]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/vm/vm_fault.c
Fix a leak of the wired pages when unwiring of the PROT_NONE-mapped
[FreeBSD/stable/10.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107
108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109
110 #define VM_FAULT_READ_BEHIND    8
111 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
112 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
113 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
114 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int lookup_still_valid;
126         struct vnode *vp;
127 };
128
129 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
130 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
131             int faultcount, int reqpage);
132
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136
137         vm_page_xunbusy(fs->m);
138         vm_page_lock(fs->m);
139         vm_page_deactivate(fs->m);
140         vm_page_unlock(fs->m);
141         fs->m = NULL;
142 }
143
144 static inline void
145 unlock_map(struct faultstate *fs)
146 {
147
148         if (fs->lookup_still_valid) {
149                 vm_map_lookup_done(fs->map, fs->entry);
150                 fs->lookup_still_valid = FALSE;
151         }
152 }
153
154 static void
155 unlock_and_deallocate(struct faultstate *fs)
156 {
157
158         vm_object_pip_wakeup(fs->object);
159         VM_OBJECT_WUNLOCK(fs->object);
160         if (fs->object != fs->first_object) {
161                 VM_OBJECT_WLOCK(fs->first_object);
162                 vm_page_lock(fs->first_m);
163                 vm_page_free(fs->first_m);
164                 vm_page_unlock(fs->first_m);
165                 vm_object_pip_wakeup(fs->first_object);
166                 VM_OBJECT_WUNLOCK(fs->first_object);
167                 fs->first_m = NULL;
168         }
169         vm_object_deallocate(fs->first_object);
170         unlock_map(fs); 
171         if (fs->vp != NULL) { 
172                 vput(fs->vp);
173                 fs->vp = NULL;
174         }
175 }
176
177 /*
178  * TRYPAGER - used by vm_fault to calculate whether the pager for the
179  *            current object *might* contain the page.
180  *
181  *            default objects are zero-fill, there is no real pager.
182  */
183 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
184                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
185
186 /*
187  *      vm_fault:
188  *
189  *      Handle a page fault occurring at the given address,
190  *      requiring the given permissions, in the map specified.
191  *      If successful, the page is inserted into the
192  *      associated physical map.
193  *
194  *      NOTE: the given address should be truncated to the
195  *      proper page address.
196  *
197  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
198  *      a standard error specifying why the fault is fatal is returned.
199  *
200  *      The map in question must be referenced, and remains so.
201  *      Caller may hold no locks.
202  */
203 int
204 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
205     int fault_flags)
206 {
207         struct thread *td;
208         int result;
209
210         td = curthread;
211         if ((td->td_pflags & TDP_NOFAULTING) != 0)
212                 return (KERN_PROTECTION_FAILURE);
213 #ifdef KTRACE
214         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
215                 ktrfault(vaddr, fault_type);
216 #endif
217         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
218             NULL);
219 #ifdef KTRACE
220         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
221                 ktrfaultend(result);
222 #endif
223         return (result);
224 }
225
226 int
227 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
228     int fault_flags, vm_page_t *m_hold)
229 {
230         vm_prot_t prot;
231         long ahead, behind;
232         int alloc_req, era, faultcount, nera, reqpage, result;
233         boolean_t growstack, is_first_object_locked, wired;
234         int map_generation;
235         vm_object_t next_object;
236         vm_page_t marray[VM_FAULT_READ_MAX];
237         int hardfault;
238         struct faultstate fs;
239         struct vnode *vp;
240         vm_page_t m;
241         int locked, error;
242
243         hardfault = 0;
244         growstack = TRUE;
245         PCPU_INC(cnt.v_vm_faults);
246         fs.vp = NULL;
247         faultcount = reqpage = 0;
248
249 RetryFault:;
250
251         /*
252          * Find the backing store object and offset into it to begin the
253          * search.
254          */
255         fs.map = map;
256         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
257             &fs.first_object, &fs.first_pindex, &prot, &wired);
258         if (result != KERN_SUCCESS) {
259                 if (growstack && result == KERN_INVALID_ADDRESS &&
260                     map != kernel_map) {
261                         result = vm_map_growstack(curproc, vaddr);
262                         if (result != KERN_SUCCESS)
263                                 return (KERN_FAILURE);
264                         growstack = FALSE;
265                         goto RetryFault;
266                 }
267                 return (result);
268         }
269
270         map_generation = fs.map->timestamp;
271
272         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
273                 if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
274                         vm_map_unlock_read(fs.map);
275                         return (KERN_FAILURE);
276                 }
277                 panic("vm_fault: fault on nofault entry, addr: %lx",
278                     (u_long)vaddr);
279         }
280
281         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
282             fs.entry->wiring_thread != curthread) {
283                 vm_map_unlock_read(fs.map);
284                 vm_map_lock(fs.map);
285                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
286                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
287                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
288                         vm_map_unlock_and_wait(fs.map, 0);
289                 } else
290                         vm_map_unlock(fs.map);
291                 goto RetryFault;
292         }
293
294         if (wired)
295                 fault_type = prot | (fault_type & VM_PROT_COPY);
296
297         if (fs.vp == NULL /* avoid locked vnode leak */ &&
298             (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
299             /* avoid calling vm_object_set_writeable_dirty() */
300             ((prot & VM_PROT_WRITE) == 0 ||
301             fs.first_object->type != OBJT_VNODE ||
302             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
303                 VM_OBJECT_RLOCK(fs.first_object);
304                 if ((prot & VM_PROT_WRITE) != 0 &&
305                     fs.first_object->type == OBJT_VNODE &&
306                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
307                         goto fast_failed;
308                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
309                 /* A busy page can be mapped for read|execute access. */
310                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
311                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
312                         goto fast_failed;
313                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
314                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
315                    0), 0);
316                 if (result != KERN_SUCCESS)
317                         goto fast_failed;
318                 if (m_hold != NULL) {
319                         *m_hold = m;
320                         vm_page_lock(m);
321                         vm_page_hold(m);
322                         vm_page_unlock(m);
323                 }
324                 if ((fault_type & VM_PROT_WRITE) != 0 &&
325                     (m->oflags & VPO_UNMANAGED) == 0) {
326                         vm_page_dirty(m);
327                         vm_pager_page_unswapped(m);
328                 }
329                 VM_OBJECT_RUNLOCK(fs.first_object);
330                 if (!wired)
331                         vm_fault_prefault(&fs, vaddr, 0, 0);
332                 vm_map_lookup_done(fs.map, fs.entry);
333                 curthread->td_ru.ru_minflt++;
334                 return (KERN_SUCCESS);
335 fast_failed:
336                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
337                         VM_OBJECT_RUNLOCK(fs.first_object);
338                         VM_OBJECT_WLOCK(fs.first_object);
339                 }
340         } else {
341                 VM_OBJECT_WLOCK(fs.first_object);
342         }
343
344         /*
345          * Make a reference to this object to prevent its disposal while we
346          * are messing with it.  Once we have the reference, the map is free
347          * to be diddled.  Since objects reference their shadows (and copies),
348          * they will stay around as well.
