vdev_t *vd)
2265 {
2266         nvlist_t *label;
2267         uint64_t guid, version;
2268         uint64_t state;
2269
2270         if (!vdev_readable(vd))
2271                 return (0);
2272
2273         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2274                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2275                     VDEV_AUX_CORRUPT_DATA);
2276                 return (-1);
2277         }
2278
2279         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2280             !SPA_VERSION_IS_SUPPORTED(version) ||
2281             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2282             guid != vd->vdev_guid ||
2283             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2284                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2285                     VDEV_AUX_CORRUPT_DATA);
2286                 nvlist_free(label);
2287                 return (-1);
2288         }
2289
2290         /*
2291          * We don't actually check the pool state here.  If it's in fact in
2292          * use by another pool, we update this fact on the fly when requested.
2293          */
2294         nvlist_free(label);
2295         return (0);
2296 }
2297
2298 void
2299 vdev_remove(vdev_t *vd, uint64_t txg)
2300 {
2301         spa_t *spa = vd->vdev_spa;
2302         objset_t *mos = spa->spa_meta_objset;
2303         dmu_tx_t *tx;
2304
2305         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2306
2307         if (vd->vdev_ms != NULL) {
2308                 metaslab_group_t *mg = vd->vdev_mg;
2309
2310                 metaslab_group_histogram_verify(mg);
2311                 metaslab_class_histogram_verify(mg->mg_class);
2312
2313                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2314                         metaslab_t *msp = vd->vdev_ms[m];
2315
2316                         if (msp == NULL || msp->ms_sm == NULL)
2317                                 continue;
2318
2319                         mutex_enter(&msp->ms_lock);
2320                         /*
2321                          * If the metaslab was not loaded when the vdev
2322                          * was removed then the histogram accounting may
2323                          * not be accurate. Update the histogram information
2324                          * here so that we ensure that the metaslab group
2325                          * and metaslab class are up-to-date.
2326                          */
2327                         metaslab_group_histogram_remove(mg, msp);
2328
2329                         VERIFY0(space_map_allocated(msp->ms_sm));
2330                         space_map_free(msp->ms_sm, tx);
2331                         space_map_close(msp->ms_sm);
2332                         msp->ms_sm = NULL;
2333                         mutex_exit(&msp->ms_lock);
2334                 }
2335
2336                 metaslab_group_histogram_verify(mg);
2337                 metaslab_class_histogram_verify(mg->mg_class);
2338                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2339                         ASSERT0(mg->mg_histogram[i]);
2340
2341         }
2342
2343         if (vd->vdev_ms_array) {
2344                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2345                 vd->vdev_ms_array = 0;
2346         }
2347         dmu_tx_commit(tx);
2348 }
2349
2350 void
2351 vdev_sync_done(vdev_t *vd, uint64_t txg)
2352 {
2353         metaslab_t *msp;
2354         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2355
2356         ASSERT(!vd->vdev_ishole);
2357
2358         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2359                 metaslab_sync_done(msp, txg);
2360
2361         if (reassess)
2362                 metaslab_sync_reassess(vd->vdev_mg);
2363 }
2364
2365 void
2366 vdev_sync(vdev_t *vd, uint64_t txg)
2367 {
2368         spa_t *spa = vd->vdev_spa;
2369         vdev_t *lvd;
2370         metaslab_t *msp;
2371         dmu_tx_t *tx;
2372
2373         ASSERT(!vd->vdev_ishole);
2374
2375         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2376                 ASSERT(vd == vd->vdev_top);
2377                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2378                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2379                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2380                 ASSERT(vd->vdev_ms_array != 0);
2381                 vdev_config_dirty(vd);
2382                 dmu_tx_commit(tx);
2383         }
2384
2385         /*
2386          * Remove the metadata associated with this vdev once it's empty.
2387          */
2388         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2389                 vdev_remove(vd, txg);
2390
2391         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2392                 metaslab_sync(msp, txg);
2393                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2394         }
2395
2396         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2397                 vdev_dtl_sync(lvd, txg);
2398
2399         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2400 }
2401
2402 uint64_t
2403 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2404 {
2405         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2406 }
2407
2408 /*
2409  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2410  * not be opened, and no I/O is attempted.
2411  */
2412 int
2413 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2414 {
2415         vdev_t *vd, *tvd;
2416
2417         spa_vdev_state_enter(spa, SCL_NONE);
2418
2419         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2420                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2421
2422         if (!vd->vdev_ops->vdev_op_leaf)
2423                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2424
2425         tvd = vd->vdev_top;
2426
2427         /*
2428          * We don't directly use the aux state here, but if we do a
2429          * vdev_reopen(), we need this value to be present to remember why we
2430          * were faulted.
2431          */
2432         vd->vdev_label_aux = aux;
2433
2434         /*
2435          * Faulted state takes precedence over degraded.
2436          */
2437         vd->vdev_delayed_close = B_FALSE;
2438         vd->vdev_faulted = 1ULL;
2439         vd->vdev_degraded = 0ULL;
2440         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2441
2442         /*
2443          * If this device has the only valid copy of the data, then
2444          * back off and simply mark the vdev as degraded instead.
