]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/kern/sys_process.c
MFC 292894,292896: Add ptrace(2) reporting for LWP events.
[FreeBSD/stable/10.git] / sys / kern / sys_process.c
1 /*-
2  * Copyright (c) 1994, Sean Eric Fagan
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Sean Eric Fagan.
16  * 4. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_compat.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/syscallsubr.h>
42 #include <sys/sysent.h>
43 #include <sys/sysproto.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/ptrace.h>
48 #include <sys/rwlock.h>
49 #include <sys/sx.h>
50 #include <sys/malloc.h>
51 #include <sys/signalvar.h>
52
53 #include <machine/reg.h>
54
55 #include <security/audit/audit.h>
56
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_extern.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_param.h>
65
66 #ifdef COMPAT_FREEBSD32
67 #include <sys/procfs.h>
68 #include <compat/freebsd32/freebsd32_signal.h>
69
70 struct ptrace_io_desc32 {
71         int             piod_op;
72         uint32_t        piod_offs;
73         uint32_t        piod_addr;
74         uint32_t        piod_len;
75 };
76
77 struct ptrace_vm_entry32 {
78         int             pve_entry;
79         int             pve_timestamp;
80         uint32_t        pve_start;
81         uint32_t        pve_end;
82         uint32_t        pve_offset;
83         u_int           pve_prot;
84         u_int           pve_pathlen;
85         int32_t         pve_fileid;
86         u_int           pve_fsid;
87         uint32_t        pve_path;
88 };
89
90 struct ptrace_lwpinfo32 {
91         lwpid_t pl_lwpid;       /* LWP described. */
92         int     pl_event;       /* Event that stopped the LWP. */
93         int     pl_flags;       /* LWP flags. */
94         sigset_t        pl_sigmask;     /* LWP signal mask */
95         sigset_t        pl_siglist;     /* LWP pending signal */
96         struct siginfo32 pl_siginfo;    /* siginfo for signal */
97         char    pl_tdname[MAXCOMLEN + 1];       /* LWP name. */
98         pid_t   pl_child_pid;           /* New child pid */
99         u_int           pl_syscall_code;
100         u_int           pl_syscall_narg;
101 };
102
103 #endif
104
105 /*
106  * Functions implemented using PROC_ACTION():
107  *
108  * proc_read_regs(proc, regs)
109  *      Get the current user-visible register set from the process
110  *      and copy it into the regs structure (<machine/reg.h>).
111  *      The process is stopped at the time read_regs is called.
112  *
113  * proc_write_regs(proc, regs)
114  *      Update the current register set from the passed in regs
115  *      structure.  Take care to avoid clobbering special CPU
116  *      registers or privileged bits in the PSL.
117  *      Depending on the architecture this may have fix-up work to do,
118  *      especially if the IAR or PCW are modified.
119  *      The process is stopped at the time write_regs is called.
120  *
121  * proc_read_fpregs, proc_write_fpregs
122  *      deal with the floating point register set, otherwise as above.
123  *
124  * proc_read_dbregs, proc_write_dbregs
125  *      deal with the processor debug register set, otherwise as above.
126  *
127  * proc_sstep(proc)
128  *      Arrange for the process to trap after executing a single instruction.
129  */
130
131 #define PROC_ACTION(action) do {                                        \
132         int error;                                                      \
133                                                                         \
134         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);                        \
135         if ((td->td_proc->p_flag & P_INMEM) == 0)                       \
136                 error = EIO;                                            \
137         else                                                            \
138                 error = (action);                                       \
139         return (error);                                                 \
140 } while(0)
141
142 int
143 proc_read_regs(struct thread *td, struct reg *regs)
144 {
145
146         PROC_ACTION(fill_regs(td, regs));
147 }
148
149 int
150 proc_write_regs(struct thread *td, struct reg *regs)
151 {
152
153         PROC_ACTION(set_regs(td, regs));
154 }
155
156 int
157 proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
158 {
159
160         PROC_ACTION(fill_dbregs(td, dbregs));
161 }
162
163 int
164 proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
165 {
166
167         PROC_ACTION(set_dbregs(td, dbregs));
168 }
169
170 /*
171  * Ptrace doesn't support fpregs at all, and there are no security holes
172  * or translations for fpregs, so we can just copy them.
173  */
174 int
175 proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
176 {
177
178         PROC_ACTION(fill_fpregs(td, fpregs));
179 }
180
181 int
182 proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
183 {
184
185         PROC_ACTION(set_fpregs(td, fpregs));
186 }
187
188 #ifdef COMPAT_FREEBSD32
189 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */
190 int
191 proc_read_regs32(struct thread *td, struct reg32 *regs32)
192 {
193
194         PROC_ACTION(fill_regs32(td, regs32));
195 }
196
197 int
198 proc_write_regs32(struct thread *td, struct reg32 *regs32)
199 {
200
201         PROC_ACTION(set_regs32(td, regs32));
202 }
203
204 int
205 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
206 {
207
208         PROC_ACTION(fill_dbregs32(td, dbregs32));
209 }
210
211 int
212 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
213 {
214
215         PROC_ACTION(set_dbregs32(td, dbregs32));
216 }
217
218 int
219 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
220 {
221
222         PROC_ACTION(fill_fpregs32(td, fpregs32));
223 }
224
225 int
226 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
227 {
228
229         PROC_ACTION(set_fpregs32(td, fpregs32));
230 }
231 #endif
232
233 int
234 proc_sstep(struct thread *td)
235 {
236
237         PROC_ACTION(ptrace_single_step(td));
238 }
239
240 int
241 proc_rwmem(struct proc *p, struct uio *uio)
242 {
243         vm_map_t map;
244         vm_offset_t pageno;             /* page number */
245         vm_prot_t reqprot;
246         int error, fault_flags, page_offset, writing;
247
248         /*
249          * Assert that someone has locked this vmspace.  (Should be
250          * curthread but we can't assert that.)  This keeps the process
251          * from exiting out from under us until this operation completes.