349          *
350          * Bump the paging-in-progress count to prevent size changes (e.g. 
351          * truncation operations) during I/O.  This must be done after
352          * obtaining the vnode lock in order to avoid possible deadlocks.
353          */
354         vm_object_reference_locked(fs.first_object);
355         vm_object_pip_add(fs.first_object, 1);
356
357         fs.lookup_still_valid = TRUE;
358
359         fs.first_m = NULL;
360
361         /*
362          * Search for the page at object/offset.
363          */
364         fs.object = fs.first_object;
365         fs.pindex = fs.first_pindex;
366         while (TRUE) {
367                 /*
368                  * If the object is dead, we stop here
369                  */
370                 if (fs.object->flags & OBJ_DEAD) {
371                         unlock_and_deallocate(&fs);
372                         return (KERN_PROTECTION_FAILURE);
373                 }
374
375                 /*
376                  * See if page is resident
377                  */
378                 fs.m = vm_page_lookup(fs.object, fs.pindex);
379                 if (fs.m != NULL) {
380                         /*
381                          * Wait/Retry if the page is busy.  We have to do this
382                          * if the page is either exclusive or shared busy
383                          * because the vm_pager may be using read busy for
384                          * pageouts (and even pageins if it is the vnode
385                          * pager), and we could end up trying to pagein and
386                          * pageout the same page simultaneously.
387                          *
388                          * We can theoretically allow the busy case on a read
389                          * fault if the page is marked valid, but since such
390                          * pages are typically already pmap'd, putting that
391                          * special case in might be more effort then it is 
392                          * worth.  We cannot under any circumstances mess
393                          * around with a shared busied page except, perhaps,
394                          * to pmap it.
395                          */
396                         if (vm_page_busied(fs.m)) {
397                                 /*
398                                  * Reference the page before unlocking and
399                                  * sleeping so that the page daemon is less
400                                  * likely to reclaim it. 
401                                  */
402                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
403                                 if (fs.object != fs.first_object) {
404                                         if (!VM_OBJECT_TRYWLOCK(
405                                             fs.first_object)) {
406                                                 VM_OBJECT_WUNLOCK(fs.object);
407                                                 VM_OBJECT_WLOCK(fs.first_object);
408                                                 VM_OBJECT_WLOCK(fs.object);
409                                         }
410                                         vm_page_lock(fs.first_m);
411                                         vm_page_free(fs.first_m);
412                                         vm_page_unlock(fs.first_m);
413                                         vm_object_pip_wakeup(fs.first_object);
414                                         VM_OBJECT_WUNLOCK(fs.first_object);
415                                         fs.first_m = NULL;
416                                 }
417                                 unlock_map(&fs);
418                                 if (fs.m == vm_page_lookup(fs.object,
419                                     fs.pindex)) {
420                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
421                                 }
422                                 vm_object_pip_wakeup(fs.object);
423                                 VM_OBJECT_WUNLOCK(fs.object);
424                                 PCPU_INC(cnt.v_intrans);
425                                 vm_object_deallocate(fs.first_object);
426                                 goto RetryFault;
427                         }
428                         vm_page_lock(fs.m);
429                         vm_page_remque(fs.m);
430                         vm_page_unlock(fs.m);
431
432                         /*
433                          * Mark page busy for other processes, and the 
434                          * pagedaemon.  If it still isn't completely valid
435                          * (readable), jump to readrest, else break-out ( we
436                          * found the page ).
437                          */
438                         vm_page_xbusy(fs.m);
439                         if (fs.m->valid != VM_PAGE_BITS_ALL)
440                                 goto readrest;
441                         break;
442                 }
443
444                 /*
445                  * Page is not resident, If this is the search termination
446                  * or the pager might contain the page, allocate a new page.
447                  */
448                 if (TRYPAGER || fs.object == fs.first_object) {
449                         if (fs.pindex >= fs.object->size) {
450                                 unlock_and_deallocate(&fs);
451                                 return (KERN_PROTECTION_FAILURE);
452                         }
453
454                         /*
455                          * Allocate a new page for this object/offset pair.
456                          *
457                          * Unlocked read of the p_flag is harmless. At
458                          * worst, the P_KILLED might be not observed
459                          * there, and allocation can fail, causing
460                          * restart and new reading of the p_flag.
461                          */
462                         fs.m = NULL;
463                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
464 #if VM_NRESERVLEVEL > 0
465                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
466                                         fs.object->flags |= OBJ_COLORED;
467                                         fs.object->pg_color = atop(vaddr) -
468                                             fs.pindex;
469                                 }
470 #endif
471                                 alloc_req = P_KILLED(curproc) ?
472                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
473                                 if (fs.object->type != OBJT_VNODE &&
474                                     fs.object->backing_object == NULL)
475                                         alloc_req |= VM_ALLOC_ZERO;
476                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
477                                     alloc_req);
478                         }
479                         if (fs.m == NULL) {
480                                 unlock_and_deallocate(&fs);
481                                 VM_WAITPFAULT;
482                                 goto RetryFault;
483                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
484                                 break;
485                 }
486
487 readrest:
488                 /*
489                  * We have found a valid page or we have allocated a new page.