2445          */
2446         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2447                 vd->vdev_degraded = 1ULL;
2448                 vd->vdev_faulted = 0ULL;
2449
2450                 /*
2451                  * If we reopen the device and it's not dead, only then do we
2452                  * mark it degraded.
2453                  */
2454                 vdev_reopen(tvd);
2455
2456                 if (vdev_readable(vd))
2457                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2458         }
2459
2460         return (spa_vdev_state_exit(spa, vd, 0));
2461 }
2462
2463 /*
2464  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2465  * user that something is wrong.  The vdev continues to operate as normal as far
2466  * as I/O is concerned.
2467  */
2468 int
2469 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2470 {
2471         vdev_t *vd;
2472
2473         spa_vdev_state_enter(spa, SCL_NONE);
2474
2475         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2476                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2477
2478         if (!vd->vdev_ops->vdev_op_leaf)
2479                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2480
2481         /*
2482          * If the vdev is already faulted, then don't do anything.
2483          */
2484         if (vd->vdev_faulted || vd->vdev_degraded)
2485                 return (spa_vdev_state_exit(spa, NULL, 0));
2486
2487         vd->vdev_degraded = 1ULL;
2488         if (!vdev_is_dead(vd))
2489                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2490                     aux);
2491
2492         return (spa_vdev_state_exit(spa, vd, 0));
2493 }
2494
2495 /*
2496  * Online the given vdev.
2497  *
2498  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2499  * spare device should be detached when the device finishes resilvering.
2500  * Second, the online should be treated like a 'test' online case, so no FMA
2501  * events are generated if the device fails to open.
2502  */
2503 int
2504 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2505 {
2506         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2507         boolean_t postevent = B_FALSE;
2508
2509         spa_vdev_state_enter(spa, SCL_NONE);
2510
2511         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2512                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2513
2514         if (!vd->vdev_ops->vdev_op_leaf)
2515                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2516
2517         postevent =
2518             (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2519             B_TRUE : B_FALSE;
2520
2521         tvd = vd->vdev_top;
2522         vd->vdev_offline = B_FALSE;
2523         vd->vdev_tmpoffline = B_FALSE;
2524         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2525         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2526
2527         /* XXX - L2ARC 1.0 does not support expansion */
2528         if (!vd->vdev_aux) {
2529                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2530                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2531         }
2532
2533         vdev_reopen(tvd);
2534         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2535
2536         if (!vd->vdev_aux) {
2537                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2538                         pvd->vdev_expanding = B_FALSE;
2539         }
2540
2541         if (newstate)
2542                 *newstate = vd->vdev_state;
2543         if ((flags & ZFS_ONLINE_UNSPARE) &&
2544             !vdev_is_dead(vd) && vd->vdev_parent &&
2545             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2546             vd->vdev_parent->vdev_child[0] == vd)
2547                 vd->vdev_unspare = B_TRUE;
2548
2549         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2550
2551                 /* XXX - L2ARC 1.0 does not support expansion */
2552                 if (vd->vdev_aux)
2553                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2554                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2555         }
2556
2557         if (postevent)
2558                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2559
2560         return (spa_vdev_state_exit(spa, vd, 0));
2561 }
2562
2563 static int
2564 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2565 {
2566         vdev_t *vd, *tvd;
2567         int error = 0;
2568         uint64_t generation;
2569         metaslab_group_t *mg;
2570
2571 top:
2572         spa_vdev_state_enter(spa, SCL_ALLOC);
2573
2574         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2575                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2576
2577         if (!vd->vdev_ops->vdev_op_leaf)
2578                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2579
2580         tvd = vd->vdev_top;
2581         mg = tvd->vdev_mg;
2582         generation = spa->spa_config_generation + 1;
2583
2584         /*
2585          * If the device isn't already offline, try to offline it.
2586          */
2587         if (!vd->vdev_offline) {
2588                 /*
2589                  * If this device has the only valid copy of some data,
2590                  * don't allow it to be offlined. Log devices are always
2591                  * expendable.
2592                  */
2593                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2594                     vdev_dtl_required(vd))
2595                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2596
2597                 /*
2598                  * If the top-level is a slog and it has had allocations
2599                  * then proceed.  We check that the vdev's metaslab group
2600                  * is not NULL since it's possible that we may have just
2601                  * added this vdev but not yet initialized its metaslabs.
2602                  */
2603                 if (tvd->vdev_islog && mg != NULL) {
2604                         /*
2605                          * Prevent any future allocations.
2606                          */
2607                         metaslab_group_passivate(mg);
2608                         (void) spa_vdev_state_exit(spa, vd, 0);
2609
2610                         error = spa_offline_log(spa);
2611
2612                         spa_vdev_state_enter(spa, SCL_ALLOC);
2613
2614                         /*
2615                          * Check to see if the config has changed.
