]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/netinet/in_pcb.c
MFC r368207,368607:
[FreeBSD/stable/10.git] / sys / netinet / in_pcb.c
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
36  */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66
67 #include <vm/uma.h>
68
69 #include <net/if.h>
70 #include <net/if_types.h>
71 #include <net/route.h>
72 #include <net/vnet.h>
73
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #endif
82 #ifdef INET
83 #include <netinet/in_var.h>
84 #endif
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet6/ip6_var.h>
90 #endif /* INET6 */
91
92
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #include <netipsec/key.h>
96 #endif /* IPSEC */
97
98 #include <security/mac/mac_framework.h>
99
100 static struct callout   ipport_tick_callout;
101
102 /*
103  * These configure the range of local port addresses assigned to
104  * "unspecified" outgoing connections/packets/whatever.
105  */
106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
112
113 /*
114  * Reserved ports accessible only to root. There are significant
115  * security considerations that must be accounted for when changing these,
116  * but the security benefits can be great. Please be careful.
117  */
118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
119 VNET_DEFINE(int, ipport_reservedlow);
120
121 /* Variables dealing with random ephemeral port allocation. */
122 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
123 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
126 VNET_DEFINE(int, ipport_tcpallocs);
127 static VNET_DEFINE(int, ipport_tcplastcount);
128
129 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
130
131 static void     in_pcbremlists(struct inpcb *inp);
132 #ifdef INET
133 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
134                             struct in_addr faddr, u_int fport_arg,
135                             struct in_addr laddr, u_int lport_arg,
136                             int lookupflags, struct ifnet *ifp);
137
138 #define RANGECHK(var, min, max) \
139         if ((var) < (min)) { (var) = (min); } \
140         else if ((var) > (max)) { (var) = (max); }
141
142 static int
143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
144 {
145         int error;
146
147         error = sysctl_handle_int(oidp, arg1, arg2, req);
148         if (error == 0) {
149                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
150                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
151                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
152                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
153                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
154                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
155         }
156         return (error);
157 }
158
159 #undef RANGECHK
160
161 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
162     "IP Ports");
163
164 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
165         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
166         &sysctl_net_ipport_check, "I", "");
167 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
168         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
169         &sysctl_net_ipport_check, "I", "");
170 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
171         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
172         &sysctl_net_ipport_check, "I", "");
173 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
174         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
175         &sysctl_net_ipport_check, "I", "");
176 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
177         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
178         &sysctl_net_ipport_check, "I", "");
179 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
180         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
181         &sysctl_net_ipport_check, "I", "");
182 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
183         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
184 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
185         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
187         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
189         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
190         "allocations before switching to a sequental one");
191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
192         &VNET_NAME(ipport_randomtime), 0,
193         "Minimum time to keep sequental port "
194         "allocation before switching to a random one");
195 #endif /* INET */
196
197 /*
198  * in_pcb.c: manage the Protocol Control Blocks.
199  *
200  * NOTE: It is assumed that most of these functions will be called with
201  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
202  * functions often modify hash chains or addresses in pcbs.
203  */
204
205 /*
206  * Initialize an inpcbinfo -- we should be able to reduce the number of
207  * arguments in time.
208  */
209 void
210 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
211     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
212     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
213     uint32_t inpcbzone_flags, u_int hashfields)
214 {
215
216         INP_INFO_LOCK_INIT(pcbinfo, name);
217         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
218         INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
219 #ifdef VIMAGE
220         pcbinfo->ipi_vnet = curvnet;
221 #endif
222         pcbinfo->ipi_listhead = listhead;
223         LIST_INIT(pcbinfo->ipi_listhead);
224         pcbinfo->ipi_count = 0;
225         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
226             &pcbinfo->ipi_hashmask);
227         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
228             &pcbinfo->ipi_porthashmask);
229 #ifdef PCBGROUP
230         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
231 #endif
232         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
233             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
234             inpcbzone_flags);
235         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
236         uma_zone_set_warning(pcbinfo->ipi_zone,
237             "kern.ipc.maxsockets limit reached");
238 }
239
240 /*
241  * Destroy an inpcbinfo.
242  */
243 void
244 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
245 {
246
247         KASSERT(pcbinfo->ipi_count == 0,
248             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
249
250         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
251         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
252             pcbinfo->ipi_porthashmask);
253 #ifdef PCBGROUP
254         in_pcbgroup_destroy(pcbinfo);
255 #endif
256         uma_zdestroy(pcbinfo->ipi_zone);
257         INP_LIST_LOCK_DESTROY(pcbinfo);
258         INP_HASH_LOCK_DESTROY(pcbinfo);
259         INP_INFO_LOCK_DESTROY(pcbinfo);
260 }
261
262 /*
263  * Allocate a PCB and associate it with the socket.
264  * On success return with the PCB locked.
265  */
266 int
267 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
268 {
269         struct inpcb *inp;
270         int error;
271
272 #ifdef INVARIANTS
273         if (pcbinfo == &V_tcbinfo) {
274                 INP_INFO_RLOCK_ASSERT(pcbinfo);
275         } else {
276                 INP_INFO_WLOCK_ASSERT(pcbinfo);
277         }
278 #endif
279
280         error = 0;
281         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
282         if (inp == NULL)
283                 return (ENOBUFS);
284         bzero(inp, inp_zero_size);
285         inp->inp_pcbinfo = pcbinfo;
286         inp->inp_socket = so;
287         inp->inp_cred = crhold(so->so_cred);
288         inp->inp_inc.inc_fibnum = so->so_fibnum;
289 #ifdef MAC
290         error = mac_inpcb_init(inp, M_NOWAIT);
291         if (error != 0)
292                 goto out;
293         mac_inpcb_create(so, inp);
294 #endif
295 #ifdef IPSEC
296         error = ipsec_init_policy(so, &inp->inp_sp);
297         if (error != 0) {
298 #ifdef MAC
299                 mac_inpcb_destroy(inp);
300 #endif
301                 goto out;
302         }
303 #endif /*IPSEC*/
304 #ifdef INET6
305         if (INP_SOCKAF(so) == AF_INET6) {
306                 inp->inp_vflag |= INP_IPV6PROTO;
307                 if (V_ip6_v6only)
308                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
309         }
310 #endif
311         INP_WLOCK(inp);
312         INP_LIST_WLOCK(pcbinfo);
313         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
314         pcbinfo->ipi_count++;
315         so->so_pcb = (caddr_t)inp;
316 #ifdef INET6
317         if (V_ip6_auto_flowlabel)
318                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
319 #endif
320         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
321         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
322         INP_LIST_WUNLOCK(pcbinfo);
323 #if defined(IPSEC) || defined(MAC)
324 out:
325         if (error != 0) {
326                 crfree(inp->inp_cred);
327                 uma_zfree(pcbinfo->ipi_zone, inp);
328         }
329 #endif
330         return (error);
331 }
332
333 #ifdef INET
334 int
335 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
336 {
337         int anonport, error;
338
339         INP_WLOCK_ASSERT(inp);
340         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
341
342         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
343                 return (EINVAL);
344         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
345         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
346             &inp->inp_lport, cred);
347         if (error)
348                 return (error);
349         if (in_pcbinshash(inp) != 0) {
350                 inp->inp_laddr.s_addr = INADDR_ANY;
351                 inp->inp_lport = 0;
352                 return (EAGAIN);
353         }
354         if (anonport)
355                 inp->inp_flags |= INP_ANONPORT;
356         return (0);
357 }
358 #endif
359
360 #if defined(INET) || defined(INET6)
361 int
362 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
363     struct ucred *cred, int lookupflags)
364 {
365         struct inpcbinfo *pcbinfo;
366         struct inpcb *tmpinp;
367         unsigned short *lastport;
368         int count, dorandom, error;
369         u_short aux, first, last, lport;
370 #ifdef INET
371         struct in_addr laddr;
372 #endif
373
374         pcbinfo = inp->inp_pcbinfo;
375
376         /*
377          * Because no actual state changes occur here, a global write lock on
378          * the pcbinfo isn't required.
379          */
380         INP_LOCK_ASSERT(inp);
381         INP_HASH_LOCK_ASSERT(pcbinfo);
382
383         if (inp->inp_flags & INP_HIGHPORT) {
384                 first = V_ipport_hifirstauto;   /* sysctl */
385                 last  = V_ipport_hilastauto;
386                 lastport = &pcbinfo->ipi_lasthi;
387         } else if (inp->inp_flags & INP_LOWPORT) {
388                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
389                 if (error)
390                         return (error);
391                 first = V_ipport_lowfirstauto;  /* 1023 */
392                 last  = V_ipport_lowlastauto;   /* 600 */
393                 lastport = &pcbinfo->ipi_lastlow;
394         } else {
395                 first = V_ipport_firstauto;     /* sysctl */
396                 last  = V_ipport_lastauto;
397                 lastport = &pcbinfo->ipi_lastport;
398         }
399         /*
400          * For UDP(-Lite), use random port allocation as long as the user
401          * allows it.  For TCP (and as of yet unknown) connections,
402          * use random port allocation only if the user allows it AND
403          * ipport_tick() allows it.
