]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/vm/vm_map.c
MFC r320316:
[FreeBSD/stable/10.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100  *      Virtual memory maps provide for the mapping, protection,
101  *      and sharing of virtual memory objects.  In addition,
102  *      this module provides for an efficient virtual copy of
103  *      memory from one map to another.
104  *
105  *      Synchronization is required prior to most operations.
106  *
107  *      Maps consist of an ordered doubly-linked list of simple
108  *      entries; a self-adjusting binary search tree of these
109  *      entries is used to speed up lookups.
110  *
111  *      Since portions of maps are specified by start/end addresses,
112  *      which may not align with existing map entries, all
113  *      routines merely "clip" entries to these start/end values.
114  *      [That is, an entry is split into two, bordering at a
115  *      start or end value.]  Note that these clippings may not
116  *      always be necessary (as the two resulting entries are then
117  *      not changed); however, the clipping is done for convenience.
118  *
119  *      As mentioned above, virtual copy operations are performed
120  *      by copying VM object references from one map to
121  *      another, and then marking both regions as copy-on-write.
122  */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 #ifdef INVARIANTS
137 static void vm_map_zdtor(void *mem, int size, void *arg);
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142     int cow);
143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144     vm_offset_t failed_addr);
145
146 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
147     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
148      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
149
150 /* 
151  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
152  * stable.
153  */
154 #define PROC_VMSPACE_LOCK(p) do { } while (0)
155 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
156
157 /*
158  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
159  *
160  *      Asserts that the starting and ending region
161  *      addresses fall within the valid range of the map.
162  */
163 #define VM_MAP_RANGE_CHECK(map, start, end)             \
164                 {                                       \
165                 if (start < vm_map_min(map))            \
166                         start = vm_map_min(map);        \
167                 if (end > vm_map_max(map))              \
168                         end = vm_map_max(map);          \
169                 if (start > end)                        \
170                         start = end;                    \
171                 }
172
173 /*
174  *      vm_map_startup:
175  *
176  *      Initialize the vm_map module.  Must be called before
177  *      any other vm_map routines.
178  *
179  *      Map and entry structures are allocated from the general
180  *      purpose memory pool with some exceptions:
181  *
182  *      - The kernel map and kmem submap are allocated statically.
183  *      - Kernel map entries are allocated out of a static pool.
184  *
185  *      These restrictions are necessary since malloc() uses the
186  *      maps and requires map entries.
187  */
188
189 void
190 vm_map_startup(void)
191 {
192         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
193         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
194 #ifdef INVARIANTS
195             vm_map_zdtor,
196 #else
197             NULL,
198 #endif
199             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200         uma_prealloc(mapzone, MAX_KMAP);
201         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
202             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
203             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
204         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
205             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
206         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
207 #ifdef INVARIANTS
208             vmspace_zdtor,
209 #else
210             NULL,
211 #endif
212             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213 }
214
215 static int
216 vmspace_zinit(void *mem, int size, int flags)
217 {
218         struct vmspace *vm;
219
220         vm = (struct vmspace *)mem;
221
222         vm->vm_map.pmap = NULL;
223         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
224         PMAP_LOCK_INIT(vmspace_pmap(vm));
225         return (0);
226 }
227
228 static int
229 vm_map_zinit(void *mem, int size, int flags)
230 {
231         vm_map_t map;
232
233         map = (vm_map_t)mem;
234         memset(map, 0, sizeof(*map));
235         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
236         sx_init(&map->lock, "vm map (user)");
237         return (0);
238 }
239
240 #ifdef INVARIANTS
241 static void
242 vmspace_zdtor(void *mem, int size, void *arg)
243 {
244         struct vmspace *vm;
245
246         vm = (struct vmspace *)mem;
247
248         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
249 }
250 static void
251 vm_map_zdtor(void *mem, int size, void *arg)
252 {
253         vm_map_t map;
254
255         map = (vm_map_t)mem;
256         KASSERT(map->nentries == 0,
257             ("map %p nentries == %d on free.",
258             map, map->nentries));
259         KASSERT(map->size == 0,
260             ("map %p size == %lu on free.",
261             map, (unsigned long)map->size));
262 }
263 #endif  /* INVARIANTS */
264
265 /*
266  * Allocate a vmspace structure, including a vm_map and pmap,
267  * and initialize those structures.  The refcnt is set to 1.
268  *
269  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
270  */
271 struct vmspace *
272 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
273 {
274         struct vmspace *vm;
275
276         vm = uma_zalloc(vmspace_zone, M_WAITOK);
277
278         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
279
280         if (pinit == NULL)
281                 pinit = &pmap_pinit;
282
283         if (!pinit(vmspace_pmap(vm))) {
284                 uma_zfree(vmspace_zone, vm);
285                 return (NULL);
286         }
287         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
288         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
289         vm->vm_refcnt = 1;
290         vm->vm_shm = NULL;
291         vm->vm_swrss = 0;
292         vm->vm_tsize = 0;
293         vm->vm_dsize = 0;
294         vm->vm_ssize = 0;
295         vm->vm_taddr = 0;
296         vm->vm_daddr = 0;
297         vm->vm_maxsaddr = 0;
298         return (vm);
299 }
300
301 #ifdef RACCT
302 static void
303 vmspace_container_reset(struct proc *p)
304 {
305
306         PROC_LOCK(p);
307         racct_set(p, RACCT_DATA, 0);
308         racct_set(p, RACCT_STACK, 0);
309         racct_set(p, RACCT_RSS, 0);
310         racct_set(p, RACCT_MEMLOCK, 0);
311         racct_set(p, RACCT_VMEM, 0);
312         PROC_UNLOCK(p);
313 }
314 #endif
315
316 static inline void
317 vmspace_dofree(struct vmspace *vm)
318 {
319
320         CTR1(KTR_VM, "vmspace_free: %p", vm);
321
322         /*
323          * Make sure any SysV shm is freed, it might not have been in
324          * exit1().
325          */
326         shmexit(vm);
327
328         /*
329          * Lock the map, to wait out all other references to it.
330          * Delete all of the mappings and pages they hold, then call
331          * the pmap module to reclaim anything left.
332          */
333         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
334             vm->vm_map.max_offset);
335
336         pmap_release(vmspace_pmap(vm));
337         vm->vm_map.pmap = NULL;
338         uma_zfree(vmspace_zone, vm);
339 }
340
341 void
342 vmspace_free(struct vmspace *vm)
343 {
344
345         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
346             "vmspace_free() called with non-sleepable lock held");
347
348         if (vm->vm_refcnt == 0)
349                 panic("vmspace_free: attempt to free already freed vmspace");
350
351         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
352                 vmspace_dofree(vm);
353 }
354
355 void
356 vmspace_exitfree(struct proc *p)
357 {
358         struct vmspace *vm;
359
360         PROC_VMSPACE_LOCK(p);
361         vm = p->p_vmspace;
362         p->p_vmspace = NULL;
363         PROC_VMSPACE_UNLOCK(p);
364         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
365         vmspace_free(vm);
366 }
367
368 void
369 vmspace_exit(struct thread *td)
370 {
371         int refcnt;
372         struct vmspace *vm;
373         struct proc *p;
374
375         /*
376          * Release user portion of address space.
377          * This releases references to vnodes,
378          * which could cause I/O if the file has been unlinked.
379          * Need to do this early enough that we can still sleep.
380          *
381          * The last exiting process to reach this point releases as
382          * much of the environment as it can. vmspace_dofree() is the
383          * slower fallback in case another process had a temporary
384          * reference to the vmspace.
385          */
386
387         p = td->td_proc;
388         vm = p->p_vmspace;
389         atomic_add_int(&vmspace0.vm_refcnt, 1);
390         do {
391                 refcnt = vm->vm_refcnt;
392                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
393                         /* Switch now since other proc might free vmspace */
394                         PROC_VMSPACE_LOCK(p);
395                         p->p_vmspace = &vmspace0;
396                         PROC_VMSPACE_UNLOCK(p);
397                         pmap_activate(td);
398                 }
399         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
400         if (refcnt == 1) {
401                 if (p->p_vmspace != vm) {
402                         /* vmspace not yet freed, switch back */
403                         PROC_VMSPACE_LOCK(p);
404                         p->p_vmspace = vm;
405                         PROC_VMSPACE_UNLOCK(p);
406                         pmap_activate(td);
407                 }
408                 pmap_remove_pages(vmspace_pmap(vm));
409                 /* Switch now since this proc will free vmspace */
410                 PROC_VMSPACE_LOCK(p);
411                 p->p_vmspace = &vmspace0;
412                 PROC_VMSPACE_UNLOCK(p);
413                 pmap_activate(td);
414                 vmspace_dofree(vm);
415         }
416 #ifdef RACCT
417         if (racct_enable)
418                 vmspace_container_reset(p);
419 #endif
420 }
421
422 /* Acquire reference to vmspace owned by another process. */
423
424 struct vmspace *
425 vmspace_acquire_ref(struct proc *p)
426 {
427         struct vmspace *vm;
428         int refcnt;
429
430         PROC_VMSPACE_LOCK(p);
431         vm = p->p_vmspace;
432         if (vm == NULL) {
433                 PROC_VMSPACE_UNLOCK(p);
434                 return (NULL);
435         }
436         do {
437                 refcnt = vm->vm_refcnt;
438                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
439                         PROC_VMSPACE_UNLOCK(p);
440                         return (NULL);
441                 }
442         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
443         if (vm != p->p_vmspace) {
444                 PROC_VMSPACE_UNLOCK(p);
445                 vmspace_free(vm);
446                 return (NULL);
447         }
448         PROC_VMSPACE_UNLOCK(p);
449         return (vm);
450 }
451
452 void
453 _vm_map_lock(vm_map_t map, const char *file, int line)
454 {
455
456         if (map->system_map)
457                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
458         else
459                 sx_xlock_(&map->lock, file, line);
460         map->timestamp++;
461 }
462
463 static void
464 vm_map_process_deferred(void)
465 {
466         struct thread *td;
467         vm_map_entry_t entry, next;
468         vm_object_t object;
469
470         td = curthread;
471         entry = td->td_map_def_user;
472         td->td_map_def_user = NULL;
473         while (entry != NULL) {
474                 next = entry->next;
475                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
476                         /*
477                          * Decrement the object's writemappings and
478                          * possibly the vnode's v_writecount.
479                          */
480                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
481                             ("Submap with writecount"));
482                         object = entry->object.vm_object;
483                         KASSERT(object != NULL, ("No object for writecount"));
484                         vnode_pager_release_writecount(object, entry->start,
485                             entry->end);
486                 }
487                 vm_map_entry_deallocate(entry, FALSE);
488                 entry = next;
489         }
490 }
491
492 void
493 _vm_map_unlock(vm_map_t map, const char *file, int line)
494 {
495
496         if (map->system_map)
497                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
498         else {
499                 sx_xunlock_(&map->lock, file, line);
500                 vm_map_process_deferred();
501         }
502 }
503
504 void
505 _vm_map_lock_read(vm_map_t map, const char *file, int line)
506 {
507
508         if (map->system_map)
509                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
510         else
511                 sx_slock_(&map->lock, file, line);
512 }
513
514 void
515 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
516 {
517
518         if (map->system_map)
519                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
520         else {
521                 sx_sunlock_(&map->lock, file, line);
522                 vm_map_process_deferred();
523         }
524 }
525
526 int
527 _vm_map_trylock(vm_map_t map, const char *file, int line)
528 {
529         int error;
530
531         error = map->system_map ?
532             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
533             !sx_try_xlock_(&map->lock, file, line);
534         if (error == 0)
535                 map->timestamp++;
536         return (error == 0);
537 }
538
539 int
540 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
541 {
542         int error;
543
544         error = map->system_map ?
545             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
546             !sx_try_slock_(&map->lock, file, line);
547         return (error == 0);
548 }
549
550 /*
551  *      _vm_map_lock_upgrade:   [ internal use only ]
552  *
553  *      Tries to upgrade a read (shared) lock on the specified map to a write
554  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
555  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
556  *      returned without a read or write lock held.
557  *
558  *      Requires that the map be read locked.
559  */
560 int
561 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
562 {
563         unsigned int last_timestamp;
564
565         if (map->system_map) {
566                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
567         } else {
568                 if (!sx_try_upgrade_(&map->lock, file, line)) {
569                         last_timestamp = map->timestamp;
570                         sx_sunlock_(&map->lock, file, line);
571                         vm_map_process_deferred();
572                         /*
573                          * If the map's timestamp does not change while the
574                          * map is unlocked, then the upgrade succeeds.
575                          */
576                         sx_xlock_(&map->lock, file, line);
577                         if (last_timestamp != map->timestamp) {
578                                 sx_xunlock_(&map->lock, file, line);
579                                 return (1);
580                         }
581                 }
582         }
583         map->timestamp++;
584         return (0);
585 }
586
587 void
588 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
589 {
590
591         if (map->system_map) {
592                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
593         } else
594                 sx_downgrade_(&map->lock, file, line);
595 }
596
597 /*
598  *      vm_map_locked:
599  *
600  *      Returns a non-zero value if the caller holds a write (exclusive) lock
601  *      on the specified map and the value "0" otherwise.
602  */
603 int
604 vm_map_locked(vm_map_t map)
605 {
606
607         if (map->system_map)
608                 return (mtx_owned(&map->system_mtx));
609         else
610                 return (sx_xlocked(&map->lock));
611 }
612
613 #ifdef INVARIANTS
614 static void
615 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
616 {
617
618         if (map->system_map)
619                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
620         else
621                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
622 }
623
624 #define VM_MAP_ASSERT_LOCKED(map) \
625     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
626 #else
627 #define VM_MAP_ASSERT_LOCKED(map)
628 #endif
629
630 /*
631  *      _vm_map_unlock_and_wait:
632  *
633  *      Atomically releases the lock on the specified map and puts the calling
634  *      thread to sleep.  The calling thread will remain asleep until either
635  *      vm_map_wakeup() is performed on the map or the specified timeout is
636  *      exceeded.
637  *
638  *      WARNING!  This function does not perform deferred deallocations of
639  *      objects and map entries.  Therefore, the calling thread is expected to
640  *      reacquire the map lock after reawakening and later perform an ordinary
641  *      unlock operation, such as vm_map_unlock(), before completing its
642  *      operation on the map.
643  */
644 int
645 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
646 {
647
648         mtx_lock(&map_sleep_mtx);
649         if (map->system_map)
650                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
651         else
652                 sx_xunlock_(&map->lock, file, line);
653         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
654             timo));
655 }
656
657 /*
658  *      vm_map_wakeup:
659  *
660  *      Awaken any threads that have slept on the map using
661  *      vm_map_unlock_and_wait().
662  */
663 void
664 vm_map_wakeup(vm_map_t map)
665 {
666
667         /*
668          * Acquire and release map_sleep_mtx to prevent a wakeup()
669          * from being performed (and lost) between the map unlock
670          * and the msleep() in _vm_map_unlock_and_wait().
671          */
672         mtx_lock(&map_sleep_mtx);
673         mtx_unlock(&map_sleep_mtx);
674         wakeup(&map->root);
675 }
676
677 void
678 vm_map_busy(vm_map_t map)
679 {
680
681         VM_MAP_ASSERT_LOCKED(map);
682         map->busy++;
683 }
684
685 void
686 vm_map_unbusy(vm_map_t map)
687 {
688
689         VM_MAP_ASSERT_LOCKED(map);
690         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
691         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
692                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
693                 wakeup(&map->busy);
694         }
695 }
696
697 void 
698 vm_map_wait_busy(vm_map_t map)
699 {
700
701         VM_MAP_ASSERT_LOCKED(map);
702         while (map->busy) {
703                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
704                 if (map->system_map)
705                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
706                 else
707                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
708         }
709         map->timestamp++;
710 }
711
712 long
713 vmspace_resident_count(struct vmspace *vmspace)
714 {
715         return pmap_resident_count(vmspace_pmap(vmspace));
716 }
717
718 /*
719  *      vm_map_create:
720  *
721  *      Creates and returns a new empty VM map with
722  *      the given physical map structure, and having
723  *      the given lower and upper address bounds.
724  */
725 vm_map_t
726 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
727 {
728         vm_map_t result;
729
730         result = uma_zalloc(mapzone, M_WAITOK);
731         CTR1(KTR_VM, "vm_map_create: %p", result);
732         _vm_map_init(result, pmap, min, max);
733         return (result);
734 }
735
736 /*
737  * Initialize an existing vm_map structure
738  * such as that in the vmspace structure.