2616                          */
2617                         if (error || generation != spa->spa_config_generation) {
2618                                 metaslab_group_activate(mg);
2619                                 if (error)
2620                                         return (spa_vdev_state_exit(spa,
2621                                             vd, error));
2622                                 (void) spa_vdev_state_exit(spa, vd, 0);
2623                                 goto top;
2624                         }
2625                         ASSERT0(tvd->vdev_stat.vs_alloc);
2626                 }
2627
2628                 /*
2629                  * Offline this device and reopen its top-level vdev.
2630                  * If the top-level vdev is a log device then just offline
2631                  * it. Otherwise, if this action results in the top-level
2632                  * vdev becoming unusable, undo it and fail the request.
2633                  */
2634                 vd->vdev_offline = B_TRUE;
2635                 vdev_reopen(tvd);
2636
2637                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2638                     vdev_is_dead(tvd)) {
2639                         vd->vdev_offline = B_FALSE;
2640                         vdev_reopen(tvd);
2641                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2642                 }
2643
2644                 /*
2645                  * Add the device back into the metaslab rotor so that
2646                  * once we online the device it's open for business.
2647                  */
2648                 if (tvd->vdev_islog && mg != NULL)
2649                         metaslab_group_activate(mg);
2650         }
2651
2652         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2653
2654         return (spa_vdev_state_exit(spa, vd, 0));
2655 }
2656
2657 int
2658 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2659 {
2660         int error;
2661
2662         mutex_enter(&spa->spa_vdev_top_lock);
2663         error = vdev_offline_locked(spa, guid, flags);
2664         mutex_exit(&spa->spa_vdev_top_lock);
2665
2666         return (error);
2667 }
2668
2669 /*
2670  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2671  * vdev_offline(), we assume the spa config is locked.  We also clear all
2672  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2673  */
2674 void
2675 vdev_clear(spa_t *spa, vdev_t *vd)
2676 {
2677         vdev_t *rvd = spa->spa_root_vdev;
2678
2679         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2680
2681         if (vd == NULL)
2682                 vd = rvd;
2683
2684         vd->vdev_stat.vs_read_errors = 0;
2685         vd->vdev_stat.vs_write_errors = 0;
2686         vd->vdev_stat.vs_checksum_errors = 0;
2687
2688         for (int c = 0; c < vd->vdev_children; c++)
2689                 vdev_clear(spa, vd->vdev_child[c]);
2690
2691         if (vd == rvd) {
2692                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2693                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2694
2695                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2696                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2697         }
2698
2699         /*
2700          * If we're in the FAULTED state or have experienced failed I/O, then
2701          * clear the persistent state and attempt to reopen the device.  We
2702          * also mark the vdev config dirty, so that the new faulted state is
2703          * written out to disk.
2704          */
2705         if (vd->vdev_faulted || vd->vdev_degraded ||
2706             !vdev_readable(vd) || !vdev_writeable(vd)) {
2707
2708                 /*
2709                  * When reopening in reponse to a clear event, it may be due to
2710                  * a fmadm repair request.  In this case, if the device is
2711                  * still broken, we want to still post the ereport again.
2712                  */
2713                 vd->vdev_forcefault = B_TRUE;
2714
2715                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2716                 vd->vdev_cant_read = B_FALSE;
2717                 vd->vdev_cant_write = B_FALSE;
2718
2719                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2720
2721                 vd->vdev_forcefault = B_FALSE;
2722
2723                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2724                         vdev_state_dirty(vd->vdev_top);
2725
2726                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2727                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2728
2729                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2730         }
2731
2732         /*
2733          * When clearing a FMA-diagnosed fault, we always want to
2734          * unspare the device, as we assume that the original spare was
2735          * done in response to the FMA fault.
2736          */
2737         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2738             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2739             vd->vdev_parent->vdev_child[0] == vd)
2740                 vd->vdev_unspare = B_TRUE;
2741 }
2742
2743 boolean_t
2744 vdev_is_dead(vdev_t *vd)
2745 {
2746         /*
2747          * Holes and missing devices are always considered "dead".
2748          * This simplifies the code since we don't have to check for
2749          * these types of devices in the various code paths.
2750          * Instead we rely on the fact that we skip over dead devices
2751          * before issuing I/O to them.
2752          */
2753         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2754             vd->vdev_ops == &vdev_missing_ops);
2755 }
2756
2757 boolean_t
2758 vdev_readable(vdev_t *vd)
2759 {
2760         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2761 }
2762
2763 boolean_t
2764 vdev_writeable(vdev_t *vd)
2765 {
2766         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2767 }
2768
2769 boolean_t
2770 vdev_allocatable(vdev_t *vd)
2771 {
2772         uint64_t state = vd->vdev_state;
2773
2774         /*
2775          * We currently allow allocations from vdevs which may be in the
2776          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2777          * fails to reopen then we'll catch it later when we're holding
2778          * the proper locks.  Note that we have to get the vdev state
2779          * in a local variable because although it changes atomically,
2780          * we're asking two separate questions about it.
