]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/kern/subr_taskqueue.c
Copy head (r256279) to stable/10 as part of the 10.0-RELEASE cycle.
[FreeBSD/stable/10.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45
46 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
47 static void     *taskqueue_giant_ih;
48 static void     *taskqueue_ih;
49
50 struct taskqueue_busy {
51         struct task     *tb_running;
52         TAILQ_ENTRY(taskqueue_busy) tb_link;
53 };
54
55 struct taskqueue {
56         STAILQ_HEAD(, task)     tq_queue;
57         taskqueue_enqueue_fn    tq_enqueue;
58         void                    *tq_context;
59         TAILQ_HEAD(, taskqueue_busy) tq_active;
60         struct mtx              tq_mutex;
61         struct thread           **tq_threads;
62         int                     tq_tcount;
63         int                     tq_spin;
64         int                     tq_flags;
65         int                     tq_callouts;
66         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
67         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
68 };
69
70 #define TQ_FLAGS_ACTIVE         (1 << 0)
71 #define TQ_FLAGS_BLOCKED        (1 << 1)
72 #define TQ_FLAGS_PENDING        (1 << 2)
73
74 #define DT_CALLOUT_ARMED        (1 << 0)
75
76 #define TQ_LOCK(tq)                                                     \
77         do {                                                            \
78                 if ((tq)->tq_spin)                                      \
79                         mtx_lock_spin(&(tq)->tq_mutex);                 \
80                 else                                                    \
81                         mtx_lock(&(tq)->tq_mutex);                      \
82         } while (0)
83 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
84
85 #define TQ_UNLOCK(tq)                                                   \
86         do {                                                            \
87                 if ((tq)->tq_spin)                                      \
88                         mtx_unlock_spin(&(tq)->tq_mutex);               \
89                 else                                                    \
90                         mtx_unlock(&(tq)->tq_mutex);                    \
91         } while (0)
92 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
93
94 void
95 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
96     int priority, task_fn_t func, void *context)
97 {
98
99         TASK_INIT(&timeout_task->t, priority, func, context);
100         callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 0);
101         timeout_task->q = queue;
102         timeout_task->f = 0;
103 }
104
105 static __inline int
106 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
107     int t)
108 {
109         if (tq->tq_spin)
110                 return (msleep_spin(p, m, wm, t));
111         return (msleep(p, m, pri, wm, t));
112 }
113
114 static struct taskqueue *
115 _taskqueue_create(const char *name __unused, int mflags,
116                  taskqueue_enqueue_fn enqueue, void *context,
117                  int mtxflags, const char *mtxname)
118 {
119         struct taskqueue *queue;
120
121         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
122         if (!queue)
123                 return NULL;
124
125         STAILQ_INIT(&queue->tq_queue);
126         TAILQ_INIT(&queue->tq_active);
127         queue->tq_enqueue = enqueue;
128         queue->tq_context = context;
129         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
130         queue->tq_flags |= TQ_FLAGS_ACTIVE;
131         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
132
133         return queue;
134 }
135
136 struct taskqueue *
137 taskqueue_create(const char *name, int mflags,
138                  taskqueue_enqueue_fn enqueue, void *context)
139 {
140         return _taskqueue_create(name, mflags, enqueue, context,
141                         MTX_DEF, "taskqueue");
142 }
143
144 void
145 taskqueue_set_callback(struct taskqueue *queue,
146     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
147     void *context)
148 {
149
150         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
151             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
152             ("Callback type %d not valid, must be %d-%d", cb_type,
153             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
154         KASSERT((queue->tq_callbacks[cb_type] == NULL),
155             ("Re-initialization of taskqueue callback?"));
156
157         queue->tq_callbacks[cb_type] = callback;
158         queue->tq_cb_contexts[cb_type] = context;
159 }
160
161 /*
162  * Signal a taskqueue thread to terminate.
