]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - usr.sbin/camdd/camdd.c
MFC r322124:
[FreeBSD/stable/10.git] / usr.sbin / camdd / camdd.c
1 /*-
2  * Copyright (c) 1997-2007 Kenneth D. Merry
3  * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    substantially similar to the "NO WARRANTY" disclaimer below
14  *    ("Disclaimer") and any redistribution must be conditioned upon
15  *    including a substantially similar Disclaimer requirement for further
16  *    binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGES.
30  *
31  * Authors: Ken Merry           (Spectra Logic Corporation)
32  */
33
34 /*
35  * This is eventually intended to be:
36  * - A basic data transfer/copy utility
37  * - A simple benchmark utility
38  * - An example of how to use the asynchronous pass(4) driver interface.
39  */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include <sys/ioctl.h>
44 #include <sys/stdint.h>
45 #include <sys/types.h>
46 #include <sys/endian.h>
47 #include <sys/param.h>
48 #include <sys/sbuf.h>
49 #include <sys/stat.h>
50 #include <sys/event.h>
51 #include <sys/time.h>
52 #include <sys/uio.h>
53 #include <vm/vm.h>
54 #include <machine/bus.h>
55 #include <sys/bus.h>
56 #include <sys/bus_dma.h>
57 #include <sys/mtio.h>
58 #include <sys/conf.h>
59 #include <sys/disk.h>
60
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <semaphore.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <inttypes.h>
67 #include <limits.h>
68 #include <fcntl.h>
69 #include <ctype.h>
70 #include <err.h>
71 #include <libutil.h>
72 #include <pthread.h>
73 #include <assert.h>
74 #include <bsdxml.h>
75
76 #include <cam/cam.h>
77 #include <cam/cam_debug.h>
78 #include <cam/cam_ccb.h>
79 #include <cam/scsi/scsi_all.h>
80 #include <cam/scsi/scsi_da.h>
81 #include <cam/scsi/scsi_pass.h>
82 #include <cam/scsi/scsi_message.h>
83 #include <cam/scsi/smp_all.h>
84 #include <camlib.h>
85 #include <mtlib.h>
86 #include <zlib.h>
87
88 typedef enum {
89         CAMDD_CMD_NONE          = 0x00000000,
90         CAMDD_CMD_HELP          = 0x00000001,
91         CAMDD_CMD_WRITE         = 0x00000002,
92         CAMDD_CMD_READ          = 0x00000003
93 } camdd_cmdmask;
94
95 typedef enum {
96         CAMDD_ARG_NONE          = 0x00000000,
97         CAMDD_ARG_VERBOSE       = 0x00000001,
98         CAMDD_ARG_DEVICE        = 0x00000002,
99         CAMDD_ARG_BUS           = 0x00000004,
100         CAMDD_ARG_TARGET        = 0x00000008,
101         CAMDD_ARG_LUN           = 0x00000010,
102         CAMDD_ARG_UNIT          = 0x00000020,
103         CAMDD_ARG_TIMEOUT       = 0x00000040,
104         CAMDD_ARG_ERR_RECOVER   = 0x00000080,
105         CAMDD_ARG_RETRIES       = 0x00000100
106 } camdd_argmask;
107
108 typedef enum {
109         CAMDD_DEV_NONE          = 0x00,
110         CAMDD_DEV_PASS          = 0x01,
111         CAMDD_DEV_FILE          = 0x02
112 } camdd_dev_type;
113
114 struct camdd_io_opts {
115         camdd_dev_type  dev_type;
116         char            *dev_name;
117         uint64_t        blocksize;
118         uint64_t        queue_depth;
119         uint64_t        offset;
120         int             min_cmd_size;
121         int             write_dev;
122         uint64_t        debug;
123 };
124
125 typedef enum {
126         CAMDD_BUF_NONE,
127         CAMDD_BUF_DATA,
128         CAMDD_BUF_INDIRECT
129 } camdd_buf_type;
130
131 struct camdd_buf_indirect {
132         /*
133          * Pointer to the source buffer.