2781          */
2782         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2783             !vd->vdev_cant_write && !vd->vdev_ishole);
2784 }
2785
2786 boolean_t
2787 vdev_accessible(vdev_t *vd, zio_t *zio)
2788 {
2789         ASSERT(zio->io_vd == vd);
2790
2791         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2792                 return (B_FALSE);
2793
2794         if (zio->io_type == ZIO_TYPE_READ)
2795                 return (!vd->vdev_cant_read);
2796
2797         if (zio->io_type == ZIO_TYPE_WRITE)
2798                 return (!vd->vdev_cant_write);
2799
2800         return (B_TRUE);
2801 }
2802
2803 /*
2804  * Get statistics for the given vdev.
2805  */
2806 void
2807 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2808 {
2809         spa_t *spa = vd->vdev_spa;
2810         vdev_t *rvd = spa->spa_root_vdev;
2811
2812         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2813
2814         mutex_enter(&vd->vdev_stat_lock);
2815         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2816         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2817         vs->vs_state = vd->vdev_state;
2818         vs->vs_rsize = vdev_get_min_asize(vd);
2819         if (vd->vdev_ops->vdev_op_leaf)
2820                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2821         if (vd->vdev_max_asize != 0)
2822                 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2823         vs->vs_configured_ashift = vd->vdev_top != NULL
2824             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2825         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2826         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2827         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2828                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2829         }
2830
2831         /*
2832          * If we're getting stats on the root vdev, aggregate the I/O counts
2833          * over all top-level vdevs (i.e. the direct children of the root).
2834          */
2835         if (vd == rvd) {
2836                 for (int c = 0; c < rvd->vdev_children; c++) {
2837                         vdev_t *cvd = rvd->vdev_child[c];
2838                         vdev_stat_t *cvs = &cvd->vdev_stat;
2839
2840                         for (int t = 0; t < ZIO_TYPES; t++) {
2841                                 vs->vs_ops[t] += cvs->vs_ops[t];
2842                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2843                         }
2844                         cvs->vs_scan_removing = cvd->vdev_removing;
2845                 }
2846         }
2847         mutex_exit(&vd->vdev_stat_lock);
2848 }
2849
2850 void
2851 vdev_clear_stats(vdev_t *vd)
2852 {
2853         mutex_enter(&vd->vdev_stat_lock);
2854         vd->vdev_stat.vs_space = 0;
2855         vd->vdev_stat.vs_dspace = 0;
2856         vd->vdev_stat.vs_alloc = 0;
2857         mutex_exit(&vd->vdev_stat_lock);
2858 }
2859
2860 void
2861 vdev_scan_stat_init(vdev_t *vd)
2862 {
2863         vdev_stat_t *vs = &vd->vdev_stat;
2864
2865         for (int c = 0; c < vd->vdev_children; c++)
2866                 vdev_scan_stat_init(vd->vdev_child[c]);
2867
2868         mutex_enter(&vd->vdev_stat_lock);
2869         vs->vs_scan_processed = 0;
2870         mutex_exit(&vd->vdev_stat_lock);
2871 }
2872
2873 void
2874 vdev_stat_update(zio_t *zio, uint64_t psize)
2875 {
2876         spa_t *spa = zio->io_spa;
2877         vdev_t *rvd = spa->spa_root_vdev;
2878         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2879         vdev_t *pvd;
2880         uint64_t txg = zio->io_txg;
2881         vdev_stat_t *vs = &vd->vdev_stat;
2882         zio_type_t type = zio->io_type;
2883         int flags = zio->io_flags;
2884
2885         /*
2886          * If this i/o is a gang leader, it didn't do any actual work.
2887          */
2888         if (zio->io_gang_tree)
2889                 return;
2890
2891         if (zio->io_error == 0) {
2892                 /*
2893                  * If this is a root i/o, don't count it -- we've already
2894                  * counted the top-level vdevs, and vdev_get_stats() will
2895                  * aggregate them when asked.  This reduces contention on
2896                  * the root vdev_stat_lock and implicitly handles blocks
2897                  * that compress away to holes, for which there is no i/o.
2898                  * (Holes never create vdev children, so all the counters
2899                  * remain zero, which is what we want.)
2900                  *
2901                  * Note: this only applies to successful i/o (io_error == 0)
2902                  * because unlike i/o counts, errors are not additive.
2903                  * When reading a ditto block, for example, failure of
2904                  * one top-level vdev does not imply a root-level error.
2905                  */
2906                 if (vd == rvd)
2907                         return;
2908
2909                 ASSERT(vd == zio->io_vd);
2910
2911                 if (flags & ZIO_FLAG_IO_BYPASS)
2912                         return;
2913
2914                 mutex_enter(&vd->vdev_stat_lock);
2915
2916                 if (flags & ZIO_FLAG_IO_REPAIR) {
2917                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2918                                 dsl_scan_phys_t *scn_phys =
2919                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2920                                 uint64_t *processed = &scn_phys->scn_processed;
2921
2922                                 /* XXX cleanup? */
2923                                 if (vd->vdev_ops->vdev_op_leaf)
2924                                         atomic_add_64(processed, psize);
2925                                 vs->vs_scan_processed += psize;
2926                         }
2927
2928                         if (flags & ZIO_FLAG_SELF_HEAL)
2929                                 vs->vs_self_healed += psize;
2930                 }
2931
2932                 vs->vs_ops[type]++;
2933                 vs->vs_bytes[type] += psize;
2934
2935                 mutex_exit(&vd->vdev_stat_lock);
2936                 return;
2937         }
2938
2939         if (flags & ZIO_FLAG_SPECULATIVE)
2940                 return;
2941
2942         /*
2943          * If this is an I/O error that is going to be retried, then ignore the
2944          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2945          * hard errors, when in reality they can happen for any number of
2946          * innocuous reasons (bus resets, MPxIO link failure, etc).
