]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/vm/vm_phys.c
MFC r368207,368607:
[FreeBSD/stable/10.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS        8
79 static struct vm_phys_fictitious_seg {
80         vm_paddr_t      start;
81         vm_paddr_t      end;
82         vm_page_t       first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists;
91
92 /*
93  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
94  */
95 static int vm_freelist_to_flind[VM_NFREELIST];
96
97 CTASSERT(VM_FREELIST_DEFAULT == 0);
98
99 #ifdef VM_FREELIST_ISADMA
100 #define VM_ISADMA_BOUNDARY      16777216
101 #endif
102 #ifdef VM_FREELIST_DMA32
103 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
104 #endif
105
106 /*
107  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
108  * the ordering of the free list boundaries.
109  */
110 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
111 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
112 #endif
113 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
114 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
115 #endif
116
117 static int cnt_prezero;
118 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
119     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
120
121 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
122 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
123     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
124
125 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
126 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
127     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
128
129 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
130     &vm_ndomains, 0, "Number of physical memory domains available.");
131
132 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
133     int order);
134 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
135 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
136 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
137 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
138     int order);
139
140 static __inline int
141 vm_rr_selectdomain(void)
142 {
143 #if MAXMEMDOM > 1
144         struct thread *td;
145
146         td = curthread;
147
148         td->td_dom_rr_idx++;
149         td->td_dom_rr_idx %= vm_ndomains;
150         return (td->td_dom_rr_idx);
151 #else
152         return (0);
153 #endif
154 }
155
156 boolean_t
157 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
158 {
159         struct vm_phys_seg *s;
160         int idx;
161
162         while ((idx = ffsl(mask)) != 0) {
163                 idx--;  /* ffsl counts from 1 */
164                 mask &= ~(1UL << idx);
165                 s = &vm_phys_segs[idx];
166                 if (low < s->end && high > s->start)
167                         return (TRUE);
168         }
169         return (FALSE);
170 }
171
172 /*
173  * Outputs the state of the physical memory allocator, specifically,
174  * the amount of physical memory in each free list.
175  */
176 static int
177 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
178 {
179         struct sbuf sbuf;
180         struct vm_freelist *fl;
181         int dom, error, flind, oind, pind;
182
183         error = sysctl_wire_old_buffer(req, 0);
184         if (error != 0)
185                 return (error);
186         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
187         for (dom = 0; dom < vm_ndomains; dom++) {
188                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
189                 for (flind = 0; flind < vm_nfreelists; flind++) {
190                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
191                             "\n  ORDER (SIZE)  |  NUMBER"
192                             "\n              ", flind);
193                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
194                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
195                         sbuf_printf(&sbuf, "\n--            ");
196                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
197                                 sbuf_printf(&sbuf, "-- --      ");
198                         sbuf_printf(&sbuf, "--\n");
199                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
200                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
201                                     1 << (PAGE_SHIFT - 10 + oind));
202                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
203                                 fl = vm_phys_free_queues[dom][flind][pind];
204                                         sbuf_printf(&sbuf, "  |  %6d",
205                                             fl[oind].lcnt);
206                                 }
207                                 sbuf_printf(&sbuf, "\n");
208                         }
209                 }
210         }
211         error = sbuf_finish(&sbuf);
212         sbuf_delete(&sbuf);
213         return (error);
214 }
215
216 /*
217  * Outputs the set of physical memory segments.
218  */
219 static int
220 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
221 {
222         struct sbuf sbuf;
223         struct vm_phys_seg *seg;
224         int error, segind;
225
226         error = sysctl_wire_old_buffer(req, 0);
227         if (error != 0)
228                 return (error);
229         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
230         for (segind = 0; segind < vm_phys_nsegs; segind++) {
231                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
232                 seg = &vm_phys_segs[segind];
233                 sbuf_printf(&sbuf, "start:     %#jx\n",
234                     (uintmax_t)seg->start);
235                 sbuf_printf(&sbuf, "end:       %#jx\n",
236                     (uintmax_t)seg->end);
237                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
238                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
239         }
240         error = sbuf_finish(&sbuf);
241         sbuf_delete(&sbuf);
242         return (error);
243 }
244
245 static void
246 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
247 {
248
249         m->order = order;
250         if (tail)
251                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
252         else
253                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
254         fl[order].lcnt++;
255 }
256
257 static void
258 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
259 {
260
261         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
262         fl[order].lcnt--;
263         m->order = VM_NFREEORDER;
264 }
265
266 /*
267  * Create a physical memory segment.