134          */
135         struct camdd_buf *src_buf;
136
137         /*
138          * Offset into the source buffer, in bytes.
139          */
140         uint64_t          offset;
141         /*
142          * Pointer to the starting point in the source buffer.
143          */
144         uint8_t          *start_ptr;
145
146         /*
147          * Length of this chunk in bytes.
148          */
149         size_t            len;
150 };
151
152 struct camdd_buf_data {
153         /*
154          * Buffer allocated when we allocate this camdd_buf.  This should
155          * be the size of the blocksize for this device.
156          */
157         uint8_t                 *buf;
158
159         /*
160          * The amount of backing store allocated in buf.  Generally this
161          * will be the blocksize of the device.
162          */
163         uint32_t                 alloc_len;
164
165         /*
166          * The amount of data that was put into the buffer (on reads) or
167          * the amount of data we have put onto the src_list so far (on
168          * writes).
169          */
170         uint32_t                 fill_len;
171
172         /*
173          * The amount of data that was not transferred.
174          */
175         uint32_t                 resid;
176
177         /*
178          * Starting byte offset on the reader.
179          */
180         uint64_t                 src_start_offset;
181         
182         /*
183          * CCB used for pass(4) device targets.
184          */
185         union ccb                ccb;
186
187         /*
188          * Number of scatter/gather segments.
189          */
190         int                      sg_count;
191
192         /*
193          * Set if we had to tack on an extra buffer to round the transfer
194          * up to a sector size.
195          */
196         int                      extra_buf;
197
198         /*
199          * Scatter/gather list used generally when we're the writer for a
200          * pass(4) device. 
201          */
202         bus_dma_segment_t       *segs;
203
204         /*
205          * Scatter/gather list used generally when we're the writer for a
206          * file or block device;
207          */
208         struct iovec            *iovec;
209 };
210
211 union camdd_buf_types {
212         struct camdd_buf_indirect       indirect;
213         struct camdd_buf_data           data;
214 };
215
216 typedef enum {
217         CAMDD_STATUS_NONE,
218         CAMDD_STATUS_OK,
219         CAMDD_STATUS_SHORT_IO,
220         CAMDD_STATUS_EOF,
221         CAMDD_STATUS_ERROR
222 } camdd_buf_status;
223
224 struct camdd_buf {
225         camdd_buf_type           buf_type;
226         union camdd_buf_types    buf_type_spec;
227
228         camdd_buf_status         status;
229
230         uint64_t                 lba;
231         size_t                   len;
232
233         /*
234          * A reference count of how many indirect buffers point to this
235          * buffer.
236          */
237         int                      refcount;
238
239         /*
240          * A link back to our parent device.
241          */
242         struct camdd_dev        *dev;
243         STAILQ_ENTRY(camdd_buf)  links;
244         STAILQ_ENTRY(camdd_buf)  work_links;
245
246         /*
247          * A count of the buffers on the src_list.
248          */
249         int                      src_count;
250
251         /*
252          * List of buffers from our partner thread that are the components
253          * of this buffer for the I/O.  Uses src_links.
