]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/kern/kern_ffclock.c
Copy head (r256279) to stable/10 as part of the 10.0-RELEASE cycle.
[FreeBSD/stable/10.git] / sys / kern / kern_ffclock.c
1 /*-
2  * Copyright (c) 2011 The University of Melbourne
3  * All rights reserved.
4  *
5  * This software was developed by Julien Ridoux at the University of Melbourne
6  * under sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_ffclock.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/priv.h>
42 #include <sys/proc.h>
43 #include <sys/sbuf.h>
44 #include <sys/sysent.h>
45 #include <sys/sysproto.h>
46 #include <sys/sysctl.h>
47 #include <sys/systm.h>
48 #include <sys/timeffc.h>
49
50 #ifdef FFCLOCK
51
52 FEATURE(ffclock, "Feed-forward clock support");
53
54 extern struct ffclock_estimate ffclock_estimate;
55 extern struct bintime ffclock_boottime;
56 extern int8_t ffclock_updated;
57 extern struct mtx ffclock_mtx;
58
59 /*
60  * Feed-forward clock absolute time. This should be the preferred way to read
61  * the feed-forward clock for "wall-clock" type time. The flags allow to compose
62  * various flavours of absolute time (e.g. with or without leap seconds taken
63  * into account). If valid pointers are provided, the ffcounter value and an
64  * upper bound on clock error associated with the bintime are provided.
65  * NOTE: use ffclock_convert_abs() to differ the conversion of a ffcounter value
66  * read earlier.
67  */
68 void
69 ffclock_abstime(ffcounter *ffcount, struct bintime *bt,
70     struct bintime *error_bound, uint32_t flags)
71 {
72         struct ffclock_estimate cest;
73         ffcounter ffc;
74         ffcounter update_ffcount;
75         ffcounter ffdelta_error;
76
77         /* Get counter and corresponding time. */
78         if ((flags & FFCLOCK_FAST) == FFCLOCK_FAST)
79                 ffclock_last_tick(&ffc, bt, flags);
80         else {
81                 ffclock_read_counter(&ffc);
82                 ffclock_convert_abs(ffc, bt, flags);
83         }
84
85         /* Current ffclock estimate, use update_ffcount as generation number. */
86         do {
87                 update_ffcount = ffclock_estimate.update_ffcount;
88                 bcopy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
89         } while (update_ffcount != ffclock_estimate.update_ffcount);
90
91         /*
92          * Leap second adjustment. Total as seen by synchronisation algorithm
93          * since it started. cest.leapsec_next is the ffcounter prediction of
94          * when the next leapsecond occurs.
95          */
96         if ((flags & FFCLOCK_LEAPSEC) == FFCLOCK_LEAPSEC) {
97                 bt->sec -= cest.leapsec_total;
98                 if (ffc > cest.leapsec_next)
99                         bt->sec -= cest.leapsec;
100         }
101
102         /* Boot time adjustment, for uptime/monotonic clocks. */
103         if ((flags & FFCLOCK_UPTIME) == FFCLOCK_UPTIME) {
104                 bintime_sub(bt, &ffclock_boottime);
105         }
106
107         /* Compute error bound if a valid pointer has been passed. */
108         if (error_bound) {
109                 ffdelta_error = ffc - cest.update_ffcount;
110                 ffclock_convert_diff(ffdelta_error, error_bound);
111                 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
112                 bintime_mul(error_bound, cest.errb_rate *
113                     (uint64_t)18446744073709LL);
114                 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns] */
115                 bintime_addx(error_bound, cest.errb_abs *
116                     (uint64_t)18446744073LL);
117         }
118
119         if (ffcount)
120                 *ffcount = ffc;
121 }
122
123 /*
124  * Feed-forward difference clock. This should be the preferred way to convert a
125  * time interval in ffcounter values into a time interval in seconds. If a valid
126  * pointer is passed, an upper bound on the error in computing the time interval
127  * in seconds is provided.
128  */
129 void
130 ffclock_difftime(ffcounter ffdelta, struct bintime *bt,
131     struct bintime *error_bound)
132 {
133         ffcounter update_ffcount;
134         uint32_t err_rate;
135
136         ffclock_convert_diff(ffdelta, bt);
137
138         if (error_bound) {
139                 do {
140                         update_ffcount = ffclock_estimate.update_ffcount;
141                         err_rate = ffclock_estimate.errb_rate;
142                 } while (update_ffcount != ffclock_estimate.update_ffcount);
143
144                 ffclock_convert_diff(ffdelta, error_bound);
145                 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
146                 bintime_mul(error_bound, err_rate * (uint64_t)18446744073709LL);
147         }
148 }
149
150 /*
151  * Create a new kern.sysclock sysctl node, which will be home to some generic
152  * sysclock configuration variables. Feed-forward clock specific variables will
153  * live under the ffclock subnode.