404          */
405         if (V_ipport_randomized &&
406                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
407                 pcbinfo == &V_ulitecbinfo))
408                 dorandom = 1;
409         else
410                 dorandom = 0;
411         /*
412          * It makes no sense to do random port allocation if
413          * we have the only port available.
414          */
415         if (first == last)
416                 dorandom = 0;
417         /* Make sure to not include UDP(-Lite) packets in the count. */
418         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
419                 V_ipport_tcpallocs++;
420         /*
421          * Instead of having two loops further down counting up or down
422          * make sure that first is always <= last and go with only one
423          * code path implementing all logic.
424          */
425         if (first > last) {
426                 aux = first;
427                 first = last;
428                 last = aux;
429         }
430
431 #ifdef INET
432         /* Make the compiler happy. */
433         laddr.s_addr = 0;
434         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
435                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
436                     __func__, inp));
437                 laddr = *laddrp;
438         }
439 #endif
440         tmpinp = NULL;  /* Make compiler happy. */
441         lport = *lportp;
442
443         if (dorandom)
444                 *lastport = first + (arc4random() % (last - first));
445
446         count = last - first;
447
448         do {
449                 if (count-- < 0)        /* completely used? */
450                         return (EADDRNOTAVAIL);
451                 ++*lastport;
452                 if (*lastport < first || *lastport > last)
453                         *lastport = first;
454                 lport = htons(*lastport);
455
456 #ifdef INET6
457                 if ((inp->inp_vflag & INP_IPV6) != 0)
458                         tmpinp = in6_pcblookup_local(pcbinfo,
459                             &inp->in6p_laddr, lport, lookupflags, cred);
460 #endif
461 #if defined(INET) && defined(INET6)
462                 else
463 #endif
464 #ifdef INET
465                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
466                             lport, lookupflags, cred);
467 #endif
468         } while (tmpinp != NULL);
469
470 #ifdef INET
471         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
472                 laddrp->s_addr = laddr.s_addr;
473 #endif                 
474         *lportp = lport;
475
476         return (0);
477 }
478
479 /*
480  * Return cached socket options.
481  */
482 short
483 inp_so_options(const struct inpcb *inp)
484 {
485    short so_options;
486
487    so_options = 0;
488
489    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
490            so_options |= SO_REUSEPORT;
491    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
492            so_options |= SO_REUSEADDR;
493    return (so_options);
494 }
495 #endif /* INET || INET6 */
496
497 #ifdef INET
498 /*
499  * Set up a bind operation on a PCB, performing port allocation
500  * as required, but do not actually modify the PCB. Callers can
501  * either complete the bind by setting inp_laddr/inp_lport and
502  * calling in_pcbinshash(), or they can just use the resulting
503  * port and address to authorise the sending of a once-off packet.
504  *
505  * On error, the values of *laddrp and *lportp are not changed.
506  */
507 int
508 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
509     u_short *lportp, struct ucred *cred)
510 {
511         struct socket *so = inp->inp_socket;
512         struct sockaddr_in *sin;
513         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
514         struct in_addr laddr;
515         u_short lport = 0;
516         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
517         int error;
518
519         /*
520          * No state changes, so read locks are sufficient here.
521          */
522         INP_LOCK_ASSERT(inp);
523         INP_HASH_LOCK_ASSERT(pcbinfo);
524
525         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
526                 return (EADDRNOTAVAIL);
527         laddr.s_addr = *laddrp;
528         if (nam != NULL && laddr.s_addr != INADDR_ANY)
529                 return (EINVAL);
530         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
531                 lookupflags = INPLOOKUP_WILDCARD;
532         if (nam == NULL) {
533                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
534                         return (error);
535         } else {
536                 sin = (struct sockaddr_in *)nam;
537                 if (nam->sa_len != sizeof (*sin))
538                         return (EINVAL);
539 #ifdef notdef
540                 /*
541                  * We should check the family, but old programs
542                  * incorrectly fail to initialize it.
543                  */
544                 if (sin->sin_family != AF_INET)
545                         return (EAFNOSUPPORT);
546 #endif
547                 error = prison_local_ip4(cred, &sin->sin_addr);
548                 if (error)
549                         return (error);
550                 if (sin->sin_port != *lportp) {
551                         /* Don't allow the port to change. */
552                         if (*lportp != 0)
553                                 return (EINVAL);
554                         lport = sin->sin_port;
555                 }
556                 /* NB: lport is left as 0 if the port isn't being changed. */
557                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
558                         /*
559                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
560                          * allow complete duplication of binding if
561                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
562                          * and a multicast address is bound on both
563                          * new and duplicated sockets.
564                          */
565                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
566                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
567                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
568                         sin->sin_port = 0;              /* yech... */
569                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
570                         /*
571                          * Is the address a local IP address? 
572                          * If INP_BINDANY is set, then the socket may be bound
573                          * to any endpoint address, local or not.
574                          */
575                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
576                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
577                                 return (EADDRNOTAVAIL);
578                 }
579                 laddr = sin->sin_addr;
580                 if (lport) {
581                         struct inpcb *t;
582                         struct tcptw *tw;
583
584                         /* GROSS */
585                         if (ntohs(lport) <= V_ipport_reservedhigh &&
586                             ntohs(lport) >= V_ipport_reservedlow &&
587                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
588                             0))
589                                 return (EACCES);
590                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
591                             priv_check_cred(inp->inp_cred,
592                             PRIV_NETINET_REUSEPORT, 0) != 0) {
593                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
594                                     lport, INPLOOKUP_WILDCARD, cred);
595         /*
596          * XXX
597          * This entire block sorely needs a rewrite.
598          */
599                                 if (t &&
600                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
601                                     (so->so_type != SOCK_STREAM ||
602                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
603                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
604                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
605                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
606                                     (inp->inp_cred->cr_uid !=
607                                      t->inp_cred->cr_uid))
608                                         return (EADDRINUSE);
609                         }
610                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
611                             lport, lookupflags, cred);
612                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
613                                 /*
614                                  * XXXRW: If an incpb has had its timewait
615                                  * state recycled, we treat the address as
616                                  * being in use (for now).  This is better
617                                  * than a panic, but not desirable.
618                                  */
619                                 tw = intotw(t);
620                                 if (tw == NULL ||
621                                     (reuseport & tw->tw_so_options) == 0)
622                                         return (EADDRINUSE);
623                         } else if (t && (reuseport & inp_so_options(t)) == 0) {
624 #ifdef INET6
625                                 if (ntohl(sin->sin_addr.s_addr) !=
626                                     INADDR_ANY ||
627                                     ntohl(t->inp_laddr.s_addr) !=
628                                     INADDR_ANY ||
629                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
630                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
631 #endif
632                                 return (EADDRINUSE);
633                         }
634                 }
635         }
636         if (*lportp != 0)
637                 lport = *lportp;
638         if (lport == 0) {
639                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
640                 if (error != 0)
641                         return (error);
642
643         }
644         *laddrp = laddr.s_addr;
645         *lportp = lport;
646         return (0);
647 }
648
649 /*
650  * Connect from a socket to a specified address.
651  * Both address and port must be specified in argument sin.
652  * If don't have a local address for this socket yet,
653  * then pick one.
654  */
655 int
656 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
657     struct ucred *cred, struct mbuf *m)
658 {
659         u_short lport, fport;
660         in_addr_t laddr, faddr;
661         int anonport, error;
662
663         INP_WLOCK_ASSERT(inp);
664         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
665
666         lport = inp->inp_lport;
667         laddr = inp->inp_laddr.s_addr;
668         anonport = (lport == 0);
669         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
670             NULL, cred);
671         if (error)
672                 return (error);
673
674         /* Do the initial binding of the local address if required. */
675         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
676                 inp->inp_lport = lport;
677                 inp->inp_laddr.s_addr = laddr;
678                 if (in_pcbinshash(inp) != 0) {
679                         inp->inp_laddr.s_addr = INADDR_ANY;
680                         inp->inp_lport = 0;
681                         return (EAGAIN);
682                 }
683         }
684
685         /* Commit the remaining changes. */
686         inp->inp_lport = lport;
687         inp->inp_laddr.s_addr = laddr;
688         inp->inp_faddr.s_addr = faddr;
689         inp->inp_fport = fport;
690         in_pcbrehash_mbuf(inp, m);
691
692         if (anonport)
693                 inp->inp_flags |= INP_ANONPORT;
694         return (0);
695 }
696
697 int
698 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
699 {
700
701         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
702 }
703
704 /*
705  * Do proper source address selection on an unbound socket in case
706  * of connect. Take jails into account as well.