254          */
255         STAILQ_HEAD(,camdd_buf)  src_list;
256         STAILQ_ENTRY(camdd_buf)  src_links;
257 };
258
259 #define NUM_DEV_TYPES   2
260
261 struct camdd_dev_pass {
262         int                      scsi_dev_type;
263         struct cam_device       *dev;
264         uint64_t                 max_sector;
265         uint32_t                 block_len;
266         uint32_t                 cpi_maxio;
267 };
268
269 typedef enum {
270         CAMDD_FILE_NONE,
271         CAMDD_FILE_REG,
272         CAMDD_FILE_STD,
273         CAMDD_FILE_PIPE,
274         CAMDD_FILE_DISK,
275         CAMDD_FILE_TAPE,
276         CAMDD_FILE_TTY,
277         CAMDD_FILE_MEM
278 } camdd_file_type;
279
280 typedef enum {
281         CAMDD_FF_NONE           = 0x00,
282         CAMDD_FF_CAN_SEEK       = 0x01
283 } camdd_file_flags;
284
285 struct camdd_dev_file {
286         int                      fd;
287         struct stat              sb;
288         char                     filename[MAXPATHLEN + 1];
289         camdd_file_type          file_type;
290         camdd_file_flags         file_flags;
291         uint8_t                 *tmp_buf;
292 };
293
294 struct camdd_dev_block {
295         int                      fd;
296         uint64_t                 size_bytes;
297         uint32_t                 block_len;
298 };
299
300 union camdd_dev_spec {
301         struct camdd_dev_pass   pass;
302         struct camdd_dev_file   file;
303         struct camdd_dev_block  block;
304 };
305
306 typedef enum {
307         CAMDD_DEV_FLAG_NONE             = 0x00,
308         CAMDD_DEV_FLAG_EOF              = 0x01,
309         CAMDD_DEV_FLAG_PEER_EOF         = 0x02,
310         CAMDD_DEV_FLAG_ACTIVE           = 0x04,
311         CAMDD_DEV_FLAG_EOF_SENT         = 0x08,
312         CAMDD_DEV_FLAG_EOF_QUEUED       = 0x10
313 } camdd_dev_flags;
314
315 struct camdd_dev {
316         camdd_dev_type           dev_type;
317         union camdd_dev_spec     dev_spec;
318         camdd_dev_flags          flags;
319         char                     device_name[MAXPATHLEN+1];
320         uint32_t                 blocksize;
321         uint32_t                 sector_size;
322         uint64_t                 max_sector;
323         uint64_t                 sector_io_limit;
324         int                      min_cmd_size;
325         int                      write_dev;
326         int                      retry_count;
327         int                      io_timeout;
328         int                      debug;
329         uint64_t                 start_offset_bytes;
330         uint64_t                 next_io_pos_bytes;
331         uint64_t                 next_peer_pos_bytes;
332         uint64_t                 next_completion_pos_bytes;
333         uint64_t                 peer_bytes_queued;
334         uint64_t                 bytes_transferred;
335         uint32_t                 target_queue_depth;
336         uint32_t                 cur_active_io;
337         uint8_t                 *extra_buf;
338         uint32_t                 extra_buf_len;
339         struct camdd_dev        *peer_dev;
340         pthread_mutex_t          mutex;
341         pthread_cond_t           cond;
342         int                      kq;
343
344         int                      (*run)(struct camdd_dev *dev);
345         int                      (*fetch)(struct camdd_dev *dev);
346
347         /*
348          * Buffers that are available for I/O.  Uses links.
349          */
350         STAILQ_HEAD(,camdd_buf)  free_queue;
351
352         /*
353          * Free indirect buffers.  These are used for breaking a large
354          * buffer into multiple pieces.
355          */
356         STAILQ_HEAD(,camdd_buf)  free_indirect_queue;
357
358         /*
359          * Buffers that have been queued to the kernel.  Uses links.
360          */
361         STAILQ_HEAD(,camdd_buf)  active_queue;
362
363         /*
364          * Will generally contain one of our buffers that is waiting for enough
365          * I/O from our partner thread to be able to execute.  This will
366          * generally happen when our per-I/O-size is larger than the
367          * partner thread's per-I/O-size.  Uses links.
368          */
369         STAILQ_HEAD(,camdd_buf)  pending_queue;
370
371         /*
372          * Number of buffers on the pending queue
373          */
374         int                      num_pending_queue;
375
376         /*
377          * Buffers that are filled and ready to execute.  This is used when
378          * our partner (reader) thread sends us blocks that are larger than
379          * our blocksize, and so we have to split them into multiple pieces.
380          */
381         STAILQ_HEAD(,camdd_buf)  run_queue;
382
383         /*
384          * Number of buffers on the run queue.
385          */
386         int                      num_run_queue;
387
388         STAILQ_HEAD(,camdd_buf)  reorder_queue;
389
390         int                      num_reorder_queue;
391
392         /*
393          * Buffers that have been queued to us by our partner thread
394          * (generally the reader thread) to be written out.  Uses
395          * work_links.
