]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/dev/cxgbe/common/t4_hw.c
MFC r319872, r321063, r321582, r322034, r322425, r322962, r322985,
[FreeBSD/stable/10.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_inet.h"
31
32 #include "common.h"
33 #include "t4_regs.h"
34 #include "t4_regs_values.h"
35 #include "firmware/t4fw_interface.h"
36
37 #undef msleep
38 #define msleep(x) do { \
39         if (cold) \
40                 DELAY((x) * 1000); \
41         else \
42                 pause("t4hw", (x) * hz / 1000); \
43 } while (0)
44
45 /**
46  *      t4_wait_op_done_val - wait until an operation is completed
47  *      @adapter: the adapter performing the operation
48  *      @reg: the register to check for completion
49  *      @mask: a single-bit field within @reg that indicates completion
50  *      @polarity: the value of the field when the operation is completed
51  *      @attempts: number of check iterations
52  *      @delay: delay in usecs between iterations
53  *      @valp: where to store the value of the register at completion time
54  *
55  *      Wait until an operation is completed by checking a bit in a register
56  *      up to @attempts times.  If @valp is not NULL the value of the register
57  *      at the time it indicated completion is stored there.  Returns 0 if the
58  *      operation completes and -EAGAIN otherwise.
59  */
60 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
61                                int polarity, int attempts, int delay, u32 *valp)
62 {
63         while (1) {
64                 u32 val = t4_read_reg(adapter, reg);
65
66                 if (!!(val & mask) == polarity) {
67                         if (valp)
68                                 *valp = val;
69                         return 0;
70                 }
71                 if (--attempts == 0)
72                         return -EAGAIN;
73                 if (delay)
74                         udelay(delay);
75         }
76 }
77
78 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
79                                   int polarity, int attempts, int delay)
80 {
81         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
82                                    delay, NULL);
83 }
84
85 /**
86  *      t4_set_reg_field - set a register field to a value
87  *      @adapter: the adapter to program
88  *      @addr: the register address
89  *      @mask: specifies the portion of the register to modify
90  *      @val: the new value for the register field
91  *
92  *      Sets a register field specified by the supplied mask to the
93  *      given value.
94  */
95 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
96                       u32 val)
97 {
98         u32 v = t4_read_reg(adapter, addr) & ~mask;
99
100         t4_write_reg(adapter, addr, v | val);
101         (void) t4_read_reg(adapter, addr);      /* flush */
102 }
103
104 /**
105  *      t4_read_indirect - read indirectly addressed registers
106  *      @adap: the adapter
107  *      @addr_reg: register holding the indirect address
108  *      @data_reg: register holding the value of the indirect register
109  *      @vals: where the read register values are stored
110  *      @nregs: how many indirect registers to read
111  *      @start_idx: index of first indirect register to read
112  *
113  *      Reads registers that are accessed indirectly through an address/data
114  *      register pair.
115  */
116 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
117                              unsigned int data_reg, u32 *vals,
118                              unsigned int nregs, unsigned int start_idx)
119 {
120         while (nregs--) {
121                 t4_write_reg(adap, addr_reg, start_idx);
122                 *vals++ = t4_read_reg(adap, data_reg);
123                 start_idx++;
124         }
125 }
126
127 /**
128  *      t4_write_indirect - write indirectly addressed registers
129  *      @adap: the adapter
130  *      @addr_reg: register holding the indirect addresses
131  *      @data_reg: register holding the value for the indirect registers
132  *      @vals: values to write
133  *      @nregs: how many indirect registers to write
134  *      @start_idx: address of first indirect register to write
135  *
136  *      Writes a sequential block of registers that are accessed indirectly
137  *      through an address/data register pair.
138  */
139 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
140                        unsigned int data_reg, const u32 *vals,
141                        unsigned int nregs, unsigned int start_idx)
142 {
143         while (nregs--) {
144                 t4_write_reg(adap, addr_reg, start_idx++);
145                 t4_write_reg(adap, data_reg, *vals++);
146         }
147 }
148
149 /*
150  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
151  * mechanism.  This guarantees that we get the real value even if we're
152  * operating within a Virtual Machine and the Hypervisor is trapping our
153  * Configuration Space accesses.
154  *
155  * N.B. This routine should only be used as a last resort: the firmware uses
156  *      the backdoor registers on a regular basis and we can end up
157  *      conflicting with it's uses!
158  */
159 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
160 {
161         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
162         u32 val;
163
164         if (chip_id(adap) <= CHELSIO_T5)
165                 req |= F_ENABLE;
166         else
167                 req |= F_T6_ENABLE;
168
169         if (is_t4(adap))
170                 req |= F_LOCALCFG;
171
172         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
173         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
174
175         /*
176          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
177          * Configuration Space read.  (None of the other fields matter when
178          * F_ENABLE is 0 so a simple register write is easier than a
179          * read-modify-write via t4_set_reg_field().)
180          */
181         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
182
183         return val;
184 }
185
186 /*
187  * t4_report_fw_error - report firmware error
188  * @adap: the adapter
189  *
190  * The adapter firmware can indicate error conditions to the host.
191  * If the firmware has indicated an error, print out the reason for
192  * the firmware error.
193  */
194 static void t4_report_fw_error(struct adapter *adap)
195 {
196         static const char *const reason[] = {
197                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
198                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
199                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
200                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
201                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
202                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
203                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
204                 "Reserved",                     /* reserved */
205         };
206         u32 pcie_fw;
207
208         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
209         if (pcie_fw & F_PCIE_FW_ERR)
210                 CH_ERR(adap, "Firmware reports adapter error: %s\n",
211                         reason[G_PCIE_FW_EVAL(pcie_fw)]);
212 }
213
214 /*
215  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
216  */
217 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
218                          u32 mbox_addr)
219 {
220         for ( ; nflit; nflit--, mbox_addr += 8)
221                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
222 }
223
224 /*
225  * Handle a FW assertion reported in a mailbox.
226  */
227 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
228 {
229         CH_ALERT(adap,
230                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
231                   asrt->u.assert.filename_0_7,
232                   be32_to_cpu(asrt->u.assert.line),
233                   be32_to_cpu(asrt->u.assert.x),
234                   be32_to_cpu(asrt->u.assert.y));
235 }
236
237 #define X_CIM_PF_NOACCESS 0xeeeeeeee
238 /**
239  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
240  *      @adap: the adapter
241  *      @mbox: index of the mailbox to use
242  *      @cmd: the command to write
243  *      @size: command length in bytes
244  *      @rpl: where to optionally store the reply
245  *      @sleep_ok: if true we may sleep while awaiting command completion
246  *      @timeout: time to wait for command to finish before timing out
247  *              (negative implies @sleep_ok=false)
248  *
249  *      Sends the given command to FW through the selected mailbox and waits
250  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
251  *      store the FW's reply to the command.  The command and its optional
252  *      reply are of the same length.  Some FW commands like RESET and
253  *      INITIALIZE can take a considerable amount of time to execute.
254  *      @sleep_ok determines whether we may sleep while awaiting the response.
255  *      If sleeping is allowed we use progressive backoff otherwise we spin.
256  *      Note that passing in a negative @timeout is an alternate mechanism
257  *      for specifying @sleep_ok=false.  This is useful when a higher level
258  *      interface allows for specification of @timeout but not @sleep_ok ...
259  *
260  *      The return value is 0 on success or a negative errno on failure.  A
261  *      failure can happen either because we are not able to execute the
262  *      command or FW executes it but signals an error.  In the latter case
263  *      the return value is the error code indicated by FW (negated).
264  */
265 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
266                             int size, void *rpl, bool sleep_ok, int timeout)
267 {
268         /*
269          * We delay in small increments at first in an effort to maintain
270          * responsiveness for simple, fast executing commands but then back
271          * off to larger delays to a maximum retry delay.
272          */
273         static const int delay[] = {
274                 1, 1, 3, 5, 10, 10, 20, 50, 100
275         };
276         u32 v;
277         u64 res;
278         int i, ms, delay_idx, ret;
279         const __be64 *p = cmd;
280         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
281         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
282         u32 ctl;
283         __be64 cmd_rpl[MBOX_LEN/8];
284         u32 pcie_fw;
285
286         if ((size & 15) || size > MBOX_LEN)
287                 return -EINVAL;
288
289         if (adap->flags & IS_VF) {
290                 if (is_t6(adap))
291                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
292                 else
293                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
294                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
295         }
296
297         /*
298          * If we have a negative timeout, that implies that we can't sleep.
299          */
300         if (timeout < 0) {
301                 sleep_ok = false;
302                 timeout = -timeout;
303         }
304
305         /*
306          * Attempt to gain access to the mailbox.
307          */
308         for (i = 0; i < 4; i++) {
309                 ctl = t4_read_reg(adap, ctl_reg);
310                 v = G_MBOWNER(ctl);
311                 if (v != X_MBOWNER_NONE)
312                         break;
313         }
314
315         /*
316          * If we were unable to gain access, dequeue ourselves from the
317          * mailbox atomic access list and report the error to our caller.
318          */
319         if (v != X_MBOWNER_PL) {
320                 t4_report_fw_error(adap);
321                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
322                 return ret;
323         }
324
325         /*
326          * If we gain ownership of the mailbox and there's a "valid" message
327          * in it, this is likely an asynchronous error message from the
328          * firmware.  So we'll report that and then proceed on with attempting
329          * to issue our own command ... which may well fail if the error
330          * presaged the firmware crashing ...
331          */
332         if (ctl & F_MBMSGVALID) {
333                 CH_ERR(adap, "found VALID command in mbox %u: "
334                        "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
335                        (unsigned long long)t4_read_reg64(adap, data_reg),
336                        (unsigned long long)t4_read_reg64(adap, data_reg + 8),
337                        (unsigned long long)t4_read_reg64(adap, data_reg + 16),
338                        (unsigned long long)t4_read_reg64(adap, data_reg + 24),
339                        (unsigned long long)t4_read_reg64(adap, data_reg + 32),
340                        (unsigned long long)t4_read_reg64(adap, data_reg + 40),
341                        (unsigned long long)t4_read_reg64(adap, data_reg + 48),
342                        (unsigned long long)t4_read_reg64(adap, data_reg + 56));
343         }
344
345         /*
346          * Copy in the new mailbox command and send it on its way ...
347          */
348         for (i = 0; i < size; i += 8, p++)
349                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
350
351         if (adap->flags & IS_VF) {
352                 /*
353                  * For the VFs, the Mailbox Data "registers" are
354                  * actually backed by T4's "MA" interface rather than
355                  * PL Registers (as is the case for the PFs).  Because
356                  * these are in different coherency domains, the write
357                  * to the VF's PL-register-backed Mailbox Control can
358                  * race in front of the writes to the MA-backed VF
359                  * Mailbox Data "registers".  So we need to do a
360                  * read-back on at least one byte of the VF Mailbox
361                  * Data registers before doing the write to the VF
362                  * Mailbox Control register.
363                  */
364                 t4_read_reg(adap, data_reg);
365         }
366
367         CH_DUMP_MBOX(adap, mbox, data_reg);
368
369         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
370         t4_read_reg(adap, ctl_reg);     /* flush write */
371
372         delay_idx = 0;
373         ms = delay[0];
374
375         /*
376          * Loop waiting for the reply; bail out if we time out or the firmware
377          * reports an error.
378          */
379         pcie_fw = 0;
380         for (i = 0; i < timeout; i += ms) {
381                 if (!(adap->flags & IS_VF)) {
382                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
383                         if (pcie_fw & F_PCIE_FW_ERR)
384                                 break;
385                 }
386                 if (sleep_ok) {
387                         ms = delay[delay_idx];  /* last element may repeat */
388                         if (delay_idx < ARRAY_SIZE(delay) - 1)
389                                 delay_idx++;
390                         msleep(ms);
391                 } else {
392                         mdelay(ms);
393                 }
394
395                 v = t4_read_reg(adap, ctl_reg);
396                 if (v == X_CIM_PF_NOACCESS)
397                         continue;
398                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
399                         if (!(v & F_MBMSGVALID)) {
400                                 t4_write_reg(adap, ctl_reg,
401                                              V_MBOWNER(X_MBOWNER_NONE));
402                                 continue;
403                         }
404
405                         /*
406                          * Retrieve the command reply and release the mailbox.
407                          */
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
409                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
410
411                         CH_DUMP_MBOX(adap, mbox, data_reg);
412
413                         res = be64_to_cpu(cmd_rpl[0]);
414                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
415                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
416                                 res = V_FW_CMD_RETVAL(EIO);
417                         } else if (rpl)
418                                 memcpy(rpl, cmd_rpl, size);
419                         return -G_FW_CMD_RETVAL((int)res);
420                 }
421         }
422
423         /*
424          * We timed out waiting for a reply to our mailbox command.  Report
425          * the error and also check to see if the firmware reported any
426          * errors ...
427          */
428         ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
429         CH_ERR(adap, "command %#x in mailbox %d timed out\n",
430                *(const u8 *)cmd, mbox);
431
432         /* If DUMP_MBOX is set the mbox has already been dumped */
433         if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
434                 p = cmd;
435                 CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
436                     "%016llx %016llx %016llx %016llx\n",
437                     (unsigned long long)be64_to_cpu(p[0]),
438                     (unsigned long long)be64_to_cpu(p[1]),
439                     (unsigned long long)be64_to_cpu(p[2]),
440                     (unsigned long long)be64_to_cpu(p[3]),
441                     (unsigned long long)be64_to_cpu(p[4]),
442                     (unsigned long long)be64_to_cpu(p[5]),
443                     (unsigned long long)be64_to_cpu(p[6]),
444                     (unsigned long long)be64_to_cpu(p[7]));
445         }
446
447         t4_report_fw_error(adap);
448         t4_fatal_err(adap);
449         return ret;
450 }
451
452 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
453                     void *rpl, bool sleep_ok)
454 {
455                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
456                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
457
458 }
459
460 static int t4_edc_err_read(struct adapter *adap, int idx)
461 {
462         u32 edc_ecc_err_addr_reg;
463         u32 edc_bist_status_rdata_reg;
464
465         if (is_t4(adap)) {
466                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
467                 return 0;
468         }
469         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
470                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
471                 return 0;
472         }
473
474         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
475         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
476
477         CH_WARN(adap,
478                 "edc%d err addr 0x%x: 0x%x.\n",
479                 idx, edc_ecc_err_addr_reg,
480                 t4_read_reg(adap, edc_ecc_err_addr_reg));
481         CH_WARN(adap,
482                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
483                 edc_bist_status_rdata_reg,
484                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
485                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
486                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
487                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
488                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
489                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
490                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
491                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
492                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
493
494         return 0;
495 }
496
497 /**
498  *      t4_mc_read - read from MC through backdoor accesses
499  *      @adap: the adapter
500  *      @idx: which MC to access
501  *      @addr: address of first byte requested
502  *      @data: 64 bytes of data containing the requested address
503  *      @ecc: where to store the corresponding 64-bit ECC word
504  *
505  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
506  *      that covers the requested address @addr.  If @parity is not %NULL it
507  *      is assigned the 64-bit ECC word for the read data.
508  */
509 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
510 {
511         int i;
512         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
513         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
514
515         if (is_t4(adap)) {
516                 mc_bist_cmd_reg = A_MC_BIST_CMD;
517                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
518                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
519                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
520                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
521         } else {
522                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
523                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
524                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
525                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
526                                                   idx);
527                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
528                                                   idx);
529         }
530
531         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
532                 return -EBUSY;
533         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
534         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
535         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
536         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
537                      F_START_BIST | V_BIST_CMD_GAP(1));
538         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
539         if (i)
540                 return i;
541
542 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
543
544         for (i = 15; i >= 0; i--)
545                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
546         if (ecc)
547                 *ecc = t4_read_reg64(adap, MC_DATA(16));
548 #undef MC_DATA
549         return 0;
550 }
551
552 /**
553  *      t4_edc_read - read from EDC through backdoor accesses
554  *      @adap: the adapter
555  *      @idx: which EDC to access
556  *      @addr: address of first byte requested
557  *      @data: 64 bytes of data containing the requested address
558  *      @ecc: where to store the corresponding 64-bit ECC word
559  *
560  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
561  *      that covers the requested address @addr.  If @parity is not %NULL it
562  *      is assigned the 64-bit ECC word for the read data.
563  */
564 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
565 {
566         int i;
567         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
568         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
569
570         if (is_t4(adap)) {
571                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
572                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
573                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
574                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
575                                                     idx);
576                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
577                                                     idx);
578         } else {
579 /*
580  * These macro are missing in t4_regs.h file.
581  * Added temporarily for testing.
582  */
583 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
584 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
585                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
586                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
587                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
588                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
589                                                     idx);
590                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
591                                                     idx);
592 #undef EDC_REG_T5
593 #undef EDC_STRIDE_T5
594         }
595
596         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
597                 return -EBUSY;
598         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
599         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
600         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
601         t4_write_reg(adap, edc_bist_cmd_reg,
602                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
603         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
604         if (i)
605                 return i;
606
607 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
608
609         for (i = 15; i >= 0; i--)
610                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
611         if (ecc)
612                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
613 #undef EDC_DATA
614         return 0;
615 }
616
617 /**
618  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
619  *      @adap: the adapter
620  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
621  *      @addr: address within indicated memory type
622  *      @len: amount of memory to read
623  *      @buf: host memory buffer
624  *
625  *      Reads an [almost] arbitrary memory region in the firmware: the
626  *      firmware memory address, length and host buffer must be aligned on
627  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
628  *      the firmware's memory.  If this memory contains data structures which
629  *      contain multi-byte integers, it's the callers responsibility to
630  *      perform appropriate byte order conversions.
631  */
632 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
633                 __be32 *buf)
634 {
635         u32 pos, start, end, offset;
636         int ret;
637
638         /*
639          * Argument sanity checks ...
640          */
641         if ((addr & 0x3) || (len & 0x3))
642                 return -EINVAL;
643
644         /*
645          * The underlaying EDC/MC read routines read 64 bytes at a time so we
646          * need to round down the start and round up the end.  We'll start
647          * copying out of the first line at (addr - start) a word at a time.
648          */
649         start = addr & ~(64-1);
650         end = (addr + len + 64-1) & ~(64-1);
651         offset = (addr - start)/sizeof(__be32);
652
653         for (pos = start; pos < end; pos += 64, offset = 0) {
654                 __be32 data[16];
655
656                 /*
657                  * Read the chip's memory block and bail if there's an error.
658                  */
659                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
660                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
661                 else
662                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
663                 if (ret)
664                         return ret;
665
666                 /*
667                  * Copy the data into the caller's memory buffer.
668                  */
669                 while (offset < 16 && len > 0) {
670                         *buf++ = data[offset++];
671                         len -= sizeof(__be32);
672                 }
673         }
674
675         return 0;
676 }
677
678 /*
679  * Return the specified PCI-E Configuration Space register from our Physical
680  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
681  * since we prefer to let the firmware own all of these registers, but if that
682  * fails we go for it directly ourselves.
683  */
684 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
685 {
686
687         /*
688          * If fw_attach != 0, construct and send the Firmware LDST Command to
689          * retrieve the specified PCI-E Configuration Space register.
690          */
691         if (drv_fw_attach != 0) {
692                 struct fw_ldst_cmd ldst_cmd;
693                 int ret;
694
695                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
696                 ldst_cmd.op_to_addrspace =
697                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
698                                     F_FW_CMD_REQUEST |
699                                     F_FW_CMD_READ |
700                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
701                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
702                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
703                 ldst_cmd.u.pcie.ctrl_to_fn =
704                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
705                 ldst_cmd.u.pcie.r = reg;
706
707                 /*
708                  * If the LDST Command succeeds, return the result, otherwise
709                  * fall through to reading it directly ourselves ...
710                  */
711                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
712                                  &ldst_cmd);
713                 if (ret == 0)
714                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
715
716                 CH_WARN(adap, "Firmware failed to return "
717                         "Configuration Space register %d, err = %d\n",
718                         reg, -ret);
719         }
720
721         /*
722          * Read the desired Configuration Space register via the PCI-E
723          * Backdoor mechanism.
724          */
725         return t4_hw_pci_read_cfg4(adap, reg);
726 }
727
728 /**
729  *      t4_get_regs_len - return the size of the chips register set
730  *      @adapter: the adapter
731  *
732  *      Returns the size of the chip's BAR0 register space.
733  */
734 unsigned int t4_get_regs_len(struct adapter *adapter)
735 {
736         unsigned int chip_version = chip_id(adapter);
737
738         switch (chip_version) {
739         case CHELSIO_T4:
740                 if (adapter->flags & IS_VF)
741                         return FW_T4VF_REGMAP_SIZE;
742                 return T4_REGMAP_SIZE;
743
744         case CHELSIO_T5:
745         case CHELSIO_T6:
746                 if (adapter->flags & IS_VF)
747                         return FW_T4VF_REGMAP_SIZE;
748                 return T5_REGMAP_SIZE;
749         }
750
751         CH_ERR(adapter,
752                 "Unsupported chip version %d\n", chip_version);
753         return 0;
754 }
755
756 /**
757  *      t4_get_regs - read chip registers into provided buffer
758  *      @adap: the adapter
759  *      @buf: register buffer
760  *      @buf_size: size (in bytes) of register buffer
761  *
762  *      If the provided register buffer isn't large enough for the chip's
763  *      full register range, the register dump will be truncated to the
764  *      register buffer's size.
765  */
766 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
767 {
768         static const unsigned int t4_reg_ranges[] = {
769                 0x1008, 0x1108,
770                 0x1180, 0x1184,
771                 0x1190, 0x1194,
772                 0x11a0, 0x11a4,
773                 0x11b0, 0x11b4,
774                 0x11fc, 0x123c,
775                 0x1300, 0x173c,
776                 0x1800, 0x18fc,
777                 0x3000, 0x30d8,
778                 0x30e0, 0x30e4,
779                 0x30ec, 0x5910,
780                 0x5920, 0x5924,
781                 0x5960, 0x5960,
782                 0x5968, 0x5968,
783                 0x5970, 0x5970,
784                 0x5978, 0x5978,
785                 0x5980, 0x5980,
786                 0x5988, 0x5988,
787                 0x5990, 0x5990,
788                 0x5998, 0x5998,
789                 0x59a0, 0x59d4,
790                 0x5a00, 0x5ae0,
791                 0x5ae8, 0x5ae8,
792                 0x5af0, 0x5af0,
793                 0x5af8, 0x5af8,
794                 0x6000, 0x6098,
795                 0x6100, 0x6150,
796                 0x6200, 0x6208,
797                 0x6240, 0x6248,
798                 0x6280, 0x62b0,
799                 0x62c0, 0x6338,
800                 0x6370, 0x638c,
801                 0x6400, 0x643c,
802                 0x6500, 0x6524,
803                 0x6a00, 0x6a04,
804                 0x6a14, 0x6a38,
805                 0x6a60, 0x6a70,
806                 0x6a78, 0x6a78,
807                 0x6b00, 0x6b0c,
808                 0x6b1c, 0x6b84,
809                 0x6bf0, 0x6bf8,
810                 0x6c00, 0x6c0c,
811                 0x6c1c, 0x6c84,
812                 0x6cf0, 0x6cf8,
813                 0x6d00, 0x6d0c,
814                 0x6d1c, 0x6d84,
815                 0x6df0, 0x6df8,
816                 0x6e00, 0x6e0c,
817                 0x6e1c, 0x6e84,
818                 0x6ef0, 0x6ef8,
819                 0x6f00, 0x6f0c,
820                 0x6f1c, 0x6f84,
821                 0x6ff0, 0x6ff8,
822                 0x7000, 0x700c,
823                 0x701c, 0x7084,
824                 0x70f0, 0x70f8,
825                 0x7100, 0x710c,
826                 0x711c, 0x7184,
827                 0x71f0, 0x71f8,
828                 0x7200, 0x720c,
829                 0x721c, 0x7284,
830                 0x72f0, 0x72f8,
831                 0x7300, 0x730c,
832                 0x731c, 0x7384,
833                 0x73f0, 0x73f8,
834                 0x7400, 0x7450,
835                 0x7500, 0x7530,
836                 0x7600, 0x760c,
837                 0x7614, 0x761c,
838                 0x7680, 0x76cc,
839                 0x7700, 0x7798,
840                 0x77c0, 0x77fc,
841                 0x7900, 0x79fc,
842                 0x7b00, 0x7b58,
843                 0x7b60, 0x7b84,
844                 0x7b8c, 0x7c38,
845                 0x7d00, 0x7d38,
846                 0x7d40, 0x7d80,
847                 0x7d8c, 0x7ddc,
848                 0x7de4, 0x7e04,
849                 0x7e10, 0x7e1c,
850                 0x7e24, 0x7e38,
851                 0x7e40, 0x7e44,
852                 0x7e4c, 0x7e78,
853                 0x7e80, 0x7ea4,
854                 0x7eac, 0x7edc,
855                 0x7ee8, 0x7efc,
856                 0x8dc0, 0x8e04,
857                 0x8e10, 0x8e1c,
858                 0x8e30, 0x8e78,
859                 0x8ea0, 0x8eb8,
860                 0x8ec0, 0x8f6c,
861                 0x8fc0, 0x9008,
862                 0x9010, 0x9058,
863                 0x9060, 0x9060,
864                 0x9068, 0x9074,
865                 0x90fc, 0x90fc,
866                 0x9400, 0x9408,
867                 0x9410, 0x9458,
868                 0x9600, 0x9600,
869                 0x9608, 0x9638,
870                 0x9640, 0x96bc,
871                 0x9800, 0x9808,
872                 0x9820, 0x983c,
873                 0x9850, 0x9864,
874                 0x9c00, 0x9c6c,
875                 0x9c80, 0x9cec,
876                 0x9d00, 0x9d6c,
877                 0x9d80, 0x9dec,
878                 0x9e00, 0x9e6c,
879                 0x9e80, 0x9eec,
880                 0x9f00, 0x9f6c,
881                 0x9f80, 0x9fec,
882                 0xd004, 0xd004,
883                 0xd010, 0xd03c,
884                 0xdfc0, 0xdfe0,
885                 0xe000, 0xea7c,
886                 0xf000, 0x11110,
887                 0x11118, 0x11190,
888                 0x19040, 0x1906c,
889                 0x19078, 0x19080,
890                 0x1908c, 0x190e4,
891                 0x190f0, 0x190f8,
892                 0x19100, 0x19110,
893                 0x19120, 0x19124,
894                 0x19150, 0x19194,
895                 0x1919c, 0x191b0,
896                 0x191d0, 0x191e8,
897                 0x19238, 0x1924c,
898                 0x193f8, 0x1943c,
899                 0x1944c, 0x19474,
900                 0x19490, 0x194e0,
901                 0x194f0, 0x194f8,
902                 0x19800, 0x19c08,
903                 0x19c10, 0x19c90,
904                 0x19ca0, 0x19ce4,
905                 0x19cf0, 0x19d40,
906                 0x19d50, 0x19d94,
907                 0x19da0, 0x19de8,
908                 0x19df0, 0x19e40,
909                 0x19e50, 0x19e90,
910                 0x19ea0, 0x19f4c,
911                 0x1a000, 0x1a004,
912                 0x1a010, 0x1a06c,
913                 0x1a0b0, 0x1a0e4,
914                 0x1a0ec, 0x1a0f4,
915                 0x1a100, 0x1a108,
916                 0x1a114, 0x1a120,
917                 0x1a128, 0x1a130,
918                 0x1a138, 0x1a138,
919                 0x1a190, 0x1a1c4,
920                 0x1a1fc, 0x1a1fc,
921                 0x1e040, 0x1e04c,
922                 0x1e284, 0x1e28c,
923                 0x1e2c0, 0x1e2c0,
924                 0x1e2e0, 0x1e2e0,
925                 0x1e300, 0x1e384,
926                 0x1e3c0, 0x1e3c8,
927                 0x1e440, 0x1e44c,
928                 0x1e684, 0x1e68c,
929                 0x1e6c0, 0x1e6c0,
930                 0x1e6e0, 0x1e6e0,
931                 0x1e700, 0x1e784,
932                 0x1e7c0, 0x1e7c8,
933                 0x1e840, 0x1e84c,
934                 0x1ea84, 0x1ea8c,
935                 0x1eac0, 0x1eac0,
936                 0x1eae0, 0x1eae0,
937                 0x1eb00, 0x1eb84,
938                 0x1ebc0, 0x1ebc8,
939                 0x1ec40, 0x1ec4c,
940                 0x1ee84, 0x1ee8c,
941                 0x1eec0, 0x1eec0,
942                 0x1eee0, 0x1eee0,
943                 0x1ef00, 0x1ef84,
944                 0x1efc0, 0x1efc8,
945                 0x1f040, 0x1f04c,
946                 0x1f284, 0x1f28c,
947                 0x1f2c0, 0x1f2c0,
948                 0x1f2e0, 0x1f2e0,
949                 0x1f300, 0x1f384,
950                 0x1f3c0, 0x1f3c8,
951                 0x1f440, 0x1f44c,
952                 0x1f684, 0x1f68c,
953                 0x1f6c0, 0x1f6c0,
954                 0x1f6e0, 0x1f6e0,
955                 0x1f700, 0x1f784,
956                 0x1f7c0, 0x1f7c8,
957                 0x1f840, 0x1f84c,
958                 0x1fa84, 0x1fa8c,
959                 0x1fac0, 0x1fac0,
960                 0x1fae0, 0x1fae0,
961                 0x1fb00, 0x1fb84,
962                 0x1fbc0, 0x1fbc8,
963                 0x1fc40, 0x1fc4c,
964                 0x1fe84, 0x1fe8c,
965                 0x1fec0, 0x1fec0,
966                 0x1fee0, 0x1fee0,
967                 0x1ff00, 0x1ff84,
968                 0x1ffc0, 0x1ffc8,
969                 0x20000, 0x2002c,
970                 0x20100, 0x2013c,
971                 0x20190, 0x201a0,
972                 0x201a8, 0x201b8,
973                 0x201c4, 0x201c8,
974                 0x20200, 0x20318,
975                 0x20400, 0x204b4,
976                 0x204c0, 0x20528,
977                 0x20540, 0x20614,
978                 0x21000, 0x21040,
979                 0x2104c, 0x21060,
980                 0x210c0, 0x210ec,
981                 0x21200, 0x21268,
982                 0x21270, 0x21284,
983                 0x212fc, 0x21388,
984                 0x21400, 0x21404,
985                 0x21500, 0x21500,
986                 0x21510, 0x21518,
987                 0x2152c, 0x21530,
988                 0x2153c, 0x2153c,
989                 0x21550, 0x21554,
990                 0x21600, 0x21600,
991                 0x21608, 0x2161c,
992                 0x21624, 0x21628,
993                 0x21630, 0x21634,
994                 0x2163c, 0x2163c,
995                 0x21700, 0x2171c,
996                 0x21780, 0x2178c,
997                 0x21800, 0x21818,
998                 0x21820, 0x21828,
999                 0x21830, 0x21848,
1000                 0x21850, 0x21854,
1001                 0x21860, 0x21868,
1002                 0x21870, 0x21870,
1003                 0x21878, 0x21898,
1004                 0x218a0, 0x218a8,
1005                 0x218b0, 0x218c8,
1006                 0x218d0, 0x218d4,
1007                 0x218e0, 0x218e8,
1008                 0x218f0, 0x218f0,
1009                 0x218f8, 0x21a18,
1010                 0x21a20, 0x21a28,
1011                 0x21a30, 0x21a48,
1012                 0x21a50, 0x21a54,
1013                 0x21a60, 0x21a68,
1014                 0x21a70, 0x21a70,
1015                 0x21a78, 0x21a98,
1016                 0x21aa0, 0x21aa8,
1017                 0x21ab0, 0x21ac8,