163  */
164 static void
165 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
166 {
167
168         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
169                 wakeup(tq);
170                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
171         }
172 }
173
174 void
175 taskqueue_free(struct taskqueue *queue)
176 {
177
178         TQ_LOCK(queue);
179         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
180         taskqueue_terminate(queue->tq_threads, queue);
181         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
182         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
183         mtx_destroy(&queue->tq_mutex);
184         free(queue->tq_threads, M_TASKQUEUE);
185         free(queue, M_TASKQUEUE);
186 }
187
188 static int
189 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
190 {
191         struct task *ins;
192         struct task *prev;
193
194         /*
195          * Count multiple enqueues.
196          */
197         if (task->ta_pending) {
198                 if (task->ta_pending < USHRT_MAX)
199                         task->ta_pending++;
200                 return (0);
201         }
202
203         /*
204          * Optimise the case when all tasks have the same priority.
205          */
206         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
207         if (!prev || prev->ta_priority >= task->ta_priority) {
208                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
209         } else {
210                 prev = NULL;
211                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
212                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
213                         if (ins->ta_priority < task->ta_priority)
214                                 break;
215
216                 if (prev)
217                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
218                 else
219                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
220         }
221
222         task->ta_pending = 1;
223         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
224                 queue->tq_enqueue(queue->tq_context);
225         else
226                 queue->tq_flags |= TQ_FLAGS_PENDING;
227
228         return (0);
229 }
230 int
231 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
232 {
233         int res;
234
235         TQ_LOCK(queue);
236         res = taskqueue_enqueue_locked(queue, task);
237         TQ_UNLOCK(queue);
238
239         return (res);
240 }
241
242 static void
243 taskqueue_timeout_func(void *arg)
244 {
245         struct taskqueue *queue;
246         struct timeout_task *timeout_task;
247
248         timeout_task = arg;
249         queue = timeout_task->q;
250         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
251         timeout_task->f &= ~DT_CALLOUT_ARMED;
252         queue->tq_callouts--;
253         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
254 }
255
256 int
257 taskqueue_enqueue_timeout(struct taskqueue *queue,
258     struct timeout_task *timeout_task, int ticks)
259 {
260         int res;
261
262         TQ_LOCK(queue);
263         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
264             ("Migrated queue"));
265         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
266         timeout_task->q = queue;
267         res = timeout_task->t.ta_pending;
268         if (ticks == 0) {
269                 taskqueue_enqueue_locked(queue, &timeout_task->t);
270         } else {
271                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
272                         res++;
273                 } else {
274                         queue->tq_callouts++;
275                         timeout_task->f |= DT_CALLOUT_ARMED;
276                         if (ticks < 0)
277                                 ticks = -ticks; /* Ignore overflow. */
278                 }
279                 if (ticks > 0) {
280                         callout_reset(&timeout_task->c, ticks,
281                             taskqueue_timeout_func, timeout_task);
282                 }
283         }
284         TQ_UNLOCK(queue);
285         return (res);
286 }
287
288 void
289 taskqueue_block(struct taskqueue *queue)
290 {
291
292         TQ_LOCK(queue);
293         queue->tq_flags |= TQ_FLAGS_BLOCKED;
294         TQ_UNLOCK(queue);
295 }
296
297 void
298 taskqueue_unblock(struct taskqueue *queue)
299 {
300
301         TQ_LOCK(queue);
302         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
303         if (queue->tq_flags & TQ_FLAGS_PENDING) {
304                 queue->tq_flags &= ~TQ_FLAGS_PENDING;
305                 queue->tq_enqueue(queue->tq_context);
306         }
307         TQ_UNLOCK(queue);
308 }
309
310 static void
311 taskqueue_run_locked(struct taskqueue *queue)
312 {
313         struct taskqueue_busy tb;
314         struct task *task;
315         int pending;
316
317         TQ_ASSERT_LOCKED(queue);
318         tb.tb_running = NULL;
319         TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
320
321         while (STAILQ_FIRST(&queue->tq_queue)) {
322                 /*
323                  * Carefully remove the first task from the queue and
324                  * zero its pending count.