396          */
397         STAILQ_HEAD(,camdd_buf)  work_queue;
398
399         /*
400          * Buffers that have been completed by our partner thread.  Uses
401          * work_links.
402          */
403         STAILQ_HEAD(,camdd_buf)  peer_done_queue;
404
405         /*
406          * Number of buffers on the peer done queue.
407          */
408         uint32_t                 num_peer_done_queue;
409
410         /*
411          * A list of buffers that we have queued to our peer thread.  Uses
412          * links.
413          */
414         STAILQ_HEAD(,camdd_buf)  peer_work_queue;
415
416         /*
417          * Number of buffers on the peer work queue.
418          */
419         uint32_t                 num_peer_work_queue;
420 };
421
422 static sem_t camdd_sem;
423 static sig_atomic_t need_exit = 0;
424 static sig_atomic_t error_exit = 0;
425 static sig_atomic_t need_status = 0;
426
427 #ifndef min
428 #define min(a, b) (a < b) ? a : b
429 #endif
430
431 /*
432  * XXX KDM private copy of timespecsub().  This is normally defined in
433  * sys/time.h, but is only enabled in the kernel.  If that definition is
434  * enabled in userland, it breaks the build of libnetbsd.
435  */
436 #ifndef timespecsub
437 #define timespecsub(vvp, uvp)                                           \
438         do {                                                            \
439                 (vvp)->tv_sec -= (uvp)->tv_sec;                         \
440                 (vvp)->tv_nsec -= (uvp)->tv_nsec;                       \
441                 if ((vvp)->tv_nsec < 0) {                               \
442                         (vvp)->tv_sec--;                                \
443                         (vvp)->tv_nsec += 1000000000;                   \
444                 }                                                       \
445         } while (0)
446 #endif
447
448
449 /* Generically usefull offsets into the peripheral private area */
450 #define ppriv_ptr0 periph_priv.entries[0].ptr
451 #define ppriv_ptr1 periph_priv.entries[1].ptr
452 #define ppriv_field0 periph_priv.entries[0].field
453 #define ppriv_field1 periph_priv.entries[1].field
454
455 #define ccb_buf ppriv_ptr0
456
457 #define CAMDD_FILE_DEFAULT_BLOCK        524288
458 #define CAMDD_FILE_DEFAULT_DEPTH        1
459 #define CAMDD_PASS_MAX_BLOCK            1048576
460 #define CAMDD_PASS_DEFAULT_DEPTH        6
461 #define CAMDD_PASS_RW_TIMEOUT           60 * 1000
462
463 static int parse_btl(char *tstr, int *bus, int *target, int *lun,
464                      camdd_argmask *arglst);
465 void camdd_free_dev(struct camdd_dev *dev);
466 struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
467                                   struct kevent *new_ke, int num_ke,
468                                   int retry_count, int timeout);
469 static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
470                                          camdd_buf_type buf_type);
471 void camdd_release_buf(struct camdd_buf *buf);
472 struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
473 int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
474                         uint32_t sector_size, uint32_t *num_sectors_used,
475                         int *double_buf_needed);
476 uint32_t camdd_buf_get_len(struct camdd_buf *buf);
477 void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
478 int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
479                      uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
480 struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
481                                    int retry_count, int timeout);
482 struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
483                                    struct camdd_io_opts *io_opts,
484                                    camdd_argmask arglist, int probe_retry_count,
485                                    int probe_timeout, int io_retry_count,
486                                    int io_timeout);
487 void *camdd_file_worker(void *arg);
488 camdd_buf_status camdd_ccb_status(union ccb *ccb);
489 int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
490 int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
491 void camdd_peer_done(struct camdd_buf *buf);
492 void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
493                         int *error_count);
494 int camdd_pass_fetch(struct camdd_dev *dev);
495 int camdd_file_run(struct camdd_dev *dev);
496 int camdd_pass_run(struct camdd_dev *dev);
497 int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
498 int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
499 void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
500                      uint32_t *peer_depth, uint32_t *our_bytes,
501                      uint32_t *peer_bytes);
502 void *camdd_worker(void *arg);
503 void camdd_sig_handler(int sig);
504 void camdd_print_status(struct camdd_dev *camdd_dev,
505                         struct camdd_dev *other_dev,
506                         struct timespec *start_time);
507 int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
508              uint64_t max_io, int retry_count, int timeout);
509 int camdd_parse_io_opts(char *args, int is_write,
510                         struct camdd_io_opts *io_opts);
511 void usage(void);
512
513 /*
514  * Parse out a bus, or a bus, target and lun in the following
515  * format:
516  * bus
517  * bus:target
518  * bus:target:lun
519  *
520  * Returns the number of parsed components, or 0.