707  */
708 int
709 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
710     struct ucred *cred)
711 {
712         struct ifaddr *ifa;
713         struct sockaddr *sa;
714         struct sockaddr_in *sin;
715         struct route sro;
716         int error;
717
718         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
719
720         /*
721          * Bypass source address selection and use the primary jail IP
722          * if requested.
723          */
724         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
725                 return (0);
726
727         error = 0;
728         bzero(&sro, sizeof(sro));
729
730         sin = (struct sockaddr_in *)&sro.ro_dst;
731         sin->sin_family = AF_INET;
732         sin->sin_len = sizeof(struct sockaddr_in);
733         sin->sin_addr.s_addr = faddr->s_addr;
734
735         /*
736          * If route is known our src addr is taken from the i/f,
737          * else punt.
738          *
739          * Find out route to destination.
740          */
741         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
742                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
743
744         /*
745          * If we found a route, use the address corresponding to
746          * the outgoing interface.
747          * 
748          * Otherwise assume faddr is reachable on a directly connected
749          * network and try to find a corresponding interface to take
750          * the source address from.
751          */
752         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
753                 struct in_ifaddr *ia;
754                 struct ifnet *ifp;
755
756                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
757                 if (ia == NULL)
758                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
759                 if (ia == NULL) {
760                         error = ENETUNREACH;
761                         goto done;
762                 }
763
764                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
765                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
766                         ifa_free(&ia->ia_ifa);
767                         goto done;
768                 }
769
770                 ifp = ia->ia_ifp;
771                 ifa_free(&ia->ia_ifa);
772                 ia = NULL;
773                 IF_ADDR_RLOCK(ifp);
774                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
775
776                         sa = ifa->ifa_addr;
777                         if (sa->sa_family != AF_INET)
778                                 continue;
779                         sin = (struct sockaddr_in *)sa;
780                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
781                                 ia = (struct in_ifaddr *)ifa;
782                                 break;
783                         }
784                 }
785                 if (ia != NULL) {
786                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
787                         IF_ADDR_RUNLOCK(ifp);
788                         goto done;
789                 }
790                 IF_ADDR_RUNLOCK(ifp);
791
792                 /* 3. As a last resort return the 'default' jail address. */
793                 error = prison_get_ip4(cred, laddr);
794                 goto done;
795         }
796
797         /*
798          * If the outgoing interface on the route found is not
799          * a loopback interface, use the address from that interface.
800          * In case of jails do those three steps:
801          * 1. check if the interface address belongs to the jail. If so use it.
802          * 2. check if we have any address on the outgoing interface
803          *    belonging to this jail. If so use it.
804          * 3. as a last resort return the 'default' jail address.
805          */
806         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
807                 struct in_ifaddr *ia;
808                 struct ifnet *ifp;
809
810                 /* If not jailed, use the default returned. */
811                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
812                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
813                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
814                         goto done;
815                 }
816
817                 /* Jailed. */
818                 /* 1. Check if the iface address belongs to the jail. */
819                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
820                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
821                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
822                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
823                         goto done;
824                 }
825
826                 /*
827                  * 2. Check if we have any address on the outgoing interface
828                  *    belonging to this jail.
829                  */
830                 ia = NULL;
831                 ifp = sro.ro_rt->rt_ifp;
832                 IF_ADDR_RLOCK(ifp);
833                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
834                         sa = ifa->ifa_addr;
835                         if (sa->sa_family != AF_INET)
836                                 continue;
837                         sin = (struct sockaddr_in *)sa;
838                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
839                                 ia = (struct in_ifaddr *)ifa;
840                                 break;
841                         }
842                 }
843                 if (ia != NULL) {
844                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
845                         IF_ADDR_RUNLOCK(ifp);
846                         goto done;
847                 }
848                 IF_ADDR_RUNLOCK(ifp);
849
850                 /* 3. As a last resort return the 'default' jail address. */
851                 error = prison_get_ip4(cred, laddr);
852                 goto done;
853         }
854
855         /*
856          * The outgoing interface is marked with 'loopback net', so a route
857          * to ourselves is here.
858          * Try to find the interface of the destination address and then
859          * take the address from there. That interface is not necessarily
860          * a loopback interface.
861          * In case of jails, check that it is an address of the jail
862          * and if we cannot find, fall back to the 'default' jail address.
863          */
864         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
865                 struct sockaddr_in sain;
866                 struct in_ifaddr *ia;
867
868                 bzero(&sain, sizeof(struct sockaddr_in));
869                 sain.sin_family = AF_INET;
870                 sain.sin_len = sizeof(struct sockaddr_in);
871                 sain.sin_addr.s_addr = faddr->s_addr;
872
873                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
874                 if (ia == NULL)
875                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
876                 if (ia == NULL)
877                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
878
879                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
880                         if (ia == NULL) {
881                                 error = ENETUNREACH;
882                                 goto done;
883                         }
884                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
885                         ifa_free(&ia->ia_ifa);
886                         goto done;
887                 }
888
889                 /* Jailed. */
890                 if (ia != NULL) {
891                         struct ifnet *ifp;
892
893                         ifp = ia->ia_ifp;
894                         ifa_free(&ia->ia_ifa);
895                         ia = NULL;
896                         IF_ADDR_RLOCK(ifp);
897                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
898
899                                 sa = ifa->ifa_addr;
900                                 if (sa->sa_family != AF_INET)
901                                         continue;
902                                 sin = (struct sockaddr_in *)sa;
903                                 if (prison_check_ip4(cred,
904                                     &sin->sin_addr) == 0) {
905                                         ia = (struct in_ifaddr *)ifa;
906                                         break;
907                                 }
908                         }
909                         if (ia != NULL) {
910                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
911                                 IF_ADDR_RUNLOCK(ifp);
912                                 goto done;
913                         }
914                         IF_ADDR_RUNLOCK(ifp);
915                 }
916
917                 /* 3. As a last resort return the 'default' jail address. */
918                 error = prison_get_ip4(cred, laddr);
919                 goto done;
920         }
921
922 done:
923         if (sro.ro_rt != NULL)
924                 RTFREE(sro.ro_rt);
925         return (error);
926 }
927
928 /*
929  * Set up for a connect from a socket to the specified address.
930  * On entry, *laddrp and *lportp should contain the current local
931  * address and port for the PCB; these are updated to the values
932  * that should be placed in inp_laddr and inp_lport to complete
933  * the connect.
934  *
935  * On success, *faddrp and *fportp will be set to the remote address
936  * and port. These are not updated in the error case.
937  *
938  * If the operation fails because the connection already exists,
939  * *oinpp will be set to the PCB of that connection so that the
940  * caller can decide to override it. In all other cases, *oinpp
941  * is set to NULL.
942  */
943 int
944 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
945     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
946     struct inpcb **oinpp, struct ucred *cred)
947 {
948         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
949         struct in_ifaddr *ia;
950         struct inpcb *oinp;
951         struct in_addr laddr, faddr;
952         u_short lport, fport;
953         int error;
954
955         /*
956          * Because a global state change doesn't actually occur here, a read
957          * lock is sufficient.
958          */
959         INP_LOCK_ASSERT(inp);
960         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
961
962         if (oinpp != NULL)
963                 *oinpp = NULL;
964         if (nam->sa_len != sizeof (*sin))
965                 return (EINVAL);
966         if (sin->sin_family != AF_INET)
967                 return (EAFNOSUPPORT);
968         if (sin->sin_port == 0)
969                 return (EADDRNOTAVAIL);
970         laddr.s_addr = *laddrp;
971         lport = *lportp;
972         faddr = sin->sin_addr;
973         fport = sin->sin_port;
974
975         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
976                 /*
977                  * If the destination address is INADDR_ANY,
978                  * use the primary local address.
979                  * If the supplied address is INADDR_BROADCAST,
980                  * and the primary interface supports broadcast,
981                  * choose the broadcast address for that interface.
982                  */
983                 if (faddr.s_addr == INADDR_ANY) {
984                         IN_IFADDR_RLOCK();
985                         faddr =
986                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
987                         IN_IFADDR_RUNLOCK();
988                         if (cred != NULL &&
989                             (error = prison_get_ip4(cred, &faddr)) != 0)
990                                 return (error);
991                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
992                         IN_IFADDR_RLOCK();
993                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
994                             IFF_BROADCAST)
995                                 faddr = satosin(&TAILQ_FIRST(
996                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
997                         IN_IFADDR_RUNLOCK();
998                 }
999         }
1000         if (laddr.s_addr == INADDR_ANY) {
1001                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1002                 /*
1003                  * If the destination address is multicast and an outgoing
1004                  * interface has been set as a multicast option, prefer the
1005                  * address of that interface as our source address.