268  */
269 static void
270 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
271 {
272         struct vm_phys_seg *seg;
273
274         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
275             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
276         KASSERT(domain < vm_ndomains,
277             ("vm_phys_create_seg: invalid domain provided"));
278         seg = &vm_phys_segs[vm_phys_nsegs++];
279         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
280                 *seg = *(seg - 1);
281                 seg--;
282         }
283         seg->start = start;
284         seg->end = end;
285         seg->domain = domain;
286 }
287
288 static void
289 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
290 {
291         int i;
292
293         if (mem_affinity == NULL) {
294                 _vm_phys_create_seg(start, end, 0);
295                 return;
296         }
297
298         for (i = 0;; i++) {
299                 if (mem_affinity[i].end == 0)
300                         panic("Reached end of affinity info");
301                 if (mem_affinity[i].end <= start)
302                         continue;
303                 if (mem_affinity[i].start > start)
304                         panic("No affinity info for start %jx",
305                             (uintmax_t)start);
306                 if (mem_affinity[i].end >= end) {
307                         _vm_phys_create_seg(start, end,
308                             mem_affinity[i].domain);
309                         break;
310                 }
311                 _vm_phys_create_seg(start, mem_affinity[i].end,
312                     mem_affinity[i].domain);
313                 start = mem_affinity[i].end;
314         }
315 }
316
317 /*
318  * Add a physical memory segment.
319  */
320 void
321 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
322 {
323         vm_paddr_t paddr;
324
325         KASSERT((start & PAGE_MASK) == 0,
326             ("vm_phys_define_seg: start is not page aligned"));
327         KASSERT((end & PAGE_MASK) == 0,
328             ("vm_phys_define_seg: end is not page aligned"));
329
330         /*
331          * Split the physical memory segment if it spans two or more free
332          * list boundaries.
333          */
334         paddr = start;
335 #ifdef  VM_FREELIST_ISADMA
336         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
337                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
338                 paddr = VM_ISADMA_BOUNDARY;
339         }
340 #endif
341 #ifdef  VM_FREELIST_LOWMEM
342         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
343                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
344                 paddr = VM_LOWMEM_BOUNDARY;
345         }
346 #endif
347 #ifdef  VM_FREELIST_DMA32
348         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
349                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
350                 paddr = VM_DMA32_BOUNDARY;
351         }
352 #endif
353         vm_phys_create_seg(paddr, end);
354 }
355
356 /*
357  * Initialize the physical memory allocator.
358  *
359  * Requires that vm_page_array is initialized!
360  */
361 void
362 vm_phys_init(void)
363 {
364         struct vm_freelist *fl;
365         struct vm_phys_seg *seg;
366         u_long npages;
367         int dom, flind, freelist, oind, pind, segind;
368
369         /*
370          * Compute the number of free lists, and generate the mapping from the
371          * manifest constants VM_FREELIST_* to the free list indices.
372          *
373          * Initially, the entries of vm_freelist_to_flind[] are set to either
374          * 0 or 1 to indicate which free lists should be created.
375          */
376         npages = 0;
377         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
378                 seg = &vm_phys_segs[segind];
379 #ifdef  VM_FREELIST_ISADMA
380                 if (seg->end <= VM_ISADMA_BOUNDARY)
381                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
382                 else
383 #endif
384 #ifdef  VM_FREELIST_LOWMEM
385                 if (seg->end <= VM_LOWMEM_BOUNDARY)
386                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
387                 else
388 #endif
389 #ifdef  VM_FREELIST_DMA32
390                 if (
391 #ifdef  VM_DMA32_NPAGES_THRESHOLD
392                     /*
393                      * Create the DMA32 free list only if the amount of
394                      * physical memory above physical address 4G exceeds the
395                      * given threshold.