252          */
253         KASSERT(p->p_lock >= 1, ("%s: process %p (pid %d) not held", __func__,
254             p, p->p_pid));
255
256         /*
257          * The map we want...
258          */
259         map = &p->p_vmspace->vm_map;
260
261         /*
262          * If we are writing, then we request vm_fault() to create a private
263          * copy of each page.  Since these copies will not be writeable by the
264          * process, we must explicity request that they be dirtied.
265          */
266         writing = uio->uio_rw == UIO_WRITE;
267         reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ;
268         fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL;
269
270         /*
271          * Only map in one page at a time.  We don't have to, but it
272          * makes things easier.  This way is trivial - right?
273          */
274         do {
275                 vm_offset_t uva;
276                 u_int len;
277                 vm_page_t m;
278
279                 uva = (vm_offset_t)uio->uio_offset;
280
281                 /*
282                  * Get the page number of this segment.
283                  */
284                 pageno = trunc_page(uva);
285                 page_offset = uva - pageno;
286
287                 /*
288                  * How many bytes to copy
289                  */
290                 len = min(PAGE_SIZE - page_offset, uio->uio_resid);
291
292                 /*
293                  * Fault and hold the page on behalf of the process.
294                  */
295                 error = vm_fault_hold(map, pageno, reqprot, fault_flags, &m);
296                 if (error != KERN_SUCCESS) {
297                         if (error == KERN_RESOURCE_SHORTAGE)
298                                 error = ENOMEM;
299                         else
300                                 error = EFAULT;
301                         break;
302                 }
303
304                 /*
305                  * Now do the i/o move.
306                  */
307                 error = uiomove_fromphys(&m, page_offset, len, uio);
308
309                 /* Make the I-cache coherent for breakpoints. */
310                 if (writing && error == 0) {
311                         vm_map_lock_read(map);
312                         if (vm_map_check_protection(map, pageno, pageno +
313                             PAGE_SIZE, VM_PROT_EXECUTE))
314                                 vm_sync_icache(map, uva, len);
315                         vm_map_unlock_read(map);
316                 }
317
318                 /*
319                  * Release the page.
320                  */
321                 vm_page_lock(m);
322                 vm_page_unhold(m);
323                 vm_page_unlock(m);
324
325         } while (error == 0 && uio->uio_resid > 0);
326
327         return (error);
328 }
329
330 static int
331 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve)
332 {
333         struct vattr vattr;
334         vm_map_t map;
335         vm_map_entry_t entry;
336         vm_object_t obj, tobj, lobj;
337         struct vmspace *vm;
338         struct vnode *vp;
339         char *freepath, *fullpath;
340         u_int pathlen;
341         int error, index;
342
343         error = 0;
344         obj = NULL;
345
346         vm = vmspace_acquire_ref(p);
347         map = &vm->vm_map;
348         vm_map_lock_read(map);
349
350         do {
351                 entry = map->header.next;
352                 index = 0;
353                 while (index < pve->pve_entry && entry != &map->header) {
354                         entry = entry->next;
355                         index++;
356                 }
357                 if (index != pve->pve_entry) {
358                         error = EINVAL;
359                         break;
360                 }
361                 while (entry != &map->header &&
362                     (entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
363                         entry = entry->next;
364                         index++;
365                 }
366                 if (entry == &map->header) {
367                         error = ENOENT;
368                         break;
369                 }
370
371                 /* We got an entry. */
372                 pve->pve_entry = index + 1;
373                 pve->pve_timestamp = map->timestamp;
374                 pve->pve_start = entry->start;
375                 pve->pve_end = entry->end - 1;
376                 pve->pve_offset = entry->offset;
377                 pve->pve_prot = entry->protection;
378
379                 /* Backing object's path needed? */
380                 if (pve->pve_pathlen == 0)
381                         break;
382
383                 pathlen = pve->pve_pathlen;
384                 pve->pve_pathlen = 0;
385
386                 obj = entry->object.vm_object;
387                 if (obj != NULL)
388                         VM_OBJECT_RLOCK(obj);
389         } while (0);
390
391         vm_map_unlock_read(map);
392
393         pve->pve_fsid = VNOVAL;
394         pve->pve_fileid = VNOVAL;
395
396         if (error == 0 && obj != NULL) {
397                 lobj = obj;
398                 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
399                         if (tobj != obj)
400                                 VM_OBJECT_RLOCK(tobj);
401                         if (lobj != obj)
402                                 VM_OBJECT_RUNLOCK(lobj);
403                         lobj = tobj;
404                         pve->pve_offset += tobj->backing_object_offset;
405                 }
406                 vp = vm_object_vnode(lobj);
407                 if (vp != NULL)
408                         vref(vp);
409                 if (lobj != obj)
410                         VM_OBJECT_RUNLOCK(lobj);
411                 VM_OBJECT_RUNLOCK(obj);
412
413                 if (vp != NULL) {
414                         freepath = NULL;
415                         fullpath = NULL;
416                         vn_fullpath(td, vp, &fullpath, &freepath);
417                         vn_lock(vp, LK_SHARED | LK_RETRY);
418                         if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) {
419                                 pve->pve_fileid = vattr.va_fileid;
420                                 pve->pve_fsid = vattr.va_fsid;
421                         }
422                         vput(vp);
423
424                         if (fullpath != NULL) {
425                                 pve->pve_pathlen = strlen(fullpath) + 1;
426                                 if (pve->pve_pathlen <= pathlen) {
427                                         error = copyout(fullpath, pve->pve_path,
428                                             pve->pve_pathlen);
