]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/dev/qlnx/qlnxe/ecore_int.c
MFC r316485
[FreeBSD/stable/10.git] / sys / dev / qlnx / qlnxe / ecore_int.c
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc. 
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * File : ecore_int.c
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33
34 #include "bcm_osal.h"
35 #include "ecore.h"
36 #include "ecore_spq.h"
37 #include "reg_addr.h"
38 #include "ecore_gtt_reg_addr.h"
39 #include "ecore_init_ops.h"
40 #include "ecore_rt_defs.h"
41 #include "ecore_int.h"
42 #include "reg_addr.h"
43 #include "ecore_hw.h"
44 #include "ecore_sriov.h"
45 #include "ecore_vf.h"
46 #include "ecore_hw_defs.h"
47 #include "ecore_hsi_common.h"
48 #include "ecore_mcp.h"
49 #include "ecore_dbg_fw_funcs.h"
50
51 #ifdef DIAG
52 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
53  * and so the functions are lacking ecore prefix.
54  * If there would be other clients needing this [or if the content that isn't
55  * really optional there would increase], we'll need to re-think this.
56  */
57 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
58                                                           struct ecore_ptt *ptt,
59                                                           enum block_id block,
60                                                           enum dbg_attn_type attn_type,
61                                                           bool clear_status,
62                                                           struct dbg_attn_block_result *results);
63
64 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
65                                                            struct dbg_attn_block_result *results);
66
67 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
68         dbg_read_attn(hwfn, ptt, id, type, clear, results)
69 #define ecore_dbg_parse_attn(hwfn, results) \
70         dbg_parse_attn(hwfn, results)
71 #endif
72
73 struct ecore_pi_info {
74         ecore_int_comp_cb_t comp_cb;
75         void *cookie; /* Will be sent to the completion callback function */
76 };
77
78 struct ecore_sb_sp_info {
79         struct ecore_sb_info sb_info;
80         /* per protocol index data */
81         struct ecore_pi_info pi_info_arr[PIS_PER_SB];
82 };
83
84 enum ecore_attention_type {
85         ECORE_ATTN_TYPE_ATTN,
86         ECORE_ATTN_TYPE_PARITY,
87 };
88
89 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
90         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
91
92 struct aeu_invert_reg_bit {
93         char bit_name[30];
94
95 #define ATTENTION_PARITY                (1 << 0)
96
97 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
98 #define ATTENTION_LENGTH_SHIFT          (4)
99 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
100                                          ATTENTION_LENGTH_SHIFT)
101 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
102 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
103 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
104                                          ATTENTION_PARITY)
105
106 /* Multiple bits start with this offset */
107 #define ATTENTION_OFFSET_MASK           (0x000ff000)
108 #define ATTENTION_OFFSET_SHIFT          (12)
109
110 #define ATTENTION_BB_MASK               (0x00700000)
111 #define ATTENTION_BB_SHIFT              (20)
112 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
113 #define ATTENTION_BB_DIFFERENT          (1 << 23)
114
115 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
116         unsigned int flags;
117
118         /* Callback to call if attention will be triggered */
119         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
120
121         enum block_id block_index;
122 };
123
124 struct aeu_invert_reg {
125         struct aeu_invert_reg_bit bits[32];
126 };
127
128 #define MAX_ATTN_GRPS           (8)
129 #define NUM_ATTN_REGS           (9)
130
131 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
132 {
133         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
134
135         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
136                 tmp);
137         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
138                  0xffffffff);
139
140         return ECORE_SUCCESS;
141 }
142
143 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
144 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
145 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
146 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
147 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
148 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
149 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
150 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
151 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
152 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
153 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
154 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
155 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
156 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
167 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
168 {
169         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
170
171         /* Disabled VF access */
172         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
173                 u32 addr, data;
174
175                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
176                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
177                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
178                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
179                 DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
180                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
181                              ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
182                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
183                              ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
184                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
185                              ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
186                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
187                              ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
188                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
189                              ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
190                         addr);
191         }
192
193         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
194                        PSWHST_REG_INCORRECT_ACCESS_VALID);
195         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
196                 u32 addr, data, length;
197
198                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
199                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
200                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
201                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
202                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
203                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
204
205                 DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
206                         addr, length,
207                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
208                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
209                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
210                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
211                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
212                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
213                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
214                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
215                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
216                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
217                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
218                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
219                         data);
220         }
221
222         /* TODO - We know 'some' of these are legal due to virtualization,
223          * but is it true for all of them?
224          */
225         return ECORE_SUCCESS;
226 }
227
228 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
229 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
230 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
231 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
232 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
233 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
234 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
235 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
236 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
237 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
238 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
239 static const char* grc_timeout_attn_master_to_str(u8 master)
240 {
241         switch(master) {
242         case 1: return "PXP";
243         case 2: return "MCP";
244         case 3: return "MSDM";
245         case 4: return "PSDM";
246         case 5: return "YSDM";
247         case 6: return "USDM";
248         case 7: return "TSDM";
249         case 8: return "XSDM";
250         case 9: return "DBU";
251         case 10: return "DMAE";
252         default:
253                 return "Unknown";
254         }
255 }
256
257 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
258 {
259         u32 tmp, tmp2;
260
261         /* We've already cleared the timeout interrupt register, so we learn
262          * of interrupts via the validity register
263          */
264         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
265                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
266         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
267                 goto out;
268
269         /* Read the GRC timeout information */
270         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
271                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
272         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
273                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
274
275         DP_INFO(p_hwfn->p_dev,
276                 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
277                 tmp2, tmp,
278                 (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
279                 (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
280                 grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
281                                                ECORE_GRC_ATTENTION_MASTER_SHIFT),
282                 (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
283                 (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
284                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
285                  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
286                 (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
287                 ECORE_GRC_ATTENTION_VF_SHIFT);
288
289 out:
290         /* Regardles of anything else, clean the validity bit */
291         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
292                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
293         return ECORE_SUCCESS;
294 }
295
296 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
297 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
298 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
299 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
300 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
301 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
302 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
303 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
304 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
305 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
306 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
307 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
308 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
309 static enum _ecore_status_t ecore_pglub_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
310 {
311         u32 tmp;
312
313         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
314                        PGLUE_B_REG_TX_ERR_WR_DETAILS2);
315         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
316                 u32 addr_lo, addr_hi, details;
317
318                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
319                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
320                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
321                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
322                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
323                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
324
325                 DP_INFO(p_hwfn, "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
326                         addr_hi, addr_lo, details,
327                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
328                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
329                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
330                         tmp,
331                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
332                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
333                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
334         }
335
336         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
337                        PGLUE_B_REG_TX_ERR_RD_DETAILS2);
338         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
339                 u32 addr_lo, addr_hi, details;
340
341                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
342                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
343                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
344                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
345                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
347
348                 DP_INFO(p_hwfn, "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
349                         addr_hi, addr_lo, details,
350                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
351                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
352                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
353                         tmp,
354                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
355                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
356                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
357         }
358
359         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
360                        PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
361         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
362                 DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
363
364         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
365                        PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
366         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
367                 u32 addr_hi, addr_lo;
368
369                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
370                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
371                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
372                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
373
374                 DP_INFO(p_hwfn, "ICPL eror - %08x [Address %08x:%08x]\n",
375                         tmp, addr_hi, addr_lo);
376         }
377
378         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
379                        PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
380         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
381                 u32 addr_hi, addr_lo, details;
382
383                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
384                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
385                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
386                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
387                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
388                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
389
390                 DP_INFO(p_hwfn, "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
391                         details, tmp, addr_hi, addr_lo);
392         }
393
394         /* Clear the indications */
395         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
396                  PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
397
398         return ECORE_SUCCESS;
399 }
400
401 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
402 {
403         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
404
405         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
406
407         return ECORE_INVAL;
408 }
409
410 static enum _ecore_status_t
411 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
412 {
413         DP_INFO(p_hwfn, "General attention 35!\n");
414
415         return ECORE_SUCCESS;
416 }
417
418 #define ECORE_DORQ_ATTENTION_REASON_MASK (0xfffff)
419 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
420 #define ECORE_DORQ_ATTENTION_SIZE_MASK   (0x7f0000)
421 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT  (16)
422
423 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
424 {
425         u32 reason;
426
427         reason = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
428                  ECORE_DORQ_ATTENTION_REASON_MASK;
429         if (reason) {
430                 u32 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
431                                        DORQ_REG_DB_DROP_DETAILS);
432
433                 DP_INFO(p_hwfn->p_dev,
434                         "DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
435                          ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
436                                   DORQ_REG_DB_DROP_DETAILS_ADDRESS),
437                         (u16)(details & ECORE_DORQ_ATTENTION_OPAQUE_MASK),
438                         ((details & ECORE_DORQ_ATTENTION_SIZE_MASK) >>
439                          ECORE_DORQ_ATTENTION_SIZE_SHIFT) * 4, reason);
440         }
441
442         return ECORE_INVAL;
443 }
444
445 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
446 {
447 #ifndef ASIC_ONLY
448         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
449                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
450                                    TM_REG_INT_STS_1);
451
452                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
453                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
454                         return ECORE_INVAL;
455
456                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
457                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
458                         DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
459                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
460                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
461                        TM_REG_INT_MASK_1_PEND_TASK_SCAN;
462                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
463
464                 return ECORE_SUCCESS;
465         }
466 #endif
467
468         return ECORE_INVAL;
469 }
470
471 /* Instead of major changes to the data-structure, we have a some 'special'
472  * identifiers for sources that changed meaning between adapters.