396                      */
397                     npages > VM_DMA32_NPAGES_THRESHOLD &&
398 #endif
399                     seg->end <= VM_DMA32_BOUNDARY)
400                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
401                 else
402 #endif
403                 {
404                         npages += atop(seg->end - seg->start);
405                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
406                 }
407         }
408         /* Change each entry into a running total of the free lists. */
409         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
410                 vm_freelist_to_flind[freelist] +=
411                     vm_freelist_to_flind[freelist - 1];
412         }
413         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
414         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
415         /* Change each entry into a free list index. */
416         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
417                 vm_freelist_to_flind[freelist]--;
418
419         /*
420          * Initialize the first_page and free_queues fields of each physical
421          * memory segment.
422          */
423 #ifdef VM_PHYSSEG_SPARSE
424         npages = 0;
425 #endif
426         for (segind = 0; segind < vm_phys_nsegs; segind++) {
427                 seg = &vm_phys_segs[segind];
428 #ifdef VM_PHYSSEG_SPARSE
429                 seg->first_page = &vm_page_array[npages];
430                 npages += atop(seg->end - seg->start);
431 #else
432                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
433 #endif
434 #ifdef  VM_FREELIST_ISADMA
435                 if (seg->end <= VM_ISADMA_BOUNDARY) {
436                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
437                         KASSERT(flind >= 0,
438                             ("vm_phys_init: ISADMA flind < 0"));
439                 } else
440 #endif
441 #ifdef  VM_FREELIST_LOWMEM
442                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
443                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
444                         KASSERT(flind >= 0,
445                             ("vm_phys_init: LOWMEM flind < 0"));
446                 } else
447 #endif
448 #ifdef  VM_FREELIST_DMA32
449                 if (seg->end <= VM_DMA32_BOUNDARY) {
450                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
451                         KASSERT(flind >= 0,
452                             ("vm_phys_init: DMA32 flind < 0"));
453                 } else
454 #endif
455                 {
456                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
457                         KASSERT(flind >= 0,
458                             ("vm_phys_init: DEFAULT flind < 0"));
459                 }
460                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
461         }
462
463         /*
464          * Initialize the free queues.
465          */
466         for (dom = 0; dom < vm_ndomains; dom++) {
467                 for (flind = 0; flind < vm_nfreelists; flind++) {
468                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
469                                 fl = vm_phys_free_queues[dom][flind][pind];
470                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
471                                         TAILQ_INIT(&fl[oind].pl);
472                         }
473                 }
474         }
475         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
476 }
477
478 /*
479  * Split a contiguous, power of two-sized set of physical pages.
480  */
481 static __inline void
482 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
483 {
484         vm_page_t m_buddy;
485
486         while (oind > order) {
487                 oind--;
488                 m_buddy = &m[1 << oind];
489                 KASSERT(m_buddy->order == VM_NFREEORDER,
490                     ("vm_phys_split_pages: page %p has unexpected order %d",
491                     m_buddy, m_buddy->order));
492                 vm_freelist_add(fl, m_buddy, oind, 0);
493         }
494 }
495
496 /*
497  * Initialize a physical page and add it to the free lists.
498  */
499 void
500 vm_phys_add_page(vm_paddr_t pa)
501 {
502         vm_page_t m;
503         struct vm_domain *vmd;
504
505         cnt.v_page_count++;
506         m = vm_phys_paddr_to_vm_page(pa);
507         m->busy_lock = VPB_UNBUSIED;
508         m->phys_addr = pa;
509         m->queue = PQ_NONE;
510         m->segind = vm_phys_paddr_to_segind(pa);
511         vmd = vm_phys_domain(m);
512         vmd->vmd_page_count++;
513         vmd->vmd_segs |= 1UL << m->segind;
514         m->flags = PG_FREE;
515         KASSERT(m->order == VM_NFREEORDER,
516             ("vm_phys_add_page: page %p has unexpected order %d",
517             m, m->order));
518         m->pool = VM_FREEPOOL_DEFAULT;
519         pmap_page_init(m);
520         mtx_lock(&vm_page_queue_free_mtx);
521         vm_phys_freecnt_adj(m, 1);
522         vm_phys_free_pages(m, 0);
523         mtx_unlock(&vm_page_queue_free_mtx);
524 }
525
526 /*
527  * Allocate a contiguous, power of two-sized set of physical pages
528  * from the free lists.