429                                 } else
430                                         error = ENAMETOOLONG;
431                         }
432                         if (freepath != NULL)
433                                 free(freepath, M_TEMP);
434                 }
435         }
436         vmspace_free(vm);
437         if (error == 0)
438                 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p",
439                     p->p_pid, pve->pve_entry, pve->pve_start);
440
441         return (error);
442 }
443
444 #ifdef COMPAT_FREEBSD32
445 static int
446 ptrace_vm_entry32(struct thread *td, struct proc *p,
447     struct ptrace_vm_entry32 *pve32)
448 {
449         struct ptrace_vm_entry pve;
450         int error;
451
452         pve.pve_entry = pve32->pve_entry;
453         pve.pve_pathlen = pve32->pve_pathlen;
454         pve.pve_path = (void *)(uintptr_t)pve32->pve_path;
455
456         error = ptrace_vm_entry(td, p, &pve);
457         if (error == 0) {
458                 pve32->pve_entry = pve.pve_entry;
459                 pve32->pve_timestamp = pve.pve_timestamp;
460                 pve32->pve_start = pve.pve_start;
461                 pve32->pve_end = pve.pve_end;
462                 pve32->pve_offset = pve.pve_offset;
463                 pve32->pve_prot = pve.pve_prot;
464                 pve32->pve_fileid = pve.pve_fileid;
465                 pve32->pve_fsid = pve.pve_fsid;
466         }
467
468         pve32->pve_pathlen = pve.pve_pathlen;
469         return (error);
470 }
471
472 static void
473 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
474     struct ptrace_lwpinfo32 *pl32)
475 {
476
477         pl32->pl_lwpid = pl->pl_lwpid;
478         pl32->pl_event = pl->pl_event;
479         pl32->pl_flags = pl->pl_flags;
480         pl32->pl_sigmask = pl->pl_sigmask;
481         pl32->pl_siglist = pl->pl_siglist;
482         siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
483         strcpy(pl32->pl_tdname, pl->pl_tdname);
484         pl32->pl_child_pid = pl->pl_child_pid;
485         pl32->pl_syscall_code = pl->pl_syscall_code;
486         pl32->pl_syscall_narg = pl->pl_syscall_narg;
487 }
488 #endif /* COMPAT_FREEBSD32 */
489
490 /*
491  * Process debugging system call.
492  */
493 #ifndef _SYS_SYSPROTO_H_
494 struct ptrace_args {
495         int     req;
496         pid_t   pid;
497         caddr_t addr;
498         int     data;
499 };
500 #endif
501
502 #ifdef COMPAT_FREEBSD32
503 /*
504  * This CPP subterfuge is to try and reduce the number of ifdefs in
505  * the body of the code.
506  *   COPYIN(uap->addr, &r.reg, sizeof r.reg);
507  * becomes either:
508  *   copyin(uap->addr, &r.reg, sizeof r.reg);
509  * or
510  *   copyin(uap->addr, &r.reg32, sizeof r.reg32);
511  * .. except this is done at runtime.
512  */
513 #define COPYIN(u, k, s)         wrap32 ? \
514         copyin(u, k ## 32, s ## 32) : \
515         copyin(u, k, s)
516 #define COPYOUT(k, u, s)        wrap32 ? \
517         copyout(k ## 32, u, s ## 32) : \
518         copyout(k, u, s)
519 #else
520 #define COPYIN(u, k, s)         copyin(u, k, s)
521 #define COPYOUT(k, u, s)        copyout(k, u, s)
522 #endif
523 int
524 sys_ptrace(struct thread *td, struct ptrace_args *uap)
525 {
526         /*
527          * XXX this obfuscation is to reduce stack usage, but the register
528          * structs may be too large to put on the stack anyway.
529          */
530         union {
531                 struct ptrace_io_desc piod;
532                 struct ptrace_lwpinfo pl;
533                 struct ptrace_vm_entry pve;
534                 struct dbreg dbreg;
535                 struct fpreg fpreg;
536                 struct reg reg;
537 #ifdef COMPAT_FREEBSD32
538                 struct dbreg32 dbreg32;
539                 struct fpreg32 fpreg32;
540                 struct reg32 reg32;
541                 struct ptrace_io_desc32 piod32;
542                 struct ptrace_lwpinfo32 pl32;
543                 struct ptrace_vm_entry32 pve32;
544 #endif
545         } r;
546         void *addr;
547         int error = 0;
548 #ifdef COMPAT_FREEBSD32
549         int wrap32 = 0;
550
551         if (SV_CURPROC_FLAG(SV_ILP32))
552                 wrap32 = 1;
553 #endif
554         AUDIT_ARG_PID(uap->pid);
555         AUDIT_ARG_CMD(uap->req);
556         AUDIT_ARG_VALUE(uap->data);
557         addr = &r;
558         switch (uap->req) {
559         case PT_GETREGS:
560         case PT_GETFPREGS:
561         case PT_GETDBREGS:
562         case PT_LWPINFO:
563                 break;
564         case PT_SETREGS:
565                 error = COPYIN(uap->addr, &r.reg, sizeof r.reg);
566                 break;
567         case PT_SETFPREGS:
568                 error = COPYIN(uap->addr, &r.fpreg, sizeof r.fpreg);
569                 break;
570         case PT_SETDBREGS:
571                 error = COPYIN(uap->addr, &r.dbreg, sizeof r.dbreg);
572                 break;
573         case PT_IO:
574                 error = COPYIN(uap->addr, &r.piod, sizeof r.piod);
575                 break;
576         case PT_VM_ENTRY:
577                 error = COPYIN(uap->addr, &r.pve, sizeof r.pve);
578                 break;
579         default:
580                 addr = uap->addr;
581                 break;
582         }
583         if (error)
584                 return (error);
585
586         error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
587         if (error)
588                 return (error);
589
590         switch (uap->req) {
591         case PT_VM_ENTRY:
592                 error = COPYOUT(&r.pve, uap->addr, sizeof r.pve);
593                 break;
594         case PT_IO:
595                 error = COPYOUT(&r.piod, uap->addr, sizeof r.piod);
596                 break;
597         case PT_GETREGS:
598                 error = COPYOUT(&r.reg, uap->addr, sizeof r.reg);
599                 break;
600         case PT_GETFPREGS:
601                 error = COPYOUT(&r.fpreg, uap->addr, sizeof r.fpreg);
602                 break;
603         case PT_GETDBREGS:
604                 error = COPYOUT(&r.dbreg, uap->addr, sizeof r.dbreg);
605                 break;
606         case PT_LWPINFO:
607                 error = copyout(&r.pl, uap->addr, uap->data);
608                 break;
609         }
610
611         return (error);
612 }
613 #undef COPYIN
614 #undef COPYOUT
615
616 #ifdef COMPAT_FREEBSD32
617 /*
618  *   PROC_READ(regs, td2, addr);
619  * becomes either:
620  *   proc_read_regs(td2, addr);
621  * or
622  *   proc_read_regs32(td2, addr);
623  * .. except this is done at runtime.  There is an additional
624  * complication in that PROC_WRITE disallows 32 bit consumers
625  * from writing to 64 bit address space targets.