1006                  */
1007                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1008                     inp->inp_moptions != NULL) {
1009                         struct ip_moptions *imo;
1010                         struct ifnet *ifp;
1011
1012                         imo = inp->inp_moptions;
1013                         if (imo->imo_multicast_ifp != NULL) {
1014                                 ifp = imo->imo_multicast_ifp;
1015                                 IN_IFADDR_RLOCK();
1016                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1017                                         if ((ia->ia_ifp == ifp) &&
1018                                             (cred == NULL ||
1019                                             prison_check_ip4(cred,
1020                                             &ia->ia_addr.sin_addr) == 0))
1021                                                 break;
1022                                 }
1023                                 if (ia == NULL)
1024                                         error = EADDRNOTAVAIL;
1025                                 else {
1026                                         laddr = ia->ia_addr.sin_addr;
1027                                         error = 0;
1028                                 }
1029                                 IN_IFADDR_RUNLOCK();
1030                         }
1031                 }
1032                 if (error)
1033                         return (error);
1034         }
1035         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1036             laddr, lport, 0, NULL);
1037         if (oinp != NULL) {
1038                 if (oinpp != NULL)
1039                         *oinpp = oinp;
1040                 return (EADDRINUSE);
1041         }
1042         if (lport == 0) {
1043                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1044                     cred);
1045                 if (error)
1046                         return (error);
1047         }
1048         *laddrp = laddr.s_addr;
1049         *lportp = lport;
1050         *faddrp = faddr.s_addr;
1051         *fportp = fport;
1052         return (0);
1053 }
1054
1055 void
1056 in_pcbdisconnect(struct inpcb *inp)
1057 {
1058
1059         INP_WLOCK_ASSERT(inp);
1060         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1061
1062         inp->inp_faddr.s_addr = INADDR_ANY;
1063         inp->inp_fport = 0;
1064         in_pcbrehash(inp);
1065 }
1066 #endif /* INET */
1067
1068 /*
1069  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1070  * For most protocols, this will be invoked immediately prior to calling
1071  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1072  * socket, in which case in_pcbfree() is deferred.
1073  */
1074 void
1075 in_pcbdetach(struct inpcb *inp)
1076 {
1077
1078         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1079
1080         inp->inp_socket->so_pcb = NULL;
1081         inp->inp_socket = NULL;
1082 }
1083
1084 /*
1085  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1086  * stability of an inpcb pointer despite the inpcb lock being released.  This
1087  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1088  * but where the inpcb lock may already held, or when acquiring a reference
1089  * via a pcbgroup.
1090  *
1091  * in_pcbref() should be used only to provide brief memory stability, and
1092  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1093  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1094  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1095  * lock and rele are the *only* safe operations that may be performed on the
1096  * inpcb.
1097  *
1098  * While the inpcb will not be freed, releasing the inpcb lock means that the
1099  * connection's state may change, so the caller should be careful to
1100  * revalidate any cached state on reacquiring the lock.  Drop the reference
1101  * using in_pcbrele().
1102  */
1103 void
1104 in_pcbref(struct inpcb *inp)
1105 {
1106
1107         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1108
1109         refcount_acquire(&inp->inp_refcount);
1110 }
1111
1112 /*
1113  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1114  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1115  * return a flag indicating whether or not the inpcb remains valid.  If it is
1116  * valid, we return with the inpcb lock held.
1117  *
1118  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1119  * reference on an inpcb.  Historically more work was done here (actually, in
1120  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1121  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1122  * about memory stability (and continued use of the write lock).
1123  */
1124 int
1125 in_pcbrele_rlocked(struct inpcb *inp)
1126 {
1127         struct inpcbinfo *pcbinfo;
1128
1129         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1130
1131         INP_RLOCK_ASSERT(inp);
1132
1133         if (refcount_release(&inp->inp_refcount) == 0) {
1134                 /*
1135                  * If the inpcb has been freed, let the caller know, even if
1136                  * this isn't the last reference.
1137                  */
1138                 if (inp->inp_flags2 & INP_FREED) {
1139                         INP_RUNLOCK(inp);
1140                         return (1);
1141                 }
1142                 return (0);
1143         }
1144
1145         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1146
1147         INP_RUNLOCK(inp);
1148         pcbinfo = inp->inp_pcbinfo;
1149         uma_zfree(pcbinfo->ipi_zone, inp);
1150         return (1);
1151 }
1152
1153 int
1154 in_pcbrele_wlocked(struct inpcb *inp)
1155 {
1156         struct inpcbinfo *pcbinfo;
1157
1158         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1159
1160         INP_WLOCK_ASSERT(inp);
1161
1162         if (refcount_release(&inp->inp_refcount) == 0) {
1163                 /*
1164                  * If the inpcb has been freed, let the caller know, even if
1165                  * this isn't the last reference.
1166                  */
1167                 if (inp->inp_flags2 & INP_FREED) {
1168                         INP_WUNLOCK(inp);
1169                         return (1);
1170                 }
1171                 return (0);
1172         }
1173
1174         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1175
1176         INP_WUNLOCK(inp);
1177         pcbinfo = inp->inp_pcbinfo;
1178         uma_zfree(pcbinfo->ipi_zone, inp);
1179         return (1);
1180 }
1181
1182 /*
1183  * Temporary wrapper.
1184  */
1185 int
1186 in_pcbrele(struct inpcb *inp)
1187 {
1188
1189         return (in_pcbrele_wlocked(inp));
1190 }
1191
1192 /*
1193  * Unconditionally schedule an inpcb to be freed by decrementing its
1194  * reference count, which should occur only after the inpcb has been detached
1195  * from its socket.  If another thread holds a temporary reference (acquired
1196  * using in_pcbref()) then the free is deferred until that reference is
1197  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1198  * work, including removal from global lists, is done in this context, where
1199  * the pcbinfo lock is held.
1200  */
1201 void
1202 in_pcbfree(struct inpcb *inp)
1203 {
1204         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1205
1206         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1207
1208 #ifdef INVARIANTS
1209         if (pcbinfo == &V_tcbinfo) {
1210                 INP_INFO_LOCK_ASSERT(pcbinfo);
1211         } else {
1212                 INP_INFO_WLOCK_ASSERT(pcbinfo);
1213         }
1214 #endif
1215         INP_WLOCK_ASSERT(inp);
1216
1217         /* XXXRW: Do as much as possible here. */
1218 #ifdef IPSEC
1219         if (inp->inp_sp != NULL)
1220                 ipsec_delete_pcbpolicy(inp);
1221 #endif
1222         INP_LIST_WLOCK(pcbinfo);
1223         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1224         in_pcbremlists(inp);
1225         INP_LIST_WUNLOCK(pcbinfo);
1226 #ifdef INET6
1227         if (inp->inp_vflag & INP_IPV6PROTO) {
1228                 ip6_freepcbopts(inp->in6p_outputopts);
1229                 if (inp->in6p_moptions != NULL)
1230                         ip6_freemoptions(inp->in6p_moptions);
1231         }
1232 #endif
1233         if (inp->inp_options)
1234                 (void)m_free(inp->inp_options);
1235 #ifdef INET
1236         if (inp->inp_moptions != NULL)
1237                 inp_freemoptions(inp->inp_moptions);
1238 #endif
1239         inp->inp_vflag = 0;
1240         inp->inp_flags2 |= INP_FREED;
1241         crfree(inp->inp_cred);
1242 #ifdef MAC
1243         mac_inpcb_destroy(inp);
1244 #endif
1245         if (!in_pcbrele_wlocked(inp))
1246                 INP_WUNLOCK(inp);
1247 }
1248
1249 /*
1250  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1251  * port reservation, and preventing it from being returned by inpcb lookups.
1252  *
1253  * It is used by TCP to mark an inpcb as unused and avoid future packet
1254  * delivery or event notification when a socket remains open but TCP has
1255  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1256  * or a RST on the wire, and allows the port binding to be reused while still
1257  * maintaining the invariant that so_pcb always points to a valid inpcb until
1258  * in_pcbdetach().
1259  *
1260  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1261  * in_pcbnotifyall() and in_pcbpurgeif0()?
1262  */
1263 void
1264 in_pcbdrop(struct inpcb *inp)
1265 {
1266
1267         INP_WLOCK_ASSERT(inp);
1268
1269         /*
1270          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1271          * the hash lock...?
1272          */
1273         inp->inp_flags |= INP_DROPPED;
1274         if (inp->inp_flags & INP_INHASHLIST) {
1275                 struct inpcbport *phd = inp->inp_phd;
1276
1277                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1278                 LIST_REMOVE(inp, inp_hash);
1279                 LIST_REMOVE(inp, inp_portlist);
1280                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1281                         LIST_REMOVE(phd, phd_hash);
1282                         free(phd, M_PCB);
1283                 }
1284                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1285                 inp->inp_flags &= ~INP_INHASHLIST;
1286 #ifdef PCBGROUP
1287                 in_pcbgroup_remove(inp);
1288 #endif
1289         }
1290 }
1291
1292 #ifdef INET
1293 /*
1294  * Common routines to return the socket addresses associated with inpcbs.