490                  * The page thus may not be valid or may not be entirely 
491                  * valid.
492                  *
493                  * Attempt to fault-in the page if there is a chance that the
494                  * pager has it, and potentially fault in additional pages
495                  * at the same time.
496                  */
497                 if (TRYPAGER) {
498                         int rv;
499                         u_char behavior = vm_map_entry_behavior(fs.entry);
500
501                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
502                             P_KILLED(curproc)) {
503                                 behind = 0;
504                                 ahead = 0;
505                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
506                                 behind = 0;
507                                 ahead = atop(fs.entry->end - vaddr) - 1;
508                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
509                                         ahead = VM_FAULT_READ_AHEAD_MAX;
510                                 if (fs.pindex == fs.entry->next_read)
511                                         vm_fault_cache_behind(&fs,
512                                             VM_FAULT_READ_MAX);
513                         } else {
514                                 /*
515                                  * If this is a sequential page fault, then
516                                  * arithmetically increase the number of pages
517                                  * in the read-ahead window.  Otherwise, reset
518                                  * the read-ahead window to its smallest size.
519                                  */
520                                 behind = atop(vaddr - fs.entry->start);
521                                 if (behind > VM_FAULT_READ_BEHIND)
522                                         behind = VM_FAULT_READ_BEHIND;
523                                 ahead = atop(fs.entry->end - vaddr) - 1;
524                                 era = fs.entry->read_ahead;
525                                 if (fs.pindex == fs.entry->next_read) {
526                                         nera = era + behind;
527                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
528                                                 nera = VM_FAULT_READ_AHEAD_MAX;
529                                         behind = 0;
530                                         if (ahead > nera)
531                                                 ahead = nera;
532                                         if (era == VM_FAULT_READ_AHEAD_MAX)
533                                                 vm_fault_cache_behind(&fs,
534                                                     VM_FAULT_CACHE_BEHIND);
535                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
536                                         ahead = VM_FAULT_READ_AHEAD_MIN;
537                                 if (era != ahead)
538                                         fs.entry->read_ahead = ahead;
539                         }
540
541                         /*
542                          * Call the pager to retrieve the data, if any, after
543                          * releasing the lock on the map.  We hold a ref on
544                          * fs.object and the pages are exclusive busied.
545                          */
546                         unlock_map(&fs);
547
548                         if (fs.object->type == OBJT_VNODE) {
549                                 vp = fs.object->handle;
550                                 if (vp == fs.vp)
551                                         goto vnode_locked;
552                                 else if (fs.vp != NULL) {
553                                         vput(fs.vp);
554                                         fs.vp = NULL;
555                                 }
556                                 locked = VOP_ISLOCKED(vp);
557
558                                 if (locked != LK_EXCLUSIVE)
559                                         locked = LK_SHARED;
560                                 /* Do not sleep for vnode lock while fs.m is busy */
561                                 error = vget(vp, locked | LK_CANRECURSE |
562                                     LK_NOWAIT, curthread);
563                                 if (error != 0) {
564                                         vhold(vp);
565                                         release_page(&fs);
566                                         unlock_and_deallocate(&fs);
567                                         error = vget(vp, locked | LK_RETRY |
568                                             LK_CANRECURSE, curthread);
569                                         vdrop(vp);
570                                         fs.vp = vp;
571                                         KASSERT(error == 0,
572                                             ("vm_fault: vget failed"));
573                                         goto RetryFault;
574                                 }
575                                 fs.vp = vp;
576                         }
577 vnode_locked:
578                         KASSERT(fs.vp == NULL || !fs.map->system_map,
579                             ("vm_fault: vnode-backed object mapped by system map"));
580
581                         /*
582                          * now we find out if any other pages should be paged
583                          * in at this time this routine checks to see if the
584                          * pages surrounding this fault reside in the same
585                          * object as the page for this fault.  If they do,
586                          * then they are faulted in also into the object.  The
587                          * array "marray" returned contains an array of
588                          * vm_page_t structs where one of them is the
589                          * vm_page_t passed to the routine.  The reqpage
590                          * return value is the index into the marray for the
591                          * vm_page_t passed to the routine.
592                          *
593                          * fs.m plus the additional pages are exclusive busied.
594                          */
595                         faultcount = vm_fault_additional_pages(
596                             fs.m, behind, ahead, marray, &reqpage);
597
598                         rv = faultcount ?
599                             vm_pager_get_pages(fs.object, marray, faultcount,
600                                 reqpage) : VM_PAGER_FAIL;
601
602                         if (rv == VM_PAGER_OK) {
603                                 /*
604                                  * Found the page. Leave it busy while we play
605                                  * with it.
606                                  */
607
608                                 /*
609                                  * Relookup in case pager changed page. Pager
610                                  * is responsible for disposition of old page
611                                  * if moved.
612                                  */
613                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
614                                 if (!fs.m) {
615                                         unlock_and_deallocate(&fs);
616                                         goto RetryFault;
617                                 }
618
619                                 hardfault++;
620                                 break; /* break to PAGE HAS BEEN FOUND */
621                         }
622                         /*
623                          * Remove the bogus page (which does not exist at this
624                          * object/offset); before doing so, we must get back
625                          * our object lock to preserve our invariant.
626                          *
627                          * Also wake up any other process that may want to bring
628                          * in this page.
629                          *
630                          * If this is the top-level object, we must leave the
631                          * busy page to prevent another process from rushing
632                          * past us, and inserting the page in that object at
633                          * the same time that we are.
634                          */
635                         if (rv == VM_PAGER_ERROR)
636                                 printf("vm_fault: pager read error, pid %d (%s)\n",
637                                     curproc->p_pid, curproc->p_comm);
638                         /*
639                          * Data outside the range of the pager or an I/O error
640                          */
641                         /*
642                          * XXX - the check for kernel_map is a kludge to work
643                          * around having the machine panic on a kernel space
644                          * fault w/ I/O error.