739  */
740 static void
741 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
742 {
743
744         map->header.next = map->header.prev = &map->header;
745         map->needs_wakeup = FALSE;
746         map->system_map = 0;
747         map->pmap = pmap;
748         map->min_offset = min;
749         map->max_offset = max;
750         map->flags = 0;
751         map->root = NULL;
752         map->timestamp = 0;
753         map->busy = 0;
754 }
755
756 void
757 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
758 {
759
760         _vm_map_init(map, pmap, min, max);
761         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
762         sx_init(&map->lock, "user map");
763 }
764
765 /*
766  *      vm_map_entry_dispose:   [ internal use only ]
767  *
768  *      Inverse of vm_map_entry_create.
769  */
770 static void
771 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
772 {
773         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
774 }
775
776 /*
777  *      vm_map_entry_create:    [ internal use only ]
778  *
779  *      Allocates a VM map entry for insertion.
780  *      No entry fields are filled in.
781  */
782 static vm_map_entry_t
783 vm_map_entry_create(vm_map_t map)
784 {
785         vm_map_entry_t new_entry;
786
787         if (map->system_map)
788                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
789         else
790                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
791         if (new_entry == NULL)
792                 panic("vm_map_entry_create: kernel resources exhausted");
793         return (new_entry);
794 }
795
796 /*
797  *      vm_map_entry_set_behavior:
798  *
799  *      Set the expected access behavior, either normal, random, or
800  *      sequential.
801  */
802 static inline void
803 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
804 {
805         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
806             (behavior & MAP_ENTRY_BEHAV_MASK);
807 }
808
809 /*
810  *      vm_map_entry_set_max_free:
811  *
812  *      Set the max_free field in a vm_map_entry.
813  */
814 static inline void
815 vm_map_entry_set_max_free(vm_map_entry_t entry)
816 {
817
818         entry->max_free = entry->adj_free;
819         if (entry->left != NULL && entry->left->max_free > entry->max_free)
820                 entry->max_free = entry->left->max_free;
821         if (entry->right != NULL && entry->right->max_free > entry->max_free)
822                 entry->max_free = entry->right->max_free;
823 }
824
825 /*
826  *      vm_map_entry_splay:
827  *
828  *      The Sleator and Tarjan top-down splay algorithm with the
829  *      following variation.  Max_free must be computed bottom-up, so
830  *      on the downward pass, maintain the left and right spines in
831  *      reverse order.  Then, make a second pass up each side to fix
832  *      the pointers and compute max_free.  The time bound is O(log n)
833  *      amortized.
834  *
835  *      The new root is the vm_map_entry containing "addr", or else an
836  *      adjacent entry (lower or higher) if addr is not in the tree.
837  *
838  *      The map must be locked, and leaves it so.
839  *
840  *      Returns: the new root.
841  */
842 static vm_map_entry_t
843 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
844 {
845         vm_map_entry_t llist, rlist;
846         vm_map_entry_t ltree, rtree;
847         vm_map_entry_t y;
848
849         /* Special case of empty tree. */
850         if (root == NULL)
851                 return (root);
852
853         /*
854          * Pass One: Splay down the tree until we find addr or a NULL
855          * pointer where addr would go.  llist and rlist are the two
856          * sides in reverse order (bottom-up), with llist linked by
857          * the right pointer and rlist linked by the left pointer in
858          * the vm_map_entry.  Wait until Pass Two to set max_free on
859          * the two spines.
860          */
861         llist = NULL;
862         rlist = NULL;
863         for (;;) {
864                 /* root is never NULL in here. */
865                 if (addr < root->start) {
866                         y = root->left;
867                         if (y == NULL)
868                                 break;
869                         if (addr < y->start && y->left != NULL) {
870                                 /* Rotate right and put y on rlist. */
871                                 root->left = y->right;
872                                 y->right = root;
873                                 vm_map_entry_set_max_free(root);
874                                 root = y->left;
875                                 y->left = rlist;
876                                 rlist = y;
877                         } else {
878                                 /* Put root on rlist. */
879                                 root->left = rlist;
880                                 rlist = root;
881                                 root = y;
882                         }
883                 } else if (addr >= root->end) {
884                         y = root->right;
885                         if (y == NULL)
886                                 break;
887                         if (addr >= y->end && y->right != NULL) {
888                                 /* Rotate left and put y on llist. */
889                                 root->right = y->left;
890                                 y->left = root;
891                                 vm_map_entry_set_max_free(root);
892                                 root = y->right;
893                                 y->right = llist;
894                                 llist = y;
895                         } else {
896                                 /* Put root on llist. */
897                                 root->right = llist;
898                                 llist = root;
899                                 root = y;
900                         }
901                 } else
902                         break;
903         }
904
905         /*
906          * Pass Two: Walk back up the two spines, flip the pointers
907          * and set max_free.  The subtrees of the root go at the
908          * bottom of llist and rlist.
909          */
910         ltree = root->left;
911         while (llist != NULL) {
912                 y = llist->right;
913                 llist->right = ltree;
914                 vm_map_entry_set_max_free(llist);
915                 ltree = llist;
916                 llist = y;
917         }
918         rtree = root->right;
919         while (rlist != NULL) {
920                 y = rlist->left;
921                 rlist->left = rtree;
922                 vm_map_entry_set_max_free(rlist);
923                 rtree = rlist;
924                 rlist = y;
925         }
926
927         /*
928          * Final assembly: add ltree and rtree as subtrees of root.
929          */
930         root->left = ltree;
931         root->right = rtree;
932         vm_map_entry_set_max_free(root);
933
934         return (root);
935 }
936
937 /*
938  *      vm_map_entry_{un,}link:
939  *
940  *      Insert/remove entries from maps.
941  */
942 static void
943 vm_map_entry_link(vm_map_t map,
944                   vm_map_entry_t after_where,
945                   vm_map_entry_t entry)
946 {
947
948         CTR4(KTR_VM,
949             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
950             map->nentries, entry, after_where);
951         VM_MAP_ASSERT_LOCKED(map);
952         KASSERT(after_where == &map->header ||
953             after_where->end <= entry->start,
954             ("vm_map_entry_link: prev end %jx new start %jx overlap",
955             (uintmax_t)after_where->end, (uintmax_t)entry->start));
956         KASSERT(after_where->next == &map->header ||
957             entry->end <= after_where->next->start,
958             ("vm_map_entry_link: new end %jx next start %jx overlap",
959             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
960
961         map->nentries++;
962         entry->prev = after_where;
963         entry->next = after_where->next;
964         entry->next->prev = entry;
965         after_where->next = entry;
966
967         if (after_where != &map->header) {
968                 if (after_where != map->root)
969                         vm_map_entry_splay(after_where->start, map->root);
970                 entry->right = after_where->right;
971                 entry->left = after_where;
972                 after_where->right = NULL;
973                 after_where->adj_free = entry->start - after_where->end;
974                 vm_map_entry_set_max_free(after_where);
975         } else {
976                 entry->right = map->root;
977                 entry->left = NULL;
978         }
979         entry->adj_free = (entry->next == &map->header ? map->max_offset :
980             entry->next->start) - entry->end;
981         vm_map_entry_set_max_free(entry);
982         map->root = entry;
983 }
984
985 static void
986 vm_map_entry_unlink(vm_map_t map,
987                     vm_map_entry_t entry)
988 {
989         vm_map_entry_t next, prev, root;
990
991         VM_MAP_ASSERT_LOCKED(map);
992         if (entry != map->root)
993                 vm_map_entry_splay(entry->start, map->root);
994         if (entry->left == NULL)
995                 root = entry->right;
996         else {
997                 root = vm_map_entry_splay(entry->start, entry->left);
998                 root->right = entry->right;
999                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1000                     entry->next->start) - root->end;
1001                 vm_map_entry_set_max_free(root);
1002         }
1003         map->root = root;
1004
1005         prev = entry->prev;
1006         next = entry->next;
1007         next->prev = prev;
1008         prev->next = next;
1009         map->nentries--;
1010         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1011             map->nentries, entry);
1012 }
1013
1014 /*
1015  *      vm_map_entry_resize_free:
1016  *
1017  *      Recompute the amount of free space following a vm_map_entry
1018  *      and propagate that value up the tree.  Call this function after
1019  *      resizing a map entry in-place, that is, without a call to
1020  *      vm_map_entry_link() or _unlink().
1021  *
1022  *      The map must be locked, and leaves it so.
1023  */
1024 static void
1025 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1026 {
1027
1028         /*
1029          * Using splay trees without parent pointers, propagating
1030          * max_free up the tree is done by moving the entry to the
1031          * root and making the change there.
1032          */
1033         if (entry != map->root)
1034                 map->root = vm_map_entry_splay(entry->start, map->root);
1035
1036         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1037             entry->next->start) - entry->end;
1038         vm_map_entry_set_max_free(entry);
1039 }
1040
1041 /*
1042  *      vm_map_lookup_entry:    [ internal use only ]
1043  *
1044  *      Finds the map entry containing (or
1045  *      immediately preceding) the specified address
1046  *      in the given map; the entry is returned
1047  *      in the "entry" parameter.  The boolean
1048  *      result indicates whether the address is
1049  *      actually contained in the map.
1050  */
1051 boolean_t
1052 vm_map_lookup_entry(
1053         vm_map_t map,
1054         vm_offset_t address,
1055         vm_map_entry_t *entry)  /* OUT */
1056 {
1057         vm_map_entry_t cur;
1058         boolean_t locked;
1059
1060         /*
1061          * If the map is empty, then the map entry immediately preceding
1062          * "address" is the map's header.
1063          */
1064         cur = map->root;
1065         if (cur == NULL)
1066                 *entry = &map->header;
1067         else if (address >= cur->start && cur->end > address) {
1068                 *entry = cur;
1069                 return (TRUE);
1070         } else if ((locked = vm_map_locked(map)) ||
1071             sx_try_upgrade(&map->lock)) {
1072                 /*
1073                  * Splay requires a write lock on the map.  However, it only
1074                  * restructures the binary search tree; it does not otherwise
1075                  * change the map.  Thus, the map's timestamp need not change
1076                  * on a temporary upgrade.
1077                  */
1078                 map->root = cur = vm_map_entry_splay(address, cur);
1079                 if (!locked)
1080                         sx_downgrade(&map->lock);
1081
1082                 /*
1083                  * If "address" is contained within a map entry, the new root
1084                  * is that map entry.  Otherwise, the new root is a map entry
1085                  * immediately before or after "address".
1086                  */
1087                 if (address >= cur->start) {
1088                         *entry = cur;
1089                         if (cur->end > address)
1090                                 return (TRUE);
1091                 } else
1092                         *entry = cur->prev;
1093         } else
1094                 /*
1095                  * Since the map is only locked for read access, perform a
1096                  * standard binary search tree lookup for "address".
1097                  */
1098                 for (;;) {
1099                         if (address < cur->start) {
1100                                 if (cur->left == NULL) {
1101                                         *entry = cur->prev;
1102                                         break;
1103                                 }
1104                                 cur = cur->left;
1105                         } else if (cur->end > address) {
1106                                 *entry = cur;
1107                                 return (TRUE);
1108                         } else {
1109                                 if (cur->right == NULL) {
1110                                         *entry = cur;
1111                                         break;
1112                                 }
1113                                 cur = cur->right;
1114                         }
1115                 }
1116         return (FALSE);
1117 }
1118
1119 /*
1120  *      vm_map_insert:
1121  *
1122  *      Inserts the given whole VM object into the target
1123  *      map at the specified address range.  The object's
1124  *      size should match that of the address range.
1125  *
1126  *      Requires that the map be locked, and leaves it so.
1127  *
1128  *      If object is non-NULL, ref count must be bumped by caller
1129  *      prior to making call to account for the new entry.
1130  */
1131 int
1132 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1133     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1134 {
1135         vm_map_entry_t new_entry, prev_entry, temp_entry;
1136         struct ucred *cred;
1137         vm_eflags_t protoeflags;
1138         vm_inherit_t inheritance;
1139
1140         VM_MAP_ASSERT_LOCKED(map);
1141         KASSERT((object != kmem_object && object != kernel_object) ||
1142             (cow & MAP_COPY_ON_WRITE) == 0,
1143             ("vm_map_insert: kmem or kernel object and COW"));
1144         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1145             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1146         KASSERT((prot & ~max) == 0,
1147             ("prot %#x is not subset of max_prot %#x", prot, max));
1148
1149         /*
1150          * Check that the start and end points are not bogus.
1151          */
1152         if (start < map->min_offset || end > map->max_offset || start >= end)
1153                 return (KERN_INVALID_ADDRESS);
1154
1155         /*
1156          * Find the entry prior to the proposed starting address; if it's part
1157          * of an existing entry, this range is bogus.
1158          */
1159         if (vm_map_lookup_entry(map, start, &temp_entry))
1160                 return (KERN_NO_SPACE);
1161
1162         prev_entry = temp_entry;
1163
1164         /*
1165          * Assert that the next entry doesn't overlap the end point.
1166          */
1167         if (prev_entry->next != &map->header && prev_entry->next->start < end)
1168                 return (KERN_NO_SPACE);
1169
1170         protoeflags = 0;
1171         if (cow & MAP_COPY_ON_WRITE)
1172                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1173         if (cow & MAP_NOFAULT)
1174                 protoeflags |= MAP_ENTRY_NOFAULT;
1175         if (cow & MAP_DISABLE_SYNCER)
1176                 protoeflags |= MAP_ENTRY_NOSYNC;
1177         if (cow & MAP_DISABLE_COREDUMP)
1178                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1179         if (cow & MAP_STACK_GROWS_DOWN)
1180                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1181         if (cow & MAP_STACK_GROWS_UP)
1182                 protoeflags |= MAP_ENTRY_GROWS_UP;
1183         if (cow & MAP_VN_WRITECOUNT)
1184                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1185         if (cow & MAP_INHERIT_SHARE)
1186                 inheritance = VM_INHERIT_SHARE;
1187         else
1188                 inheritance = VM_INHERIT_DEFAULT;
1189
1190         cred = NULL;
1191         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1192                 goto charged;
1193         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1194             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1195                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1196                         return (KERN_RESOURCE_SHORTAGE);
1197                 KASSERT(object == NULL ||
1198                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1199                     object->cred == NULL,
1200                     ("overcommit: vm_map_insert o %p", object));
1201                 cred = curthread->td_ucred;
1202         }
1203
1204 charged:
1205         /* Expand the kernel pmap, if necessary. */
1206         if (map == kernel_map && end > kernel_vm_end)
1207                 pmap_growkernel(end);
1208         if (object != NULL) {
1209                 /*
1210                  * OBJ_ONEMAPPING must be cleared unless this mapping
1211                  * is trivially proven to be the only mapping for any
1212                  * of the object's pages.  (Object granularity
1213                  * reference counting is insufficient to recognize
1214                  * aliases with precision.)
1215                  */
1216                 VM_OBJECT_WLOCK(object);
1217                 if (object->ref_count > 1 || object->shadow_count != 0)
1218                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1219                 VM_OBJECT_WUNLOCK(object);
1220         } else if (prev_entry != &map->header &&
1221             prev_entry->eflags == protoeflags &&
1222             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1223             prev_entry->end == start && prev_entry->wired_count == 0 &&
1224             (prev_entry->cred == cred ||
1225             (prev_entry->object.vm_object != NULL &&
1226             prev_entry->object.vm_object->cred == cred)) &&
1227             vm_object_coalesce(prev_entry->object.vm_object,
1228             prev_entry->offset,
1229             (vm_size_t)(prev_entry->end - prev_entry->start),
1230             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1231             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1232                 /*
1233                  * We were able to extend the object.  Determine if we
1234                  * can extend the previous map entry to include the
1235                  * new range as well.
1236                  */
1237                 if (prev_entry->inheritance == inheritance &&
1238                     prev_entry->protection == prot &&
1239                     prev_entry->max_protection == max) {
1240                         map->size += end - prev_entry->end;
1241                         prev_entry->end = end;
1242                         vm_map_entry_resize_free(map, prev_entry);
1243                         vm_map_simplify_entry(map, prev_entry);
1244                         return (KERN_SUCCESS);
1245                 }
1246
1247                 /*
1248                  * If we can extend the object but cannot extend the
1249                  * map entry, we have to create a new map entry.  We
1250                  * must bump the ref count on the extended object to
1251                  * account for it.  object may be NULL.