1295  */
1296 struct sockaddr *
1297 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1298 {
1299         struct sockaddr_in *sin;
1300
1301         sin = malloc(sizeof *sin, M_SONAME,
1302                 M_WAITOK | M_ZERO);
1303         sin->sin_family = AF_INET;
1304         sin->sin_len = sizeof(*sin);
1305         sin->sin_addr = *addr_p;
1306         sin->sin_port = port;
1307
1308         return (struct sockaddr *)sin;
1309 }
1310
1311 int
1312 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1313 {
1314         struct inpcb *inp;
1315         struct in_addr addr;
1316         in_port_t port;
1317
1318         inp = sotoinpcb(so);
1319         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1320
1321         INP_RLOCK(inp);
1322         port = inp->inp_lport;
1323         addr = inp->inp_laddr;
1324         INP_RUNLOCK(inp);
1325
1326         *nam = in_sockaddr(port, &addr);
1327         return 0;
1328 }
1329
1330 int
1331 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1332 {
1333         struct inpcb *inp;
1334         struct in_addr addr;
1335         in_port_t port;
1336
1337         inp = sotoinpcb(so);
1338         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1339
1340         INP_RLOCK(inp);
1341         port = inp->inp_fport;
1342         addr = inp->inp_faddr;
1343         INP_RUNLOCK(inp);
1344
1345         *nam = in_sockaddr(port, &addr);
1346         return 0;
1347 }
1348
1349 void
1350 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1351     struct inpcb *(*notify)(struct inpcb *, int))
1352 {
1353         struct inpcb *inp, *inp_temp;
1354
1355         INP_INFO_WLOCK(pcbinfo);
1356         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1357                 INP_WLOCK(inp);
1358 #ifdef INET6
1359                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1360                         INP_WUNLOCK(inp);
1361                         continue;
1362                 }
1363 #endif
1364                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1365                     inp->inp_socket == NULL) {
1366                         INP_WUNLOCK(inp);
1367                         continue;
1368                 }
1369                 if ((*notify)(inp, errno))
1370                         INP_WUNLOCK(inp);
1371         }
1372         INP_INFO_WUNLOCK(pcbinfo);
1373 }
1374
1375 void
1376 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1377 {
1378         struct inpcb *inp;
1379         struct ip_moptions *imo;
1380         int i, gap;
1381
1382         INP_INFO_WLOCK(pcbinfo);
1383         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1384                 INP_WLOCK(inp);
1385                 imo = inp->inp_moptions;
1386                 if ((inp->inp_vflag & INP_IPV4) &&
1387                     imo != NULL) {
1388                         /*
1389                          * Unselect the outgoing interface if it is being
1390                          * detached.
1391                          */
1392                         if (imo->imo_multicast_ifp == ifp)
1393                                 imo->imo_multicast_ifp = NULL;
1394
1395                         /*
1396                          * Drop multicast group membership if we joined
1397                          * through the interface being detached.
1398                          */
1399                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1400                             i++) {
1401                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1402                                         in_delmulti(imo->imo_membership[i]);
1403                                         gap++;
1404                                 } else if (gap != 0)
1405                                         imo->imo_membership[i - gap] =
1406                                             imo->imo_membership[i];
1407                         }
1408                         imo->imo_num_memberships -= gap;
1409                 }
1410                 INP_WUNLOCK(inp);
1411         }
1412         INP_INFO_WUNLOCK(pcbinfo);
1413 }
1414
1415 /*
1416  * Lookup a PCB based on the local address and port.  Caller must hold the
1417  * hash lock.  No inpcb locks or references are acquired.
1418  */
1419 #define INP_LOOKUP_MAPPED_PCB_COST      3
1420 struct inpcb *
1421 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1422     u_short lport, int lookupflags, struct ucred *cred)
1423 {
1424         struct inpcb *inp;
1425 #ifdef INET6
1426         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1427 #else
1428         int matchwild = 3;
1429 #endif
1430         int wildcard;
1431
1432         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1433             ("%s: invalid lookup flags %d", __func__, lookupflags));
1434
1435         INP_HASH_LOCK_ASSERT(pcbinfo);
1436
1437         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1438                 struct inpcbhead *head;
1439                 /*
1440                  * Look for an unconnected (wildcard foreign addr) PCB that
1441                  * matches the local address and port we're looking for.
1442                  */
1443                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1444                     0, pcbinfo->ipi_hashmask)];
1445                 LIST_FOREACH(inp, head, inp_hash) {
1446 #ifdef INET6
1447                         /* XXX inp locking */
1448                         if ((inp->inp_vflag & INP_IPV4) == 0)
1449                                 continue;
1450 #endif
1451                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1452                             inp->inp_laddr.s_addr == laddr.s_addr &&
1453                             inp->inp_lport == lport) {
1454                                 /*
1455                                  * Found?
1456                                  */
1457                                 if (cred == NULL ||
1458                                     prison_equal_ip4(cred->cr_prison,
1459                                         inp->inp_cred->cr_prison))
1460                                         return (inp);
1461                         }
1462                 }
1463                 /*
1464                  * Not found.
1465                  */
1466                 return (NULL);
1467         } else {
1468                 struct inpcbporthead *porthash;
1469                 struct inpcbport *phd;
1470                 struct inpcb *match = NULL;
1471                 /*
1472                  * Best fit PCB lookup.
1473                  *
1474                  * First see if this local port is in use by looking on the
1475                  * port hash list.
1476                  */
1477                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1478                     pcbinfo->ipi_porthashmask)];
1479                 LIST_FOREACH(phd, porthash, phd_hash) {
1480                         if (phd->phd_port == lport)
1481                                 break;
1482                 }
1483                 if (phd != NULL) {
1484                         /*
1485                          * Port is in use by one or more PCBs. Look for best
1486                          * fit.
1487                          */
1488                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1489                                 wildcard = 0;
1490                                 if (cred != NULL &&
1491                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1492                                         cred->cr_prison))
1493                                         continue;
1494 #ifdef INET6
1495                                 /* XXX inp locking */
1496                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1497                                         continue;
1498                                 /*
1499                                  * We never select the PCB that has
1500                                  * INP_IPV6 flag and is bound to :: if
1501                                  * we have another PCB which is bound
1502                                  * to 0.0.0.0.  If a PCB has the
1503                                  * INP_IPV6 flag, then we set its cost
1504                                  * higher than IPv4 only PCBs.
1505                                  *
1506                                  * Note that the case only happens
1507                                  * when a socket is bound to ::, under
1508                                  * the condition that the use of the
1509                                  * mapped address is allowed.
1510                                  */
1511                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1512                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1513 #endif
1514                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1515                                         wildcard++;
1516                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1517                                         if (laddr.s_addr == INADDR_ANY)
1518                                                 wildcard++;
1519                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1520                                                 continue;
1521                                 } else {
1522                                         if (laddr.s_addr != INADDR_ANY)
1523                                                 wildcard++;
1524                                 }
1525                                 if (wildcard < matchwild) {
1526                                         match = inp;
1527                                         matchwild = wildcard;
1528                                         if (matchwild == 0)
1529                                                 break;
1530                                 }
1531                         }
1532                 }
1533                 return (match);
1534         }
1535 }
1536 #undef INP_LOOKUP_MAPPED_PCB_COST
1537
1538 #ifdef PCBGROUP
1539 /*
1540  * Lookup PCB in hash list, using pcbgroup tables.
1541  */
1542 static struct inpcb *
1543 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1544     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1545     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1546 {
1547         struct inpcbhead *head;
1548         struct inpcb *inp, *tmpinp;
1549         u_short fport = fport_arg, lport = lport_arg;
1550
1551         /*
1552          * First look for an exact match.
1553          */
1554         tmpinp = NULL;
1555         INP_GROUP_LOCK(pcbgroup);
1556         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1557             pcbgroup->ipg_hashmask)];
1558         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1559 #ifdef INET6
1560                 /* XXX inp locking */
1561                 if ((inp->inp_vflag & INP_IPV4) == 0)
1562                         continue;
1563 #endif
1564                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1565                     inp->inp_laddr.s_addr == laddr.s_addr &&
1566                     inp->inp_fport == fport &&
1567                     inp->inp_lport == lport) {
1568                         /*
1569                          * XXX We should be able to directly return
1570                          * the inp here, without any checks.
1571                          * Well unless both bound with SO_REUSEPORT?
1572                          */
1573                         if (prison_flag(inp->inp_cred, PR_IP4))
1574                                 goto found;
1575                         if (tmpinp == NULL)
1576                                 tmpinp = inp;
1577                 }
1578         }
1579         if (tmpinp != NULL) {
1580                 inp = tmpinp;
1581                 goto found;
1582         }
1583
1584         /*
1585          * Then look for a wildcard match, if requested.