645                          */
646                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
647                                 (rv == VM_PAGER_BAD)) {
648                                 vm_page_lock(fs.m);
649                                 vm_page_free(fs.m);
650                                 vm_page_unlock(fs.m);
651                                 fs.m = NULL;
652                                 unlock_and_deallocate(&fs);
653                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
654                         }
655                         if (fs.object != fs.first_object) {
656                                 vm_page_lock(fs.m);
657                                 vm_page_free(fs.m);
658                                 vm_page_unlock(fs.m);
659                                 fs.m = NULL;
660                                 /*
661                                  * XXX - we cannot just fall out at this
662                                  * point, m has been freed and is invalid!
663                                  */
664                         }
665                 }
666
667                 /*
668                  * We get here if the object has default pager (or unwiring) 
669                  * or the pager doesn't have the page.
670                  */
671                 if (fs.object == fs.first_object)
672                         fs.first_m = fs.m;
673
674                 /*
675                  * Move on to the next object.  Lock the next object before
676                  * unlocking the current one.
677                  */
678                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
679                 next_object = fs.object->backing_object;
680                 if (next_object == NULL) {
681                         /*
682                          * If there's no object left, fill the page in the top
683                          * object with zeros.
684                          */
685                         if (fs.object != fs.first_object) {
686                                 vm_object_pip_wakeup(fs.object);
687                                 VM_OBJECT_WUNLOCK(fs.object);
688
689                                 fs.object = fs.first_object;
690                                 fs.pindex = fs.first_pindex;
691                                 fs.m = fs.first_m;
692                                 VM_OBJECT_WLOCK(fs.object);
693                         }
694                         fs.first_m = NULL;
695
696                         /*
697                          * Zero the page if necessary and mark it valid.
698                          */
699                         if ((fs.m->flags & PG_ZERO) == 0) {
700                                 pmap_zero_page(fs.m);
701                         } else {
702                                 PCPU_INC(cnt.v_ozfod);
703                         }
704                         PCPU_INC(cnt.v_zfod);
705                         fs.m->valid = VM_PAGE_BITS_ALL;
706                         /* Don't try to prefault neighboring pages. */
707                         faultcount = 1;
708                         break;  /* break to PAGE HAS BEEN FOUND */
709                 } else {
710                         KASSERT(fs.object != next_object,
711                             ("object loop %p", next_object));
712                         VM_OBJECT_WLOCK(next_object);
713                         vm_object_pip_add(next_object, 1);
714                         if (fs.object != fs.first_object)
715                                 vm_object_pip_wakeup(fs.object);
716                         VM_OBJECT_WUNLOCK(fs.object);
717                         fs.object = next_object;
718                 }
719         }
720
721         vm_page_assert_xbusied(fs.m);
722
723         /*
724          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
725          * is held.]
726          */
727
728         /*
729          * If the page is being written, but isn't already owned by the
730          * top-level object, we have to copy it into a new page owned by the
731          * top-level object.
732          */
733         if (fs.object != fs.first_object) {
734                 /*
735                  * We only really need to copy if we want to write it.
736                  */
737                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
738                         /*
739                          * This allows pages to be virtually copied from a 
740                          * backing_object into the first_object, where the 
741                          * backing object has no other refs to it, and cannot
742                          * gain any more refs.  Instead of a bcopy, we just 
743                          * move the page from the backing object to the 
744                          * first object.  Note that we must mark the page 
745                          * dirty in the first object so that it will go out 
746                          * to swap when needed.
747                          */
748                         is_first_object_locked = FALSE;
749                         if (
750                                 /*
751                                  * Only one shadow object
752                                  */
753                                 (fs.object->shadow_count == 1) &&
754                                 /*
755                                  * No COW refs, except us
756                                  */
757                                 (fs.object->ref_count == 1) &&
758                                 /*
759                                  * No one else can look this object up
760                                  */
761                                 (fs.object->handle == NULL) &&
762                                 /*
763                                  * No other ways to look the object up
764                                  */
765                                 ((fs.object->type == OBJT_DEFAULT) ||
766                                  (fs.object->type == OBJT_SWAP)) &&
767                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
768                                 /*
769                                  * We don't chase down the shadow chain
770                                  */
771                             fs.object == fs.first_object->backing_object) {
772                                 /*
773                                  * get rid of the unnecessary page
774                                  */
775                                 vm_page_lock(fs.first_m);
776                                 vm_page_free(fs.first_m);
777                                 vm_page_unlock(fs.first_m);
778                                 /*
779                                  * grab the page and put it into the 
780                                  * process'es object.  The page is 
781                                  * automatically made dirty.
782                                  */
783                                 if (vm_page_rename(fs.m, fs.first_object,
784                                     fs.first_pindex)) {
785                                         unlock_and_deallocate(&fs);
786                                         goto RetryFault;
787                                 }
788                                 vm_page_xbusy(fs.m);
789                                 fs.first_m = fs.m;
790                                 fs.m = NULL;
791                                 PCPU_INC(cnt.v_cow_optim);
792                         } else {
793                                 /*
794                                  * Oh, well, lets copy it.
795                                  */
796                                 pmap_copy_page(fs.m, fs.first_m);
797                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
798                                 if (wired && (fault_flags &
799                                     VM_FAULT_CHANGE_WIRING) == 0) {
800                                         vm_page_lock(fs.first_m);
801                                         vm_page_wire(fs.first_m);
802                                         vm_page_unlock(fs.first_m);
803                                         
804                                         vm_page_lock(fs.m);
805                                         vm_page_unwire(fs.m, FALSE);
806                                         vm_page_unlock(fs.m);
807                                 }
808                                 /*
809                                  * We no longer need the old page or object.
810                                  */
811                                 release_page(&fs);
812                         }
813                         /*
814                          * fs.object != fs.first_object due to above 
815                          * conditional
816                          */
817                         vm_object_pip_wakeup(fs.object);
818                         VM_OBJECT_WUNLOCK(fs.object);
819                         /*
820                          * Only use the new page below...