325                  */
326                 task = STAILQ_FIRST(&queue->tq_queue);
327                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
328                 pending = task->ta_pending;
329                 task->ta_pending = 0;
330                 tb.tb_running = task;
331                 TQ_UNLOCK(queue);
332
333                 task->ta_func(task->ta_context, pending);
334
335                 TQ_LOCK(queue);
336                 tb.tb_running = NULL;
337                 wakeup(task);
338         }
339         TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
340 }
341
342 void
343 taskqueue_run(struct taskqueue *queue)
344 {
345
346         TQ_LOCK(queue);
347         taskqueue_run_locked(queue);
348         TQ_UNLOCK(queue);
349 }
350
351 static int
352 task_is_running(struct taskqueue *queue, struct task *task)
353 {
354         struct taskqueue_busy *tb;
355
356         TQ_ASSERT_LOCKED(queue);
357         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
358                 if (tb->tb_running == task)
359                         return (1);
360         }
361         return (0);
362 }
363
364 static int
365 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
366     u_int *pendp)
367 {
368
369         if (task->ta_pending > 0)
370                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
371         if (pendp != NULL)
372                 *pendp = task->ta_pending;
373         task->ta_pending = 0;
374         return (task_is_running(queue, task) ? EBUSY : 0);
375 }
376
377 int
378 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
379 {
380         u_int pending;
381         int error;
382
383         TQ_LOCK(queue);
384         pending = task->ta_pending;
385         error = taskqueue_cancel_locked(queue, task, pendp);
386         TQ_UNLOCK(queue);
387
388         return (error);
389 }
390
391 int
392 taskqueue_cancel_timeout(struct taskqueue *queue,
393     struct timeout_task *timeout_task, u_int *pendp)
394 {
395         u_int pending, pending1;
396         int error;
397
398         TQ_LOCK(queue);
399         pending = !!callout_stop(&timeout_task->c);
400         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
401         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
402                 timeout_task->f &= ~DT_CALLOUT_ARMED;
403                 queue->tq_callouts--;
404         }
405         TQ_UNLOCK(queue);
406
407         if (pendp != NULL)
408                 *pendp = pending + pending1;
409         return (error);
410 }
411
412 void
413 taskqueue_drain(struct taskqueue *queue, struct task *task)
414 {
415
416         if (!queue->tq_spin)
417                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
418
419         TQ_LOCK(queue);
420         while (task->ta_pending != 0 || task_is_running(queue, task))
421                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
422         TQ_UNLOCK(queue);
423 }
424
425 void
426 taskqueue_drain_timeout(struct taskqueue *queue,
427     struct timeout_task *timeout_task)
428 {
429
430         callout_drain(&timeout_task->c);
431         taskqueue_drain(queue, &timeout_task->t);
432 }
433
434 static void
435 taskqueue_swi_enqueue(void *context)
436 {
437         swi_sched(taskqueue_ih, 0);
438 }
439
440 static void
441 taskqueue_swi_run(void *dummy)
442 {
443         taskqueue_run(taskqueue_swi);
444 }
445
446 static void
447 taskqueue_swi_giant_enqueue(void *context)
448 {
449         swi_sched(taskqueue_giant_ih, 0);
450 }
451
452 static void
453 taskqueue_swi_giant_run(void *dummy)
454 {
455         taskqueue_run(taskqueue_swi_giant);
456 }
457
458 int
459 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
460                         const char *name, ...)