1018                 0x21ad0, 0x21ad4,
1019                 0x21ae0, 0x21ae8,
1020                 0x21af0, 0x21af0,
1021                 0x21af8, 0x21c18,
1022                 0x21c20, 0x21c20,
1023                 0x21c28, 0x21c30,
1024                 0x21c38, 0x21c38,
1025                 0x21c80, 0x21c98,
1026                 0x21ca0, 0x21ca8,
1027                 0x21cb0, 0x21cc8,
1028                 0x21cd0, 0x21cd4,
1029                 0x21ce0, 0x21ce8,
1030                 0x21cf0, 0x21cf0,
1031                 0x21cf8, 0x21d7c,
1032                 0x21e00, 0x21e04,
1033                 0x22000, 0x2202c,
1034                 0x22100, 0x2213c,
1035                 0x22190, 0x221a0,
1036                 0x221a8, 0x221b8,
1037                 0x221c4, 0x221c8,
1038                 0x22200, 0x22318,
1039                 0x22400, 0x224b4,
1040                 0x224c0, 0x22528,
1041                 0x22540, 0x22614,
1042                 0x23000, 0x23040,
1043                 0x2304c, 0x23060,
1044                 0x230c0, 0x230ec,
1045                 0x23200, 0x23268,
1046                 0x23270, 0x23284,
1047                 0x232fc, 0x23388,
1048                 0x23400, 0x23404,
1049                 0x23500, 0x23500,
1050                 0x23510, 0x23518,
1051                 0x2352c, 0x23530,
1052                 0x2353c, 0x2353c,
1053                 0x23550, 0x23554,
1054                 0x23600, 0x23600,
1055                 0x23608, 0x2361c,
1056                 0x23624, 0x23628,
1057                 0x23630, 0x23634,
1058                 0x2363c, 0x2363c,
1059                 0x23700, 0x2371c,
1060                 0x23780, 0x2378c,
1061                 0x23800, 0x23818,
1062                 0x23820, 0x23828,
1063                 0x23830, 0x23848,
1064                 0x23850, 0x23854,
1065                 0x23860, 0x23868,
1066                 0x23870, 0x23870,
1067                 0x23878, 0x23898,
1068                 0x238a0, 0x238a8,
1069                 0x238b0, 0x238c8,
1070                 0x238d0, 0x238d4,
1071                 0x238e0, 0x238e8,
1072                 0x238f0, 0x238f0,
1073                 0x238f8, 0x23a18,
1074                 0x23a20, 0x23a28,
1075                 0x23a30, 0x23a48,
1076                 0x23a50, 0x23a54,
1077                 0x23a60, 0x23a68,
1078                 0x23a70, 0x23a70,
1079                 0x23a78, 0x23a98,
1080                 0x23aa0, 0x23aa8,
1081                 0x23ab0, 0x23ac8,
1082                 0x23ad0, 0x23ad4,
1083                 0x23ae0, 0x23ae8,
1084                 0x23af0, 0x23af0,
1085                 0x23af8, 0x23c18,
1086                 0x23c20, 0x23c20,
1087                 0x23c28, 0x23c30,
1088                 0x23c38, 0x23c38,
1089                 0x23c80, 0x23c98,
1090                 0x23ca0, 0x23ca8,
1091                 0x23cb0, 0x23cc8,
1092                 0x23cd0, 0x23cd4,
1093                 0x23ce0, 0x23ce8,
1094                 0x23cf0, 0x23cf0,
1095                 0x23cf8, 0x23d7c,
1096                 0x23e00, 0x23e04,
1097                 0x24000, 0x2402c,
1098                 0x24100, 0x2413c,
1099                 0x24190, 0x241a0,
1100                 0x241a8, 0x241b8,
1101                 0x241c4, 0x241c8,
1102                 0x24200, 0x24318,
1103                 0x24400, 0x244b4,
1104                 0x244c0, 0x24528,
1105                 0x24540, 0x24614,
1106                 0x25000, 0x25040,
1107                 0x2504c, 0x25060,
1108                 0x250c0, 0x250ec,
1109                 0x25200, 0x25268,
1110                 0x25270, 0x25284,
1111                 0x252fc, 0x25388,
1112                 0x25400, 0x25404,
1113                 0x25500, 0x25500,
1114                 0x25510, 0x25518,
1115                 0x2552c, 0x25530,
1116                 0x2553c, 0x2553c,
1117                 0x25550, 0x25554,
1118                 0x25600, 0x25600,
1119                 0x25608, 0x2561c,
1120                 0x25624, 0x25628,
1121                 0x25630, 0x25634,
1122                 0x2563c, 0x2563c,
1123                 0x25700, 0x2571c,
1124                 0x25780, 0x2578c,
1125                 0x25800, 0x25818,
1126                 0x25820, 0x25828,
1127                 0x25830, 0x25848,
1128                 0x25850, 0x25854,
1129                 0x25860, 0x25868,
1130                 0x25870, 0x25870,
1131                 0x25878, 0x25898,
1132                 0x258a0, 0x258a8,
1133                 0x258b0, 0x258c8,
1134                 0x258d0, 0x258d4,
1135                 0x258e0, 0x258e8,
1136                 0x258f0, 0x258f0,
1137                 0x258f8, 0x25a18,
1138                 0x25a20, 0x25a28,
1139                 0x25a30, 0x25a48,
1140                 0x25a50, 0x25a54,
1141                 0x25a60, 0x25a68,
1142                 0x25a70, 0x25a70,
1143                 0x25a78, 0x25a98,
1144                 0x25aa0, 0x25aa8,
1145                 0x25ab0, 0x25ac8,
1146                 0x25ad0, 0x25ad4,
1147                 0x25ae0, 0x25ae8,
1148                 0x25af0, 0x25af0,
1149                 0x25af8, 0x25c18,
1150                 0x25c20, 0x25c20,
1151                 0x25c28, 0x25c30,
1152                 0x25c38, 0x25c38,
1153                 0x25c80, 0x25c98,
1154                 0x25ca0, 0x25ca8,
1155                 0x25cb0, 0x25cc8,
1156                 0x25cd0, 0x25cd4,
1157                 0x25ce0, 0x25ce8,
1158                 0x25cf0, 0x25cf0,
1159                 0x25cf8, 0x25d7c,
1160                 0x25e00, 0x25e04,
1161                 0x26000, 0x2602c,
1162                 0x26100, 0x2613c,
1163                 0x26190, 0x261a0,
1164                 0x261a8, 0x261b8,
1165                 0x261c4, 0x261c8,
1166                 0x26200, 0x26318,
1167                 0x26400, 0x264b4,
1168                 0x264c0, 0x26528,
1169                 0x26540, 0x26614,
1170                 0x27000, 0x27040,
1171                 0x2704c, 0x27060,
1172                 0x270c0, 0x270ec,
1173                 0x27200, 0x27268,
1174                 0x27270, 0x27284,
1175                 0x272fc, 0x27388,
1176                 0x27400, 0x27404,
1177                 0x27500, 0x27500,
1178                 0x27510, 0x27518,
1179                 0x2752c, 0x27530,
1180                 0x2753c, 0x2753c,
1181                 0x27550, 0x27554,
1182                 0x27600, 0x27600,
1183                 0x27608, 0x2761c,
1184                 0x27624, 0x27628,
1185                 0x27630, 0x27634,
1186                 0x2763c, 0x2763c,
1187                 0x27700, 0x2771c,
1188                 0x27780, 0x2778c,
1189                 0x27800, 0x27818,
1190                 0x27820, 0x27828,
1191                 0x27830, 0x27848,
1192                 0x27850, 0x27854,
1193                 0x27860, 0x27868,
1194                 0x27870, 0x27870,
1195                 0x27878, 0x27898,
1196                 0x278a0, 0x278a8,
1197                 0x278b0, 0x278c8,
1198                 0x278d0, 0x278d4,
1199                 0x278e0, 0x278e8,
1200                 0x278f0, 0x278f0,
1201                 0x278f8, 0x27a18,
1202                 0x27a20, 0x27a28,
1203                 0x27a30, 0x27a48,
1204                 0x27a50, 0x27a54,
1205                 0x27a60, 0x27a68,
1206                 0x27a70, 0x27a70,
1207                 0x27a78, 0x27a98,
1208                 0x27aa0, 0x27aa8,
1209                 0x27ab0, 0x27ac8,
1210                 0x27ad0, 0x27ad4,
1211                 0x27ae0, 0x27ae8,
1212                 0x27af0, 0x27af0,
1213                 0x27af8, 0x27c18,
1214                 0x27c20, 0x27c20,
1215                 0x27c28, 0x27c30,
1216                 0x27c38, 0x27c38,
1217                 0x27c80, 0x27c98,
1218                 0x27ca0, 0x27ca8,
1219                 0x27cb0, 0x27cc8,
1220                 0x27cd0, 0x27cd4,
1221                 0x27ce0, 0x27ce8,
1222                 0x27cf0, 0x27cf0,
1223                 0x27cf8, 0x27d7c,
1224                 0x27e00, 0x27e04,
1225         };
1226
1227         static const unsigned int t4vf_reg_ranges[] = {
1228                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1229                 VF_MPS_REG(A_MPS_VF_CTL),
1230                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1231                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1232                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1233                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1234                 FW_T4VF_MBDATA_BASE_ADDR,
1235                 FW_T4VF_MBDATA_BASE_ADDR +
1236                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1237         };
1238
1239         static const unsigned int t5_reg_ranges[] = {
1240                 0x1008, 0x10c0,
1241                 0x10cc, 0x10f8,
1242                 0x1100, 0x1100,
1243                 0x110c, 0x1148,
1244                 0x1180, 0x1184,
1245                 0x1190, 0x1194,
1246                 0x11a0, 0x11a4,
1247                 0x11b0, 0x11b4,
1248                 0x11fc, 0x123c,
1249                 0x1280, 0x173c,
1250                 0x1800, 0x18fc,
1251                 0x3000, 0x3028,
1252                 0x3060, 0x30b0,
1253                 0x30b8, 0x30d8,
1254                 0x30e0, 0x30fc,
1255                 0x3140, 0x357c,
1256                 0x35a8, 0x35cc,
1257                 0x35ec, 0x35ec,
1258                 0x3600, 0x5624,
1259                 0x56cc, 0x56ec,
1260                 0x56f4, 0x5720,
1261                 0x5728, 0x575c,
1262                 0x580c, 0x5814,
1263                 0x5890, 0x589c,
1264                 0x58a4, 0x58ac,
1265                 0x58b8, 0x58bc,
1266                 0x5940, 0x59c8,
1267                 0x59d0, 0x59dc,
1268                 0x59fc, 0x5a18,
1269                 0x5a60, 0x5a70,
1270                 0x5a80, 0x5a9c,
1271                 0x5b94, 0x5bfc,
1272                 0x6000, 0x6020,
1273                 0x6028, 0x6040,
1274                 0x6058, 0x609c,
1275                 0x60a8, 0x614c,
1276                 0x7700, 0x7798,
1277                 0x77c0, 0x78fc,
1278                 0x7b00, 0x7b58,
1279                 0x7b60, 0x7b84,
1280                 0x7b8c, 0x7c54,
1281                 0x7d00, 0x7d38,
1282                 0x7d40, 0x7d80,
1283                 0x7d8c, 0x7ddc,
1284                 0x7de4, 0x7e04,
1285                 0x7e10, 0x7e1c,
1286                 0x7e24, 0x7e38,
1287                 0x7e40, 0x7e44,
1288                 0x7e4c, 0x7e78,
1289                 0x7e80, 0x7edc,
1290                 0x7ee8, 0x7efc,
1291                 0x8dc0, 0x8de0,
1292                 0x8df8, 0x8e04,
1293                 0x8e10, 0x8e84,
1294                 0x8ea0, 0x8f84,
1295                 0x8fc0, 0x9058,
1296                 0x9060, 0x9060,
1297                 0x9068, 0x90f8,
1298                 0x9400, 0x9408,
1299                 0x9410, 0x9470,
1300                 0x9600, 0x9600,
1301                 0x9608, 0x9638,
1302                 0x9640, 0x96f4,
1303                 0x9800, 0x9808,
1304                 0x9820, 0x983c,
1305                 0x9850, 0x9864,
1306                 0x9c00, 0x9c6c,
1307                 0x9c80, 0x9cec,
1308                 0x9d00, 0x9d6c,
1309                 0x9d80, 0x9dec,
1310                 0x9e00, 0x9e6c,
1311                 0x9e80, 0x9eec,
1312                 0x9f00, 0x9f6c,
1313                 0x9f80, 0xa020,
1314                 0xd004, 0xd004,
1315                 0xd010, 0xd03c,
1316                 0xdfc0, 0xdfe0,
1317                 0xe000, 0x1106c,
1318                 0x11074, 0x11088,
1319                 0x1109c, 0x1117c,
1320                 0x11190, 0x11204,
1321                 0x19040, 0x1906c,
1322                 0x19078, 0x19080,
1323                 0x1908c, 0x190e8,
1324                 0x190f0, 0x190f8,
1325                 0x19100, 0x19110,
1326                 0x19120, 0x19124,
1327                 0x19150, 0x19194,
1328                 0x1919c, 0x191b0,
1329                 0x191d0, 0x191e8,
1330                 0x19238, 0x19290,
1331                 0x193f8, 0x19428,
1332                 0x19430, 0x19444,
1333                 0x1944c, 0x1946c,
1334                 0x19474, 0x19474,
1335                 0x19490, 0x194cc,
1336                 0x194f0, 0x194f8,
1337                 0x19c00, 0x19c08,
1338                 0x19c10, 0x19c60,
1339                 0x19c94, 0x19ce4,
1340                 0x19cf0, 0x19d40,
1341                 0x19d50, 0x19d94,
1342                 0x19da0, 0x19de8,
1343                 0x19df0, 0x19e10,
1344                 0x19e50, 0x19e90,
1345                 0x19ea0, 0x19f24,
1346                 0x19f34, 0x19f34,
1347                 0x19f40, 0x19f50,
1348                 0x19f90, 0x19fb4,
1349                 0x19fc4, 0x19fe4,
1350                 0x1a000, 0x1a004,
1351                 0x1a010, 0x1a06c,
1352                 0x1a0b0, 0x1a0e4,
1353                 0x1a0ec, 0x1a0f8,
1354                 0x1a100, 0x1a108,
1355                 0x1a114, 0x1a120,
1356                 0x1a128, 0x1a130,
1357                 0x1a138, 0x1a138,
1358                 0x1a190, 0x1a1c4,
1359                 0x1a1fc, 0x1a1fc,
1360                 0x1e008, 0x1e00c,
1361                 0x1e040, 0x1e044,
1362                 0x1e04c, 0x1e04c,
1363                 0x1e284, 0x1e290,
1364                 0x1e2c0, 0x1e2c0,
1365                 0x1e2e0, 0x1e2e0,
1366                 0x1e300, 0x1e384,
1367                 0x1e3c0, 0x1e3c8,
1368                 0x1e408, 0x1e40c,
1369                 0x1e440, 0x1e444,
1370                 0x1e44c, 0x1e44c,
1371                 0x1e684, 0x1e690,
1372                 0x1e6c0, 0x1e6c0,
1373                 0x1e6e0, 0x1e6e0,
1374                 0x1e700, 0x1e784,
1375                 0x1e7c0, 0x1e7c8,
1376                 0x1e808, 0x1e80c,
1377                 0x1e840, 0x1e844,
1378                 0x1e84c, 0x1e84c,
1379                 0x1ea84, 0x1ea90,
1380                 0x1eac0, 0x1eac0,
1381                 0x1eae0, 0x1eae0,
1382                 0x1eb00, 0x1eb84,
1383                 0x1ebc0, 0x1ebc8,
1384                 0x1ec08, 0x1ec0c,
1385                 0x1ec40, 0x1ec44,
1386                 0x1ec4c, 0x1ec4c,
1387                 0x1ee84, 0x1ee90,
1388                 0x1eec0, 0x1eec0,
1389                 0x1eee0, 0x1eee0,
1390                 0x1ef00, 0x1ef84,
1391                 0x1efc0, 0x1efc8,
1392                 0x1f008, 0x1f00c,
1393                 0x1f040, 0x1f044,
1394                 0x1f04c, 0x1f04c,
1395                 0x1f284, 0x1f290,
1396                 0x1f2c0, 0x1f2c0,
1397                 0x1f2e0, 0x1f2e0,
1398                 0x1f300, 0x1f384,
1399                 0x1f3c0, 0x1f3c8,
1400                 0x1f408, 0x1f40c,
1401                 0x1f440, 0x1f444,
1402                 0x1f44c, 0x1f44c,
1403                 0x1f684, 0x1f690,
1404                 0x1f6c0, 0x1f6c0,
1405                 0x1f6e0, 0x1f6e0,
1406                 0x1f700, 0x1f784,
1407                 0x1f7c0, 0x1f7c8,
1408                 0x1f808, 0x1f80c,
1409                 0x1f840, 0x1f844,
1410                 0x1f84c, 0x1f84c,
1411                 0x1fa84, 0x1fa90,
1412                 0x1fac0, 0x1fac0,
1413                 0x1fae0, 0x1fae0,
1414                 0x1fb00, 0x1fb84,
1415                 0x1fbc0, 0x1fbc8,
1416                 0x1fc08, 0x1fc0c,
1417                 0x1fc40, 0x1fc44,
1418                 0x1fc4c, 0x1fc4c,
1419                 0x1fe84, 0x1fe90,
1420                 0x1fec0, 0x1fec0,
1421                 0x1fee0, 0x1fee0,
1422                 0x1ff00, 0x1ff84,
1423                 0x1ffc0, 0x1ffc8,
1424                 0x30000, 0x30030,
1425                 0x30100, 0x30144,
1426                 0x30190, 0x301a0,
1427                 0x301a8, 0x301b8,
1428                 0x301c4, 0x301c8,
1429                 0x301d0, 0x301d0,
1430                 0x30200, 0x30318,
1431                 0x30400, 0x304b4,
1432                 0x304c0, 0x3052c,
1433                 0x30540, 0x3061c,
1434                 0x30800, 0x30828,
1435                 0x30834, 0x30834,
1436                 0x308c0, 0x30908,
1437                 0x30910, 0x309ac,
1438                 0x30a00, 0x30a14,
1439                 0x30a1c, 0x30a2c,
1440                 0x30a44, 0x30a50,
1441                 0x30a74, 0x30a74,
1442                 0x30a7c, 0x30afc,
1443                 0x30b08, 0x30c24,
1444                 0x30d00, 0x30d00,
1445                 0x30d08, 0x30d14,
1446                 0x30d1c, 0x30d20,
1447                 0x30d3c, 0x30d3c,
1448                 0x30d48, 0x30d50,
1449                 0x31200, 0x3120c,
1450                 0x31220, 0x31220,
1451                 0x31240, 0x31240,
1452                 0x31600, 0x3160c,
1453                 0x31a00, 0x31a1c,
1454                 0x31e00, 0x31e20,
1455                 0x31e38, 0x31e3c,
1456                 0x31e80, 0x31e80,
1457                 0x31e88, 0x31ea8,
1458                 0x31eb0, 0x31eb4,
1459                 0x31ec8, 0x31ed4,
1460                 0x31fb8, 0x32004,
1461                 0x32200, 0x32200,
1462                 0x32208, 0x32240,
1463                 0x32248, 0x32280,
1464                 0x32288, 0x322c0,
1465                 0x322c8, 0x322fc,
1466                 0x32600, 0x32630,
1467                 0x32a00, 0x32abc,
1468                 0x32b00, 0x32b10,
1469                 0x32b20, 0x32b30,
1470                 0x32b40, 0x32b50,
1471                 0x32b60, 0x32b70,
1472                 0x33000, 0x33028,
1473                 0x33030, 0x33048,
1474                 0x33060, 0x33068,
1475                 0x33070, 0x3309c,
1476                 0x330f0, 0x33128,
1477                 0x33130, 0x33148,
1478                 0x33160, 0x33168,
1479                 0x33170, 0x3319c,
1480                 0x331f0, 0x33238,
1481                 0x33240, 0x33240,
1482                 0x33248, 0x33250,
1483                 0x3325c, 0x33264,
1484                 0x33270, 0x332b8,
1485                 0x332c0, 0x332e4,
1486                 0x332f8, 0x33338,
1487                 0x33340, 0x33340,
1488                 0x33348, 0x33350,
1489                 0x3335c, 0x33364,
1490                 0x33370, 0x333b8,
1491                 0x333c0, 0x333e4,
1492                 0x333f8, 0x33428,
1493                 0x33430, 0x33448,
1494                 0x33460, 0x33468,
1495                 0x33470, 0x3349c,
1496                 0x334f0, 0x33528,
1497                 0x33530, 0x33548,
1498                 0x33560, 0x33568,
1499                 0x33570, 0x3359c,
1500                 0x335f0, 0x33638,
1501                 0x33640, 0x33640,
1502                 0x33648, 0x33650,
1503                 0x3365c, 0x33664,
1504                 0x33670, 0x336b8,
1505                 0x336c0, 0x336e4,
1506                 0x336f8, 0x33738,
1507                 0x33740, 0x33740,
1508                 0x33748, 0x33750,
1509                 0x3375c, 0x33764,
1510                 0x33770, 0x337b8,
1511                 0x337c0, 0x337e4,
1512                 0x337f8, 0x337fc,
1513                 0x33814, 0x33814,
1514                 0x3382c, 0x3382c,
1515                 0x33880, 0x3388c,
1516                 0x338e8, 0x338ec,
1517                 0x33900, 0x33928,
1518                 0x33930, 0x33948,
1519                 0x33960, 0x33968,
1520                 0x33970, 0x3399c,
1521                 0x339f0, 0x33a38,
1522                 0x33a40, 0x33a40,
1523                 0x33a48, 0x33a50,
1524                 0x33a5c, 0x33a64,
1525                 0x33a70, 0x33ab8,
1526                 0x33ac0, 0x33ae4,
1527                 0x33af8, 0x33b10,
1528                 0x33b28, 0x33b28,
1529                 0x33b3c, 0x33b50,
1530                 0x33bf0, 0x33c10,
1531                 0x33c28, 0x33c28,
1532                 0x33c3c, 0x33c50,
1533                 0x33cf0, 0x33cfc,
1534                 0x34000, 0x34030,
1535                 0x34100, 0x34144,
1536                 0x34190, 0x341a0,
1537                 0x341a8, 0x341b8,
1538                 0x341c4, 0x341c8,
1539                 0x341d0, 0x341d0,
1540                 0x34200, 0x34318,
1541                 0x34400, 0x344b4,
1542                 0x344c0, 0x3452c,
1543                 0x34540, 0x3461c,
1544                 0x34800, 0x34828,
1545                 0x34834, 0x34834,
1546                 0x348c0, 0x34908,
1547                 0x34910, 0x349ac,
1548                 0x34a00, 0x34a14,
1549                 0x34a1c, 0x34a2c,
1550                 0x34a44, 0x34a50,
1551                 0x34a74, 0x34a74,
1552                 0x34a7c, 0x34afc,
1553                 0x34b08, 0x34c24,
1554                 0x34d00, 0x34d00,
1555                 0x34d08, 0x34d14,
1556                 0x34d1c, 0x34d20,
1557                 0x34d3c, 0x34d3c,
1558                 0x34d48, 0x34d50,
1559                 0x35200, 0x3520c,
1560                 0x35220, 0x35220,
1561                 0x35240, 0x35240,
1562                 0x35600, 0x3560c,
1563                 0x35a00, 0x35a1c,
1564                 0x35e00, 0x35e20,
1565                 0x35e38, 0x35e3c,
1566                 0x35e80, 0x35e80,
1567                 0x35e88, 0x35ea8,
1568                 0x35eb0, 0x35eb4,
1569                 0x35ec8, 0x35ed4,
1570                 0x35fb8, 0x36004,
1571                 0x36200, 0x36200,
1572                 0x36208, 0x36240,
1573                 0x36248, 0x36280,
1574                 0x36288, 0x362c0,
1575                 0x362c8, 0x362fc,
1576                 0x36600, 0x36630,
1577                 0x36a00, 0x36abc,
1578                 0x36b00, 0x36b10,
1579                 0x36b20, 0x36b30,
1580                 0x36b40, 0x36b50,
1581                 0x36b60, 0x36b70,
1582                 0x37000, 0x37028,
1583                 0x37030, 0x37048,
1584                 0x37060, 0x37068,
1585                 0x37070, 0x3709c,
1586                 0x370f0, 0x37128,
1587                 0x37130, 0x37148,
1588                 0x37160, 0x37168,
1589                 0x37170, 0x3719c,
1590                 0x371f0, 0x37238,
1591                 0x37240, 0x37240,
1592                 0x37248, 0x37250,
1593                 0x3725c, 0x37264,
1594                 0x37270, 0x372b8,
1595                 0x372c0, 0x372e4,
1596                 0x372f8, 0x37338,
1597                 0x37340, 0x37340,
1598                 0x37348, 0x37350,
1599                 0x3735c, 0x37364,
1600                 0x37370, 0x373b8,
1601                 0x373c0, 0x373e4,
1602                 0x373f8, 0x37428,
1603                 0x37430, 0x37448,
1604                 0x37460, 0x37468,
1605                 0x37470, 0x3749c,
1606                 0x374f0, 0x37528,
1607                 0x37530, 0x37548,
1608                 0x37560, 0x37568,
1609                 0x37570, 0x3759c,
1610                 0x375f0, 0x37638,
1611                 0x37640, 0x37640,
1612                 0x37648, 0x37650,
1613                 0x3765c, 0x37664,
1614                 0x37670, 0x376b8,
1615                 0x376c0, 0x376e4,
1616                 0x376f8, 0x37738,
1617                 0x37740, 0x37740,
1618                 0x37748, 0x37750,
1619                 0x3775c, 0x37764,
1620                 0x37770, 0x377b8,
1621                 0x377c0, 0x377e4,
1622                 0x377f8, 0x377fc,
1623                 0x37814, 0x37814,
1624                 0x3782c, 0x3782c,
1625                 0x37880, 0x3788c,
1626                 0x378e8, 0x378ec,
1627                 0x37900, 0x37928,
1628                 0x37930, 0x37948,
1629                 0x37960, 0x37968,
1630                 0x37970, 0x3799c,
1631                 0x379f0, 0x37a38,
1632                 0x37a40, 0x37a40,
1633                 0x37a48, 0x37a50,
1634                 0x37a5c, 0x37a64,
1635                 0x37a70, 0x37ab8,
1636                 0x37ac0, 0x37ae4,
1637                 0x37af8, 0x37b10,
1638                 0x37b28, 0x37b28,
1639                 0x37b3c, 0x37b50,
1640                 0x37bf0, 0x37c10,
1641                 0x37c28, 0x37c28,
1642                 0x37c3c, 0x37c50,
1643                 0x37cf0, 0x37cfc,
1644                 0x38000, 0x38030,
1645                 0x38100, 0x38144,
1646                 0x38190, 0x381a0,
1647                 0x381a8, 0x381b8,
1648                 0x381c4, 0x381c8,
1649                 0x381d0, 0x381d0,
1650                 0x38200, 0x38318,
1651                 0x38400, 0x384b4,
1652                 0x384c0, 0x3852c,
1653                 0x38540, 0x3861c,
1654                 0x38800, 0x38828,
1655                 0x38834, 0x38834,
1656                 0x388c0, 0x38908,
1657                 0x38910, 0x389ac,
1658                 0x38a00, 0x38a14,
1659                 0x38a1c, 0x38a2c,
1660                 0x38a44, 0x38a50,
1661                 0x38a74, 0x38a74,
1662                 0x38a7c, 0x38afc,
1663                 0x38b08, 0x38c24,
1664                 0x38d00, 0x38d00,
1665                 0x38d08, 0x38d14,
1666                 0x38d1c, 0x38d20,
1667                 0x38d3c, 0x38d3c,
1668                 0x38d48, 0x38d50,
1669                 0x39200, 0x3920c,
1670                 0x39220, 0x39220,
1671                 0x39240, 0x39240,
1672                 0x39600, 0x3960c,
1673                 0x39a00, 0x39a1c,
1674                 0x39e00, 0x39e20,
1675                 0x39e38, 0x39e3c,
1676                 0x39e80, 0x39e80,
1677                 0x39e88, 0x39ea8,
1678                 0x39eb0, 0x39eb4,
1679                 0x39ec8, 0x39ed4,
1680                 0x39fb8, 0x3a004,
1681                 0x3a200, 0x3a200,
1682                 0x3a208, 0x3a240,
1683                 0x3a248, 0x3a280,
1684                 0x3a288, 0x3a2c0,
1685                 0x3a2c8, 0x3a2fc,
1686                 0x3a600, 0x3a630,
1687                 0x3aa00, 0x3aabc,
1688                 0x3ab00, 0x3ab10,
1689                 0x3ab20, 0x3ab30,
1690                 0x3ab40, 0x3ab50,
1691                 0x3ab60, 0x3ab70,
1692                 0x3b000, 0x3b028,
1693                 0x3b030, 0x3b048,
1694                 0x3b060, 0x3b068,
1695                 0x3b070, 0x3b09c,
1696                 0x3b0f0, 0x3b128,
1697                 0x3b130, 0x3b148,
1698                 0x3b160, 0x3b168,
1699                 0x3b170, 0x3b19c,
1700                 0x3b1f0, 0x3b238,
1701                 0x3b240, 0x3b240,
1702                 0x3b248, 0x3b250,
1703                 0x3b25c, 0x3b264,
1704                 0x3b270, 0x3b2b8,
1705                 0x3b2c0, 0x3b2e4,
1706                 0x3b2f8, 0x3b338,
1707                 0x3b340, 0x3b340,
1708                 0x3b348, 0x3b350,
1709                 0x3b35c, 0x3b364,
1710                 0x3b370, 0x3b3b8,
1711                 0x3b3c0, 0x3b3e4,
1712                 0x3b3f8, 0x3b428,
1713                 0x3b430, 0x3b448,
1714                 0x3b460, 0x3b468,
1715                 0x3b470, 0x3b49c,
1716                 0x3b4f0, 0x3b528,
1717                 0x3b530, 0x3b548,
1718                 0x3b560, 0x3b568,
1719                 0x3b570, 0x3b59c,
1720                 0x3b5f0, 0x3b638,
1721                 0x3b640, 0x3b640,
1722                 0x3b648, 0x3b650,
1723                 0x3b65c, 0x3b664,
1724                 0x3b670, 0x3b6b8,
1725                 0x3b6c0, 0x3b6e4,
1726                 0x3b6f8, 0x3b738,
1727                 0x3b740, 0x3b740,
1728                 0x3b748, 0x3b750,
1729                 0x3b75c, 0x3b764,
1730                 0x3b770, 0x3b7b8,
1731                 0x3b7c0, 0x3b7e4,
1732                 0x3b7f8, 0x3b7fc,
1733                 0x3b814, 0x3b814,
1734                 0x3b82c, 0x3b82c,
1735                 0x3b880, 0x3b88c,
1736                 0x3b8e8, 0x3b8ec,
1737                 0x3b900, 0x3b928,
1738                 0x3b930, 0x3b948,
1739                 0x3b960, 0x3b968,
1740                 0x3b970, 0x3b99c,
1741                 0x3b9f0, 0x3ba38,
1742                 0x3ba40, 0x3ba40,
1743                 0x3ba48, 0x3ba50,
1744                 0x3ba5c, 0x3ba64,
1745                 0x3ba70, 0x3bab8,
1746                 0x3bac0, 0x3bae4,
1747                 0x3baf8, 0x3bb10,
1748                 0x3bb28, 0x3bb28,
1749                 0x3bb3c, 0x3bb50,
1750                 0x3bbf0, 0x3bc10,
1751                 0x3bc28, 0x3bc28,
1752                 0x3bc3c, 0x3bc50,
1753                 0x3bcf0, 0x3bcfc,
1754                 0x3c000, 0x3c030,
1755                 0x3c100, 0x3c144,
1756                 0x3c190, 0x3c1a0,
1757                 0x3c1a8, 0x3c1b8,
1758                 0x3c1c4, 0x3c1c8,
1759                 0x3c1d0, 0x3c1d0,
1760                 0x3c200, 0x3c318,
1761                 0x3c400, 0x3c4b4,
1762                 0x3c4c0, 0x3c52c,
1763                 0x3c540, 0x3c61c,
1764                 0x3c800, 0x3c828,
1765                 0x3c834, 0x3c834,
1766                 0x3c8c0, 0x3c908,
1767                 0x3c910, 0x3c9ac,
1768                 0x3ca00, 0x3ca14,
1769                 0x3ca1c, 0x3ca2c,
1770                 0x3ca44, 0x3ca50,
1771                 0x3ca74, 0x3ca74,
1772                 0x3ca7c, 0x3cafc,
1773                 0x3cb08, 0x3cc24,
1774                 0x3cd00, 0x3cd00,
1775                 0x3cd08, 0x3cd14,
1776                 0x3cd1c, 0x3cd20,
1777                 0x3cd3c, 0x3cd3c,
1778                 0x3cd48, 0x3cd50,
1779                 0x3d200, 0x3d20c,
1780                 0x3d220, 0x3d220,
1781                 0x3d240, 0x3d240,
1782                 0x3d600, 0x3d60c,
1783                 0x3da00, 0x3da1c,
1784                 0x3de00, 0x3de20,
1785                 0x3de38, 0x3de3c,
1786                 0x3de80, 0x3de80,
1787                 0x3de88, 0x3dea8,
1788                 0x3deb0, 0x3deb4,
1789                 0x3dec8, 0x3ded4,
1790                 0x3dfb8, 0x3e004,
1791                 0x3e200, 0x3e200,
1792                 0x3e208, 0x3e240,
1793                 0x3e248, 0x3e280,
1794                 0x3e288, 0x3e2c0,
1795                 0x3e2c8, 0x3e2fc,
1796                 0x3e600, 0x3e630,
1797                 0x3ea00, 0x3eabc,
1798                 0x3eb00, 0x3eb10,
1799                 0x3eb20, 0x3eb30,
1800                 0x3eb40, 0x3eb50,
1801                 0x3eb60, 0x3eb70,
1802                 0x3f000, 0x3f028,
1803                 0x3f030, 0x3f048,
1804                 0x3f060, 0x3f068,
1805                 0x3f070, 0x3f09c,
1806                 0x3f0f0, 0x3f128,
1807                 0x3f130, 0x3f148,
1808                 0x3f160, 0x3f168,
1809                 0x3f170, 0x3f19c,
1810                 0x3f1f0, 0x3f238,
1811                 0x3f240, 0x3f240,
1812                 0x3f248, 0x3f250,
1813                 0x3f25c, 0x3f264,
1814                 0x3f270, 0x3f2b8,
1815                 0x3f2c0, 0x3f2e4,
1816                 0x3f2f8, 0x3f338,
1817                 0x3f340, 0x3f340,
1818                 0x3f348, 0x3f350,
1819                 0x3f35c, 0x3f364,
1820                 0x3f370, 0x3f3b8,
1821                 0x3f3c0, 0x3f3e4,
1822                 0x3f3f8, 0x3f428,
1823                 0x3f430, 0x3f448,
1824                 0x3f460, 0x3f468,
1825                 0x3f470, 0x3f49c,
1826                 0x3f4f0, 0x3f528,
1827                 0x3f530, 0x3f548,
1828                 0x3f560, 0x3f568,
1829                 0x3f570, 0x3f59c,
1830                 0x3f5f0, 0x3f638,
1831                 0x3f640, 0x3f640,
1832                 0x3f648, 0x3f650,
1833                 0x3f65c, 0x3f664,
1834                 0x3f670, 0x3f6b8,
1835                 0x3f6c0, 0x3f6e4,
1836                 0x3f6f8, 0x3f738,
1837                 0x3f740, 0x3f740,
1838                 0x3f748, 0x3f750,
1839                 0x3f75c, 0x3f764,
1840                 0x3f770, 0x3f7b8,
1841                 0x3f7c0, 0x3f7e4,
1842                 0x3f7f8, 0x3f7fc,
1843                 0x3f814, 0x3f814,
1844                 0x3f82c, 0x3f82c,
1845                 0x3f880, 0x3f88c,
1846                 0x3f8e8, 0x3f8ec,
1847                 0x3f900, 0x3f928,
1848                 0x3f930, 0x3f948,
1849                 0x3f960, 0x3f968,
1850                 0x3f970, 0x3f99c,
1851                 0x3f9f0, 0x3fa38,
1852                 0x3fa40, 0x3fa40,
1853                 0x3fa48, 0x3fa50,
1854                 0x3fa5c, 0x3fa64,
1855                 0x3fa70, 0x3fab8,
1856                 0x3fac0, 0x3fae4,
1857                 0x3faf8, 0x3fb10,
1858                 0x3fb28, 0x3fb28,
1859                 0x3fb3c, 0x3fb50,
1860                 0x3fbf0, 0x3fc10,
1861                 0x3fc28, 0x3fc28,
1862                 0x3fc3c, 0x3fc50,
1863                 0x3fcf0, 0x3fcfc,
1864                 0x40000, 0x4000c,
1865                 0x40040, 0x40050,
1866                 0x40060, 0x40068,
1867                 0x4007c, 0x4008c,
1868                 0x40094, 0x400b0,
1869                 0x400c0, 0x40144,
1870                 0x40180, 0x4018c,
1871                 0x40200, 0x40254,
1872                 0x40260, 0x40264,
1873                 0x40270, 0x40288,
1874                 0x40290, 0x40298,
1875                 0x402ac, 0x402c8,
1876                 0x402d0, 0x402e0,
1877                 0x402f0, 0x402f0,
1878                 0x40300, 0x4033c,
1879                 0x403f8, 0x403fc,
1880                 0x41304, 0x413c4,
1881                 0x41400, 0x4140c,
1882                 0x41414, 0x4141c,
1883                 0x41480, 0x414d0,
1884                 0x44000, 0x44054,
1885                 0x4405c, 0x44078,
1886                 0x440c0, 0x44174,
1887                 0x44180, 0x441ac,
1888                 0x441b4, 0x441b8,
1889                 0x441c0, 0x44254,
1890                 0x4425c, 0x44278,
1891                 0x442c0, 0x44374,
1892                 0x44380, 0x443ac,
1893                 0x443b4, 0x443b8,
1894                 0x443c0, 0x44454,
1895                 0x4445c, 0x44478,
1896                 0x444c0, 0x44574,
1897                 0x44580, 0x445ac,
1898                 0x445b4, 0x445b8,
1899                 0x445c0, 0x44654,
1900                 0x4465c, 0x44678,
1901                 0x446c0, 0x44774,
1902                 0x44780, 0x447ac,
1903                 0x447b4, 0x447b8,
1904                 0x447c0, 0x44854,
1905                 0x4485c, 0x44878,
1906                 0x448c0, 0x44974,
1907                 0x44980, 0x449ac,
1908                 0x449b4, 0x449b8,
1909                 0x449c0, 0x449fc,
1910                 0x45000, 0x45004,
1911                 0x45010, 0x45030,
1912                 0x45040, 0x45060,
1913                 0x45068, 0x45068,
1914                 0x45080, 0x45084,
1915                 0x450a0, 0x450b0,
1916                 0x45200, 0x45204,
1917                 0x45210, 0x45230,
1918                 0x45240, 0x45260,
1919                 0x45268, 0x45268,
1920                 0x45280, 0x45284,
1921                 0x452a0, 0x452b0,
1922                 0x460c0, 0x460e4,
1923                 0x47000, 0x4703c,
1924                 0x47044, 0x4708c,
1925                 0x47200, 0x47250,
1926                 0x47400, 0x47408,
1927                 0x47414, 0x47420,
1928                 0x47600, 0x47618,
1929                 0x47800, 0x47814,
1930                 0x48000, 0x4800c,
1931                 0x48040, 0x48050,
1932                 0x48060, 0x48068,
1933                 0x4807c, 0x4808c,
1934                 0x48094, 0x480b0,
1935                 0x480c0, 0x48144,
1936                 0x48180, 0x4818c,
1937                 0x48200, 0x48254,
1938                 0x48260, 0x48264,
1939                 0x48270, 0x48288,
1940                 0x48290, 0x48298,
1941                 0x482ac, 0x482c8,
1942                 0x482d0, 0x482e0,
1943                 0x482f0, 0x482f0,
1944                 0x48300, 0x4833c,
1945                 0x483f8, 0x483fc,
1946                 0x49304, 0x493c4,
1947                 0x49400, 0x4940c,
1948                 0x49414, 0x4941c,
1949                 0x49480, 0x494d0,
1950                 0x4c000, 0x4c054,
1951                 0x4c05c, 0x4c078,
1952                 0x4c0c0, 0x4c174,
1953                 0x4c180, 0x4c1ac,
1954                 0x4c1b4, 0x4c1b8,
1955                 0x4c1c0, 0x4c254,
1956                 0x4c25c, 0x4c278,
1957                 0x4c2c0, 0x4c374,
1958                 0x4c380, 0x4c3ac,
1959                 0x4c3b4, 0x4c3b8,
1960                 0x4c3c0, 0x4c454,
1961                 0x4c45c, 0x4c478,
1962                 0x4c4c0, 0x4c574,
1963                 0x4c580, 0x4c5ac,
1964                 0x4c5b4, 0x4c5b8,
1965                 0x4c5c0, 0x4c654,
1966                 0x4c65c, 0x4c678,
1967                 0x4c6c0, 0x4c774,
1968                 0x4c780, 0x4c7ac,
1969                 0x4c7b4, 0x4c7b8,
1970                 0x4c7c0, 0x4c854,
1971                 0x4c85c, 0x4c878,
1972                 0x4c8c0, 0x4c974,
1973                 0x4c980, 0x4c9ac,
1974                 0x4c9b4, 0x4c9b8,
1975                 0x4c9c0, 0x4c9fc,
1976                 0x4d000, 0x4d004,
1977                 0x4d010, 0x4d030,
1978                 0x4d040, 0x4d060,
1979                 0x4d068, 0x4d068,
1980                 0x4d080, 0x4d084,
1981                 0x4d0a0, 0x4d0b0,
1982                 0x4d200, 0x4d204,
1983                 0x4d210, 0x4d230,
1984                 0x4d240, 0x4d260,
1985                 0x4d268, 0x4d268,
1986                 0x4d280, 0x4d284,
1987                 0x4d2a0, 0x4d2b0,
1988                 0x4e0c0, 0x4e0e4,
1989                 0x4f000, 0x4f03c,
1990                 0x4f044, 0x4f08c,
1991                 0x4f200, 0x4f250,
1992                 0x4f400, 0x4f408,
1993                 0x4f414, 0x4f420,
1994                 0x4f600, 0x4f618,
1995                 0x4f800, 0x4f814,
1996                 0x50000, 0x50084,
1997                 0x50090, 0x500cc,
1998                 0x50400, 0x50400,
1999                 0x50800, 0x50884,
2000                 0x50890, 0x508cc,
2001                 0x50c00, 0x50c00,
2002                 0x51000, 0x5101c,
2003                 0x51300, 0x51308,
2004         };
2005
2006         static const unsigned int t5vf_reg_ranges[] = {
2007                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2008                 VF_MPS_REG(A_MPS_VF_CTL),
2009                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2010                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2011                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2012                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2013                 FW_T4VF_MBDATA_BASE_ADDR,
2014                 FW_T4VF_MBDATA_BASE_ADDR +
2015                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2016         };
2017
2018         static const unsigned int t6_reg_ranges[] = {
2019                 0x1008, 0x101c,
2020                 0x1024, 0x10a8,
2021                 0x10b4, 0x10f8,
2022                 0x1100, 0x1114,
2023                 0x111c, 0x112c,
2024                 0x1138, 0x113c,
2025                 0x1144, 0x114c,
2026                 0x1180, 0x1184,
2027                 0x1190, 0x1194,
2028                 0x11a0, 0x11a4,
2029                 0x11b0, 0x11b4,
2030                 0x11fc, 0x1274,
2031                 0x1280, 0x133c,
2032                 0x1800, 0x18fc,
2033                 0x3000, 0x302c,
2034                 0x3060, 0x30b0,
2035                 0x30b8, 0x30d8,
2036                 0x30e0, 0x30fc,
2037                 0x3140, 0x357c,
2038                 0x35a8, 0x35cc,
2039                 0x35ec, 0x35ec,
2040                 0x3600, 0x5624,
2041                 0x56cc, 0x56ec,
2042                 0x56f4, 0x5720,
2043                 0x5728, 0x575c,
2044                 0x580c, 0x5814,
2045                 0x5890, 0x589c,
2046                 0x58a4, 0x58ac,
2047                 0x58b8, 0x58bc,
2048                 0x5940, 0x595c,
2049                 0x5980, 0x598c,
2050                 0x59b0, 0x59c8,
2051                 0x59d0, 0x59dc,
2052                 0x59fc, 0x5a18,
2053                 0x5a60, 0x5a6c,
2054                 0x5a80, 0x5a8c,
2055                 0x5a94, 0x5a9c,
2056                 0x5b94, 0x5bfc,
2057                 0x5c10, 0x5e48,
2058                 0x5e50, 0x5e94,