821                          */
822                         fs.object = fs.first_object;
823                         fs.pindex = fs.first_pindex;
824                         fs.m = fs.first_m;
825                         if (!is_first_object_locked)
826                                 VM_OBJECT_WLOCK(fs.object);
827                         PCPU_INC(cnt.v_cow_faults);
828                         curthread->td_cow++;
829                 } else {
830                         prot &= ~VM_PROT_WRITE;
831                 }
832         }
833
834         /*
835          * We must verify that the maps have not changed since our last
836          * lookup.
837          */
838         if (!fs.lookup_still_valid) {
839                 vm_object_t retry_object;
840                 vm_pindex_t retry_pindex;
841                 vm_prot_t retry_prot;
842
843                 if (!vm_map_trylock_read(fs.map)) {
844                         release_page(&fs);
845                         unlock_and_deallocate(&fs);
846                         goto RetryFault;
847                 }
848                 fs.lookup_still_valid = TRUE;
849                 if (fs.map->timestamp != map_generation) {
850                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
851                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
852
853                         /*
854                          * If we don't need the page any longer, put it on the inactive
855                          * list (the easiest thing to do here).  If no one needs it,
856                          * pageout will grab it eventually.
857                          */
858                         if (result != KERN_SUCCESS) {
859                                 release_page(&fs);
860                                 unlock_and_deallocate(&fs);
861
862                                 /*
863                                  * If retry of map lookup would have blocked then
864                                  * retry fault from start.
865                                  */
866                                 if (result == KERN_FAILURE)
867                                         goto RetryFault;
868                                 return (result);
869                         }
870                         if ((retry_object != fs.first_object) ||
871                             (retry_pindex != fs.first_pindex)) {
872                                 release_page(&fs);
873                                 unlock_and_deallocate(&fs);
874                                 goto RetryFault;
875                         }
876
877                         /*
878                          * Check whether the protection has changed or the object has
879                          * been copied while we left the map unlocked. Changing from
880                          * read to write permission is OK - we leave the page
881                          * write-protected, and catch the write fault. Changing from
882                          * write to read permission means that we can't mark the page
883                          * write-enabled after all.
884                          */
885                         prot &= retry_prot;
886                 }
887         }
888         /*
889          * If the page was filled by a pager, update the map entry's
890          * last read offset.  Since the pager does not return the
891          * actual set of pages that it read, this update is based on
892          * the requested set.  Typically, the requested and actual
893          * sets are the same.
894          *
895          * XXX The following assignment modifies the map
896          * without holding a write lock on it.
897          */
898         if (hardfault)
899                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
900
901         if (((prot & VM_PROT_WRITE) != 0 ||
902             (fault_flags & VM_FAULT_DIRTY) != 0) &&
903             (fs.m->oflags & VPO_UNMANAGED) == 0) {
904                 vm_object_set_writeable_dirty(fs.object);
905
906                 /*
907                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
908                  * if the page is already dirty to prevent data written with
909                  * the expectation of being synced from not being synced.
910                  * Likewise if this entry does not request NOSYNC then make
911                  * sure the page isn't marked NOSYNC.  Applications sharing
912                  * data should use the same flags to avoid ping ponging.
913                  */
914                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
915                         if (fs.m->dirty == 0)
916                                 fs.m->oflags |= VPO_NOSYNC;
917                 } else {
918                         fs.m->oflags &= ~VPO_NOSYNC;
919                 }
920
921                 /*
922                  * If the fault is a write, we know that this page is being
923                  * written NOW so dirty it explicitly to save on 
924                  * pmap_is_modified() calls later.
925                  *
926                  * Also tell the backing pager, if any, that it should remove
927                  * any swap backing since the page is now dirty.
928                  */
929                 if (((fault_type & VM_PROT_WRITE) != 0 &&
930                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
931                     (fault_flags & VM_FAULT_DIRTY) != 0) {
932                         vm_page_dirty(fs.m);
933                         vm_pager_page_unswapped(fs.m);
934                 }
935         }
936
937         vm_page_assert_xbusied(fs.m);
938
939         /*
940          * Page must be completely valid or it is not fit to
941          * map into user space.  vm_pager_get_pages() ensures this.
942          */
943         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
944             ("vm_fault: page %p partially invalid", fs.m));
945         VM_OBJECT_WUNLOCK(fs.object);
946
947         /*
948          * Put this page into the physical map.  We had to do the unlock above
949          * because pmap_enter() may sleep.  We don't put the page
950          * back on the active queue until later so that the pageout daemon
951          * won't find it (yet).
952          */
953         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
954             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
955         if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
956             wired == 0)
957                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
958         VM_OBJECT_WLOCK(fs.object);
959         vm_page_lock(fs.m);
960
961         /*
962          * If the page is not wired down, then put it where the pageout daemon
963          * can find it.
964          */
965         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
966                 if (wired)
967                         vm_page_wire(fs.m);
968                 else
969                         vm_page_unwire(fs.m, 1);
970         } else
971                 vm_page_activate(fs.m);
972         if (m_hold != NULL) {
973                 *m_hold = fs.m;
974                 vm_page_hold(fs.m);
975         }
976         vm_page_unlock(fs.m);
977         vm_page_xunbusy(fs.m);
978
979         /*
980          * Unlock everything, and return
981          */
982         unlock_and_deallocate(&fs);
983         if (hardfault) {
984                 PCPU_INC(cnt.v_io_faults);
985                 curthread->td_ru.ru_majflt++;
986         } else 
987                 curthread->td_ru.ru_minflt++;
988
989         return (KERN_SUCCESS);
990 }
991
992 /*
993  * Speed up the reclamation of up to "distance" pages that precede the
994  * faulting pindex within the first object of the shadow chain.