1586          */
1587         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1588                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1589 #ifdef INET6
1590                 struct inpcb *local_wild_mapped = NULL;
1591 #endif
1592                 struct inpcb *jail_wild = NULL;
1593                 struct inpcbhead *head;
1594                 int injail;
1595
1596                 /*
1597                  * Order of socket selection - we always prefer jails.
1598                  *      1. jailed, non-wild.
1599                  *      2. jailed, wild.
1600                  *      3. non-jailed, non-wild.
1601                  *      4. non-jailed, wild.
1602                  */
1603                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1604                     0, pcbinfo->ipi_wildmask)];
1605                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1606 #ifdef INET6
1607                         /* XXX inp locking */
1608                         if ((inp->inp_vflag & INP_IPV4) == 0)
1609                                 continue;
1610 #endif
1611                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1612                             inp->inp_lport != lport)
1613                                 continue;
1614
1615                         /* XXX inp locking */
1616                         if (ifp && ifp->if_type == IFT_FAITH &&
1617                             (inp->inp_flags & INP_FAITH) == 0)
1618                                 continue;
1619
1620                         injail = prison_flag(inp->inp_cred, PR_IP4);
1621                         if (injail) {
1622                                 if (prison_check_ip4(inp->inp_cred,
1623                                     &laddr) != 0)
1624                                         continue;
1625                         } else {
1626                                 if (local_exact != NULL)
1627                                         continue;
1628                         }
1629
1630                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1631                                 if (injail)
1632                                         goto found;
1633                                 else
1634                                         local_exact = inp;
1635                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1636 #ifdef INET6
1637                                 /* XXX inp locking, NULL check */
1638                                 if (inp->inp_vflag & INP_IPV6PROTO)
1639                                         local_wild_mapped = inp;
1640                                 else
1641 #endif
1642                                         if (injail)
1643                                                 jail_wild = inp;
1644                                         else
1645                                                 local_wild = inp;
1646                         }
1647                 } /* LIST_FOREACH */
1648                 inp = jail_wild;
1649                 if (inp == NULL)
1650                         inp = local_exact;
1651                 if (inp == NULL)
1652                         inp = local_wild;
1653 #ifdef INET6
1654                 if (inp == NULL)
1655                         inp = local_wild_mapped;
1656 #endif
1657                 if (inp != NULL)
1658                         goto found;
1659         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1660         INP_GROUP_UNLOCK(pcbgroup);
1661         return (NULL);
1662
1663 found:
1664         in_pcbref(inp);
1665         INP_GROUP_UNLOCK(pcbgroup);
1666         if (lookupflags & INPLOOKUP_WLOCKPCB) {
1667                 INP_WLOCK(inp);
1668                 if (in_pcbrele_wlocked(inp))
1669                         return (NULL);
1670         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1671                 INP_RLOCK(inp);
1672                 if (in_pcbrele_rlocked(inp))
1673                         return (NULL);
1674         } else
1675                 panic("%s: locking bug", __func__);
1676         return (inp);
1677 }
1678 #endif /* PCBGROUP */
1679
1680 /*
1681  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1682  * that the caller has locked the hash list, and will not perform any further
1683  * locking or reference operations on either the hash list or the connection.
1684  */
1685 static struct inpcb *
1686 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1687     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1688     struct ifnet *ifp)
1689 {
1690         struct inpcbhead *head;
1691         struct inpcb *inp, *tmpinp;
1692         u_short fport = fport_arg, lport = lport_arg;
1693
1694         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1695             ("%s: invalid lookup flags %d", __func__, lookupflags));
1696
1697         INP_HASH_LOCK_ASSERT(pcbinfo);
1698
1699         /*
1700          * First look for an exact match.
1701          */
1702         tmpinp = NULL;
1703         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1704             pcbinfo->ipi_hashmask)];
1705         LIST_FOREACH(inp, head, inp_hash) {
1706 #ifdef INET6
1707                 /* XXX inp locking */
1708                 if ((inp->inp_vflag & INP_IPV4) == 0)
1709                         continue;
1710 #endif
1711                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1712                     inp->inp_laddr.s_addr == laddr.s_addr &&
1713                     inp->inp_fport == fport &&
1714                     inp->inp_lport == lport) {
1715                         /*
1716                          * XXX We should be able to directly return
1717                          * the inp here, without any checks.
1718                          * Well unless both bound with SO_REUSEPORT?
1719                          */
1720                         if (prison_flag(inp->inp_cred, PR_IP4))
1721                                 return (inp);
1722                         if (tmpinp == NULL)
1723                                 tmpinp = inp;
1724                 }
1725         }
1726         if (tmpinp != NULL)
1727                 return (tmpinp);
1728
1729         /*
1730          * Then look for a wildcard match, if requested.
1731          */
1732         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1733                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1734 #ifdef INET6
1735                 struct inpcb *local_wild_mapped = NULL;
1736 #endif
1737                 struct inpcb *jail_wild = NULL;
1738                 int injail;
1739
1740                 /*
1741                  * Order of socket selection - we always prefer jails.
1742                  *      1. jailed, non-wild.
1743                  *      2. jailed, wild.
1744                  *      3. non-jailed, non-wild.
1745                  *      4. non-jailed, wild.
1746                  */
1747
1748                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1749                     0, pcbinfo->ipi_hashmask)];
1750                 LIST_FOREACH(inp, head, inp_hash) {
1751 #ifdef INET6
1752                         /* XXX inp locking */
1753                         if ((inp->inp_vflag & INP_IPV4) == 0)
1754                                 continue;
1755 #endif
1756                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1757                             inp->inp_lport != lport)
1758                                 continue;
1759
1760                         /* XXX inp locking */
1761                         if (ifp && ifp->if_type == IFT_FAITH &&
1762                             (inp->inp_flags & INP_FAITH) == 0)
1763                                 continue;
1764
1765                         injail = prison_flag(inp->inp_cred, PR_IP4);
1766                         if (injail) {
1767                                 if (prison_check_ip4(inp->inp_cred,
1768                                     &laddr) != 0)
1769                                         continue;
1770                         } else {
1771                                 if (local_exact != NULL)
1772                                         continue;
1773                         }
1774
1775                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1776                                 if (injail)
1777                                         return (inp);
1778                                 else
1779                                         local_exact = inp;
1780                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1781 #ifdef INET6
1782                                 /* XXX inp locking, NULL check */
1783                                 if (inp->inp_vflag & INP_IPV6PROTO)
1784                                         local_wild_mapped = inp;
1785                                 else
1786 #endif
1787                                         if (injail)
1788                                                 jail_wild = inp;
1789                                         else
1790                                                 local_wild = inp;
1791                         }
1792                 } /* LIST_FOREACH */
1793                 if (jail_wild != NULL)
1794                         return (jail_wild);
1795                 if (local_exact != NULL)
1796                         return (local_exact);
1797                 if (local_wild != NULL)
1798                         return (local_wild);
1799 #ifdef INET6
1800                 if (local_wild_mapped != NULL)
1801                         return (local_wild_mapped);
1802 #endif
1803         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1804
1805         return (NULL);
1806 }
1807
1808 /*
1809  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1810  * hash list lock, and will return the inpcb locked (i.e., requires
1811  * INPLOOKUP_LOCKPCB).
1812  */
1813 static struct inpcb *
1814 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1815     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1816     struct ifnet *ifp)
1817 {
1818         struct inpcb *inp;
1819
1820         INP_HASH_RLOCK(pcbinfo);
1821         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1822             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1823         if (inp != NULL) {
1824                 in_pcbref(inp);
1825                 INP_HASH_RUNLOCK(pcbinfo);
1826                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1827                         INP_WLOCK(inp);
1828                         if (in_pcbrele_wlocked(inp))
1829                                 return (NULL);
1830                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1831                         INP_RLOCK(inp);
1832                         if (in_pcbrele_rlocked(inp))
1833                                 return (NULL);
1834                 } else
1835                         panic("%s: locking bug", __func__);
1836         } else
1837                 INP_HASH_RUNLOCK(pcbinfo);
1838         return (inp);
1839 }
1840
1841 /*
1842  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1843  * from which a pre-calculated hash value may be extracted.
1844  *
1845  * Possibly more of this logic should be in in_pcbgroup.c.