2059                 0x5ea0, 0x5eb0,
2060                 0x5ec0, 0x5ec0,
2061                 0x5ec8, 0x5ed0,
2062                 0x5ee0, 0x5ee0,
2063                 0x5ef0, 0x5ef0,
2064                 0x5f00, 0x5f00,
2065                 0x6000, 0x6020,
2066                 0x6028, 0x6040,
2067                 0x6058, 0x609c,
2068                 0x60a8, 0x619c,
2069                 0x7700, 0x7798,
2070                 0x77c0, 0x7880,
2071                 0x78cc, 0x78fc,
2072                 0x7b00, 0x7b58,
2073                 0x7b60, 0x7b84,
2074                 0x7b8c, 0x7c54,
2075                 0x7d00, 0x7d38,
2076                 0x7d40, 0x7d84,
2077                 0x7d8c, 0x7ddc,
2078                 0x7de4, 0x7e04,
2079                 0x7e10, 0x7e1c,
2080                 0x7e24, 0x7e38,
2081                 0x7e40, 0x7e44,
2082                 0x7e4c, 0x7e78,
2083                 0x7e80, 0x7edc,
2084                 0x7ee8, 0x7efc,
2085                 0x8dc0, 0x8de4,
2086                 0x8df8, 0x8e04,
2087                 0x8e10, 0x8e84,
2088                 0x8ea0, 0x8f88,
2089                 0x8fb8, 0x9058,
2090                 0x9060, 0x9060,
2091                 0x9068, 0x90f8,
2092                 0x9100, 0x9124,
2093                 0x9400, 0x9470,
2094                 0x9600, 0x9600,
2095                 0x9608, 0x9638,
2096                 0x9640, 0x9704,
2097                 0x9710, 0x971c,
2098                 0x9800, 0x9808,
2099                 0x9820, 0x983c,
2100                 0x9850, 0x9864,
2101                 0x9c00, 0x9c6c,
2102                 0x9c80, 0x9cec,
2103                 0x9d00, 0x9d6c,
2104                 0x9d80, 0x9dec,
2105                 0x9e00, 0x9e6c,
2106                 0x9e80, 0x9eec,
2107                 0x9f00, 0x9f6c,
2108                 0x9f80, 0xa020,
2109                 0xd004, 0xd03c,
2110                 0xd100, 0xd118,
2111                 0xd200, 0xd214,
2112                 0xd220, 0xd234,
2113                 0xd240, 0xd254,
2114                 0xd260, 0xd274,
2115                 0xd280, 0xd294,
2116                 0xd2a0, 0xd2b4,
2117                 0xd2c0, 0xd2d4,
2118                 0xd2e0, 0xd2f4,
2119                 0xd300, 0xd31c,
2120                 0xdfc0, 0xdfe0,
2121                 0xe000, 0xf008,
2122                 0xf010, 0xf018,
2123                 0xf020, 0xf028,
2124                 0x11000, 0x11014,
2125                 0x11048, 0x1106c,
2126                 0x11074, 0x11088,
2127                 0x11098, 0x11120,
2128                 0x1112c, 0x1117c,
2129                 0x11190, 0x112e0,
2130                 0x11300, 0x1130c,
2131                 0x12000, 0x1206c,
2132                 0x19040, 0x1906c,
2133                 0x19078, 0x19080,
2134                 0x1908c, 0x190e8,
2135                 0x190f0, 0x190f8,
2136                 0x19100, 0x19110,
2137                 0x19120, 0x19124,
2138                 0x19150, 0x19194,
2139                 0x1919c, 0x191b0,
2140                 0x191d0, 0x191e8,
2141                 0x19238, 0x19290,
2142                 0x192a4, 0x192b0,
2143                 0x192bc, 0x192bc,
2144                 0x19348, 0x1934c,
2145                 0x193f8, 0x19418,
2146                 0x19420, 0x19428,
2147                 0x19430, 0x19444,
2148                 0x1944c, 0x1946c,
2149                 0x19474, 0x19474,
2150                 0x19490, 0x194cc,
2151                 0x194f0, 0x194f8,
2152                 0x19c00, 0x19c48,
2153                 0x19c50, 0x19c80,
2154                 0x19c94, 0x19c98,
2155                 0x19ca0, 0x19cbc,
2156                 0x19ce4, 0x19ce4,
2157                 0x19cf0, 0x19cf8,
2158                 0x19d00, 0x19d28,
2159                 0x19d50, 0x19d78,
2160                 0x19d94, 0x19d98,
2161                 0x19da0, 0x19dc8,
2162                 0x19df0, 0x19e10,
2163                 0x19e50, 0x19e6c,
2164                 0x19ea0, 0x19ebc,
2165                 0x19ec4, 0x19ef4,
2166                 0x19f04, 0x19f2c,
2167                 0x19f34, 0x19f34,
2168                 0x19f40, 0x19f50,
2169                 0x19f90, 0x19fac,
2170                 0x19fc4, 0x19fc8,
2171                 0x19fd0, 0x19fe4,
2172                 0x1a000, 0x1a004,
2173                 0x1a010, 0x1a06c,
2174                 0x1a0b0, 0x1a0e4,
2175                 0x1a0ec, 0x1a0f8,
2176                 0x1a100, 0x1a108,
2177                 0x1a114, 0x1a120,
2178                 0x1a128, 0x1a130,
2179                 0x1a138, 0x1a138,
2180                 0x1a190, 0x1a1c4,
2181                 0x1a1fc, 0x1a1fc,
2182                 0x1e008, 0x1e00c,
2183                 0x1e040, 0x1e044,
2184                 0x1e04c, 0x1e04c,
2185                 0x1e284, 0x1e290,
2186                 0x1e2c0, 0x1e2c0,
2187                 0x1e2e0, 0x1e2e0,
2188                 0x1e300, 0x1e384,
2189                 0x1e3c0, 0x1e3c8,
2190                 0x1e408, 0x1e40c,
2191                 0x1e440, 0x1e444,
2192                 0x1e44c, 0x1e44c,
2193                 0x1e684, 0x1e690,
2194                 0x1e6c0, 0x1e6c0,
2195                 0x1e6e0, 0x1e6e0,
2196                 0x1e700, 0x1e784,
2197                 0x1e7c0, 0x1e7c8,
2198                 0x1e808, 0x1e80c,
2199                 0x1e840, 0x1e844,
2200                 0x1e84c, 0x1e84c,
2201                 0x1ea84, 0x1ea90,
2202                 0x1eac0, 0x1eac0,
2203                 0x1eae0, 0x1eae0,
2204                 0x1eb00, 0x1eb84,
2205                 0x1ebc0, 0x1ebc8,
2206                 0x1ec08, 0x1ec0c,
2207                 0x1ec40, 0x1ec44,
2208                 0x1ec4c, 0x1ec4c,
2209                 0x1ee84, 0x1ee90,
2210                 0x1eec0, 0x1eec0,
2211                 0x1eee0, 0x1eee0,
2212                 0x1ef00, 0x1ef84,
2213                 0x1efc0, 0x1efc8,
2214                 0x1f008, 0x1f00c,
2215                 0x1f040, 0x1f044,
2216                 0x1f04c, 0x1f04c,
2217                 0x1f284, 0x1f290,
2218                 0x1f2c0, 0x1f2c0,
2219                 0x1f2e0, 0x1f2e0,
2220                 0x1f300, 0x1f384,
2221                 0x1f3c0, 0x1f3c8,
2222                 0x1f408, 0x1f40c,
2223                 0x1f440, 0x1f444,
2224                 0x1f44c, 0x1f44c,
2225                 0x1f684, 0x1f690,
2226                 0x1f6c0, 0x1f6c0,
2227                 0x1f6e0, 0x1f6e0,
2228                 0x1f700, 0x1f784,
2229                 0x1f7c0, 0x1f7c8,
2230                 0x1f808, 0x1f80c,
2231                 0x1f840, 0x1f844,
2232                 0x1f84c, 0x1f84c,
2233                 0x1fa84, 0x1fa90,
2234                 0x1fac0, 0x1fac0,
2235                 0x1fae0, 0x1fae0,
2236                 0x1fb00, 0x1fb84,
2237                 0x1fbc0, 0x1fbc8,
2238                 0x1fc08, 0x1fc0c,
2239                 0x1fc40, 0x1fc44,
2240                 0x1fc4c, 0x1fc4c,
2241                 0x1fe84, 0x1fe90,
2242                 0x1fec0, 0x1fec0,
2243                 0x1fee0, 0x1fee0,
2244                 0x1ff00, 0x1ff84,
2245                 0x1ffc0, 0x1ffc8,
2246                 0x30000, 0x30030,
2247                 0x30100, 0x30168,
2248                 0x30190, 0x301a0,
2249                 0x301a8, 0x301b8,
2250                 0x301c4, 0x301c8,
2251                 0x301d0, 0x301d0,
2252                 0x30200, 0x30320,
2253                 0x30400, 0x304b4,
2254                 0x304c0, 0x3052c,
2255                 0x30540, 0x3061c,
2256                 0x30800, 0x308a0,
2257                 0x308c0, 0x30908,
2258                 0x30910, 0x309b8,
2259                 0x30a00, 0x30a04,
2260                 0x30a0c, 0x30a14,
2261                 0x30a1c, 0x30a2c,
2262                 0x30a44, 0x30a50,
2263                 0x30a74, 0x30a74,
2264                 0x30a7c, 0x30afc,
2265                 0x30b08, 0x30c24,
2266                 0x30d00, 0x30d14,
2267                 0x30d1c, 0x30d3c,
2268                 0x30d44, 0x30d4c,
2269                 0x30d54, 0x30d74,
2270                 0x30d7c, 0x30d7c,
2271                 0x30de0, 0x30de0,
2272                 0x30e00, 0x30ed4,
2273                 0x30f00, 0x30fa4,
2274                 0x30fc0, 0x30fc4,
2275                 0x31000, 0x31004,
2276                 0x31080, 0x310fc,
2277                 0x31208, 0x31220,
2278                 0x3123c, 0x31254,
2279                 0x31300, 0x31300,
2280                 0x31308, 0x3131c,
2281                 0x31338, 0x3133c,
2282                 0x31380, 0x31380,
2283                 0x31388, 0x313a8,
2284                 0x313b4, 0x313b4,
2285                 0x31400, 0x31420,
2286                 0x31438, 0x3143c,
2287                 0x31480, 0x31480,
2288                 0x314a8, 0x314a8,
2289                 0x314b0, 0x314b4,
2290                 0x314c8, 0x314d4,
2291                 0x31a40, 0x31a4c,
2292                 0x31af0, 0x31b20,
2293                 0x31b38, 0x31b3c,
2294                 0x31b80, 0x31b80,
2295                 0x31ba8, 0x31ba8,
2296                 0x31bb0, 0x31bb4,
2297                 0x31bc8, 0x31bd4,
2298                 0x32140, 0x3218c,
2299                 0x321f0, 0x321f4,
2300                 0x32200, 0x32200,
2301                 0x32218, 0x32218,
2302                 0x32400, 0x32400,
2303                 0x32408, 0x3241c,
2304                 0x32618, 0x32620,
2305                 0x32664, 0x32664,
2306                 0x326a8, 0x326a8,
2307                 0x326ec, 0x326ec,
2308                 0x32a00, 0x32abc,
2309                 0x32b00, 0x32b18,
2310                 0x32b20, 0x32b38,
2311                 0x32b40, 0x32b58,
2312                 0x32b60, 0x32b78,
2313                 0x32c00, 0x32c00,
2314                 0x32c08, 0x32c3c,
2315                 0x33000, 0x3302c,
2316                 0x33034, 0x33050,
2317                 0x33058, 0x33058,
2318                 0x33060, 0x3308c,
2319                 0x3309c, 0x330ac,
2320                 0x330c0, 0x330c0,
2321                 0x330c8, 0x330d0,
2322                 0x330d8, 0x330e0,
2323                 0x330ec, 0x3312c,
2324                 0x33134, 0x33150,
2325                 0x33158, 0x33158,
2326                 0x33160, 0x3318c,
2327                 0x3319c, 0x331ac,
2328                 0x331c0, 0x331c0,
2329                 0x331c8, 0x331d0,
2330                 0x331d8, 0x331e0,
2331                 0x331ec, 0x33290,
2332                 0x33298, 0x332c4,
2333                 0x332e4, 0x33390,
2334                 0x33398, 0x333c4,
2335                 0x333e4, 0x3342c,
2336                 0x33434, 0x33450,
2337                 0x33458, 0x33458,
2338                 0x33460, 0x3348c,
2339                 0x3349c, 0x334ac,
2340                 0x334c0, 0x334c0,
2341                 0x334c8, 0x334d0,
2342                 0x334d8, 0x334e0,
2343                 0x334ec, 0x3352c,
2344                 0x33534, 0x33550,
2345                 0x33558, 0x33558,
2346                 0x33560, 0x3358c,
2347                 0x3359c, 0x335ac,
2348                 0x335c0, 0x335c0,
2349                 0x335c8, 0x335d0,
2350                 0x335d8, 0x335e0,
2351                 0x335ec, 0x33690,
2352                 0x33698, 0x336c4,
2353                 0x336e4, 0x33790,
2354                 0x33798, 0x337c4,
2355                 0x337e4, 0x337fc,
2356                 0x33814, 0x33814,
2357                 0x33854, 0x33868,
2358                 0x33880, 0x3388c,
2359                 0x338c0, 0x338d0,
2360                 0x338e8, 0x338ec,
2361                 0x33900, 0x3392c,
2362                 0x33934, 0x33950,
2363                 0x33958, 0x33958,
2364                 0x33960, 0x3398c,
2365                 0x3399c, 0x339ac,
2366                 0x339c0, 0x339c0,
2367                 0x339c8, 0x339d0,
2368                 0x339d8, 0x339e0,
2369                 0x339ec, 0x33a90,
2370                 0x33a98, 0x33ac4,
2371                 0x33ae4, 0x33b10,
2372                 0x33b24, 0x33b28,
2373                 0x33b38, 0x33b50,
2374                 0x33bf0, 0x33c10,
2375                 0x33c24, 0x33c28,
2376                 0x33c38, 0x33c50,
2377                 0x33cf0, 0x33cfc,
2378                 0x34000, 0x34030,
2379                 0x34100, 0x34168,
2380                 0x34190, 0x341a0,
2381                 0x341a8, 0x341b8,
2382                 0x341c4, 0x341c8,
2383                 0x341d0, 0x341d0,
2384                 0x34200, 0x34320,
2385                 0x34400, 0x344b4,
2386                 0x344c0, 0x3452c,
2387                 0x34540, 0x3461c,
2388                 0x34800, 0x348a0,
2389                 0x348c0, 0x34908,
2390                 0x34910, 0x349b8,
2391                 0x34a00, 0x34a04,
2392                 0x34a0c, 0x34a14,
2393                 0x34a1c, 0x34a2c,
2394                 0x34a44, 0x34a50,
2395                 0x34a74, 0x34a74,
2396                 0x34a7c, 0x34afc,
2397                 0x34b08, 0x34c24,
2398                 0x34d00, 0x34d14,
2399                 0x34d1c, 0x34d3c,
2400                 0x34d44, 0x34d4c,
2401                 0x34d54, 0x34d74,
2402                 0x34d7c, 0x34d7c,
2403                 0x34de0, 0x34de0,
2404                 0x34e00, 0x34ed4,
2405                 0x34f00, 0x34fa4,
2406                 0x34fc0, 0x34fc4,
2407                 0x35000, 0x35004,
2408                 0x35080, 0x350fc,
2409                 0x35208, 0x35220,
2410                 0x3523c, 0x35254,
2411                 0x35300, 0x35300,
2412                 0x35308, 0x3531c,
2413                 0x35338, 0x3533c,
2414                 0x35380, 0x35380,
2415                 0x35388, 0x353a8,
2416                 0x353b4, 0x353b4,
2417                 0x35400, 0x35420,
2418                 0x35438, 0x3543c,
2419                 0x35480, 0x35480,
2420                 0x354a8, 0x354a8,
2421                 0x354b0, 0x354b4,
2422                 0x354c8, 0x354d4,
2423                 0x35a40, 0x35a4c,
2424                 0x35af0, 0x35b20,
2425                 0x35b38, 0x35b3c,
2426                 0x35b80, 0x35b80,
2427                 0x35ba8, 0x35ba8,
2428                 0x35bb0, 0x35bb4,
2429                 0x35bc8, 0x35bd4,
2430                 0x36140, 0x3618c,
2431                 0x361f0, 0x361f4,
2432                 0x36200, 0x36200,
2433                 0x36218, 0x36218,
2434                 0x36400, 0x36400,
2435                 0x36408, 0x3641c,
2436                 0x36618, 0x36620,
2437                 0x36664, 0x36664,
2438                 0x366a8, 0x366a8,
2439                 0x366ec, 0x366ec,
2440                 0x36a00, 0x36abc,
2441                 0x36b00, 0x36b18,
2442                 0x36b20, 0x36b38,
2443                 0x36b40, 0x36b58,
2444                 0x36b60, 0x36b78,
2445                 0x36c00, 0x36c00,
2446                 0x36c08, 0x36c3c,
2447                 0x37000, 0x3702c,
2448                 0x37034, 0x37050,
2449                 0x37058, 0x37058,
2450                 0x37060, 0x3708c,
2451                 0x3709c, 0x370ac,
2452                 0x370c0, 0x370c0,
2453                 0x370c8, 0x370d0,
2454                 0x370d8, 0x370e0,
2455                 0x370ec, 0x3712c,
2456                 0x37134, 0x37150,
2457                 0x37158, 0x37158,
2458                 0x37160, 0x3718c,
2459                 0x3719c, 0x371ac,
2460                 0x371c0, 0x371c0,
2461                 0x371c8, 0x371d0,
2462                 0x371d8, 0x371e0,
2463                 0x371ec, 0x37290,
2464                 0x37298, 0x372c4,
2465                 0x372e4, 0x37390,
2466                 0x37398, 0x373c4,
2467                 0x373e4, 0x3742c,
2468                 0x37434, 0x37450,
2469                 0x37458, 0x37458,
2470                 0x37460, 0x3748c,
2471                 0x3749c, 0x374ac,
2472                 0x374c0, 0x374c0,
2473                 0x374c8, 0x374d0,
2474                 0x374d8, 0x374e0,
2475                 0x374ec, 0x3752c,
2476                 0x37534, 0x37550,
2477                 0x37558, 0x37558,
2478                 0x37560, 0x3758c,
2479                 0x3759c, 0x375ac,
2480                 0x375c0, 0x375c0,
2481                 0x375c8, 0x375d0,
2482                 0x375d8, 0x375e0,
2483                 0x375ec, 0x37690,
2484                 0x37698, 0x376c4,
2485                 0x376e4, 0x37790,
2486                 0x37798, 0x377c4,
2487                 0x377e4, 0x377fc,
2488                 0x37814, 0x37814,
2489                 0x37854, 0x37868,
2490                 0x37880, 0x3788c,
2491                 0x378c0, 0x378d0,
2492                 0x378e8, 0x378ec,
2493                 0x37900, 0x3792c,
2494                 0x37934, 0x37950,
2495                 0x37958, 0x37958,
2496                 0x37960, 0x3798c,
2497                 0x3799c, 0x379ac,
2498                 0x379c0, 0x379c0,
2499                 0x379c8, 0x379d0,
2500                 0x379d8, 0x379e0,
2501                 0x379ec, 0x37a90,
2502                 0x37a98, 0x37ac4,
2503                 0x37ae4, 0x37b10,
2504                 0x37b24, 0x37b28,
2505                 0x37b38, 0x37b50,
2506                 0x37bf0, 0x37c10,
2507                 0x37c24, 0x37c28,
2508                 0x37c38, 0x37c50,
2509                 0x37cf0, 0x37cfc,
2510                 0x40040, 0x40040,
2511                 0x40080, 0x40084,
2512                 0x40100, 0x40100,
2513                 0x40140, 0x401bc,
2514                 0x40200, 0x40214,
2515                 0x40228, 0x40228,
2516                 0x40240, 0x40258,
2517                 0x40280, 0x40280,
2518                 0x40304, 0x40304,
2519                 0x40330, 0x4033c,
2520                 0x41304, 0x413c8,
2521                 0x413d0, 0x413dc,
2522                 0x413f0, 0x413f0,
2523                 0x41400, 0x4140c,
2524                 0x41414, 0x4141c,
2525                 0x41480, 0x414d0,
2526                 0x44000, 0x4407c,
2527                 0x440c0, 0x441ac,
2528                 0x441b4, 0x4427c,
2529                 0x442c0, 0x443ac,
2530                 0x443b4, 0x4447c,
2531                 0x444c0, 0x445ac,
2532                 0x445b4, 0x4467c,
2533                 0x446c0, 0x447ac,
2534                 0x447b4, 0x4487c,
2535                 0x448c0, 0x449ac,
2536                 0x449b4, 0x44a7c,
2537                 0x44ac0, 0x44bac,
2538                 0x44bb4, 0x44c7c,
2539                 0x44cc0, 0x44dac,
2540                 0x44db4, 0x44e7c,
2541                 0x44ec0, 0x44fac,
2542                 0x44fb4, 0x4507c,
2543                 0x450c0, 0x451ac,
2544                 0x451b4, 0x451fc,
2545                 0x45800, 0x45804,
2546                 0x45810, 0x45830,
2547                 0x45840, 0x45860,
2548                 0x45868, 0x45868,
2549                 0x45880, 0x45884,
2550                 0x458a0, 0x458b0,
2551                 0x45a00, 0x45a04,
2552                 0x45a10, 0x45a30,
2553                 0x45a40, 0x45a60,
2554                 0x45a68, 0x45a68,
2555                 0x45a80, 0x45a84,
2556                 0x45aa0, 0x45ab0,
2557                 0x460c0, 0x460e4,
2558                 0x47000, 0x4703c,
2559                 0x47044, 0x4708c,
2560                 0x47200, 0x47250,
2561                 0x47400, 0x47408,
2562                 0x47414, 0x47420,
2563                 0x47600, 0x47618,
2564                 0x47800, 0x47814,
2565                 0x47820, 0x4782c,
2566                 0x50000, 0x50084,
2567                 0x50090, 0x500cc,
2568                 0x50300, 0x50384,
2569                 0x50400, 0x50400,
2570                 0x50800, 0x50884,
2571                 0x50890, 0x508cc,
2572                 0x50b00, 0x50b84,
2573                 0x50c00, 0x50c00,
2574                 0x51000, 0x51020,
2575                 0x51028, 0x510b0,
2576                 0x51300, 0x51324,
2577         };
2578
2579         static const unsigned int t6vf_reg_ranges[] = {
2580                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2581                 VF_MPS_REG(A_MPS_VF_CTL),
2582                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2583                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2584                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2585                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2586                 FW_T6VF_MBDATA_BASE_ADDR,
2587                 FW_T6VF_MBDATA_BASE_ADDR +
2588                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2589         };
2590
2591         u32 *buf_end = (u32 *)(buf + buf_size);
2592         const unsigned int *reg_ranges;
2593         int reg_ranges_size, range;
2594         unsigned int chip_version = chip_id(adap);
2595
2596         /*
2597          * Select the right set of register ranges to dump depending on the
2598          * adapter chip type.
2599          */
2600         switch (chip_version) {
2601         case CHELSIO_T4:
2602                 if (adap->flags & IS_VF) {
2603                         reg_ranges = t4vf_reg_ranges;
2604                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2605                 } else {
2606                         reg_ranges = t4_reg_ranges;
2607                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2608                 }
2609                 break;
2610
2611         case CHELSIO_T5:
2612                 if (adap->flags & IS_VF) {
2613                         reg_ranges = t5vf_reg_ranges;
2614                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2615                 } else {
2616                         reg_ranges = t5_reg_ranges;
2617                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2618                 }
2619                 break;
2620
2621         case CHELSIO_T6:
2622                 if (adap->flags & IS_VF) {
2623                         reg_ranges = t6vf_reg_ranges;
2624                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2625                 } else {
2626                         reg_ranges = t6_reg_ranges;
2627                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2628                 }
2629                 break;
2630
2631         default:
2632                 CH_ERR(adap,
2633                         "Unsupported chip version %d\n", chip_version);
2634                 return;
2635         }
2636
2637         /*
2638          * Clear the register buffer and insert the appropriate register
2639          * values selected by the above register ranges.
2640          */
2641         memset(buf, 0, buf_size);
2642         for (range = 0; range < reg_ranges_size; range += 2) {
2643                 unsigned int reg = reg_ranges[range];
2644                 unsigned int last_reg = reg_ranges[range + 1];
2645                 u32 *bufp = (u32 *)(buf + reg);
2646
2647                 /*
2648                  * Iterate across the register range filling in the register
2649                  * buffer but don't write past the end of the register buffer.
2650                  */
2651                 while (reg <= last_reg && bufp < buf_end) {
2652                         *bufp++ = t4_read_reg(adap, reg);
2653                         reg += sizeof(u32);
2654                 }
2655         }
2656 }
2657
2658 /*
2659  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2660  * VPD-R sections.
2661  */
2662 struct t4_vpd_hdr {
2663         u8  id_tag;
2664         u8  id_len[2];
2665         u8  id_data[ID_LEN];
2666         u8  vpdr_tag;
2667         u8  vpdr_len[2];
2668 };
2669
2670 /*
2671  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2672  */
2673 #define EEPROM_DELAY            10              /* 10us per poll spin */
2674 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2675
2676 #define EEPROM_STAT_ADDR        0x7bfc
2677 #define VPD_SIZE                0x800
2678 #define VPD_BASE                0x400
2679 #define VPD_BASE_OLD            0
2680 #define VPD_LEN                 1024
2681 #define VPD_INFO_FLD_HDR_SIZE   3
2682 #define CHELSIO_VPD_UNIQUE_ID   0x82
2683
2684 /*
2685  * Small utility function to wait till any outstanding VPD Access is complete.
2686  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2687  * VPD Access in flight.  This allows us to handle the problem of having a
2688  * previous VPD Access time out and prevent an attempt to inject a new VPD
2689  * Request before any in-flight VPD reguest has completed.
2690  */
2691 static int t4_seeprom_wait(struct adapter *adapter)
2692 {
2693         unsigned int base = adapter->params.pci.vpd_cap_addr;
2694         int max_poll;
2695
2696         /*
2697          * If no VPD Access is in flight, we can just return success right
2698          * away.
2699          */
2700         if (!adapter->vpd_busy)
2701                 return 0;
2702
2703         /*
2704          * Poll the VPD Capability Address/Flag register waiting for it
2705          * to indicate that the operation is complete.
2706          */
2707         max_poll = EEPROM_MAX_POLL;
2708         do {
2709                 u16 val;
2710
2711                 udelay(EEPROM_DELAY);
2712                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2713
2714                 /*
2715                  * If the operation is complete, mark the VPD as no longer
2716                  * busy and return success.
2717                  */
2718                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2719                         adapter->vpd_busy = 0;
2720                         return 0;
2721                 }
2722         } while (--max_poll);
2723
2724         /*
2725          * Failure!  Note that we leave the VPD Busy status set in order to
2726          * avoid pushing a new VPD Access request into the VPD Capability till
2727          * the current operation eventually succeeds.  It's a bug to issue a
2728          * new request when an existing request is in flight and will result
2729          * in corrupt hardware state.
2730          */
2731         return -ETIMEDOUT;
2732 }
2733
2734 /**
2735  *      t4_seeprom_read - read a serial EEPROM location
2736  *      @adapter: adapter to read
2737  *      @addr: EEPROM virtual address
2738  *      @data: where to store the read data
2739  *
2740  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2741  *      VPD capability.  Note that this function must be called with a virtual
2742  *      address.
2743  */
2744 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2745 {
2746         unsigned int base = adapter->params.pci.vpd_cap_addr;
2747         int ret;
2748
2749         /*
2750          * VPD Accesses must alway be 4-byte aligned!
2751          */
2752         if (addr >= EEPROMVSIZE || (addr & 3))
2753                 return -EINVAL;
2754
2755         /*
2756          * Wait for any previous operation which may still be in flight to
2757          * complete.
2758          */
2759         ret = t4_seeprom_wait(adapter);
2760         if (ret) {
2761                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2762                 return ret;
2763         }
2764
2765         /*
2766          * Issue our new VPD Read request, mark the VPD as being busy and wait
2767          * for our request to complete.  If it doesn't complete, note the
2768          * error and return it to our caller.  Note that we do not reset the
2769          * VPD Busy status!
2770          */
2771         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2772         adapter->vpd_busy = 1;
2773         adapter->vpd_flag = PCI_VPD_ADDR_F;
2774         ret = t4_seeprom_wait(adapter);
2775         if (ret) {
2776                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2777                 return ret;
2778         }
2779
2780         /*
2781          * Grab the returned data, swizzle it into our endianess and
2782          * return success.
2783          */
2784         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2785         *data = le32_to_cpu(*data);
2786         return 0;
2787 }
2788
2789 /**
2790  *      t4_seeprom_write - write a serial EEPROM location
2791  *      @adapter: adapter to write
2792  *      @addr: virtual EEPROM address
2793  *      @data: value to write
2794  *
2795  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2796  *      VPD capability.  Note that this function must be called with a virtual
2797  *      address.
2798  */
2799 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2800 {
2801         unsigned int base = adapter->params.pci.vpd_cap_addr;
2802         int ret;
2803         u32 stats_reg;
2804         int max_poll;
2805
2806         /*
2807          * VPD Accesses must alway be 4-byte aligned!
2808          */
2809         if (addr >= EEPROMVSIZE || (addr & 3))
2810                 return -EINVAL;
2811
2812         /*
2813          * Wait for any previous operation which may still be in flight to
2814          * complete.
2815          */
2816         ret = t4_seeprom_wait(adapter);
2817         if (ret) {
2818                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2819                 return ret;
2820         }
2821
2822         /*
2823          * Issue our new VPD Read request, mark the VPD as being busy and wait
2824          * for our request to complete.  If it doesn't complete, note the
2825          * error and return it to our caller.  Note that we do not reset the
2826          * VPD Busy status!
2827          */
2828         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2829                                  cpu_to_le32(data));
2830         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2831                                  (u16)addr | PCI_VPD_ADDR_F);
2832         adapter->vpd_busy = 1;
2833         adapter->vpd_flag = 0;
2834         ret = t4_seeprom_wait(adapter);
2835         if (ret) {
2836                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2837                 return ret;
2838         }
2839
2840         /*
2841          * Reset PCI_VPD_DATA register after a transaction and wait for our
2842          * request to complete. If it doesn't complete, return error.
2843          */
2844         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2845         max_poll = EEPROM_MAX_POLL;
2846         do {
2847                 udelay(EEPROM_DELAY);
2848                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2849         } while ((stats_reg & 0x1) && --max_poll);
2850         if (!max_poll)
2851                 return -ETIMEDOUT;
2852
2853         /* Return success! */
2854         return 0;
2855 }
2856
2857 /**
2858  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2859  *      @phys_addr: the physical EEPROM address
2860  *      @fn: the PCI function number
2861  *      @sz: size of function-specific area
2862  *
2863  *      Translate a physical EEPROM address to virtual.  The first 1K is
2864  *      accessed through virtual addresses starting at 31K, the rest is
2865  *      accessed through virtual addresses starting at 0.
2866  *
2867  *      The mapping is as follows:
2868  *      [0..1K) -> [31K..32K)
2869  *      [1K..1K+A) -> [ES-A..ES)
2870  *      [1K+A..ES) -> [0..ES-A-1K)
2871  *
2872  *      where A = @fn * @sz, and ES = EEPROM size.
2873  */
2874 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2875 {
2876         fn *= sz;
2877         if (phys_addr < 1024)
2878                 return phys_addr + (31 << 10);
2879         if (phys_addr < 1024 + fn)
2880                 return EEPROMSIZE - fn + phys_addr - 1024;
2881         if (phys_addr < EEPROMSIZE)
2882                 return phys_addr - 1024 - fn;
2883         return -EINVAL;
2884 }
2885
2886 /**
2887  *      t4_seeprom_wp - enable/disable EEPROM write protection
2888  *      @adapter: the adapter
2889  *      @enable: whether to enable or disable write protection
2890  *
2891  *      Enables or disables write protection on the serial EEPROM.
2892  */
2893 int t4_seeprom_wp(struct adapter *adapter, int enable)
2894 {
2895         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2896 }
2897
2898 /**
2899  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2900  *      @v: Pointer to buffered vpd data structure
2901  *      @kw: The keyword to search for
2902  *
2903  *      Returns the value of the information field keyword or
2904  *      -ENOENT otherwise.
2905  */
2906 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2907 {
2908         int i;
2909         unsigned int offset , len;
2910         const u8 *buf = (const u8 *)v;
2911         const u8 *vpdr_len = &v->vpdr_len[0];
2912         offset = sizeof(struct t4_vpd_hdr);
2913         len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2914
2915         if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2916                 return -ENOENT;
2917         }
2918
2919         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2920                 if(memcmp(buf + i , kw , 2) == 0){
2921                         i += VPD_INFO_FLD_HDR_SIZE;
2922                         return i;
2923                 }
2924
2925                 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2926         }
2927
2928         return -ENOENT;
2929 }
2930
2931
2932 /**
2933  *      get_vpd_params - read VPD parameters from VPD EEPROM
2934  *      @adapter: adapter to read
2935  *      @p: where to store the parameters
2936  *      @vpd: caller provided temporary space to read the VPD into
2937  *
2938  *      Reads card parameters stored in VPD EEPROM.
2939  */
2940 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2941     u8 *vpd)
2942 {
2943         int i, ret, addr;
2944         int ec, sn, pn, na;
2945         u8 csum;
2946         const struct t4_vpd_hdr *v;
2947
2948         /*
2949          * Card information normally starts at VPD_BASE but early cards had
2950          * it at 0.
2951          */
2952         ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2953         if (ret)
2954                 return (ret);
2955
2956         /*
2957          * The VPD shall have a unique identifier specified by the PCI SIG.
2958          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2959          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2960          * is expected to automatically put this entry at the
2961          * beginning of the VPD.
2962          */
2963         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2964
2965         for (i = 0; i < VPD_LEN; i += 4) {
2966                 ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2967                 if (ret)
2968                         return ret;
2969         }
2970         v = (const struct t4_vpd_hdr *)vpd;
2971
2972 #define FIND_VPD_KW(var,name) do { \
2973         var = get_vpd_keyword_val(v , name); \
2974         if (var < 0) { \
2975                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2976                 return -EINVAL; \
2977         } \
2978 } while (0)
2979
2980         FIND_VPD_KW(i, "RV");
2981         for (csum = 0; i >= 0; i--)
2982                 csum += vpd[i];
2983
2984         if (csum) {
2985                 CH_ERR(adapter,
2986                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2987                 return -EINVAL;
2988         }
2989
2990         FIND_VPD_KW(ec, "EC");
2991         FIND_VPD_KW(sn, "SN");
2992         FIND_VPD_KW(pn, "PN");
2993         FIND_VPD_KW(na, "NA");
2994 #undef FIND_VPD_KW
2995
2996         memcpy(p->id, v->id_data, ID_LEN);
2997         strstrip(p->id);
2998         memcpy(p->ec, vpd + ec, EC_LEN);
2999         strstrip(p->ec);
3000         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3001         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3002         strstrip(p->sn);
3003         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3004         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3005         strstrip((char *)p->pn);
3006         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3007         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3008         strstrip((char *)p->na);
3009
3010         return 0;
3011 }
3012
3013 /* serial flash and firmware constants and flash config file constants */
3014 enum {
3015         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3016
3017         /* flash command opcodes */
3018         SF_PROG_PAGE    = 2,    /* program 256B page */
3019         SF_WR_DISABLE   = 4,    /* disable writes */
3020         SF_RD_STATUS    = 5,    /* read status register */
3021         SF_WR_ENABLE    = 6,    /* enable writes */
3022         SF_RD_DATA_FAST = 0xb,  /* read flash */
3023         SF_RD_ID        = 0x9f, /* read ID */
3024         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3025 };
3026
3027 /**
3028  *      sf1_read - read data from the serial flash
3029  *      @adapter: the adapter
3030  *      @byte_cnt: number of bytes to read
3031  *      @cont: whether another operation will be chained
3032  *      @lock: whether to lock SF for PL access only
3033  *      @valp: where to store the read data
3034  *
3035  *      Reads up to 4 bytes of data from the serial flash.  The location of
3036  *      the read needs to be specified prior to calling this by issuing the
3037  *      appropriate commands to the serial flash.
3038  */
3039 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3040                     int lock, u32 *valp)
3041 {
3042         int ret;
3043
3044         if (!byte_cnt || byte_cnt > 4)
3045                 return -EINVAL;
3046         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3047                 return -EBUSY;
3048         t4_write_reg(adapter, A_SF_OP,
3049                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3050         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3051         if (!ret)
3052                 *valp = t4_read_reg(adapter, A_SF_DATA);
3053         return ret;
3054 }
3055
3056 /**
3057  *      sf1_write - write data to the serial flash
3058  *      @adapter: the adapter
3059  *      @byte_cnt: number of bytes to write
3060  *      @cont: whether another operation will be chained
3061  *      @lock: whether to lock SF for PL access only
3062  *      @val: value to write
3063  *
3064  *      Writes up to 4 bytes of data to the serial flash.  The location of
3065  *      the write needs to be specified prior to calling this by issuing the
3066  *      appropriate commands to the serial flash.
3067  */
3068 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3069                      int lock, u32 val)
3070 {
3071         if (!byte_cnt || byte_cnt > 4)
3072                 return -EINVAL;
3073         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3074                 return -EBUSY;
3075         t4_write_reg(adapter, A_SF_DATA, val);
3076         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3077                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3078         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3079 }
3080
3081 /**
3082  *      flash_wait_op - wait for a flash operation to complete
3083  *      @adapter: the adapter
3084  *      @attempts: max number of polls of the status register
3085  *      @delay: delay between polls in ms
3086  *
3087  *      Wait for a flash operation to complete by polling the status register.
3088  */
3089 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3090 {
3091         int ret;
3092         u32 status;
3093
3094         while (1) {
3095                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3096                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3097                         return ret;
3098                 if (!(status & 1))
3099                         return 0;
3100                 if (--attempts == 0)
3101                         return -EAGAIN;
3102                 if (delay)
3103                         msleep(delay);
3104         }
3105 }
3106
3107 /**
3108  *      t4_read_flash - read words from serial flash
3109  *      @adapter: the adapter
3110  *      @addr: the start address for the read
3111  *      @nwords: how many 32-bit words to read
3112  *      @data: where to store the read data
3113  *      @byte_oriented: whether to store data as bytes or as words
3114  *
3115  *      Read the specified number of 32-bit words from the serial flash.