2947          */
2948         if (zio->io_error == EIO &&
2949             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2950                 return;
2951
2952         /*
2953          * Intent logs writes won't propagate their error to the root
2954          * I/O so don't mark these types of failures as pool-level
2955          * errors.
2956          */
2957         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2958                 return;
2959
2960         mutex_enter(&vd->vdev_stat_lock);
2961         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2962                 if (zio->io_error == ECKSUM)
2963                         vs->vs_checksum_errors++;
2964                 else
2965                         vs->vs_read_errors++;
2966         }
2967         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2968                 vs->vs_write_errors++;
2969         mutex_exit(&vd->vdev_stat_lock);
2970
2971         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2972             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2973             (flags & ZIO_FLAG_SCAN_THREAD) ||
2974             spa->spa_claiming)) {
2975                 /*
2976                  * This is either a normal write (not a repair), or it's
2977                  * a repair induced by the scrub thread, or it's a repair
2978                  * made by zil_claim() during spa_load() in the first txg.
2979                  * In the normal case, we commit the DTL change in the same
2980                  * txg as the block was born.  In the scrub-induced repair
2981                  * case, we know that scrubs run in first-pass syncing context,
2982                  * so we commit the DTL change in spa_syncing_txg(spa).
2983                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2984                  *
2985                  * We currently do not make DTL entries for failed spontaneous
2986                  * self-healing writes triggered by normal (non-scrubbing)
2987                  * reads, because we have no transactional context in which to
2988                  * do so -- and it's not clear that it'd be desirable anyway.
2989                  */
2990                 if (vd->vdev_ops->vdev_op_leaf) {
2991                         uint64_t commit_txg = txg;
2992                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2993                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2994                                 ASSERT(spa_sync_pass(spa) == 1);
2995                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2996                                 commit_txg = spa_syncing_txg(spa);
2997                         } else if (spa->spa_claiming) {
2998                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2999                                 commit_txg = spa_first_txg(spa);
3000                         }
3001                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3002                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3003                                 return;
3004                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3005                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3006                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3007                 }
3008                 if (vd != rvd)
3009                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3010         }
3011 }
3012
3013 /*
3014  * Update the in-core space usage stats for this vdev, its metaslab class,
3015  * and the root vdev.
3016  */
3017 void
3018 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3019     int64_t space_delta)
3020 {
3021         int64_t dspace_delta = space_delta;
3022         spa_t *spa = vd->vdev_spa;
3023         vdev_t *rvd = spa->spa_root_vdev;
3024         metaslab_group_t *mg = vd->vdev_mg;
3025         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3026
3027         ASSERT(vd == vd->vdev_top);
3028
3029         /*
3030          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3031          * factor.  We must calculate this here and not at the root vdev
3032          * because the root vdev's psize-to-asize is simply the max of its
3033          * childrens', thus not accurate enough for us.
3034          */
3035         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3036         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3037         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3038             vd->vdev_deflate_ratio;
3039
3040         mutex_enter(&vd->vdev_stat_lock);
3041         vd->vdev_stat.vs_alloc += alloc_delta;
3042         vd->vdev_stat.vs_space += space_delta;
3043         vd->vdev_stat.vs_dspace += dspace_delta;
3044         mutex_exit(&vd->vdev_stat_lock);
3045
3046         if (mc == spa_normal_class(spa)) {
3047                 mutex_enter(&rvd->vdev_stat_lock);
3048                 rvd->vdev_stat.vs_alloc += alloc_delta;
3049                 rvd->vdev_stat.vs_space += space_delta;
3050                 rvd->vdev_stat.vs_dspace += dspace_delta;
3051                 mutex_exit(&rvd->vdev_stat_lock);
3052         }
3053
3054         if (mc != NULL) {
3055                 ASSERT(rvd == vd->vdev_parent);
3056                 ASSERT(vd->vdev_ms_count != 0);
3057
3058                 metaslab_class_space_update(mc,
3059                     alloc_delta, defer_delta, space_delta, dspace_delta);
3060         }
3061 }
3062
3063 /*
3064  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3065  * so that it will be written out next time the vdev configuration is synced.
3066  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3067  */
3068 void
3069 vdev_config_dirty(vdev_t *vd)
3070 {
3071         spa_t *spa = vd->vdev_spa;
3072         vdev_t *rvd = spa->spa_root_vdev;
3073         int c;
3074
3075         ASSERT(spa_writeable(spa));
3076
3077         /*
3078          * If this is an aux vdev (as with l2cache and spare devices), then we
3079          * update the vdev config manually and set the sync flag.