473  */
474 enum aeu_invert_reg_special_type {
475         AEU_INVERT_REG_SPECIAL_CNIG_0,
476         AEU_INVERT_REG_SPECIAL_CNIG_1,
477         AEU_INVERT_REG_SPECIAL_CNIG_2,
478         AEU_INVERT_REG_SPECIAL_CNIG_3,
479         AEU_INVERT_REG_SPECIAL_MAX,
480 };
481
482 static struct aeu_invert_reg_bit
483 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
484         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
485         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
486         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
487         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
488 };
489
490 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
491 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
492 {
493         {
494                 {       /* After Invert 1 */
495                         {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
496                 }
497         },
498
499         {
500                 {       /* After Invert 2 */
501                         {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
502                         {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
503                         {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
504                         {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
505                         {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
506                         {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
507                         {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
508                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
509                         {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
510                 }
511         },
512
513         {
514                 {       /* After Invert 3 */
515                         {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
516                 }
517         },
518
519         {
520                 {       /* After Invert 4 */
521                         {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
522                         {"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
523                         {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
524                         {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
525                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
526                         {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
527                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
528                         {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
529                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
530                         {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
531                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
532                         {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
533                         {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
534                         {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
535                         {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
536                         {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
537                         {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
538                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
539                         {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
540                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
541                         {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
542                         {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
543                         {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
544                 }
545         },
546
547         {
548                 {       /* After Invert 5 */
549                         {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
550                         {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
551                         {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
552                         {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
553                         {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
554                         {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
555                         {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
556                         {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
557                         {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
558                         {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
559                         {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
560                         {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
561                         {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
562                         {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
563                         {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
564                         {"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
565                 }
566         },
567
568         {
569                 {       /* After Invert 6 */
570                         {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
571                         {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
572                         {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
573                         {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
574                         {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
575                         {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
576                         {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
577                         {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
578                         {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
579                         {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
580                         {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
581                         {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
582                         {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
583                         {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
584                         {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
585                         {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
586                 }
587         },
588
589         {
590                 {       /* After Invert 7 */
591                         {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
592                         {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
593                         {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
594                         {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
595                         {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
596                         {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
597                         {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
598                         {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
599                         {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
600                         {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
601                         {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
602                         {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
603                         {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
604                         {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
605                         {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
606                         {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
607                         {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
608                 }
609         },
610
611         {
612                 {       /* After Invert 8 */
613                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
614                         {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
615                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
616                         {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
617                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
618                         {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
619                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
620                         {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
621                         {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
622                         {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
623                         {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
624                         {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
625                         {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
626                         {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
627                         {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
628                         {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
629                         {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
630                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
631                         {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
632                         {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
633                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
634                 }
635         },
636
637         {
638                 {       /* After Invert 9 */
639                         {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
640                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
641                         {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
642                         {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
643                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
644                 }
645         },
646
647 };
648
649 static struct aeu_invert_reg_bit *
650 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
651                         struct aeu_invert_reg_bit *p_bit)
652 {
653         if (!ECORE_IS_BB(p_hwfn->p_dev))
654                 return p_bit;
655
656         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
657                 return p_bit;
658
659         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
660                                   ATTENTION_BB_SHIFT];
661 }
662
663 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
664                                      struct aeu_invert_reg_bit *p_bit)
665 {
666         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
667                   ATTENTION_PARITY);
668 }
669
670 #define ATTN_STATE_BITS         (0xfff)
671 #define ATTN_BITS_MASKABLE      (0x3ff)
672 struct ecore_sb_attn_info {
673         /* Virtual & Physical address of the SB */
674         struct atten_status_block       *sb_attn;
675         dma_addr_t                      sb_phys;
676
677         /* Last seen running index */
678         u16                             index;
679
680         /* A mask of the AEU bits resulting in a parity error */
681         u32                             parity_mask[NUM_ATTN_REGS];
682
683         /* A pointer to the attention description structure */
684         struct aeu_invert_reg           *p_aeu_desc;
685
686         /* Previously asserted attentions, which are still unasserted */
687         u16                             known_attn;
688
689         /* Cleanup address for the link's general hw attention */
690         u32                             mfw_attn_addr;
691 };
692
693 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
694                                  struct ecore_sb_attn_info *p_sb_desc)
695 {
696         u16 rc = 0, index;
697
698         OSAL_MMIOWB(p_hwfn->p_dev);
699
700         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
701         if (p_sb_desc->index != index) {
702                 p_sb_desc->index = index;
703                 rc = ECORE_SB_ATT_IDX;
704         }
705
706         OSAL_MMIOWB(p_hwfn->p_dev);
707
708         return rc;
709 }
710
711 /**
712  * @brief ecore_int_assertion - handles asserted attention bits
713  *
714  * @param p_hwfn
715  * @param asserted_bits newly asserted bits
716  * @return enum _ecore_status_t
717  */
718 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
719                                                 u16 asserted_bits)
720 {
721         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
722         u32 igu_mask;
723
724         /* Mask the source of the attention in the IGU */
725         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
726                             IGU_REG_ATTENTION_ENABLE);
727         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
728                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
729         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
730         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
731
732         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
733                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
734                    sb_attn_sw->known_attn,
735                    sb_attn_sw->known_attn | asserted_bits);
736         sb_attn_sw->known_attn |= asserted_bits;
737
738         /* Handle MCP events */
739         if (asserted_bits & 0x100) {
740                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
741                 /* Clean the MCP attention */
742                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
743                          sb_attn_sw->mfw_attn_addr, 0);
744         }
745
746         /* FIXME - this will change once we'll have GOOD gtt definitions */
747         DIRECT_REG_WR(p_hwfn,
748                       (u8 OSAL_IOMEM*)p_hwfn->regview +
749                       GTT_BAR0_MAP_REG_IGU_CMD +
750                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
751                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
752
753         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
754                    asserted_bits);
755
756         return ECORE_SUCCESS;
757 }
758
759 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
760                                  enum block_id id, enum dbg_attn_type type,
761                                  bool b_clear)
762 {
763         struct dbg_attn_block_result attn_results;
764         enum dbg_status status;
765
766         OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
767
768         status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
769                                      b_clear, &attn_results);
770         if (status != DBG_STATUS_OK)
771                 DP_NOTICE(p_hwfn, true,
772                           "Failed to parse attention information [status %d]\n",
773                           status);
774         else
775 #ifdef ATTN_DESC
776                 ecore_dbg_parse_attn(p_hwfn, &attn_results);
777 #else
778                 ecore_dbg_print_attn(p_hwfn, &attn_results);
779 #endif
780 }
781
782 /**
783  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
784  * cause of the attention
785  *
786  * @param p_hwfn
787  * @param p_aeu - descriptor of an AEU bit which caused the attention
788  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
789  *  this bit to this group.