1252                  */
1253                 object = prev_entry->object.vm_object;
1254                 offset = prev_entry->offset +
1255                     (prev_entry->end - prev_entry->start);
1256                 vm_object_reference(object);
1257                 if (cred != NULL && object != NULL && object->cred != NULL &&
1258                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1259                         /* Object already accounts for this uid. */
1260                         cred = NULL;
1261                 }
1262         }
1263         if (cred != NULL)
1264                 crhold(cred);
1265
1266         /*
1267          * Create a new entry
1268          */
1269         new_entry = vm_map_entry_create(map);
1270         new_entry->start = start;
1271         new_entry->end = end;
1272         new_entry->cred = NULL;
1273
1274         new_entry->eflags = protoeflags;
1275         new_entry->object.vm_object = object;
1276         new_entry->offset = offset;
1277         new_entry->avail_ssize = 0;
1278
1279         new_entry->inheritance = inheritance;
1280         new_entry->protection = prot;
1281         new_entry->max_protection = max;
1282         new_entry->wired_count = 0;
1283         new_entry->wiring_thread = NULL;
1284         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1285         new_entry->next_read = OFF_TO_IDX(offset);
1286
1287         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1288             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1289         new_entry->cred = cred;
1290
1291         /*
1292          * Insert the new entry into the list
1293          */
1294         vm_map_entry_link(map, prev_entry, new_entry);
1295         map->size += new_entry->end - new_entry->start;
1296
1297         /*
1298          * Try to coalesce the new entry with both the previous and next
1299          * entries in the list.  Previously, we only attempted to coalesce
1300          * with the previous entry when object is NULL.  Here, we handle the
1301          * other cases, which are less common.
1302          */
1303         vm_map_simplify_entry(map, new_entry);
1304
1305         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1306                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1307                     end - start, cow & MAP_PREFAULT_PARTIAL);
1308         }
1309
1310         return (KERN_SUCCESS);
1311 }
1312
1313 /*
1314  *      vm_map_findspace:
1315  *
1316  *      Find the first fit (lowest VM address) for "length" free bytes
1317  *      beginning at address >= start in the given map.
1318  *
1319  *      In a vm_map_entry, "adj_free" is the amount of free space
1320  *      adjacent (higher address) to this entry, and "max_free" is the
1321  *      maximum amount of contiguous free space in its subtree.  This
1322  *      allows finding a free region in one path down the tree, so
1323  *      O(log n) amortized with splay trees.
1324  *
1325  *      The map must be locked, and leaves it so.
1326  *
1327  *      Returns: 0 on success, and starting address in *addr,
1328  *               1 if insufficient space.
1329  */
1330 int
1331 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1332     vm_offset_t *addr)  /* OUT */
1333 {
1334         vm_map_entry_t entry;
1335         vm_offset_t st;
1336
1337         /*
1338          * Request must fit within min/max VM address and must avoid
1339          * address wrap.
1340          */
1341         if (start < map->min_offset)
1342                 start = map->min_offset;
1343         if (start + length > map->max_offset || start + length < start)
1344                 return (1);
1345
1346         /* Empty tree means wide open address space. */
1347         if (map->root == NULL) {
1348                 *addr = start;
1349                 return (0);
1350         }
1351
1352         /*
1353          * After splay, if start comes before root node, then there
1354          * must be a gap from start to the root.
1355          */
1356         map->root = vm_map_entry_splay(start, map->root);
1357         if (start + length <= map->root->start) {
1358                 *addr = start;
1359                 return (0);
1360         }
1361
1362         /*
1363          * Root is the last node that might begin its gap before
1364          * start, and this is the last comparison where address
1365          * wrap might be a problem.
1366          */
1367         st = (start > map->root->end) ? start : map->root->end;
1368         if (length <= map->root->end + map->root->adj_free - st) {
1369                 *addr = st;
1370                 return (0);
1371         }
1372
1373         /* With max_free, can immediately tell if no solution. */
1374         entry = map->root->right;
1375         if (entry == NULL || length > entry->max_free)
1376                 return (1);
1377
1378         /*
1379          * Search the right subtree in the order: left subtree, root,
1380          * right subtree (first fit).  The previous splay implies that
1381          * all regions in the right subtree have addresses > start.
1382          */
1383         while (entry != NULL) {
1384                 if (entry->left != NULL && entry->left->max_free >= length)
1385                         entry = entry->left;
1386                 else if (entry->adj_free >= length) {
1387                         *addr = entry->end;
1388                         return (0);
1389                 } else
1390                         entry = entry->right;
1391         }
1392
1393         /* Can't get here, so panic if we do. */
1394         panic("vm_map_findspace: max_free corrupt");
1395 }
1396
1397 int
1398 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1399     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1400     vm_prot_t max, int cow)
1401 {
1402         vm_offset_t end;
1403         int result;
1404
1405         end = start + length;
1406         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1407             object == NULL,
1408             ("vm_map_fixed: non-NULL backing object for stack"));
1409         vm_map_lock(map);
1410         VM_MAP_RANGE_CHECK(map, start, end);
1411         if ((cow & MAP_CHECK_EXCL) == 0)
1412                 vm_map_delete(map, start, end);
1413         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1414                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1415                     prot, max, cow);
1416         } else {
1417                 result = vm_map_insert(map, object, offset, start, end,
1418                     prot, max, cow);
1419         }
1420         vm_map_unlock(map);
1421         return (result);
1422 }
1423
1424 /*
1425  *      vm_map_find finds an unallocated region in the target address
1426  *      map with the given length.  The search is defined to be
1427  *      first-fit from the specified address; the region found is
1428  *      returned in the same parameter.
1429  *
1430  *      If object is non-NULL, ref count must be bumped by caller
1431  *      prior to making call to account for the new entry.
1432  */
1433 int
1434 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1435             vm_offset_t *addr,  /* IN/OUT */
1436             vm_size_t length, vm_offset_t max_addr, int find_space,
1437             vm_prot_t prot, vm_prot_t max, int cow)
1438 {
1439         vm_offset_t alignment, initial_addr, start;
1440         int result;
1441
1442         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1443             object == NULL,
1444             ("vm_map_find: non-NULL backing object for stack"));
1445         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1446             (object->flags & OBJ_COLORED) == 0))
1447                 find_space = VMFS_ANY_SPACE;
1448         if (find_space >> 8 != 0) {
1449                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1450                 alignment = (vm_offset_t)1 << (find_space >> 8);
1451         } else
1452                 alignment = 0;
1453         initial_addr = *addr;
1454 again:
1455         start = initial_addr;
1456         vm_map_lock(map);
1457         do {
1458                 if (find_space != VMFS_NO_SPACE) {
1459                         if (vm_map_findspace(map, start, length, addr) ||
1460                             (max_addr != 0 && *addr + length > max_addr)) {
1461                                 vm_map_unlock(map);
1462                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1463                                         find_space = VMFS_ANY_SPACE;
1464                                         goto again;
1465                                 }
1466                                 return (KERN_NO_SPACE);
1467                         }
1468                         switch (find_space) {
1469                         case VMFS_SUPER_SPACE:
1470                         case VMFS_OPTIMAL_SPACE:
1471                                 pmap_align_superpage(object, offset, addr,
1472                                     length);
1473                                 break;
1474                         case VMFS_ANY_SPACE:
1475                                 break;
1476                         default:
1477                                 if ((*addr & (alignment - 1)) != 0) {
1478                                         *addr &= ~(alignment - 1);
1479                                         *addr += alignment;
1480                                 }
1481                                 break;
1482                         }
1483
1484                         start = *addr;
1485                 }
1486                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1487                         result = vm_map_stack_locked(map, start, length,
1488                             sgrowsiz, prot, max, cow);
1489                 } else {
1490                         result = vm_map_insert(map, object, offset, start,
1491                             start + length, prot, max, cow);
1492                 }
1493         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1494             find_space != VMFS_ANY_SPACE);
1495         vm_map_unlock(map);
1496         return (result);
1497 }
1498
1499 /*
1500  *      vm_map_simplify_entry:
1501  *
1502  *      Simplify the given map entry by merging with either neighbor.  This
1503  *      routine also has the ability to merge with both neighbors.
1504  *
1505  *      The map must be locked.
1506  *
1507  *      This routine guarentees that the passed entry remains valid (though
1508  *      possibly extended).  When merging, this routine may delete one or
1509  *      both neighbors.
1510  */
1511 void
1512 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1513 {
1514         vm_map_entry_t next, prev;
1515         vm_size_t prevsize, esize;
1516
1517         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1518             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1519                 return;
1520
1521         prev = entry->prev;
1522         if (prev != &map->header) {
1523                 prevsize = prev->end - prev->start;
1524                 if ( (prev->end == entry->start) &&
1525                      (prev->object.vm_object == entry->object.vm_object) &&
1526                      (!prev->object.vm_object ||
1527                         (prev->offset + prevsize == entry->offset)) &&
1528                      (prev->eflags == entry->eflags) &&
1529                      (prev->protection == entry->protection) &&
1530                      (prev->max_protection == entry->max_protection) &&
1531                      (prev->inheritance == entry->inheritance) &&
1532                      (prev->wired_count == entry->wired_count) &&
1533                      (prev->cred == entry->cred)) {
1534                         vm_map_entry_unlink(map, prev);
1535                         entry->start = prev->start;
1536                         entry->offset = prev->offset;
1537                         if (entry->prev != &map->header)
1538                                 vm_map_entry_resize_free(map, entry->prev);
1539
1540                         /*
1541                          * If the backing object is a vnode object,
1542                          * vm_object_deallocate() calls vrele().
1543                          * However, vrele() does not lock the vnode
1544                          * because the vnode has additional
1545                          * references.  Thus, the map lock can be kept
1546                          * without causing a lock-order reversal with
1547                          * the vnode lock.
1548                          *
1549                          * Since we count the number of virtual page
1550                          * mappings in object->un_pager.vnp.writemappings,
1551                          * the writemappings value should not be adjusted
1552                          * when the entry is disposed of.
1553                          */
1554                         if (prev->object.vm_object)
1555                                 vm_object_deallocate(prev->object.vm_object);
1556                         if (prev->cred != NULL)
1557                                 crfree(prev->cred);
1558                         vm_map_entry_dispose(map, prev);
1559                 }
1560         }
1561
1562         next = entry->next;
1563         if (next != &map->header) {
1564                 esize = entry->end - entry->start;
1565                 if ((entry->end == next->start) &&
1566                     (next->object.vm_object == entry->object.vm_object) &&
1567                      (!entry->object.vm_object ||
1568                         (entry->offset + esize == next->offset)) &&
1569                     (next->eflags == entry->eflags) &&
1570                     (next->protection == entry->protection) &&
1571                     (next->max_protection == entry->max_protection) &&
1572                     (next->inheritance == entry->inheritance) &&
1573                     (next->wired_count == entry->wired_count) &&
1574                     (next->cred == entry->cred)) {
1575                         vm_map_entry_unlink(map, next);
1576                         entry->end = next->end;
1577                         vm_map_entry_resize_free(map, entry);
1578
1579                         /*
1580                          * See comment above.
1581                          */
1582                         if (next->object.vm_object)
1583                                 vm_object_deallocate(next->object.vm_object);
1584                         if (next->cred != NULL)
1585                                 crfree(next->cred);
1586                         vm_map_entry_dispose(map, next);
1587                 }
1588         }
1589 }
1590 /*
1591  *      vm_map_clip_start:      [ internal use only ]
1592  *
1593  *      Asserts that the given entry begins at or after
1594  *      the specified address; if necessary,
1595  *      it splits the entry into two.
1596  */
1597 #define vm_map_clip_start(map, entry, startaddr) \
1598 { \
1599         if (startaddr > entry->start) \
1600                 _vm_map_clip_start(map, entry, startaddr); \
1601 }
1602
1603 /*
1604  *      This routine is called only when it is known that
1605  *      the entry must be split.
1606  */
1607 static void
1608 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1609 {
1610         vm_map_entry_t new_entry;
1611
1612         VM_MAP_ASSERT_LOCKED(map);
1613
1614         /*
1615          * Split off the front portion -- note that we must insert the new
1616          * entry BEFORE this one, so that this entry has the specified
1617          * starting address.
1618          */
1619         vm_map_simplify_entry(map, entry);
1620
1621         /*
1622          * If there is no object backing this entry, we might as well create
1623          * one now.  If we defer it, an object can get created after the map
1624          * is clipped, and individual objects will be created for the split-up
1625          * map.  This is a bit of a hack, but is also about the best place to
1626          * put this improvement.
1627          */
1628         if (entry->object.vm_object == NULL && !map->system_map) {
1629                 vm_object_t object;
1630                 object = vm_object_allocate(OBJT_DEFAULT,
1631                                 atop(entry->end - entry->start));
1632                 entry->object.vm_object = object;
1633                 entry->offset = 0;
1634                 if (entry->cred != NULL) {
1635                         object->cred = entry->cred;
1636                         object->charge = entry->end - entry->start;
1637                         entry->cred = NULL;
1638                 }
1639         } else if (entry->object.vm_object != NULL &&
1640                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1641                    entry->cred != NULL) {
1642                 VM_OBJECT_WLOCK(entry->object.vm_object);
1643                 KASSERT(entry->object.vm_object->cred == NULL,
1644                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1645                 entry->object.vm_object->cred = entry->cred;
1646                 entry->object.vm_object->charge = entry->end - entry->start;
1647                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1648                 entry->cred = NULL;
1649         }
1650
1651         new_entry = vm_map_entry_create(map);
1652         *new_entry = *entry;
1653
1654         new_entry->end = start;
1655         entry->offset += (start - entry->start);
1656         entry->start = start;
1657         if (new_entry->cred != NULL)
1658                 crhold(entry->cred);
1659
1660         vm_map_entry_link(map, entry->prev, new_entry);
1661
1662         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1663                 vm_object_reference(new_entry->object.vm_object);
1664                 /*
1665                  * The object->un_pager.vnp.writemappings for the
1666                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1667                  * kept as is here.  The virtual pages are
1668                  * re-distributed among the clipped entries, so the sum is
1669                  * left the same.
1670                  */
1671         }
1672 }
1673
1674 /*
1675  *      vm_map_clip_end:        [ internal use only ]
1676  *
1677  *      Asserts that the given entry ends at or before
1678  *      the specified address; if necessary,
1679  *      it splits the entry into two.
1680  */
1681 #define vm_map_clip_end(map, entry, endaddr) \
1682 { \
1683         if ((endaddr) < (entry->end)) \
1684                 _vm_map_clip_end((map), (entry), (endaddr)); \
1685 }
1686
1687 /*
1688  *      This routine is called only when it is known that
1689  *      the entry must be split.
1690  */
1691 static void
1692 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1693 {
1694         vm_map_entry_t new_entry;
1695
1696         VM_MAP_ASSERT_LOCKED(map);
1697
1698         /*
1699          * If there is no object backing this entry, we might as well create
1700          * one now.  If we defer it, an object can get created after the map
1701          * is clipped, and individual objects will be created for the split-up
1702          * map.  This is a bit of a hack, but is also about the best place to
1703          * put this improvement.
1704          */
1705         if (entry->object.vm_object == NULL && !map->system_map) {
1706                 vm_object_t object;
1707                 object = vm_object_allocate(OBJT_DEFAULT,
1708                                 atop(entry->end - entry->start));
1709                 entry->object.vm_object = object;
1710                 entry->offset = 0;
1711                 if (entry->cred != NULL) {
1712                         object->cred = entry->cred;
1713                         object->charge = entry->end - entry->start;
1714                         entry->cred = NULL;
1715                 }
1716         } else if (entry->object.vm_object != NULL &&
1717                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1718                    entry->cred != NULL) {
1719                 VM_OBJECT_WLOCK(entry->object.vm_object);
1720                 KASSERT(entry->object.vm_object->cred == NULL,
1721                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1722                 entry->object.vm_object->cred = entry->cred;
1723                 entry->object.vm_object->charge = entry->end - entry->start;
1724                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1725                 entry->cred = NULL;
1726         }
1727
1728         /*
1729          * Create a new entry and insert it AFTER the specified entry
1730          */
1731         new_entry = vm_map_entry_create(map);
1732         *new_entry = *entry;
1733
1734         new_entry->start = entry->end = end;
1735         new_entry->offset += (end - entry->start);
1736         if (new_entry->cred != NULL)
1737                 crhold(entry->cred);
1738
1739         vm_map_entry_link(map, entry, new_entry);
1740
1741         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1742                 vm_object_reference(new_entry->object.vm_object);
1743         }
1744 }
1745
1746 /*
1747  *      vm_map_submap:          [ kernel use only ]
1748  *
1749  *      Mark the given range as handled by a subordinate map.
1750  *
1751  *      This range must have been created with vm_map_find,
1752  *      and no other operations may have been performed on this
1753  *      range prior to calling vm_map_submap.