626  */
627 #define PROC_READ(w, t, a)      wrap32 ? \
628         proc_read_ ## w ## 32(t, a) : \
629         proc_read_ ## w (t, a)
630 #define PROC_WRITE(w, t, a)     wrap32 ? \
631         (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \
632         proc_write_ ## w (t, a)
633 #else
634 #define PROC_READ(w, t, a)      proc_read_ ## w (t, a)
635 #define PROC_WRITE(w, t, a)     proc_write_ ## w (t, a)
636 #endif
637
638 int
639 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
640 {
641         struct iovec iov;
642         struct uio uio;
643         struct proc *curp, *p, *pp;
644         struct thread *td2 = NULL, *td3;
645         struct ptrace_io_desc *piod = NULL;
646         struct ptrace_lwpinfo *pl;
647         int error, write, tmp, num;
648         int proctree_locked = 0;
649         lwpid_t tid = 0, *buf;
650 #ifdef COMPAT_FREEBSD32
651         int wrap32 = 0, safe = 0;
652         struct ptrace_io_desc32 *piod32 = NULL;
653         struct ptrace_lwpinfo32 *pl32 = NULL;
654         struct ptrace_lwpinfo plr;
655 #endif
656
657         curp = td->td_proc;
658
659         /* Lock proctree before locking the process. */
660         switch (req) {
661         case PT_TRACE_ME:
662         case PT_ATTACH:
663         case PT_STEP:
664         case PT_CONTINUE:
665         case PT_TO_SCE:
666         case PT_TO_SCX:
667         case PT_SYSCALL:
668         case PT_FOLLOW_FORK:
669         case PT_LWP_EVENTS:
670         case PT_DETACH:
671                 sx_xlock(&proctree_lock);
672                 proctree_locked = 1;
673                 break;
674         default:
675                 break;
676         }
677
678         write = 0;
679         if (req == PT_TRACE_ME) {
680                 p = td->td_proc;
681                 PROC_LOCK(p);
682         } else {
683                 if (pid <= PID_MAX) {
684                         if ((p = pfind(pid)) == NULL) {
685                                 if (proctree_locked)
686                                         sx_xunlock(&proctree_lock);
687                                 return (ESRCH);
688                         }
689                 } else {
690                         td2 = tdfind(pid, -1);
691                         if (td2 == NULL) {
692                                 if (proctree_locked)
693                                         sx_xunlock(&proctree_lock);
694                                 return (ESRCH);
695                         }
696                         p = td2->td_proc;
697                         tid = pid;
698                         pid = p->p_pid;
699                 }
700         }
701         AUDIT_ARG_PROCESS(p);
702
703         if ((p->p_flag & P_WEXIT) != 0) {
704                 error = ESRCH;
705                 goto fail;
706         }
707         if ((error = p_cansee(td, p)) != 0)
708                 goto fail;
709
710         if ((error = p_candebug(td, p)) != 0)
711                 goto fail;
712
713         /*
714          * System processes can't be debugged.
715          */
716         if ((p->p_flag & P_SYSTEM) != 0) {
717                 error = EINVAL;
718                 goto fail;
719         }
720
721         if (tid == 0) {
722                 if ((p->p_flag & P_STOPPED_TRACE) != 0) {
723                         KASSERT(p->p_xthread != NULL, ("NULL p_xthread"));
724                         td2 = p->p_xthread;
725                 } else {
726                         td2 = FIRST_THREAD_IN_PROC(p);
727                 }
728                 tid = td2->td_tid;
729         }
730
731 #ifdef COMPAT_FREEBSD32
732         /*
733          * Test if we're a 32 bit client and what the target is.
734          * Set the wrap controls accordingly.
735          */
736         if (SV_CURPROC_FLAG(SV_ILP32)) {
737                 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32))
738                         safe = 1;
739                 wrap32 = 1;
740         }
741 #endif
742         /*
743          * Permissions check
744          */
745         switch (req) {
746         case PT_TRACE_ME:
747                 /*
748                  * Always legal, when there is a parent process which
749                  * could trace us.  Otherwise, reject.