3080          */
3081         if (vd->vdev_aux != NULL) {
3082                 spa_aux_vdev_t *sav = vd->vdev_aux;
3083                 nvlist_t **aux;
3084                 uint_t naux;
3085
3086                 for (c = 0; c < sav->sav_count; c++) {
3087                         if (sav->sav_vdevs[c] == vd)
3088                                 break;
3089                 }
3090
3091                 if (c == sav->sav_count) {
3092                         /*
3093                          * We're being removed.  There's nothing more to do.
3094                          */
3095                         ASSERT(sav->sav_sync == B_TRUE);
3096                         return;
3097                 }
3098
3099                 sav->sav_sync = B_TRUE;
3100
3101                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3102                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3103                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3104                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3105                 }
3106
3107                 ASSERT(c < naux);
3108
3109                 /*
3110                  * Setting the nvlist in the middle if the array is a little
3111                  * sketchy, but it will work.
3112                  */
3113                 nvlist_free(aux[c]);
3114                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3115
3116                 return;
3117         }
3118
3119         /*
3120          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3121          * must either hold SCL_CONFIG as writer, or must be the sync thread
3122          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3123          * so this is sufficient to ensure mutual exclusion.
3124          */
3125         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3126             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3127             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3128
3129         if (vd == rvd) {
3130                 for (c = 0; c < rvd->vdev_children; c++)
3131                         vdev_config_dirty(rvd->vdev_child[c]);
3132         } else {
3133                 ASSERT(vd == vd->vdev_top);
3134
3135                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3136                     !vd->vdev_ishole)
3137                         list_insert_head(&spa->spa_config_dirty_list, vd);
3138         }
3139 }
3140
3141 void
3142 vdev_config_clean(vdev_t *vd)
3143 {
3144         spa_t *spa = vd->vdev_spa;
3145
3146         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3147             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3148             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3149
3150         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3151         list_remove(&spa->spa_config_dirty_list, vd);
3152 }
3153
3154 /*
3155  * Mark a top-level vdev's state as dirty, so that the next pass of
3156  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3157  * the state changes from larger config changes because they require
3158  * much less locking, and are often needed for administrative actions.
3159  */
3160 void
3161 vdev_state_dirty(vdev_t *vd)
3162 {
3163         spa_t *spa = vd->vdev_spa;
3164
3165         ASSERT(spa_writeable(spa));
3166         ASSERT(vd == vd->vdev_top);
3167
3168         /*
3169          * The state list is protected by the SCL_STATE lock.  The caller
3170          * must either hold SCL_STATE as writer, or must be the sync thread
3171          * (which holds SCL_STATE as reader).  There's only one sync thread,
3172          * so this is sufficient to ensure mutual exclusion.
3173          */
3174         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3175             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3176             spa_config_held(spa, SCL_STATE, RW_READER)));
3177
3178         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3179                 list_insert_head(&spa->spa_state_dirty_list, vd);
3180 }
3181
3182 void
3183 vdev_state_clean(vdev_t *vd)
3184 {
3185         spa_t *spa = vd->vdev_spa;
3186
3187         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3188             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3189             spa_config_held(spa, SCL_STATE, RW_READER)));
3190
3191         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3192         list_remove(&spa->spa_state_dirty_list, vd);
3193 }
3194
3195 /*
3196  * Propagate vdev state up from children to parent.
3197  */
3198 void
3199 vdev_propagate_state(vdev_t *vd)
3200 {
3201         spa_t *spa = vd->vdev_spa;
3202         vdev_t *rvd = spa->spa_root_vdev;
3203         int degraded = 0, faulted = 0;
3204         int corrupted = 0;
3205         vdev_t *child;
3206
3207         if (vd->vdev_children > 0) {
3208                 for (int c = 0; c < vd->vdev_children; c++) {
3209                         child = vd->vdev_child[c];
3210
3211                         /*
3212                          * Don't factor holes into the decision.
3213                          */
3214                         if (child->vdev_ishole)
3215                                 continue;
3216
3217                         if (!vdev_readable(child) ||
3218                             (!vdev_writeable(child) && spa_writeable(spa))) {
3219                                 /*
3220                                  * Root special: if there is a top-level log
3221                                  * device, treat the root vdev as if it were
3222                                  * degraded.
3223                                  */
3224                                 if (child->vdev_islog && vd == rvd)
3225                                         degraded++;
3226                                 else
3227                                         faulted++;
3228                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3229                                 degraded++;
3230                         }
3231
3232                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3233                                 corrupted++;
3234                 }
3235
3236                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3237
3238                 /*
3239                  * Root special: if there is a top-level vdev that cannot be
3240                  * opened due to corrupted metadata, then propagate the root
3241                  * vdev's aux state as 'corrupt' rather than 'insufficient
3242                  * replicas'.
3243                  */
3244                 if (corrupted && vd == rvd &&
3245                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3246                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3247                             VDEV_AUX_CORRUPT_DATA);
3248         }
3249
3250         if (vd->vdev_parent)
3251                 vdev_propagate_state(vd->vdev_parent);
3252 }
3253
3254 /*
3255  * Set a vdev's state.  If this is during an open, we don't update the parent
3256  * state, because we're in the process of opening children depth-first.