1846  */
1847 struct inpcb *
1848 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1849     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1850 {
1851 #if defined(PCBGROUP)
1852         struct inpcbgroup *pcbgroup;
1853 #endif
1854
1855         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1856             ("%s: invalid lookup flags %d", __func__, lookupflags));
1857         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1858             ("%s: LOCKPCB not set", __func__));
1859
1860 #if defined(PCBGROUP)
1861         if (in_pcbgroup_enabled(pcbinfo)) {
1862                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1863                     fport);
1864                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1865                     laddr, lport, lookupflags, ifp));
1866         }
1867 #endif
1868         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1869             lookupflags, ifp));
1870 }
1871
1872 struct inpcb *
1873 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1874     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1875     struct ifnet *ifp, struct mbuf *m)
1876 {
1877 #ifdef PCBGROUP
1878         struct inpcbgroup *pcbgroup;
1879 #endif
1880
1881         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1882             ("%s: invalid lookup flags %d", __func__, lookupflags));
1883         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1884             ("%s: LOCKPCB not set", __func__));
1885
1886 #ifdef PCBGROUP
1887         if (in_pcbgroup_enabled(pcbinfo)) {
1888                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1889                     m->m_pkthdr.flowid);
1890                 if (pcbgroup != NULL)
1891                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1892                             fport, laddr, lport, lookupflags, ifp));
1893                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1894                     fport);
1895                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1896                     laddr, lport, lookupflags, ifp));
1897         }
1898 #endif
1899         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1900             lookupflags, ifp));
1901 }
1902 #endif /* INET */
1903
1904 /*
1905  * Insert PCB onto various hash lists.
1906  */
1907 static int
1908 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1909 {
1910         struct inpcbhead *pcbhash;
1911         struct inpcbporthead *pcbporthash;
1912         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1913         struct inpcbport *phd;
1914         u_int32_t hashkey_faddr;
1915
1916         INP_WLOCK_ASSERT(inp);
1917         INP_HASH_WLOCK_ASSERT(pcbinfo);
1918
1919         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1920             ("in_pcbinshash: INP_INHASHLIST"));
1921
1922 #ifdef INET6
1923         if (inp->inp_vflag & INP_IPV6)
1924                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1925         else
1926 #endif
1927         hashkey_faddr = inp->inp_faddr.s_addr;
1928
1929         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1930                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1931
1932         pcbporthash = &pcbinfo->ipi_porthashbase[
1933             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1934
1935         /*
1936          * Go through port list and look for a head for this lport.
1937          */
1938         LIST_FOREACH(phd, pcbporthash, phd_hash) {
1939                 if (phd->phd_port == inp->inp_lport)
1940                         break;
1941         }
1942         /*
1943          * If none exists, malloc one and tack it on.
1944          */
1945         if (phd == NULL) {
1946                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1947                 if (phd == NULL) {
1948                         return (ENOBUFS); /* XXX */
1949                 }
1950                 phd->phd_port = inp->inp_lport;
1951                 LIST_INIT(&phd->phd_pcblist);
1952                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1953         }
1954         inp->inp_phd = phd;
1955         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1956         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1957         inp->inp_flags |= INP_INHASHLIST;
1958 #ifdef PCBGROUP
1959         if (do_pcbgroup_update)
1960                 in_pcbgroup_update(inp);
1961 #endif
1962         return (0);
1963 }
1964
1965 /*
1966  * For now, there are two public interfaces to insert an inpcb into the hash
1967  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1968  * is used only in the TCP syncache, where in_pcbinshash is called before the
1969  * full 4-tuple is set for the inpcb, and we don't want to install in the
1970  * pcbgroup until later.
1971  *
1972  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1973  * connection groups, and partially initialised inpcbs should not be exposed
1974  * to either reservation hash tables or pcbgroups.
1975  */
1976 int
1977 in_pcbinshash(struct inpcb *inp)
1978 {
1979
1980         return (in_pcbinshash_internal(inp, 1));
1981 }
1982
1983 int
1984 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1985 {
1986
1987         return (in_pcbinshash_internal(inp, 0));
1988 }
1989
1990 /*
1991  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1992  * changed. NOTE: This does not handle the case of the lport changing (the
1993  * hashed port list would have to be updated as well), so the lport must
1994  * not change after in_pcbinshash() has been called.
1995  */
1996 void
1997 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1998 {
1999         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2000         struct inpcbhead *head;
2001         u_int32_t hashkey_faddr;
2002
2003         INP_WLOCK_ASSERT(inp);
2004         INP_HASH_WLOCK_ASSERT(pcbinfo);
2005
2006         KASSERT(inp->inp_flags & INP_INHASHLIST,
2007             ("in_pcbrehash: !INP_INHASHLIST"));
2008
2009 #ifdef INET6
2010         if (inp->inp_vflag & INP_IPV6)
2011                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
2012         else
2013 #endif
2014         hashkey_faddr = inp->inp_faddr.s_addr;
2015
2016         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2017                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2018
2019         LIST_REMOVE(inp, inp_hash);
2020         LIST_INSERT_HEAD(head, inp, inp_hash);
2021
2022 #ifdef PCBGROUP
2023         if (m != NULL)
2024                 in_pcbgroup_update_mbuf(inp, m);
2025         else
2026                 in_pcbgroup_update(inp);
2027 #endif
2028 }
2029
2030 void
2031 in_pcbrehash(struct inpcb *inp)
2032 {
2033
2034         in_pcbrehash_mbuf(inp, NULL);
2035 }
2036
2037 /*
2038  * Remove PCB from various lists.
2039  */
2040 static void
2041 in_pcbremlists(struct inpcb *inp)
2042 {
2043         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2044
2045 #ifdef INVARIANTS
2046         if (pcbinfo == &V_tcbinfo) {
2047                 INP_INFO_RLOCK_ASSERT(pcbinfo);
2048         } else {
2049                 INP_INFO_WLOCK_ASSERT(pcbinfo);
2050         }
2051 #endif
2052
2053         INP_WLOCK_ASSERT(inp);
2054         INP_LIST_WLOCK_ASSERT(pcbinfo);
2055
2056         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2057         if (inp->inp_flags & INP_INHASHLIST) {
2058                 struct inpcbport *phd = inp->inp_phd;
2059
2060                 INP_HASH_WLOCK(pcbinfo);
2061                 LIST_REMOVE(inp, inp_hash);
2062                 LIST_REMOVE(inp, inp_portlist);
2063                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2064                         LIST_REMOVE(phd, phd_hash);
2065                         free(phd, M_PCB);
2066                 }
2067                 INP_HASH_WUNLOCK(pcbinfo);
2068                 inp->inp_flags &= ~INP_INHASHLIST;
2069         }
2070         LIST_REMOVE(inp, inp_list);
2071         pcbinfo->ipi_count--;
2072 #ifdef PCBGROUP
2073         in_pcbgroup_remove(inp);
2074 #endif
2075 }
2076
2077 /*
2078  * A set label operation has occurred at the socket layer, propagate the
2079  * label change into the in_pcb for the socket.
2080  */
2081 void
2082 in_pcbsosetlabel(struct socket *so)
2083 {
2084 #ifdef MAC
2085         struct inpcb *inp;
2086
2087         inp = sotoinpcb(so);
2088         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2089
2090         INP_WLOCK(inp);
2091         SOCK_LOCK(so);
2092         mac_inpcb_sosetlabel(so, inp);
2093         SOCK_UNLOCK(so);
2094         INP_WUNLOCK(inp);
2095 #endif
2096 }
2097
2098 /*
2099  * ipport_tick runs once per second, determining if random port allocation
2100  * should be continued.  If more than ipport_randomcps ports have been
2101  * allocated in the last second, then we return to sequential port
2102  * allocation. We return to random allocation only once we drop below
2103  * ipport_randomcps for at least ipport_randomtime seconds.
2104  */
2105 static void
2106 ipport_tick(void *xtp)
2107 {
2108         VNET_ITERATOR_DECL(vnet_iter);
2109
2110         VNET_LIST_RLOCK_NOSLEEP();
2111         VNET_FOREACH(vnet_iter) {
2112                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2113                 if (V_ipport_tcpallocs <=
2114                     V_ipport_tcplastcount + V_ipport_randomcps) {
2115                         if (V_ipport_stoprandom > 0)
2116                                 V_ipport_stoprandom--;
2117                 } else
2118                         V_ipport_stoprandom = V_ipport_randomtime;
2119                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2120                 CURVNET_RESTORE();
2121         }
2122         VNET_LIST_RUNLOCK_NOSLEEP();
2123         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2124 }
2125
2126 static void
2127 ip_fini(void *xtp)
2128 {
2129
2130         callout_stop(&ipport_tick_callout);
2131 }
2132
2133 /* 
2134  * The ipport_callout should start running at about the time we attach the
2135  * inet or inet6 domains.