790  * @param bit_index - index of this bit in the aeu_en_reg
791  *
792  * @return enum _ecore_status_t
793  */
794 static enum _ecore_status_t
795 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
796                               struct aeu_invert_reg_bit *p_aeu,
797                               u32 aeu_en_reg,
798                               const char *p_bit_name,
799                               u32 bitmask)
800 {
801         enum _ecore_status_t rc = ECORE_INVAL;
802         bool b_fatal = false;
803
804         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
805                 p_bit_name, bitmask);
806
807         /* Call callback before clearing the interrupt status */
808         if (p_aeu->cb) {
809                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
810                         p_bit_name);
811                 rc = p_aeu->cb(p_hwfn);
812         }
813
814         if (rc != ECORE_SUCCESS)
815                 b_fatal = true;
816
817         /* Print HW block interrupt registers */
818         if (p_aeu->block_index != MAX_BLOCK_ID)
819                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
820                                      ATTN_TYPE_INTERRUPT, !b_fatal);
821
822         /* Reach assertion if attention is fatal */
823         if (b_fatal) {
824                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
825                           p_bit_name);
826
827                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
828         }
829
830         /* Prevent this Attention from being asserted in the future */
831         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
832             p_hwfn->p_dev->attn_clr_en) {
833                 u32 val;
834                 u32 mask = ~bitmask;
835                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
836                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
837                 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
838                         p_bit_name);
839         }
840
841         return rc;
842 }
843
844 /**
845  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
846  *
847  * @param p_hwfn
848  * @param p_aeu - descriptor of an AEU bit which caused the parity
849  * @param aeu_en_reg - address of the AEU enable register
850  * @param bit_index
851  */
852 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
853                                          struct aeu_invert_reg_bit *p_aeu,
854                                          u32 aeu_en_reg, u8 bit_index)
855 {
856         u32 block_id = p_aeu->block_index, mask, val;
857
858         DP_NOTICE(p_hwfn->p_dev, false,
859                   "%s parity attention is set [address 0x%08x, bit %d]\n",
860                   p_aeu->bit_name, aeu_en_reg, bit_index);
861
862         if (block_id == MAX_BLOCK_ID)
863                 return;
864
865         ecore_int_attn_print(p_hwfn, block_id,
866                              ATTN_TYPE_PARITY, false);
867
868         /* In A0, there's a single parity bit for several blocks */
869         if (block_id == BLOCK_BTB) {
870                 ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
871                                      ATTN_TYPE_PARITY, false);
872                 ecore_int_attn_print(p_hwfn, BLOCK_MCP,
873                                      ATTN_TYPE_PARITY, false);
874         }
875
876         /* Prevent this parity error from being re-asserted */
877         mask = ~(0x1 << bit_index);
878         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
879         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
880         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
881                 p_aeu->bit_name);
882 }
883
884 /**
885  * @brief - handles deassertion of previously asserted attentions.
886  *
887  * @param p_hwfn
888  * @param deasserted_bits - newly deasserted bits
889  * @return enum _ecore_status_t
890  *
891  */
892 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
893                                                   u16 deasserted_bits)
894 {
895         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
896         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
897         u8 i, j, k, bit_idx;
898         enum _ecore_status_t rc = ECORE_SUCCESS;
899
900         /* Read the attention registers in the AEU */
901         for (i = 0; i < NUM_ATTN_REGS; i++) {
902                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
903                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
904                                           i * 0x4);
905                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
906                            "Deasserted bits [%d]: %08x\n",
907                            i, aeu_inv_arr[i]);
908         }
909
910         /* Handle parity attentions first */
911         for (i = 0; i < NUM_ATTN_REGS; i++)
912         {
913                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
914                 u32 parities;
915
916                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
917                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
918                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
919
920                 /* Skip register in which no parity bit is currently set */
921                 if (!parities)
922                         continue;
923
924                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
925                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
926
927                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
928                             !!(parities & (1 << bit_idx)))
929                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
930                                                              aeu_en, bit_idx);
931
932                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
933                 }
934         }
935
936         /* Find non-parity cause for attention and act */
937         for (k = 0; k < MAX_ATTN_GRPS; k++) {
938                 struct aeu_invert_reg_bit *p_aeu;
939
940                 /* Handle only groups whose attention is currently deasserted */
941                 if (!(deasserted_bits & (1 << k)))
942                         continue;
943
944                 for (i = 0; i < NUM_ATTN_REGS; i++) {
945                         u32 bits;
946
947                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
948                                  i * sizeof(u32) +
949                                  k * sizeof(u32) * NUM_ATTN_REGS;
950                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
951                         bits = aeu_inv_arr[i] & en;
952
953                         /* Skip if no bit from this group is currently set */
954                         if (!bits)
955                                 continue;
956
957                         /* Find all set bits from current register which belong
958                          * to current group, making them responsible for the
959                          * previous assertion.
960                          */
961                         for (j = 0, bit_idx = 0; bit_idx < 32; j++)
962                         {
963                                 long unsigned int bitmask;
964                                 u8 bit, bit_len;
965
966                                 /* Need to account bits with changed meaning */
967                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
968                                 p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
969
970                                 bit = bit_idx;
971                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
972                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
973                                         /* Skip Parity */
974                                         bit++;
975                                         bit_len--;
976                                 }
977
978                                 /* Find the bits relating to HW-block, then
979                                  * shift so they'll become LSB.
980                                  */
981                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
982                                 bitmask >>= bit;
983
984                                 if (bitmask) {
985                                         u32 flags = p_aeu->flags;
986                                         char bit_name[30];
987                                         u8 num;
988
989                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
990                                                                 bit_len);
991
992                                         /* Some bits represent more than a
993                                          * a single interrupt. Correctly print
994                                          * their name.
995                                          */
996                                         if (ATTENTION_LENGTH(flags) > 2 ||
997                                             ((flags & ATTENTION_PAR_INT) &&
998                                             ATTENTION_LENGTH(flags) > 1))
999                                                 OSAL_SNPRINTF(bit_name, 30,
1000                                                               p_aeu->bit_name,
1001                                                               num);
1002                                         else
1003                                                 OSAL_STRNCPY(bit_name,
1004                                                              p_aeu->bit_name,
1005                                                              30);
1006
1007                                         /* We now need to pass bitmask in its
1008                                          * correct position.
1009                                          */
1010                                         bitmask <<= bit;
1011
1012                                         /* Handle source of the attention */
1013                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1014                                                                       p_aeu,
1015                                                                       aeu_en,
1016                                                                       bit_name,
1017                                                                       bitmask);
1018                                 }
1019
1020                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1021                         }
1022                 }
1023         }
1024
1025         /* Clear IGU indication for the deasserted bits */
1026         /* FIXME - this will change once we'll have GOOD gtt definitions */
1027         DIRECT_REG_WR(p_hwfn,
1028                       (u8 OSAL_IOMEM*)p_hwfn->regview +
1029                                       GTT_BAR0_MAP_REG_IGU_CMD +
1030                                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1031                                         IGU_CMD_INT_ACK_BASE) << 3),
1032                       ~((u32)deasserted_bits));
1033
1034         /* Unmask deasserted attentions in IGU */
1035         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1036                             IGU_REG_ATTENTION_ENABLE);
1037         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1038         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1039
1040         /* Clear deassertion from inner state */
1041         sb_attn_sw->known_attn &= ~deasserted_bits;
1042
1043         return rc;
1044 }
1045
1046 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1047 {
1048         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1049         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1050         u16 index = 0, asserted_bits, deasserted_bits;
1051         u32 attn_bits = 0, attn_acks = 0;
1052         enum _ecore_status_t rc = ECORE_SUCCESS;
1053
1054         /* Read current attention bits/acks - safeguard against attentions
1055          * by guaranting work on a synchronized timeframe
1056          */
1057         do {
1058                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1059                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1060                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1061         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1062         p_sb_attn->sb_index = index;
1063
1064         /* Attention / Deassertion are meaningful (and in correct state)
1065          * only when they differ and consistent with known state - deassertion
1066          * when previous attention & current ack, and assertion when current
1067          * attention with no previous attention
1068          */
1069         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1070                         ~p_sb_attn_sw->known_attn;
1071         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1072                           p_sb_attn_sw->known_attn;
1073
1074         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1075                 DP_INFO(p_hwfn,
1076                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1077                         index, attn_bits, attn_acks, asserted_bits,
1078                         deasserted_bits, p_sb_attn_sw->known_attn);
1079         else if (asserted_bits == 0x100)
1080                 DP_INFO(p_hwfn,
1081                         "MFW indication via attention\n");
1082         else
1083                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1084                            "MFW indication [deassertion]\n");
1085
1086         if (asserted_bits) {
1087                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1088                 if (rc)
1089                         return rc;
1090         }
1091
1092         if (deasserted_bits)
1093                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1094
1095         return rc;
1096 }
1097
1098 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1099                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1100 {
1101         struct igu_prod_cons_update igu_ack = { 0 };
1102
1103         igu_ack.sb_id_and_flags =
1104                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1105                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1106                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1107                  (IGU_SEG_ACCESS_ATTN <<
1108                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1109
1110         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1111
1112         /* Both segments (interrupts & acks) are written to same place address;
1113          * Need to guarantee all commands will be received (in-order) by HW.