995  */
996 static void
997 vm_fault_cache_behind(const struct faultstate *fs, int distance)
998 {
999         vm_object_t first_object, object;
1000         vm_page_t m, m_prev;
1001         vm_pindex_t pindex;
1002
1003         object = fs->object;
1004         VM_OBJECT_ASSERT_WLOCKED(object);
1005         first_object = fs->first_object;
1006         if (first_object != object) {
1007                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1008                         VM_OBJECT_WUNLOCK(object);
1009                         VM_OBJECT_WLOCK(first_object);
1010                         VM_OBJECT_WLOCK(object);
1011                 }
1012         }
1013         /* Neither fictitious nor unmanaged pages can be cached. */
1014         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1015                 if (fs->first_pindex < distance)
1016                         pindex = 0;
1017                 else
1018                         pindex = fs->first_pindex - distance;
1019                 if (pindex < OFF_TO_IDX(fs->entry->offset))
1020                         pindex = OFF_TO_IDX(fs->entry->offset);
1021                 m = first_object != object ? fs->first_m : fs->m;
1022                 vm_page_assert_xbusied(m);
1023                 m_prev = vm_page_prev(m);
1024                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1025                     m->valid == VM_PAGE_BITS_ALL) {
1026                         m_prev = vm_page_prev(m);
1027                         if (vm_page_busied(m))
1028                                 continue;
1029                         vm_page_lock(m);
1030                         if (m->hold_count == 0 && m->wire_count == 0) {
1031                                 pmap_remove_all(m);
1032                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1033                                 if (m->dirty != 0)
1034                                         vm_page_deactivate(m);
1035                                 else
1036                                         vm_page_cache(m);
1037                         }
1038                         vm_page_unlock(m);
1039                 }
1040         }
1041         if (first_object != object)
1042                 VM_OBJECT_WUNLOCK(first_object);
1043 }
1044
1045 /*
1046  * vm_fault_prefault provides a quick way of clustering
1047  * pagefaults into a processes address space.  It is a "cousin"
1048  * of vm_map_pmap_enter, except it runs at page fault time instead
1049  * of mmap time.
1050  */
1051 static void
1052 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1053     int faultcount, int reqpage)
1054 {
1055         pmap_t pmap;
1056         vm_map_entry_t entry;
1057         vm_object_t backing_object, lobject;
1058         vm_offset_t addr, starta;
1059         vm_pindex_t pindex;
1060         vm_page_t m;
1061         int backward, forward, i;
1062
1063         pmap = fs->map->pmap;
1064         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1065                 return;
1066
1067         if (faultcount > 0) {
1068                 backward = reqpage;
1069                 forward = faultcount - reqpage - 1;
1070         } else {
1071                 backward = PFBAK;
1072                 forward = PFFOR;
1073         }
1074         entry = fs->entry;
1075
1076         starta = addra - backward * PAGE_SIZE;
1077         if (starta < entry->start) {
1078                 starta = entry->start;
1079         } else if (starta > addra) {
1080                 starta = 0;
1081         }
1082
1083         /*
1084          * Generate the sequence of virtual addresses that are candidates for
1085          * prefaulting in an outward spiral from the faulting virtual address,
1086          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1087          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1088          * If the candidate address doesn't have a backing physical page, then
1089          * the loop immediately terminates.
1090          */
1091         for (i = 0; i < 2 * imax(backward, forward); i++) {
1092                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1093                     PAGE_SIZE);
1094                 if (addr > addra + forward * PAGE_SIZE)
1095                         addr = 0;
1096
1097                 if (addr < starta || addr >= entry->end)
1098                         continue;
1099
1100                 if (!pmap_is_prefaultable(pmap, addr))
1101                         continue;
1102
1103                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1104                 lobject = entry->object.vm_object;
1105                 VM_OBJECT_RLOCK(lobject);
1106                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1107                     lobject->type == OBJT_DEFAULT &&
1108                     (backing_object = lobject->backing_object) != NULL) {
1109                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1110                             0, ("vm_fault_prefault: unaligned object offset"));
1111                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1112                         VM_OBJECT_RLOCK(backing_object);
1113                         VM_OBJECT_RUNLOCK(lobject);
1114                         lobject = backing_object;
1115                 }
1116                 if (m == NULL) {
1117                         VM_OBJECT_RUNLOCK(lobject);
1118                         break;
1119                 }
1120                 if (m->valid == VM_PAGE_BITS_ALL &&
1121                     (m->flags & PG_FICTITIOUS) == 0)
1122                         pmap_enter_quick(pmap, addr, m, entry->protection);
1123                 VM_OBJECT_RUNLOCK(lobject);
1124         }
1125 }
1126
1127 /*
1128  * Hold each of the physical pages that are mapped by the specified range of
1129  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1130  * and allow the specified types of access, "prot".  If all of the implied
1131  * pages are successfully held, then the number of held pages is returned
1132  * together with pointers to those pages in the array "ma".  However, if any
1133  * of the pages cannot be held, -1 is returned.
1134  */
1135 int
1136 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1137     vm_prot_t prot, vm_page_t *ma, int max_count)
1138 {
1139         vm_offset_t end, va;
1140         vm_page_t *mp;
1141         int count;
1142         boolean_t pmap_failed;
1143
1144         if (len == 0)
1145                 return (0);
1146         end = round_page(addr + len);
1147         addr = trunc_page(addr);
1148
1149         /*
1150          * Check for illegal addresses.
1151          */
1152         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1153                 return (-1);
1154
1155         if (atop(end - addr) > max_count)
1156                 panic("vm_fault_quick_hold_pages: count > max_count");
1157         count = atop(end - addr);
1158
1159         /*
1160          * Most likely, the physical pages are resident in the pmap, so it is
1161          * faster to try pmap_extract_and_hold() first.
1162          */
1163         pmap_failed = FALSE;
1164         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1165                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1166                 if (*mp == NULL)
1167                         pmap_failed = TRUE;
1168                 else if ((prot & VM_PROT_WRITE) != 0 &&
1169                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1170                         /*
1171                          * Explicitly dirty the physical page.  Otherwise, the
1172                          * caller's changes may go unnoticed because they are
1173                          * performed through an unmanaged mapping or by a DMA
1174                          * operation.
1175                          *
1176                          * The object lock is not held here.