750                  */
751                 if ((p->p_flag & P_TRACED) != 0) {
752                         error = EBUSY;
753                         goto fail;
754                 }
755                 if (p->p_pptr == initproc) {
756                         error = EPERM;
757                         goto fail;
758                 }
759                 break;
760
761         case PT_ATTACH:
762                 /* Self */
763                 if (p == td->td_proc) {
764                         error = EINVAL;
765                         goto fail;
766                 }
767
768                 /* Already traced */
769                 if (p->p_flag & P_TRACED) {
770                         error = EBUSY;
771                         goto fail;
772                 }
773
774                 /* Can't trace an ancestor if you're being traced. */
775                 if (curp->p_flag & P_TRACED) {
776                         for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
777                                 if (pp == p) {
778                                         error = EINVAL;
779                                         goto fail;
780                                 }
781                         }
782                 }
783
784
785                 /* OK */
786                 break;
787
788         case PT_CLEARSTEP:
789                 /* Allow thread to clear single step for itself */
790                 if (td->td_tid == tid)
791                         break;
792
793                 /* FALLTHROUGH */
794         default:
795                 /* not being traced... */
796                 if ((p->p_flag & P_TRACED) == 0) {
797                         error = EPERM;
798                         goto fail;
799                 }
800
801                 /* not being traced by YOU */
802                 if (p->p_pptr != td->td_proc) {
803                         error = EBUSY;
804                         goto fail;
805                 }
806
807                 /* not currently stopped */
808                 if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) == 0 ||
809                     p->p_suspcount != p->p_numthreads  ||
810                     (p->p_flag & P_WAITED) == 0) {
811                         error = EBUSY;
812                         goto fail;
813                 }
814
815                 if ((p->p_flag & P_STOPPED_TRACE) == 0) {
816                         static int count = 0;
817                         if (count++ == 0)
818                                 printf("P_STOPPED_TRACE not set.\n");
819                 }
820
821                 /* OK */
822                 break;
823         }
824
825         /* Keep this process around until we finish this request. */
826         _PHOLD(p);
827
828 #ifdef FIX_SSTEP
829         /*
830          * Single step fixup ala procfs
831          */
832         FIX_SSTEP(td2);
833 #endif
834
835         /*
836          * Actually do the requests
837          */
838
839         td->td_retval[0] = 0;
840
841         switch (req) {
842         case PT_TRACE_ME:
843                 /* set my trace flag and "owner" so it can read/write me */
844                 p->p_flag |= P_TRACED;
845                 if (p->p_flag & P_PPWAIT)
846                         p->p_flag |= P_PPTRACE;
847                 p->p_oppid = p->p_pptr->p_pid;
848                 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid);
849                 break;
850
851         case PT_ATTACH:
852                 /* security check done above */
853                 /*
854                  * It would be nice if the tracing relationship was separate
855                  * from the parent relationship but that would require
856                  * another set of links in the proc struct or for "wait"
857                  * to scan the entire proc table.  To make life easier,
858                  * we just re-parent the process we're trying to trace.
859                  * The old parent is remembered so we can put things back
860                  * on a "detach".
861                  */
862                 p->p_flag |= P_TRACED;
863                 p->p_oppid = p->p_pptr->p_pid;
864                 if (p->p_pptr != td->td_proc) {
865                         proc_reparent(p, td->td_proc);
866                 }
867                 data = SIGSTOP;
868                 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid,
869                     p->p_oppid);
870                 goto sendsig;   /* in PT_CONTINUE below */
871
872         case PT_CLEARSTEP:
873                 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid,
874                     p->p_pid);
875                 error = ptrace_clear_single_step(td2);
876                 break;
877
878         case PT_SETSTEP:
879                 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid,
880                     p->p_pid);
881                 error = ptrace_single_step(td2);
882                 break;
883
884         case PT_SUSPEND:
885                 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid,
886                     p->p_pid);
887                 td2->td_dbgflags |= TDB_SUSPEND;
888                 thread_lock(td2);
889                 td2->td_flags |= TDF_NEEDSUSPCHK;
890                 thread_unlock(td2);
891                 break;
892
893         case PT_RESUME:
894                 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid,
895                     p->p_pid);
896                 td2->td_dbgflags &= ~TDB_SUSPEND;
897                 break;
898
899         case PT_FOLLOW_FORK:
900                 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid,
901                     p->p_flag & P_FOLLOWFORK ? "enabled" : "disabled",
902                     data ? "enabled" : "disabled");
903                 if (data)
904                         p->p_flag |= P_FOLLOWFORK;
905                 else
906                         p->p_flag &= ~P_FOLLOWFORK;
907                 break;
908
909         case PT_LWP_EVENTS:
910                 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid,
911                     p->p_flag2 & P2_LWP_EVENTS ? "enabled" : "disabled",
912                     data ? "enabled" : "disabled");
913                 if (data)
914                         p->p_flag2 |= P2_LWP_EVENTS;
915                 else
916                         p->p_flag2 &= ~P2_LWP_EVENTS;
917                 break;
918
919         case PT_STEP:
920         case PT_CONTINUE:
921         case PT_TO_SCE:
922         case PT_TO_SCX:
923         case PT_SYSCALL:
924         case PT_DETACH:
925                 /* Zero means do not send any signal */
926                 if (data < 0 || data > _SIG_MAXSIG) {
927                         error = EINVAL;
928                         break;
929                 }
930
931                 switch (req) {
932                 case PT_STEP:
933                         CTR2(KTR_PTRACE, "PT_STEP: tid %d (pid %d)",