2136  */
2137 static void
2138 ipport_tick_init(const void *unused __unused)
2139 {
2140
2141         /* Start ipport_tick. */
2142         callout_init(&ipport_tick_callout, 1);
2143         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2144         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2145                 SHUTDOWN_PRI_DEFAULT);
2146 }
2147 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2148     ipport_tick_init, NULL);
2149
2150 void
2151 inp_wlock(struct inpcb *inp)
2152 {
2153
2154         INP_WLOCK(inp);
2155 }
2156
2157 void
2158 inp_wunlock(struct inpcb *inp)
2159 {
2160
2161         INP_WUNLOCK(inp);
2162 }
2163
2164 void
2165 inp_rlock(struct inpcb *inp)
2166 {
2167
2168         INP_RLOCK(inp);
2169 }
2170
2171 void
2172 inp_runlock(struct inpcb *inp)
2173 {
2174
2175         INP_RUNLOCK(inp);
2176 }
2177
2178 #ifdef INVARIANTS
2179 void
2180 inp_lock_assert(struct inpcb *inp)
2181 {
2182
2183         INP_WLOCK_ASSERT(inp);
2184 }
2185
2186 void
2187 inp_unlock_assert(struct inpcb *inp)
2188 {
2189
2190         INP_UNLOCK_ASSERT(inp);
2191 }
2192 #endif
2193
2194 void
2195 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2196 {
2197         struct inpcb *inp;
2198
2199         INP_INFO_WLOCK(&V_tcbinfo);
2200         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2201                 INP_WLOCK(inp);
2202                 func(inp, arg);
2203                 INP_WUNLOCK(inp);
2204         }
2205         INP_INFO_WUNLOCK(&V_tcbinfo);
2206 }
2207
2208 struct socket *
2209 inp_inpcbtosocket(struct inpcb *inp)
2210 {
2211
2212         INP_WLOCK_ASSERT(inp);
2213         return (inp->inp_socket);
2214 }
2215
2216 struct tcpcb *
2217 inp_inpcbtotcpcb(struct inpcb *inp)
2218 {
2219
2220         INP_WLOCK_ASSERT(inp);
2221         return ((struct tcpcb *)inp->inp_ppcb);
2222 }
2223
2224 int
2225 inp_ip_tos_get(const struct inpcb *inp)
2226 {
2227
2228         return (inp->inp_ip_tos);
2229 }
2230
2231 void
2232 inp_ip_tos_set(struct inpcb *inp, int val)
2233 {
2234
2235         inp->inp_ip_tos = val;
2236 }
2237
2238 void
2239 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2240     uint32_t *faddr, uint16_t *fp)
2241 {
2242
2243         INP_LOCK_ASSERT(inp);
2244         *laddr = inp->inp_laddr.s_addr;
2245         *faddr = inp->inp_faddr.s_addr;
2246         *lp = inp->inp_lport;
2247         *fp = inp->inp_fport;
2248 }
2249
2250 struct inpcb *
2251 so_sotoinpcb(struct socket *so)
2252 {
2253
2254         return (sotoinpcb(so));
2255 }
2256
2257 struct tcpcb *
2258 so_sototcpcb(struct socket *so)
2259 {
2260
2261         return (sototcpcb(so));
2262 }
2263
2264 #ifdef DDB
2265 static void
2266 db_print_indent(int indent)
2267 {
2268         int i;
2269
2270         for (i = 0; i < indent; i++)
2271                 db_printf(" ");
2272 }
2273
2274 static void
2275 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2276 {
2277         char faddr_str[48], laddr_str[48];
2278
2279         db_print_indent(indent);
2280         db_printf("%s at %p\n", name, inc);
2281
2282         indent += 2;
2283
2284 #ifdef INET6
2285         if (inc->inc_flags & INC_ISIPV6) {
2286                 /* IPv6. */
2287                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2288                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2289         } else
2290 #endif
2291         {
2292                 /* IPv4. */
2293                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2294                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2295         }
2296         db_print_indent(indent);
2297         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2298             ntohs(inc->inc_lport));
2299         db_print_indent(indent);
2300         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2301             ntohs(inc->inc_fport));
2302 }
2303
2304 static void
2305 db_print_inpflags(int inp_flags)
2306 {
2307         int comma;
2308
2309         comma = 0;
2310         if (inp_flags & INP_RECVOPTS) {
2311                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2312                 comma = 1;
2313         }
2314         if (inp_flags & INP_RECVRETOPTS) {
2315                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2316                 comma = 1;
2317         }
2318         if (inp_flags & INP_RECVDSTADDR) {
2319                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2320                 comma = 1;
2321         }
2322         if (inp_flags & INP_HDRINCL) {
2323                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2324                 comma = 1;
2325         }
2326         if (inp_flags & INP_HIGHPORT) {
2327                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2328                 comma = 1;
2329         }
2330         if (inp_flags & INP_LOWPORT) {
2331                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2332                 comma = 1;
2333         }
2334         if (inp_flags & INP_ANONPORT) {
2335                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2336                 comma = 1;
2337         }
2338         if (inp_flags & INP_RECVIF) {
2339                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2340                 comma = 1;
2341         }
2342         if (inp_flags & INP_MTUDISC) {
2343                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2344                 comma = 1;
2345         }
2346         if (inp_flags & INP_FAITH) {
2347                 db_printf("%sINP_FAITH", comma ? ", " : "");
2348                 comma = 1;
2349         }
2350         if (inp_flags & INP_RECVTTL) {
2351                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2352                 comma = 1;
2353         }
2354         if (inp_flags & INP_DONTFRAG) {
2355                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2356                 comma = 1;
2357         }
2358         if (inp_flags & INP_RECVTOS) {
2359                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2360                 comma = 1;
2361         }
2362         if (inp_flags & IN6P_IPV6_V6ONLY) {
2363                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2364                 comma = 1;
2365         }
2366         if (inp_flags & IN6P_PKTINFO) {
2367                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2368                 comma = 1;
2369         }
2370         if (inp_flags & IN6P_HOPLIMIT) {
2371                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2372                 comma = 1;
2373         }
2374         if (inp_flags & IN6P_HOPOPTS) {
2375                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2376                 comma = 1;
2377         }
2378         if (inp_flags & IN6P_DSTOPTS) {
2379                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2380                 comma = 1;
2381         }
2382         if (inp_flags & IN6P_RTHDR) {
2383                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2384                 comma = 1;
2385         }
2386         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2387                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2388                 comma = 1;
2389         }
2390         if (inp_flags & IN6P_TCLASS) {
2391                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2392                 comma = 1;
2393         }
2394         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2395                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2396                 comma = 1;
2397         }
2398         if (inp_flags & INP_TIMEWAIT) {
2399                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2400                 comma  = 1;
2401         }
2402         if (inp_flags & INP_ONESBCAST) {
2403                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2404                 comma  = 1;
2405         }
2406         if (inp_flags & INP_DROPPED) {
2407                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2408                 comma  = 1;
2409         }
2410         if (inp_flags & INP_SOCKREF) {
2411                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2412                 comma  = 1;
2413         }
2414         if (inp_flags & IN6P_RFC2292) {
2415                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2416                 comma = 1;
2417         }
2418         if (inp_flags & IN6P_MTU) {
2419                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2420                 comma = 1;
2421         }
2422 }
2423
2424 static void
2425 db_print_inpvflag(u_char inp_vflag)
2426 {
2427         int comma;
2428
2429         comma = 0;
2430         if (inp_vflag & INP_IPV4) {
2431                 db_printf("%sINP_IPV4", comma ? ", " : "");
2432                 comma  = 1;
2433         }
2434         if (inp_vflag & INP_IPV6) {
2435                 db_printf("%sINP_IPV6", comma ? ", " : "");
2436                 comma  = 1;
2437         }
2438         if (inp_vflag & INP_IPV6PROTO) {
2439                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2440                 comma  = 1;
2441         }
2442 }
2443
2444 static void
2445 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2446 {
2447
2448         db_print_indent(indent);
2449         db_printf("%s at %p\n", name, inp);
2450
2451         indent += 2;
2452
2453         db_print_indent(indent);
2454         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2455
2456         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2457
2458         db_print_indent(indent);
2459         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2460             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2461
2462         db_print_indent(indent);
2463         db_printf("inp_label: %p   inp_flags: 0x%x (",
2464            inp->inp_label, inp->inp_flags);
2465         db_print_inpflags(inp->inp_flags);
2466         db_printf(")\n");
2467
2468         db_print_indent(indent);
2469         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2470             inp->inp_vflag);
2471         db_print_inpvflag(inp->inp_vflag);
2472         db_printf(")\n");
2473
2474         db_print_indent(indent);
2475         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2476             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2477
2478         db_print_indent(indent);
2479 #ifdef INET6
2480         if (inp->inp_vflag & INP_IPV6) {
2481                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2482                     "in6p_moptions: %p\n", inp->in6p_options,
2483                     inp->in6p_outputopts, inp->in6p_moptions);
2484                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2485                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2486                     inp->in6p_hops);
2487         } else
2488 #endif
2489         {
2490                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2491                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2492                     inp->inp_options, inp->inp_moptions);
2493         }
2494
2495         db_print_indent(indent);
2496         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2497             (uintmax_t)inp->inp_gencnt);
2498 }
2499
2500 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2501 {
2502         struct inpcb *inp;
2503
2504         if (!have_addr) {
2505                 db_printf("usage: show inpcb <addr>\n");
2506                 return;
2507         }
2508         inp = (struct inpcb *)addr;
2509
2510         db_print_inpcb(inp, "inpcb", 0);
2511 }
2512 #endif /* DDB */