1177                          * See vm_page_clear_dirty_mask().
1178                          */
1179                         vm_page_dirty(*mp);
1180                 }
1181         }
1182         if (pmap_failed) {
1183                 /*
1184                  * One or more pages could not be held by the pmap.  Either no
1185                  * page was mapped at the specified virtual address or that
1186                  * mapping had insufficient permissions.  Attempt to fault in
1187                  * and hold these pages.
1188                  */
1189                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1190                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1191                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1192                                 goto error;
1193         }
1194         return (count);
1195 error:  
1196         for (mp = ma; mp < ma + count; mp++)
1197                 if (*mp != NULL) {
1198                         vm_page_lock(*mp);
1199                         vm_page_unhold(*mp);
1200                         vm_page_unlock(*mp);
1201                 }
1202         return (-1);
1203 }
1204
1205 /*
1206  *      Routine:
1207  *              vm_fault_copy_entry
1208  *      Function:
1209  *              Create new shadow object backing dst_entry with private copy of
1210  *              all underlying pages. When src_entry is equal to dst_entry,
1211  *              function implements COW for wired-down map entry. Otherwise,
1212  *              it forks wired entry into dst_map.
1213  *
1214  *      In/out conditions:
1215  *              The source and destination maps must be locked for write.
1216  *              The source map entry must be wired down (or be a sharing map
1217  *              entry corresponding to a main map entry that is wired down).
1218  */
1219 void
1220 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1221     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1222     vm_ooffset_t *fork_charge)
1223 {
1224         vm_object_t backing_object, dst_object, object, src_object;
1225         vm_pindex_t dst_pindex, pindex, src_pindex;
1226         vm_prot_t access, prot;
1227         vm_offset_t vaddr;
1228         vm_page_t dst_m;
1229         vm_page_t src_m;
1230         boolean_t upgrade;
1231
1232 #ifdef  lint
1233         src_map++;
1234 #endif  /* lint */
1235
1236         upgrade = src_entry == dst_entry;
1237         access = prot = dst_entry->protection;
1238
1239         src_object = src_entry->object.vm_object;
1240         src_pindex = OFF_TO_IDX(src_entry->offset);
1241
1242         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1243                 dst_object = src_object;
1244                 vm_object_reference(dst_object);
1245         } else {
1246                 /*
1247                  * Create the top-level object for the destination entry. (Doesn't
1248                  * actually shadow anything - we copy the pages directly.)
1249                  */
1250                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1251                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1252 #if VM_NRESERVLEVEL > 0
1253                 dst_object->flags |= OBJ_COLORED;
1254                 dst_object->pg_color = atop(dst_entry->start);
1255 #endif
1256         }
1257
1258         VM_OBJECT_WLOCK(dst_object);
1259         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1260             ("vm_fault_copy_entry: vm_object not NULL"));
1261         if (src_object != dst_object) {
1262                 dst_entry->object.vm_object = dst_object;
1263                 dst_entry->offset = 0;
1264                 dst_object->charge = dst_entry->end - dst_entry->start;
1265         }
1266         if (fork_charge != NULL) {
1267                 KASSERT(dst_entry->cred == NULL,
1268                     ("vm_fault_copy_entry: leaked swp charge"));
1269                 dst_object->cred = curthread->td_ucred;
1270                 crhold(dst_object->cred);
1271                 *fork_charge += dst_object->charge;
1272         } else if (dst_object->cred == NULL) {
1273                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1274                     dst_entry));
1275                 dst_object->cred = dst_entry->cred;
1276                 dst_entry->cred = NULL;
1277         }
1278
1279         /*
1280          * If not an upgrade, then enter the mappings in the pmap as
1281          * read and/or execute accesses.  Otherwise, enter them as
1282          * write accesses.
1283          *
1284          * A writeable large page mapping is only created if all of
1285          * the constituent small page mappings are modified. Marking
1286          * PTEs as modified on inception allows promotion to happen
1287          * without taking potentially large number of soft faults.
1288          */
1289         if (!upgrade)
1290                 access &= ~VM_PROT_WRITE;
1291
1292         /*
1293          * Loop through all of the virtual pages within the entry's
1294          * range, copying each page from the source object to the
1295          * destination object.  Since the source is wired, those pages
1296          * must exist.  In contrast, the destination is pageable.
1297          * Since the destination object does share any backing storage
1298          * with the source object, all of its pages must be dirtied,
1299          * regardless of whether they can be written.
1300          */
1301         for (vaddr = dst_entry->start, dst_pindex = 0;
1302             vaddr < dst_entry->end;
1303             vaddr += PAGE_SIZE, dst_pindex++) {
1304 again:
1305                 /*
1306                  * Find the page in the source object, and copy it in.
1307                  * Because the source is wired down, the page will be
1308                  * in memory.
1309                  */
1310                 if (src_object != dst_object)
1311                         VM_OBJECT_RLOCK(src_object);
1312                 object = src_object;
1313                 pindex = src_pindex + dst_pindex;
1314                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1315                     (backing_object = object->backing_object) != NULL) {
1316                         /*
1317                          * Unless the source mapping is read-only or
1318                          * it is presently being upgraded from
1319                          * read-only, the first object in the shadow
1320                          * chain should provide all of the pages.  In
1321                          * other words, this loop body should never be
1322                          * executed when the source mapping is already
1323                          * read/write.
1324                          */
1325                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1326                             upgrade,
1327                             ("vm_fault_copy_entry: main object missing page"));
1328
1329                         VM_OBJECT_RLOCK(backing_object);
1330                         pindex += OFF_TO_IDX(object->backing_object_offset);
1331                         if (object != dst_object)
1332                                 VM_OBJECT_RUNLOCK(object);
1333                         object = backing_object;
1334                 }
1335                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1336
1337                 if (object != dst_object) {
1338                         /*
1339                          * Allocate a page in the destination object.