934                             td2->td_tid, p->p_pid);
935                         error = ptrace_single_step(td2);
936                         if (error)
937                                 goto out;
938                         break;
939                 case PT_CONTINUE:
940                 case PT_TO_SCE:
941                 case PT_TO_SCX:
942                 case PT_SYSCALL:
943                         if (addr != (void *)1) {
944                                 error = ptrace_set_pc(td2,
945                                     (u_long)(uintfptr_t)addr);
946                                 if (error)
947                                         goto out;
948                         }
949                         switch (req) {
950                         case PT_TO_SCE:
951                                 p->p_stops |= S_PT_SCE;
952                                 CTR4(KTR_PTRACE,
953                     "PT_TO_SCE: pid %d, stops = %#x, PC = %#lx, sig = %d",
954                                     p->p_pid, p->p_stops,
955                                     (u_long)(uintfptr_t)addr, data);
956                                 break;
957                         case PT_TO_SCX:
958                                 p->p_stops |= S_PT_SCX;
959                                 CTR4(KTR_PTRACE,
960                     "PT_TO_SCX: pid %d, stops = %#x, PC = %#lx, sig = %d",
961                                     p->p_pid, p->p_stops,
962                                     (u_long)(uintfptr_t)addr, data);
963                                 break;
964                         case PT_SYSCALL:
965                                 p->p_stops |= S_PT_SCE | S_PT_SCX;
966                                 CTR4(KTR_PTRACE,
967                     "PT_SYSCALL: pid %d, stops = %#x, PC = %#lx, sig = %d",
968                                     p->p_pid, p->p_stops,
969                                     (u_long)(uintfptr_t)addr, data);
970                                 break;
971                         case PT_CONTINUE:
972                                 CTR3(KTR_PTRACE,
973                                     "PT_CONTINUE: pid %d, PC = %#lx, sig = %d",
974                                     p->p_pid, (u_long)(uintfptr_t)addr, data);
975                                 break;
976                         }
977                         break;
978                 case PT_DETACH:
979                         /*
980                          * Reset the process parent.
981                          *
982                          * NB: This clears P_TRACED before reparenting
983                          * a detached process back to its original
984                          * parent.  Otherwise the debugee will be set
985                          * as an orphan of the debugger.
986                          */
987                         p->p_flag &= ~(P_TRACED | P_WAITED | P_FOLLOWFORK);
988                         if (p->p_oppid != p->p_pptr->p_pid) {
989                                 PROC_LOCK(p->p_pptr);
990                                 sigqueue_take(p->p_ksi);
991                                 PROC_UNLOCK(p->p_pptr);
992
993                                 pp = proc_realparent(p);
994                                 proc_reparent(p, pp);
995                                 if (pp == initproc)
996                                         p->p_sigparent = SIGCHLD;
997                                 CTR3(KTR_PTRACE,
998                             "PT_DETACH: pid %d reparented to pid %d, sig %d",
999                                     p->p_pid, pp->p_pid, data);
1000                         } else
1001                                 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d",
1002                                     p->p_pid, data);
1003                         p->p_oppid = 0;
1004                         p->p_stops = 0;
1005
1006                         /* should we send SIGCHLD? */
1007                         /* childproc_continued(p); */
1008                         break;
1009                 }
1010
1011         sendsig:
1012                 if (proctree_locked) {
1013                         sx_xunlock(&proctree_lock);
1014                         proctree_locked = 0;
1015                 }
1016                 p->p_xstat = data;
1017                 p->p_xthread = NULL;
1018                 if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) != 0) {
1019                         /* deliver or queue signal */
1020                         td2->td_dbgflags &= ~TDB_XSIG;
1021                         td2->td_xsig = data;
1022
1023                         if (req == PT_DETACH) {
1024                                 FOREACH_THREAD_IN_PROC(p, td3)
1025                                         td3->td_dbgflags &= ~TDB_SUSPEND; 
1026                         }
1027                         /*
1028                          * unsuspend all threads, to not let a thread run,
1029                          * you should use PT_SUSPEND to suspend it before
1030                          * continuing process.
1031                          */
1032                         PROC_SLOCK(p);
1033                         p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SIG|P_WAITED);
1034                         thread_unsuspend(p);
1035                         PROC_SUNLOCK(p);
1036                         if (req == PT_ATTACH)
1037                                 kern_psignal(p, data);
1038                 } else {
1039                         if (data)
1040                                 kern_psignal(p, data);
1041                 }
1042                 break;
1043
1044         case PT_WRITE_I:
1045         case PT_WRITE_D:
1046                 td2->td_dbgflags |= TDB_USERWR;
1047                 write = 1;
1048                 /* FALLTHROUGH */
1049         case PT_READ_I:
1050         case PT_READ_D:
1051                 PROC_UNLOCK(p);
1052                 tmp = 0;
1053                 /* write = 0 set above */
1054                 iov.iov_base = write ? (caddr_t)&data : (caddr_t)&tmp;
1055                 iov.iov_len = sizeof(int);
1056                 uio.uio_iov = &iov;
1057                 uio.uio_iovcnt = 1;
1058                 uio.uio_offset = (off_t)(uintptr_t)addr;
1059                 uio.uio_resid = sizeof(int);
1060                 uio.uio_segflg = UIO_SYSSPACE;  /* i.e.: the uap */
1061                 uio.uio_rw = write ? UIO_WRITE : UIO_READ;
1062                 uio.uio_td = td;
1063                 error = proc_rwmem(p, &uio);
1064                 if (uio.uio_resid != 0) {
1065                         /*
1066                          * XXX proc_rwmem() doesn't currently return ENOSPC,
1067                          * so I think write() can bogusly return 0.
1068                          * XXX what happens for short writes?  We don't want
1069                          * to write partial data.