529  *
530  * The free page queues must be locked.
531  */
532 vm_page_t
533 vm_phys_alloc_pages(int pool, int order)
534 {
535         vm_page_t m;
536         int dom, domain, flind;
537
538         KASSERT(pool < VM_NFREEPOOL,
539             ("vm_phys_alloc_pages: pool %d is out of range", pool));
540         KASSERT(order < VM_NFREEORDER,
541             ("vm_phys_alloc_pages: order %d is out of range", order));
542
543         for (dom = 0; dom < vm_ndomains; dom++) {
544                 domain = vm_rr_selectdomain();
545                 for (flind = 0; flind < vm_nfreelists; flind++) {
546                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
547                             order);
548                         if (m != NULL)
549                                 return (m);
550                 }
551         }
552         return (NULL);
553 }
554
555 /*
556  * Allocate a contiguous, power of two-sized set of physical pages from the
557  * specified free list.  The free list must be specified using one of the
558  * manifest constants VM_FREELIST_*.
559  *
560  * The free page queues must be locked.
561  */
562 vm_page_t
563 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
564 {
565         vm_page_t m;
566         int dom, domain;
567
568         KASSERT(freelist < VM_NFREELIST,
569             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
570             freelist));
571         KASSERT(pool < VM_NFREEPOOL,
572             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
573         KASSERT(order < VM_NFREEORDER,
574             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
575         for (dom = 0; dom < vm_ndomains; dom++) {
576                 domain = vm_rr_selectdomain();
577                 m = vm_phys_alloc_domain_pages(domain,
578                     vm_freelist_to_flind[freelist], pool, order);
579                 if (m != NULL)
580                         return (m);
581         }
582         return (NULL);
583 }
584
585 static vm_page_t
586 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
587 {       
588         struct vm_freelist *fl;
589         struct vm_freelist *alt;
590         int oind, pind;
591         vm_page_t m;
592
593         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
594         fl = &vm_phys_free_queues[domain][flind][pool][0];
595         for (oind = order; oind < VM_NFREEORDER; oind++) {
596                 m = TAILQ_FIRST(&fl[oind].pl);
597                 if (m != NULL) {
598                         vm_freelist_rem(fl, m, oind);
599                         vm_phys_split_pages(m, oind, fl, order);
600                         return (m);
601                 }
602         }
603
604         /*
605          * The given pool was empty.  Find the largest
606          * contiguous, power-of-two-sized set of pages in any
607          * pool.  Transfer these pages to the given pool, and
608          * use them to satisfy the allocation.
609          */
610         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
611                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
612                         alt = &vm_phys_free_queues[domain][flind][pind][0];
613                         m = TAILQ_FIRST(&alt[oind].pl);
614                         if (m != NULL) {
615                                 vm_freelist_rem(alt, m, oind);
616                                 vm_phys_set_pool(pool, m, oind);
617                                 vm_phys_split_pages(m, oind, fl, order);
618                                 return (m);
619                         }
620                 }
621         }
622         return (NULL);
623 }
624
625 /*
626  * Find the vm_page corresponding to the given physical address.