1114          */
1115         OSAL_MMIOWB(p_hwfn->p_dev);
1116         OSAL_BARRIER(p_hwfn->p_dev);
1117 }
1118
1119 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1120 {
1121         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1122         struct ecore_pi_info *pi_info = OSAL_NULL;
1123         struct ecore_sb_attn_info *sb_attn;
1124         struct ecore_sb_info *sb_info;
1125         int arr_size;
1126         u16 rc = 0;
1127
1128         if (!p_hwfn)
1129                 return;
1130
1131         if (!p_hwfn->p_sp_sb) {
1132                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1133                 return;
1134         }
1135
1136         sb_info = &p_hwfn->p_sp_sb->sb_info;
1137         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1138         if (!sb_info) {
1139                 DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1140                 return;
1141         }
1142
1143         if (!p_hwfn->p_sb_attn) {
1144                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1145                 return;
1146         }
1147         sb_attn =  p_hwfn->p_sb_attn;
1148
1149         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1150                    p_hwfn, p_hwfn->my_id);
1151
1152         /* Disable ack for def status block. Required both for msix +
1153          * inta in non-mask mode, in inta does no harm.
1154          */
1155         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1156
1157         /* Gather Interrupts/Attentions information */
1158         if (!sb_info->sb_virt) {
1159                 DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1160         } else {
1161                 u32 tmp_index = sb_info->sb_ack;
1162                 rc = ecore_sb_update_sb_idx(sb_info);
1163                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1164                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1165                            tmp_index, sb_info->sb_ack);
1166         }
1167
1168         if (!sb_attn || !sb_attn->sb_attn) {
1169                 DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1170         } else {
1171                 u16 tmp_index = sb_attn->index;
1172
1173                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1174                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1175                            "Attention indices: 0x%08x --> 0x%08x\n",
1176                            tmp_index, sb_attn->index);
1177         }
1178
1179         /* Check if we expect interrupts at this time. if not just ack them */
1180         if (!(rc & ECORE_SB_EVENT_MASK)) {
1181                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1182                 return;
1183         }
1184
1185         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1186         if (!p_hwfn->p_dpc_ptt) {
1187                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1188                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1189                 return;
1190         }
1191
1192         if (rc & ECORE_SB_ATT_IDX)
1193                 ecore_int_attentions(p_hwfn);
1194
1195         if (rc & ECORE_SB_IDX) {
1196                 int pi;
1197
1198                 /* Since we only looked at the SB index, it's possible more
1199                  * than a single protocol-index on the SB incremented.
1200                  * Iterate over all configured protocol indices and check
1201                  * whether something happened for each.
1202                  */
1203                 for (pi = 0; pi < arr_size; pi++) {
1204                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1205                         if (pi_info->comp_cb != OSAL_NULL)
1206                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1207                 }
1208         }
1209
1210         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1211                 /* This should be done before the interrupts are enabled,
1212                  * since otherwise a new attention will be generated.
1213                  */
1214                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1215         }
1216
1217         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1218 }
1219
1220 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1221 {
1222         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1223
1224         if (!p_sb)
1225                 return;
1226
1227         if (p_sb->sb_attn) {
1228                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1229                                        p_sb->sb_phys,
1230                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1231         }
1232
1233         OSAL_FREE(p_hwfn->p_dev, p_sb);
1234         p_hwfn->p_sb_attn = OSAL_NULL;
1235 }
1236
1237 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1238                                     struct ecore_ptt *p_ptt)
1239 {
1240         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1241
1242         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1243
1244         sb_info->index = 0;
1245         sb_info->known_attn = 0;
1246
1247         /* Configure Attention Status Block in IGU */
1248         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1249                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1250         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1251                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1252 }
1253
1254 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1255                                    struct ecore_ptt *p_ptt,
1256                                    void *sb_virt_addr,
1257                                    dma_addr_t sb_phy_addr)
1258 {
1259         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1260         int i, j, k;
1261
1262         sb_info->sb_attn = sb_virt_addr;
1263         sb_info->sb_phys = sb_phy_addr;
1264
1265         /* Set the pointer to the AEU descriptors */
1266         sb_info->p_aeu_desc = aeu_descs;
1267
1268         /* Calculate Parity Masks */
1269         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1270         for (i = 0; i < NUM_ATTN_REGS; i++) {
1271                 /* j is array index, k is bit index */
1272                 for (j = 0, k = 0; k < 32; j++) {
1273                         struct aeu_invert_reg_bit *p_aeu;
1274
1275                         p_aeu = &aeu_descs[i].bits[j];
1276                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1277                                 sb_info->parity_mask[i] |= 1 << k;
1278
1279                         k += ATTENTION_LENGTH(p_aeu->flags);
1280                 }
1281                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1282                            "Attn Mask [Reg %d]: 0x%08x\n",
1283                            i, sb_info->parity_mask[i]);
1284         }
1285
1286         /* Set the address of cleanup for the mcp attention */
1287         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1288                                  MISC_REG_AEU_GENERAL_ATTN_0;
1289
1290         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1291 }
1292
1293 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1294                                                     struct ecore_ptt *p_ptt)
1295 {
1296         struct ecore_dev *p_dev = p_hwfn->p_dev;
1297         struct ecore_sb_attn_info *p_sb;
1298         dma_addr_t p_phys = 0;
1299         void *p_virt;
1300
1301         /* SB struct */
1302         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1303         if (!p_sb) {
1304                 DP_NOTICE(p_dev, true, "Failed to allocate `struct ecore_sb_attn_info'\n");
1305                 return ECORE_NOMEM;
1306         }
1307
1308         /* SB ring  */
1309         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1310                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1311         if (!p_virt) {
1312                 DP_NOTICE(p_dev, true, "Failed to allocate status block (attentions)\n");
1313                 OSAL_FREE(p_dev, p_sb);
1314                 return ECORE_NOMEM;
1315         }
1316
1317         /* Attention setup */
1318         p_hwfn->p_sb_attn = p_sb;
1319         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1320
1321         return ECORE_SUCCESS;
1322 }
1323
1324 /* coalescing timeout = timeset << (timer_res + 1) */
1325 #define ECORE_CAU_DEF_RX_USECS 24
1326 #define ECORE_CAU_DEF_TX_USECS 48
1327
1328 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1329                              struct cau_sb_entry *p_sb_entry,
1330                              u8 pf_id, u16 vf_number, u8 vf_valid)
1331 {
1332         struct ecore_dev *p_dev = p_hwfn->p_dev;
1333         u32 cau_state;
1334         u8 timer_res;
1335
1336         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1337
1338         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1339         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1340         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1341         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1342         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1343
1344         cau_state = CAU_HC_DISABLE_STATE;
1345
1346         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1347                 cau_state = CAU_HC_ENABLE_STATE;
1348                 if (!p_dev->rx_coalesce_usecs)
1349                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1350                 if (!p_dev->tx_coalesce_usecs)
1351                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1352         }
1353
1354         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1355         if (p_dev->rx_coalesce_usecs <= 0x7F)
1356                 timer_res = 0;
1357         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1358                 timer_res = 1;
1359         else
1360                 timer_res = 2;
1361         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1362
1363         if (p_dev->tx_coalesce_usecs <= 0x7F)
1364                 timer_res = 0;
1365         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1366                 timer_res = 1;
1367         else
1368                 timer_res = 2;
1369         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1370
1371         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1372         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1373 }
1374
1375 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1376                                    struct ecore_ptt *p_ptt,
1377                                    u16 igu_sb_id, u32 pi_index,
1378                                    enum ecore_coalescing_fsm coalescing_fsm,
1379                                    u8 timeset)
1380 {
1381         struct cau_pi_entry pi_entry;
1382         u32 sb_offset, pi_offset;
1383
1384         if (IS_VF(p_hwfn->p_dev))
1385                 return;/* @@@TBD MichalK- VF CAU... */
1386
1387         sb_offset = igu_sb_id * PIS_PER_SB;
1388         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1389
1390         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1391         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1392                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1393         else
1394                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1395
1396         pi_offset = sb_offset + pi_index;
1397         if (p_hwfn->hw_init_done) {
1398                 ecore_wr(p_hwfn, p_ptt,
1399                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1400                          *((u32 *)&(pi_entry)));
1401         } else {
1402                 STORE_RT_REG(p_hwfn,
1403                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1404                              *((u32 *)&(pi_entry)));
1405         }
1406 }
1407
1408 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1409                            struct ecore_ptt *p_ptt,
1410                            struct ecore_sb_info *p_sb, u32 pi_index,
1411                            enum ecore_coalescing_fsm coalescing_fsm,
1412                            u8 timeset)
1413 {