1070                          * XXX proc_rwmem() returns EPERM for other invalid
1071                          * addresses.  Convert this to EINVAL.  Does this
1072                          * clobber returns of EPERM for other reasons?
1073                          */
1074                         if (error == 0 || error == ENOSPC || error == EPERM)
1075                                 error = EINVAL; /* EOF */
1076                 }
1077                 if (!write)
1078                         td->td_retval[0] = tmp;
1079                 if (error == 0) {
1080                         if (write)
1081                                 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x",
1082                                     p->p_pid, addr, data);
1083                         else
1084                                 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x",
1085                                     p->p_pid, addr, tmp);
1086                 }
1087                 PROC_LOCK(p);
1088                 break;
1089
1090         case PT_IO:
1091 #ifdef COMPAT_FREEBSD32
1092                 if (wrap32) {
1093                         piod32 = addr;
1094                         iov.iov_base = (void *)(uintptr_t)piod32->piod_addr;
1095                         iov.iov_len = piod32->piod_len;
1096                         uio.uio_offset = (off_t)(uintptr_t)piod32->piod_offs;
1097                         uio.uio_resid = piod32->piod_len;
1098                 } else
1099 #endif
1100                 {
1101                         piod = addr;
1102                         iov.iov_base = piod->piod_addr;
1103                         iov.iov_len = piod->piod_len;
1104                         uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
1105                         uio.uio_resid = piod->piod_len;
1106                 }
1107                 uio.uio_iov = &iov;
1108                 uio.uio_iovcnt = 1;
1109                 uio.uio_segflg = UIO_USERSPACE;
1110                 uio.uio_td = td;
1111 #ifdef COMPAT_FREEBSD32
1112                 tmp = wrap32 ? piod32->piod_op : piod->piod_op;
1113 #else
1114                 tmp = piod->piod_op;
1115 #endif
1116                 switch (tmp) {
1117                 case PIOD_READ_D:
1118                 case PIOD_READ_I:
1119                         CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)",
1120                             p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1121                         uio.uio_rw = UIO_READ;
1122                         break;
1123                 case PIOD_WRITE_D:
1124                 case PIOD_WRITE_I:
1125                         CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)",
1126                             p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1127                         td2->td_dbgflags |= TDB_USERWR;
1128                         uio.uio_rw = UIO_WRITE;
1129                         break;
1130                 default:
1131                         error = EINVAL;
1132                         goto out;
1133                 }
1134                 PROC_UNLOCK(p);
1135                 error = proc_rwmem(p, &uio);
1136 #ifdef COMPAT_FREEBSD32
1137                 if (wrap32)
1138                         piod32->piod_len -= uio.uio_resid;
1139                 else
1140 #endif
1141                         piod->piod_len -= uio.uio_resid;
1142                 PROC_LOCK(p);
1143                 break;
1144
1145         case PT_KILL:
1146                 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid);
1147                 data = SIGKILL;
1148                 goto sendsig;   /* in PT_CONTINUE above */
1149
1150         case PT_SETREGS:
1151                 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid,
1152                     p->p_pid);
1153                 td2->td_dbgflags |= TDB_USERWR;
1154                 error = PROC_WRITE(regs, td2, addr);
1155                 break;
1156
1157         case PT_GETREGS:
1158                 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid,
1159                     p->p_pid);
1160                 error = PROC_READ(regs, td2, addr);
1161                 break;
1162
1163         case PT_SETFPREGS:
1164                 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid,
1165                     p->p_pid);
1166                 td2->td_dbgflags |= TDB_USERWR;
1167                 error = PROC_WRITE(fpregs, td2, addr);
1168                 break;
1169
1170         case PT_GETFPREGS:
1171                 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid,
1172                     p->p_pid);
1173                 error = PROC_READ(fpregs, td2, addr);
1174                 break;
1175
1176         case PT_SETDBREGS:
1177                 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid,
1178                     p->p_pid);
1179                 td2->td_dbgflags |= TDB_USERWR;
1180                 error = PROC_WRITE(dbregs, td2, addr);
1181                 break;
1182
1183         case PT_GETDBREGS:
1184                 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid,
1185                     p->p_pid);
1186                 error = PROC_READ(dbregs, td2, addr);
1187                 break;
1188
1189         case PT_LWPINFO:
1190                 if (data <= 0 ||
1191 #ifdef COMPAT_FREEBSD32
1192                     (!wrap32 && data > sizeof(*pl)) ||
1193                     (wrap32 && data > sizeof(*pl32))) {
1194 #else
1195                     data > sizeof(*pl)) {
1196 #endif
1197                         error = EINVAL;
1198                         break;
1199                 }
1200 #ifdef COMPAT_FREEBSD32
1201                 if (wrap32) {
1202                         pl = &plr;
1203                         pl32 = addr;
1204                 } else
1205 #endif
1206                 pl = addr;
1207                 pl->pl_lwpid = td2->td_tid;
1208                 pl->pl_event = PL_EVENT_NONE;
1209                 pl->pl_flags = 0;
1210                 if (td2->td_dbgflags & TDB_XSIG) {
1211                         pl->pl_event = PL_EVENT_SIGNAL;
1212                         if (td2->td_dbgksi.ksi_signo != 0 &&
1213 #ifdef COMPAT_FREEBSD32