3257  * Otherwise, we propagate the change to the parent.
3258  *
3259  * If this routine places a device in a faulted state, an appropriate ereport is
3260  * generated.
3261  */
3262 void
3263 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3264 {
3265         uint64_t save_state;
3266         spa_t *spa = vd->vdev_spa;
3267
3268         if (state == vd->vdev_state) {
3269                 vd->vdev_stat.vs_aux = aux;
3270                 return;
3271         }
3272
3273         save_state = vd->vdev_state;
3274
3275         vd->vdev_state = state;
3276         vd->vdev_stat.vs_aux = aux;
3277
3278         /*
3279          * If we are setting the vdev state to anything but an open state, then
3280          * always close the underlying device unless the device has requested
3281          * a delayed close (i.e. we're about to remove or fault the device).
3282          * Otherwise, we keep accessible but invalid devices open forever.
3283          * We don't call vdev_close() itself, because that implies some extra
3284          * checks (offline, etc) that we don't want here.  This is limited to
3285          * leaf devices, because otherwise closing the device will affect other
3286          * children.
3287          */
3288         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3289             vd->vdev_ops->vdev_op_leaf)
3290                 vd->vdev_ops->vdev_op_close(vd);
3291
3292         /*
3293          * If we have brought this vdev back into service, we need
3294          * to notify fmd so that it can gracefully repair any outstanding
3295          * cases due to a missing device.  We do this in all cases, even those
3296          * that probably don't correlate to a repaired fault.  This is sure to
3297          * catch all cases, and we let the zfs-retire agent sort it out.  If
3298          * this is a transient state it's OK, as the retire agent will
3299          * double-check the state of the vdev before repairing it.
3300          */
3301         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3302             vd->vdev_prevstate != state)
3303                 zfs_post_state_change(spa, vd);
3304
3305         if (vd->vdev_removed &&
3306             state == VDEV_STATE_CANT_OPEN &&
3307             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3308                 /*
3309                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3310                  * device was previously marked removed and someone attempted to
3311                  * reopen it.  If this failed due to a nonexistent device, then
3312                  * keep the device in the REMOVED state.  We also let this be if
3313                  * it is one of our special test online cases, which is only
3314                  * attempting to online the device and shouldn't generate an FMA
3315                  * fault.
3316                  */
3317                 vd->vdev_state = VDEV_STATE_REMOVED;
3318                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3319         } else if (state == VDEV_STATE_REMOVED) {
3320                 vd->vdev_removed = B_TRUE;
3321         } else if (state == VDEV_STATE_CANT_OPEN) {
3322                 /*
3323                  * If we fail to open a vdev during an import or recovery, we
3324                  * mark it as "not available", which signifies that it was
3325                  * never there to begin with.  Failure to open such a device
3326                  * is not considered an error.
3327                  */
3328                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3329                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3330                     vd->vdev_ops->vdev_op_leaf)
3331                         vd->vdev_not_present = 1;
3332
3333                 /*
3334                  * Post the appropriate ereport.  If the 'prevstate' field is
3335                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3336                  * that this is part of a vdev_reopen().  In this case, we don't
3337                  * want to post the ereport if the device was already in the
3338                  * CANT_OPEN state beforehand.
3339                  *
3340                  * If the 'checkremove' flag is set, then this is an attempt to
3341                  * online the device in response to an insertion event.  If we
3342                  * hit this case, then we have detected an insertion event for a
3343                  * faulted or offline device that wasn't in the removed state.
3344                  * In this scenario, we don't post an ereport because we are
3345                  * about to replace the device, or attempt an online with
3346                  * vdev_forcefault, which will generate the fault for us.
3347                  */
3348                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3349                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3350                     vd != spa->spa_root_vdev) {
3351                         const char *class;
3352
3353                         switch (aux) {
3354                         case VDEV_AUX_OPEN_FAILED:
3355                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3356                                 break;
3357                         case VDEV_AUX_CORRUPT_DATA:
3358                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3359                                 break;
3360                         case VDEV_AUX_NO_REPLICAS:
3361                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3362                                 break;
3363                         case VDEV_AUX_BAD_GUID_SUM:
3364                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3365                                 break;
3366                         case VDEV_AUX_TOO_SMALL:
3367                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3368                                 break;
3369                         case VDEV_AUX_BAD_LABEL:
3370                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3371                                 break;
3372                         default:
3373                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3374                         }
3375
3376                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3377                 }
3378
3379                 /* Erase any notion of persistent removed state */
3380                 vd->vdev_removed = B_FALSE;
3381         } else {
3382                 vd->vdev_removed = B_FALSE;
3383         }
3384
3385         if (!isopen && vd->vdev_parent)
3386                 vdev_propagate_state(vd->vdev_parent);
3387 }
3388
3389 /*
3390  * Check the vdev configuration to ensure that it's capable of supporting
3391  * a root pool.