3116  *      If @byte_oriented is set the read data is stored as a byte array
3117  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3118  *      natural endianness.
3119  */
3120 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3121                   unsigned int nwords, u32 *data, int byte_oriented)
3122 {
3123         int ret;
3124
3125         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3126                 return -EINVAL;
3127
3128         addr = swab32(addr) | SF_RD_DATA_FAST;
3129
3130         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3131             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3132                 return ret;
3133
3134         for ( ; nwords; nwords--, data++) {
3135                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3136                 if (nwords == 1)
3137                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3138                 if (ret)
3139                         return ret;
3140                 if (byte_oriented)
3141                         *data = (__force __u32)(cpu_to_be32(*data));
3142         }
3143         return 0;
3144 }
3145
3146 /**
3147  *      t4_write_flash - write up to a page of data to the serial flash
3148  *      @adapter: the adapter
3149  *      @addr: the start address to write
3150  *      @n: length of data to write in bytes
3151  *      @data: the data to write
3152  *      @byte_oriented: whether to store data as bytes or as words
3153  *
3154  *      Writes up to a page of data (256 bytes) to the serial flash starting
3155  *      at the given address.  All the data must be written to the same page.
3156  *      If @byte_oriented is set the write data is stored as byte stream
3157  *      (i.e. matches what on disk), otherwise in big-endian.
3158  */
3159 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3160                           unsigned int n, const u8 *data, int byte_oriented)
3161 {
3162         int ret;
3163         u32 buf[SF_PAGE_SIZE / 4];
3164         unsigned int i, c, left, val, offset = addr & 0xff;
3165
3166         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3167                 return -EINVAL;
3168
3169         val = swab32(addr) | SF_PROG_PAGE;
3170
3171         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3172             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3173                 goto unlock;
3174
3175         for (left = n; left; left -= c) {
3176                 c = min(left, 4U);
3177                 for (val = 0, i = 0; i < c; ++i)
3178                         val = (val << 8) + *data++;
3179
3180                 if (!byte_oriented)
3181                         val = cpu_to_be32(val);
3182
3183                 ret = sf1_write(adapter, c, c != left, 1, val);
3184                 if (ret)
3185                         goto unlock;
3186         }
3187         ret = flash_wait_op(adapter, 8, 1);
3188         if (ret)
3189                 goto unlock;
3190
3191         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3192
3193         /* Read the page to verify the write succeeded */
3194         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3195                             byte_oriented);
3196         if (ret)
3197                 return ret;
3198
3199         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3200                 CH_ERR(adapter,
3201                         "failed to correctly write the flash page at %#x\n",
3202                         addr);
3203                 return -EIO;
3204         }
3205         return 0;
3206
3207 unlock:
3208         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3209         return ret;
3210 }
3211
3212 /**
3213  *      t4_get_fw_version - read the firmware version
3214  *      @adapter: the adapter
3215  *      @vers: where to place the version
3216  *
3217  *      Reads the FW version from flash.
3218  */
3219 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3220 {
3221         return t4_read_flash(adapter, FLASH_FW_START +
3222                              offsetof(struct fw_hdr, fw_ver), 1,
3223                              vers, 0);
3224 }
3225
3226 /**
3227  *      t4_get_bs_version - read the firmware bootstrap version
3228  *      @adapter: the adapter
3229  *      @vers: where to place the version
3230  *
3231  *      Reads the FW Bootstrap version from flash.
3232  */
3233 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3234 {
3235         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3236                              offsetof(struct fw_hdr, fw_ver), 1,
3237                              vers, 0);
3238 }
3239
3240 /**
3241  *      t4_get_tp_version - read the TP microcode version
3242  *      @adapter: the adapter
3243  *      @vers: where to place the version
3244  *
3245  *      Reads the TP microcode version from flash.
3246  */
3247 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3248 {
3249         return t4_read_flash(adapter, FLASH_FW_START +
3250                              offsetof(struct fw_hdr, tp_microcode_ver),
3251                              1, vers, 0);
3252 }
3253
3254 /**
3255  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3256  *      @adapter: the adapter
3257  *      @vers: where to place the version
3258  *
3259  *      Reads the Expansion ROM header from FLASH and returns the version
3260  *      number (if present) through the @vers return value pointer.  We return
3261  *      this in the Firmware Version Format since it's convenient.  Return
3262  *      0 on success, -ENOENT if no Expansion ROM is present.
3263  */
3264 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3265 {
3266         struct exprom_header {
3267                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3268                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3269         } *hdr;
3270         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3271                                            sizeof(u32))];
3272         int ret;
3273
3274         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3275                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3276                             0);
3277         if (ret)
3278                 return ret;
3279
3280         hdr = (struct exprom_header *)exprom_header_buf;
3281         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3282                 return -ENOENT;
3283
3284         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3285                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3286                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3287                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3288         return 0;
3289 }
3290
3291 /**
3292  *      t4_get_scfg_version - return the Serial Configuration version
3293  *      @adapter: the adapter
3294  *      @vers: where to place the version
3295  *
3296  *      Reads the Serial Configuration Version via the Firmware interface
3297  *      (thus this can only be called once we're ready to issue Firmware
3298  *      commands).  The format of the Serial Configuration version is
3299  *      adapter specific.  Returns 0 on success, an error on failure.
3300  *
3301  *      Note that early versions of the Firmware didn't include the ability
3302  *      to retrieve the Serial Configuration version, so we zero-out the
3303  *      return-value parameter in that case to avoid leaving it with
3304  *      garbage in it.
3305  *
3306  *      Also note that the Firmware will return its cached copy of the Serial
3307  *      Initialization Revision ID, not the actual Revision ID as written in
3308  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3309  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3310  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3311  *      been issued if the Host Driver will be performing a full adapter
3312  *      initialization.
3313  */
3314 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3315 {
3316         u32 scfgrev_param;
3317         int ret;
3318
3319         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3320                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3321         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3322                               1, &scfgrev_param, vers);
3323         if (ret)
3324                 *vers = 0;
3325         return ret;
3326 }
3327
3328 /**
3329  *      t4_get_vpd_version - return the VPD version
3330  *      @adapter: the adapter
3331  *      @vers: where to place the version
3332  *
3333  *      Reads the VPD via the Firmware interface (thus this can only be called
3334  *      once we're ready to issue Firmware commands).  The format of the
3335  *      VPD version is adapter specific.  Returns 0 on success, an error on
3336  *      failure.
3337  *
3338  *      Note that early versions of the Firmware didn't include the ability
3339  *      to retrieve the VPD version, so we zero-out the return-value parameter
3340  *      in that case to avoid leaving it with garbage in it.
3341  *
3342  *      Also note that the Firmware will return its cached copy of the VPD
3343  *      Revision ID, not the actual Revision ID as written in the Serial
3344  *      EEPROM.  This is only an issue if a new VPD has been written and the
3345  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3346  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3347  *      if the Host Driver will be performing a full adapter initialization.
3348  */
3349 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3350 {
3351         u32 vpdrev_param;
3352         int ret;
3353
3354         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3355                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3356         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3357                               1, &vpdrev_param, vers);
3358         if (ret)
3359                 *vers = 0;
3360         return ret;
3361 }
3362
3363 /**
3364  *      t4_get_version_info - extract various chip/firmware version information
3365  *      @adapter: the adapter
3366  *
3367  *      Reads various chip/firmware version numbers and stores them into the
3368  *      adapter Adapter Parameters structure.  If any of the efforts fails
3369  *      the first failure will be returned, but all of the version numbers
3370  *      will be read.
3371  */
3372 int t4_get_version_info(struct adapter *adapter)
3373 {
3374         int ret = 0;
3375
3376         #define FIRST_RET(__getvinfo) \
3377         do { \
3378                 int __ret = __getvinfo; \
3379                 if (__ret && !ret) \
3380                         ret = __ret; \
3381         } while (0)
3382
3383         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3384         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3385         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3386         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3387         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3388         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3389
3390         #undef FIRST_RET
3391
3392         return ret;
3393 }
3394
3395 /**
3396  *      t4_flash_erase_sectors - erase a range of flash sectors
3397  *      @adapter: the adapter
3398  *      @start: the first sector to erase
3399  *      @end: the last sector to erase
3400  *
3401  *      Erases the sectors in the given inclusive range.
3402  */
3403 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3404 {
3405         int ret = 0;
3406
3407         if (end >= adapter->params.sf_nsec)
3408                 return -EINVAL;
3409
3410         while (start <= end) {
3411                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3412                     (ret = sf1_write(adapter, 4, 0, 1,
3413                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3414                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3415                         CH_ERR(adapter,
3416                                 "erase of flash sector %d failed, error %d\n",
3417                                 start, ret);
3418                         break;
3419                 }
3420                 start++;
3421         }
3422         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3423         return ret;
3424 }
3425
3426 /**
3427  *      t4_flash_cfg_addr - return the address of the flash configuration file
3428  *      @adapter: the adapter
3429  *
3430  *      Return the address within the flash where the Firmware Configuration
3431  *      File is stored, or an error if the device FLASH is too small to contain
3432  *      a Firmware Configuration File.
3433  */
3434 int t4_flash_cfg_addr(struct adapter *adapter)
3435 {
3436         /*
3437          * If the device FLASH isn't large enough to hold a Firmware
3438          * Configuration File, return an error.
3439          */
3440         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3441                 return -ENOSPC;
3442
3443         return FLASH_CFG_START;
3444 }
3445
3446 /*
3447  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3448  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3449  * and emit an error message for mismatched firmware to save our caller the
3450  * effort ...
3451  */
3452 static int t4_fw_matches_chip(struct adapter *adap,
3453                               const struct fw_hdr *hdr)
3454 {
3455         /*
3456          * The expression below will return FALSE for any unsupported adapter
3457          * which will keep us "honest" in the future ...
3458          */
3459         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3460             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3461             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3462                 return 1;
3463
3464         CH_ERR(adap,
3465                 "FW image (%d) is not suitable for this adapter (%d)\n",
3466                 hdr->chip, chip_id(adap));
3467         return 0;
3468 }
3469
3470 /**
3471  *      t4_load_fw - download firmware
3472  *      @adap: the adapter
3473  *      @fw_data: the firmware image to write
3474  *      @size: image size
3475  *
3476  *      Write the supplied firmware image to the card's serial flash.
3477  */
3478 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3479 {
3480         u32 csum;
3481         int ret, addr;
3482         unsigned int i;
3483         u8 first_page[SF_PAGE_SIZE];
3484         const u32 *p = (const u32 *)fw_data;
3485         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3486         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3487         unsigned int fw_start_sec;
3488         unsigned int fw_start;
3489         unsigned int fw_size;
3490
3491         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3492                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3493                 fw_start = FLASH_FWBOOTSTRAP_START;
3494                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3495         } else {
3496                 fw_start_sec = FLASH_FW_START_SEC;
3497                 fw_start = FLASH_FW_START;
3498                 fw_size = FLASH_FW_MAX_SIZE;
3499         }
3500
3501         if (!size) {
3502                 CH_ERR(adap, "FW image has no data\n");
3503                 return -EINVAL;
3504         }
3505         if (size & 511) {
3506                 CH_ERR(adap,
3507                         "FW image size not multiple of 512 bytes\n");
3508                 return -EINVAL;
3509         }
3510         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3511                 CH_ERR(adap,
3512                         "FW image size differs from size in FW header\n");
3513                 return -EINVAL;
3514         }
3515         if (size > fw_size) {
3516                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3517                         fw_size);
3518                 return -EFBIG;
3519         }
3520         if (!t4_fw_matches_chip(adap, hdr))
3521                 return -EINVAL;
3522
3523         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3524                 csum += be32_to_cpu(p[i]);
3525
3526         if (csum != 0xffffffff) {
3527                 CH_ERR(adap,
3528                         "corrupted firmware image, checksum %#x\n", csum);
3529                 return -EINVAL;
3530         }
3531
3532         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3533         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3534         if (ret)
3535                 goto out;
3536
3537         /*
3538          * We write the correct version at the end so the driver can see a bad
3539          * version if the FW write fails.  Start by writing a copy of the
3540          * first page with a bad version.
3541          */
3542         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3543         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3544         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3545         if (ret)
3546                 goto out;
3547
3548         addr = fw_start;
3549         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3550                 addr += SF_PAGE_SIZE;
3551                 fw_data += SF_PAGE_SIZE;
3552                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3553                 if (ret)
3554                         goto out;
3555         }
3556
3557         ret = t4_write_flash(adap,
3558                              fw_start + offsetof(struct fw_hdr, fw_ver),
3559                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3560 out:
3561         if (ret)
3562                 CH_ERR(adap, "firmware download failed, error %d\n",
3563                         ret);
3564         return ret;
3565 }
3566
3567 /**
3568  *      t4_fwcache - firmware cache operation
3569  *      @adap: the adapter
3570  *      @op  : the operation (flush or flush and invalidate)
3571  */
3572 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3573 {
3574         struct fw_params_cmd c;
3575
3576         memset(&c, 0, sizeof(c));
3577         c.op_to_vfn =
3578             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3579                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3580                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3581                                 V_FW_PARAMS_CMD_VFN(0));
3582         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3583         c.param[0].mnem =
3584             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3585                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3586         c.param[0].val = (__force __be32)op;
3587
3588         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3589 }
3590
3591 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3592                         unsigned int *pif_req_wrptr,
3593                         unsigned int *pif_rsp_wrptr)
3594 {
3595         int i, j;
3596         u32 cfg, val, req, rsp;
3597
3598         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3599         if (cfg & F_LADBGEN)
3600                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3601
3602         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3603         req = G_POLADBGWRPTR(val);
3604         rsp = G_PILADBGWRPTR(val);
3605         if (pif_req_wrptr)
3606                 *pif_req_wrptr = req;
3607         if (pif_rsp_wrptr)
3608                 *pif_rsp_wrptr = rsp;
3609
3610         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3611                 for (j = 0; j < 6; j++) {
3612                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3613                                      V_PILADBGRDPTR(rsp));
3614                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3615                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3616                         req++;
3617                         rsp++;
3618                 }
3619                 req = (req + 2) & M_POLADBGRDPTR;
3620                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3621         }
3622         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3623 }
3624
3625 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3626 {
3627         u32 cfg;
3628         int i, j, idx;
3629
3630         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3631         if (cfg & F_LADBGEN)
3632                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3633
3634         for (i = 0; i < CIM_MALA_SIZE; i++) {
3635                 for (j = 0; j < 5; j++) {
3636                         idx = 8 * i + j;
3637                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3638                                      V_PILADBGRDPTR(idx));
3639                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3640                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3641                 }
3642         }
3643         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3644 }
3645
3646 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3647 {
3648         unsigned int i, j;
3649
3650         for (i = 0; i < 8; i++) {
3651                 u32 *p = la_buf + i;
3652
3653                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3654                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3655                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3656                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3657                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3658         }
3659 }
3660
3661 /**
3662  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3663  *      @phy: the PHY to setup
3664  *      @mac: the MAC to setup
3665  *      @lc: the requested link configuration
3666  *
3667  *      Set up a port's MAC and PHY according to a desired link configuration.
3668  *      - If the PHY can auto-negotiate first decide what to advertise, then
3669  *        enable/disable auto-negotiation as desired, and reset.
3670  *      - If the PHY does not auto-negotiate just reset it.
3671  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3672  *        otherwise do it later based on the outcome of auto-negotiation.
3673  */
3674 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3675                   struct link_config *lc)
3676 {
3677         struct fw_port_cmd c;
3678         unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3679         unsigned int aneg, fc, fec, speed, rcap;
3680
3681         fc = 0;
3682         if (lc->requested_fc & PAUSE_RX)
3683                 fc |= FW_PORT_CAP_FC_RX;
3684         if (lc->requested_fc & PAUSE_TX)
3685                 fc |= FW_PORT_CAP_FC_TX;
3686
3687         fec = 0;
3688         if (lc->requested_fec & FEC_RS)
3689                 fec = FW_PORT_CAP_FEC_RS;
3690         else if (lc->requested_fec & FEC_BASER_RS)
3691                 fec = FW_PORT_CAP_FEC_BASER_RS;
3692
3693         if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3694             lc->requested_aneg == AUTONEG_DISABLE) {
3695                 aneg = 0;
3696                 switch (lc->requested_speed) {
3697                 case 100000:
3698                         speed = FW_PORT_CAP_SPEED_100G;
3699                         break;
3700                 case 40000:
3701                         speed = FW_PORT_CAP_SPEED_40G;
3702                         break;
3703                 case 25000:
3704                         speed = FW_PORT_CAP_SPEED_25G;
3705                         break;
3706                 case 10000:
3707                         speed = FW_PORT_CAP_SPEED_10G;
3708                         break;
3709                 case 1000:
3710                         speed = FW_PORT_CAP_SPEED_1G;
3711                         break;
3712                 case 100:
3713                         speed = FW_PORT_CAP_SPEED_100M;
3714                         break;
3715                 default:
3716                         return -EINVAL;
3717                         break;
3718                 }
3719         } else {
3720                 aneg = FW_PORT_CAP_ANEG;
3721                 speed = lc->supported &
3722                     V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3723         }
3724
3725         rcap = aneg | speed | fc | fec | mdi;
3726         if ((rcap | lc->supported) != lc->supported) {
3727 #ifdef INVARIANTS
3728                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3729                     lc->supported);
3730 #endif
3731                 rcap &= lc->supported;
3732         }
3733
3734         memset(&c, 0, sizeof(c));
3735         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3736                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3737                                      V_FW_PORT_CMD_PORTID(port));
3738         c.action_to_len16 =
3739                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3740                             FW_LEN16(c));
3741         c.u.l1cfg.rcap = cpu_to_be32(rcap);
3742
3743         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3744 }
3745
3746 /**
3747  *      t4_restart_aneg - restart autonegotiation
3748  *      @adap: the adapter
3749  *      @mbox: mbox to use for the FW command
3750  *      @port: the port id
3751  *
3752  *      Restarts autonegotiation for the selected port.
3753  */
3754 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3755 {
3756         struct fw_port_cmd c;
3757
3758         memset(&c, 0, sizeof(c));
3759         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3760                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3761                                      V_FW_PORT_CMD_PORTID(port));
3762         c.action_to_len16 =
3763                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3764                             FW_LEN16(c));
3765         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3766         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3767 }
3768
3769 typedef void (*int_handler_t)(struct adapter *adap);
3770
3771 struct intr_info {
3772         unsigned int mask;      /* bits to check in interrupt status */
3773         const char *msg;        /* message to print or NULL */
3774         short stat_idx;         /* stat counter to increment or -1 */
3775         unsigned short fatal;   /* whether the condition reported is fatal */
3776         int_handler_t int_handler;      /* platform-specific int handler */
3777 };
3778
3779 /**
3780  *      t4_handle_intr_status - table driven interrupt handler
3781  *      @adapter: the adapter that generated the interrupt
3782  *      @reg: the interrupt status register to process
3783  *      @acts: table of interrupt actions
3784  *
3785  *      A table driven interrupt handler that applies a set of masks to an
3786  *      interrupt status word and performs the corresponding actions if the
3787  *      interrupts described by the mask have occurred.  The actions include
3788  *      optionally emitting a warning or alert message.  The table is terminated
3789  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3790  *      conditions.
3791  */
3792 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3793                                  const struct intr_info *acts)
3794 {
3795         int fatal = 0;
3796         unsigned int mask = 0;
3797         unsigned int status = t4_read_reg(adapter, reg);
3798
3799         for ( ; acts->mask; ++acts) {
3800                 if (!(status & acts->mask))
3801                         continue;
3802                 if (acts->fatal) {
3803                         fatal++;
3804                         CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3805                                   status & acts->mask);
3806                 } else if (acts->msg)
3807                         CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3808                                  status & acts->mask);
3809                 if (acts->int_handler)
3810                         acts->int_handler(adapter);
3811                 mask |= acts->mask;
3812         }
3813         status &= mask;
3814         if (status)     /* clear processed interrupts */
3815                 t4_write_reg(adapter, reg, status);
3816         return fatal;
3817 }
3818
3819 /*
3820  * Interrupt handler for the PCIE module.
3821  */
3822 static void pcie_intr_handler(struct adapter *adapter)
3823 {
3824         static const struct intr_info sysbus_intr_info[] = {
3825                 { F_RNPP, "RXNP array parity error", -1, 1 },
3826                 { F_RPCP, "RXPC array parity error", -1, 1 },
3827                 { F_RCIP, "RXCIF array parity error", -1, 1 },
3828                 { F_RCCP, "Rx completions control array parity error", -1, 1 },
3829                 { F_RFTP, "RXFT array parity error", -1, 1 },
3830                 { 0 }
3831         };
3832         static const struct intr_info pcie_port_intr_info[] = {
3833                 { F_TPCP, "TXPC array parity error", -1, 1 },
3834                 { F_TNPP, "TXNP array parity error", -1, 1 },
3835                 { F_TFTP, "TXFT array parity error", -1, 1 },
3836                 { F_TCAP, "TXCA array parity error", -1, 1 },
3837                 { F_TCIP, "TXCIF array parity error", -1, 1 },
3838                 { F_RCAP, "RXCA array parity error", -1, 1 },
3839                 { F_OTDD, "outbound request TLP discarded", -1, 1 },
3840                 { F_RDPE, "Rx data parity error", -1, 1 },
3841                 { F_TDUE, "Tx uncorrectable data error", -1, 1 },
3842                 { 0 }
3843         };
3844         static const struct intr_info pcie_intr_info[] = {
3845                 { F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3846                 { F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3847                 { F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3848                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3849                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3850                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3851                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3852                 { F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3853                 { F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3854                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3855                 { F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3856                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3857                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3858                 { F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3859                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3860                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3861                 { F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3862                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3863                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3864                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3865                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
3866                 { F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3867                 { F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3868                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3869                 { F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3870                 { F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3871                 { F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3872                 { F_PCIESINT, "PCI core secondary fault", -1, 1 },
3873                 { F_PCIEPINT, "PCI core primary fault", -1, 1 },
3874                 { F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3875                   0 },
3876                 { 0 }
3877         };
3878
3879         static const struct intr_info t5_pcie_intr_info[] = {
3880                 { F_MSTGRPPERR, "Master Response Read Queue parity error",
3881                   -1, 1 },
3882                 { F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3883                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3884                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3885                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3886                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3887                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3888                 { F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3889                   -1, 1 },
3890                 { F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3891                   -1, 1 },
3892                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3893                 { F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3894                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3895                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3896                 { F_DREQWRPERR, "PCI DMA channel write request parity error",
3897                   -1, 1 },
3898                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3899                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3900                 { F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3901                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3902                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3903                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3904                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
3905                 { F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3906                 { F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3907                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3908                 { F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3909                   -1, 1 },
3910                 { F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3911                   -1, 1 },
3912                 { F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3913                 { F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3914                 { F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3915                 { F_READRSPERR, "Outbound read error", -1,
3916                   0 },
3917                 { 0 }
3918         };
3919
3920         int fat;
3921
3922         if (is_t4(adapter))
3923                 fat = t4_handle_intr_status(adapter,
3924                                 A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3925                                 sysbus_intr_info) +
3926                         t4_handle_intr_status(adapter,
3927                                         A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3928                                         pcie_port_intr_info) +
3929                         t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3930                                               pcie_intr_info);
3931         else
3932                 fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3933                                             t5_pcie_intr_info);
3934         if (fat)
3935                 t4_fatal_err(adapter);
3936 }
3937
3938 /*
3939  * TP interrupt handler.
3940  */
3941 static void tp_intr_handler(struct adapter *adapter)
3942 {
3943         static const struct intr_info tp_intr_info[] = {
3944                 { 0x3fffffff, "TP parity error", -1, 1 },
3945                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3946                 { 0 }
3947         };
3948
3949         if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3950                 t4_fatal_err(adapter);
3951 }
3952
3953 /*
3954  * SGE interrupt handler.
3955  */
3956 static void sge_intr_handler(struct adapter *adapter)
3957 {
3958         u64 v;
3959         u32 err;
3960
3961         static const struct intr_info sge_intr_info[] = {
3962                 { F_ERR_CPL_EXCEED_IQE_SIZE,
3963                   "SGE received CPL exceeding IQE size", -1, 1 },
3964                 { F_ERR_INVALID_CIDX_INC,
3965                   "SGE GTS CIDX increment too large", -1, 0 },
3966                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3967                 { F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3968                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3969                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3970                 { F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3971                   0 },
3972                 { F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3973                   0 },
3974                 { F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3975                   0 },
3976                 { F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3977                   0 },
3978                 { F_ERR_ING_CTXT_PRIO,
3979                   "SGE too many priority ingress contexts", -1, 0 },
3980                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3981                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3982                 { F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
3983                   F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
3984                   "SGE PCIe error for a DBP thread", -1, 0 },
3985                 { 0 }
3986         };
3987
3988         static const struct intr_info t4t5_sge_intr_info[] = {
3989                 { F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3990                 { F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3991                 { F_ERR_EGR_CTXT_PRIO,
3992                   "SGE too many priority egress contexts", -1, 0 },
3993                 { 0 }
3994         };
3995
3996         /*
3997         * For now, treat below interrupts as fatal so that we disable SGE and
3998         * get better debug */
3999         static const struct intr_info t6_sge_intr_info[] = {
4000                 { F_FATAL_WRE_LEN,
4001                   "SGE Actual WRE packet is less than advertized length",
4002                   -1, 1 },
4003                 { 0 }
4004         };
4005
4006         v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4007                 ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4008         if (v) {
4009                 CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4010                                 (unsigned long long)v);
4011                 t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4012                 t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4013         }
4014
4015         v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4016         if (chip_id(adapter) <= CHELSIO_T5)
4017                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4018                                            t4t5_sge_intr_info);
4019         else
4020                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4021                                            t6_sge_intr_info);
4022
4023         err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4024         if (err & F_ERROR_QID_VALID) {
4025                 CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4026                 if (err & F_UNCAPTURED_ERROR)
4027                         CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4028                 t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4029                              F_UNCAPTURED_ERROR);
4030         }
4031
4032         if (v != 0)
4033                 t4_fatal_err(adapter);
4034 }
4035
4036 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4037                       F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4038 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4039                       F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4040
4041 /*
4042  * CIM interrupt handler.
4043  */
4044 static void cim_intr_handler(struct adapter *adapter)
4045 {
4046         static const struct intr_info cim_intr_info[] = {
4047                 { F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4048                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4049                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4050                 { F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4051                 { F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4052                 { F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4053                 { F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4054                 { F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4055                 { 0 }
4056         };
4057         static const struct intr_info cim_upintr_info[] = {
4058                 { F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4059                 { F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4060                 { F_ILLWRINT, "CIM illegal write", -1, 1 },
4061                 { F_ILLRDINT, "CIM illegal read", -1, 1 },
4062                 { F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4063                 { F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4064                 { F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4065                 { F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4066                 { F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4067                 { F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4068                 { F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4069                 { F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4070                 { F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4071                 { F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4072                 { F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4073                 { F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4074                 { F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4075                 { F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4076                 { F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4077                 { F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4078                 { F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4079                 { F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4080                 { F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4081                 { F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4082                 { F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4083                 { F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4084                 { F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4085                 { F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4086                 { 0 }
4087         };
4088         u32 val, fw_err;
4089         int fat;
4090
4091         fw_err = t4_read_reg(adapter, A_PCIE_FW);
4092         if (fw_err & F_PCIE_FW_ERR)
4093                 t4_report_fw_error(adapter);
4094
4095         /* When the Firmware detects an internal error which normally wouldn't
4096          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4097          * to make sure the Host sees the Firmware Crash.  So if we have a
4098          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4099          * interrupt.
4100          */
4101         val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4102         if (val & F_TIMER0INT)
4103                 if (!(fw_err & F_PCIE_FW_ERR) ||
4104                     (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4105                         t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4106                                      F_TIMER0INT);
4107
4108         fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4109                                     cim_intr_info) +
4110               t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4111                                     cim_upintr_info);
4112         if (fat)
4113                 t4_fatal_err(adapter);
4114 }
4115
4116 /*
4117  * ULP RX interrupt handler.
4118  */
4119 static void ulprx_intr_handler(struct adapter *adapter)
4120 {
4121         static const struct intr_info ulprx_intr_info[] = {
4122                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4123                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4124                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4125                 { 0 }
4126         };
4127
4128         if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4129                 t4_fatal_err(adapter);
4130 }
4131
4132 /*
4133  * ULP TX interrupt handler.
4134  */
4135 static void ulptx_intr_handler(struct adapter *adapter)
4136 {
4137         static const struct intr_info ulptx_intr_info[] = {
4138                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4139                   0 },
4140                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4141                   0 },
4142                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4143                   0 },
4144                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4145                   0 },
4146                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4147                 { 0 }
4148         };
4149
4150         if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4151                 t4_fatal_err(adapter);
4152 }
4153
4154 /*
4155  * PM TX interrupt handler.
4156  */
4157 static void pmtx_intr_handler(struct adapter *adapter)
4158 {
4159         static const struct intr_info pmtx_intr_info[] = {
4160                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4161                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4162                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4163                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4164                 { 0xffffff0, "PMTX framing error", -1, 1 },
4165                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4166                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4167                   1 },
4168                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4169                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4170                 { 0 }
4171         };
4172
4173         if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4174                 t4_fatal_err(adapter);
4175 }
4176
4177 /*
4178  * PM RX interrupt handler.
4179  */
4180 static void pmrx_intr_handler(struct adapter *adapter)
4181 {
4182         static const struct intr_info pmrx_intr_info[] = {
4183                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4184                 { 0x3ffff0, "PMRX framing error", -1, 1 },
4185                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4186                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4187                   1 },
4188                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4189                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4190                 { 0 }
4191         };
4192
4193         if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4194                 t4_fatal_err(adapter);
4195 }
4196
4197 /*
4198  * CPL switch interrupt handler.
4199  */
4200 static void cplsw_intr_handler(struct adapter *adapter)
4201 {
4202         static const struct intr_info cplsw_intr_info[] = {
4203                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4204                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4205                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4206                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4207                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4208                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4209                 { 0 }
4210         };
4211
4212         if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4213                 t4_fatal_err(adapter);
4214 }
4215
4216 /*
4217  * LE interrupt handler.
4218  */
4219 static void le_intr_handler(struct adapter *adap)
4220 {
4221         unsigned int chip_ver = chip_id(adap);
4222         static const struct intr_info le_intr_info[] = {
4223                 { F_LIPMISS, "LE LIP miss", -1, 0 },
4224                 { F_LIP0, "LE 0 LIP error", -1, 0 },
4225                 { F_PARITYERR, "LE parity error", -1, 1 },
4226                 { F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4227                 { F_REQQPARERR, "LE request queue parity error", -1, 1 },
4228                 { 0 }
4229         };
4230
4231         static const struct intr_info t6_le_intr_info[] = {
4232                 { F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4233                 { F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4234                 { F_TCAMINTPERR, "LE parity error", -1, 1 },
4235                 { F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4236                 { F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4237                 { 0 }
4238         };
4239
4240         if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4241                                   (chip_ver <= CHELSIO_T5) ?
4242                                   le_intr_info : t6_le_intr_info))
4243                 t4_fatal_err(adap);
4244 }
4245
4246 /*
4247  * MPS interrupt handler.
4248  */
4249 static void mps_intr_handler(struct adapter *adapter)
4250 {
4251         static const struct intr_info mps_rx_intr_info[] = {
4252                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4253                 { 0 }
4254         };
4255         static const struct intr_info mps_tx_intr_info[] = {
4256                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4257                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4258                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4259                   -1, 1 },
4260                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4261                   -1, 1 },
4262                 { F_BUBBLE, "MPS Tx underflow", -1, 1 },
4263                 { F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4264                 { F_FRMERR, "MPS Tx framing error", -1, 1 },
4265                 { 0 }
4266         };
4267         static const struct intr_info mps_trc_intr_info[] = {
4268                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4269                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4270                   1 },
4271                 { F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4272                 { 0 }
4273         };
4274         static const struct intr_info mps_stat_sram_intr_info[] = {
4275                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4276                 { 0 }
4277         };
4278         static const struct intr_info mps_stat_tx_intr_info[] = {
4279                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4280                 { 0 }
4281         };
4282         static const struct intr_info mps_stat_rx_intr_info[] = {
4283                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4284                 { 0 }
4285         };
4286         static const struct intr_info mps_cls_intr_info[] = {
4287                 { F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4288                 { F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4289                 { F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4290                 { 0 }
4291         };
4292
4293         int fat;
4294
4295         fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4296                                     mps_rx_intr_info) +
4297               t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4298                                     mps_tx_intr_info) +
4299               t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4300                                     mps_trc_intr_info) +
4301               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4302                                     mps_stat_sram_intr_info) +
4303               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4304                                     mps_stat_tx_intr_info) +
4305               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4306                                     mps_stat_rx_intr_info) +
4307               t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4308                                     mps_cls_intr_info);
4309
4310         t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4311         t4_read_reg(adapter, A_MPS_INT_CAUSE);  /* flush */
4312         if (fat)
4313                 t4_fatal_err(adapter);
4314 }
4315
4316 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4317                       F_ECC_UE_INT_CAUSE)
4318
4319 /*
4320  * EDC/MC interrupt handler.
4321  */
4322 static void mem_intr_handler(struct adapter *adapter, int idx)
4323 {
4324         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4325
4326         unsigned int addr, cnt_addr, v;
4327
4328         if (idx <= MEM_EDC1) {
4329                 addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4330                 cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4331         } else if (idx == MEM_MC) {
4332                 if (is_t4(adapter)) {
4333                         addr = A_MC_INT_CAUSE;
4334                         cnt_addr = A_MC_ECC_STATUS;
4335                 } else {
4336                         addr = A_MC_P_INT_CAUSE;
4337                         cnt_addr = A_MC_P_ECC_STATUS;
4338                 }
4339         } else {
4340                 addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4341                 cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4342         }
4343
4344         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4345         if (v & F_PERR_INT_CAUSE)
4346                 CH_ALERT(adapter, "%s FIFO parity error\n",
4347                           name[idx]);
4348         if (v & F_ECC_CE_INT_CAUSE) {
4349                 u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4350
4351                 if (idx <= MEM_EDC1)
4352                         t4_edc_err_read(adapter, idx);
4353
4354                 t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4355                 CH_WARN_RATELIMIT(adapter,
4356                                   "%u %s correctable ECC data error%s\n",
4357                                   cnt, name[idx], cnt > 1 ? "s" : "");
4358         }
4359         if (v & F_ECC_UE_INT_CAUSE)
4360                 CH_ALERT(adapter,
4361                          "%s uncorrectable ECC data error\n", name[idx]);
4362
4363         t4_write_reg(adapter, addr, v);
4364         if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4365                 t4_fatal_err(adapter);
4366 }
4367
4368 /*
4369  * MA interrupt handler.
4370  */
4371 static void ma_intr_handler(struct adapter *adapter)
4372 {
4373         u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4374
4375         if (status & F_MEM_PERR_INT_CAUSE) {
4376                 CH_ALERT(adapter,
4377                           "MA parity error, parity status %#x\n",
4378                           t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4379                 if (is_t5(adapter))
4380                         CH_ALERT(adapter,
4381                                   "MA parity error, parity status %#x\n",
4382                                   t4_read_reg(adapter,
4383                                               A_MA_PARITY_ERROR_STATUS2));
4384         }
4385         if (status & F_MEM_WRAP_INT_CAUSE) {
4386                 v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4387                 CH_ALERT(adapter, "MA address wrap-around error by "
4388                           "client %u to address %#x\n",
4389                           G_MEM_WRAP_CLIENT_NUM(v),
4390                           G_MEM_WRAP_ADDRESS(v) << 4);
4391         }
4392         t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4393         t4_fatal_err(adapter);
4394 }
4395
4396 /*
4397  * SMB interrupt handler.
4398  */
4399 static void smb_intr_handler(struct adapter *adap)
4400 {
4401         static const struct intr_info smb_intr_info[] = {
4402                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4403                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4404                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4405                 { 0 }
4406         };
4407
4408         if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4409                 t4_fatal_err(adap);
4410 }
4411
4412 /*
4413  * NC-SI interrupt handler.
4414  */
4415 static void ncsi_intr_handler(struct adapter *adap)
4416 {
4417         static const struct intr_info ncsi_intr_info[] = {
4418                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4419                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4420                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4421                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4422                 { 0 }
4423         };
4424
4425         if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4426                 t4_fatal_err(adap);
4427 }
4428
4429 /*
4430  * XGMAC interrupt handler.
4431  */
4432 static void xgmac_intr_handler(struct adapter *adap, int port)
4433 {
4434         u32 v, int_cause_reg;
4435
4436         if (is_t4(adap))
4437                 int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4438         else
4439                 int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4440
4441         v = t4_read_reg(adap, int_cause_reg);
4442
4443         v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4444         if (!v)
4445                 return;
4446
4447         if (v & F_TXFIFO_PRTY_ERR)
4448                 CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4449                           port);
4450         if (v & F_RXFIFO_PRTY_ERR)
4451                 CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4452                           port);
4453         t4_write_reg(adap, int_cause_reg, v);
4454         t4_fatal_err(adap);
4455 }
4456
4457 /*
4458  * PL interrupt handler.
4459  */
4460 static void pl_intr_handler(struct adapter *adap)
4461 {
4462         static const struct intr_info pl_intr_info[] = {
4463                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4464                 { F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4465                 { 0 }
4466         };
4467
4468         static const struct intr_info t5_pl_intr_info[] = {
4469                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4470                 { 0 }
4471         };
4472
4473         if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4474                                   is_t4(adap) ?
4475                                   pl_intr_info : t5_pl_intr_info))
4476                 t4_fatal_err(adap);
4477 }
4478
4479 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4480
4481 /**
4482  *      t4_slow_intr_handler - control path interrupt handler
4483  *      @adapter: the adapter
4484  *
4485  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4486  *      The designation 'slow' is because it involves register reads, while
4487  *      data interrupts typically don't involve any MMIOs.