627  */
628 vm_page_t
629 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
630 {
631         struct vm_phys_seg *seg;
632         int segind;
633
634         for (segind = 0; segind < vm_phys_nsegs; segind++) {
635                 seg = &vm_phys_segs[segind];
636                 if (pa >= seg->start && pa < seg->end)
637                         return (&seg->first_page[atop(pa - seg->start)]);
638         }
639         return (NULL);
640 }
641
642 vm_page_t
643 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
644 {
645         struct vm_phys_fictitious_seg *seg;
646         vm_page_t m;
647         int segind;
648
649         m = NULL;
650         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
651                 seg = &vm_phys_fictitious_segs[segind];
652                 if (pa >= seg->start && pa < seg->end) {
653                         m = &seg->first_page[atop(pa - seg->start)];
654                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
655                             ("%p not fictitious", m));
656                         break;
657                 }
658         }
659         return (m);
660 }
661
662 int
663 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
664     vm_memattr_t memattr)
665 {
666         struct vm_phys_fictitious_seg *seg;
667         vm_page_t fp;
668         long i, page_count;
669         int segind;
670 #ifdef VM_PHYSSEG_DENSE
671         long pi;
672         boolean_t malloced;
673 #endif
674
675         page_count = (end - start) / PAGE_SIZE;
676
677 #ifdef VM_PHYSSEG_DENSE
678         pi = atop(start);
679         if (pi >= first_page && pi < vm_page_array_size + first_page) {
680                 if (atop(end) >= vm_page_array_size + first_page)
681                         return (EINVAL);
682                 fp = &vm_page_array[pi - first_page];
683                 malloced = FALSE;
684         } else
685 #endif
686         {
687                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
688                     M_WAITOK | M_ZERO);
689 #ifdef VM_PHYSSEG_DENSE
690                 malloced = TRUE;
691 #endif
692         }
693         for (i = 0; i < page_count; i++) {
694                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
695                 fp[i].oflags &= ~VPO_UNMANAGED;
696                 fp[i].busy_lock = VPB_UNBUSIED;
697         }
698         mtx_lock(&vm_phys_fictitious_reg_mtx);
699         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
700                 seg = &vm_phys_fictitious_segs[segind];
701                 if (seg->start == 0 && seg->end == 0) {
702                         seg->start = start;
703                         seg->end = end;
704                         seg->first_page = fp;
705                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
706                         return (0);
707                 }
708         }
709         mtx_unlock(&vm_phys_fictitious_reg_mtx);
710 #ifdef VM_PHYSSEG_DENSE
711         if (malloced)
712 #endif
713                 free(fp, M_FICT_PAGES);
714         return (EBUSY);
715 }
716
717 void
718 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
719 {
720         struct vm_phys_fictitious_seg *seg;
721         vm_page_t fp;
722         int segind;
723 #ifdef VM_PHYSSEG_DENSE
724         long pi;
725 #endif
726
727 #ifdef VM_PHYSSEG_DENSE
728         pi = atop(start);
729 #endif
730
731         mtx_lock(&vm_phys_fictitious_reg_mtx);
732         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
733                 seg = &vm_phys_fictitious_segs[segind];
734                 if (seg->start == start && seg->end == end) {
735                         seg->start = seg->end = 0;
736                         fp = seg->first_page;
737                         seg->first_page = NULL;
738                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
739 #ifdef VM_PHYSSEG_DENSE
740                         if (pi < first_page || atop(end) >= vm_page_array_size)
741 #endif
742                                 free(fp, M_FICT_PAGES);
743                         return;
744                 }
745         }
746         mtx_unlock(&vm_phys_fictitious_reg_mtx);
747         KASSERT(0, ("Unregistering not registered fictitious range"));
748 }
749
750 /*
751  * Find the segment containing the given physical address.
752  */
753 static int
754 vm_phys_paddr_to_segind(vm_paddr_t pa)
755 {
756         struct vm_phys_seg *seg;
757         int segind;
758
759         for (segind = 0; segind < vm_phys_nsegs; segind++) {
760                 seg = &vm_phys_segs[segind];
761                 if (pa >= seg->start && pa < seg->end)
762                         return (segind);
763         }
764         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
765             (uintmax_t)pa);
766 }
767
768 /*
769  * Free a contiguous, power of two-sized set of physical pages.
770  *
771  * The free page queues must be locked.