1414         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1415                                pi_index, coalescing_fsm, timeset);
1416 }
1417
1418 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1419                            struct ecore_ptt *p_ptt,
1420                            dma_addr_t sb_phys, u16 igu_sb_id,
1421                            u16 vf_number, u8 vf_valid)
1422 {
1423         struct cau_sb_entry sb_entry;
1424
1425         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1426                                 vf_number, vf_valid);
1427
1428         if (p_hwfn->hw_init_done) {
1429                 /* Wide-bus, initialize via DMAE */
1430                 u64 phys_addr = (u64)sb_phys;
1431
1432                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1433                                     CAU_REG_SB_ADDR_MEMORY +
1434                                     igu_sb_id * sizeof(u64), 2, 0);
1435                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1436                                     CAU_REG_SB_VAR_MEMORY +
1437                                     igu_sb_id * sizeof(u64), 2, 0);
1438         } else {
1439                 /* Initialize Status Block Address */
1440                 STORE_RT_REG_AGG(p_hwfn,
1441                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1442                                  sb_phys);
1443
1444                 STORE_RT_REG_AGG(p_hwfn,
1445                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1446                                  sb_entry);
1447         }
1448
1449         /* Configure pi coalescing if set */
1450         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1451                 /* eth will open queues for all tcs, so configure all of them
1452                  * properly, rather than just the active ones
1453                  */
1454                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1455
1456                 u8 timeset, timer_res;
1457                 u8 i;
1458
1459                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1460                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1461                         timer_res = 0;
1462                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1463                         timer_res = 1;
1464                 else
1465                         timer_res = 2;
1466                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1467                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1468                                        ECORE_COAL_RX_STATE_MACHINE,
1469                                        timeset);
1470
1471                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1472                         timer_res = 0;
1473                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1474                         timer_res = 1;
1475                 else
1476                         timer_res = 2;
1477                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1478                 for (i = 0; i < num_tc; i++) {
1479                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1480                                                igu_sb_id, TX_PI(i),
1481                                                ECORE_COAL_TX_STATE_MACHINE,
1482                                                timeset);
1483                 }
1484         }
1485 }
1486
1487 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1488                                struct ecore_ptt *p_ptt,
1489                                struct ecore_sb_info *sb_info)
1490 {
1491         /* zero status block and ack counter */
1492         sb_info->sb_ack = 0;
1493         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1494
1495         if (IS_PF(p_hwfn->p_dev))
1496                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1497                                       sb_info->igu_sb_id, 0, 0);
1498 }
1499
1500 struct ecore_igu_block *
1501 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1502 {
1503         struct ecore_igu_block *p_block;
1504         u16 igu_id;
1505
1506         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1507              igu_id++) {
1508                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1509
1510                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1511                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1512                         continue;
1513
1514                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1515                     b_is_pf)
1516                         return p_block;
1517         }
1518
1519         return OSAL_NULL;
1520 }
1521
1522 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1523                                   u16 vector_id)
1524 {
1525         struct ecore_igu_block *p_block;
1526         u16 igu_id;
1527
1528         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1529              igu_id++) {
1530                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1531
1532                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1533                     !p_block->is_pf ||
1534                     p_block->vector_number != vector_id)
1535                         continue;
1536
1537                 return igu_id;
1538         }
1539
1540         return ECORE_SB_INVALID_IDX;
1541 }
1542
1543 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1544 {
1545         u16 igu_sb_id;
1546
1547         /* Assuming continuous set of IGU SBs dedicated for given PF */
1548         if (sb_id == ECORE_SP_SB_ID)
1549                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1550         else if (IS_PF(p_hwfn->p_dev))
1551                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1552         else
1553                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1554
1555         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1556                 DP_NOTICE(p_hwfn, true,
1557                           "Slowpath SB vector %04x doesn't exist\n",
1558                           sb_id);
1559         else if (sb_id == ECORE_SP_SB_ID)
1560                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1561                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1562         else
1563                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1564                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1565
1566         return igu_sb_id;
1567 }
1568
1569 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1570                                        struct ecore_ptt *p_ptt,
1571                                        struct ecore_sb_info *sb_info,
1572                                        void *sb_virt_addr,
1573                                        dma_addr_t sb_phy_addr,
1574                                        u16 sb_id)
1575 {
1576         sb_info->sb_virt = sb_virt_addr;
1577         sb_info->sb_phys = sb_phy_addr;
1578
1579         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1580
1581         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1582                 return ECORE_INVAL;
1583
1584         /* Let the igu info reference the client's SB info */
1585         if (sb_id != ECORE_SP_SB_ID) {
1586                 if (IS_PF(p_hwfn->p_dev)) {
1587                         struct ecore_igu_info *p_info;
1588                         struct ecore_igu_block *p_block;
1589
1590                         p_info = p_hwfn->hw_info.p_igu_info;
1591                         p_block = &p_info->entry[sb_info->igu_sb_id];
1592
1593                         p_block->sb_info = sb_info;
1594                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1595                         p_info->usage.free_cnt--;
1596                 } else {
1597                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1598                 }
1599         }
1600
1601 #ifdef ECORE_CONFIG_DIRECT_HWFN
1602         sb_info->p_hwfn = p_hwfn;
1603 #endif
1604         sb_info->p_dev = p_hwfn->p_dev;
1605
1606         /* The igu address will hold the absolute address that needs to be
1607          * written to for a specific status block
1608          */
1609         if (IS_PF(p_hwfn->p_dev)) {
1610                 sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1611                                     GTT_BAR0_MAP_REG_IGU_CMD +
1612                                     (sb_info->igu_sb_id << 3);
1613
1614         } else {
1615                 sb_info->igu_addr =
1616                         (u8 OSAL_IOMEM*)p_hwfn->regview +
1617                         PXP_VF_BAR0_START_IGU +
1618                         ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1619         }
1620
1621         sb_info->flags |= ECORE_SB_INFO_INIT;
1622
1623         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1624
1625         return ECORE_SUCCESS;
1626 }
1627
1628 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1629                                           struct ecore_sb_info *sb_info,
1630                                           u16 sb_id)
1631 {
1632         struct ecore_igu_info *p_info;
1633         struct ecore_igu_block *p_block;
1634
1635         if (sb_info == OSAL_NULL)
1636                 return ECORE_SUCCESS;
1637
1638         /* zero status block and ack counter */
1639         sb_info->sb_ack = 0;
1640         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1641
1642         if (IS_VF(p_hwfn->p_dev)) {
1643                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1644                 return ECORE_SUCCESS;
1645         }
1646
1647         p_info = p_hwfn->hw_info.p_igu_info;
1648         p_block = &p_info->entry[sb_info->igu_sb_id];
1649
1650         /* Vector 0 is reserved to Default SB */
1651         if (p_block->vector_number == 0) {
1652                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1653                 return ECORE_INVAL;
1654         }
1655
1656         /* Lose reference to client's SB info, and fix counters */
1657         p_block->sb_info = OSAL_NULL;
1658         p_block->status |= ECORE_IGU_STATUS_FREE;
1659         p_info->usage.free_cnt++;
1660
1661         return ECORE_SUCCESS;
1662 }
1663
1664 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1665 {
1666         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1667
1668         if (!p_sb)
1669                 return;
1670
1671         if (p_sb->sb_info.sb_virt) {
1672                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1673                                        p_sb->sb_info.sb_virt,
1674                                        p_sb->sb_info.sb_phys,
1675                                        SB_ALIGNED_SIZE(p_hwfn));
1676         }
1677
1678         OSAL_FREE(p_hwfn->p_dev, p_sb);
1679         p_hwfn->p_sp_sb = OSAL_NULL;
1680 }
1681
1682 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1683                                                   struct ecore_ptt *p_ptt)
1684 {
1685         struct ecore_sb_sp_info *p_sb;
1686         dma_addr_t p_phys = 0;
1687         void *p_virt;
1688
1689         /* SB struct */
1690         p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1691         if (!p_sb) {
1692                 DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_sb_info'\n");
1693                 return ECORE_NOMEM;
1694         }
1695
1696         /* SB ring  */
1697         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1698                                          &p_phys,
1699                                          SB_ALIGNED_SIZE(p_hwfn));
1700         if (!p_virt) {
1701                 DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1702                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1703                 return ECORE_NOMEM;
1704         }
1705
1706
1707         /* Status Block setup */
1708         p_hwfn->p_sp_sb = p_sb;
1709         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1710                           p_virt, p_phys, ECORE_SP_SB_ID);
1711
1712         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1713
1714         return ECORE_SUCCESS;
1715 }
1716