4488  */
4489 int t4_slow_intr_handler(struct adapter *adapter)
4490 {
4491         u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4492
4493         if (!(cause & GLBL_INTR_MASK))
4494                 return 0;
4495         if (cause & F_CIM)
4496                 cim_intr_handler(adapter);
4497         if (cause & F_MPS)
4498                 mps_intr_handler(adapter);
4499         if (cause & F_NCSI)
4500                 ncsi_intr_handler(adapter);
4501         if (cause & F_PL)
4502                 pl_intr_handler(adapter);
4503         if (cause & F_SMB)
4504                 smb_intr_handler(adapter);
4505         if (cause & F_MAC0)
4506                 xgmac_intr_handler(adapter, 0);
4507         if (cause & F_MAC1)
4508                 xgmac_intr_handler(adapter, 1);
4509         if (cause & F_MAC2)
4510                 xgmac_intr_handler(adapter, 2);
4511         if (cause & F_MAC3)
4512                 xgmac_intr_handler(adapter, 3);
4513         if (cause & F_PCIE)
4514                 pcie_intr_handler(adapter);
4515         if (cause & F_MC0)
4516                 mem_intr_handler(adapter, MEM_MC);
4517         if (is_t5(adapter) && (cause & F_MC1))
4518                 mem_intr_handler(adapter, MEM_MC1);
4519         if (cause & F_EDC0)
4520                 mem_intr_handler(adapter, MEM_EDC0);
4521         if (cause & F_EDC1)
4522                 mem_intr_handler(adapter, MEM_EDC1);
4523         if (cause & F_LE)
4524                 le_intr_handler(adapter);
4525         if (cause & F_TP)
4526                 tp_intr_handler(adapter);
4527         if (cause & F_MA)
4528                 ma_intr_handler(adapter);
4529         if (cause & F_PM_TX)
4530                 pmtx_intr_handler(adapter);
4531         if (cause & F_PM_RX)
4532                 pmrx_intr_handler(adapter);
4533         if (cause & F_ULP_RX)
4534                 ulprx_intr_handler(adapter);
4535         if (cause & F_CPL_SWITCH)
4536                 cplsw_intr_handler(adapter);
4537         if (cause & F_SGE)
4538                 sge_intr_handler(adapter);
4539         if (cause & F_ULP_TX)
4540                 ulptx_intr_handler(adapter);
4541
4542         /* Clear the interrupts just processed for which we are the master. */
4543         t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4544         (void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4545         return 1;
4546 }
4547
4548 /**
4549  *      t4_intr_enable - enable interrupts
4550  *      @adapter: the adapter whose interrupts should be enabled
4551  *
4552  *      Enable PF-specific interrupts for the calling function and the top-level
4553  *      interrupt concentrator for global interrupts.  Interrupts are already
4554  *      enabled at each module, here we just enable the roots of the interrupt
4555  *      hierarchies.
4556  *
4557  *      Note: this function should be called only when the driver manages
4558  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4559  *      function at a time should be doing this.
4560  */
4561 void t4_intr_enable(struct adapter *adapter)
4562 {
4563         u32 val = 0;
4564         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4565         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4566                   ? G_SOURCEPF(whoami)
4567                   : G_T6_SOURCEPF(whoami));
4568
4569         if (chip_id(adapter) <= CHELSIO_T5)
4570                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4571         else
4572                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4573         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4574                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4575                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4576                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4577                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4578                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4579                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4580         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4581         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4582 }
4583
4584 /**
4585  *      t4_intr_disable - disable interrupts
4586  *      @adapter: the adapter whose interrupts should be disabled
4587  *
4588  *      Disable interrupts.  We only disable the top-level interrupt
4589  *      concentrators.  The caller must be a PCI function managing global
4590  *      interrupts.
4591  */
4592 void t4_intr_disable(struct adapter *adapter)
4593 {
4594         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4595         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4596                   ? G_SOURCEPF(whoami)
4597                   : G_T6_SOURCEPF(whoami));
4598
4599         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4600         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4601 }
4602
4603 /**
4604  *      t4_intr_clear - clear all interrupts
4605  *      @adapter: the adapter whose interrupts should be cleared
4606  *
4607  *      Clears all interrupts.  The caller must be a PCI function managing
4608  *      global interrupts.
4609  */
4610 void t4_intr_clear(struct adapter *adapter)
4611 {
4612         static const unsigned int cause_reg[] = {
4613                 A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4614                 A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4615                 A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4616                 A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4617                 A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4618                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4619                 A_TP_INT_CAUSE,
4620                 A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4621                 A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4622                 A_MPS_RX_PERR_INT_CAUSE,
4623                 A_CPL_INTR_CAUSE,
4624                 MYPF_REG(A_PL_PF_INT_CAUSE),
4625                 A_PL_PL_INT_CAUSE,
4626                 A_LE_DB_INT_CAUSE,
4627         };
4628
4629         unsigned int i;
4630
4631         for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4632                 t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4633
4634         t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4635                                 A_MC_P_INT_CAUSE, 0xffffffff);
4636
4637         if (is_t4(adapter)) {
4638                 t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4639                                 0xffffffff);
4640                 t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4641                                 0xffffffff);
4642         } else
4643                 t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4644
4645         t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4646         (void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4647 }
4648
4649 /**
4650  *      hash_mac_addr - return the hash value of a MAC address
4651  *      @addr: the 48-bit Ethernet MAC address
4652  *
4653  *      Hashes a MAC address according to the hash function used by HW inexact
4654  *      (hash) address matching.
4655  */
4656 static int hash_mac_addr(const u8 *addr)
4657 {
4658         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4659         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4660         a ^= b;
4661         a ^= (a >> 12);
4662         a ^= (a >> 6);
4663         return a & 0x3f;
4664 }
4665
4666 /**
4667  *      t4_config_rss_range - configure a portion of the RSS mapping table
4668  *      @adapter: the adapter
4669  *      @mbox: mbox to use for the FW command
4670  *      @viid: virtual interface whose RSS subtable is to be written
4671  *      @start: start entry in the table to write
4672  *      @n: how many table entries to write
4673  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
4674  *      @nrspq: number of values in @rspq
4675  *
4676  *      Programs the selected part of the VI's RSS mapping table with the
4677  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4678  *      until the full table range is populated.
4679  *
4680  *      The caller must ensure the values in @rspq are in the range allowed for
4681  *      @viid.
4682  */
4683 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4684                         int start, int n, const u16 *rspq, unsigned int nrspq)
4685 {
4686         int ret;
4687         const u16 *rsp = rspq;
4688         const u16 *rsp_end = rspq + nrspq;
4689         struct fw_rss_ind_tbl_cmd cmd;
4690
4691         memset(&cmd, 0, sizeof(cmd));
4692         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4693                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4694                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
4695         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4696
4697         /*
4698          * Each firmware RSS command can accommodate up to 32 RSS Ingress
4699          * Queue Identifiers.  These Ingress Queue IDs are packed three to
4700          * a 32-bit word as 10-bit values with the upper remaining 2 bits
4701          * reserved.
4702          */
4703         while (n > 0) {
4704                 int nq = min(n, 32);
4705                 int nq_packed = 0;
4706                 __be32 *qp = &cmd.iq0_to_iq2;
4707
4708                 /*
4709                  * Set up the firmware RSS command header to send the next
4710                  * "nq" Ingress Queue IDs to the firmware.
4711                  */
4712                 cmd.niqid = cpu_to_be16(nq);
4713                 cmd.startidx = cpu_to_be16(start);
4714
4715                 /*
4716                  * "nq" more done for the start of the next loop.
4717                  */
4718                 start += nq;
4719                 n -= nq;
4720
4721                 /*
4722                  * While there are still Ingress Queue IDs to stuff into the
4723                  * current firmware RSS command, retrieve them from the
4724                  * Ingress Queue ID array and insert them into the command.
4725                  */
4726                 while (nq > 0) {
4727                         /*
4728                          * Grab up to the next 3 Ingress Queue IDs (wrapping
4729                          * around the Ingress Queue ID array if necessary) and
4730                          * insert them into the firmware RSS command at the
4731                          * current 3-tuple position within the commad.
4732                          */
4733                         u16 qbuf[3];
4734                         u16 *qbp = qbuf;
4735                         int nqbuf = min(3, nq);
4736
4737                         nq -= nqbuf;
4738                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
4739                         while (nqbuf && nq_packed < 32) {
4740                                 nqbuf--;
4741                                 nq_packed++;
4742                                 *qbp++ = *rsp++;
4743                                 if (rsp >= rsp_end)
4744                                         rsp = rspq;
4745                         }
4746                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4747                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4748                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4749                 }
4750
4751                 /*
4752                  * Send this portion of the RRS table update to the firmware;
4753                  * bail out on any errors.
4754                  */
4755                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4756                 if (ret)
4757                         return ret;
4758         }
4759         return 0;
4760 }
4761
4762 /**
4763  *      t4_config_glbl_rss - configure the global RSS mode
4764  *      @adapter: the adapter
4765  *      @mbox: mbox to use for the FW command
4766  *      @mode: global RSS mode
4767  *      @flags: mode-specific flags
4768  *
4769  *      Sets the global RSS mode.
4770  */
4771 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4772                        unsigned int flags)
4773 {
4774         struct fw_rss_glb_config_cmd c;
4775
4776         memset(&c, 0, sizeof(c));
4777         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4778                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4779         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4780         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4781                 c.u.manual.mode_pkd =
4782                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4783         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4784                 c.u.basicvirtual.mode_keymode =
4785                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4786                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4787         } else
4788                 return -EINVAL;
4789         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4790 }
4791
4792 /**
4793  *      t4_config_vi_rss - configure per VI RSS settings
4794  *      @adapter: the adapter
4795  *      @mbox: mbox to use for the FW command
4796  *      @viid: the VI id
4797  *      @flags: RSS flags
4798  *      @defq: id of the default RSS queue for the VI.
4799  *      @skeyidx: RSS secret key table index for non-global mode
4800  *      @skey: RSS vf_scramble key for VI.
4801  *
4802  *      Configures VI-specific RSS properties.
4803  */
4804 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4805                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
4806                      unsigned int skey)
4807 {
4808         struct fw_rss_vi_config_cmd c;
4809
4810         memset(&c, 0, sizeof(c));
4811         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4812                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4813                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4814         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4815         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4816                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4817         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4818                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4819         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4820
4821         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4822 }
4823
4824 /* Read an RSS table row */
4825 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4826 {
4827         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4828         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4829                                    5, 0, val);
4830 }
4831
4832 /**
4833  *      t4_read_rss - read the contents of the RSS mapping table
4834  *      @adapter: the adapter
4835  *      @map: holds the contents of the RSS mapping table
4836  *
4837  *      Reads the contents of the RSS hash->queue mapping table.
4838  */
4839 int t4_read_rss(struct adapter *adapter, u16 *map)
4840 {
4841         u32 val;
4842         int i, ret;
4843
4844         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4845                 ret = rd_rss_row(adapter, i, &val);
4846                 if (ret)
4847                         return ret;
4848                 *map++ = G_LKPTBLQUEUE0(val);
4849                 *map++ = G_LKPTBLQUEUE1(val);
4850         }
4851         return 0;
4852 }
4853
4854 /**
4855  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4856  * @adap: the adapter
4857  * @cmd: TP fw ldst address space type
4858  * @vals: where the indirect register values are stored/written
4859  * @nregs: how many indirect registers to read/write
4860  * @start_idx: index of first indirect register to read/write
4861  * @rw: Read (1) or Write (0)
4862  * @sleep_ok: if true we may sleep while awaiting command completion
4863  *
4864  * Access TP indirect registers through LDST
4865  **/
4866 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4867                             unsigned int nregs, unsigned int start_index,
4868                             unsigned int rw, bool sleep_ok)
4869 {
4870         int ret = 0;
4871         unsigned int i;
4872         struct fw_ldst_cmd c;
4873
4874         for (i = 0; i < nregs; i++) {
4875                 memset(&c, 0, sizeof(c));
4876                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4877                                                 F_FW_CMD_REQUEST |
4878                                                 (rw ? F_FW_CMD_READ :
4879                                                       F_FW_CMD_WRITE) |
4880                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
4881                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4882
4883                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4884                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4885                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4886                                       sleep_ok);
4887                 if (ret)
4888                         return ret;
4889
4890                 if (rw)
4891                         vals[i] = be32_to_cpu(c.u.addrval.val);
4892         }
4893         return 0;
4894 }
4895
4896 /**
4897  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4898  * @adap: the adapter
4899  * @reg_addr: Address Register
4900  * @reg_data: Data register
4901  * @buff: where the indirect register values are stored/written
4902  * @nregs: how many indirect registers to read/write
4903  * @start_index: index of first indirect register to read/write
4904  * @rw: READ(1) or WRITE(0)
4905  * @sleep_ok: if true we may sleep while awaiting command completion
4906  *
4907  * Read/Write TP indirect registers through LDST if possible.
4908  * Else, use backdoor access
4909  **/
4910 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4911                               u32 *buff, u32 nregs, u32 start_index, int rw,
4912                               bool sleep_ok)
4913 {
4914         int rc = -EINVAL;
4915         int cmd;
4916
4917         switch (reg_addr) {
4918         case A_TP_PIO_ADDR:
4919                 cmd = FW_LDST_ADDRSPC_TP_PIO;
4920                 break;
4921         case A_TP_TM_PIO_ADDR:
4922                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4923                 break;
4924         case A_TP_MIB_INDEX:
4925                 cmd = FW_LDST_ADDRSPC_TP_MIB;
4926                 break;
4927         default:
4928                 goto indirect_access;
4929         }
4930
4931         if (t4_use_ldst(adap))
4932                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4933                                       sleep_ok);
4934
4935 indirect_access:
4936
4937         if (rc) {
4938                 if (rw)
4939                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4940                                          start_index);
4941                 else
4942                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4943                                           start_index);
4944         }
4945 }
4946
4947 /**
4948  * t4_tp_pio_read - Read TP PIO registers
4949  * @adap: the adapter
4950  * @buff: where the indirect register values are written
4951  * @nregs: how many indirect registers to read
4952  * @start_index: index of first indirect register to read
4953  * @sleep_ok: if true we may sleep while awaiting command completion
4954  *
4955  * Read TP PIO Registers
4956  **/
4957 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4958                     u32 start_index, bool sleep_ok)
4959 {
4960         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4961                           start_index, 1, sleep_ok);
4962 }
4963
4964 /**
4965  * t4_tp_pio_write - Write TP PIO registers
4966  * @adap: the adapter
4967  * @buff: where the indirect register values are stored
4968  * @nregs: how many indirect registers to write
4969  * @start_index: index of first indirect register to write
4970  * @sleep_ok: if true we may sleep while awaiting command completion
4971  *
4972  * Write TP PIO Registers
4973  **/
4974 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
4975                      u32 start_index, bool sleep_ok)
4976 {
4977         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4978             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
4979 }
4980
4981 /**
4982  * t4_tp_tm_pio_read - Read TP TM PIO registers
4983  * @adap: the adapter
4984  * @buff: where the indirect register values are written
4985  * @nregs: how many indirect registers to read
4986  * @start_index: index of first indirect register to read
4987  * @sleep_ok: if true we may sleep while awaiting command completion
4988  *
4989  * Read TP TM PIO Registers
4990  **/
4991 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4992                        u32 start_index, bool sleep_ok)
4993 {
4994         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
4995                           nregs, start_index, 1, sleep_ok);
4996 }
4997
4998 /**
4999  * t4_tp_mib_read - Read TP MIB registers
5000  * @adap: the adapter
5001  * @buff: where the indirect register values are written
5002  * @nregs: how many indirect registers to read
5003  * @start_index: index of first indirect register to read
5004  * @sleep_ok: if true we may sleep while awaiting command completion
5005  *
5006  * Read TP MIB Registers
5007  **/
5008 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5009                     bool sleep_ok)
5010 {
5011         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5012                           start_index, 1, sleep_ok);
5013 }
5014
5015 /**
5016  *      t4_read_rss_key - read the global RSS key
5017  *      @adap: the adapter
5018  *      @key: 10-entry array holding the 320-bit RSS key
5019  *      @sleep_ok: if true we may sleep while awaiting command completion
5020  *
5021  *      Reads the global 320-bit RSS key.
5022  */
5023 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5024 {
5025         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5026 }
5027
5028 /**
5029  *      t4_write_rss_key - program one of the RSS keys
5030  *      @adap: the adapter
5031  *      @key: 10-entry array holding the 320-bit RSS key
5032  *      @idx: which RSS key to write
5033  *      @sleep_ok: if true we may sleep while awaiting command completion
5034  *
5035  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5036  *      0..15 the corresponding entry in the RSS key table is written,
5037  *      otherwise the global RSS key is written.
5038  */
5039 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5040                       bool sleep_ok)
5041 {
5042         u8 rss_key_addr_cnt = 16;
5043         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5044
5045         /*
5046          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5047          * allows access to key addresses 16-63 by using KeyWrAddrX
5048          * as index[5:4](upper 2) into key table
5049          */
5050         if ((chip_id(adap) > CHELSIO_T5) &&
5051             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5052                 rss_key_addr_cnt = 32;
5053
5054         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5055
5056         if (idx >= 0 && idx < rss_key_addr_cnt) {
5057                 if (rss_key_addr_cnt > 16)
5058                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5059                                      vrt | V_KEYWRADDRX(idx >> 4) |
5060                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5061                 else
5062                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5063                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5064         }
5065 }
5066
5067 /**
5068  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5069  *      @adapter: the adapter
5070  *      @index: the entry in the PF RSS table to read
5071  *      @valp: where to store the returned value
5072  *      @sleep_ok: if true we may sleep while awaiting command completion
5073  *
5074  *      Reads the PF RSS Configuration Table at the specified index and returns
5075  *      the value found there.
5076  */
5077 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5078                            u32 *valp, bool sleep_ok)
5079 {
5080         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5081 }
5082
5083 /**
5084  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5085  *      @adapter: the adapter
5086  *      @index: the entry in the VF RSS table to read
5087  *      @val: the value to store
5088  *      @sleep_ok: if true we may sleep while awaiting command completion
5089  *
5090  *      Writes the PF RSS Configuration Table at the specified index with the
5091  *      specified value.
5092  */
5093 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5094                             u32 val, bool sleep_ok)
5095 {
5096         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5097                         sleep_ok);
5098 }
5099
5100 /**
5101  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5102  *      @adapter: the adapter
5103  *      @index: the entry in the VF RSS table to read
5104  *      @vfl: where to store the returned VFL
5105  *      @vfh: where to store the returned VFH
5106  *      @sleep_ok: if true we may sleep while awaiting command completion
5107  *
5108  *      Reads the VF RSS Configuration Table at the specified index and returns
5109  *      the (VFL, VFH) values found there.
5110  */
5111 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5112                            u32 *vfl, u32 *vfh, bool sleep_ok)
5113 {
5114         u32 vrt, mask, data;
5115
5116         if (chip_id(adapter) <= CHELSIO_T5) {
5117                 mask = V_VFWRADDR(M_VFWRADDR);
5118                 data = V_VFWRADDR(index);
5119         } else {
5120                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5121                  data = V_T6_VFWRADDR(index);
5122         }
5123         /*
5124          * Request that the index'th VF Table values be read into VFL/VFH.
5125          */
5126         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5127         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5128         vrt |= data | F_VFRDEN;
5129         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5130
5131         /*
5132          * Grab the VFL/VFH values ...
5133          */
5134         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5135         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5136 }
5137
5138 /**
5139  *      t4_write_rss_vf_config - write VF RSS Configuration Table
5140  *
5141  *      @adapter: the adapter
5142  *      @index: the entry in the VF RSS table to write
5143  *      @vfl: the VFL to store
5144  *      @vfh: the VFH to store
5145  *
5146  *      Writes the VF RSS Configuration Table at the specified index with the
5147  *      specified (VFL, VFH) values.
5148  */
5149 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5150                             u32 vfl, u32 vfh, bool sleep_ok)
5151 {
5152         u32 vrt, mask, data;
5153
5154         if (chip_id(adapter) <= CHELSIO_T5) {
5155                 mask = V_VFWRADDR(M_VFWRADDR);
5156                 data = V_VFWRADDR(index);
5157         } else {
5158                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5159                 data = V_T6_VFWRADDR(index);
5160         }
5161
5162         /*
5163          * Load up VFL/VFH with the values to be written ...
5164          */
5165         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5166         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5167
5168         /*
5169          * Write the VFL/VFH into the VF Table at index'th location.
5170          */
5171         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5172         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5173         vrt |= data | F_VFRDEN;
5174         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5175 }
5176
5177 /**
5178  *      t4_read_rss_pf_map - read PF RSS Map
5179  *      @adapter: the adapter
5180  *      @sleep_ok: if true we may sleep while awaiting command completion
5181  *
5182  *      Reads the PF RSS Map register and returns its value.
5183  */
5184 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5185 {
5186         u32 pfmap;
5187
5188         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5189
5190         return pfmap;
5191 }
5192
5193 /**
5194  *      t4_write_rss_pf_map - write PF RSS Map
5195  *      @adapter: the adapter
5196  *      @pfmap: PF RSS Map value
5197  *
5198  *      Writes the specified value to the PF RSS Map register.
5199  */
5200 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5201 {
5202         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5203 }
5204
5205 /**
5206  *      t4_read_rss_pf_mask - read PF RSS Mask
5207  *      @adapter: the adapter
5208  *      @sleep_ok: if true we may sleep while awaiting command completion
5209  *
5210  *      Reads the PF RSS Mask register and returns its value.
5211  */
5212 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5213 {
5214         u32 pfmask;
5215
5216         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5217
5218         return pfmask;
5219 }
5220
5221 /**
5222  *      t4_write_rss_pf_mask - write PF RSS Mask
5223  *      @adapter: the adapter
5224  *      @pfmask: PF RSS Mask value
5225  *
5226  *      Writes the specified value to the PF RSS Mask register.
5227  */
5228 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5229 {
5230         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5231 }
5232
5233 /**
5234  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5235  *      @adap: the adapter
5236  *      @v4: holds the TCP/IP counter values
5237  *      @v6: holds the TCP/IPv6 counter values
5238  *      @sleep_ok: if true we may sleep while awaiting command completion
5239  *
5240  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5241  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5242  */
5243 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5244                          struct tp_tcp_stats *v6, bool sleep_ok)
5245 {
5246         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5247
5248 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5249 #define STAT(x)     val[STAT_IDX(x)]
5250 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5251
5252         if (v4) {
5253                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5254                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
5255                 v4->tcp_out_rsts = STAT(OUT_RST);
5256                 v4->tcp_in_segs  = STAT64(IN_SEG);
5257                 v4->tcp_out_segs = STAT64(OUT_SEG);
5258                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5259         }
5260         if (v6) {
5261                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5262                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5263                 v6->tcp_out_rsts = STAT(OUT_RST);
5264                 v6->tcp_in_segs  = STAT64(IN_SEG);
5265                 v6->tcp_out_segs = STAT64(OUT_SEG);
5266                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5267         }
5268 #undef STAT64
5269 #undef STAT
5270 #undef STAT_IDX
5271 }
5272
5273 /**
5274  *      t4_tp_get_err_stats - read TP's error MIB counters
5275  *      @adap: the adapter
5276  *      @st: holds the counter values
5277  *      @sleep_ok: if true we may sleep while awaiting command completion
5278  *
5279  *      Returns the values of TP's error counters.
5280  */
5281 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5282                          bool sleep_ok)
5283 {
5284         int nchan = adap->chip_params->nchan;
5285
5286         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5287                        sleep_ok);
5288
5289         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5290                        sleep_ok);
5291
5292         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5293                        sleep_ok);
5294
5295         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5296                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5297
5298         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5299                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5300
5301         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5302                        sleep_ok);
5303
5304         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5305                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5306
5307         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5308                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5309
5310         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5311                        sleep_ok);
5312 }
5313
5314 /**
5315  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
5316  *      @adap: the adapter
5317  *      @st: holds the counter values
5318  *
5319  *      Returns the values of TP's proxy counters.
5320  */
5321 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5322     bool sleep_ok)
5323 {
5324         int nchan = adap->chip_params->nchan;
5325
5326         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5327 }
5328
5329 /**
5330  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5331  *      @adap: the adapter
5332  *      @st: holds the counter values
5333  *      @sleep_ok: if true we may sleep while awaiting command completion
5334  *
5335  *      Returns the values of TP's CPL counters.
5336  */
5337 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5338                          bool sleep_ok)
5339 {
5340         int nchan = adap->chip_params->nchan;
5341
5342         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5343
5344         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5345 }
5346
5347 /**
5348  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5349  *      @adap: the adapter
5350  *      @st: holds the counter values
5351  *
5352  *      Returns the values of TP's RDMA counters.
5353  */
5354 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5355                           bool sleep_ok)
5356 {
5357         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5358                        sleep_ok);
5359 }
5360
5361 /**
5362  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5363  *      @adap: the adapter
5364  *      @idx: the port index
5365  *      @st: holds the counter values
5366  *      @sleep_ok: if true we may sleep while awaiting command completion
5367  *
5368  *      Returns the values of TP's FCoE counters for the selected port.
5369  */
5370 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5371                        struct tp_fcoe_stats *st, bool sleep_ok)
5372 {
5373         u32 val[2];
5374
5375         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5376                        sleep_ok);
5377
5378         t4_tp_mib_read(adap, &st->frames_drop, 1,
5379                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5380
5381         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5382                        sleep_ok);
5383
5384         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5385 }
5386
5387 /**
5388  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5389  *      @adap: the adapter
5390  *      @st: holds the counter values
5391  *      @sleep_ok: if true we may sleep while awaiting command completion
5392  *
5393  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5394  */
5395 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5396                       bool sleep_ok)
5397 {
5398         u32 val[4];
5399
5400         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5401
5402         st->frames = val[0];
5403         st->drops = val[1];
5404         st->octets = ((u64)val[2] << 32) | val[3];
5405 }
5406
5407 /**
5408  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5409  *      @adap: the adapter
5410  *      @mtus: where to store the MTU values
5411  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5412  *
5413  *      Reads the HW path MTU table.
5414  */
5415 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5416 {
5417         u32 v;
5418         int i;
5419
5420         for (i = 0; i < NMTUS; ++i) {
5421                 t4_write_reg(adap, A_TP_MTU_TABLE,
5422                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
5423                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
5424                 mtus[i] = G_MTUVALUE(v);
5425                 if (mtu_log)
5426                         mtu_log[i] = G_MTUWIDTH(v);
5427         }
5428 }
5429
5430 /**
5431  *      t4_read_cong_tbl - reads the congestion control table
5432  *      @adap: the adapter
5433  *      @incr: where to store the alpha values
5434  *
5435  *      Reads the additive increments programmed into the HW congestion
5436  *      control table.
5437  */
5438 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5439 {
5440         unsigned int mtu, w;
5441
5442         for (mtu = 0; mtu < NMTUS; ++mtu)
5443                 for (w = 0; w < NCCTRL_WIN; ++w) {
5444                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
5445                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
5446                         incr[mtu][w] = (u16)t4_read_reg(adap,
5447                                                 A_TP_CCTRL_TABLE) & 0x1fff;
5448                 }
5449 }
5450
5451 /**
5452  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5453  *      @adap: the adapter
5454  *      @addr: the indirect TP register address
5455  *      @mask: specifies the field within the register to modify
5456  *      @val: new value for the field
5457  *
5458  *      Sets a field of an indirect TP register to the given value.
5459  */
5460 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5461                             unsigned int mask, unsigned int val)
5462 {
5463         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5464         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5465         t4_write_reg(adap, A_TP_PIO_DATA, val);
5466 }
5467
5468 /**
5469  *      init_cong_ctrl - initialize congestion control parameters
5470  *      @a: the alpha values for congestion control
5471  *      @b: the beta values for congestion control
5472  *
5473  *      Initialize the congestion control parameters.
5474  */
5475 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5476 {
5477         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5478         a[9] = 2;
5479         a[10] = 3;
5480         a[11] = 4;
5481         a[12] = 5;
5482         a[13] = 6;
5483         a[14] = 7;
5484         a[15] = 8;
5485         a[16] = 9;
5486         a[17] = 10;
5487         a[18] = 14;
5488         a[19] = 17;
5489         a[20] = 21;
5490         a[21] = 25;
5491         a[22] = 30;
5492         a[23] = 35;
5493         a[24] = 45;
5494         a[25] = 60;
5495         a[26] = 80;
5496         a[27] = 100;
5497         a[28] = 200;
5498         a[29] = 300;
5499         a[30] = 400;
5500         a[31] = 500;
5501
5502         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5503         b[9] = b[10] = 1;
5504         b[11] = b[12] = 2;
5505         b[13] = b[14] = b[15] = b[16] = 3;
5506         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5507         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5508         b[28] = b[29] = 6;
5509         b[30] = b[31] = 7;
5510 }
5511
5512 /* The minimum additive increment value for the congestion control table */
5513 #define CC_MIN_INCR 2U
5514
5515 /**
5516  *      t4_load_mtus - write the MTU and congestion control HW tables
5517  *      @adap: the adapter
5518  *      @mtus: the values for the MTU table
5519  *      @alpha: the values for the congestion control alpha parameter
5520  *      @beta: the values for the congestion control beta parameter
5521  *
5522  *      Write the HW MTU table with the supplied MTUs and the high-speed
5523  *      congestion control table with the supplied alpha, beta, and MTUs.
5524  *      We write the two tables together because the additive increments
5525  *      depend on the MTUs.
5526  */
5527 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5528                   const unsigned short *alpha, const unsigned short *beta)
5529 {
5530         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5531                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5532                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5533                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5534         };
5535
5536         unsigned int i, w;
5537
5538         for (i = 0; i < NMTUS; ++i) {
5539                 unsigned int mtu = mtus[i];
5540                 unsigned int log2 = fls(mtu);
5541
5542                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5543                         log2--;
5544                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5545                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5546
5547                 for (w = 0; w < NCCTRL_WIN; ++w) {
5548                         unsigned int inc;
5549
5550                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5551                                   CC_MIN_INCR);
5552
5553                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5554                                      (w << 16) | (beta[w] << 13) | inc);
5555                 }
5556         }
5557 }
5558
5559 /**
5560  *      t4_set_pace_tbl - set the pace table
5561  *      @adap: the adapter
5562  *      @pace_vals: the pace values in microseconds
5563  *      @start: index of the first entry in the HW pace table to set
5564  *      @n: how many entries to set
5565  *
5566  *      Sets (a subset of the) HW pace table.
5567  */
5568 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5569                      unsigned int start, unsigned int n)
5570 {
5571         unsigned int vals[NTX_SCHED], i;
5572         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5573
5574         if (n > NTX_SCHED)
5575             return -ERANGE;
5576
5577         /* convert values from us to dack ticks, rounding to closest value */
5578         for (i = 0; i < n; i++, pace_vals++) {
5579                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5580                 if (vals[i] > 0x7ff)
5581                         return -ERANGE;
5582                 if (*pace_vals && vals[i] == 0)
5583                         return -ERANGE;
5584         }
5585         for (i = 0; i < n; i++, start++)
5586                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5587         return 0;
5588 }
5589
5590 /**
5591  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5592  *      @adap: the adapter
5593  *      @kbps: target rate in Kbps
5594  *      @sched: the scheduler index
5595  *
5596  *      Configure a Tx HW scheduler for the target rate.
5597  */
5598 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5599 {
5600         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5601         unsigned int clk = adap->params.vpd.cclk * 1000;
5602         unsigned int selected_cpt = 0, selected_bpt = 0;
5603
5604         if (kbps > 0) {
5605                 kbps *= 125;     /* -> bytes */
5606                 for (cpt = 1; cpt <= 255; cpt++) {
5607                         tps = clk / cpt;
5608                         bpt = (kbps + tps / 2) / tps;
5609                         if (bpt > 0 && bpt <= 255) {
5610                                 v = bpt * tps;
5611                                 delta = v >= kbps ? v - kbps : kbps - v;
5612                                 if (delta < mindelta) {
5613                                         mindelta = delta;
5614                                         selected_cpt = cpt;
5615                                         selected_bpt = bpt;
5616                                 }
5617                         } else if (selected_cpt)
5618                                 break;
5619                 }
5620                 if (!selected_cpt)
5621                         return -EINVAL;
5622         }
5623         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5624                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5625         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5626         if (sched & 1)
5627                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5628         else
5629                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5630         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5631         return 0;
5632 }
5633
5634 /**
5635  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5636  *      @adap: the adapter
5637  *      @sched: the scheduler index
5638  *      @ipg: the interpacket delay in tenths of nanoseconds
5639  *
5640  *      Set the interpacket delay for a HW packet rate scheduler.
5641  */
5642 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5643 {
5644         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5645
5646         /* convert ipg to nearest number of core clocks */
5647         ipg *= core_ticks_per_usec(adap);
5648         ipg = (ipg + 5000) / 10000;
5649         if (ipg > M_TXTIMERSEPQ0)
5650                 return -EINVAL;
5651
5652         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5653         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5654         if (sched & 1)
5655                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5656         else
5657                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5658         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5659         t4_read_reg(adap, A_TP_TM_PIO_DATA);
5660         return 0;
5661 }
5662
5663 /*
5664  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5665  * clocks.  The formula is
5666  *
5667  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5668  *
5669  * which is equivalent to
5670  *
5671  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5672  */
5673 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5674 {
5675         u64 v = bytes256 * adap->params.vpd.cclk;
5676
5677         return v * 62 + v / 2;
5678 }
5679
5680 /**
5681  *      t4_get_chan_txrate - get the current per channel Tx rates
5682  *      @adap: the adapter
5683  *      @nic_rate: rates for NIC traffic
5684  *      @ofld_rate: rates for offloaded traffic
5685  *
5686  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5687  *      for each channel.
5688  */
5689 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5690 {
5691         u32 v;
5692
5693         v = t4_read_reg(adap, A_TP_TX_TRATE);
5694         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5695         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5696         if (adap->chip_params->nchan > 2) {
5697                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5698                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5699         }
5700
5701         v = t4_read_reg(adap, A_TP_TX_ORATE);
5702         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5703         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5704         if (adap->chip_params->nchan > 2) {
5705                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5706                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5707         }
5708 }
5709
5710 /**
5711  *      t4_set_trace_filter - configure one of the tracing filters
5712  *      @adap: the adapter
5713  *      @tp: the desired trace filter parameters
5714  *      @idx: which filter to configure
5715  *      @enable: whether to enable or disable the filter
5716  *
5717  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
5718  *      it indicates that the filter is already written in the register and it
5719  *      just needs to be enabled or disabled.
5720  */
5721 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5722     int idx, int enable)
5723 {
5724         int i, ofst = idx * 4;
5725         u32 data_reg, mask_reg, cfg;
5726         u32 multitrc = F_TRCMULTIFILTER;
5727         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5728
5729         if (idx < 0 || idx >= NTRACE)
5730                 return -EINVAL;
5731
5732         if (tp == NULL || !enable) {
5733                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5734                     enable ? en : 0);
5735                 return 0;
5736         }
5737
5738         /*
5739          * TODO - After T4 data book is updated, specify the exact
5740          * section below.
5741          *
5742          * See T4 data book - MPS section for a complete description
5743          * of the below if..else handling of A_MPS_TRC_CFG register
5744          * value.
5745          */
5746         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5747         if (cfg & F_TRCMULTIFILTER) {
5748                 /*
5749                  * If multiple tracers are enabled, then maximum
5750                  * capture size is 2.5KB (FIFO size of a single channel)
5751                  * minus 2 flits for CPL_TRACE_PKT header.
5752                  */
5753                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5754                         return -EINVAL;
5755         } else {
5756                 /*
5757                  * If multiple tracers are disabled, to avoid deadlocks
5758                  * maximum packet capture size of 9600 bytes is recommended.
5759                  * Also in this mode, only trace0 can be enabled and running.
5760                  */
5761                 multitrc = 0;
5762                 if (tp->snap_len > 9600 || idx)
5763                         return -EINVAL;
5764         }
5765
5766         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5767             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5768             tp->min_len > M_TFMINPKTSIZE)
5769                 return -EINVAL;
5770
5771         /* stop the tracer we'll be changing */
5772         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5773
5774         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5775         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5776         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5777
5778         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5779                 t4_write_reg(adap, data_reg, tp->data[i]);
5780                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5781         }
5782         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5783                      V_TFCAPTUREMAX(tp->snap_len) |
5784                      V_TFMINPKTSIZE(tp->min_len));
5785         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5786                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5787                      (is_t4(adap) ?
5788                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5789                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5790
5791         return 0;
5792 }
5793
5794 /**
5795  *      t4_get_trace_filter - query one of the tracing filters
5796  *      @adap: the adapter
5797  *      @tp: the current trace filter parameters
5798  *      @idx: which trace filter to query
5799  *      @enabled: non-zero if the filter is enabled
5800  *
5801  *      Returns the current settings of one of the HW tracing filters.
5802  */
5803 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5804                          int *enabled)
5805 {
5806         u32 ctla, ctlb;
5807         int i, ofst = idx * 4;
5808         u32 data_reg, mask_reg;
5809
5810         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5811         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5812
5813         if (is_t4(adap)) {
5814                 *enabled = !!(ctla & F_TFEN);
5815                 tp->port =  G_TFPORT(ctla);
5816                 tp->invert = !!(ctla & F_TFINVERTMATCH);
5817         } else {
5818                 *enabled = !!(ctla & F_T5_TFEN);
5819                 tp->port = G_T5_TFPORT(ctla);
5820                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5821         }
5822         tp->snap_len = G_TFCAPTUREMAX(ctlb);
5823         tp->min_len = G_TFMINPKTSIZE(ctlb);
5824         tp->skip_ofst = G_TFOFFSET(ctla);
5825         tp->skip_len = G_TFLENGTH(ctla);
5826
5827         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5828         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5829         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5830
5831         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5832                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5833                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5834         }
5835 }
5836
5837 /**
5838  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5839  *      @adap: the adapter
5840  *      @cnt: where to store the count statistics
5841  *      @cycles: where to store the cycle statistics
5842  *
5843  *      Returns performance statistics from PMTX.
5844  */
5845 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5846 {
5847         int i;
5848         u32 data[2];
5849
5850         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5851                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5852                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5853                 if (is_t4(adap))
5854                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5855                 else {
5856                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5857                                          A_PM_TX_DBG_DATA, data, 2,
5858                                          A_PM_TX_DBG_STAT_MSB);
5859                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5860                 }
5861         }
5862 }
5863
5864 /**
5865  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5866  *      @adap: the adapter
5867  *      @cnt: where to store the count statistics
5868  *      @cycles: where to store the cycle statistics
5869  *
5870  *      Returns performance statistics from PMRX.