772  */
773 void
774 vm_phys_free_pages(vm_page_t m, int order)
775 {
776         struct vm_freelist *fl;
777         struct vm_phys_seg *seg;
778         vm_paddr_t pa;
779         vm_page_t m_buddy;
780
781         KASSERT(m->order == VM_NFREEORDER,
782             ("vm_phys_free_pages: page %p has unexpected order %d",
783             m, m->order));
784         KASSERT(m->pool < VM_NFREEPOOL,
785             ("vm_phys_free_pages: page %p has unexpected pool %d",
786             m, m->pool));
787         KASSERT(order < VM_NFREEORDER,
788             ("vm_phys_free_pages: order %d is out of range", order));
789         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
790         seg = &vm_phys_segs[m->segind];
791         if (order < VM_NFREEORDER - 1) {
792                 pa = VM_PAGE_TO_PHYS(m);
793                 do {
794                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
795                         if (pa < seg->start || pa >= seg->end)
796                                 break;
797                         m_buddy = &seg->first_page[atop(pa - seg->start)];
798                         if (m_buddy->order != order)
799                                 break;
800                         fl = (*seg->free_queues)[m_buddy->pool];
801                         vm_freelist_rem(fl, m_buddy, order);
802                         if (m_buddy->pool != m->pool)
803                                 vm_phys_set_pool(m->pool, m_buddy, order);
804                         order++;
805                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
806                         m = &seg->first_page[atop(pa - seg->start)];
807                 } while (order < VM_NFREEORDER - 1);
808         }
809         fl = (*seg->free_queues)[m->pool];
810         vm_freelist_add(fl, m, order, 1);
811 }
812
813 /*
814  * Free a contiguous, arbitrarily sized set of physical pages.
815  *
816  * The free page queues must be locked.
817  */
818 void
819 vm_phys_free_contig(vm_page_t m, u_long npages)
820 {
821         u_int n;
822         int order;
823
824         /*
825          * Avoid unnecessary coalescing by freeing the pages in the largest
826          * possible power-of-two-sized subsets.
827          */
828         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
829         for (;; npages -= n) {
830                 /*
831                  * Unsigned "min" is used here so that "order" is assigned
832                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
833                  * or the low-order bits of its physical address are zero
834                  * because the size of a physical address exceeds the size of
835                  * a long.
836                  */
837                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
838                     VM_NFREEORDER - 1);
839                 n = 1 << order;
840                 if (npages < n)
841                         break;
842                 vm_phys_free_pages(m, order);
843                 m += n;
844         }
845         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
846         for (; npages > 0; npages -= n) {
847                 order = flsl(npages) - 1;
848                 n = 1 << order;
849                 vm_phys_free_pages(m, order);
850                 m += n;
851         }
852 }
853
854 /*
855  * Set the pool for a contiguous, power of two-sized set of physical pages. 
856  */
857 void
858 vm_phys_set_pool(int pool, vm_page_t m, int order)
859 {
860         vm_page_t m_tmp;
861
862         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
863                 m_tmp->pool = pool;
864 }
865
866 /*
867  * Search for the given physical page "m" in the free lists.  If the search
868  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
869  * FALSE, indicating that "m" is not in the free lists.
870  *
871  * The free page queues must be locked.
872  */
873 boolean_t
874 vm_phys_unfree_page(vm_page_t m)
875 {
876         struct vm_freelist *fl;
877         struct vm_phys_seg *seg;
878         vm_paddr_t pa, pa_half;
879         vm_page_t m_set, m_tmp;
880         int order;
881
882         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
883
884         /*
885          * First, find the contiguous, power of two-sized set of free
886          * physical pages containing the given physical page "m" and
887          * assign it to "m_set".