1340                          */
1341                         dst_m = vm_page_alloc(dst_object, (src_object ==
1342                             dst_object ? src_pindex : 0) + dst_pindex,
1343                             VM_ALLOC_NORMAL);
1344                         if (dst_m == NULL) {
1345                                 VM_OBJECT_WUNLOCK(dst_object);
1346                                 VM_OBJECT_RUNLOCK(object);
1347                                 VM_WAIT;
1348                                 VM_OBJECT_WLOCK(dst_object);
1349                                 goto again;
1350                         }
1351                         pmap_copy_page(src_m, dst_m);
1352                         VM_OBJECT_RUNLOCK(object);
1353                         dst_m->valid = VM_PAGE_BITS_ALL;
1354                         dst_m->dirty = VM_PAGE_BITS_ALL;
1355                 } else {
1356                         dst_m = src_m;
1357                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1358                                 goto again;
1359                         vm_page_xbusy(dst_m);
1360                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1361                             ("invalid dst page %p", dst_m));
1362                 }
1363                 VM_OBJECT_WUNLOCK(dst_object);
1364
1365                 /*
1366                  * Enter it in the pmap. If a wired, copy-on-write
1367                  * mapping is being replaced by a write-enabled
1368                  * mapping, then wire that new mapping.
1369                  */
1370                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1371                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1372
1373                 /*
1374                  * Mark it no longer busy, and put it on the active list.
1375                  */
1376                 VM_OBJECT_WLOCK(dst_object);
1377                 
1378                 if (upgrade) {
1379                         if (src_m != dst_m) {
1380                                 vm_page_lock(src_m);
1381                                 vm_page_unwire(src_m, 0);
1382                                 vm_page_unlock(src_m);
1383                                 vm_page_lock(dst_m);
1384                                 vm_page_wire(dst_m);
1385                                 vm_page_unlock(dst_m);
1386                         } else {
1387                                 KASSERT(dst_m->wire_count > 0,
1388                                     ("dst_m %p is not wired", dst_m));
1389                         }
1390                 } else {
1391                         vm_page_lock(dst_m);
1392                         vm_page_activate(dst_m);
1393                         vm_page_unlock(dst_m);
1394                 }
1395                 vm_page_xunbusy(dst_m);
1396         }
1397         VM_OBJECT_WUNLOCK(dst_object);
1398         if (upgrade) {
1399                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1400                 vm_object_deallocate(src_object);
1401         }
1402 }
1403
1404
1405 /*
1406  * This routine checks around the requested page for other pages that
1407  * might be able to be faulted in.  This routine brackets the viable
1408  * pages for the pages to be paged in.
1409  *
1410  * Inputs:
1411  *      m, rbehind, rahead
1412  *
1413  * Outputs:
1414  *  marray (array of vm_page_t), reqpage (index of requested page)
1415  *
1416  * Return value:
1417  *  number of pages in marray
1418  */
1419 static int
1420 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1421         vm_page_t m;
1422         int rbehind;
1423         int rahead;
1424         vm_page_t *marray;
1425         int *reqpage;
1426 {
1427         int i,j;
1428         vm_object_t object;
1429         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1430         vm_page_t rtm;
1431         int cbehind, cahead;
1432
1433         VM_OBJECT_ASSERT_WLOCKED(m->object);
1434
1435         object = m->object;
1436         pindex = m->pindex;
1437         cbehind = cahead = 0;
1438
1439         /*
1440          * if the requested page is not available, then give up now
1441          */
1442         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1443                 return 0;
1444         }
1445
1446         if ((cbehind == 0) && (cahead == 0)) {
1447                 *reqpage = 0;
1448                 marray[0] = m;
1449                 return 1;
1450         }
1451
1452         if (rahead > cahead) {
1453                 rahead = cahead;
1454         }
1455
1456         if (rbehind > cbehind) {
1457                 rbehind = cbehind;
1458         }
1459
1460         /*
1461          * scan backward for the read behind pages -- in memory 
1462          */
1463         if (pindex > 0) {
1464                 if (rbehind > pindex) {
1465                         rbehind = pindex;
1466                         startpindex = 0;
1467                 } else {
1468                         startpindex = pindex - rbehind;
1469                 }
1470
1471                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1472                     rtm->pindex >= startpindex)
1473                         startpindex = rtm->pindex + 1;
1474
1475                 /* tpindex is unsigned; beware of numeric underflow. */
1476                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1477                     tpindex < pindex; i++, tpindex--) {
1478
1479                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1480                             VM_ALLOC_IFNOTCACHED);
1481                         if (rtm == NULL) {
1482                                 /*
1483                                  * Shift the allocated pages to the
1484                                  * beginning of the array.
1485                                  */
1486                                 for (j = 0; j < i; j++) {
1487                                         marray[j] = marray[j + tpindex + 1 -
1488                                             startpindex];
1489                                 }
1490                                 break;
1491                         }
1492
1493                         marray[tpindex - startpindex] = rtm;
1494                 }
1495         } else {
1496                 startpindex = 0;
1497                 i = 0;
1498         }
1499
1500         marray[i] = m;
1501         /* page offset of the required page */
1502         *reqpage = i;
1503
1504         tpindex = pindex + 1;
1505         i++;
1506
1507         /*
1508          * scan forward for the read ahead pages
1509          */
1510         endpindex = tpindex + rahead;
1511         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1512                 endpindex = rtm->pindex;
1513         if (endpindex > object->size)
1514                 endpindex = object->size;
1515
1516         for (; tpindex < endpindex; i++, tpindex++) {
1517
1518                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1519                     VM_ALLOC_IFNOTCACHED);
1520                 if (rtm == NULL) {
1521                         break;
1522                 }
1523
1524                 marray[i] = rtm;
1525         }
1526
1527         /* return number of pages */
1528         return i;
1529 }
1530
1531 /*
1532  * Block entry into the machine-independent layer's page fault handler by
1533  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1534  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1535  * spurious page faults. 
1536  */
1537 int
1538 vm_fault_disable_pagefaults(void)
1539 {
1540
1541         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1542 }
1543
1544 void
1545 vm_fault_enable_pagefaults(int save)
1546 {
1547
1548         curthread_pflags_restore(save);
1549 }