5871  */
5872 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5873 {
5874         int i;
5875         u32 data[2];
5876
5877         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5878                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5879                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5880                 if (is_t4(adap)) {
5881                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5882                 } else {
5883                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5884                                          A_PM_RX_DBG_DATA, data, 2,
5885                                          A_PM_RX_DBG_STAT_MSB);
5886                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5887                 }
5888         }
5889 }
5890
5891 /**
5892  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5893  *      @adap: the adapter
5894  *      @idx: the port index
5895  *
5896  *      Returns a bitmap indicating which MPS buffer groups are associated
5897  *      with the given port.  Bit i is set if buffer group i is used by the
5898  *      port.
5899  */
5900 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5901 {
5902         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5903
5904         if (n == 0)
5905                 return idx == 0 ? 0xf : 0;
5906         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5907                 return idx < 2 ? (3 << (2 * idx)) : 0;
5908         return 1 << idx;
5909 }
5910
5911 /**
5912  *      t4_get_port_type_description - return Port Type string description
5913  *      @port_type: firmware Port Type enumeration
5914  */
5915 const char *t4_get_port_type_description(enum fw_port_type port_type)
5916 {
5917         static const char *const port_type_description[] = {
5918                 "Fiber_XFI",
5919                 "Fiber_XAUI",
5920                 "BT_SGMII",
5921                 "BT_XFI",
5922                 "BT_XAUI",
5923                 "KX4",
5924                 "CX4",
5925                 "KX",
5926                 "KR",
5927                 "SFP",
5928                 "BP_AP",
5929                 "BP4_AP",
5930                 "QSFP_10G",
5931                 "QSA",
5932                 "QSFP",
5933                 "BP40_BA",
5934                 "KR4_100G",
5935                 "CR4_QSFP",
5936                 "CR_QSFP",
5937                 "CR2_QSFP",
5938                 "SFP28",
5939                 "KR_SFP28",
5940         };
5941
5942         if (port_type < ARRAY_SIZE(port_type_description))
5943                 return port_type_description[port_type];
5944         return "UNKNOWN";
5945 }
5946
5947 /**
5948  *      t4_get_port_stats_offset - collect port stats relative to a previous
5949  *                                 snapshot
5950  *      @adap: The adapter
5951  *      @idx: The port
5952  *      @stats: Current stats to fill
5953  *      @offset: Previous stats snapshot
5954  */
5955 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5956                 struct port_stats *stats,
5957                 struct port_stats *offset)
5958 {
5959         u64 *s, *o;
5960         int i;
5961
5962         t4_get_port_stats(adap, idx, stats);
5963         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5964                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
5965                         i++, s++, o++)
5966                 *s -= *o;
5967 }
5968
5969 /**
5970  *      t4_get_port_stats - collect port statistics
5971  *      @adap: the adapter
5972  *      @idx: the port index
5973  *      @p: the stats structure to fill
5974  *
5975  *      Collect statistics related to the given port from HW.
5976  */
5977 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5978 {
5979         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5980         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5981
5982 #define GET_STAT(name) \
5983         t4_read_reg64(adap, \
5984         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5985         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5986 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5987
5988         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
5989         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
5990         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
5991         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
5992         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
5993         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
5994         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
5995         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
5996         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
5997         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
5998         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
5999         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6000         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6001         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6002         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6003         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6004         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6005         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6006         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6007         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6008         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6009         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6010         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6011
6012         if (chip_id(adap) >= CHELSIO_T5) {
6013                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6014                         p->tx_frames -= p->tx_pause;
6015                         p->tx_octets -= p->tx_pause * 64;
6016                 }
6017                 if (stat_ctl & F_COUNTPAUSEMCTX)
6018                         p->tx_mcast_frames -= p->tx_pause;
6019         }
6020
6021         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6022         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6023         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6024         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6025         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6026         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6027         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6028         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6029         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
6030         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6031         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6032         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6033         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6034         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6035         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6036         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6037         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6038         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6039         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6040         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6041         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6042         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6043         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6044         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6045         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6046         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6047         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6048
6049         if (chip_id(adap) >= CHELSIO_T5) {
6050                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6051                         p->rx_frames -= p->rx_pause;
6052                         p->rx_octets -= p->rx_pause * 64;
6053                 }
6054                 if (stat_ctl & F_COUNTPAUSEMCRX)
6055                         p->rx_mcast_frames -= p->rx_pause;
6056         }
6057
6058         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6059         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6060         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6061         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6062         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6063         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6064         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6065         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6066
6067 #undef GET_STAT
6068 #undef GET_STAT_COM
6069 }
6070
6071 /**
6072  *      t4_get_lb_stats - collect loopback port statistics
6073  *      @adap: the adapter
6074  *      @idx: the loopback port index
6075  *      @p: the stats structure to fill
6076  *
6077  *      Return HW statistics for the given loopback port.
6078  */
6079 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6080 {
6081         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6082
6083 #define GET_STAT(name) \
6084         t4_read_reg64(adap, \
6085         (is_t4(adap) ? \
6086         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6087         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6088 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6089
6090         p->octets       = GET_STAT(BYTES);
6091         p->frames       = GET_STAT(FRAMES);
6092         p->bcast_frames = GET_STAT(BCAST);
6093         p->mcast_frames = GET_STAT(MCAST);
6094         p->ucast_frames = GET_STAT(UCAST);
6095         p->error_frames = GET_STAT(ERROR);
6096
6097         p->frames_64            = GET_STAT(64B);
6098         p->frames_65_127        = GET_STAT(65B_127B);
6099         p->frames_128_255       = GET_STAT(128B_255B);
6100         p->frames_256_511       = GET_STAT(256B_511B);
6101         p->frames_512_1023      = GET_STAT(512B_1023B);
6102         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6103         p->frames_1519_max      = GET_STAT(1519B_MAX);
6104         p->drop                 = GET_STAT(DROP_FRAMES);
6105
6106         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6107         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6108         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6109         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6110         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6111         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6112         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6113         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6114
6115 #undef GET_STAT
6116 #undef GET_STAT_COM
6117 }
6118
6119 /**
6120  *      t4_wol_magic_enable - enable/disable magic packet WoL
6121  *      @adap: the adapter
6122  *      @port: the physical port index
6123  *      @addr: MAC address expected in magic packets, %NULL to disable
6124  *
6125  *      Enables/disables magic packet wake-on-LAN for the selected port.
6126  */
6127 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6128                          const u8 *addr)
6129 {
6130         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6131
6132         if (is_t4(adap)) {
6133                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6134                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6135                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6136         } else {
6137                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6138                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6139                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6140         }
6141
6142         if (addr) {
6143                 t4_write_reg(adap, mag_id_reg_l,
6144                              (addr[2] << 24) | (addr[3] << 16) |
6145                              (addr[4] << 8) | addr[5]);
6146                 t4_write_reg(adap, mag_id_reg_h,
6147                              (addr[0] << 8) | addr[1]);
6148         }
6149         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6150                          V_MAGICEN(addr != NULL));
6151 }
6152
6153 /**
6154  *      t4_wol_pat_enable - enable/disable pattern-based WoL
6155  *      @adap: the adapter
6156  *      @port: the physical port index
6157  *      @map: bitmap of which HW pattern filters to set
6158  *      @mask0: byte mask for bytes 0-63 of a packet
6159  *      @mask1: byte mask for bytes 64-127 of a packet
6160  *      @crc: Ethernet CRC for selected bytes
6161  *      @enable: enable/disable switch
6162  *
6163  *      Sets the pattern filters indicated in @map to mask out the bytes
6164  *      specified in @mask0/@mask1 in received packets and compare the CRC of
6165  *      the resulting packet against @crc.  If @enable is %true pattern-based
6166  *      WoL is enabled, otherwise disabled.
6167  */
6168 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6169                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
6170 {
6171         int i;
6172         u32 port_cfg_reg;
6173
6174         if (is_t4(adap))
6175                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6176         else
6177                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6178
6179         if (!enable) {
6180                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6181                 return 0;
6182         }
6183         if (map > 0xff)
6184                 return -EINVAL;
6185
6186 #define EPIO_REG(name) \
6187         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6188         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6189
6190         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6191         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6192         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6193
6194         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6195                 if (!(map & 1))
6196                         continue;
6197
6198                 /* write byte masks */
6199                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6200                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6201                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6202                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6203                         return -ETIMEDOUT;
6204
6205                 /* write CRC */
6206                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
6207                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6208                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6209                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6210                         return -ETIMEDOUT;
6211         }
6212 #undef EPIO_REG
6213
6214         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6215         return 0;
6216 }
6217
6218 /*     t4_mk_filtdelwr - create a delete filter WR
6219  *     @ftid: the filter ID
6220  *     @wr: the filter work request to populate
6221  *     @qid: ingress queue to receive the delete notification
6222  *
6223  *     Creates a filter work request to delete the supplied filter.  If @qid is
6224  *     negative the delete notification is suppressed.
6225  */
6226 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6227 {
6228         memset(wr, 0, sizeof(*wr));
6229         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6230         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6231         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6232                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
6233         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6234         if (qid >= 0)
6235                 wr->rx_chan_rx_rpl_iq =
6236                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6237 }
6238
6239 #define INIT_CMD(var, cmd, rd_wr) do { \
6240         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6241                                         F_FW_CMD_REQUEST | \
6242                                         F_FW_CMD_##rd_wr); \
6243         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6244 } while (0)
6245
6246 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6247                           u32 addr, u32 val)
6248 {
6249         u32 ldst_addrspace;
6250         struct fw_ldst_cmd c;
6251
6252         memset(&c, 0, sizeof(c));
6253         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6254         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6255                                         F_FW_CMD_REQUEST |
6256                                         F_FW_CMD_WRITE |
6257                                         ldst_addrspace);
6258         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6259         c.u.addrval.addr = cpu_to_be32(addr);
6260         c.u.addrval.val = cpu_to_be32(val);
6261
6262         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6263 }
6264
6265 /**
6266  *      t4_mdio_rd - read a PHY register through MDIO
6267  *      @adap: the adapter
6268  *      @mbox: mailbox to use for the FW command
6269  *      @phy_addr: the PHY address
6270  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6271  *      @reg: the register to read
6272  *      @valp: where to store the value
6273  *
6274  *      Issues a FW command through the given mailbox to read a PHY register.
6275  */
6276 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6277                unsigned int mmd, unsigned int reg, unsigned int *valp)
6278 {
6279         int ret;
6280         u32 ldst_addrspace;
6281         struct fw_ldst_cmd c;
6282
6283         memset(&c, 0, sizeof(c));
6284         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6285         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6286                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
6287                                         ldst_addrspace);
6288         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6289         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6290                                          V_FW_LDST_CMD_MMD(mmd));
6291         c.u.mdio.raddr = cpu_to_be16(reg);
6292
6293         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6294         if (ret == 0)
6295                 *valp = be16_to_cpu(c.u.mdio.rval);
6296         return ret;
6297 }
6298
6299 /**
6300  *      t4_mdio_wr - write a PHY register through MDIO
6301  *      @adap: the adapter
6302  *      @mbox: mailbox to use for the FW command
6303  *      @phy_addr: the PHY address
6304  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6305  *      @reg: the register to write
6306  *      @valp: value to write
6307  *
6308  *      Issues a FW command through the given mailbox to write a PHY register.
6309  */
6310 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6311                unsigned int mmd, unsigned int reg, unsigned int val)
6312 {
6313         u32 ldst_addrspace;
6314         struct fw_ldst_cmd c;
6315
6316         memset(&c, 0, sizeof(c));
6317         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6318         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6319                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6320                                         ldst_addrspace);
6321         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6322         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6323                                          V_FW_LDST_CMD_MMD(mmd));
6324         c.u.mdio.raddr = cpu_to_be16(reg);
6325         c.u.mdio.rval = cpu_to_be16(val);
6326
6327         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6328 }
6329
6330 /**
6331  *
6332  *      t4_sge_decode_idma_state - decode the idma state
6333  *      @adap: the adapter
6334  *      @state: the state idma is stuck in
6335  */
6336 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6337 {
6338         static const char * const t4_decode[] = {
6339                 "IDMA_IDLE",
6340                 "IDMA_PUSH_MORE_CPL_FIFO",
6341                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6342                 "Not used",
6343                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6344                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6345                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6346                 "IDMA_SEND_FIFO_TO_IMSG",
6347                 "IDMA_FL_REQ_DATA_FL_PREP",
6348                 "IDMA_FL_REQ_DATA_FL",
6349                 "IDMA_FL_DROP",
6350                 "IDMA_FL_H_REQ_HEADER_FL",
6351                 "IDMA_FL_H_SEND_PCIEHDR",
6352                 "IDMA_FL_H_PUSH_CPL_FIFO",
6353                 "IDMA_FL_H_SEND_CPL",
6354                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6355                 "IDMA_FL_H_SEND_IP_HDR",
6356                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6357                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6358                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6359                 "IDMA_FL_D_SEND_PCIEHDR",
6360                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6361                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6362                 "IDMA_FL_SEND_PCIEHDR",
6363                 "IDMA_FL_PUSH_CPL_FIFO",
6364                 "IDMA_FL_SEND_CPL",
6365                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6366                 "IDMA_FL_SEND_PAYLOAD",
6367                 "IDMA_FL_REQ_NEXT_DATA_FL",
6368                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6369                 "IDMA_FL_SEND_PADDING",
6370                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6371                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6372                 "IDMA_FL_REQ_DATAFL_DONE",
6373                 "IDMA_FL_REQ_HEADERFL_DONE",
6374         };
6375         static const char * const t5_decode[] = {
6376                 "IDMA_IDLE",
6377                 "IDMA_ALMOST_IDLE",
6378                 "IDMA_PUSH_MORE_CPL_FIFO",
6379                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6380                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6381                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6382                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6383                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6384                 "IDMA_SEND_FIFO_TO_IMSG",
6385                 "IDMA_FL_REQ_DATA_FL",
6386                 "IDMA_FL_DROP",
6387                 "IDMA_FL_DROP_SEND_INC",
6388                 "IDMA_FL_H_REQ_HEADER_FL",
6389                 "IDMA_FL_H_SEND_PCIEHDR",
6390                 "IDMA_FL_H_PUSH_CPL_FIFO",
6391                 "IDMA_FL_H_SEND_CPL",
6392                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6393                 "IDMA_FL_H_SEND_IP_HDR",
6394                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6395                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6396                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6397                 "IDMA_FL_D_SEND_PCIEHDR",
6398                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6399                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6400                 "IDMA_FL_SEND_PCIEHDR",
6401                 "IDMA_FL_PUSH_CPL_FIFO",
6402                 "IDMA_FL_SEND_CPL",
6403                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6404                 "IDMA_FL_SEND_PAYLOAD",
6405                 "IDMA_FL_REQ_NEXT_DATA_FL",
6406                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6407                 "IDMA_FL_SEND_PADDING",
6408                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6409         };
6410         static const char * const t6_decode[] = {
6411                 "IDMA_IDLE",
6412                 "IDMA_PUSH_MORE_CPL_FIFO",
6413                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6414                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6415                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6416                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6417                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6418                 "IDMA_FL_REQ_DATA_FL",
6419                 "IDMA_FL_DROP",
6420                 "IDMA_FL_DROP_SEND_INC",
6421                 "IDMA_FL_H_REQ_HEADER_FL",
6422                 "IDMA_FL_H_SEND_PCIEHDR",
6423                 "IDMA_FL_H_PUSH_CPL_FIFO",
6424                 "IDMA_FL_H_SEND_CPL",
6425                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6426                 "IDMA_FL_H_SEND_IP_HDR",
6427                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6428                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6429                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6430                 "IDMA_FL_D_SEND_PCIEHDR",
6431                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6432                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6433                 "IDMA_FL_SEND_PCIEHDR",
6434                 "IDMA_FL_PUSH_CPL_FIFO",
6435                 "IDMA_FL_SEND_CPL",
6436                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6437                 "IDMA_FL_SEND_PAYLOAD",
6438                 "IDMA_FL_REQ_NEXT_DATA_FL",
6439                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6440                 "IDMA_FL_SEND_PADDING",
6441                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6442         };
6443         static const u32 sge_regs[] = {
6444                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
6445                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
6446                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6447         };
6448         const char * const *sge_idma_decode;
6449         int sge_idma_decode_nstates;
6450         int i;
6451         unsigned int chip_version = chip_id(adapter);
6452
6453         /* Select the right set of decode strings to dump depending on the
6454          * adapter chip type.
6455          */
6456         switch (chip_version) {
6457         case CHELSIO_T4:
6458                 sge_idma_decode = (const char * const *)t4_decode;
6459                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6460                 break;
6461
6462         case CHELSIO_T5:
6463                 sge_idma_decode = (const char * const *)t5_decode;
6464                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6465                 break;
6466
6467         case CHELSIO_T6:
6468                 sge_idma_decode = (const char * const *)t6_decode;
6469                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6470                 break;
6471
6472         default:
6473                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
6474                 return;
6475         }
6476
6477         if (state < sge_idma_decode_nstates)
6478                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6479         else
6480                 CH_WARN(adapter, "idma state %d unknown\n", state);
6481
6482         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6483                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6484                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6485 }
6486
6487 /**
6488  *      t4_sge_ctxt_flush - flush the SGE context cache
6489  *      @adap: the adapter
6490  *      @mbox: mailbox to use for the FW command
6491  *
6492  *      Issues a FW command through the given mailbox to flush the
6493  *      SGE context cache.
6494  */
6495 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6496 {
6497         int ret;
6498         u32 ldst_addrspace;
6499         struct fw_ldst_cmd c;
6500
6501         memset(&c, 0, sizeof(c));
6502         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6503         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6504                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
6505                                         ldst_addrspace);
6506         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6507         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6508
6509         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6510         return ret;
6511 }
6512
6513 /**
6514  *      t4_fw_hello - establish communication with FW
6515  *      @adap: the adapter
6516  *      @mbox: mailbox to use for the FW command
6517  *      @evt_mbox: mailbox to receive async FW events
6518  *      @master: specifies the caller's willingness to be the device master
6519  *      @state: returns the current device state (if non-NULL)
6520  *
6521  *      Issues a command to establish communication with FW.  Returns either
6522  *      an error (negative integer) or the mailbox of the Master PF.
6523  */
6524 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6525                 enum dev_master master, enum dev_state *state)
6526 {
6527         int ret;
6528         struct fw_hello_cmd c;
6529         u32 v;
6530         unsigned int master_mbox;
6531         int retries = FW_CMD_HELLO_RETRIES;
6532
6533 retry:
6534         memset(&c, 0, sizeof(c));
6535         INIT_CMD(c, HELLO, WRITE);
6536         c.err_to_clearinit = cpu_to_be32(
6537                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6538                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6539                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6540                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
6541                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6542                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6543                 F_FW_HELLO_CMD_CLEARINIT);
6544
6545         /*
6546          * Issue the HELLO command to the firmware.  If it's not successful
6547          * but indicates that we got a "busy" or "timeout" condition, retry
6548          * the HELLO until we exhaust our retry limit.  If we do exceed our
6549          * retry limit, check to see if the firmware left us any error
6550          * information and report that if so ...
6551          */
6552         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6553         if (ret != FW_SUCCESS) {
6554                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6555                         goto retry;
6556                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6557                         t4_report_fw_error(adap);
6558                 return ret;
6559         }
6560
6561         v = be32_to_cpu(c.err_to_clearinit);
6562         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6563         if (state) {
6564                 if (v & F_FW_HELLO_CMD_ERR)
6565                         *state = DEV_STATE_ERR;
6566                 else if (v & F_FW_HELLO_CMD_INIT)
6567                         *state = DEV_STATE_INIT;
6568                 else
6569                         *state = DEV_STATE_UNINIT;
6570         }
6571
6572         /*
6573          * If we're not the Master PF then we need to wait around for the
6574          * Master PF Driver to finish setting up the adapter.
6575          *
6576          * Note that we also do this wait if we're a non-Master-capable PF and
6577          * there is no current Master PF; a Master PF may show up momentarily
6578          * and we wouldn't want to fail pointlessly.  (This can happen when an
6579          * OS loads lots of different drivers rapidly at the same time).  In
6580          * this case, the Master PF returned by the firmware will be
6581          * M_PCIE_FW_MASTER so the test below will work ...
6582          */
6583         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6584             master_mbox != mbox) {
6585                 int waiting = FW_CMD_HELLO_TIMEOUT;
6586
6587                 /*
6588                  * Wait for the firmware to either indicate an error or
6589                  * initialized state.  If we see either of these we bail out
6590                  * and report the issue to the caller.  If we exhaust the
6591                  * "hello timeout" and we haven't exhausted our retries, try
6592                  * again.  Otherwise bail with a timeout error.
6593                  */
6594                 for (;;) {
6595                         u32 pcie_fw;
6596
6597                         msleep(50);
6598                         waiting -= 50;
6599
6600                         /*
6601                          * If neither Error nor Initialialized are indicated
6602                          * by the firmware keep waiting till we exhaust our
6603                          * timeout ... and then retry if we haven't exhausted
6604                          * our retries ...
6605                          */
6606                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6607                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6608                                 if (waiting <= 0) {
6609                                         if (retries-- > 0)
6610                                                 goto retry;
6611
6612                                         return -ETIMEDOUT;
6613                                 }
6614                                 continue;
6615                         }
6616
6617                         /*
6618                          * We either have an Error or Initialized condition
6619                          * report errors preferentially.
6620                          */
6621                         if (state) {
6622                                 if (pcie_fw & F_PCIE_FW_ERR)
6623                                         *state = DEV_STATE_ERR;
6624                                 else if (pcie_fw & F_PCIE_FW_INIT)
6625                                         *state = DEV_STATE_INIT;
6626                         }
6627
6628                         /*
6629                          * If we arrived before a Master PF was selected and
6630                          * there's not a valid Master PF, grab its identity
6631                          * for our caller.
6632                          */
6633                         if (master_mbox == M_PCIE_FW_MASTER &&
6634                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
6635                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6636                         break;
6637                 }
6638         }
6639
6640         return master_mbox;
6641 }
6642
6643 /**
6644  *      t4_fw_bye - end communication with FW
6645  *      @adap: the adapter
6646  *      @mbox: mailbox to use for the FW command
6647  *
6648  *      Issues a command to terminate communication with FW.
6649  */
6650 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6651 {
6652         struct fw_bye_cmd c;
6653
6654         memset(&c, 0, sizeof(c));
6655         INIT_CMD(c, BYE, WRITE);
6656         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6657 }
6658
6659 /**
6660  *      t4_fw_reset - issue a reset to FW
6661  *      @adap: the adapter
6662  *      @mbox: mailbox to use for the FW command
6663  *      @reset: specifies the type of reset to perform
6664  *
6665  *      Issues a reset command of the specified type to FW.
6666  */
6667 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6668 {
6669         struct fw_reset_cmd c;
6670
6671         memset(&c, 0, sizeof(c));
6672         INIT_CMD(c, RESET, WRITE);
6673         c.val = cpu_to_be32(reset);
6674         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6675 }
6676
6677 /**
6678  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6679  *      @adap: the adapter
6680  *      @mbox: mailbox to use for the FW RESET command (if desired)
6681  *      @force: force uP into RESET even if FW RESET command fails
6682  *
6683  *      Issues a RESET command to firmware (if desired) with a HALT indication
6684  *      and then puts the microprocessor into RESET state.  The RESET command
6685  *      will only be issued if a legitimate mailbox is provided (mbox <=
6686  *      M_PCIE_FW_MASTER).
6687  *
6688  *      This is generally used in order for the host to safely manipulate the
6689  *      adapter without fear of conflicting with whatever the firmware might
6690  *      be doing.  The only way out of this state is to RESTART the firmware
6691  *      ...
6692  */
6693 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6694 {
6695         int ret = 0;
6696
6697         /*
6698          * If a legitimate mailbox is provided, issue a RESET command
6699          * with a HALT indication.
6700          */
6701         if (mbox <= M_PCIE_FW_MASTER) {
6702                 struct fw_reset_cmd c;
6703
6704                 memset(&c, 0, sizeof(c));
6705                 INIT_CMD(c, RESET, WRITE);
6706                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6707                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6708                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6709         }
6710
6711         /*
6712          * Normally we won't complete the operation if the firmware RESET
6713          * command fails but if our caller insists we'll go ahead and put the
6714          * uP into RESET.  This can be useful if the firmware is hung or even
6715          * missing ...  We'll have to take the risk of putting the uP into
6716          * RESET without the cooperation of firmware in that case.
6717          *
6718          * We also force the firmware's HALT flag to be on in case we bypassed
6719          * the firmware RESET command above or we're dealing with old firmware
6720          * which doesn't have the HALT capability.  This will serve as a flag
6721          * for the incoming firmware to know that it's coming out of a HALT
6722          * rather than a RESET ... if it's new enough to understand that ...
6723          */
6724         if (ret == 0 || force) {
6725                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6726                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6727                                  F_PCIE_FW_HALT);
6728         }
6729
6730         /*
6731          * And we always return the result of the firmware RESET command
6732          * even when we force the uP into RESET ...
6733          */
6734         return ret;
6735 }
6736
6737 /**
6738  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6739  *      @adap: the adapter
6740  *      @reset: if we want to do a RESET to restart things
6741  *
6742  *      Restart firmware previously halted by t4_fw_halt().  On successful
6743  *      return the previous PF Master remains as the new PF Master and there
6744  *      is no need to issue a new HELLO command, etc.
6745  *
6746  *      We do this in two ways:
6747  *
6748  *       1. If we're dealing with newer firmware we'll simply want to take
6749  *          the chip's microprocessor out of RESET.  This will cause the
6750  *          firmware to start up from its start vector.  And then we'll loop
6751  *          until the firmware indicates it's started again (PCIE_FW.HALT
6752  *          reset to 0) or we timeout.
6753  *
6754  *       2. If we're dealing with older firmware then we'll need to RESET
6755  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6756  *          flag and automatically RESET itself on startup.
6757  */
6758 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6759 {
6760         if (reset) {
6761                 /*
6762                  * Since we're directing the RESET instead of the firmware
6763                  * doing it automatically, we need to clear the PCIE_FW.HALT
6764                  * bit.
6765                  */
6766                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6767
6768                 /*
6769                  * If we've been given a valid mailbox, first try to get the
6770                  * firmware to do the RESET.  If that works, great and we can
6771                  * return success.  Otherwise, if we haven't been given a
6772                  * valid mailbox or the RESET command failed, fall back to
6773                  * hitting the chip with a hammer.
6774                  */
6775                 if (mbox <= M_PCIE_FW_MASTER) {
6776                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6777                         msleep(100);
6778                         if (t4_fw_reset(adap, mbox,
6779                                         F_PIORST | F_PIORSTMODE) == 0)
6780                                 return 0;
6781                 }
6782
6783                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6784                 msleep(2000);
6785         } else {
6786                 int ms;
6787
6788                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6789                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6790                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6791                                 return FW_SUCCESS;
6792                         msleep(100);
6793                         ms += 100;
6794                 }
6795                 return -ETIMEDOUT;
6796         }
6797         return 0;
6798 }
6799
6800 /**
6801  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6802  *      @adap: the adapter
6803  *      @mbox: mailbox to use for the FW RESET command (if desired)
6804  *      @fw_data: the firmware image to write
6805  *      @size: image size
6806  *      @force: force upgrade even if firmware doesn't cooperate
6807  *
6808  *      Perform all of the steps necessary for upgrading an adapter's
6809  *      firmware image.  Normally this requires the cooperation of the
6810  *      existing firmware in order to halt all existing activities
6811  *      but if an invalid mailbox token is passed in we skip that step
6812  *      (though we'll still put the adapter microprocessor into RESET in
6813  *      that case).
6814  *
6815  *      On successful return the new firmware will have been loaded and
6816  *      the adapter will have been fully RESET losing all previous setup
6817  *      state.  On unsuccessful return the adapter may be completely hosed ...
6818  *      positive errno indicates that the adapter is ~probably~ intact, a
6819  *      negative errno indicates that things are looking bad ...
6820  */
6821 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6822                   const u8 *fw_data, unsigned int size, int force)
6823 {
6824         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6825         unsigned int bootstrap =
6826             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6827         int reset, ret;
6828
6829         if (!t4_fw_matches_chip(adap, fw_hdr))
6830                 return -EINVAL;
6831
6832         if (!bootstrap) {
6833                 ret = t4_fw_halt(adap, mbox, force);
6834                 if (ret < 0 && !force)
6835                         return ret;
6836         }
6837
6838         ret = t4_load_fw(adap, fw_data, size);
6839         if (ret < 0 || bootstrap)
6840                 return ret;
6841
6842         /*
6843          * Older versions of the firmware don't understand the new
6844          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6845          * restart.  So for newly loaded older firmware we'll have to do the
6846          * RESET for it so it starts up on a clean slate.  We can tell if
6847          * the newly loaded firmware will handle this right by checking
6848          * its header flags to see if it advertises the capability.
6849          */
6850         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6851         return t4_fw_restart(adap, mbox, reset);
6852 }
6853
6854 /**
6855  *      t4_fw_initialize - ask FW to initialize the device
6856  *      @adap: the adapter
6857  *      @mbox: mailbox to use for the FW command
6858  *
6859  *      Issues a command to FW to partially initialize the device.  This
6860  *      performs initialization that generally doesn't depend on user input.
6861  */
6862 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6863 {
6864         struct fw_initialize_cmd c;
6865
6866         memset(&c, 0, sizeof(c));
6867         INIT_CMD(c, INITIALIZE, WRITE);
6868         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6869 }
6870
6871 /**
6872  *      t4_query_params_rw - query FW or device parameters
6873  *      @adap: the adapter
6874  *      @mbox: mailbox to use for the FW command
6875  *      @pf: the PF
6876  *      @vf: the VF
6877  *      @nparams: the number of parameters
6878  *      @params: the parameter names
6879  *      @val: the parameter values
6880  *      @rw: Write and read flag
6881  *
6882  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6883  *      queried at once.
6884  */
6885 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6886                        unsigned int vf, unsigned int nparams, const u32 *params,
6887                        u32 *val, int rw)
6888 {
6889         int i, ret;
6890         struct fw_params_cmd c;
6891         __be32 *p = &c.param[0].mnem;
6892
6893         if (nparams > 7)
6894                 return -EINVAL;
6895
6896         memset(&c, 0, sizeof(c));
6897         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6898                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
6899                                   V_FW_PARAMS_CMD_PFN(pf) |
6900                                   V_FW_PARAMS_CMD_VFN(vf));
6901         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6902
6903         for (i = 0; i < nparams; i++) {
6904                 *p++ = cpu_to_be32(*params++);
6905                 if (rw)
6906                         *p = cpu_to_be32(*(val + i));
6907                 p++;
6908         }
6909
6910         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6911         if (ret == 0)
6912                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6913                         *val++ = be32_to_cpu(*p);
6914         return ret;
6915 }
6916
6917 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6918                     unsigned int vf, unsigned int nparams, const u32 *params,
6919                     u32 *val)
6920 {
6921         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6922 }
6923
6924 /**
6925  *      t4_set_params_timeout - sets FW or device parameters
6926  *      @adap: the adapter
6927  *      @mbox: mailbox to use for the FW command
6928  *      @pf: the PF
6929  *      @vf: the VF
6930  *      @nparams: the number of parameters
6931  *      @params: the parameter names
6932  *      @val: the parameter values
6933  *      @timeout: the timeout time
6934  *
6935  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6936  *      specified at once.
6937  */
6938 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6939                           unsigned int pf, unsigned int vf,
6940                           unsigned int nparams, const u32 *params,
6941                           const u32 *val, int timeout)
6942 {
6943         struct fw_params_cmd c;
6944         __be32 *p = &c.param[0].mnem;
6945
6946         if (nparams > 7)
6947                 return -EINVAL;
6948
6949         memset(&c, 0, sizeof(c));
6950         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6951                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6952                                   V_FW_PARAMS_CMD_PFN(pf) |
6953                                   V_FW_PARAMS_CMD_VFN(vf));
6954         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6955
6956         while (nparams--) {
6957                 *p++ = cpu_to_be32(*params++);
6958                 *p++ = cpu_to_be32(*val++);
6959         }
6960
6961         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6962 }
6963
6964 /**
6965  *      t4_set_params - sets FW or device parameters
6966  *      @adap: the adapter
6967  *      @mbox: mailbox to use for the FW command
6968  *      @pf: the PF
6969  *      @vf: the VF
6970  *      @nparams: the number of parameters
6971  *      @params: the parameter names
6972  *      @val: the parameter values
6973  *
6974  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6975  *      specified at once.
6976  */
6977 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6978                   unsigned int vf, unsigned int nparams, const u32 *params,
6979                   const u32 *val)
6980 {
6981         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6982                                      FW_CMD_MAX_TIMEOUT);
6983 }
6984
6985 /**
6986  *      t4_cfg_pfvf - configure PF/VF resource limits
6987  *      @adap: the adapter
6988  *      @mbox: mailbox to use for the FW command
6989  *      @pf: the PF being configured
6990  *      @vf: the VF being configured
6991  *      @txq: the max number of egress queues
6992  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6993  *      @rxqi: the max number of interrupt-capable ingress queues
6994  *      @rxq: the max number of interruptless ingress queues
6995  *      @tc: the PCI traffic class
6996  *      @vi: the max number of virtual interfaces
6997  *      @cmask: the channel access rights mask for the PF/VF
6998  *      @pmask: the port access rights mask for the PF/VF
6999  *      @nexact: the maximum number of exact MPS filters
7000  *      @rcaps: read capabilities
7001  *      @wxcaps: write/execute capabilities
7002  *
7003  *      Configures resource limits and capabilities for a physical or virtual
7004  *      function.
7005  */
7006 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7007                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7008                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7009                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7010                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7011 {
7012         struct fw_pfvf_cmd c;
7013
7014         memset(&c, 0, sizeof(c));
7015         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7016                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7017                                   V_FW_PFVF_CMD_VFN(vf));
7018         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7019         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7020                                      V_FW_PFVF_CMD_NIQ(rxq));
7021         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7022                                     V_FW_PFVF_CMD_PMASK(pmask) |
7023                                     V_FW_PFVF_CMD_NEQ(txq));
7024         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7025                                       V_FW_PFVF_CMD_NVI(vi) |
7026                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7027         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7028                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7029                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7030         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7031 }
7032
7033 /**
7034  *      t4_alloc_vi_func - allocate a virtual interface
7035  *      @adap: the adapter
7036  *      @mbox: mailbox to use for the FW command
7037  *      @port: physical port associated with the VI
7038  *      @pf: the PF owning the VI
7039  *      @vf: the VF owning the VI
7040  *      @nmac: number of MAC addresses needed (1 to 5)
7041  *      @mac: the MAC addresses of the VI
7042  *      @rss_size: size of RSS table slice associated with this VI
7043  *      @portfunc: which Port Application Function MAC Address is desired
7044  *      @idstype: Intrusion Detection Type
7045  *
7046  *      Allocates a virtual interface for the given physical port.  If @mac is
7047  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7048  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7049  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7050  *      stored consecutively so the space needed is @nmac * 6 bytes.
7051  *      Returns a negative error number or the non-negative VI id.
7052  */
7053 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7054                      unsigned int port, unsigned int pf, unsigned int vf,
7055                      unsigned int nmac, u8 *mac, u16 *rss_size,
7056                      unsigned int portfunc, unsigned int idstype)
7057 {
7058         int ret;
7059         struct fw_vi_cmd c;
7060
7061         memset(&c, 0, sizeof(c));
7062         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7063                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7064                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7065         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7066         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7067                                      V_FW_VI_CMD_FUNC(portfunc));
7068         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7069         c.nmac = nmac - 1;
7070         if(!rss_size)
7071                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7072
7073         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7074         if (ret)
7075                 return ret;
7076
7077         if (mac) {
7078                 memcpy(mac, c.mac, sizeof(c.mac));
7079                 switch (nmac) {
7080                 case 5:
7081                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7082                 case 4:
7083                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7084                 case 3:
7085                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7086                 case 2:
7087                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7088                 }
7089         }
7090         if (rss_size)
7091                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7092         return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7093 }
7094
7095 /**
7096  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7097  *      @adap: the adapter
7098  *      @mbox: mailbox to use for the FW command
7099  *      @port: physical port associated with the VI
7100  *      @pf: the PF owning the VI
7101  *      @vf: the VF owning the VI
7102  *      @nmac: number of MAC addresses needed (1 to 5)
7103  *      @mac: the MAC addresses of the VI
7104  *      @rss_size: size of RSS table slice associated with this VI
7105  *
7106  *      backwards compatible and convieniance routine to allocate a Virtual
7107  *      Interface with a Ethernet Port Application Function and Intrustion
7108  *      Detection System disabled.
7109  */
7110 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7111                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7112                 u16 *rss_size)
7113 {
7114         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7115                                 FW_VI_FUNC_ETH, 0);
7116 }
7117
7118 /**
7119  *      t4_free_vi - free a virtual interface
7120  *      @adap: the adapter
7121  *      @mbox: mailbox to use for the FW command
7122  *      @pf: the PF owning the VI
7123  *      @vf: the VF owning the VI
7124  *      @viid: virtual interface identifiler
7125  *
7126  *      Free a previously allocated virtual interface.
7127  */
7128 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7129                unsigned int vf, unsigned int viid)
7130 {
7131         struct fw_vi_cmd c;
7132
7133         memset(&c, 0, sizeof(c));
7134         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7135                                   F_FW_CMD_REQUEST |
7136                                   F_FW_CMD_EXEC |
7137                                   V_FW_VI_CMD_PFN(pf) |
7138                                   V_FW_VI_CMD_VFN(vf));
7139         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7140         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7141
7142         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7143 }
7144
7145 /**
7146  *      t4_set_rxmode - set Rx properties of a virtual interface
7147  *      @adap: the adapter
7148  *      @mbox: mailbox to use for the FW command
7149  *      @viid: the VI id
7150  *      @mtu: the new MTU or -1
7151  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7152  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7153  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7154  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7155  *      @sleep_ok: if true we may sleep while awaiting command completion
7156  *
7157  *      Sets Rx properties of a virtual interface.