521  */
522 static int
523 parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
524 {
525         char *tmpstr;
526         int convs = 0;
527
528         while (isspace(*tstr) && (*tstr != '\0'))
529                 tstr++;
530
531         tmpstr = (char *)strtok(tstr, ":");
532         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
533                 *bus = strtol(tmpstr, NULL, 0);
534                 *arglst |= CAMDD_ARG_BUS;
535                 convs++;
536                 tmpstr = (char *)strtok(NULL, ":");
537                 if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538                         *target = strtol(tmpstr, NULL, 0);
539                         *arglst |= CAMDD_ARG_TARGET;
540                         convs++;
541                         tmpstr = (char *)strtok(NULL, ":");
542                         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543                                 *lun = strtol(tmpstr, NULL, 0);
544                                 *arglst |= CAMDD_ARG_LUN;
545                                 convs++;
546                         }
547                 }
548         }
549
550         return convs;
551 }
552
553 /*
554  * XXX KDM clean up and free all of the buffers on the queue!
555  */
556 void
557 camdd_free_dev(struct camdd_dev *dev)
558 {
559         if (dev == NULL)
560                 return;
561
562         switch (dev->dev_type) {
563         case CAMDD_DEV_FILE: {
564                 struct camdd_dev_file *file_dev = &dev->dev_spec.file;
565
566                 if (file_dev->fd != -1)
567                         close(file_dev->fd);
568                 free(file_dev->tmp_buf);
569                 break;
570         }
571         case CAMDD_DEV_PASS: {
572                 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
573
574                 if (pass_dev->dev != NULL)
575                         cam_close_device(pass_dev->dev);
576                 break;
577         }
578         default:
579                 break;
580         }
581
582         free(dev);
583 }
584
585 struct camdd_dev *
586 camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
587                 int retry_count, int timeout)
588 {
589         struct camdd_dev *dev = NULL;
590         struct kevent *ke;
591         size_t ke_size;
592         int retval = 0;
593
594         dev = malloc(sizeof(*dev));
595         if (dev == NULL) {
596                 warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
597                 goto bailout;
598         }
599
600         bzero(dev, sizeof(*dev));
601
602         dev->dev_type = dev_type;
603         dev->io_timeout = timeout;
604         dev->retry_count = retry_count;
605         STAILQ_INIT(&dev->free_queue);
606         STAILQ_INIT(&dev->free_indirect_queue);
607         STAILQ_INIT(&dev->active_queue);
608         STAILQ_INIT(&dev->pending_queue);
609         STAILQ_INIT(&dev->run_queue);
610         STAILQ_INIT(&dev->reorder_queue);
611         STAILQ_INIT(&dev->work_queue);
612         STAILQ_INIT(&dev->peer_done_queue);
613         STAILQ_INIT(&dev->peer_work_queue);
614         retval = pthread_mutex_init(&dev->mutex, NULL);
615         if (retval != 0) {
616                 warnc(retval, "%s: failed to initialize mutex", __func__);
617                 goto bailout;
618         }
619
620         retval = pthread_cond_init(&dev->cond, NULL);
621         if (retval != 0) {
622                 warnc(retval, "%s: failed to initialize condition variable",
623                       __func__);
624                 goto bailout;
625         }
626
627         dev->kq = kqueue();
628         if (dev->kq == -1) {
629                 warn("%s: Unable to create kqueue", __func__);
630                 goto bailout;
631         }
632
633         ke_size = sizeof(struct kevent) * (num_ke + 4);
634         ke = malloc(ke_size);
635         if (ke == NULL) {
636                 warn("%s: unable to malloc %zu bytes", __func__, ke_size);
637                 goto bailout;
638         }
639         bzero(ke, ke_size);
640         if (num_ke > 0)
641                 bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
642
643         EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
644                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
645         EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
646                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
647         EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
648         EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
649
650         retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
651         if (retval == -1) {
652                 warn("%s: Unable to register kevents", __func__);
653                 goto bailout;
654         }
655
656
657         return (dev);
658
659 bailout:
660         free(dev);
661
662         return (NULL);
663 }
664
665 static struct camdd_buf *
666 camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
667 {
668         struct camdd_buf *buf = NULL;
669         uint8_t *data_ptr = NULL;
670
671         /*
672          * We only need to allocate data space for data buffers.