888          */
889         seg = &vm_phys_segs[m->segind];
890         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
891             order < VM_NFREEORDER - 1; ) {
892                 order++;
893                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
894                 if (pa >= seg->start)
895                         m_set = &seg->first_page[atop(pa - seg->start)];
896                 else
897                         return (FALSE);
898         }
899         if (m_set->order < order)
900                 return (FALSE);
901         if (m_set->order == VM_NFREEORDER)
902                 return (FALSE);
903         KASSERT(m_set->order < VM_NFREEORDER,
904             ("vm_phys_unfree_page: page %p has unexpected order %d",
905             m_set, m_set->order));
906
907         /*
908          * Next, remove "m_set" from the free lists.  Finally, extract
909          * "m" from "m_set" using an iterative algorithm: While "m_set"
910          * is larger than a page, shrink "m_set" by returning the half
911          * of "m_set" that does not contain "m" to the free lists.
912          */
913         fl = (*seg->free_queues)[m_set->pool];
914         order = m_set->order;
915         vm_freelist_rem(fl, m_set, order);
916         while (order > 0) {
917                 order--;
918                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
919                 if (m->phys_addr < pa_half)
920                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
921                 else {
922                         m_tmp = m_set;
923                         m_set = &seg->first_page[atop(pa_half - seg->start)];
924                 }
925                 vm_freelist_add(fl, m_tmp, order, 0);
926         }
927         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
928         return (TRUE);
929 }
930
931 /*
932  * Try to zero one physical page.  Used by an idle priority thread.
933  */
934 boolean_t
935 vm_phys_zero_pages_idle(void)
936 {
937         static struct vm_freelist *fl;
938         static int flind, oind, pind;
939         vm_page_t m, m_tmp;
940         int domain;
941
942         domain = vm_rr_selectdomain();
943         fl = vm_phys_free_queues[domain][0][0];
944         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
945         for (;;) {
946                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
947                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
948                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
949                                         vm_phys_unfree_page(m_tmp);
950                                         vm_phys_freecnt_adj(m, -1);
951                                         mtx_unlock(&vm_page_queue_free_mtx);
952                                         pmap_zero_page_idle(m_tmp);
953                                         m_tmp->flags |= PG_ZERO;
954                                         mtx_lock(&vm_page_queue_free_mtx);
955                                         vm_phys_freecnt_adj(m, 1);
956                                         vm_phys_free_pages(m_tmp, 0);
957                                         vm_page_zero_count++;
958                                         cnt_prezero++;
959                                         return (TRUE);
960                                 }
961                         }
962                 }
963                 oind++;
964                 if (oind == VM_NFREEORDER) {
965                         oind = 0;
966                         pind++;
967                         if (pind == VM_NFREEPOOL) {
968                                 pind = 0;
969                                 flind++;
970                                 if (flind == vm_nfreelists)
971                                         flind = 0;
972                         }
973                         fl = vm_phys_free_queues[domain][flind][pind];
974                 }
975         }
976 }
977
978 /*
979  * Allocate a contiguous set of physical pages of the given size
980  * "npages" from the free lists.  All of the physical pages must be at
981  * or above the given physical address "low" and below the given
982  * physical address "high".  The given value "alignment" determines the
983  * alignment of the first physical page in the set.  If the given value
984  * "boundary" is non-zero, then the set of physical pages cannot cross
985  * any physical address boundary that is a multiple of that value.  Both
986  * "alignment" and "boundary" must be a power of two.
987  */
988 vm_page_t
989 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
990     u_long alignment, vm_paddr_t boundary)
991 {
992         struct vm_freelist *fl;
993         struct vm_phys_seg *seg;
994         vm_paddr_t pa, pa_last, size;
995         vm_page_t m, m_ret;
996         u_long npages_end;
997         int dom, domain, flind, oind, order, pind;
998
999         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1000         size = npages << PAGE_SHIFT;
1001         KASSERT(size != 0,
1002             ("vm_phys_alloc_contig: size must not be 0"));
1003         KASSERT((alignment & (alignment - 1)) == 0,
1004             ("vm_phys_alloc_contig: alignment must be a power of 2"));
1005         KASSERT((boundary & (boundary - 1)) == 0,
1006             ("vm_phys_alloc_contig: boundary must be a power of 2"));
1007         /* Compute the queue that is the best fit for npages. */
1008         for (order = 0; (1 << order) < npages; order++);
1009         dom = 0;
1010 restartdom:
1011         domain = vm_rr_selectdomain();
1012         for (flind = 0; flind < vm_nfreelists; flind++) {
1013                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
1014                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1015                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
1016                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1017                                         /*
1018                                          * A free list may contain physical pages
1019                                          * from one or more segments.