7158  */
7159 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7160                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7161                   bool sleep_ok)
7162 {
7163         struct fw_vi_rxmode_cmd c;
7164
7165         /* convert to FW values */
7166         if (mtu < 0)
7167                 mtu = M_FW_VI_RXMODE_CMD_MTU;
7168         if (promisc < 0)
7169                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7170         if (all_multi < 0)
7171                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7172         if (bcast < 0)
7173                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7174         if (vlanex < 0)
7175                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7176
7177         memset(&c, 0, sizeof(c));
7178         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7179                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7180                                    V_FW_VI_RXMODE_CMD_VIID(viid));
7181         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7182         c.mtu_to_vlanexen =
7183                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7184                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7185                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7186                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7187                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7188         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7189 }
7190
7191 /**
7192  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7193  *      @adap: the adapter
7194  *      @mbox: mailbox to use for the FW command
7195  *      @viid: the VI id
7196  *      @free: if true any existing filters for this VI id are first removed
7197  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7198  *      @addr: the MAC address(es)
7199  *      @idx: where to store the index of each allocated filter
7200  *      @hash: pointer to hash address filter bitmap
7201  *      @sleep_ok: call is allowed to sleep
7202  *
7203  *      Allocates an exact-match filter for each of the supplied addresses and
7204  *      sets it to the corresponding address.  If @idx is not %NULL it should
7205  *      have at least @naddr entries, each of which will be set to the index of
7206  *      the filter allocated for the corresponding MAC address.  If a filter
7207  *      could not be allocated for an address its index is set to 0xffff.
7208  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7209  *      are hashed and update the hash filter bitmap pointed at by @hash.
7210  *
7211  *      Returns a negative error number or the number of filters allocated.
7212  */
7213 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7214                       unsigned int viid, bool free, unsigned int naddr,
7215                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7216 {
7217         int offset, ret = 0;
7218         struct fw_vi_mac_cmd c;
7219         unsigned int nfilters = 0;
7220         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7221         unsigned int rem = naddr;
7222
7223         if (naddr > max_naddr)
7224                 return -EINVAL;
7225
7226         for (offset = 0; offset < naddr ; /**/) {
7227                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7228                                          ? rem
7229                                          : ARRAY_SIZE(c.u.exact));
7230                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7231                                                      u.exact[fw_naddr]), 16);
7232                 struct fw_vi_mac_exact *p;
7233                 int i;
7234
7235                 memset(&c, 0, sizeof(c));
7236                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7237                                            F_FW_CMD_REQUEST |
7238                                            F_FW_CMD_WRITE |
7239                                            V_FW_CMD_EXEC(free) |
7240                                            V_FW_VI_MAC_CMD_VIID(viid));
7241                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7242                                                   V_FW_CMD_LEN16(len16));
7243
7244                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7245                         p->valid_to_idx =
7246                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7247                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7248                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7249                 }
7250
7251                 /*
7252                  * It's okay if we run out of space in our MAC address arena.
7253                  * Some of the addresses we submit may get stored so we need
7254                  * to run through the reply to see what the results were ...
7255                  */
7256                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7257                 if (ret && ret != -FW_ENOMEM)
7258                         break;
7259
7260                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7261                         u16 index = G_FW_VI_MAC_CMD_IDX(
7262                                                 be16_to_cpu(p->valid_to_idx));
7263
7264                         if (idx)
7265                                 idx[offset+i] = (index >=  max_naddr
7266                                                  ? 0xffff
7267                                                  : index);
7268                         if (index < max_naddr)
7269                                 nfilters++;
7270                         else if (hash)
7271                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7272                 }
7273
7274                 free = false;
7275                 offset += fw_naddr;
7276                 rem -= fw_naddr;
7277         }
7278
7279         if (ret == 0 || ret == -FW_ENOMEM)
7280                 ret = nfilters;
7281         return ret;
7282 }
7283
7284 /**
7285  *      t4_change_mac - modifies the exact-match filter for a MAC address
7286  *      @adap: the adapter
7287  *      @mbox: mailbox to use for the FW command
7288  *      @viid: the VI id
7289  *      @idx: index of existing filter for old value of MAC address, or -1
7290  *      @addr: the new MAC address value
7291  *      @persist: whether a new MAC allocation should be persistent
7292  *      @add_smt: if true also add the address to the HW SMT
7293  *
7294  *      Modifies an exact-match filter and sets it to the new MAC address if
7295  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7296  *      latter case the address is added persistently if @persist is %true.
7297  *
7298  *      Note that in general it is not possible to modify the value of a given
7299  *      filter so the generic way to modify an address filter is to free the one
7300  *      being used by the old address value and allocate a new filter for the
7301  *      new address value.
7302  *
7303  *      Returns a negative error number or the index of the filter with the new
7304  *      MAC value.  Note that this index may differ from @idx.
7305  */
7306 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7307                   int idx, const u8 *addr, bool persist, bool add_smt)
7308 {
7309         int ret, mode;
7310         struct fw_vi_mac_cmd c;
7311         struct fw_vi_mac_exact *p = c.u.exact;
7312         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7313
7314         if (idx < 0)            /* new allocation */
7315                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7316         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7317
7318         memset(&c, 0, sizeof(c));
7319         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7320                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7321                                    V_FW_VI_MAC_CMD_VIID(viid));
7322         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7323         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7324                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7325                                       V_FW_VI_MAC_CMD_IDX(idx));
7326         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7327
7328         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7329         if (ret == 0) {
7330                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7331                 if (ret >= max_mac_addr)
7332                         ret = -ENOMEM;
7333         }
7334         return ret;
7335 }
7336
7337 /**
7338  *      t4_set_addr_hash - program the MAC inexact-match hash filter
7339  *      @adap: the adapter
7340  *      @mbox: mailbox to use for the FW command
7341  *      @viid: the VI id
7342  *      @ucast: whether the hash filter should also match unicast addresses
7343  *      @vec: the value to be written to the hash filter
7344  *      @sleep_ok: call is allowed to sleep
7345  *
7346  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
7347  */
7348 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7349                      bool ucast, u64 vec, bool sleep_ok)
7350 {
7351         struct fw_vi_mac_cmd c;
7352         u32 val;
7353
7354         memset(&c, 0, sizeof(c));
7355         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7356                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7357                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7358         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7359               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7360         c.freemacs_to_len16 = cpu_to_be32(val);
7361         c.u.hash.hashvec = cpu_to_be64(vec);
7362         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7363 }
7364
7365 /**
7366  *      t4_enable_vi_params - enable/disable a virtual interface
7367  *      @adap: the adapter
7368  *      @mbox: mailbox to use for the FW command
7369  *      @viid: the VI id
7370  *      @rx_en: 1=enable Rx, 0=disable Rx
7371  *      @tx_en: 1=enable Tx, 0=disable Tx
7372  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7373  *
7374  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7375  *      only makes sense when enabling a Virtual Interface ...
7376  */
7377 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7378                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7379 {
7380         struct fw_vi_enable_cmd c;
7381
7382         memset(&c, 0, sizeof(c));
7383         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7384                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7385                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7386         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7387                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7388                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7389                                      FW_LEN16(c));
7390         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7391 }
7392
7393 /**
7394  *      t4_enable_vi - enable/disable a virtual interface
7395  *      @adap: the adapter
7396  *      @mbox: mailbox to use for the FW command
7397  *      @viid: the VI id
7398  *      @rx_en: 1=enable Rx, 0=disable Rx
7399  *      @tx_en: 1=enable Tx, 0=disable Tx
7400  *
7401  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7402  *      only makes sense when enabling a Virtual Interface ...
7403  */
7404 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7405                  bool rx_en, bool tx_en)
7406 {
7407         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7408 }
7409
7410 /**
7411  *      t4_identify_port - identify a VI's port by blinking its LED
7412  *      @adap: the adapter
7413  *      @mbox: mailbox to use for the FW command
7414  *      @viid: the VI id
7415  *      @nblinks: how many times to blink LED at 2.5 Hz
7416  *
7417  *      Identifies a VI's port by blinking its LED.
7418  */
7419 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7420                      unsigned int nblinks)
7421 {
7422         struct fw_vi_enable_cmd c;
7423
7424         memset(&c, 0, sizeof(c));
7425         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7426                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7427                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7428         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7429         c.blinkdur = cpu_to_be16(nblinks);
7430         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7431 }
7432
7433 /**
7434  *      t4_iq_stop - stop an ingress queue and its FLs
7435  *      @adap: the adapter
7436  *      @mbox: mailbox to use for the FW command
7437  *      @pf: the PF owning the queues
7438  *      @vf: the VF owning the queues
7439  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7440  *      @iqid: ingress queue id
7441  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7442  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7443  *
7444  *      Stops an ingress queue and its associated FLs, if any.  This causes
7445  *      any current or future data/messages destined for these queues to be
7446  *      tossed.
7447  */
7448 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7449                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7450                unsigned int fl0id, unsigned int fl1id)
7451 {
7452         struct fw_iq_cmd c;
7453
7454         memset(&c, 0, sizeof(c));
7455         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7456                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7457                                   V_FW_IQ_CMD_VFN(vf));
7458         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7459         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7460         c.iqid = cpu_to_be16(iqid);
7461         c.fl0id = cpu_to_be16(fl0id);
7462         c.fl1id = cpu_to_be16(fl1id);
7463         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7464 }
7465
7466 /**
7467  *      t4_iq_free - free an ingress queue and its FLs
7468  *      @adap: the adapter
7469  *      @mbox: mailbox to use for the FW command
7470  *      @pf: the PF owning the queues
7471  *      @vf: the VF owning the queues
7472  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7473  *      @iqid: ingress queue id
7474  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7475  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7476  *
7477  *      Frees an ingress queue and its associated FLs, if any.
7478  */
7479 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7480                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7481                unsigned int fl0id, unsigned int fl1id)
7482 {
7483         struct fw_iq_cmd c;
7484
7485         memset(&c, 0, sizeof(c));
7486         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7487                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7488                                   V_FW_IQ_CMD_VFN(vf));
7489         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7490         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7491         c.iqid = cpu_to_be16(iqid);
7492         c.fl0id = cpu_to_be16(fl0id);
7493         c.fl1id = cpu_to_be16(fl1id);
7494         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7495 }
7496
7497 /**
7498  *      t4_eth_eq_free - free an Ethernet egress queue
7499  *      @adap: the adapter
7500  *      @mbox: mailbox to use for the FW command
7501  *      @pf: the PF owning the queue
7502  *      @vf: the VF owning the queue
7503  *      @eqid: egress queue id
7504  *
7505  *      Frees an Ethernet egress queue.
7506  */
7507 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7508                    unsigned int vf, unsigned int eqid)
7509 {
7510         struct fw_eq_eth_cmd c;
7511
7512         memset(&c, 0, sizeof(c));
7513         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7514                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7515                                   V_FW_EQ_ETH_CMD_PFN(pf) |
7516                                   V_FW_EQ_ETH_CMD_VFN(vf));
7517         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7518         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7519         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7520 }
7521
7522 /**
7523  *      t4_ctrl_eq_free - free a control egress queue
7524  *      @adap: the adapter
7525  *      @mbox: mailbox to use for the FW command
7526  *      @pf: the PF owning the queue
7527  *      @vf: the VF owning the queue
7528  *      @eqid: egress queue id
7529  *
7530  *      Frees a control egress queue.
7531  */
7532 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7533                     unsigned int vf, unsigned int eqid)
7534 {
7535         struct fw_eq_ctrl_cmd c;
7536
7537         memset(&c, 0, sizeof(c));
7538         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7539                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7540                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
7541                                   V_FW_EQ_CTRL_CMD_VFN(vf));
7542         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7543         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7544         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7545 }
7546
7547 /**
7548  *      t4_ofld_eq_free - free an offload egress queue
7549  *      @adap: the adapter
7550  *      @mbox: mailbox to use for the FW command
7551  *      @pf: the PF owning the queue
7552  *      @vf: the VF owning the queue
7553  *      @eqid: egress queue id
7554  *
7555  *      Frees a control egress queue.
7556  */
7557 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7558                     unsigned int vf, unsigned int eqid)
7559 {
7560         struct fw_eq_ofld_cmd c;
7561
7562         memset(&c, 0, sizeof(c));
7563         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7564                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7565                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
7566                                   V_FW_EQ_OFLD_CMD_VFN(vf));
7567         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7568         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7569         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7570 }
7571
7572 /**
7573  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
7574  *      @link_down_rc: Link Down Reason Code
7575  *
7576  *      Returns a string representation of the Link Down Reason Code.
7577  */
7578 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7579 {
7580         static const char *reason[] = {
7581                 "Link Down",
7582                 "Remote Fault",
7583                 "Auto-negotiation Failure",
7584                 "Reserved3",
7585                 "Insufficient Airflow",
7586                 "Unable To Determine Reason",
7587                 "No RX Signal Detected",
7588                 "Reserved7",
7589         };
7590
7591         if (link_down_rc >= ARRAY_SIZE(reason))
7592                 return "Bad Reason Code";
7593
7594         return reason[link_down_rc];
7595 }
7596
7597 /*
7598  * Updates all fields owned by the common code in port_info and link_config
7599  * based on information provided by the firmware.  Does not touch any
7600  * requested_* field.
7601  */
7602 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7603 {
7604         struct link_config *lc = &pi->link_cfg;
7605         int speed;
7606         unsigned char fc, fec;
7607         u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7608
7609         pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7610         pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7611         pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7612             G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7613
7614         lc->supported = be16_to_cpu(p->pcap);
7615         lc->advertising = be16_to_cpu(p->acap);
7616         lc->lp_advertising = be16_to_cpu(p->lpacap);
7617         lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7618         lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7619
7620         speed = 0;
7621         if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7622                 speed = 100;
7623         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7624                 speed = 1000;
7625         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7626                 speed = 10000;
7627         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7628                 speed = 25000;
7629         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7630                 speed = 40000;
7631         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7632                 speed = 100000;
7633         lc->speed = speed;
7634
7635         fc = 0;
7636         if (stat & F_FW_PORT_CMD_RXPAUSE)
7637                 fc |= PAUSE_RX;
7638         if (stat & F_FW_PORT_CMD_TXPAUSE)
7639                 fc |= PAUSE_TX;
7640         lc->fc = fc;
7641
7642         fec = 0;
7643         if (lc->advertising & FW_PORT_CAP_FEC_RS)
7644                 fec = FEC_RS;
7645         else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7646                 fec = FEC_BASER_RS;
7647         lc->fec = fec;
7648 }
7649
7650 /**
7651  *      t4_update_port_info - retrieve and update port information if changed
7652  *      @pi: the port_info
7653  *
7654  *      We issue a Get Port Information Command to the Firmware and, if
7655  *      successful, we check to see if anything is different from what we
7656  *      last recorded and update things accordingly.
7657  */
7658  int t4_update_port_info(struct port_info *pi)
7659  {
7660         struct fw_port_cmd port_cmd;
7661         int ret;
7662
7663         memset(&port_cmd, 0, sizeof port_cmd);
7664         port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7665                                             F_FW_CMD_REQUEST | F_FW_CMD_READ |
7666                                             V_FW_PORT_CMD_PORTID(pi->tx_chan));
7667         port_cmd.action_to_len16 = cpu_to_be32(
7668                 V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7669                 FW_LEN16(port_cmd));
7670         ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7671                          &port_cmd, sizeof(port_cmd), &port_cmd);
7672         if (ret)
7673                 return ret;
7674
7675         handle_port_info(pi, &port_cmd.u.info);
7676         return 0;
7677 }
7678
7679 /**
7680  *      t4_handle_fw_rpl - process a FW reply message
7681  *      @adap: the adapter
7682  *      @rpl: start of the FW message
7683  *
7684  *      Processes a FW message, such as link state change messages.
7685  */
7686 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7687 {
7688         u8 opcode = *(const u8 *)rpl;
7689         const struct fw_port_cmd *p = (const void *)rpl;
7690         unsigned int action =
7691                         G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7692
7693         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7694                 /* link/module state change message */
7695                 int i, old_ptype, old_mtype;
7696                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7697                 struct port_info *pi = NULL;
7698                 struct link_config *lc, *old_lc;
7699
7700                 for_each_port(adap, i) {
7701                         pi = adap2pinfo(adap, i);
7702                         if (pi->tx_chan == chan)
7703                                 break;
7704                 }
7705
7706                 lc = &pi->link_cfg;
7707                 PORT_LOCK(pi);
7708                 old_lc = &pi->old_link_cfg;
7709                 old_ptype = pi->port_type;
7710                 old_mtype = pi->mod_type;
7711                 handle_port_info(pi, &p->u.info);
7712                 PORT_UNLOCK(pi);
7713                 if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7714                         t4_os_portmod_changed(pi);
7715                 }
7716                 PORT_LOCK(pi);
7717                 if (old_lc->link_ok != lc->link_ok ||
7718                     old_lc->speed != lc->speed ||
7719                     old_lc->fec != lc->fec ||
7720                     old_lc->fc != lc->fc) {
7721                         t4_os_link_changed(pi);
7722                         *old_lc = *lc;
7723                 }
7724                 PORT_UNLOCK(pi);
7725         } else {
7726                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7727                 return -EINVAL;
7728         }
7729         return 0;
7730 }
7731
7732 /**
7733  *      get_pci_mode - determine a card's PCI mode
7734  *      @adapter: the adapter
7735  *      @p: where to store the PCI settings
7736  *
7737  *      Determines a card's PCI mode and associated parameters, such as speed
7738  *      and width.
7739  */
7740 static void get_pci_mode(struct adapter *adapter,
7741                                    struct pci_params *p)
7742 {
7743         u16 val;
7744         u32 pcie_cap;
7745
7746         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7747         if (pcie_cap) {
7748                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7749                 p->speed = val & PCI_EXP_LNKSTA_CLS;
7750                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7751         }
7752 }
7753
7754 struct flash_desc {
7755         u32 vendor_and_model_id;
7756         u32 size_mb;
7757 };
7758
7759 int t4_get_flash_params(struct adapter *adapter)
7760 {
7761         /*
7762          * Table for non-standard supported Flash parts.  Note, all Flash
7763          * parts must have 64KB sectors.
7764          */
7765         static struct flash_desc supported_flash[] = {
7766                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
7767         };
7768
7769         int ret;
7770         u32 flashid = 0;
7771         unsigned int part, manufacturer;
7772         unsigned int density, size = 0;
7773
7774
7775         /*
7776          * Issue a Read ID Command to the Flash part.  We decode supported
7777          * Flash parts and their sizes from this.  There's a newer Query
7778          * Command which can retrieve detailed geometry information but many
7779          * Flash parts don't support it.
7780          */
7781         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7782         if (!ret)
7783                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
7784         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
7785         if (ret < 0)
7786                 return ret;
7787
7788         /*
7789          * Check to see if it's one of our non-standard supported Flash parts.
7790          */
7791         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7792                 if (supported_flash[part].vendor_and_model_id == flashid) {
7793                         adapter->params.sf_size =
7794                                 supported_flash[part].size_mb;
7795                         adapter->params.sf_nsec =
7796                                 adapter->params.sf_size / SF_SEC_SIZE;
7797                         goto found;
7798                 }
7799
7800         /*
7801          * Decode Flash part size.  The code below looks repetative with
7802          * common encodings, but that's not guaranteed in the JEDEC
7803          * specification for the Read JADEC ID command.  The only thing that
7804          * we're guaranteed by the JADEC specification is where the
7805          * Manufacturer ID is in the returned result.  After that each
7806          * Manufacturer ~could~ encode things completely differently.
7807          * Note, all Flash parts must have 64KB sectors.
7808          */
7809         manufacturer = flashid & 0xff;
7810         switch (manufacturer) {
7811         case 0x20: /* Micron/Numonix */
7812                 /*
7813                  * This Density -> Size decoding table is taken from Micron
7814                  * Data Sheets.
7815                  */
7816                 density = (flashid >> 16) & 0xff;
7817                 switch (density) {
7818                 case 0x14: size = 1 << 20; break; /*   1MB */
7819                 case 0x15: size = 1 << 21; break; /*   2MB */
7820                 case 0x16: size = 1 << 22; break; /*   4MB */
7821                 case 0x17: size = 1 << 23; break; /*   8MB */
7822                 case 0x18: size = 1 << 24; break; /*  16MB */
7823                 case 0x19: size = 1 << 25; break; /*  32MB */
7824                 case 0x20: size = 1 << 26; break; /*  64MB */
7825                 case 0x21: size = 1 << 27; break; /* 128MB */
7826                 case 0x22: size = 1 << 28; break; /* 256MB */
7827                 }
7828                 break;
7829
7830         case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
7831                 /*
7832                  * This Density -> Size decoding table is taken from ISSI
7833                  * Data Sheets.
7834                  */
7835                 density = (flashid >> 16) & 0xff;
7836                 switch (density) {
7837                 case 0x16: size = 1 << 25; break; /*  32MB */
7838                 case 0x17: size = 1 << 26; break; /*  64MB */
7839                 }
7840                 break;
7841
7842         case 0xc2: /* Macronix */
7843                 /*
7844                  * This Density -> Size decoding table is taken from Macronix
7845                  * Data Sheets.
7846                  */
7847                 density = (flashid >> 16) & 0xff;
7848                 switch (density) {
7849                 case 0x17: size = 1 << 23; break; /*   8MB */
7850                 case 0x18: size = 1 << 24; break; /*  16MB */
7851                 }
7852                 break;
7853
7854         case 0xef: /* Winbond */
7855                 /*
7856                  * This Density -> Size decoding table is taken from Winbond
7857                  * Data Sheets.
7858                  */
7859                 density = (flashid >> 16) & 0xff;
7860                 switch (density) {
7861                 case 0x17: size = 1 << 23; break; /*   8MB */
7862                 case 0x18: size = 1 << 24; break; /*  16MB */
7863                 }
7864                 break;
7865         }
7866
7867         /* If we didn't recognize the FLASH part, that's no real issue: the
7868          * Hardware/Software contract says that Hardware will _*ALWAYS*_
7869          * use a FLASH part which is at least 4MB in size and has 64KB
7870          * sectors.  The unrecognized FLASH part is likely to be much larger
7871          * than 4MB, but that's all we really need.
7872          */
7873         if (size == 0) {
7874                 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
7875                 size = 1 << 22;
7876         }
7877
7878         /*
7879          * Store decoded Flash size and fall through into vetting code.
7880          */
7881         adapter->params.sf_size = size;
7882         adapter->params.sf_nsec = size / SF_SEC_SIZE;
7883
7884  found:
7885         /*
7886          * We should ~probably~ reject adapters with FLASHes which are too
7887          * small but we have some legacy FPGAs with small FLASHes that we'd
7888          * still like to use.  So instead we emit a scary message ...
7889          */
7890         if (adapter->params.sf_size < FLASH_MIN_SIZE)
7891                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7892                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7893
7894         return 0;
7895 }
7896
7897 static void set_pcie_completion_timeout(struct adapter *adapter,
7898                                                   u8 range)
7899 {
7900         u16 val;
7901         u32 pcie_cap;
7902
7903         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7904         if (pcie_cap) {
7905                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7906                 val &= 0xfff0;
7907                 val |= range ;
7908                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7909         }
7910 }
7911
7912 const struct chip_params *t4_get_chip_params(int chipid)
7913 {
7914         static const struct chip_params chip_params[] = {
7915                 {
7916                         /* T4 */
7917                         .nchan = NCHAN,
7918                         .pm_stats_cnt = PM_NSTATS,
7919                         .cng_ch_bits_log = 2,
7920                         .nsched_cls = 15,
7921                         .cim_num_obq = CIM_NUM_OBQ,
7922                         .mps_rplc_size = 128,
7923                         .vfcount = 128,
7924                         .sge_fl_db = F_DBPRIO,
7925                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7926                 },
7927                 {
7928                         /* T5 */
7929                         .nchan = NCHAN,
7930                         .pm_stats_cnt = PM_NSTATS,
7931                         .cng_ch_bits_log = 2,
7932                         .nsched_cls = 16,
7933                         .cim_num_obq = CIM_NUM_OBQ_T5,
7934                         .mps_rplc_size = 128,
7935                         .vfcount = 128,
7936                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
7937                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7938                 },
7939                 {
7940                         /* T6 */
7941                         .nchan = T6_NCHAN,
7942                         .pm_stats_cnt = T6_PM_NSTATS,
7943                         .cng_ch_bits_log = 3,
7944                         .nsched_cls = 16,
7945                         .cim_num_obq = CIM_NUM_OBQ_T5,
7946                         .mps_rplc_size = 256,
7947                         .vfcount = 256,
7948                         .sge_fl_db = 0,
7949                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7950                 },
7951         };
7952
7953         chipid -= CHELSIO_T4;
7954         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7955                 return NULL;
7956
7957         return &chip_params[chipid];
7958 }
7959
7960 /**
7961  *      t4_prep_adapter - prepare SW and HW for operation
7962  *      @adapter: the adapter
7963  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
7964  *
7965  *      Initialize adapter SW state for the various HW modules, set initial
7966  *      values for some adapter tunables, take PHYs out of reset, and
7967  *      initialize the MDIO interface.
7968  */
7969 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7970 {
7971         int ret;
7972         uint16_t device_id;
7973         uint32_t pl_rev;
7974
7975         get_pci_mode(adapter, &adapter->params.pci);
7976
7977         pl_rev = t4_read_reg(adapter, A_PL_REV);
7978         adapter->params.chipid = G_CHIPID(pl_rev);
7979         adapter->params.rev = G_REV(pl_rev);
7980         if (adapter->params.chipid == 0) {
7981                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
7982                 adapter->params.chipid = CHELSIO_T4;
7983
7984                 /* T4A1 chip is not supported */
7985                 if (adapter->params.rev == 1) {
7986                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7987                         return -EINVAL;
7988                 }
7989         }
7990
7991         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7992         if (adapter->chip_params == NULL)
7993                 return -EINVAL;
7994
7995         adapter->params.pci.vpd_cap_addr =
7996             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7997
7998         ret = t4_get_flash_params(adapter);
7999         if (ret < 0)
8000                 return ret;
8001
8002         ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
8003         if (ret < 0)
8004                 return ret;
8005
8006         /* Cards with real ASICs have the chipid in the PCIe device id */
8007         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8008         if (device_id >> 12 == chip_id(adapter))
8009                 adapter->params.cim_la_size = CIMLA_SIZE;
8010         else {
8011                 /* FPGA */
8012                 adapter->params.fpga = 1;
8013                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8014         }
8015
8016         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8017
8018         /*
8019          * Default port and clock for debugging in case we can't reach FW.
8020          */
8021         adapter->params.nports = 1;
8022         adapter->params.portvec = 1;
8023         adapter->params.vpd.cclk = 50000;
8024
8025         /* Set pci completion timeout value to 4 seconds. */
8026         set_pcie_completion_timeout(adapter, 0xd);
8027         return 0;
8028 }
8029
8030 /**
8031  *      t4_shutdown_adapter - shut down adapter, host & wire
8032  *      @adapter: the adapter
8033  *
8034  *      Perform an emergency shutdown of the adapter and stop it from
8035  *      continuing any further communication on the ports or DMA to the
8036  *      host.  This is typically used when the adapter and/or firmware
8037  *      have crashed and we want to prevent any further accidental
8038  *      communication with the rest of the world.  This will also force
8039  *      the port Link Status to go down -- if register writes work --
8040  *      which should help our peers figure out that we're down.
8041  */
8042 int t4_shutdown_adapter(struct adapter *adapter)
8043 {
8044         int port;
8045
8046         t4_intr_disable(adapter);
8047         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8048         for_each_port(adapter, port) {
8049                 u32 a_port_cfg = is_t4(adapter) ?
8050                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
8051                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
8052
8053                 t4_write_reg(adapter, a_port_cfg,
8054                              t4_read_reg(adapter, a_port_cfg)
8055                              & ~V_SIGNAL_DET(1));
8056         }
8057         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8058
8059         return 0;
8060 }
8061
8062 /**
8063  *      t4_init_devlog_params - initialize adapter->params.devlog
8064  *      @adap: the adapter
8065  *      @fw_attach: whether we can talk to the firmware
8066  *
8067  *      Initialize various fields of the adapter's Firmware Device Log
8068  *      Parameters structure.
8069  */
8070 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8071 {
8072         struct devlog_params *dparams = &adap->params.devlog;
8073         u32 pf_dparams;
8074         unsigned int devlog_meminfo;
8075         struct fw_devlog_cmd devlog_cmd;
8076         int ret;
8077
8078         /* If we're dealing with newer firmware, the Device Log Paramerters
8079          * are stored in a designated register which allows us to access the
8080          * Device Log even if we can't talk to the firmware.
8081          */
8082         pf_dparams =
8083                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8084         if (pf_dparams) {
8085                 unsigned int nentries, nentries128;
8086
8087                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8088                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8089
8090                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8091                 nentries = (nentries128 + 1) * 128;
8092                 dparams->size = nentries * sizeof(struct fw_devlog_e);
8093
8094                 return 0;
8095         }
8096
8097         /*
8098          * For any failing returns ...
8099          */
8100         memset(dparams, 0, sizeof *dparams);
8101
8102         /*
8103          * If we can't talk to the firmware, there's really nothing we can do
8104          * at this point.
8105          */
8106         if (!fw_attach)
8107                 return -ENXIO;
8108
8109         /* Otherwise, ask the firmware for it's Device Log Parameters.
8110          */
8111         memset(&devlog_cmd, 0, sizeof devlog_cmd);
8112         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8113                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
8114         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8115         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8116                          &devlog_cmd);
8117         if (ret)
8118                 return ret;
8119
8120         devlog_meminfo =
8121                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8122         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8123         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8124         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8125
8126         return 0;
8127 }
8128
8129 /**
8130  *      t4_init_sge_params - initialize adap->params.sge
8131  *      @adapter: the adapter
8132  *
8133  *      Initialize various fields of the adapter's SGE Parameters structure.
8134  */
8135 int t4_init_sge_params(struct adapter *adapter)
8136 {
8137         u32 r;
8138         struct sge_params *sp = &adapter->params.sge;
8139         unsigned i, tscale = 1;
8140
8141         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8142         sp->counter_val[0] = G_THRESHOLD_0(r);
8143         sp->counter_val[1] = G_THRESHOLD_1(r);
8144         sp->counter_val[2] = G_THRESHOLD_2(r);
8145         sp->counter_val[3] = G_THRESHOLD_3(r);
8146
8147         if (chip_id(adapter) >= CHELSIO_T6) {
8148                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8149                 tscale = G_TSCALE(r);
8150                 if (tscale == 0)
8151                         tscale = 1;
8152                 else
8153                         tscale += 2;
8154         }
8155
8156         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8157         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8158         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8159         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8160         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8161         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8162         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8163         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8164         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8165
8166         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8167         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8168         if (is_t4(adapter))
8169                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8170         else if (is_t5(adapter))
8171                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8172         else
8173                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8174
8175         /* egress queues: log2 of # of doorbells per BAR2 page */
8176         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8177         r >>= S_QUEUESPERPAGEPF0 +
8178             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8179         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8180
8181         /* ingress queues: log2 of # of doorbells per BAR2 page */
8182         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8183         r >>= S_QUEUESPERPAGEPF0 +
8184             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8185         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8186
8187         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8188         r >>= S_HOSTPAGESIZEPF0 +
8189             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8190         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8191
8192         r = t4_read_reg(adapter, A_SGE_CONTROL);
8193         sp->sge_control = r;
8194         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8195         sp->fl_pktshift = G_PKTSHIFT(r);
8196         if (chip_id(adapter) <= CHELSIO_T5) {
8197                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8198                     X_INGPADBOUNDARY_SHIFT);
8199         } else {
8200                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8201                     X_T6_INGPADBOUNDARY_SHIFT);
8202         }
8203         if (is_t4(adapter))
8204                 sp->pack_boundary = sp->pad_boundary;
8205         else {
8206                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
8207                 if (G_INGPACKBOUNDARY(r) == 0)
8208                         sp->pack_boundary = 16;
8209                 else
8210                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8211         }
8212         for (i = 0; i < SGE_FLBUF_SIZES; i++)
8213                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8214                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8215
8216         return 0;
8217 }
8218
8219 /*
8220  * Read and cache the adapter's compressed filter mode and ingress config.
8221  */
8222 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8223     bool sleep_ok)
8224 {
8225         struct tp_params *tpp = &adap->params.tp;
8226
8227         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8228             sleep_ok);
8229         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8230             sleep_ok);
8231
8232         /*
8233          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8234          * shift positions of several elements of the Compressed Filter Tuple
8235          * for this adapter which we need frequently ...
8236          */
8237         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8238         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8239         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8240         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8241         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8242         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8243         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8244         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8245         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8246         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8247
8248         /*
8249          * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8250          * represents the presense of an Outer VLAN instead of a VNIC ID.
8251          */
8252         if ((tpp->ingress_config & F_VNIC) == 0)
8253                 tpp->vnic_shift = -1;
8254 }
8255
8256 /**
8257  *      t4_init_tp_params - initialize adap->params.tp
8258  *      @adap: the adapter
8259  *
8260  *      Initialize various fields of the adapter's TP Parameters structure.
8261  */
8262 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8263 {
8264         int chan;
8265         u32 v;
8266         struct tp_params *tpp = &adap->params.tp;
8267
8268         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8269         tpp->tre = G_TIMERRESOLUTION(v);
8270         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8271
8272         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8273         for (chan = 0; chan < MAX_NCHAN; chan++)
8274                 tpp->tx_modq[chan] = chan;
8275
8276         read_filter_mode_and_ingress_config(adap, sleep_ok);
8277
8278         /*
8279          * Cache a mask of the bits that represent the error vector portion of
8280          * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8281          * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8282          */
8283         tpp->err_vec_mask = htobe16(0xffff);
8284         if (chip_id(adap) > CHELSIO_T5) {
8285                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8286                 if (v & F_CRXPKTENC) {
8287                         tpp->err_vec_mask =
8288                             htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8289                 }
8290         }
8291
8292         return 0;
8293 }
8294
8295 /**
8296  *      t4_filter_field_shift - calculate filter field shift
8297  *      @adap: the adapter
8298  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8299  *
8300  *      Return the shift position of a filter field within the Compressed
8301  *      Filter Tuple.  The filter field is specified via its selection bit
8302  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8303  */
8304 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8305 {
8306         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8307         unsigned int sel;
8308         int field_shift;
8309
8310         if ((filter_mode & filter_sel) == 0)
8311                 return -1;
8312
8313         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8314                 switch (filter_mode & sel) {
8315                 case F_FCOE:
8316                         field_shift += W_FT_FCOE;
8317                         break;
8318                 case F_PORT:
8319                         field_shift += W_FT_PORT;
8320                         break;
8321                 case F_VNIC_ID:
8322                         field_shift += W_FT_VNIC_ID;
8323                         break;
8324                 case F_VLAN:
8325                         field_shift += W_FT_VLAN;
8326                         break;
8327                 case F_TOS:
8328                         field_shift += W_FT_TOS;
8329                         break;
8330                 case F_PROTOCOL:
8331                         field_shift += W_FT_PROTOCOL;
8332                         break;
8333                 case F_ETHERTYPE:
8334                         field_shift += W_FT_ETHERTYPE;
8335                         break;
8336                 case F_MACMATCH:
8337                         field_shift += W_FT_MACMATCH;
8338                         break;
8339                 case F_MPSHITTYPE:
8340                         field_shift += W_FT_MPSHITTYPE;
8341                         break;
8342                 case F_FRAGMENTATION:
8343                         field_shift += W_FT_FRAGMENTATION;
8344                         break;
8345                 }
8346         }
8347         return field_shift;
8348 }
8349
8350 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8351 {
8352         u8 addr[6];
8353         int ret, i, j;
8354         u16 rss_size;
8355         struct port_info *p = adap2pinfo(adap, port_id);
8356         u32 param, val;
8357
8358         for (i = 0, j = -1; i <= p->port_id; i++) {
8359                 do {
8360                         j++;
8361                 } while ((adap->params.portvec & (1 << j)) == 0);
8362         }
8363
8364         if (!(adap->flags & IS_VF) ||
8365             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8366                 t4_update_port_info(p);
8367         }
8368
8369         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8370         if (ret < 0)
8371                 return ret;
8372
8373         p->vi[0].viid = ret;
8374         if (chip_id(adap) <= CHELSIO_T5)
8375                 p->vi[0].smt_idx = (ret & 0x7f) << 1;
8376         else
8377                 p->vi[0].smt_idx = (ret & 0x7f);
8378         p->tx_chan = j;
8379         p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8380         p->lport = j;
8381         p->vi[0].rss_size = rss_size;
8382         t4_os_set_hw_addr(p, addr);
8383
8384         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8385             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8386             V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8387         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8388         if (ret)
8389                 p->vi[0].rss_base = 0xffff;
8390         else {
8391                 /* MPASS((val >> 16) == rss_size); */
8392                 p->vi[0].rss_base = val & 0xffff;
8393         }
8394
8395         return 0;
8396 }
8397
8398 /**
8399  *      t4_read_cimq_cfg - read CIM queue configuration
8400  *      @adap: the adapter
8401  *      @base: holds the queue base addresses in bytes
8402  *      @size: holds the queue sizes in bytes
8403  *      @thres: holds the queue full thresholds in bytes
8404  *
8405  *      Returns the current configuration of the CIM queues, starting with
8406  *      the IBQs, then the OBQs.
8407  */
8408 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8409 {
8410         unsigned int i, v;
8411         int cim_num_obq = adap->chip_params->cim_num_obq;
8412
8413         for (i = 0; i < CIM_NUM_IBQ; i++) {
8414                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8415                              V_QUENUMSELECT(i));
8416                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8417                 /* value is in 256-byte units */
8418                 *base++ = G_CIMQBASE(v) * 256;
8419                 *size++ = G_CIMQSIZE(v) * 256;
8420                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8421         }
8422         for (i = 0; i < cim_num_obq; i++) {
8423                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8424                              V_QUENUMSELECT(i));
8425                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8426                 /* value is in 256-byte units */
8427                 *base++ = G_CIMQBASE(v) * 256;
8428                 *size++ = G_CIMQSIZE(v) * 256;
8429         }
8430 }
8431
8432 /**
8433  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
8434  *      @adap: the adapter
8435  *      @qid: the queue index
8436  *      @data: where to store the queue contents
8437  *      @n: capacity of @data in 32-bit words
8438  *
8439  *      Reads the contents of the selected CIM queue starting at address 0 up
8440  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8441  *      error and the number of 32-bit words actually read on success.