461 {
462         va_list ap;
463         struct thread *td;
464         struct taskqueue *tq;
465         int i, error;
466         char ktname[MAXCOMLEN + 1];
467
468         if (count <= 0)
469                 return (EINVAL);
470
471         tq = *tqp;
472
473         va_start(ap, name);
474         vsnprintf(ktname, sizeof(ktname), name, ap);
475         va_end(ap);
476
477         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
478             M_NOWAIT | M_ZERO);
479         if (tq->tq_threads == NULL) {
480                 printf("%s: no memory for %s threads\n", __func__, ktname);
481                 return (ENOMEM);
482         }
483
484         for (i = 0; i < count; i++) {
485                 if (count == 1)
486                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
487                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
488                 else
489                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
490                             &tq->tq_threads[i], RFSTOPPED, 0,
491                             "%s_%d", ktname, i);
492                 if (error) {
493                         /* should be ok to continue, taskqueue_free will dtrt */
494                         printf("%s: kthread_add(%s): error %d", __func__,
495                             ktname, error);
496                         tq->tq_threads[i] = NULL;               /* paranoid */
497                 } else
498                         tq->tq_tcount++;
499         }
500         for (i = 0; i < count; i++) {
501                 if (tq->tq_threads[i] == NULL)
502                         continue;
503                 td = tq->tq_threads[i];
504                 thread_lock(td);
505                 sched_prio(td, pri);
506                 sched_add(td, SRQ_BORING);
507                 thread_unlock(td);
508         }
509
510         return (0);
511 }
512
513 static inline void
514 taskqueue_run_callback(struct taskqueue *tq,
515     enum taskqueue_callback_type cb_type)
516 {
517         taskqueue_callback_fn tq_callback;
518
519         TQ_ASSERT_UNLOCKED(tq);
520         tq_callback = tq->tq_callbacks[cb_type];
521         if (tq_callback != NULL)
522                 tq_callback(tq->tq_cb_contexts[cb_type]);
523 }
524
525 void
526 taskqueue_thread_loop(void *arg)
527 {
528         struct taskqueue **tqp, *tq;
529
530         tqp = arg;
531         tq = *tqp;
532         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
533         TQ_LOCK(tq);
534         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
535                 taskqueue_run_locked(tq);
536                 /*
537                  * Because taskqueue_run() can drop tq_mutex, we need to
538                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
539                  * meantime, which means we missed a wakeup.
540                  */
541                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
542                         break;
543                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
544         }
545         taskqueue_run_locked(tq);
546
547         /*
548          * This thread is on its way out, so just drop the lock temporarily
549          * in order to call the shutdown callback.  This allows the callback
550          * to look at the taskqueue, even just before it dies.
551          */
552         TQ_UNLOCK(tq);
553         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
554         TQ_LOCK(tq);
555
556         /* rendezvous with thread that asked us to terminate */
557         tq->tq_tcount--;
558         wakeup_one(tq->tq_threads);
559         TQ_UNLOCK(tq);
560         kthread_exit();
561 }
562
563 void
564 taskqueue_thread_enqueue(void *context)
565 {
566         struct taskqueue **tqp, *tq;
567
568         tqp = context;
569         tq = *tqp;
570
571         TQ_ASSERT_LOCKED(tq);
572         wakeup_one(tq);
573 }
574
575 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
576                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
577                      INTR_MPSAFE, &taskqueue_ih)); 
578
579 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
580                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
581                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 
582
583 TASKQUEUE_DEFINE_THREAD(thread);
584
585 struct taskqueue *
586 taskqueue_create_fast(const char *name, int mflags,
587                  taskqueue_enqueue_fn enqueue, void *context)
588 {
589         return _taskqueue_create(name, mflags, enqueue, context,
590                         MTX_SPIN, "fast_taskqueue");
591 }
592
593 /* NB: for backwards compatibility */
594 int
595 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
596 {
597         return taskqueue_enqueue(queue, task);
598 }
599
600 static void     *taskqueue_fast_ih;
601
602 static void
603 taskqueue_fast_enqueue(void *context)
604 {
605         swi_sched(taskqueue_fast_ih, 0);
606 }
607
608 static void
609 taskqueue_fast_run(void *dummy)
610 {
611         taskqueue_run(taskqueue_fast);
612 }
613
614 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
615         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
616         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
617
618 int
619 taskqueue_member(struct taskqueue *queue, struct thread *td)
620 {
621         int i, j, ret = 0;
622
623         for (i = 0, j = 0; ; i++) {
624                 if (queue->tq_threads[i] == NULL)
625                         continue;
626                 if (queue->tq_threads[i] == td) {
627                         ret = 1;
628                         break;
629                 }
630                 if (++j >= queue->tq_tcount)
631                         break;
632         }
633         return (ret);
634 }