1020                                          */
1021                                         seg = &vm_phys_segs[m_ret->segind];
1022                                         if (seg->start > high ||
1023                                             low >= seg->end)
1024                                                 continue;
1025
1026                                         /*
1027                                          * Is the size of this allocation request
1028                                          * larger than the largest block size?
1029                                          */
1030                                         if (order >= VM_NFREEORDER) {
1031                                                 /*
1032                                                  * Determine if a sufficient number
1033                                                  * of subsequent blocks to satisfy
1034                                                  * the allocation request are free.
1035                                                  */
1036                                                 pa = VM_PAGE_TO_PHYS(m_ret);
1037                                                 pa_last = pa + size;
1038                                                 for (;;) {
1039                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
1040                                                         if (pa >= pa_last)
1041                                                                 break;
1042                                                         if (pa < seg->start ||
1043                                                             pa >= seg->end)
1044                                                                 break;
1045                                                         m = &seg->first_page[atop(pa - seg->start)];
1046                                                         if (m->order != VM_NFREEORDER - 1)
1047                                                                 break;
1048                                                 }
1049                                                 /* If not, continue to the next block. */
1050                                                 if (pa < pa_last)
1051                                                         continue;
1052                                         }
1053
1054                                         /*
1055                                          * Determine if the blocks are within the given range,
1056                                          * satisfy the given alignment, and do not cross the
1057                                          * given boundary.
1058                                          */
1059                                         pa = VM_PAGE_TO_PHYS(m_ret);
1060                                         if (pa >= low &&
1061                                             pa + size <= high &&
1062                                             (pa & (alignment - 1)) == 0 &&
1063                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
1064                                                 goto done;
1065                                 }
1066                         }
1067                 }
1068         }
1069         if (++dom < vm_ndomains)
1070                 goto restartdom;
1071         return (NULL);
1072 done:
1073         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1074                 fl = (*seg->free_queues)[m->pool];
1075                 vm_freelist_rem(fl, m, m->order);
1076         }
1077         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1078                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1079         fl = (*seg->free_queues)[m_ret->pool];
1080         vm_phys_split_pages(m_ret, oind, fl, order);
1081         /* Return excess pages to the free lists. */
1082         npages_end = roundup2(npages, 1 << imin(oind, order));
1083         if (npages < npages_end)
1084                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1085         return (m_ret);
1086 }
1087
1088 #ifdef DDB
1089 /*
1090  * Show the number of physical pages in each of the free lists.
1091  */
1092 DB_SHOW_COMMAND(freepages, db_show_freepages)
1093 {
1094         struct vm_freelist *fl;
1095         int flind, oind, pind, dom;
1096
1097         for (dom = 0; dom < vm_ndomains; dom++) {
1098                 db_printf("DOMAIN: %d\n", dom);
1099                 for (flind = 0; flind < vm_nfreelists; flind++) {
1100                         db_printf("FREE LIST %d:\n"
1101                             "\n  ORDER (SIZE)  |  NUMBER"
1102                             "\n              ", flind);
1103                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1104                                 db_printf("  |  POOL %d", pind);
1105                         db_printf("\n--            ");
1106                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1107                                 db_printf("-- --      ");
1108                         db_printf("--\n");
1109                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1110                                 db_printf("  %2.2d (%6.6dK)", oind,
1111                                     1 << (PAGE_SHIFT - 10 + oind));
1112                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1113                                 fl = vm_phys_free_queues[dom][flind][pind];
1114                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1115                                 }
1116                                 db_printf("\n");
1117                         }
1118                         db_printf("\n");
1119                 }
1120                 db_printf("\n");
1121         }
1122 }
1123 #endif