1214                             ((!wrap32 && data >= offsetof(struct ptrace_lwpinfo,
1215                             pl_siginfo) + sizeof(pl->pl_siginfo)) ||
1216                             (wrap32 && data >= offsetof(struct ptrace_lwpinfo32,
1217                             pl_siginfo) + sizeof(struct siginfo32)))
1218 #else
1219                             data >= offsetof(struct ptrace_lwpinfo, pl_siginfo)
1220                             + sizeof(pl->pl_siginfo)
1221 #endif
1222                         ){
1223                                 pl->pl_flags |= PL_FLAG_SI;
1224                                 pl->pl_siginfo = td2->td_dbgksi.ksi_info;
1225                         }
1226                 }
1227                 if ((pl->pl_flags & PL_FLAG_SI) == 0)
1228                         bzero(&pl->pl_siginfo, sizeof(pl->pl_siginfo));
1229                 if (td2->td_dbgflags & TDB_SCE)
1230                         pl->pl_flags |= PL_FLAG_SCE;
1231                 else if (td2->td_dbgflags & TDB_SCX)
1232                         pl->pl_flags |= PL_FLAG_SCX;
1233                 if (td2->td_dbgflags & TDB_EXEC)
1234                         pl->pl_flags |= PL_FLAG_EXEC;
1235                 if (td2->td_dbgflags & TDB_FORK) {
1236                         pl->pl_flags |= PL_FLAG_FORKED;
1237                         pl->pl_child_pid = td2->td_dbg_forked;
1238                 }
1239                 if (td2->td_dbgflags & TDB_CHILD)
1240                         pl->pl_flags |= PL_FLAG_CHILD;
1241                 if (td2->td_dbgflags & TDB_BORN)
1242                         pl->pl_flags |= PL_FLAG_BORN;
1243                 if (td2->td_dbgflags & TDB_EXIT)
1244                         pl->pl_flags |= PL_FLAG_EXITED;
1245                 pl->pl_sigmask = td2->td_sigmask;
1246                 pl->pl_siglist = td2->td_siglist;
1247                 strcpy(pl->pl_tdname, td2->td_name);
1248                 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) {
1249                         pl->pl_syscall_code = td2->td_dbg_sc_code;
1250                         pl->pl_syscall_narg = td2->td_dbg_sc_narg;
1251                 } else {
1252                         pl->pl_syscall_code = 0;
1253                         pl->pl_syscall_narg = 0;
1254                 }
1255 #ifdef COMPAT_FREEBSD32
1256                 if (wrap32)
1257                         ptrace_lwpinfo_to32(pl, pl32);
1258 #endif
1259                 CTR6(KTR_PTRACE,
1260     "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d",
1261                     td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags,
1262                     pl->pl_child_pid, pl->pl_syscall_code);
1263                 break;
1264
1265         case PT_GETNUMLWPS:
1266                 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid,
1267                     p->p_numthreads);
1268                 td->td_retval[0] = p->p_numthreads;
1269                 break;
1270
1271         case PT_GETLWPLIST:
1272                 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d",
1273                     p->p_pid, data, p->p_numthreads);
1274                 if (data <= 0) {
1275                         error = EINVAL;
1276                         break;
1277                 }
1278                 num = imin(p->p_numthreads, data);
1279                 PROC_UNLOCK(p);
1280                 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
1281                 tmp = 0;
1282                 PROC_LOCK(p);
1283                 FOREACH_THREAD_IN_PROC(p, td2) {
1284                         if (tmp >= num)
1285                                 break;
1286                         buf[tmp++] = td2->td_tid;
1287                 }
1288                 PROC_UNLOCK(p);
1289                 error = copyout(buf, addr, tmp * sizeof(lwpid_t));
1290                 free(buf, M_TEMP);
1291                 if (!error)
1292                         td->td_retval[0] = tmp;
1293                 PROC_LOCK(p);
1294                 break;
1295
1296         case PT_VM_TIMESTAMP:
1297                 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d",
1298                     p->p_pid, p->p_vmspace->vm_map.timestamp);
1299                 td->td_retval[0] = p->p_vmspace->vm_map.timestamp;
1300                 break;
1301
1302         case PT_VM_ENTRY:
1303                 PROC_UNLOCK(p);
1304 #ifdef COMPAT_FREEBSD32
1305                 if (wrap32)
1306                         error = ptrace_vm_entry32(td, p, addr);
1307                 else
1308 #endif
1309                 error = ptrace_vm_entry(td, p, addr);
1310                 PROC_LOCK(p);
1311                 break;
1312
1313         default:
1314 #ifdef __HAVE_PTRACE_MACHDEP
1315                 if (req >= PT_FIRSTMACH) {
1316                         PROC_UNLOCK(p);
1317                         error = cpu_ptrace(td2, req, addr, data);
1318                         PROC_LOCK(p);
1319                 } else
1320 #endif
1321                         /* Unknown request. */
1322                         error = EINVAL;
1323                 break;
1324         }
1325
1326 out:
1327         /* Drop our hold on this process now that the request has completed. */
1328         _PRELE(p);
1329 fail:
1330         PROC_UNLOCK(p);
1331         if (proctree_locked)
1332                 sx_xunlock(&proctree_lock);
1333         return (error);
1334 }
1335 #undef PROC_READ
1336 #undef PROC_WRITE
1337
1338 /*
1339  * Stop a process because of a debugging event;
1340  * stay stopped until p->p_step is cleared
1341  * (cleared by PIOCCONT in procfs).
1342  */
1343 void
1344 stopevent(struct proc *p, unsigned int event, unsigned int val)
1345 {
1346
1347         PROC_LOCK_ASSERT(p, MA_OWNED);
1348         p->p_step = 1;
1349         CTR3(KTR_PTRACE, "stopevent: pid %d event %u val %u", p->p_pid, event,
1350             val);
1351         do {
1352                 p->p_xstat = val;
1353                 p->p_xthread = NULL;
1354                 p->p_stype = event;     /* Which event caused the stop? */
1355                 wakeup(&p->p_stype);    /* Wake up any PIOCWAIT'ing procs */
1356                 msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0);
1357         } while (p->p_step);
1358 }