1754  *
1755  *      Only a limited number of operations can be performed
1756  *      within this rage after calling vm_map_submap:
1757  *              vm_fault
1758  *      [Don't try vm_map_copy!]
1759  *
1760  *      To remove a submapping, one must first remove the
1761  *      range from the superior map, and then destroy the
1762  *      submap (if desired).  [Better yet, don't try it.]
1763  */
1764 int
1765 vm_map_submap(
1766         vm_map_t map,
1767         vm_offset_t start,
1768         vm_offset_t end,
1769         vm_map_t submap)
1770 {
1771         vm_map_entry_t entry;
1772         int result = KERN_INVALID_ARGUMENT;
1773
1774         vm_map_lock(map);
1775
1776         VM_MAP_RANGE_CHECK(map, start, end);
1777
1778         if (vm_map_lookup_entry(map, start, &entry)) {
1779                 vm_map_clip_start(map, entry, start);
1780         } else
1781                 entry = entry->next;
1782
1783         vm_map_clip_end(map, entry, end);
1784
1785         if ((entry->start == start) && (entry->end == end) &&
1786             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1787             (entry->object.vm_object == NULL)) {
1788                 entry->object.sub_map = submap;
1789                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1790                 result = KERN_SUCCESS;
1791         }
1792         vm_map_unlock(map);
1793
1794         return (result);
1795 }
1796
1797 /*
1798  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1799  */
1800 #define MAX_INIT_PT     96
1801
1802 /*
1803  *      vm_map_pmap_enter:
1804  *
1805  *      Preload the specified map's pmap with mappings to the specified
1806  *      object's memory-resident pages.  No further physical pages are
1807  *      allocated, and no further virtual pages are retrieved from secondary
1808  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1809  *      limited number of page mappings are created at the low-end of the
1810  *      specified address range.  (For this purpose, a superpage mapping
1811  *      counts as one page mapping.)  Otherwise, all resident pages within
1812  *      the specified address range are mapped.  Because these mappings are
1813  *      being created speculatively, cached pages are not reactivated and
1814  *      mapped.
1815  */
1816 void
1817 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1818     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1819 {
1820         vm_offset_t start;
1821         vm_page_t p, p_start;
1822         vm_pindex_t mask, psize, threshold, tmpidx;
1823
1824         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1825                 return;
1826         VM_OBJECT_RLOCK(object);
1827         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1828                 VM_OBJECT_RUNLOCK(object);
1829                 VM_OBJECT_WLOCK(object);
1830                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1831                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1832                             size);
1833                         VM_OBJECT_WUNLOCK(object);
1834                         return;
1835                 }
1836                 VM_OBJECT_LOCK_DOWNGRADE(object);
1837         }
1838
1839         psize = atop(size);
1840         if (psize + pindex > object->size) {
1841                 if (object->size < pindex) {
1842                         VM_OBJECT_RUNLOCK(object);
1843                         return;
1844                 }
1845                 psize = object->size - pindex;
1846         }
1847
1848         start = 0;
1849         p_start = NULL;
1850         threshold = MAX_INIT_PT;
1851
1852         p = vm_page_find_least(object, pindex);
1853         /*
1854          * Assert: the variable p is either (1) the page with the
1855          * least pindex greater than or equal to the parameter pindex
1856          * or (2) NULL.
1857          */
1858         for (;
1859              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1860              p = TAILQ_NEXT(p, listq)) {
1861                 /*
1862                  * don't allow an madvise to blow away our really
1863                  * free pages allocating pv entries.
1864                  */
1865                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1866                     cnt.v_free_count < cnt.v_free_reserved) ||
1867                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1868                     tmpidx >= threshold)) {
1869                         psize = tmpidx;
1870                         break;
1871                 }
1872                 if (p->valid == VM_PAGE_BITS_ALL) {
1873                         if (p_start == NULL) {
1874                                 start = addr + ptoa(tmpidx);
1875                                 p_start = p;
1876                         }
1877                         /* Jump ahead if a superpage mapping is possible. */
1878                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1879                             (pagesizes[p->psind] - 1)) == 0) {
1880                                 mask = atop(pagesizes[p->psind]) - 1;
1881                                 if (tmpidx + mask < psize &&
1882                                     vm_page_ps_is_valid(p)) {
1883                                         p += mask;
1884                                         threshold += mask;
1885                                 }
1886                         }
1887                 } else if (p_start != NULL) {
1888                         pmap_enter_object(map->pmap, start, addr +
1889                             ptoa(tmpidx), p_start, prot);
1890                         p_start = NULL;
1891                 }
1892         }
1893         if (p_start != NULL)
1894                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1895                     p_start, prot);
1896         VM_OBJECT_RUNLOCK(object);
1897 }
1898
1899 /*
1900  *      vm_map_protect:
1901  *
1902  *      Sets the protection of the specified address
1903  *      region in the target map.  If "set_max" is
1904  *      specified, the maximum protection is to be set;
1905  *      otherwise, only the current protection is affected.
1906  */
1907 int
1908 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1909                vm_prot_t new_prot, boolean_t set_max)
1910 {
1911         vm_map_entry_t current, entry;
1912         vm_object_t obj;
1913         struct ucred *cred;
1914         vm_prot_t old_prot;
1915
1916         if (start == end)
1917                 return (KERN_SUCCESS);
1918
1919         vm_map_lock(map);
1920
1921         VM_MAP_RANGE_CHECK(map, start, end);
1922
1923         if (vm_map_lookup_entry(map, start, &entry)) {
1924                 vm_map_clip_start(map, entry, start);
1925         } else {
1926                 entry = entry->next;
1927         }
1928
1929         /*
1930          * Make a first pass to check for protection violations.
1931          */
1932         current = entry;
1933         while ((current != &map->header) && (current->start < end)) {
1934                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1935                         vm_map_unlock(map);
1936                         return (KERN_INVALID_ARGUMENT);
1937                 }
1938                 if ((new_prot & current->max_protection) != new_prot) {
1939                         vm_map_unlock(map);
1940                         return (KERN_PROTECTION_FAILURE);
1941                 }
1942                 current = current->next;
1943         }
1944
1945
1946         /*
1947          * Do an accounting pass for private read-only mappings that
1948          * now will do cow due to allowed write (e.g. debugger sets
1949          * breakpoint on text segment)
1950          */
1951         for (current = entry; (current != &map->header) &&
1952              (current->start < end); current = current->next) {
1953
1954                 vm_map_clip_end(map, current, end);
1955
1956                 if (set_max ||
1957                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1958                     ENTRY_CHARGED(current)) {
1959                         continue;
1960                 }
1961
1962                 cred = curthread->td_ucred;
1963                 obj = current->object.vm_object;
1964
1965                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1966                         if (!swap_reserve(current->end - current->start)) {
1967                                 vm_map_unlock(map);
1968                                 return (KERN_RESOURCE_SHORTAGE);
1969                         }
1970                         crhold(cred);
1971                         current->cred = cred;
1972                         continue;
1973                 }
1974
1975                 VM_OBJECT_WLOCK(obj);
1976                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1977                         VM_OBJECT_WUNLOCK(obj);
1978                         continue;
1979                 }
1980
1981                 /*
1982                  * Charge for the whole object allocation now, since
1983                  * we cannot distinguish between non-charged and
1984                  * charged clipped mapping of the same object later.
1985                  */
1986                 KASSERT(obj->charge == 0,
1987                     ("vm_map_protect: object %p overcharged (entry %p)",
1988                     obj, current));
1989                 if (!swap_reserve(ptoa(obj->size))) {
1990                         VM_OBJECT_WUNLOCK(obj);
1991                         vm_map_unlock(map);
1992                         return (KERN_RESOURCE_SHORTAGE);
1993                 }
1994
1995                 crhold(cred);
1996                 obj->cred = cred;
1997                 obj->charge = ptoa(obj->size);
1998                 VM_OBJECT_WUNLOCK(obj);
1999         }
2000
2001         /*
2002          * Go back and fix up protections. [Note that clipping is not
2003          * necessary the second time.]
2004          */
2005         current = entry;
2006         while ((current != &map->header) && (current->start < end)) {
2007                 old_prot = current->protection;
2008
2009                 if (set_max)
2010                         current->protection =
2011                             (current->max_protection = new_prot) &
2012                             old_prot;
2013                 else
2014                         current->protection = new_prot;
2015
2016                 /*
2017                  * For user wired map entries, the normal lazy evaluation of
2018                  * write access upgrades through soft page faults is
2019                  * undesirable.  Instead, immediately copy any pages that are
2020                  * copy-on-write and enable write access in the physical map.
2021                  */
2022                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2023                     (current->protection & VM_PROT_WRITE) != 0 &&
2024                     (old_prot & VM_PROT_WRITE) == 0)
2025                         vm_fault_copy_entry(map, map, current, current, NULL);
2026
2027                 /*
2028                  * When restricting access, update the physical map.  Worry
2029                  * about copy-on-write here.
2030                  */
2031                 if ((old_prot & ~current->protection) != 0) {
2032 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2033                                                         VM_PROT_ALL)
2034                         pmap_protect(map->pmap, current->start,
2035                             current->end,
2036                             current->protection & MASK(current));
2037 #undef  MASK
2038                 }
2039                 vm_map_simplify_entry(map, current);
2040                 current = current->next;
2041         }
2042         vm_map_unlock(map);
2043         return (KERN_SUCCESS);
2044 }
2045
2046 /*
2047  *      vm_map_madvise:
2048  *
2049  *      This routine traverses a processes map handling the madvise
2050  *      system call.  Advisories are classified as either those effecting
2051  *      the vm_map_entry structure, or those effecting the underlying
2052  *      objects.
2053  */
2054 int
2055 vm_map_madvise(
2056         vm_map_t map,
2057         vm_offset_t start,
2058         vm_offset_t end,
2059         int behav)
2060 {
2061         vm_map_entry_t current, entry;
2062         int modify_map = 0;
2063
2064         /*
2065          * Some madvise calls directly modify the vm_map_entry, in which case
2066          * we need to use an exclusive lock on the map and we need to perform
2067          * various clipping operations.  Otherwise we only need a read-lock
2068          * on the map.
2069          */
2070         switch(behav) {
2071         case MADV_NORMAL:
2072         case MADV_SEQUENTIAL:
2073         case MADV_RANDOM:
2074         case MADV_NOSYNC:
2075         case MADV_AUTOSYNC:
2076         case MADV_NOCORE:
2077         case MADV_CORE:
2078                 if (start == end)
2079                         return (KERN_SUCCESS);
2080                 modify_map = 1;
2081                 vm_map_lock(map);
2082                 break;
2083         case MADV_WILLNEED:
2084         case MADV_DONTNEED:
2085         case MADV_FREE:
2086                 if (start == end)
2087                         return (KERN_SUCCESS);
2088                 vm_map_lock_read(map);
2089                 break;
2090         default:
2091                 return (KERN_INVALID_ARGUMENT);
2092         }
2093
2094         /*
2095          * Locate starting entry and clip if necessary.
2096          */
2097         VM_MAP_RANGE_CHECK(map, start, end);
2098
2099         if (vm_map_lookup_entry(map, start, &entry)) {
2100                 if (modify_map)
2101                         vm_map_clip_start(map, entry, start);
2102         } else {
2103                 entry = entry->next;
2104         }
2105
2106         if (modify_map) {
2107                 /*
2108                  * madvise behaviors that are implemented in the vm_map_entry.
2109                  *
2110                  * We clip the vm_map_entry so that behavioral changes are
2111                  * limited to the specified address range.
2112                  */
2113                 for (current = entry;
2114                      (current != &map->header) && (current->start < end);
2115                      current = current->next
2116                 ) {
2117                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2118                                 continue;
2119
2120                         vm_map_clip_end(map, current, end);
2121
2122                         switch (behav) {
2123                         case MADV_NORMAL:
2124                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2125                                 break;
2126                         case MADV_SEQUENTIAL:
2127                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2128                                 break;
2129                         case MADV_RANDOM:
2130                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2131                                 break;
2132                         case MADV_NOSYNC:
2133                                 current->eflags |= MAP_ENTRY_NOSYNC;
2134                                 break;
2135                         case MADV_AUTOSYNC:
2136                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2137                                 break;
2138                         case MADV_NOCORE:
2139                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2140                                 break;
2141                         case MADV_CORE:
2142                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2143                                 break;
2144                         default:
2145                                 break;
2146                         }
2147                         vm_map_simplify_entry(map, current);
2148                 }
2149                 vm_map_unlock(map);
2150         } else {
2151                 vm_pindex_t pstart, pend;
2152
2153                 /*
2154                  * madvise behaviors that are implemented in the underlying
2155                  * vm_object.
2156                  *
2157                  * Since we don't clip the vm_map_entry, we have to clip
2158                  * the vm_object pindex and count.
2159                  */
2160                 for (current = entry;
2161                      (current != &map->header) && (current->start < end);
2162                      current = current->next
2163                 ) {
2164                         vm_offset_t useEnd, useStart;
2165
2166                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2167                                 continue;
2168
2169                         pstart = OFF_TO_IDX(current->offset);
2170                         pend = pstart + atop(current->end - current->start);
2171                         useStart = current->start;
2172                         useEnd = current->end;
2173
2174                         if (current->start < start) {
2175                                 pstart += atop(start - current->start);
2176                                 useStart = start;
2177                         }
2178                         if (current->end > end) {
2179                                 pend -= atop(current->end - end);
2180                                 useEnd = end;
2181                         }
2182
2183                         if (pstart >= pend)
2184                                 continue;
2185
2186                         /*
2187                          * Perform the pmap_advise() before clearing
2188                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2189                          * concurrent pmap operation, such as pmap_remove(),
2190                          * could clear a reference in the pmap and set
2191                          * PGA_REFERENCED on the page before the pmap_advise()
2192                          * had completed.  Consequently, the page would appear
2193                          * referenced based upon an old reference that
2194                          * occurred before this pmap_advise() ran.
2195                          */
2196                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2197                                 pmap_advise(map->pmap, useStart, useEnd,
2198                                     behav);
2199
2200                         vm_object_madvise(current->object.vm_object, pstart,
2201                             pend, behav);
2202
2203                         /*
2204                          * Pre-populate paging structures in the
2205                          * WILLNEED case.  For wired entries, the
2206                          * paging structures are already populated.
2207                          */
2208                         if (behav == MADV_WILLNEED &&
2209                             current->wired_count == 0) {
2210                                 vm_map_pmap_enter(map,
2211                                     useStart,
2212                                     current->protection,
2213                                     current->object.vm_object,
2214                                     pstart,
2215                                     ptoa(pend - pstart),
2216                                     MAP_PREFAULT_MADVISE
2217                                 );
2218                         }
2219                 }
2220                 vm_map_unlock_read(map);
2221         }
2222         return (0);
2223 }
2224
2225
2226 /*
2227  *      vm_map_inherit:
2228  *
2229  *      Sets the inheritance of the specified address
2230  *      range in the target map.  Inheritance
2231  *      affects how the map will be shared with
2232  *      child maps at the time of vmspace_fork.
2233  */
2234 int
2235 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2236                vm_inherit_t new_inheritance)
2237 {
2238         vm_map_entry_t entry;
2239         vm_map_entry_t temp_entry;
2240
2241         switch (new_inheritance) {
2242         case VM_INHERIT_NONE:
2243         case VM_INHERIT_COPY:
2244         case VM_INHERIT_SHARE:
2245         case VM_INHERIT_ZERO:
2246                 break;
2247         default:
2248                 return (KERN_INVALID_ARGUMENT);
2249         }
2250         if (start == end)
2251                 return (KERN_SUCCESS);
2252         vm_map_lock(map);
2253         VM_MAP_RANGE_CHECK(map, start, end);
2254         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2255                 entry = temp_entry;
2256                 vm_map_clip_start(map, entry, start);
2257         } else
2258                 entry = temp_entry->next;
2259         while ((entry != &map->header) && (entry->start < end)) {
2260                 vm_map_clip_end(map, entry, end);
2261                 entry->inheritance = new_inheritance;
2262                 vm_map_simplify_entry(map, entry);
2263                 entry = entry->next;
2264         }
2265         vm_map_unlock(map);
2266         return (KERN_SUCCESS);
2267 }
2268
2269 /*
2270  *      vm_map_unwire:
2271  *
2272  *      Implements both kernel and user unwiring.