1717 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1718                                            ecore_int_comp_cb_t comp_cb,
1719                                            void *cookie,
1720                                            u8 *sb_idx,
1721                                            __le16 **p_fw_cons)
1722 {
1723         struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1724         enum _ecore_status_t rc = ECORE_NOMEM;
1725         u8 pi;
1726
1727         /* Look for a free index */
1728         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1729                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1730                         continue;
1731
1732                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1733                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1734                 *sb_idx = pi;
1735                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1736                 rc = ECORE_SUCCESS;
1737                 break;
1738         }
1739
1740         return rc;
1741 }
1742
1743 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1744                                              u8 pi)
1745 {
1746         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1747
1748         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1749                 return ECORE_NOMEM;
1750
1751         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1752         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1753
1754         return ECORE_SUCCESS;
1755 }
1756
1757 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1758 {
1759         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1760 }
1761
1762 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1763                               struct ecore_ptt  *p_ptt,
1764                               enum ecore_int_mode int_mode)
1765 {
1766         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1767
1768 #ifndef ASIC_ONLY
1769         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1770                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1771                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1772         }
1773 #endif
1774
1775         p_hwfn->p_dev->int_mode = int_mode;
1776         switch (p_hwfn->p_dev->int_mode) {
1777         case ECORE_INT_MODE_INTA:
1778                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1779                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1780                 break;
1781
1782         case ECORE_INT_MODE_MSI:
1783                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1784                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1785                 break;
1786
1787         case ECORE_INT_MODE_MSIX:
1788                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1789                 break;
1790         case ECORE_INT_MODE_POLL:
1791                 break;
1792         }
1793
1794         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1795 }
1796
1797 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1798                                       struct ecore_ptt *p_ptt)
1799 {
1800 #ifndef ASIC_ONLY
1801         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1802                 DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1803                 return;
1804         }
1805 #endif
1806
1807         /* Configure AEU signal change to produce attentions */
1808         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1809         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1810         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1811         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1812
1813         /* Flush the writes to IGU */
1814         OSAL_MMIOWB(p_hwfn->p_dev);
1815
1816         /* Unmask AEU signals toward IGU */
1817         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1818 }
1819
1820 enum _ecore_status_t
1821 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1822                           enum ecore_int_mode int_mode)
1823 {
1824         enum _ecore_status_t rc = ECORE_SUCCESS;
1825         u32 tmp;
1826
1827         /* @@@tmp - Starting with MFW 8.2.1.0 we've started hitting AVS stop
1828          * attentions. Since we're waiting for BRCM answer regarding this
1829          * attention, in the meanwhile we simply mask it.
1830          */
1831         tmp = ecore_rd(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0);
1832         tmp &= ~0x800;
1833         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, tmp);
1834
1835         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1836
1837         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1838                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1839                 if (rc != ECORE_SUCCESS) {
1840                         DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1841                         return ECORE_NORESOURCES;
1842                 }
1843                 p_hwfn->b_int_requested = true;
1844         }
1845
1846         /* Enable interrupt Generation */
1847         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1848
1849         p_hwfn->b_int_enabled = 1;
1850
1851         return rc;
1852 }
1853
1854 void ecore_int_igu_disable_int(struct ecore_hwfn        *p_hwfn,
1855                                struct ecore_ptt         *p_ptt)
1856 {
1857         p_hwfn->b_int_enabled = 0;
1858
1859         if (IS_VF(p_hwfn->p_dev))
1860                 return;
1861
1862         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1863 }
1864
1865 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1866 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1867                                      struct ecore_ptt *p_ptt,
1868                                      u16 igu_sb_id,
1869                                      bool cleanup_set,
1870                                      u16 opaque_fid)
1871 {
1872         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1873         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1874         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1875         u8  type = 0; /* FIXME MichalS type??? */
1876
1877         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1878                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1879
1880         /* USE Control Command Register to perform cleanup. There is an
1881          * option to do this using IGU bar, but then it can't be used for VFs.
1882          */
1883
1884         /* Set the data field */
1885         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1886         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1887         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1888
1889         /* Set the control register */
1890         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1891         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1892         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1893
1894         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1895
1896         OSAL_BARRIER(p_hwfn->p_dev);
1897
1898         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1899
1900         /* Flush the write to IGU */
1901         OSAL_MMIOWB(p_hwfn->p_dev);
1902
1903         /* calculate where to read the status bit from */
1904         sb_bit = 1 << (igu_sb_id % 32);
1905         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1906
1907         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
1908
1909         /* Now wait for the command to complete */
1910         while (--sleep_cnt) {
1911                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
1912                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1913                         break;
1914                 OSAL_MSLEEP(5);
1915         }
1916
1917         if (!sleep_cnt)
1918                 DP_NOTICE(p_hwfn, true,
1919                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1920                           val, igu_sb_id);
1921 }
1922
1923 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
1924                                        struct ecore_ptt *p_ptt,
1925                                        u16 igu_sb_id, u16 opaque, bool b_set)
1926 {
1927         struct ecore_igu_block *p_block;
1928         int pi, i;
1929
1930         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1931         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1932                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1933                    igu_sb_id, p_block->function_id, p_block->is_pf,
1934                    p_block->vector_number);
1935
1936         /* Set */
1937         if (b_set)
1938                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1939
1940         /* Clear */
1941         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1942
1943         /* Wait for the IGU SB to cleanup */
1944         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1945                 u32 val;
1946
1947                 val = ecore_rd(p_hwfn, p_ptt,
1948                                IGU_REG_WRITE_DONE_PENDING +
1949                                ((igu_sb_id / 32) * 4));
1950                 if (val & (1 << (igu_sb_id % 32)))
1951                         OSAL_UDELAY(10);
1952                 else
1953                         break;
1954         }
1955         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1956                 DP_NOTICE(p_hwfn, true,
1957                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1958                           igu_sb_id);
1959
1960         /* Clear the CAU for the SB */
1961         for (pi = 0; pi < 12; pi++)
1962                 ecore_wr(p_hwfn, p_ptt,
1963                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1964 }
1965
1966 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
1967                                  struct ecore_ptt *p_ptt,
1968                                  bool b_set,
1969                                  bool b_slowpath)
1970 {
1971         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1972         struct ecore_igu_block *p_block;
1973         u16 igu_sb_id = 0;
1974         u32 val = 0;
1975
1976         /* @@@TBD MichalK temporary... should be moved to init-tool... */
1977         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1978         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1979         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1980         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1981         /* end temporary */
1982
1983         for (igu_sb_id = 0;
1984              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1985              igu_sb_id++) {
1986                 p_block = &p_info->entry[igu_sb_id];
1987
1988                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1989                     !p_block->is_pf ||
1990                     (p_block->status & ECORE_IGU_STATUS_DSB))
1991                         continue;
1992
1993                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1994                                                   p_hwfn->hw_info.opaque_fid,
1995                                                   b_set);
1996         }
1997
1998         if (b_slowpath)
1999                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2000                                                   p_info->igu_dsb_id,
2001                                                   p_hwfn->hw_info.opaque_fid,
2002                                                   b_set);
2003 }
2004
2005 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2006                             struct ecore_ptt *p_ptt)
2007 {
2008         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2009         struct ecore_igu_block *p_block;
2010         int pf_sbs, vf_sbs;
2011         u16 igu_sb_id;
2012         u32 val, rval;
2013
2014         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2015                 /* We're using an old MFW - have to prevent any switching
2016                  * of SBs between PF and VFs as later driver wouldn't be
2017                  * able to tell which belongs to which.