3392  *
3393  * On Solaris, we do not support RAID-Z or partial configuration.  In
3394  * addition, only a single top-level vdev is allowed and none of the
3395  * leaves can be wholedisks.
3396  *
3397  * For FreeBSD, we can boot from any configuration. There is a
3398  * limitation that the boot filesystem must be either uncompressed or
3399  * compresses with lzjb compression but I'm not sure how to enforce
3400  * that here.
3401  */
3402 boolean_t
3403 vdev_is_bootable(vdev_t *vd)
3404 {
3405 #ifdef illumos
3406         if (!vd->vdev_ops->vdev_op_leaf) {
3407                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3408
3409                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3410                     vd->vdev_children > 1) {
3411                         return (B_FALSE);
3412                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3413                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3414                         return (B_FALSE);
3415                 }
3416         }
3417
3418         for (int c = 0; c < vd->vdev_children; c++) {
3419                 if (!vdev_is_bootable(vd->vdev_child[c]))
3420                         return (B_FALSE);
3421         }
3422 #endif  /* illumos */
3423         return (B_TRUE);
3424 }
3425
3426 /*
3427  * Load the state from the original vdev tree (ovd) which
3428  * we've retrieved from the MOS config object. If the original
3429  * vdev was offline or faulted then we transfer that state to the
3430  * device in the current vdev tree (nvd).
3431  */
3432 void
3433 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3434 {
3435         spa_t *spa = nvd->vdev_spa;
3436
3437         ASSERT(nvd->vdev_top->vdev_islog);
3438         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3439         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3440
3441         for (int c = 0; c < nvd->vdev_children; c++)
3442                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3443
3444         if (nvd->vdev_ops->vdev_op_leaf) {
3445                 /*
3446                  * Restore the persistent vdev state
3447                  */
3448                 nvd->vdev_offline = ovd->vdev_offline;
3449                 nvd->vdev_faulted = ovd->vdev_faulted;
3450                 nvd->vdev_degraded = ovd->vdev_degraded;
3451                 nvd->vdev_removed = ovd->vdev_removed;
3452         }
3453 }
3454
3455 /*
3456  * Determine if a log device has valid content.  If the vdev was
3457  * removed or faulted in the MOS config then we know that
3458  * the content on the log device has already been written to the pool.
3459  */
3460 boolean_t
3461 vdev_log_state_valid(vdev_t *vd)
3462 {
3463         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3464             !vd->vdev_removed)
3465                 return (B_TRUE);
3466
3467         for (int c = 0; c < vd->vdev_children; c++)
3468                 if (vdev_log_state_valid(vd->vdev_child[c]))
3469                         return (B_TRUE);
3470
3471         return (B_FALSE);
3472 }
3473
3474 /*
3475  * Expand a vdev if possible.
3476  */
3477 void
3478 vdev_expand(vdev_t *vd, uint64_t txg)
3479 {
3480         ASSERT(vd->vdev_top == vd);
3481         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3482
3483         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3484                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3485                 vdev_config_dirty(vd);
3486         }
3487 }
3488
3489 /*
3490  * Split a vdev.
3491  */
3492 void
3493 vdev_split(vdev_t *vd)
3494 {
3495         vdev_t *cvd, *pvd = vd->vdev_parent;
3496
3497         vdev_remove_child(pvd, vd);
3498         vdev_compact_children(pvd);
3499
3500         cvd = pvd->vdev_child[0];
3501         if (pvd->vdev_children == 1) {
3502                 vdev_remove_parent(cvd);
3503                 cvd->vdev_splitting = B_TRUE;
3504         }
3505         vdev_propagate_state(cvd);
3506 }
3507
3508 void
3509 vdev_deadman(vdev_t *vd)
3510 {
3511         for (int c = 0; c < vd->vdev_children; c++) {
3512                 vdev_t *cvd = vd->vdev_child[c];
3513
3514                 vdev_deadman(cvd);
3515         }
3516
3517         if (vd->vdev_ops->vdev_op_leaf) {
3518                 vdev_queue_t *vq = &vd->vdev_queue;
3519
3520                 mutex_enter(&vq->vq_lock);
3521                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3522                         spa_t *spa = vd->vdev_spa;
3523                         zio_t *fio;
3524                         uint64_t delta;
3525
3526                         /*
3527                          * Look at the head of all the pending queues,
3528                          * if any I/O has been outstanding for longer than
3529                          * the spa_deadman_synctime we panic the system.
3530                          */
3531                         fio = avl_first(&vq->vq_active_tree);
3532                         delta = gethrtime() - fio->io_timestamp;
3533                         if (delta > spa_deadman_synctime(spa)) {
3534                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3535                                     "delta %lluns, last io %lluns",
3536                                     fio->io_timestamp, delta,
3537                                     vq->vq_io_complete_ts);
3538                                 fm_panic("I/O to pool '%s' appears to be "
3539                                     "hung on vdev guid %llu at '%s'.",
3540                                     spa_name(spa),
3541                                     (long long unsigned int) vd->vdev_guid,
3542                                     vd->vdev_path);
3543                         }
3544                 }
3545                 mutex_exit(&vq->vq_lock);
3546         }
3547 }