154  */
155
156 SYSCTL_NODE(_kern, OID_AUTO, sysclock, CTLFLAG_RW, 0,
157     "System clock related configuration");
158 SYSCTL_NODE(_kern_sysclock, OID_AUTO, ffclock, CTLFLAG_RW, 0,
159     "Feed-forward clock configuration");
160
161 static char *sysclocks[] = {"feedback", "feed-forward"};
162 #define MAX_SYSCLOCK_NAME_LEN 16
163 #define NUM_SYSCLOCKS (sizeof(sysclocks) / sizeof(*sysclocks))
164
165 static int ffclock_version = 2;
166 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, version, CTLFLAG_RD,
167     &ffclock_version, 0, "Feed-forward clock kernel version");
168
169 /* List available sysclocks. */
170 static int
171 sysctl_kern_sysclock_available(SYSCTL_HANDLER_ARGS)
172 {
173         struct sbuf *s;
174         int clk, error;
175
176         s = sbuf_new_for_sysctl(NULL, NULL,
177             MAX_SYSCLOCK_NAME_LEN * NUM_SYSCLOCKS, req);
178         if (s == NULL)
179                 return (ENOMEM);
180
181         for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
182                 sbuf_cat(s, sysclocks[clk]);
183                 if (clk + 1 < NUM_SYSCLOCKS)
184                         sbuf_cat(s, " ");
185         }
186         error = sbuf_finish(s);
187         sbuf_delete(s);
188
189         return (error);
190 }
191
192 SYSCTL_PROC(_kern_sysclock, OID_AUTO, available, CTLTYPE_STRING | CTLFLAG_RD,
193     0, 0, sysctl_kern_sysclock_available, "A",
194     "List of available system clocks");
195
196 /*
197  * Return the name of the active system clock if read, or attempt to change
198  * the active system clock to the user specified one if written to. The active
199  * system clock is read when calling any of the [get]{bin,nano,micro}[up]time()
200  * functions.
201  */
202 static int
203 sysctl_kern_sysclock_active(SYSCTL_HANDLER_ARGS)
204 {
205         char newclock[MAX_SYSCLOCK_NAME_LEN];
206         int clk, error;
207
208         if (req->newptr == NULL) {
209                 /* Return the name of the current active sysclock. */
210                 strlcpy(newclock, sysclocks[sysclock_active], sizeof(newclock));
211                 error = sysctl_handle_string(oidp, newclock,
212                     sizeof(newclock), req);
213         } else {
214                 /* Change the active sysclock to the user specified one. */
215                 error = EINVAL;
216                 for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
217                         if (strncmp((char *)req->newptr, sysclocks[clk],
218                             strlen(sysclocks[clk])) == 0) {
219                                 sysclock_active = clk;
220                                 error = 0;
221                                 break;
222                         }
223                 }
224         }
225
226         return (error);
227 }
228
229 SYSCTL_PROC(_kern_sysclock, OID_AUTO, active, CTLTYPE_STRING | CTLFLAG_RW,
230     0, 0, sysctl_kern_sysclock_active, "A",
231     "Name of the active system clock which is currently serving time");
232
233 static int sysctl_kern_ffclock_ffcounter_bypass = 0;
234 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, ffcounter_bypass, CTLFLAG_RW,
235     &sysctl_kern_ffclock_ffcounter_bypass, 0,
236     "Use reliable hardware timecounter as the feed-forward counter");
237
238 /*
239  * High level functions to access the Feed-Forward Clock.