2273  */
2274 int
2275 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2276     int flags)
2277 {
2278         vm_map_entry_t entry, first_entry, tmp_entry;
2279         vm_offset_t saved_start;
2280         unsigned int last_timestamp;
2281         int rv;
2282         boolean_t need_wakeup, result, user_unwire;
2283
2284         if (start == end)
2285                 return (KERN_SUCCESS);
2286         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2287         vm_map_lock(map);
2288         VM_MAP_RANGE_CHECK(map, start, end);
2289         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2290                 if (flags & VM_MAP_WIRE_HOLESOK)
2291                         first_entry = first_entry->next;
2292                 else {
2293                         vm_map_unlock(map);
2294                         return (KERN_INVALID_ADDRESS);
2295                 }
2296         }
2297         last_timestamp = map->timestamp;
2298         entry = first_entry;
2299         while (entry != &map->header && entry->start < end) {
2300                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2301                         /*
2302                          * We have not yet clipped the entry.
2303                          */
2304                         saved_start = (start >= entry->start) ? start :
2305                             entry->start;
2306                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2307                         if (vm_map_unlock_and_wait(map, 0)) {
2308                                 /*
2309                                  * Allow interruption of user unwiring?
2310                                  */
2311                         }
2312                         vm_map_lock(map);
2313                         if (last_timestamp+1 != map->timestamp) {
2314                                 /*
2315                                  * Look again for the entry because the map was
2316                                  * modified while it was unlocked.
2317                                  * Specifically, the entry may have been
2318                                  * clipped, merged, or deleted.
2319                                  */
2320                                 if (!vm_map_lookup_entry(map, saved_start,
2321                                     &tmp_entry)) {
2322                                         if (flags & VM_MAP_WIRE_HOLESOK)
2323                                                 tmp_entry = tmp_entry->next;
2324                                         else {
2325                                                 if (saved_start == start) {
2326                                                         /*
2327                                                          * First_entry has been deleted.
2328                                                          */
2329                                                         vm_map_unlock(map);
2330                                                         return (KERN_INVALID_ADDRESS);
2331                                                 }
2332                                                 end = saved_start;
2333                                                 rv = KERN_INVALID_ADDRESS;
2334                                                 goto done;
2335                                         }
2336                                 }
2337                                 if (entry == first_entry)
2338                                         first_entry = tmp_entry;
2339                                 else
2340                                         first_entry = NULL;
2341                                 entry = tmp_entry;
2342                         }
2343                         last_timestamp = map->timestamp;
2344                         continue;
2345                 }
2346                 vm_map_clip_start(map, entry, start);
2347                 vm_map_clip_end(map, entry, end);
2348                 /*
2349                  * Mark the entry in case the map lock is released.  (See
2350                  * above.)
2351                  */
2352                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2353                     entry->wiring_thread == NULL,
2354                     ("owned map entry %p", entry));
2355                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2356                 entry->wiring_thread = curthread;
2357                 /*
2358                  * Check the map for holes in the specified region.
2359                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2360                  */
2361                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2362                     (entry->end < end && (entry->next == &map->header ||
2363                     entry->next->start > entry->end))) {
2364                         end = entry->end;
2365                         rv = KERN_INVALID_ADDRESS;
2366                         goto done;
2367                 }
2368                 /*
2369                  * If system unwiring, require that the entry is system wired.
2370                  */
2371                 if (!user_unwire &&
2372                     vm_map_entry_system_wired_count(entry) == 0) {
2373                         end = entry->end;
2374                         rv = KERN_INVALID_ARGUMENT;
2375                         goto done;
2376                 }
2377                 entry = entry->next;
2378         }
2379         rv = KERN_SUCCESS;
2380 done:
2381         need_wakeup = FALSE;
2382         if (first_entry == NULL) {
2383                 result = vm_map_lookup_entry(map, start, &first_entry);
2384                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2385                         first_entry = first_entry->next;
2386                 else
2387                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2388         }
2389         for (entry = first_entry; entry != &map->header && entry->start < end;
2390             entry = entry->next) {
2391                 /*
2392                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2393                  * space in the unwired region could have been mapped
2394                  * while the map lock was dropped for draining
2395                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2396                  * could be simultaneously wiring this new mapping
2397                  * entry.  Detect these cases and skip any entries
2398                  * marked as in transition by us.
2399                  */
2400                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2401                     entry->wiring_thread != curthread) {
2402                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2403                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2404                         continue;
2405                 }
2406
2407                 if (rv == KERN_SUCCESS && (!user_unwire ||
2408                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2409                         if (user_unwire)
2410                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2411                         if (entry->wired_count == 1)
2412                                 vm_map_entry_unwire(map, entry);
2413                         else
2414                                 entry->wired_count--;
2415                 }
2416                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2417                     ("vm_map_unwire: in-transition flag missing %p", entry));
2418                 KASSERT(entry->wiring_thread == curthread,
2419                     ("vm_map_unwire: alien wire %p", entry));
2420                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2421                 entry->wiring_thread = NULL;
2422                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2423                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2424                         need_wakeup = TRUE;
2425                 }
2426                 vm_map_simplify_entry(map, entry);
2427         }
2428         vm_map_unlock(map);
2429         if (need_wakeup)
2430                 vm_map_wakeup(map);
2431         return (rv);
2432 }
2433
2434 /*
2435  *      vm_map_wire_entry_failure:
2436  *
2437  *      Handle a wiring failure on the given entry.
2438  *
2439  *      The map should be locked.
2440  */
2441 static void
2442 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2443     vm_offset_t failed_addr)
2444 {
2445
2446         VM_MAP_ASSERT_LOCKED(map);
2447         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2448             entry->wired_count == 1,
2449             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2450         KASSERT(failed_addr < entry->end,
2451             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2452
2453         /*
2454          * If any pages at the start of this entry were successfully wired,
2455          * then unwire them.
2456          */
2457         if (failed_addr > entry->start) {
2458                 pmap_unwire(map->pmap, entry->start, failed_addr);
2459                 vm_object_unwire(entry->object.vm_object, entry->offset,
2460                     failed_addr - entry->start, PQ_ACTIVE);
2461         }
2462
2463         /*
2464          * Assign an out-of-range value to represent the failure to wire this
2465          * entry.
2466          */
2467         entry->wired_count = -1;
2468 }
2469
2470 /*
2471  *      vm_map_wire:
2472  *
2473  *      Implements both kernel and user wiring.
2474  */
2475 int
2476 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2477     int flags)
2478 {
2479         vm_map_entry_t entry, first_entry, tmp_entry;
2480         vm_offset_t faddr, saved_end, saved_start;
2481         unsigned int last_timestamp;
2482         int rv;
2483         boolean_t need_wakeup, result, user_wire;
2484         vm_prot_t prot;
2485
2486         if (start == end)
2487                 return (KERN_SUCCESS);
2488         prot = 0;
2489         if (flags & VM_MAP_WIRE_WRITE)
2490                 prot |= VM_PROT_WRITE;
2491         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2492         vm_map_lock(map);
2493         VM_MAP_RANGE_CHECK(map, start, end);
2494         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2495                 if (flags & VM_MAP_WIRE_HOLESOK)
2496                         first_entry = first_entry->next;
2497                 else {
2498                         vm_map_unlock(map);
2499                         return (KERN_INVALID_ADDRESS);
2500                 }
2501         }
2502         last_timestamp = map->timestamp;
2503         entry = first_entry;
2504         while (entry != &map->header && entry->start < end) {
2505                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2506                         /*
2507                          * We have not yet clipped the entry.
2508                          */
2509                         saved_start = (start >= entry->start) ? start :
2510                             entry->start;
2511                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2512                         if (vm_map_unlock_and_wait(map, 0)) {
2513                                 /*
2514                                  * Allow interruption of user wiring?
2515                                  */
2516                         }
2517                         vm_map_lock(map);
2518                         if (last_timestamp + 1 != map->timestamp) {
2519                                 /*
2520                                  * Look again for the entry because the map was
2521                                  * modified while it was unlocked.
2522                                  * Specifically, the entry may have been
2523                                  * clipped, merged, or deleted.
2524                                  */
2525                                 if (!vm_map_lookup_entry(map, saved_start,
2526                                     &tmp_entry)) {
2527                                         if (flags & VM_MAP_WIRE_HOLESOK)
2528                                                 tmp_entry = tmp_entry->next;
2529                                         else {
2530                                                 if (saved_start == start) {
2531                                                         /*
2532                                                          * first_entry has been deleted.
2533                                                          */
2534                                                         vm_map_unlock(map);
2535                                                         return (KERN_INVALID_ADDRESS);
2536                                                 }
2537                                                 end = saved_start;
2538                                                 rv = KERN_INVALID_ADDRESS;
2539                                                 goto done;
2540                                         }
2541                                 }
2542                                 if (entry == first_entry)
2543                                         first_entry = tmp_entry;
2544                                 else
2545                                         first_entry = NULL;
2546                                 entry = tmp_entry;
2547                         }
2548                         last_timestamp = map->timestamp;
2549                         continue;
2550                 }
2551                 vm_map_clip_start(map, entry, start);
2552                 vm_map_clip_end(map, entry, end);
2553                 /*
2554                  * Mark the entry in case the map lock is released.  (See
2555                  * above.)
2556                  */
2557                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2558                     entry->wiring_thread == NULL,
2559                     ("owned map entry %p", entry));
2560                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2561                 entry->wiring_thread = curthread;
2562                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2563                     || (entry->protection & prot) != prot) {
2564                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2565                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2566                                 end = entry->end;
2567                                 rv = KERN_INVALID_ADDRESS;
2568                                 goto done;
2569                         }
2570                         goto next_entry;
2571                 }
2572                 if (entry->wired_count == 0) {
2573                         entry->wired_count++;
2574                         saved_start = entry->start;
2575                         saved_end = entry->end;
2576
2577                         /*
2578                          * Release the map lock, relying on the in-transition
2579                          * mark.  Mark the map busy for fork.
2580                          */
2581                         vm_map_busy(map);
2582                         vm_map_unlock(map);
2583
2584                         faddr = saved_start;
2585                         do {
2586                                 /*
2587                                  * Simulate a fault to get the page and enter
2588                                  * it into the physical map.
2589                                  */
2590                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2591                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2592                                         break;
2593                         } while ((faddr += PAGE_SIZE) < saved_end);
2594                         vm_map_lock(map);
2595                         vm_map_unbusy(map);
2596                         if (last_timestamp + 1 != map->timestamp) {
2597                                 /*
2598                                  * Look again for the entry because the map was
2599                                  * modified while it was unlocked.  The entry
2600                                  * may have been clipped, but NOT merged or
2601                                  * deleted.
2602                                  */
2603                                 result = vm_map_lookup_entry(map, saved_start,
2604                                     &tmp_entry);
2605                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2606                                 if (entry == first_entry)
2607                                         first_entry = tmp_entry;
2608                                 else
2609                                         first_entry = NULL;
2610                                 entry = tmp_entry;
2611                                 while (entry->end < saved_end) {
2612                                         /*
2613                                          * In case of failure, handle entries
2614                                          * that were not fully wired here;
2615                                          * fully wired entries are handled
2616                                          * later.
2617                                          */
2618                                         if (rv != KERN_SUCCESS &&
2619                                             faddr < entry->end)
2620                                                 vm_map_wire_entry_failure(map,
2621                                                     entry, faddr);
2622                                         entry = entry->next;
2623                                 }
2624                         }
2625                         last_timestamp = map->timestamp;
2626                         if (rv != KERN_SUCCESS) {
2627                                 vm_map_wire_entry_failure(map, entry, faddr);
2628                                 end = entry->end;
2629                                 goto done;
2630                         }
2631                 } else if (!user_wire ||
2632                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2633                         entry->wired_count++;
2634                 }
2635                 /*
2636                  * Check the map for holes in the specified region.
2637                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2638                  */
2639         next_entry:
2640                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2641                     (entry->end < end && (entry->next == &map->header ||
2642                     entry->next->start > entry->end))) {
2643                         end = entry->end;
2644                         rv = KERN_INVALID_ADDRESS;
2645                         goto done;
2646                 }
2647                 entry = entry->next;
2648         }
2649         rv = KERN_SUCCESS;
2650 done:
2651         need_wakeup = FALSE;
2652         if (first_entry == NULL) {
2653                 result = vm_map_lookup_entry(map, start, &first_entry);
2654                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2655                         first_entry = first_entry->next;
2656                 else
2657                         KASSERT(result, ("vm_map_wire: lookup failed"));
2658         }
2659         for (entry = first_entry; entry != &map->header && entry->start < end;
2660             entry = entry->next) {
2661                 /*
2662                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2663                  * space in the unwired region could have been mapped
2664                  * while the map lock was dropped for faulting in the
2665                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2666                  * Moreover, another thread could be simultaneously
2667                  * wiring this new mapping entry.  Detect these cases
2668                  * and skip any entries marked as in transition not by us.
2669                  */
2670                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2671                     entry->wiring_thread != curthread) {
2672                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2673                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2674                         continue;
2675                 }
2676
2677                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2678                         goto next_entry_done;
2679
2680                 if (rv == KERN_SUCCESS) {
2681                         if (user_wire)
2682                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2683                 } else if (entry->wired_count == -1) {
2684                         /*
2685                          * Wiring failed on this entry.  Thus, unwiring is
2686                          * unnecessary.
2687                          */
2688                         entry->wired_count = 0;
2689                 } else if (!user_wire ||
2690                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2691                         /*
2692                          * Undo the wiring.  Wiring succeeded on this entry
2693                          * but failed on a later entry.  
2694                          */
2695                         if (entry->wired_count == 1)
2696                                 vm_map_entry_unwire(map, entry);
2697                         else
2698                                 entry->wired_count--;
2699                 }
2700         next_entry_done:
2701                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2702                     ("vm_map_wire: in-transition flag missing %p", entry));
2703                 KASSERT(entry->wiring_thread == curthread,
2704                     ("vm_map_wire: alien wire %p", entry));
2705                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2706                     MAP_ENTRY_WIRE_SKIPPED);
2707                 entry->wiring_thread = NULL;
2708                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2709                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2710                         need_wakeup = TRUE;
2711                 }
2712                 vm_map_simplify_entry(map, entry);
2713         }
2714         vm_map_unlock(map);
2715         if (need_wakeup)
2716                 vm_map_wakeup(map);
2717         return (rv);
2718 }
2719
2720 /*
2721  * vm_map_sync
2722  *
2723  * Push any dirty cached pages in the address range to their pager.
2724  * If syncio is TRUE, dirty pages are written synchronously.
2725  * If invalidate is TRUE, any cached pages are freed as well.
2726  *
2727  * If the size of the region from start to end is zero, we are
2728  * supposed to flush all modified pages within the region containing
2729  * start.  Unfortunately, a region can be split or coalesced with
2730  * neighboring regions, making it difficult to determine what the
2731  * original region was.  Therefore, we approximate this requirement by
2732  * flushing the current region containing start.
2733  *
2734  * Returns an error if any part of the specified range is not mapped.
2735  */
2736 int
2737 vm_map_sync(
2738         vm_map_t map,
2739         vm_offset_t start,
2740         vm_offset_t end,
2741         boolean_t syncio,
2742         boolean_t invalidate)
2743 {
2744         vm_map_entry_t current;
2745         vm_map_entry_t entry;
2746         vm_size_t size;
2747         vm_object_t object;
2748         vm_ooffset_t offset;
2749         unsigned int last_timestamp;
2750         boolean_t failed;
2751
2752         vm_map_lock_read(map);
2753         VM_MAP_RANGE_CHECK(map, start, end);
2754         if (!vm_map_lookup_entry(map, start, &entry)) {
2755                 vm_map_unlock_read(map);
2756                 return (KERN_INVALID_ADDRESS);
2757         } else if (start == end) {
2758                 start = entry->start;
2759                 end = entry->end;
2760         }
2761         /*
2762          * Make a first pass to check for user-wired memory and holes.
2763          */
2764         for (current = entry; current != &map->header && current->start < end;
2765             current = current->next) {
2766                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2767                         vm_map_unlock_read(map);
2768                         return (KERN_INVALID_ARGUMENT);
2769                 }
2770                 if (end > current->end &&
2771                     (current->next == &map->header ||
2772                         current->end != current->next->start)) {
2773                         vm_map_unlock_read(map);
2774                         return (KERN_INVALID_ADDRESS);
2775                 }
2776         }
2777
2778         if (invalidate)
2779                 pmap_remove(map->pmap, start, end);
2780         failed = FALSE;
2781
2782         /*
2783          * Make a second pass, cleaning/uncaching pages from the indicated
2784          * objects as we go.