2018                  */
2019                 p_info->b_allow_pf_vf_change = false;
2020         } else {
2021                 /* Use the numbers the MFW have provided -
2022                  * don't forget MFW accounts for the default SB as well.
2023                  */
2024                 p_info->b_allow_pf_vf_change = true;
2025
2026                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2027                         DP_INFO(p_hwfn,
2028                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2029                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2030                                 p_info->usage.cnt);
2031                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2032                 }
2033
2034                 /* TODO - how do we learn about VF SBs from MFW? */
2035                 if (IS_PF_SRIOV(p_hwfn)) {
2036                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2037
2038                         if (vfs != p_info->usage.iov_cnt)
2039                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2040                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2041                                            p_info->usage.iov_cnt, vfs);
2042
2043                         /* At this point we know how many SBs we have totally
2044                          * in IGU + number of PF SBs. So we can validate that
2045                          * we'd have sufficient for VF.
2046                          */
2047                         if (vfs > p_info->usage.free_cnt +
2048                                   p_info->usage.free_cnt_iov -
2049                                   p_info->usage.cnt) {
2050                                 DP_NOTICE(p_hwfn, true,
2051                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2052                                           p_info->usage.free_cnt +
2053                                           p_info->usage.free_cnt_iov,
2054                                           p_info->usage.cnt, vfs);
2055                                 return ECORE_INVAL;
2056                         }
2057
2058                         /* Currently cap the number of VFs SBs by the
2059                          * number of VFs.
2060                          */
2061                         p_info->usage.iov_cnt = vfs;
2062                 }
2063         }
2064
2065         /* Mark all SBs as free, now in the right PF/VFs division */
2066         p_info->usage.free_cnt = p_info->usage.cnt;
2067         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2068         p_info->usage.orig = p_info->usage.cnt;
2069         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2070
2071         /* We now proceed to re-configure the IGU cam to reflect the initial
2072          * configuration. We can start with the Default SB.
2073          */
2074         pf_sbs = p_info->usage.cnt;
2075         vf_sbs = p_info->usage.iov_cnt;
2076
2077         for (igu_sb_id = p_info->igu_dsb_id;
2078              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2079              igu_sb_id++) {
2080                 p_block = &p_info->entry[igu_sb_id];
2081                 val = 0;
2082
2083                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2084                         continue;
2085
2086                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2087                         p_block->function_id = p_hwfn->rel_pf_id;
2088                         p_block->is_pf = 1;
2089                         p_block->vector_number = 0;
2090                         p_block->status = ECORE_IGU_STATUS_VALID |
2091                                           ECORE_IGU_STATUS_PF |
2092                                           ECORE_IGU_STATUS_DSB;
2093                 } else if (pf_sbs) {
2094                         pf_sbs--;
2095                         p_block->function_id = p_hwfn->rel_pf_id;
2096                         p_block->is_pf = 1;
2097                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2098                         p_block->status = ECORE_IGU_STATUS_VALID |
2099                                           ECORE_IGU_STATUS_PF |
2100                                           ECORE_IGU_STATUS_FREE;
2101                 } else if (vf_sbs) {
2102                         p_block->function_id =
2103                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2104                                 p_info->usage.iov_cnt - vf_sbs;
2105                         p_block->is_pf = 0;
2106                         p_block->vector_number = 0;
2107                         p_block->status = ECORE_IGU_STATUS_VALID |
2108                                           ECORE_IGU_STATUS_FREE;
2109                         vf_sbs--;
2110                 } else {
2111                         p_block->function_id = 0;
2112                         p_block->is_pf = 0;
2113                         p_block->vector_number = 0;
2114                 }
2115
2116                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2117                           p_block->function_id);
2118                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2119                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2120                           p_block->vector_number);
2121
2122                 /* VF entries would be enabled when VF is initializaed */
2123                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2124
2125                 rval = ecore_rd(p_hwfn, p_ptt,
2126                                 IGU_REG_MAPPING_MEMORY +
2127                                 sizeof(u32) * igu_sb_id);
2128
2129                 if (rval != val) {
2130                         ecore_wr(p_hwfn, p_ptt,
2131                                  IGU_REG_MAPPING_MEMORY +
2132                                  sizeof(u32) * igu_sb_id,
2133                                  val);
2134
2135                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2136                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2137                                    igu_sb_id, p_block->function_id,
2138                                    p_block->is_pf, p_block->vector_number,
2139                                    rval, val);
2140                 }
2141         }
2142
2143         return 0;
2144 }
2145
2146 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2147                                     struct ecore_ptt *p_ptt)
2148 {
2149         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2150
2151         /* Return all the usage indications to default prior to the reset;
2152          * The reset expects the !orig to reflect the initial status of the
2153          * SBs, and would re-calculate the originals based on those.
2154          */
2155         p_cnt->cnt = p_cnt->orig;
2156         p_cnt->free_cnt = p_cnt->orig;
2157         p_cnt->iov_cnt = p_cnt->iov_orig;
2158         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2159         p_cnt->orig = 0;
2160         p_cnt->iov_orig = 0;
2161
2162         /* TODO - we probably need to re-configure the CAU as well... */
2163         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2164 }
2165
2166 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2167                                          struct ecore_ptt *p_ptt,
2168                                          u16 igu_sb_id)
2169 {
2170         u32 val = ecore_rd(p_hwfn, p_ptt,
2171                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2172         struct ecore_igu_block *p_block;
2173
2174         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2175
2176         /* Fill the block information */
2177         p_block->function_id = GET_FIELD(val,
2178                                          IGU_MAPPING_LINE_FUNCTION_NUMBER);
2179         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2180         p_block->vector_number = GET_FIELD(val,
2181                                            IGU_MAPPING_LINE_VECTOR_NUMBER);
2182         p_block->igu_sb_id = igu_sb_id;
2183 }
2184
2185 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2186                                             struct ecore_ptt *p_ptt)
2187 {
2188         struct ecore_igu_info *p_igu_info;
2189         struct ecore_igu_block *p_block;
2190         u32 min_vf = 0, max_vf = 0;
2191         u16 igu_sb_id;
2192
2193         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2194                                                  GFP_KERNEL,
2195                                                  sizeof(*p_igu_info));
2196         if (!p_hwfn->hw_info.p_igu_info)
2197                 return ECORE_NOMEM;
2198         p_igu_info = p_hwfn->hw_info.p_igu_info;
2199
2200         /* Distinguish between existent and onn-existent default SB */
2201         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2202
2203         /* Find the range of VF ids whose SB belong to this PF */
2204         if (p_hwfn->p_dev->p_iov_info) {
2205                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2206
2207                 min_vf = p_iov->first_vf_in_pf;
2208                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2209         }
2210
2211         for (igu_sb_id = 0;
2212              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2213              igu_sb_id++) {
2214                 /* Read current entry; Notice it might not belong to this PF */
2215                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2216                 p_block = &p_igu_info->entry[igu_sb_id];
2217
2218                 if ((p_block->is_pf) &&
2219                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2220                         p_block->status = ECORE_IGU_STATUS_PF |
2221                                           ECORE_IGU_STATUS_VALID |
2222                                           ECORE_IGU_STATUS_FREE;
2223
2224                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2225                                 p_igu_info->usage.cnt++;
2226                 } else if (!(p_block->is_pf) &&
2227                            (p_block->function_id >= min_vf) &&
2228                            (p_block->function_id < max_vf)) {
2229                         /* Available for VFs of this PF */
2230                         p_block->status = ECORE_IGU_STATUS_VALID |
2231                                           ECORE_IGU_STATUS_FREE;
2232
2233                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2234                                 p_igu_info->usage.iov_cnt++;
2235                 }
2236
2237                 /* Mark the First entry belonging to the PF or its VFs
2238                  * as the default SB [we'll reset IGU prior to first usage].
2239                  */
2240                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2241                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2242                         p_igu_info->igu_dsb_id = igu_sb_id;
2243                         p_block->status |= ECORE_IGU_STATUS_DSB;
2244                 }
2245
2246                 /* While this isn't suitable for all clients, limit number
2247                  * of prints by having each PF print only its entries with the
2248                  * exception of PF0 which would print everything.