8442  */
8443 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8444 {
8445         int i, err, attempts;
8446         unsigned int addr;
8447         const unsigned int nwords = CIM_IBQ_SIZE * 4;
8448
8449         if (qid > 5 || (n & 3))
8450                 return -EINVAL;
8451
8452         addr = qid * nwords;
8453         if (n > nwords)
8454                 n = nwords;
8455
8456         /* It might take 3-10ms before the IBQ debug read access is allowed.
8457          * Wait for 1 Sec with a delay of 1 usec.
8458          */
8459         attempts = 1000000;
8460
8461         for (i = 0; i < n; i++, addr++) {
8462                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8463                              F_IBQDBGEN);
8464                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8465                                       attempts, 1);
8466                 if (err)
8467                         return err;
8468                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8469         }
8470         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8471         return i;
8472 }
8473
8474 /**
8475  *      t4_read_cim_obq - read the contents of a CIM outbound queue
8476  *      @adap: the adapter
8477  *      @qid: the queue index
8478  *      @data: where to store the queue contents
8479  *      @n: capacity of @data in 32-bit words
8480  *
8481  *      Reads the contents of the selected CIM queue starting at address 0 up
8482  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8483  *      error and the number of 32-bit words actually read on success.
8484  */
8485 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8486 {
8487         int i, err;
8488         unsigned int addr, v, nwords;
8489         int cim_num_obq = adap->chip_params->cim_num_obq;
8490
8491         if ((qid > (cim_num_obq - 1)) || (n & 3))
8492                 return -EINVAL;
8493
8494         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8495                      V_QUENUMSELECT(qid));
8496         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8497
8498         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8499         nwords = G_CIMQSIZE(v) * 64;  /* same */
8500         if (n > nwords)
8501                 n = nwords;
8502
8503         for (i = 0; i < n; i++, addr++) {
8504                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8505                              F_OBQDBGEN);
8506                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8507                                       2, 1);
8508                 if (err)
8509                         return err;
8510                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8511         }
8512         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8513         return i;
8514 }
8515
8516 enum {
8517         CIM_QCTL_BASE     = 0,
8518         CIM_CTL_BASE      = 0x2000,
8519         CIM_PBT_ADDR_BASE = 0x2800,
8520         CIM_PBT_LRF_BASE  = 0x3000,
8521         CIM_PBT_DATA_BASE = 0x3800
8522 };
8523
8524 /**
8525  *      t4_cim_read - read a block from CIM internal address space
8526  *      @adap: the adapter
8527  *      @addr: the start address within the CIM address space
8528  *      @n: number of words to read
8529  *      @valp: where to store the result
8530  *
8531  *      Reads a block of 4-byte words from the CIM intenal address space.
8532  */
8533 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8534                 unsigned int *valp)
8535 {
8536         int ret = 0;
8537
8538         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8539                 return -EBUSY;
8540
8541         for ( ; !ret && n--; addr += 4) {
8542                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8543                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8544                                       0, 5, 2);
8545                 if (!ret)
8546                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8547         }
8548         return ret;
8549 }
8550
8551 /**
8552  *      t4_cim_write - write a block into CIM internal address space
8553  *      @adap: the adapter
8554  *      @addr: the start address within the CIM address space
8555  *      @n: number of words to write
8556  *      @valp: set of values to write
8557  *
8558  *      Writes a block of 4-byte words into the CIM intenal address space.
8559  */
8560 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8561                  const unsigned int *valp)
8562 {
8563         int ret = 0;
8564
8565         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8566                 return -EBUSY;
8567
8568         for ( ; !ret && n--; addr += 4) {
8569                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8570                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8571                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8572                                       0, 5, 2);
8573         }
8574         return ret;
8575 }
8576
8577 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8578                          unsigned int val)
8579 {
8580         return t4_cim_write(adap, addr, 1, &val);
8581 }
8582
8583 /**
8584  *      t4_cim_ctl_read - read a block from CIM control region
8585  *      @adap: the adapter
8586  *      @addr: the start address within the CIM control region
8587  *      @n: number of words to read
8588  *      @valp: where to store the result
8589  *
8590  *      Reads a block of 4-byte words from the CIM control region.
8591  */
8592 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8593                     unsigned int *valp)
8594 {
8595         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8596 }
8597
8598 /**
8599  *      t4_cim_read_la - read CIM LA capture buffer
8600  *      @adap: the adapter
8601  *      @la_buf: where to store the LA data
8602  *      @wrptr: the HW write pointer within the capture buffer
8603  *
8604  *      Reads the contents of the CIM LA buffer with the most recent entry at
8605  *      the end of the returned data and with the entry at @wrptr first.
8606  *      We try to leave the LA in the running state we find it in.
8607  */
8608 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8609 {
8610         int i, ret;
8611         unsigned int cfg, val, idx;
8612
8613         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8614         if (ret)
8615                 return ret;
8616
8617         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
8618                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8619                 if (ret)
8620                         return ret;
8621         }
8622
8623         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8624         if (ret)
8625                 goto restart;
8626
8627         idx = G_UPDBGLAWRPTR(val);
8628         if (wrptr)
8629                 *wrptr = idx;
8630
8631         for (i = 0; i < adap->params.cim_la_size; i++) {
8632                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8633                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8634                 if (ret)
8635                         break;
8636                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8637                 if (ret)
8638                         break;
8639                 if (val & F_UPDBGLARDEN) {
8640                         ret = -ETIMEDOUT;
8641                         break;
8642                 }
8643                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8644                 if (ret)
8645                         break;
8646
8647                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8648                 idx = (idx + 1) & M_UPDBGLARDPTR;
8649                 /*
8650                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8651                  * identify the 32-bit portion of the full 312-bit data
8652                  */
8653                 if (is_t6(adap))
8654                         while ((idx & 0xf) > 9)
8655                                 idx = (idx + 1) % M_UPDBGLARDPTR;
8656         }
8657 restart:
8658         if (cfg & F_UPDBGLAEN) {
8659                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8660                                       cfg & ~F_UPDBGLARDEN);
8661                 if (!ret)
8662                         ret = r;
8663         }
8664         return ret;
8665 }
8666
8667 /**
8668  *      t4_tp_read_la - read TP LA capture buffer
8669  *      @adap: the adapter
8670  *      @la_buf: where to store the LA data
8671  *      @wrptr: the HW write pointer within the capture buffer
8672  *
8673  *      Reads the contents of the TP LA buffer with the most recent entry at
8674  *      the end of the returned data and with the entry at @wrptr first.
8675  *      We leave the LA in the running state we find it in.
8676  */
8677 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8678 {
8679         bool last_incomplete;
8680         unsigned int i, cfg, val, idx;
8681
8682         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8683         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
8684                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8685                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8686
8687         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8688         idx = G_DBGLAWPTR(val);
8689         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8690         if (last_incomplete)
8691                 idx = (idx + 1) & M_DBGLARPTR;
8692         if (wrptr)
8693                 *wrptr = idx;
8694
8695         val &= 0xffff;
8696         val &= ~V_DBGLARPTR(M_DBGLARPTR);
8697         val |= adap->params.tp.la_mask;
8698
8699         for (i = 0; i < TPLA_SIZE; i++) {
8700                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8701                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8702                 idx = (idx + 1) & M_DBGLARPTR;
8703         }
8704
8705         /* Wipe out last entry if it isn't valid */
8706         if (last_incomplete)
8707                 la_buf[TPLA_SIZE - 1] = ~0ULL;
8708
8709         if (cfg & F_DBGLAENABLE)                /* restore running state */
8710                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8711                              cfg | adap->params.tp.la_mask);
8712 }
8713
8714 /*
8715  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8716  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8717  * state for more than the Warning Threshold then we'll issue a warning about
8718  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8719  * appears to be hung every Warning Repeat second till the situation clears.
8720  * If the situation clears, we'll note that as well.
8721  */
8722 #define SGE_IDMA_WARN_THRESH 1
8723 #define SGE_IDMA_WARN_REPEAT 300
8724
8725 /**
8726  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8727  *      @adapter: the adapter
8728  *      @idma: the adapter IDMA Monitor state
8729  *
8730  *      Initialize the state of an SGE Ingress DMA Monitor.
8731  */
8732 void t4_idma_monitor_init(struct adapter *adapter,
8733                           struct sge_idma_monitor_state *idma)
8734 {
8735         /* Initialize the state variables for detecting an SGE Ingress DMA
8736          * hang.  The SGE has internal counters which count up on each clock
8737          * tick whenever the SGE finds its Ingress DMA State Engines in the
8738          * same state they were on the previous clock tick.  The clock used is
8739          * the Core Clock so we have a limit on the maximum "time" they can
8740          * record; typically a very small number of seconds.  For instance,
8741          * with a 600MHz Core Clock, we can only count up to a bit more than
8742          * 7s.  So we'll synthesize a larger counter in order to not run the
8743          * risk of having the "timers" overflow and give us the flexibility to
8744          * maintain a Hung SGE State Machine of our own which operates across
8745          * a longer time frame.
8746          */
8747         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8748         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8749 }
8750
8751 /**
8752  *      t4_idma_monitor - monitor SGE Ingress DMA state
8753  *      @adapter: the adapter
8754  *      @idma: the adapter IDMA Monitor state
8755  *      @hz: number of ticks/second
8756  *      @ticks: number of ticks since the last IDMA Monitor call
8757  */
8758 void t4_idma_monitor(struct adapter *adapter,
8759                      struct sge_idma_monitor_state *idma,
8760                      int hz, int ticks)
8761 {
8762         int i, idma_same_state_cnt[2];
8763
8764          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8765           * are counters inside the SGE which count up on each clock when the
8766           * SGE finds its Ingress DMA State Engines in the same states they
8767           * were in the previous clock.  The counters will peg out at
8768           * 0xffffffff without wrapping around so once they pass the 1s
8769           * threshold they'll stay above that till the IDMA state changes.
8770           */
8771         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8772         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8773         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8774
8775         for (i = 0; i < 2; i++) {
8776                 u32 debug0, debug11;
8777
8778                 /* If the Ingress DMA Same State Counter ("timer") is less
8779                  * than 1s, then we can reset our synthesized Stall Timer and
8780                  * continue.  If we have previously emitted warnings about a
8781                  * potential stalled Ingress Queue, issue a note indicating
8782                  * that the Ingress Queue has resumed forward progress.
8783                  */
8784                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8785                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8786                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
8787                                         "resumed after %d seconds\n",
8788                                         i, idma->idma_qid[i],
8789                                         idma->idma_stalled[i]/hz);
8790                         idma->idma_stalled[i] = 0;
8791                         continue;
8792                 }
8793
8794                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8795                  * domain.  The first time we get here it'll be because we
8796                  * passed the 1s Threshold; each additional time it'll be
8797                  * because the RX Timer Callback is being fired on its regular
8798                  * schedule.
8799                  *
8800                  * If the stall is below our Potential Hung Ingress Queue
8801                  * Warning Threshold, continue.
8802                  */
8803                 if (idma->idma_stalled[i] == 0) {
8804                         idma->idma_stalled[i] = hz;
8805                         idma->idma_warn[i] = 0;
8806                 } else {
8807                         idma->idma_stalled[i] += ticks;
8808                         idma->idma_warn[i] -= ticks;
8809                 }
8810
8811                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8812                         continue;
8813
8814                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8815                  */
8816                 if (idma->idma_warn[i] > 0)
8817                         continue;
8818                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8819
8820                 /* Read and save the SGE IDMA State and Queue ID information.
8821                  * We do this every time in case it changes across time ...
8822                  * can't be too careful ...
8823                  */
8824                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8825                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8826                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8827
8828                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8829                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8830                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8831
8832                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8833                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8834                         i, idma->idma_qid[i], idma->idma_state[i],
8835                         idma->idma_stalled[i]/hz,
8836                         debug0, debug11);
8837                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8838         }
8839 }
8840
8841 /**
8842  *      t4_read_pace_tbl - read the pace table
8843  *      @adap: the adapter
8844  *      @pace_vals: holds the returned values
8845  *
8846  *      Returns the values of TP's pace table in microseconds.
8847  */
8848 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8849 {
8850         unsigned int i, v;
8851
8852         for (i = 0; i < NTX_SCHED; i++) {
8853                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8854                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
8855                 pace_vals[i] = dack_ticks_to_usec(adap, v);
8856         }
8857 }
8858
8859 /**
8860  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8861  *      @adap: the adapter
8862  *      @sched: the scheduler index
8863  *      @kbps: the byte rate in Kbps
8864  *      @ipg: the interpacket delay in tenths of nanoseconds
8865  *
8866  *      Return the current configuration of a HW Tx scheduler.
8867  */
8868 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8869                      unsigned int *ipg, bool sleep_ok)
8870 {
8871         unsigned int v, addr, bpt, cpt;
8872
8873         if (kbps) {
8874                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8875                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
8876                 if (sched & 1)
8877                         v >>= 16;
8878                 bpt = (v >> 8) & 0xff;
8879                 cpt = v & 0xff;
8880                 if (!cpt)
8881                         *kbps = 0;      /* scheduler disabled */
8882                 else {
8883                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8884                         *kbps = (v * bpt) / 125;
8885                 }
8886         }
8887         if (ipg) {
8888                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8889                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
8890                 if (sched & 1)
8891                         v >>= 16;
8892                 v &= 0xffff;
8893                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
8894         }
8895 }
8896
8897 /**
8898  *      t4_load_cfg - download config file
8899  *      @adap: the adapter
8900  *      @cfg_data: the cfg text file to write
8901  *      @size: text file size
8902  *
8903  *      Write the supplied config text file to the card's serial flash.
8904  */
8905 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8906 {
8907         int ret, i, n, cfg_addr;
8908         unsigned int addr;
8909         unsigned int flash_cfg_start_sec;
8910         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8911
8912         cfg_addr = t4_flash_cfg_addr(adap);
8913         if (cfg_addr < 0)
8914                 return cfg_addr;
8915
8916         addr = cfg_addr;
8917         flash_cfg_start_sec = addr / SF_SEC_SIZE;
8918
8919         if (size > FLASH_CFG_MAX_SIZE) {
8920                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8921                        FLASH_CFG_MAX_SIZE);
8922                 return -EFBIG;
8923         }
8924
8925         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
8926                          sf_sec_size);
8927         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8928                                      flash_cfg_start_sec + i - 1);
8929         /*
8930          * If size == 0 then we're simply erasing the FLASH sectors associated
8931          * with the on-adapter Firmware Configuration File.
8932          */
8933         if (ret || size == 0)
8934                 goto out;
8935
8936         /* this will write to the flash up to SF_PAGE_SIZE at a time */
8937         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8938                 if ( (size - i) <  SF_PAGE_SIZE)
8939                         n = size - i;
8940                 else
8941                         n = SF_PAGE_SIZE;
8942                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8943                 if (ret)
8944                         goto out;
8945
8946                 addr += SF_PAGE_SIZE;
8947                 cfg_data += SF_PAGE_SIZE;
8948         }
8949
8950 out:
8951         if (ret)
8952                 CH_ERR(adap, "config file %s failed %d\n",
8953                        (size == 0 ? "clear" : "download"), ret);
8954         return ret;
8955 }
8956
8957 /**
8958  *      t5_fw_init_extern_mem - initialize the external memory
8959  *      @adap: the adapter
8960  *
8961  *      Initializes the external memory on T5.
8962  */
8963 int t5_fw_init_extern_mem(struct adapter *adap)
8964 {
8965         u32 params[1], val[1];
8966         int ret;
8967
8968         if (!is_t5(adap))
8969                 return 0;
8970
8971         val[0] = 0xff; /* Initialize all MCs */
8972         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8973                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8974         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8975                         FW_CMD_MAX_TIMEOUT);
8976
8977         return ret;
8978 }
8979
8980 /* BIOS boot headers */
8981 typedef struct pci_expansion_rom_header {
8982         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
8983         u8      reserved[22]; /* Reserved per processor Architecture data */
8984         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
8985 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8986
8987 /* Legacy PCI Expansion ROM Header */
8988 typedef struct legacy_pci_expansion_rom_header {
8989         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
8990         u8      size512; /* Current Image Size in units of 512 bytes */
8991         u8      initentry_point[4];
8992         u8      cksum; /* Checksum computed on the entire Image */
8993         u8      reserved[16]; /* Reserved */
8994         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
8995 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8996
8997 /* EFI PCI Expansion ROM Header */
8998 typedef struct efi_pci_expansion_rom_header {
8999         u8      signature[2]; // ROM signature. The value 0xaa55
9000         u8      initialization_size[2]; /* Units 512. Includes this header */
9001         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9002         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
9003         u8      efi_machine_type[2]; /* Machine type from EFI image header */
9004         u8      compression_type[2]; /* Compression type. */
9005                 /*
9006                  * Compression type definition
9007                  * 0x0: uncompressed
9008                  * 0x1: Compressed
9009                  * 0x2-0xFFFF: Reserved
9010                  */
9011         u8      reserved[8]; /* Reserved */
9012         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
9013         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
9014 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9015
9016 /* PCI Data Structure Format */
9017 typedef struct pcir_data_structure { /* PCI Data Structure */
9018         u8      signature[4]; /* Signature. The string "PCIR" */
9019         u8      vendor_id[2]; /* Vendor Identification */
9020         u8      device_id[2]; /* Device Identification */
9021         u8      vital_product[2]; /* Pointer to Vital Product Data */
9022         u8      length[2]; /* PCIR Data Structure Length */
9023         u8      revision; /* PCIR Data Structure Revision */
9024         u8      class_code[3]; /* Class Code */
9025         u8      image_length[2]; /* Image Length. Multiple of 512B */
9026         u8      code_revision[2]; /* Revision Level of Code/Data */
9027         u8      code_type; /* Code Type. */
9028                 /*
9029                  * PCI Expansion ROM Code Types
9030                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
9031                  * 0x01: Open Firmware standard for PCI. FCODE
9032                  * 0x02: Hewlett-Packard PA RISC. HP reserved
9033                  * 0x03: EFI Image. EFI
9034                  * 0x04-0xFF: Reserved.
9035                  */
9036         u8      indicator; /* Indicator. Identifies the last image in the ROM */
9037         u8      reserved[2]; /* Reserved */
9038 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9039
9040 /* BOOT constants */
9041 enum {
9042         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9043         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9044         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9045         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9046         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9047         VENDOR_ID = 0x1425, /* Vendor ID */
9048         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9049 };
9050
9051 /*
9052  *      modify_device_id - Modifies the device ID of the Boot BIOS image
9053  *      @adatper: the device ID to write.
9054  *      @boot_data: the boot image to modify.
9055  *
9056  *      Write the supplied device ID to the boot BIOS image.
9057  */
9058 static void modify_device_id(int device_id, u8 *boot_data)
9059 {
9060         legacy_pci_exp_rom_header_t *header;
9061         pcir_data_t *pcir_header;
9062         u32 cur_header = 0;
9063
9064         /*
9065          * Loop through all chained images and change the device ID's
9066          */
9067         while (1) {
9068                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9069                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
9070                               le16_to_cpu(*(u16*)header->pcir_offset)];
9071
9072                 /*
9073                  * Only modify the Device ID if code type is Legacy or HP.
9074                  * 0x00: Okay to modify
9075                  * 0x01: FCODE. Do not be modify
9076                  * 0x03: Okay to modify
9077                  * 0x04-0xFF: Do not modify
9078                  */
9079                 if (pcir_header->code_type == 0x00) {
9080                         u8 csum = 0;
9081                         int i;
9082
9083                         /*
9084                          * Modify Device ID to match current adatper
9085                          */
9086                         *(u16*) pcir_header->device_id = device_id;
9087
9088                         /*
9089                          * Set checksum temporarily to 0.
9090                          * We will recalculate it later.
9091                          */
9092                         header->cksum = 0x0;
9093
9094                         /*
9095                          * Calculate and update checksum
9096                          */
9097                         for (i = 0; i < (header->size512 * 512); i++)
9098                                 csum += (u8)boot_data[cur_header + i];
9099
9100                         /*
9101                          * Invert summed value to create the checksum
9102                          * Writing new checksum value directly to the boot data
9103                          */
9104                         boot_data[cur_header + 7] = -csum;
9105
9106                 } else if (pcir_header->code_type == 0x03) {
9107
9108                         /*
9109                          * Modify Device ID to match current adatper
9110                          */
9111                         *(u16*) pcir_header->device_id = device_id;
9112
9113                 }
9114
9115
9116                 /*
9117                  * Check indicator element to identify if this is the last
9118                  * image in the ROM.
9119                  */
9120                 if (pcir_header->indicator & 0x80)
9121                         break;
9122
9123                 /*
9124                  * Move header pointer up to the next image in the ROM.
9125                  */
9126                 cur_header += header->size512 * 512;
9127         }
9128 }
9129
9130 /*
9131  *      t4_load_boot - download boot flash
9132  *      @adapter: the adapter
9133  *      @boot_data: the boot image to write
9134  *      @boot_addr: offset in flash to write boot_data
9135  *      @size: image size
9136  *
9137  *      Write the supplied boot image to the card's serial flash.
9138  *      The boot image has the following sections: a 28-byte header and the
9139  *      boot image.
9140  */
9141 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9142                  unsigned int boot_addr, unsigned int size)
9143 {
9144         pci_exp_rom_header_t *header;
9145         int pcir_offset ;
9146         pcir_data_t *pcir_header;
9147         int ret, addr;
9148         uint16_t device_id;
9149         unsigned int i;
9150         unsigned int boot_sector = (boot_addr * 1024 );
9151         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9152
9153         /*
9154          * Make sure the boot image does not encroach on the firmware region
9155          */
9156         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9157                 CH_ERR(adap, "boot image encroaching on firmware region\n");
9158                 return -EFBIG;
9159         }
9160
9161         /*
9162          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9163          * and Boot configuration data sections. These 3 boot sections span
9164          * sectors 0 to 7 in flash and live right before the FW image location.
9165          */
9166         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9167                         sf_sec_size);
9168         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9169                                      (boot_sector >> 16) + i - 1);
9170
9171         /*
9172          * If size == 0 then we're simply erasing the FLASH sectors associated
9173          * with the on-adapter option ROM file
9174          */
9175         if (ret || (size == 0))
9176                 goto out;
9177
9178         /* Get boot header */
9179         header = (pci_exp_rom_header_t *)boot_data;
9180         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9181         /* PCIR Data Structure */
9182         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9183
9184         /*
9185          * Perform some primitive sanity testing to avoid accidentally
9186          * writing garbage over the boot sectors.  We ought to check for
9187          * more but it's not worth it for now ...
9188          */
9189         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9190                 CH_ERR(adap, "boot image too small/large\n");
9191                 return -EFBIG;
9192         }
9193
9194 #ifndef CHELSIO_T4_DIAGS
9195         /*
9196          * Check BOOT ROM header signature
9197          */
9198         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9199                 CH_ERR(adap, "Boot image missing signature\n");
9200                 return -EINVAL;
9201         }
9202
9203         /*
9204          * Check PCI header signature
9205          */
9206         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9207                 CH_ERR(adap, "PCI header missing signature\n");
9208                 return -EINVAL;
9209         }
9210
9211         /*
9212          * Check Vendor ID matches Chelsio ID
9213          */
9214         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9215                 CH_ERR(adap, "Vendor ID missing signature\n");
9216                 return -EINVAL;
9217         }
9218 #endif
9219
9220         /*
9221          * Retrieve adapter's device ID
9222          */
9223         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9224         /* Want to deal with PF 0 so I strip off PF 4 indicator */
9225         device_id = device_id & 0xf0ff;
9226
9227         /*
9228          * Check PCIE Device ID
9229          */
9230         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9231                 /*
9232                  * Change the device ID in the Boot BIOS image to match
9233                  * the Device ID of the current adapter.
9234                  */
9235                 modify_device_id(device_id, boot_data);
9236         }
9237
9238         /*
9239          * Skip over the first SF_PAGE_SIZE worth of data and write it after
9240          * we finish copying the rest of the boot image. This will ensure
9241          * that the BIOS boot header will only be written if the boot image
9242          * was written in full.
9243          */
9244         addr = boot_sector;
9245         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9246                 addr += SF_PAGE_SIZE;
9247                 boot_data += SF_PAGE_SIZE;
9248                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9249                 if (ret)
9250                         goto out;
9251         }
9252
9253         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9254                              (const u8 *)header, 0);
9255
9256 out:
9257         if (ret)
9258                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
9259         return ret;
9260 }
9261
9262 /*
9263  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9264  *      @adapter: the adapter
9265  *
9266  *      Return the address within the flash where the OptionROM Configuration
9267  *      is stored, or an error if the device FLASH is too small to contain
9268  *      a OptionROM Configuration.
9269  */
9270 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9271 {
9272         /*
9273          * If the device FLASH isn't large enough to hold a Firmware
9274          * Configuration File, return an error.
9275          */
9276         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9277                 return -ENOSPC;
9278
9279         return FLASH_BOOTCFG_START;
9280 }
9281
9282 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9283 {
9284         int ret, i, n, cfg_addr;
9285         unsigned int addr;
9286         unsigned int flash_cfg_start_sec;
9287         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9288
9289         cfg_addr = t4_flash_bootcfg_addr(adap);
9290         if (cfg_addr < 0)
9291                 return cfg_addr;
9292
9293         addr = cfg_addr;
9294         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9295
9296         if (size > FLASH_BOOTCFG_MAX_SIZE) {
9297                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9298                         FLASH_BOOTCFG_MAX_SIZE);
9299                 return -EFBIG;
9300         }
9301
9302         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9303                          sf_sec_size);
9304         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9305                                         flash_cfg_start_sec + i - 1);
9306
9307         /*
9308          * If size == 0 then we're simply erasing the FLASH sectors associated
9309          * with the on-adapter OptionROM Configuration File.
9310          */
9311         if (ret || size == 0)
9312                 goto out;
9313
9314         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9315         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9316                 if ( (size - i) <  SF_PAGE_SIZE)
9317                         n = size - i;
9318                 else
9319                         n = SF_PAGE_SIZE;
9320                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9321                 if (ret)
9322                         goto out;
9323
9324                 addr += SF_PAGE_SIZE;
9325                 cfg_data += SF_PAGE_SIZE;
9326         }
9327
9328 out:
9329         if (ret)
9330                 CH_ERR(adap, "boot config data %s failed %d\n",
9331                                 (size == 0 ? "clear" : "download"), ret);
9332         return ret;
9333 }
9334
9335 /**
9336  *      t4_set_filter_mode - configure the optional components of filter tuples
9337  *      @adap: the adapter
9338  *      @mode_map: a bitmap selcting which optional filter components to enable
9339  *      @sleep_ok: if true we may sleep while awaiting command completion
9340  *
9341  *      Sets the filter mode by selecting the optional components to enable
9342  *      in filter tuples.  Returns 0 on success and a negative error if the
9343  *      requested mode needs more bits than are available for optional
9344  *      components.
9345  */
9346 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9347                        bool sleep_ok)
9348 {
9349         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9350
9351         int i, nbits = 0;
9352
9353         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9354                 if (mode_map & (1 << i))
9355                         nbits += width[i];
9356         if (nbits > FILTER_OPT_LEN)
9357                 return -EINVAL;
9358         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9359         read_filter_mode_and_ingress_config(adap, sleep_ok);
9360
9361         return 0;
9362 }
9363
9364 /**
9365  *      t4_clr_port_stats - clear port statistics
9366  *      @adap: the adapter
9367  *      @idx: the port index
9368  *
9369  *      Clear HW statistics for the given port.
9370  */
9371 void t4_clr_port_stats(struct adapter *adap, int idx)
9372 {
9373         unsigned int i;
9374         u32 bgmap = t4_get_mps_bg_map(adap, idx);
9375         u32 port_base_addr;
9376
9377         if (is_t4(adap))
9378                 port_base_addr = PORT_BASE(idx);
9379         else
9380                 port_base_addr = T5_PORT_BASE(idx);
9381
9382         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9383                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9384                 t4_write_reg(adap, port_base_addr + i, 0);
9385         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9386                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9387                 t4_write_reg(adap, port_base_addr + i, 0);
9388         for (i = 0; i < 4; i++)
9389                 if (bgmap & (1 << i)) {
9390                         t4_write_reg(adap,
9391                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9392                         t4_write_reg(adap,
9393                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9394                 }
9395 }
9396
9397 /**
9398  *      t4_i2c_rd - read I2C data from adapter
9399  *      @adap: the adapter
9400  *      @port: Port number if per-port device; <0 if not
9401  *      @devid: per-port device ID or absolute device ID
9402  *      @offset: byte offset into device I2C space
9403  *      @len: byte length of I2C space data
9404  *      @buf: buffer in which to return I2C data
9405  *
9406  *      Reads the I2C data from the indicated device and location.
9407  */
9408 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9409               int port, unsigned int devid,
9410               unsigned int offset, unsigned int len,
9411               u8 *buf)
9412 {
9413         u32 ldst_addrspace;
9414         struct fw_ldst_cmd ldst;
9415         int ret;
9416
9417         if (port >= 4 ||
9418             devid >= 256 ||
9419             offset >= 256 ||
9420             len > sizeof ldst.u.i2c.data)
9421                 return -EINVAL;
9422
9423         memset(&ldst, 0, sizeof ldst);
9424         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9425         ldst.op_to_addrspace =
9426                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9427                             F_FW_CMD_REQUEST |
9428                             F_FW_CMD_READ |
9429                             ldst_addrspace);
9430         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9431         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9432         ldst.u.i2c.did = devid;
9433         ldst.u.i2c.boffset = offset;
9434         ldst.u.i2c.blen = len;
9435         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9436         if (!ret)
9437                 memcpy(buf, ldst.u.i2c.data, len);
9438         return ret;
9439 }
9440
9441 /**
9442  *      t4_i2c_wr - write I2C data to adapter
9443  *      @adap: the adapter
9444  *      @port: Port number if per-port device; <0 if not
9445  *      @devid: per-port device ID or absolute device ID
9446  *      @offset: byte offset into device I2C space
9447  *      @len: byte length of I2C space data
9448  *      @buf: buffer containing new I2C data
9449  *
9450  *      Write the I2C data to the indicated device and location.
9451  */
9452 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9453               int port, unsigned int devid,
9454               unsigned int offset, unsigned int len,
9455               u8 *buf)
9456 {
9457         u32 ldst_addrspace;
9458         struct fw_ldst_cmd ldst;
9459
9460         if (port >= 4 ||
9461             devid >= 256 ||
9462             offset >= 256 ||
9463             len > sizeof ldst.u.i2c.data)
9464                 return -EINVAL;
9465
9466         memset(&ldst, 0, sizeof ldst);
9467         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9468         ldst.op_to_addrspace =
9469                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9470                             F_FW_CMD_REQUEST |
9471                             F_FW_CMD_WRITE |
9472                             ldst_addrspace);
9473         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9474         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9475         ldst.u.i2c.did = devid;
9476         ldst.u.i2c.boffset = offset;
9477         ldst.u.i2c.blen = len;
9478         memcpy(ldst.u.i2c.data, buf, len);
9479         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9480 }
9481
9482 /**
9483  *      t4_sge_ctxt_rd - read an SGE context through FW
9484  *      @adap: the adapter
9485  *      @mbox: mailbox to use for the FW command
9486  *      @cid: the context id
9487  *      @ctype: the context type
9488  *      @data: where to store the context data
9489  *
9490  *      Issues a FW command through the given mailbox to read an SGE context.
9491  */
9492 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9493                    enum ctxt_type ctype, u32 *data)
9494 {
9495         int ret;
9496         struct fw_ldst_cmd c;
9497
9498         if (ctype == CTXT_EGRESS)
9499                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
9500         else if (ctype == CTXT_INGRESS)
9501                 ret = FW_LDST_ADDRSPC_SGE_INGC;
9502         else if (ctype == CTXT_FLM)
9503                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
9504         else
9505                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
9506
9507         memset(&c, 0, sizeof(c));
9508         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9509                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
9510                                         V_FW_LDST_CMD_ADDRSPACE(ret));
9511         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9512         c.u.idctxt.physid = cpu_to_be32(cid);
9513
9514         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9515         if (ret == 0) {
9516                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9517                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9518                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9519                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9520                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9521                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9522         }
9523         return ret;
9524 }
9525
9526 /**
9527  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9528  *      @adap: the adapter
9529  *      @cid: the context id
9530  *      @ctype: the context type
9531  *      @data: where to store the context data
9532  *
9533  *      Reads an SGE context directly, bypassing FW.  This is only for
9534  *      debugging when FW is unavailable.
9535  */
9536 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9537                       u32 *data)
9538 {
9539         int i, ret;
9540
9541         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9542         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9543         if (!ret)
9544                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9545                         *data++ = t4_read_reg(adap, i);
9546         return ret;
9547 }
9548
9549 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9550     int sleep_ok)
9551 {
9552         struct fw_sched_cmd cmd;
9553
9554         memset(&cmd, 0, sizeof(cmd));
9555         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9556                                       F_FW_CMD_REQUEST |
9557                                       F_FW_CMD_WRITE);
9558         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9559
9560         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9561         cmd.u.config.type = type;
9562         cmd.u.config.minmaxen = minmaxen;
9563
9564         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9565                                NULL, sleep_ok);
9566 }
9567
9568 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9569                     int rateunit, int ratemode, int channel, int cl,
9570                     int minrate, int maxrate, int weight, int pktsize,
9571                     int sleep_ok)
9572 {
9573         struct fw_sched_cmd cmd;
9574
9575         memset(&cmd, 0, sizeof(cmd));
9576         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9577                                       F_FW_CMD_REQUEST |
9578                                       F_FW_CMD_WRITE);
9579         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9580
9581         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9582         cmd.u.params.type = type;
9583         cmd.u.params.level = level;
9584         cmd.u.params.mode = mode;
9585         cmd.u.params.ch = channel;
9586         cmd.u.params.cl = cl;
9587         cmd.u.params.unit = rateunit;
9588         cmd.u.params.rate = ratemode;
9589         cmd.u.params.min = cpu_to_be32(minrate);
9590         cmd.u.params.max = cpu_to_be32(maxrate);
9591         cmd.u.params.weight = cpu_to_be16(weight);
9592         cmd.u.params.pktsize = cpu_to_be16(pktsize);
9593
9594         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9595                                NULL, sleep_ok);
9596 }
9597
9598 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9599     unsigned int maxrate, int sleep_ok)
9600 {
9601         struct fw_sched_cmd cmd;
9602
9603         memset(&cmd, 0, sizeof(cmd));
9604         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9605                                       F_FW_CMD_REQUEST |
9606                                       F_FW_CMD_WRITE);
9607         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9608
9609         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9610         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9611         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9612         cmd.u.params.ch = channel;
9613         cmd.u.params.rate = ratemode;           /* REL or ABS */
9614         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9615
9616         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9617                                NULL, sleep_ok);
9618 }
9619
9620 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9621     int weight, int sleep_ok)
9622 {
9623         struct fw_sched_cmd cmd;
9624
9625         if (weight < 0 || weight > 100)
9626                 return -EINVAL;
9627
9628         memset(&cmd, 0, sizeof(cmd));
9629         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9630                                       F_FW_CMD_REQUEST |
9631                                       F_FW_CMD_WRITE);
9632         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9633
9634         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9635         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9636         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9637         cmd.u.params.ch = channel;
9638         cmd.u.params.cl = cl;
9639         cmd.u.params.weight = cpu_to_be16(weight);
9640
9641         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9642                                NULL, sleep_ok);
9643 }
9644
9645 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9646     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9647 {
9648         struct fw_sched_cmd cmd;
9649
9650         memset(&cmd, 0, sizeof(cmd));
9651         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9652                                       F_FW_CMD_REQUEST |
9653                                       F_FW_CMD_WRITE);
9654         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9655
9656         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9657         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9658         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9659         cmd.u.params.mode = mode;
9660         cmd.u.params.ch = channel;
9661         cmd.u.params.cl = cl;
9662         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9663         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9664         cmd.u.params.max = cpu_to_be32(maxrate);
9665         cmd.u.params.pktsize = cpu_to_be16(pktsize);
9666
9667         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9668                                NULL, sleep_ok);
9669 }
9670
9671 /*
9672  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
9673  *      @adapter: the adapter
9674  *      @mbox: mailbox to use for the FW command
9675  *      @pf: the PF owning the queue
9676  *      @vf: the VF owning the queue
9677  *      @timeout: watchdog timeout in ms
9678  *      @action: watchdog timer / action
9679  *
9680  *      There are separate watchdog timers for each possible watchdog
9681  *      action.  Configure one of the watchdog timers by setting a non-zero
9682  *      timeout.  Disable a watchdog timer by using a timeout of zero.
9683  */
9684 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9685                        unsigned int pf, unsigned int vf,
9686                        unsigned int timeout, unsigned int action)
9687 {
9688         struct fw_watchdog_cmd wdog;
9689         unsigned int ticks;
9690
9691         /*
9692          * The watchdog command expects a timeout in units of 10ms so we need
9693          * to convert it here (via rounding) and force a minimum of one 10ms
9694          * "tick" if the timeout is non-zero but the convertion results in 0
9695          * ticks.
9696          */
9697         ticks = (timeout + 5)/10;
9698         if (timeout && !ticks)
9699                 ticks = 1;
9700
9701         memset(&wdog, 0, sizeof wdog);
9702         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9703                                      F_FW_CMD_REQUEST |
9704                                      F_FW_CMD_WRITE |
9705                                      V_FW_PARAMS_CMD_PFN(pf) |
9706                                      V_FW_PARAMS_CMD_VFN(vf));
9707         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9708         wdog.timeout = cpu_to_be32(ticks);
9709         wdog.action = cpu_to_be32(action);
9710
9711         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9712 }
9713
9714 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9715 {
9716         struct fw_devlog_cmd devlog_cmd;
9717         int ret;
9718
9719         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9720         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9721                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9722         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9723         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9724                          sizeof(devlog_cmd), &devlog_cmd);
9725         if (ret)
9726                 return ret;
9727
9728         *level = devlog_cmd.level;
9729         return 0;
9730 }
9731
9732 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9733 {
9734         struct fw_devlog_cmd devlog_cmd;
9735
9736         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9737         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9738                                              F_FW_CMD_REQUEST |
9739                                              F_FW_CMD_WRITE);
9740         devlog_cmd.level = level;
9741         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9742         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9743                           sizeof(devlog_cmd), &devlog_cmd);
9744 }