2785          */
2786         for (current = entry; current != &map->header && current->start < end;) {
2787                 offset = current->offset + (start - current->start);
2788                 size = (end <= current->end ? end : current->end) - start;
2789                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2790                         vm_map_t smap;
2791                         vm_map_entry_t tentry;
2792                         vm_size_t tsize;
2793
2794                         smap = current->object.sub_map;
2795                         vm_map_lock_read(smap);
2796                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2797                         tsize = tentry->end - offset;
2798                         if (tsize < size)
2799                                 size = tsize;
2800                         object = tentry->object.vm_object;
2801                         offset = tentry->offset + (offset - tentry->start);
2802                         vm_map_unlock_read(smap);
2803                 } else {
2804                         object = current->object.vm_object;
2805                 }
2806                 vm_object_reference(object);
2807                 last_timestamp = map->timestamp;
2808                 vm_map_unlock_read(map);
2809                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2810                         failed = TRUE;
2811                 start += size;
2812                 vm_object_deallocate(object);
2813                 vm_map_lock_read(map);
2814                 if (last_timestamp == map->timestamp ||
2815                     !vm_map_lookup_entry(map, start, &current))
2816                         current = current->next;
2817         }
2818
2819         vm_map_unlock_read(map);
2820         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2821 }
2822
2823 /*
2824  *      vm_map_entry_unwire:    [ internal use only ]
2825  *
2826  *      Make the region specified by this entry pageable.
2827  *
2828  *      The map in question should be locked.
2829  *      [This is the reason for this routine's existence.]
2830  */
2831 static void
2832 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2833 {
2834
2835         VM_MAP_ASSERT_LOCKED(map);
2836         KASSERT(entry->wired_count > 0,
2837             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2838         pmap_unwire(map->pmap, entry->start, entry->end);
2839         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2840             entry->start, PQ_ACTIVE);
2841         entry->wired_count = 0;
2842 }
2843
2844 static void
2845 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2846 {
2847
2848         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2849                 vm_object_deallocate(entry->object.vm_object);
2850         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2851 }
2852
2853 /*
2854  *      vm_map_entry_delete:    [ internal use only ]
2855  *
2856  *      Deallocate the given entry from the target map.
2857  */
2858 static void
2859 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2860 {
2861         vm_object_t object;
2862         vm_pindex_t offidxstart, offidxend, count, size1;
2863         vm_ooffset_t size;
2864
2865         vm_map_entry_unlink(map, entry);
2866         object = entry->object.vm_object;
2867         size = entry->end - entry->start;
2868         map->size -= size;
2869
2870         if (entry->cred != NULL) {
2871                 swap_release_by_cred(size, entry->cred);
2872                 crfree(entry->cred);
2873         }
2874
2875         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2876             (object != NULL)) {
2877                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2878                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2879                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2880                 count = OFF_TO_IDX(size);
2881                 offidxstart = OFF_TO_IDX(entry->offset);
2882                 offidxend = offidxstart + count;
2883                 VM_OBJECT_WLOCK(object);
2884                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2885                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2886                     object == kernel_object || object == kmem_object)) {
2887                         vm_object_collapse(object);
2888
2889                         /*
2890                          * The option OBJPR_NOTMAPPED can be passed here
2891                          * because vm_map_delete() already performed
2892                          * pmap_remove() on the only mapping to this range
2893                          * of pages. 
2894                          */
2895                         vm_object_page_remove(object, offidxstart, offidxend,
2896                             OBJPR_NOTMAPPED);
2897                         if (object->type == OBJT_SWAP)
2898                                 swap_pager_freespace(object, offidxstart,
2899                                     count);
2900                         if (offidxend >= object->size &&
2901                             offidxstart < object->size) {
2902                                 size1 = object->size;
2903                                 object->size = offidxstart;
2904                                 if (object->cred != NULL) {
2905                                         size1 -= object->size;
2906                                         KASSERT(object->charge >= ptoa(size1),
2907                                             ("object %p charge < 0", object));
2908                                         swap_release_by_cred(ptoa(size1),
2909                                             object->cred);
2910                                         object->charge -= ptoa(size1);
2911                                 }
2912                         }
2913                 }
2914                 VM_OBJECT_WUNLOCK(object);
2915         } else
2916                 entry->object.vm_object = NULL;
2917         if (map->system_map)
2918                 vm_map_entry_deallocate(entry, TRUE);
2919         else {
2920                 entry->next = curthread->td_map_def_user;
2921                 curthread->td_map_def_user = entry;
2922         }
2923 }
2924
2925 /*
2926  *      vm_map_delete:  [ internal use only ]
2927  *
2928  *      Deallocates the given address range from the target
2929  *      map.
2930  */
2931 int
2932 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2933 {
2934         vm_map_entry_t entry;
2935         vm_map_entry_t first_entry;
2936
2937         VM_MAP_ASSERT_LOCKED(map);
2938         if (start == end)
2939                 return (KERN_SUCCESS);
2940
2941         /*
2942          * Find the start of the region, and clip it
2943          */
2944         if (!vm_map_lookup_entry(map, start, &first_entry))
2945                 entry = first_entry->next;
2946         else {
2947                 entry = first_entry;
2948                 vm_map_clip_start(map, entry, start);
2949         }
2950
2951         /*
2952          * Step through all entries in this region
2953          */
2954         while ((entry != &map->header) && (entry->start < end)) {
2955                 vm_map_entry_t next;
2956
2957                 /*
2958                  * Wait for wiring or unwiring of an entry to complete.
2959                  * Also wait for any system wirings to disappear on
2960                  * user maps.
2961                  */
2962                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2963                     (vm_map_pmap(map) != kernel_pmap &&
2964                     vm_map_entry_system_wired_count(entry) != 0)) {
2965                         unsigned int last_timestamp;
2966                         vm_offset_t saved_start;
2967                         vm_map_entry_t tmp_entry;
2968
2969                         saved_start = entry->start;
2970                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2971                         last_timestamp = map->timestamp;
2972                         (void) vm_map_unlock_and_wait(map, 0);
2973                         vm_map_lock(map);
2974                         if (last_timestamp + 1 != map->timestamp) {
2975                                 /*
2976                                  * Look again for the entry because the map was
2977                                  * modified while it was unlocked.
2978                                  * Specifically, the entry may have been
2979                                  * clipped, merged, or deleted.
2980                                  */
2981                                 if (!vm_map_lookup_entry(map, saved_start,
2982                                                          &tmp_entry))
2983                                         entry = tmp_entry->next;
2984                                 else {
2985                                         entry = tmp_entry;
2986                                         vm_map_clip_start(map, entry,
2987                                                           saved_start);
2988                                 }
2989                         }
2990                         continue;
2991                 }
2992                 vm_map_clip_end(map, entry, end);
2993
2994                 next = entry->next;
2995
2996                 /*
2997                  * Unwire before removing addresses from the pmap; otherwise,
2998                  * unwiring will put the entries back in the pmap.
2999                  */
3000                 if (entry->wired_count != 0) {
3001                         vm_map_entry_unwire(map, entry);
3002                 }
3003
3004                 pmap_remove(map->pmap, entry->start, entry->end);
3005
3006                 /*
3007                  * Delete the entry only after removing all pmap
3008                  * entries pointing to its pages.  (Otherwise, its
3009                  * page frames may be reallocated, and any modify bits
3010                  * will be set in the wrong object!)
3011                  */
3012                 vm_map_entry_delete(map, entry);
3013                 entry = next;
3014         }
3015         return (KERN_SUCCESS);
3016 }
3017
3018 /*
3019  *      vm_map_remove:
3020  *
3021  *      Remove the given address range from the target map.
3022  *      This is the exported form of vm_map_delete.
3023  */
3024 int
3025 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3026 {
3027         int result;
3028
3029         vm_map_lock(map);
3030         VM_MAP_RANGE_CHECK(map, start, end);
3031         result = vm_map_delete(map, start, end);
3032         vm_map_unlock(map);
3033         return (result);
3034 }
3035
3036 /*
3037  *      vm_map_check_protection:
3038  *
3039  *      Assert that the target map allows the specified privilege on the
3040  *      entire address region given.  The entire region must be allocated.
3041  *
3042  *      WARNING!  This code does not and should not check whether the
3043  *      contents of the region is accessible.  For example a smaller file
3044  *      might be mapped into a larger address space.
3045  *
3046  *      NOTE!  This code is also called by munmap().
3047  *
3048  *      The map must be locked.  A read lock is sufficient.
3049  */
3050 boolean_t
3051 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3052                         vm_prot_t protection)
3053 {
3054         vm_map_entry_t entry;
3055         vm_map_entry_t tmp_entry;
3056
3057         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3058                 return (FALSE);
3059         entry = tmp_entry;
3060
3061         while (start < end) {
3062                 if (entry == &map->header)
3063                         return (FALSE);
3064                 /*
3065                  * No holes allowed!
3066                  */
3067                 if (start < entry->start)
3068                         return (FALSE);
3069                 /*
3070                  * Check protection associated with entry.
3071                  */
3072                 if ((entry->protection & protection) != protection)
3073                         return (FALSE);
3074                 /* go to next entry */
3075                 start = entry->end;
3076                 entry = entry->next;
3077         }
3078         return (TRUE);
3079 }
3080
3081 /*
3082  *      vm_map_copy_entry:
3083  *
3084  *      Copies the contents of the source entry to the destination
3085  *      entry.  The entries *must* be aligned properly.
3086  */
3087 static void
3088 vm_map_copy_entry(
3089         vm_map_t src_map,
3090         vm_map_t dst_map,
3091         vm_map_entry_t src_entry,
3092         vm_map_entry_t dst_entry,
3093         vm_ooffset_t *fork_charge)
3094 {
3095         vm_object_t src_object;
3096         vm_map_entry_t fake_entry;
3097         vm_offset_t size;
3098         struct ucred *cred;
3099         int charged;
3100
3101         VM_MAP_ASSERT_LOCKED(dst_map);
3102
3103         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3104                 return;
3105
3106         if (src_entry->wired_count == 0 ||
3107             (src_entry->protection & VM_PROT_WRITE) == 0) {
3108                 /*
3109                  * If the source entry is marked needs_copy, it is already
3110                  * write-protected.
3111                  */
3112                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3113                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3114                         pmap_protect(src_map->pmap,
3115                             src_entry->start,
3116                             src_entry->end,
3117                             src_entry->protection & ~VM_PROT_WRITE);
3118                 }
3119
3120                 /*
3121                  * Make a copy of the object.
3122                  */
3123                 size = src_entry->end - src_entry->start;
3124                 if ((src_object = src_entry->object.vm_object) != NULL) {
3125                         VM_OBJECT_WLOCK(src_object);
3126                         charged = ENTRY_CHARGED(src_entry);
3127                         if (src_object->handle == NULL &&
3128                             (src_object->type == OBJT_DEFAULT ||
3129                             src_object->type == OBJT_SWAP)) {
3130                                 vm_object_collapse(src_object);
3131                                 if ((src_object->flags & (OBJ_NOSPLIT |
3132                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3133                                         vm_object_split(src_entry);
3134                                         src_object =
3135                                             src_entry->object.vm_object;
3136                                 }
3137                         }
3138                         vm_object_reference_locked(src_object);
3139                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3140                         if (src_entry->cred != NULL &&
3141                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3142                                 KASSERT(src_object->cred == NULL,
3143                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3144                                      src_object));
3145                                 src_object->cred = src_entry->cred;
3146                                 src_object->charge = size;
3147                         }
3148                         VM_OBJECT_WUNLOCK(src_object);
3149                         dst_entry->object.vm_object = src_object;
3150                         if (charged) {
3151                                 cred = curthread->td_ucred;
3152                                 crhold(cred);
3153                                 dst_entry->cred = cred;
3154                                 *fork_charge += size;
3155                                 if (!(src_entry->eflags &
3156                                       MAP_ENTRY_NEEDS_COPY)) {
3157                                         crhold(cred);
3158                                         src_entry->cred = cred;
3159                                         *fork_charge += size;
3160                                 }
3161                         }
3162                         src_entry->eflags |= MAP_ENTRY_COW |
3163                             MAP_ENTRY_NEEDS_COPY;
3164                         dst_entry->eflags |= MAP_ENTRY_COW |
3165                             MAP_ENTRY_NEEDS_COPY;
3166                         dst_entry->offset = src_entry->offset;
3167                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3168                                 /*
3169                                  * MAP_ENTRY_VN_WRITECNT cannot
3170                                  * indicate write reference from
3171                                  * src_entry, since the entry is
3172                                  * marked as needs copy.  Allocate a
3173                                  * fake entry that is used to
3174                                  * decrement object->un_pager.vnp.writecount
3175                                  * at the appropriate time.  Attach
3176                                  * fake_entry to the deferred list.
3177                                  */
3178                                 fake_entry = vm_map_entry_create(dst_map);
3179                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3180                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3181                                 vm_object_reference(src_object);
3182                                 fake_entry->object.vm_object = src_object;
3183                                 fake_entry->start = src_entry->start;
3184                                 fake_entry->end = src_entry->end;
3185                                 fake_entry->next = curthread->td_map_def_user;
3186                                 curthread->td_map_def_user = fake_entry;
3187                         }
3188
3189                         pmap_copy(dst_map->pmap, src_map->pmap,
3190                             dst_entry->start, dst_entry->end - dst_entry->start,
3191                             src_entry->start);
3192                 } else {
3193                         dst_entry->object.vm_object = NULL;
3194                         dst_entry->offset = 0;
3195                         if (src_entry->cred != NULL) {
3196                                 dst_entry->cred = curthread->td_ucred;
3197                                 crhold(dst_entry->cred);
3198                                 *fork_charge += size;
3199                         }
3200                 }
3201         } else {
3202                 /*
3203                  * We don't want to make writeable wired pages copy-on-write.
3204                  * Immediately copy these pages into the new map by simulating
3205                  * page faults.  The new pages are pageable.
3206                  */
3207                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3208                     fork_charge);
3209         }
3210 }
3211
3212 /*
3213  * vmspace_map_entry_forked:
3214  * Update the newly-forked vmspace each time a map entry is inherited
3215  * or copied.  The values for vm_dsize and vm_tsize are approximate
3216  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3217  */
3218 static void
3219 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3220     vm_map_entry_t entry)
3221 {
3222         vm_size_t entrysize;
3223         vm_offset_t newend;
3224
3225         entrysize = entry->end - entry->start;
3226         vm2->vm_map.size += entrysize;
3227         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3228                 vm2->vm_ssize += btoc(entrysize);
3229         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3230             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3231                 newend = MIN(entry->end,
3232                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3233                 vm2->vm_dsize += btoc(newend - entry->start);
3234         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3235             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3236                 newend = MIN(entry->end,
3237                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3238                 vm2->vm_tsize += btoc(newend - entry->start);
3239         }
3240 }
3241
3242 /*
3243  * vmspace_fork:
3244  * Create a new process vmspace structure and vm_map
3245  * based on those of an existing process.  The new map
3246  * is based on the old map, according to the inheritance
3247  * values on the regions in that map.
3248  *
3249  * XXX It might be worth coalescing the entries added to the new vmspace.
3250  *
3251  * The source map must not be locked.
3252  */
3253 struct vmspace *
3254 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3255 {
3256         struct vmspace *vm2;
3257         vm_map_t new_map, old_map;
3258         vm_map_entry_t new_entry, old_entry;
3259         vm_object_t object;
3260         int locked;
3261
3262         old_map = &vm1->vm_map;
3263         /* Copy immutable fields of vm1 to vm2. */
3264         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3265         if (vm2 == NULL)
3266                 return (NULL);
3267         vm2->vm_taddr = vm1->vm_taddr;
3268         vm2->vm_daddr = vm1->vm_daddr;
3269         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3270         vm_map_lock(old_map);
3271         if (old_map->busy)
3272                 vm_map_wait_busy(old_map);
3273         new_map = &vm2->vm_map;
3274         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3275         KASSERT(locked, ("vmspace_fork: lock failed"));
3276
3277         old_entry = old_map->header.next;
3278
3279         while (old_entry != &old_map->header) {
3280                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3281                         panic("vm_map_fork: encountered a submap");
3282
3283                 switch (old_entry->inheritance) {
3284                 case VM_INHERIT_NONE:
3285                         break;
3286
3287                 case VM_INHERIT_SHARE:
3288                         /*
3289                          * Clone the entry, creating the shared object if necessary.