2249                  */
2250                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2251                     (p_hwfn->abs_pf_id == 0))
2252                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2253                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2254                                    igu_sb_id, p_block->function_id,
2255                                    p_block->is_pf, p_block->vector_number);
2256         }
2257
2258         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2259                 DP_NOTICE(p_hwfn, true,
2260                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2261                           p_igu_info->igu_dsb_id);
2262                 return ECORE_INVAL;
2263         }
2264
2265         /* All non default SB are considered free at this point */
2266         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2267         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2268
2269         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2270                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2271                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2272                    p_igu_info->usage.iov_cnt);
2273
2274         return ECORE_SUCCESS;
2275 }
2276
2277 enum _ecore_status_t
2278 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2279                           u16 sb_id, bool b_to_vf)
2280 {
2281         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2282         struct ecore_igu_block *p_block = OSAL_NULL;
2283         u16 igu_sb_id = 0, vf_num = 0;
2284         u32 val = 0;
2285
2286         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2287                 return ECORE_INVAL;
2288
2289         if (sb_id == ECORE_SP_SB_ID)
2290                 return ECORE_INVAL;
2291
2292         if (!p_info->b_allow_pf_vf_change) {
2293                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2294                 return ECORE_INVAL;
2295         }
2296
2297         /* If we're moving a SB from PF to VF, the client had to specify
2298          * which vector it wants to move.
2299          */
2300         if (b_to_vf) {
2301                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2302                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2303                         return ECORE_INVAL;
2304         }
2305
2306         /* If we're moving a SB from VF to PF, need to validate there isn't
2307          * already a line configured for that vector.
2308          */
2309         if (!b_to_vf) {
2310                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2311                     ECORE_SB_INVALID_IDX)
2312                         return ECORE_INVAL;
2313         }
2314
2315         /* We need to validate that the SB can actually be relocated.
2316          * This would also handle the previous case where we've explicitly
2317          * stated which IGU SB needs to move.
2318          */
2319         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2320              igu_sb_id++) {
2321                 p_block = &p_info->entry[igu_sb_id];
2322
2323                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2324                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2325                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2326                         if (b_to_vf)
2327                                 return ECORE_INVAL;
2328                         else
2329                                 continue;
2330                 }
2331
2332                 break;
2333         }
2334
2335         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2336                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2337                            "Failed to find a free SB to move\n");
2338                 return ECORE_INVAL;
2339         }
2340
2341         /* At this point, p_block points to the SB we want to relocate */
2342         if (b_to_vf) {
2343                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2344
2345                 /* It doesn't matter which VF number we choose, since we're
2346                  * going to disable the line; But let's keep it in range.
2347                  */
2348                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2349
2350                 p_block->function_id = (u8)vf_num;
2351                 p_block->is_pf = 0;
2352                 p_block->vector_number = 0;
2353
2354                 p_info->usage.cnt--;
2355                 p_info->usage.free_cnt--;
2356                 p_info->usage.iov_cnt++;
2357                 p_info->usage.free_cnt_iov++;
2358
2359                 /* TODO - if SBs aren't really the limiting factor,
2360                  * then it might not be accurate [in the since that
2361                  * we might not need decrement the feature].
2362                  */
2363                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2364                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2365         } else {
2366                 p_block->status |= ECORE_IGU_STATUS_PF;
2367                 p_block->function_id = p_hwfn->rel_pf_id;
2368                 p_block->is_pf = 1;
2369                 p_block->vector_number = sb_id + 1;
2370
2371                 p_info->usage.cnt++;
2372                 p_info->usage.free_cnt++;
2373                 p_info->usage.iov_cnt--;
2374                 p_info->usage.free_cnt_iov--;
2375
2376                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2377                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2378         }
2379
2380         /* Update the IGU and CAU with the new configuration */
2381         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2382                   p_block->function_id);
2383         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2384         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2385         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2386                   p_block->vector_number);
2387
2388         ecore_wr(p_hwfn, p_ptt,
2389                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2390                  val);
2391
2392         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2393                               igu_sb_id, vf_num,
2394                               p_block->is_pf ? 0 : 1);
2395
2396         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2397                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2398                    igu_sb_id, p_block->function_id,
2399                    p_block->is_pf, p_block->vector_number);
2400
2401         return ECORE_SUCCESS;
2402 }
2403
2404 /**
2405  * @brief Initialize igu runtime registers
2406  *
2407  * @param p_hwfn
2408  */
2409 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2410 {
2411         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2412
2413         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2414 }
2415
2416 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2417                           IGU_CMD_INT_ACK_BASE)
2418 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2419                           IGU_CMD_INT_ACK_BASE)
2420 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2421 {
2422         u32 intr_status_hi = 0, intr_status_lo = 0;
2423         u64 intr_status = 0;
2424
2425         intr_status_lo = REG_RD(p_hwfn,
2426                                 GTT_BAR0_MAP_REG_IGU_CMD +
2427                                 LSB_IGU_CMD_ADDR * 8);
2428         intr_status_hi = REG_RD(p_hwfn,
2429                                 GTT_BAR0_MAP_REG_IGU_CMD +
2430                                 MSB_IGU_CMD_ADDR * 8);
2431         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2432
2433         return intr_status;
2434 }
2435
2436 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2437 {
2438         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2439         p_hwfn->b_sp_dpc_enabled = true;
2440 }
2441
2442 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2443 {
2444         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2445         if (!p_hwfn->sp_dpc)
2446                 return ECORE_NOMEM;
2447
2448         return ECORE_SUCCESS;
2449 }
2450
2451 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2452 {
2453         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2454         p_hwfn->sp_dpc = OSAL_NULL;
2455 }
2456
2457 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2458                                      struct ecore_ptt *p_ptt)
2459 {
2460         enum _ecore_status_t rc = ECORE_SUCCESS;
2461
2462         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2463         if (rc != ECORE_SUCCESS) {
2464                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2465                 return rc;
2466         }
2467
2468         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2469         if (rc != ECORE_SUCCESS) {
2470                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2471                 return rc;
2472         }
2473
2474         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2475         if (rc != ECORE_SUCCESS)
2476                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2477
2478         return rc;
2479 }
2480
2481 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2482 {
2483         ecore_int_sp_sb_free(p_hwfn);
2484         ecore_int_sb_attn_free(p_hwfn);
2485         ecore_int_sp_dpc_free(p_hwfn);
2486 }
2487
2488 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2489 {
2490         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2491                 return;
2492
2493         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2494         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2495         ecore_int_sp_dpc_setup(p_hwfn);
2496 }
2497
2498 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2499                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2500 {
2501         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2502
2503         if (!p_igu_info || !p_sb_cnt_info)
2504                 return;
2505
2506         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2507                     sizeof(*p_sb_cnt_info));
2508 }
2509
2510 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2511 {
2512         int i;
2513
2514         for_each_hwfn(p_dev, i)
2515                 p_dev->hwfns[i].b_int_requested = false;
2516 }
2517
2518 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2519 {
2520         p_dev->attn_clr_en = clr_enable;
2521 }
2522
2523 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2524                                              struct ecore_ptt *p_ptt,
2525                                              u8 timer_res, u16 sb_id, bool tx)
2526 {
2527         struct cau_sb_entry sb_entry;
2528         enum _ecore_status_t rc;
2529
2530         if (!p_hwfn->hw_init_done) {
2531                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2532                 return ECORE_INVAL;
2533         }
2534
2535         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2536                                  sb_id * sizeof(u64),
2537                                  (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2538         if (rc != ECORE_SUCCESS) {
2539                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2540                 return rc;
2541         }
2542
2543         if (tx)
2544                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2545         else
2546                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2547
2548         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2549                                  (u64)(osal_uintptr_t)&sb_entry,
2550                                  CAU_REG_SB_VAR_MEMORY +
2551                                  sb_id * sizeof(u64), 2, 0);
2552         if (rc != ECORE_SUCCESS) {
2553                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2554                 return rc;
2555         }
2556
2557         return rc;
2558 }
2559
2560 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2561                                           struct ecore_ptt *p_ptt,
2562                                           struct ecore_sb_info *p_sb,
2563                                           struct ecore_sb_info_dbg *p_info)
2564 {
2565         u16 sbid = p_sb->igu_sb_id;
2566         int i;
2567
2568         if (IS_VF(p_hwfn->p_dev))
2569                 return ECORE_INVAL;
2570
2571         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2572                 return ECORE_INVAL;
2573
2574         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2575                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2576         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2577                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2578
2579         for (i = 0; i < PIS_PER_SB; i++)
2580                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2581                                               CAU_REG_PI_MEMORY +
2582                                               sbid * 4 * PIS_PER_SB +  i * 4);
2583
2584         return ECORE_SUCCESS;
2585 }