240  */
241 void
242 ffclock_bintime(struct bintime *bt)
243 {
244
245         ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
246 }
247
248 void
249 ffclock_nanotime(struct timespec *tsp)
250 {
251         struct bintime bt;
252
253         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
254         bintime2timespec(&bt, tsp);
255 }
256
257 void
258 ffclock_microtime(struct timeval *tvp)
259 {
260         struct bintime bt;
261
262         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
263         bintime2timeval(&bt, tvp);
264 }
265
266 void
267 ffclock_getbintime(struct bintime *bt)
268 {
269
270         ffclock_abstime(NULL, bt, NULL,
271             FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
272 }
273
274 void
275 ffclock_getnanotime(struct timespec *tsp)
276 {
277         struct bintime bt;
278
279         ffclock_abstime(NULL, &bt, NULL,
280             FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
281         bintime2timespec(&bt, tsp);
282 }
283
284 void
285 ffclock_getmicrotime(struct timeval *tvp)
286 {
287         struct bintime bt;
288
289         ffclock_abstime(NULL, &bt, NULL,
290             FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
291         bintime2timeval(&bt, tvp);
292 }
293
294 void
295 ffclock_binuptime(struct bintime *bt)
296 {
297
298         ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
299 }
300
301 void
302 ffclock_nanouptime(struct timespec *tsp)
303 {
304         struct bintime bt;
305
306         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
307         bintime2timespec(&bt, tsp);
308 }
309
310 void
311 ffclock_microuptime(struct timeval *tvp)
312 {
313         struct bintime bt;
314
315         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
316         bintime2timeval(&bt, tvp);
317 }
318
319 void
320 ffclock_getbinuptime(struct bintime *bt)
321 {
322
323         ffclock_abstime(NULL, bt, NULL,
324             FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
325 }
326
327 void
328 ffclock_getnanouptime(struct timespec *tsp)
329 {
330         struct bintime bt;
331
332         ffclock_abstime(NULL, &bt, NULL,
333             FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
334         bintime2timespec(&bt, tsp);
335 }
336
337 void
338 ffclock_getmicrouptime(struct timeval *tvp)
339 {
340         struct bintime bt;
341
342         ffclock_abstime(NULL, &bt, NULL,
343             FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
344         bintime2timeval(&bt, tvp);
345 }
346
347 void
348 ffclock_bindifftime(ffcounter ffdelta, struct bintime *bt)
349 {
350
351         ffclock_difftime(ffdelta, bt, NULL);
352 }
353
354 void
355 ffclock_nanodifftime(ffcounter ffdelta, struct timespec *tsp)
356 {
357         struct bintime bt;
358
359         ffclock_difftime(ffdelta, &bt, NULL);
360         bintime2timespec(&bt, tsp);
361 }
362
363 void
364 ffclock_microdifftime(ffcounter ffdelta, struct timeval *tvp)
365 {
366         struct bintime bt;
367
368         ffclock_difftime(ffdelta, &bt, NULL);
369         bintime2timeval(&bt, tvp);
370 }
371
372 /*
373  * System call allowing userland applications to retrieve the current value of
374  * the Feed-Forward Clock counter.
375  */
376 #ifndef _SYS_SYSPROTO_H_
377 struct ffclock_getcounter_args {
378         ffcounter *ffcount;
379 };
380 #endif
381 /* ARGSUSED */
382 int
383 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
384 {
385         ffcounter ffcount;
386         int error;
387
388         ffcount = 0;
389         ffclock_read_counter(&ffcount);
390         if (ffcount == 0)
391                 return (EAGAIN);
392         error = copyout(&ffcount, uap->ffcount, sizeof(ffcounter));
393
394         return (error);
395 }
396
397 /*
398  * System call allowing the synchronisation daemon to push new feed-foward clock
399  * estimates to the kernel. Acquire ffclock_mtx to prevent concurrent updates
400  * and ensure data consistency.
401  * NOTE: ffclock_updated signals the fftimehands that new estimates are
402  * available. The updated estimates are picked up by the fftimehands on next
403  * tick, which could take as long as 1/hz seconds (if ticks are not missed).
404  */
405 #ifndef _SYS_SYSPROTO_H_
406 struct ffclock_setestimate_args {
407         struct ffclock_estimate *cest;
408 };
409 #endif
410 /* ARGSUSED */
411 int
412 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
413 {
414         struct ffclock_estimate cest;
415         int error;
416
417         /* Reuse of PRIV_CLOCK_SETTIME. */
418         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
419                 return (error);
420
421         if ((error = copyin(uap->cest, &cest, sizeof(struct ffclock_estimate)))
422             != 0)
423                 return (error);
424
425         mtx_lock(&ffclock_mtx);
426         memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
427         ffclock_updated++;
428         mtx_unlock(&ffclock_mtx);
429         return (error);
430 }
431
432 /*
433  * System call allowing userland applications to retrieve the clock estimates
434  * stored within the kernel. It is useful to kickstart the synchronisation
435  * daemon with the kernel's knowledge of hardware timecounter.
436  */
437 #ifndef _SYS_SYSPROTO_H_
438 struct ffclock_getestimate_args {
439         struct ffclock_estimate *cest;
440 };
441 #endif
442 /* ARGSUSED */
443 int
444 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
445 {
446         struct ffclock_estimate cest;
447         int error;
448
449         mtx_lock(&ffclock_mtx);
450         memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
451         mtx_unlock(&ffclock_mtx);
452         error = copyout(&cest, uap->cest, sizeof(struct ffclock_estimate));
453         return (error);
454 }
455
456 #else /* !FFCLOCK */
457
458 int
459 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
460 {
461
462         return (ENOSYS);
463 }
464
465 int
466 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
467 {
468
469         return (ENOSYS);
470 }
471
472 int
473 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
474 {
475
476         return (ENOSYS);
477 }
478
479 #endif /* FFCLOCK */