3290                          */
3291                         object = old_entry->object.vm_object;
3292                         if (object == NULL) {
3293                                 object = vm_object_allocate(OBJT_DEFAULT,
3294                                         atop(old_entry->end - old_entry->start));
3295                                 old_entry->object.vm_object = object;
3296                                 old_entry->offset = 0;
3297                                 if (old_entry->cred != NULL) {
3298                                         object->cred = old_entry->cred;
3299                                         object->charge = old_entry->end -
3300                                             old_entry->start;
3301                                         old_entry->cred = NULL;
3302                                 }
3303                         }
3304
3305                         /*
3306                          * Add the reference before calling vm_object_shadow
3307                          * to insure that a shadow object is created.
3308                          */
3309                         vm_object_reference(object);
3310                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3311                                 vm_object_shadow(&old_entry->object.vm_object,
3312                                     &old_entry->offset,
3313                                     old_entry->end - old_entry->start);
3314                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3315                                 /* Transfer the second reference too. */
3316                                 vm_object_reference(
3317                                     old_entry->object.vm_object);
3318
3319                                 /*
3320                                  * As in vm_map_simplify_entry(), the
3321                                  * vnode lock will not be acquired in
3322                                  * this call to vm_object_deallocate().
3323                                  */
3324                                 vm_object_deallocate(object);
3325                                 object = old_entry->object.vm_object;
3326                         }
3327                         VM_OBJECT_WLOCK(object);
3328                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3329                         if (old_entry->cred != NULL) {
3330                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3331                                 object->cred = old_entry->cred;
3332                                 object->charge = old_entry->end - old_entry->start;
3333                                 old_entry->cred = NULL;
3334                         }
3335
3336                         /*
3337                          * Assert the correct state of the vnode
3338                          * v_writecount while the object is locked, to
3339                          * not relock it later for the assertion
3340                          * correctness.
3341                          */
3342                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3343                             object->type == OBJT_VNODE) {
3344                                 KASSERT(((struct vnode *)object->handle)->
3345                                     v_writecount > 0,
3346                                     ("vmspace_fork: v_writecount %p", object));
3347                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3348                                     ("vmspace_fork: vnp.writecount %p",
3349                                     object));
3350                         }
3351                         VM_OBJECT_WUNLOCK(object);
3352
3353                         /*
3354                          * Clone the entry, referencing the shared object.
3355                          */
3356                         new_entry = vm_map_entry_create(new_map);
3357                         *new_entry = *old_entry;
3358                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3359                             MAP_ENTRY_IN_TRANSITION);
3360                         new_entry->wiring_thread = NULL;
3361                         new_entry->wired_count = 0;
3362                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3363                                 vnode_pager_update_writecount(object,
3364                                     new_entry->start, new_entry->end);
3365                         }
3366
3367                         /*
3368                          * Insert the entry into the new map -- we know we're
3369                          * inserting at the end of the new map.
3370                          */
3371                         vm_map_entry_link(new_map, new_map->header.prev,
3372                             new_entry);
3373                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3374
3375                         /*
3376                          * Update the physical map
3377                          */
3378                         pmap_copy(new_map->pmap, old_map->pmap,
3379                             new_entry->start,
3380                             (old_entry->end - old_entry->start),
3381                             old_entry->start);
3382                         break;
3383
3384                 case VM_INHERIT_COPY:
3385                         /*
3386                          * Clone the entry and link into the map.
3387                          */
3388                         new_entry = vm_map_entry_create(new_map);
3389                         *new_entry = *old_entry;
3390                         /*
3391                          * Copied entry is COW over the old object.
3392                          */
3393                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3394                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3395                         new_entry->wiring_thread = NULL;
3396                         new_entry->wired_count = 0;
3397                         new_entry->object.vm_object = NULL;
3398                         new_entry->cred = NULL;
3399                         vm_map_entry_link(new_map, new_map->header.prev,
3400                             new_entry);
3401                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3402                         vm_map_copy_entry(old_map, new_map, old_entry,
3403                             new_entry, fork_charge);
3404                         break;
3405
3406                 case VM_INHERIT_ZERO:
3407                         /*
3408                          * Create a new anonymous mapping entry modelled from
3409                          * the old one.
3410                          */
3411                         new_entry = vm_map_entry_create(new_map);
3412                         memset(new_entry, 0, sizeof(*new_entry));
3413
3414                         new_entry->start = old_entry->start;
3415                         new_entry->end = old_entry->end;
3416                         new_entry->avail_ssize = old_entry->avail_ssize;
3417                         new_entry->eflags = old_entry->eflags &
3418                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3419                             MAP_ENTRY_VN_WRITECNT);
3420                         new_entry->protection = old_entry->protection;
3421                         new_entry->max_protection = old_entry->max_protection;
3422                         new_entry->inheritance = VM_INHERIT_ZERO;
3423
3424                         vm_map_entry_link(new_map, new_map->header.prev,
3425                             new_entry);
3426                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3427
3428                         new_entry->cred = curthread->td_ucred;
3429                         crhold(new_entry->cred);
3430                         *fork_charge += (new_entry->end - new_entry->start);
3431
3432                         break;
3433                 }
3434                 old_entry = old_entry->next;
3435         }
3436         /*
3437          * Use inlined vm_map_unlock() to postpone handling the deferred
3438          * map entries, which cannot be done until both old_map and
3439          * new_map locks are released.
3440          */
3441         sx_xunlock(&old_map->lock);
3442         sx_xunlock(&new_map->lock);
3443         vm_map_process_deferred();
3444
3445         return (vm2);
3446 }
3447
3448 int
3449 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3450     vm_prot_t prot, vm_prot_t max, int cow)
3451 {
3452         vm_size_t growsize, init_ssize;
3453         rlim_t lmemlim, vmemlim;
3454         int rv;
3455
3456         growsize = sgrowsiz;
3457         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3458         vm_map_lock(map);
3459         PROC_LOCK(curproc);
3460         lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3461         vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3462         PROC_UNLOCK(curproc);
3463         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3464                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3465                         rv = KERN_NO_SPACE;
3466                         goto out;
3467                 }
3468         }
3469         /* If we would blow our VMEM resource limit, no go */
3470         if (map->size + init_ssize > vmemlim) {
3471                 rv = KERN_NO_SPACE;
3472                 goto out;
3473         }
3474         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3475             max, cow);
3476 out:
3477         vm_map_unlock(map);
3478         return (rv);
3479 }
3480
3481 static int
3482 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3483     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3484 {
3485         vm_map_entry_t new_entry, prev_entry;
3486         vm_offset_t bot, top;
3487         vm_size_t init_ssize;
3488         int orient, rv;
3489
3490         /*
3491          * The stack orientation is piggybacked with the cow argument.
3492          * Extract it into orient and mask the cow argument so that we
3493          * don't pass it around further.
3494          * NOTE: We explicitly allow bi-directional stacks.
3495          */
3496         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3497         KASSERT(orient != 0, ("No stack grow direction"));
3498
3499         if (addrbos < vm_map_min(map) ||
3500             addrbos > vm_map_max(map) ||
3501             addrbos + max_ssize < addrbos)
3502                 return (KERN_NO_SPACE);
3503
3504         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3505
3506         /* If addr is already mapped, no go */
3507         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3508                 return (KERN_NO_SPACE);
3509
3510         /*
3511          * If we can't accomodate max_ssize in the current mapping, no go.
3512          * However, we need to be aware that subsequent user mappings might
3513          * map into the space we have reserved for stack, and currently this
3514          * space is not protected.
3515          *
3516          * Hopefully we will at least detect this condition when we try to
3517          * grow the stack.
3518          */
3519         if ((prev_entry->next != &map->header) &&
3520             (prev_entry->next->start < addrbos + max_ssize))
3521                 return (KERN_NO_SPACE);
3522
3523         /*
3524          * We initially map a stack of only init_ssize.  We will grow as
3525          * needed later.  Depending on the orientation of the stack (i.e.
3526          * the grow direction) we either map at the top of the range, the
3527          * bottom of the range or in the middle.
3528          *
3529          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3530          * and cow to be 0.  Possibly we should eliminate these as input
3531          * parameters, and just pass these values here in the insert call.
3532          */
3533         if (orient == MAP_STACK_GROWS_DOWN)
3534                 bot = addrbos + max_ssize - init_ssize;
3535         else if (orient == MAP_STACK_GROWS_UP)
3536                 bot = addrbos;
3537         else
3538                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3539         top = bot + init_ssize;
3540         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3541
3542         /* Now set the avail_ssize amount. */
3543         if (rv == KERN_SUCCESS) {
3544                 new_entry = prev_entry->next;
3545                 if (new_entry->end != top || new_entry->start != bot)
3546                         panic("Bad entry start/end for new stack entry");
3547
3548                 new_entry->avail_ssize = max_ssize - init_ssize;
3549                 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3550                     (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3551                     ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3552                 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3553                     (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3554                     ("new entry lacks MAP_ENTRY_GROWS_UP"));
3555         }
3556
3557         return (rv);
3558 }
3559
3560 static int stack_guard_page = 0;
3561 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3562 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3563     &stack_guard_page, 0,
3564     "Insert stack guard page ahead of the growable segments.");
3565
3566 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3567  * desired address is already mapped, or if we successfully grow
3568  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3569  * stack range (this is strange, but preserves compatibility with
3570  * the grow function in vm_machdep.c).
3571  */
3572 int
3573 vm_map_growstack(struct proc *p, vm_offset_t addr)
3574 {
3575         vm_map_entry_t next_entry, prev_entry;
3576         vm_map_entry_t new_entry, stack_entry;
3577         struct vmspace *vm = p->p_vmspace;
3578         vm_map_t map = &vm->vm_map;
3579         vm_offset_t end;
3580         vm_size_t growsize;
3581         size_t grow_amount, max_grow;
3582         rlim_t lmemlim, stacklim, vmemlim;
3583         int is_procstack, rv;
3584         struct ucred *cred;
3585 #ifdef notyet
3586         uint64_t limit;
3587 #endif
3588 #ifdef RACCT
3589         int error;
3590 #endif
3591
3592 Retry:
3593         PROC_LOCK(p);
3594         lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3595         stacklim = lim_cur(p, RLIMIT_STACK);
3596         vmemlim = lim_cur(p, RLIMIT_VMEM);
3597         PROC_UNLOCK(p);
3598
3599         vm_map_lock_read(map);
3600
3601         /* If addr is already in the entry range, no need to grow.*/
3602         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3603                 vm_map_unlock_read(map);
3604                 return (KERN_SUCCESS);
3605         }
3606
3607         next_entry = prev_entry->next;
3608         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3609                 /*
3610                  * This entry does not grow upwards. Since the address lies
3611                  * beyond this entry, the next entry (if one exists) has to
3612                  * be a downward growable entry. The entry list header is
3613                  * never a growable entry, so it suffices to check the flags.
3614                  */
3615                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3616                         vm_map_unlock_read(map);
3617                         return (KERN_SUCCESS);
3618                 }
3619                 stack_entry = next_entry;
3620         } else {
3621                 /*
3622                  * This entry grows upward. If the next entry does not at
3623                  * least grow downwards, this is the entry we need to grow.
3624                  * otherwise we have two possible choices and we have to
3625                  * select one.
3626                  */
3627                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3628                         /*
3629                          * We have two choices; grow the entry closest to
3630                          * the address to minimize the amount of growth.
3631                          */
3632                         if (addr - prev_entry->end <= next_entry->start - addr)
3633                                 stack_entry = prev_entry;
3634                         else
3635                                 stack_entry = next_entry;
3636                 } else
3637                         stack_entry = prev_entry;
3638         }
3639
3640         if (stack_entry == next_entry) {
3641                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3642                 KASSERT(addr < stack_entry->start, ("foo"));
3643                 end = (prev_entry != &map->header) ? prev_entry->end :
3644                     stack_entry->start - stack_entry->avail_ssize;
3645                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3646                 max_grow = stack_entry->start - end;
3647         } else {
3648                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3649                 KASSERT(addr >= stack_entry->end, ("foo"));
3650                 end = (next_entry != &map->header) ? next_entry->start :
3651                     stack_entry->end + stack_entry->avail_ssize;
3652                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3653                 max_grow = end - stack_entry->end;
3654         }
3655
3656         if (grow_amount > stack_entry->avail_ssize) {
3657                 vm_map_unlock_read(map);
3658                 return (KERN_NO_SPACE);
3659         }
3660
3661         /*
3662          * If there is no longer enough space between the entries nogo, and
3663          * adjust the available space.  Note: this  should only happen if the
3664          * user has mapped into the stack area after the stack was created,
3665          * and is probably an error.
3666          *
3667          * This also effectively destroys any guard page the user might have
3668          * intended by limiting the stack size.
3669          */
3670         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3671                 if (vm_map_lock_upgrade(map))
3672                         goto Retry;
3673
3674                 stack_entry->avail_ssize = max_grow;
3675
3676                 vm_map_unlock(map);
3677                 return (KERN_NO_SPACE);
3678         }
3679
3680         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3681             addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3682
3683         /*
3684          * If this is the main process stack, see if we're over the stack
3685          * limit.
3686          */
3687         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3688                 vm_map_unlock_read(map);
3689                 return (KERN_NO_SPACE);
3690         }
3691 #ifdef RACCT
3692         if (racct_enable) {
3693                 PROC_LOCK(p);
3694                 if (is_procstack && racct_set(p, RACCT_STACK,
3695                     ctob(vm->vm_ssize) + grow_amount)) {
3696                         PROC_UNLOCK(p);
3697                         vm_map_unlock_read(map);
3698                         return (KERN_NO_SPACE);
3699                 }
3700                 PROC_UNLOCK(p);
3701         }
3702 #endif
3703
3704         /* Round up the grow amount modulo sgrowsiz */
3705         growsize = sgrowsiz;
3706         grow_amount = roundup(grow_amount, growsize);
3707         if (grow_amount > stack_entry->avail_ssize)
3708                 grow_amount = stack_entry->avail_ssize;
3709         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3710                 grow_amount = trunc_page((vm_size_t)stacklim) -
3711                     ctob(vm->vm_ssize);
3712         }
3713 #ifdef notyet
3714         PROC_LOCK(p);
3715         limit = racct_get_available(p, RACCT_STACK);
3716         PROC_UNLOCK(p);
3717         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3718                 grow_amount = limit - ctob(vm->vm_ssize);
3719 #endif
3720         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3721                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3722                         vm_map_unlock_read(map);
3723                         rv = KERN_NO_SPACE;
3724                         goto out;
3725                 }
3726 #ifdef RACCT
3727                 if (racct_enable) {
3728                         PROC_LOCK(p);
3729                         if (racct_set(p, RACCT_MEMLOCK,
3730                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3731                                 PROC_UNLOCK(p);
3732                                 vm_map_unlock_read(map);
3733                                 rv = KERN_NO_SPACE;
3734                                 goto out;
3735                         }
3736                         PROC_UNLOCK(p);
3737                 }
3738 #endif
3739         }
3740         /* If we would blow our VMEM resource limit, no go */
3741         if (map->size + grow_amount > vmemlim) {
3742                 vm_map_unlock_read(map);
3743                 rv = KERN_NO_SPACE;
3744                 goto out;
3745         }
3746 #ifdef RACCT
3747         if (racct_enable) {
3748                 PROC_LOCK(p);
3749                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3750                         PROC_UNLOCK(p);
3751                         vm_map_unlock_read(map);
3752                         rv = KERN_NO_SPACE;
3753                         goto out;
3754                 }
3755                 PROC_UNLOCK(p);
3756         }
3757 #endif
3758
3759         if (vm_map_lock_upgrade(map))
3760                 goto Retry;
3761
3762         if (stack_entry == next_entry) {
3763                 /*
3764                  * Growing downward.
3765                  */
3766                 /* Get the preliminary new entry start value */
3767                 addr = stack_entry->start - grow_amount;
3768
3769                 /*
3770                  * If this puts us into the previous entry, cut back our
3771                  * growth to the available space. Also, see the note above.
3772                  */
3773                 if (addr < end) {
3774                         stack_entry->avail_ssize = max_grow;
3775                         addr = end;
3776                         if (stack_guard_page)
3777                                 addr += PAGE_SIZE;
3778                 }
3779
3780                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3781                     next_entry->protection, next_entry->max_protection,
3782                     MAP_STACK_GROWS_DOWN);
3783
3784                 /* Adjust the available stack space by the amount we grew. */
3785                 if (rv == KERN_SUCCESS) {
3786                         new_entry = prev_entry->next;
3787                         KASSERT(new_entry == stack_entry->prev, ("foo"));
3788                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
3789                         KASSERT(new_entry->start == addr, ("foo"));
3790                         KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3791                             0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3792                         grow_amount = new_entry->end - new_entry->start;
3793                         new_entry->avail_ssize = stack_entry->avail_ssize -
3794                             grow_amount;
3795                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3796                 }
3797         } else {
3798                 /*
3799                  * Growing upward.
3800                  */
3801                 addr = stack_entry->end + grow_amount;
3802
3803                 /*
3804                  * If this puts us into the next entry, cut back our growth
3805                  * to the available space. Also, see the note above.
3806                  */
3807                 if (addr > end) {
3808                         stack_entry->avail_ssize = end - stack_entry->end;
3809                         addr = end;
3810                         if (stack_guard_page)
3811                                 addr -= PAGE_SIZE;
3812                 }
3813
3814                 grow_amount = addr - stack_entry->end;
3815                 cred = stack_entry->cred;
3816                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3817                         cred = stack_entry->object.vm_object->cred;
3818                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3819                         rv = KERN_NO_SPACE;
3820                 /* Grow the underlying object if applicable. */
3821                 else if (stack_entry->object.vm_object == NULL ||
3822                     vm_object_coalesce(stack_entry->object.vm_object,
3823                     stack_entry->offset,
3824                     (vm_size_t)(stack_entry->end - stack_entry->start),
3825                     (vm_size_t)grow_amount, cred != NULL)) {
3826                         map->size += (addr - stack_entry->end);
3827                         /* Update the current entry. */
3828                         stack_entry->end = addr;
3829                         stack_entry->avail_ssize -= grow_amount;
3830                         vm_map_entry_resize_free(map, stack_entry);
3831                         rv = KERN_SUCCESS;
3832
3833                         if (next_entry != &map->header)
3834                                 vm_map_clip_start(map, next_entry, addr);
3835                 } else
3836                         rv = KERN_FAILURE;
3837         }
3838
3839         if (rv == KERN_SUCCESS && is_procstack)
3840                 vm->vm_ssize += btoc(grow_amount);
3841
3842         vm_map_unlock(map);
3843
3844         /*
3845          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3846          */
3847         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3848                 vm_map_wire(map,
3849                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3850                     (stack_entry == next_entry) ? stack_entry->start : addr,
3851                     (p->p_flag & P_SYSTEM)
3852                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3853                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3854         }
3855
3856 out:
3857 #ifdef RACCT
3858         if (racct_enable && rv != KERN_SUCCESS) {
3859                 PROC_LOCK(p);
3860                 error = racct_set(p, RACCT_VMEM, map->size);
3861                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3862                 if (!old_mlock) {
3863                         error = racct_set(p, RACCT_MEMLOCK,
3864                             ptoa(pmap_wired_count(map->pmap)));
3865                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3866                 }
3867                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3868                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3869                 PROC_UNLOCK(p);
3870         }
3871 #endif
3872
3873         return (rv);
3874 }
3875
3876 /*
3877  * Unshare the specified VM space for exec.  If other processes are
3878  * mapped to it, then create a new one.  The new vmspace is null.
3879  */
3880 int
3881 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3882 {
3883         struct vmspace *oldvmspace = p->p_vmspace;
3884         struct vmspace *newvmspace;
3885
3886         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3887             ("vmspace_exec recursed"));
3888         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3889         if (newvmspace == NULL)
3890                 return (ENOMEM);
3891         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3892         /*
3893          * This code is written like this for prototype purposes.  The
3894          * goal is to avoid running down the vmspace here, but let the
3895          * other process's that are still using the vmspace to finally
3896          * run it down.  Even though there is little or no chance of blocking
3897          * here, it is a good idea to keep this form for future mods.
3898          */
3899         PROC_VMSPACE_LOCK(p);
3900         p->p_vmspace = newvmspace;
3901         PROC_VMSPACE_UNLOCK(p);
3902         if (p == curthread->td_proc)
3903                 pmap_activate(curthread);
3904         curthread->td_pflags |= TDP_EXECVMSPC;
3905         return (0);
3906 }
3907
3908 /*
3909  * Unshare the specified VM space for forcing COW.  This
3910  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3911  */
3912 int
3913 vmspace_unshare(struct proc *p)
3914 {
3915         struct vmspace *oldvmspace = p->p_vmspace;
3916         struct vmspace *newvmspace;
3917         vm_ooffset_t fork_charge;
3918
3919         if (oldvmspace->vm_refcnt == 1)
3920                 return (0);
3921         fork_charge = 0;
3922         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3923         if (newvmspace == NULL)
3924                 return (ENOMEM);
3925         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3926                 vmspace_free(newvmspace);
3927                 return (ENOMEM);
3928         }
3929         PROC_VMSPACE_LOCK(p);
3930         p->p_vmspace = newvmspace;
3931         PROC_VMSPACE_UNLOCK(p);
3932         if (p == curthread->td_proc)
3933                 pmap_activate(curthread);
3934         vmspace_free(oldvmspace);
3935         return (0);
3936 }
3937
3938 /*
3939  *      vm_map_lookup:
3940  *
3941  *      Finds the VM object, offset, and
3942  *      protection for a given virtual address in the
3943  *      specified map, assuming a page fault of the
3944  *      type specified.
3945  *
3946  *      Leaves the map in question locked for read; return
3947  *      values are guaranteed until a vm_map_lookup_done
3948  *      call is performed.  Note that the map argument
3949  *      is in/out; the returned map must be used in
3950  *      the call to vm_map_lookup_done.
3951  *
3952  *      A handle (out_entry) is returned for use in
3953  *      vm_map_lookup_done, to make that fast.
3954  *
3955  *      If a lookup is requested with "write protection"
3956  *      specified, the map may be changed to perform virtual
3957  *      copying operations, although the data referenced will
3958  *      remain the same.
3959  */
3960 int
3961 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3962               vm_offset_t vaddr,
3963               vm_prot_t fault_typea,
3964               vm_map_entry_t *out_entry,        /* OUT */
3965               vm_object_t *object,              /* OUT */
3966               vm_pindex_t *pindex,              /* OUT */
3967               vm_prot_t *out_prot,              /* OUT */
3968               boolean_t *wired)                 /* OUT */
3969 {
3970         vm_map_entry_t entry;
3971         vm_map_t map = *var_map;
3972         vm_prot_t prot;
3973         vm_prot_t fault_type = fault_typea;
3974         vm_object_t eobject;
3975         vm_size_t size;
3976         struct ucred *cred;
3977
3978 RetryLookup:;
3979
3980         vm_map_lock_read(map);
3981
3982         /*
3983          * Lookup the faulting address.
3984          */
3985         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3986                 vm_map_unlock_read(map);
3987                 return (KERN_INVALID_ADDRESS);
3988         }
3989
3990         entry = *out_entry;
3991
3992         /*
3993          * Handle submaps.
3994          */
3995         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3996                 vm_map_t old_map = map;
3997
3998                 *var_map = map = entry->object.sub_map;
3999                 vm_map_unlock_read(old_map);
4000                 goto RetryLookup;
4001         }
4002
4003         /*
4004          * Check whether this task is allowed to have this page.
4005          */
4006         prot = entry->protection;
4007         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4008         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4009                 vm_map_unlock_read(map);
4010                 return (KERN_PROTECTION_FAILURE);
4011         }
4012         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4013             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4014             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4015             ("entry %p flags %x", entry, entry->eflags));
4016         if ((fault_typea & VM_PROT_COPY) != 0 &&
4017             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4018             (entry->eflags & MAP_ENTRY_COW) == 0) {
4019                 vm_map_unlock_read(map);
4020                 return (KERN_PROTECTION_FAILURE);
4021         }
4022
4023         /*
4024          * If this page is not pageable, we have to get it for all possible
4025          * accesses.
4026          */
4027         *wired = (entry->wired_count != 0);
4028         if (*wired)
4029                 fault_type = entry->protection;
4030         size = entry->end - entry->start;
4031         /*
4032          * If the entry was copy-on-write, we either ...
4033          */
4034         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4035                 /*
4036                  * If we want to write the page, we may as well handle that
4037                  * now since we've got the map locked.
4038                  *
4039                  * If we don't need to write the page, we just demote the
4040                  * permissions allowed.
4041                  */
4042                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4043                     (fault_typea & VM_PROT_COPY) != 0) {
4044                         /*
4045                          * Make a new object, and place it in the object
4046                          * chain.  Note that no new references have appeared
4047                          * -- one just moved from the map to the new
4048                          * object.
4049                          */
4050                         if (vm_map_lock_upgrade(map))
4051                                 goto RetryLookup;
4052
4053                         if (entry->cred == NULL) {
4054                                 /*
4055                                  * The debugger owner is charged for
4056                                  * the memory.
4057                                  */
4058                                 cred = curthread->td_ucred;
4059                                 crhold(cred);
4060                                 if (!swap_reserve_by_cred(size, cred)) {
4061                                         crfree(cred);
4062                                         vm_map_unlock(map);
4063                                         return (KERN_RESOURCE_SHORTAGE);
4064                                 }
4065                                 entry->cred = cred;
4066                         }
4067                         vm_object_shadow(&entry->object.vm_object,
4068                             &entry->offset, size);
4069                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4070                         eobject = entry->object.vm_object;
4071                         if (eobject->cred != NULL) {
4072                                 /*
4073                                  * The object was not shadowed.
4074                                  */
4075                                 swap_release_by_cred(size, entry->cred);
4076                                 crfree(entry->cred);
4077                                 entry->cred = NULL;
4078                         } else if (entry->cred != NULL) {
4079                                 VM_OBJECT_WLOCK(eobject);
4080                                 eobject->cred = entry->cred;
4081                                 eobject->charge = size;
4082                                 VM_OBJECT_WUNLOCK(eobject);
4083                                 entry->cred = NULL;
4084                         }
4085
4086                         vm_map_lock_downgrade(map);
4087                 } else {
4088                         /*
4089                          * We're attempting to read a copy-on-write page --
4090                          * don't allow writes.
4091                          */
4092                         prot &= ~VM_PROT_WRITE;
4093                 }
4094         }
4095
4096         /*
4097          * Create an object if necessary.
4098          */
4099         if (entry->object.vm_object == NULL &&
4100             !map->system_map) {
4101                 if (vm_map_lock_upgrade(map))
4102                         goto RetryLookup;
4103                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4104                     atop(size));
4105                 entry->offset = 0;
4106                 if (entry->cred != NULL) {
4107                         VM_OBJECT_WLOCK(entry->object.vm_object);
4108                         entry->object.vm_object->cred = entry->cred;
4109                         entry->object.vm_object->charge = size;
4110                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4111                         entry->cred = NULL;
4112                 }
4113                 vm_map_lock_downgrade(map);
4114         }
4115
4116         /*
4117          * Return the object/offset from this entry.  If the entry was
4118          * copy-on-write or empty, it has been fixed up.
4119          */
4120         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4121         *object = entry->object.vm_object;
4122
4123         *out_prot = prot;
4124         return (KERN_SUCCESS);
4125 }
4126
4127 /*
4128  *      vm_map_lookup_locked:
4129  *
4130  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4131  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4132  */
4133 int
4134 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4135                      vm_offset_t vaddr,
4136                      vm_prot_t fault_typea,
4137                      vm_map_entry_t *out_entry, /* OUT */
4138                      vm_object_t *object,       /* OUT */
4139                      vm_pindex_t *pindex,       /* OUT */
4140                      vm_prot_t *out_prot,       /* OUT */
4141                      boolean_t *wired)          /* OUT */
4142 {
4143         vm_map_entry_t entry;
4144         vm_map_t map = *var_map;
4145         vm_prot_t prot;
4146         vm_prot_t fault_type = fault_typea;
4147
4148         /*
4149          * Lookup the faulting address.
4150          */
4151         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4152                 return (KERN_INVALID_ADDRESS);
4153
4154         entry = *out_entry;
4155
4156         /*
4157          * Fail if the entry refers to a submap.
4158          */
4159         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4160                 return (KERN_FAILURE);
4161
4162         /*
4163          * Check whether this task is allowed to have this page.
4164          */
4165         prot = entry->protection;
4166         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4167         if ((fault_type & prot) != fault_type)
4168                 return (KERN_PROTECTION_FAILURE);
4169
4170         /*
4171          * If this page is not pageable, we have to get it for all possible
4172          * accesses.
4173          */
4174         *wired = (entry->wired_count != 0);
4175         if (*wired)
4176                 fault_type = entry->protection;
4177
4178         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4179                 /*
4180                  * Fail if the entry was copy-on-write for a write fault.
4181                  */
4182                 if (fault_type & VM_PROT_WRITE)
4183                         return (KERN_FAILURE);
4184                 /*
4185                  * We're attempting to read a copy-on-write page --
4186                  * don't allow writes.
4187                  */
4188                 prot &= ~VM_PROT_WRITE;
4189         }
4190
4191         /*
4192          * Fail if an object should be created.
4193          */
4194         if (entry->object.vm_object == NULL && !map->system_map)
4195                 return (KERN_FAILURE);
4196
4197         /*
4198          * Return the object/offset from this entry.  If the entry was
4199          * copy-on-write or empty, it has been fixed up.
4200          */
4201         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4202         *object = entry->object.vm_object;
4203
4204         *out_prot = prot;
4205         return (KERN_SUCCESS);
4206 }
4207
4208 /*
4209  *      vm_map_lookup_done:
4210  *
4211  *      Releases locks acquired by a vm_map_lookup
4212  *      (according to the handle returned by that lookup).
4213  */
4214 void
4215 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4216 {
4217         /*
4218          * Unlock the main-level map
4219          */
4220         vm_map_unlock_read(map);
4221 }
4222
4223 #include "opt_ddb.h"
4224 #ifdef DDB
4225 #include <sys/kernel.h>
4226
4227 #include <ddb/ddb.h>
4228
4229 static void
4230 vm_map_print(vm_map_t map)
4231 {
4232         vm_map_entry_t entry;
4233
4234         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4235             (void *)map,
4236             (void *)map->pmap, map->nentries, map->timestamp);
4237
4238         db_indent += 2;
4239         for (entry = map->header.next; entry != &map->header;
4240             entry = entry->next) {
4241                 db_iprintf("map entry %p: start=%p, end=%p\n",
4242                     (void *)entry, (void *)entry->start, (void *)entry->end);
4243                 {
4244                         static char *inheritance_name[4] =
4245                         {"share", "copy", "none", "donate_copy"};
4246
4247                         db_iprintf(" prot=%x/%x/%s",
4248                             entry->protection,
4249                             entry->max_protection,
4250                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4251                         if (entry->wired_count != 0)
4252                                 db_printf(", wired");
4253                 }
4254                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4255                         db_printf(", share=%p, offset=0x%jx\n",
4256                             (void *)entry->object.sub_map,
4257                             (uintmax_t)entry->offset);
4258                         if ((entry->prev == &map->header) ||
4259                             (entry->prev->object.sub_map !=
4260                                 entry->object.sub_map)) {
4261                                 db_indent += 2;
4262                                 vm_map_print((vm_map_t)entry->object.sub_map);
4263                                 db_indent -= 2;
4264                         }
4265                 } else {
4266                         if (entry->cred != NULL)
4267                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4268                         db_printf(", object=%p, offset=0x%jx",
4269                             (void *)entry->object.vm_object,
4270                             (uintmax_t)entry->offset);
4271                         if (entry->object.vm_object && entry->object.vm_object->cred)
4272                                 db_printf(", obj ruid %d charge %jx",
4273                                     entry->object.vm_object->cred->cr_ruid,
4274                                     (uintmax_t)entry->object.vm_object->charge);
4275                         if (entry->eflags & MAP_ENTRY_COW)
4276                                 db_printf(", copy (%s)",
4277                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4278                         db_printf("\n");
4279
4280                         if ((entry->prev == &map->header) ||
4281                             (entry->prev->object.vm_object !=
4282                                 entry->object.vm_object)) {
4283                                 db_indent += 2;
4284                                 vm_object_print((db_expr_t)(intptr_t)
4285                                                 entry->object.vm_object,
4286                                                 0, 0, (char *)0);
4287                                 db_indent -= 2;
4288                         }
4289                 }
4290         }
4291         db_indent -= 2;
4292 }
4293
4294 DB_SHOW_COMMAND(map, map)
4295 {
4296
4297         if (!have_addr) {
4298                 db_printf("usage: show map <addr>\n");
4299                 return;
4300         }
4301         vm_map_print((vm_map_t)addr);
4302 }
4303
4304 DB_SHOW_COMMAND(procvm, procvm)
4305 {
4306         struct proc *p;
4307
4308         if (have_addr) {
4309                 p = db_lookup_proc(addr);
4310         } else {
4311                 p = curproc;
4312         }
4313
4314         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4315             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4316             (void *)vmspace_pmap(p->p_vmspace));
4317
4318         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4319 }
4320
4321 #endif /* DDB */