673          */
674         switch (buf_type) {
675         case CAMDD_BUF_DATA:
676                 data_ptr = malloc(dev->blocksize);
677                 if (data_ptr == NULL) {
678                         warn("unable to allocate %u bytes", dev->blocksize);
679                         goto bailout_error;
680                 }
681                 break;
682         default:
683                 break;
684         }
685         
686         buf = malloc(sizeof(*buf));
687         if (buf == NULL) {
688                 warn("unable to allocate %zu bytes", sizeof(*buf));
689                 goto bailout_error;
690         }
691
692         bzero(buf, sizeof(*buf));
693         buf->buf_type = buf_type;
694         buf->dev = dev;
695         switch (buf_type) {
696         case CAMDD_BUF_DATA: {
697                 struct camdd_buf_data *data;
698
699                 data = &buf->buf_type_spec.data;
700
701                 data->alloc_len = dev->blocksize;
702                 data->buf = data_ptr;
703                 break;
704         }
705         case CAMDD_BUF_INDIRECT:
706                 break;
707         default:
708                 break;
709         }
710         STAILQ_INIT(&buf->src_list);
711
712         return (buf);
713
714 bailout_error:
715         free(data_ptr);
716
717         return (NULL);
718 }
719
720 void
721 camdd_release_buf(struct camdd_buf *buf)
722 {
723         struct camdd_dev *dev;
724
725         dev = buf->dev;
726
727         switch (buf->buf_type) {
728         case CAMDD_BUF_DATA: {
729                 struct camdd_buf_data *data;
730
731                 data = &buf->buf_type_spec.data;
732
733                 if (data->segs != NULL) {
734                         if (data->extra_buf != 0) {
735                                 void *extra_buf;
736
737                                 extra_buf = (void *)
738                                     data->segs[data->sg_count - 1].ds_addr;
739                                 free(extra_buf);
740                                 data->extra_buf = 0;
741                         }
742                         free(data->segs);
743                         data->segs = NULL;
744                         data->sg_count = 0;
745                 } else if (data->iovec != NULL) {
746                         if (data->extra_buf != 0) {
747                                 free(data->iovec[data->sg_count - 1].iov_base);
748                                 data->extra_buf = 0;
749                         }
750                         free(data->iovec);
751                         data->iovec = NULL;
752                         data->sg_count = 0;
753                 }
754                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
755                 break;
756         }
757         case CAMDD_BUF_INDIRECT:
758                 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
759                 break;
760         default:
761                 err(1, "%s: Invalid buffer type %d for released buffer",
762                     __func__, buf->buf_type);
763                 break;
764         }
765 }
766
767 struct camdd_buf *
768 camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
769 {
770         struct camdd_buf *buf = NULL;
771
772         switch (buf_type) {
773         case CAMDD_BUF_DATA:
774                 buf = STAILQ_FIRST(&dev->free_queue);
775                 if (buf != NULL) {
776                         struct camdd_buf_data *data;
777                         uint8_t *data_ptr;
778                         uint32_t alloc_len;
779
780                         STAILQ_REMOVE_HEAD(&dev->free_queue, links);
781                         data = &buf->buf_type_spec.data;
782                         data_ptr = data->buf;
783                         alloc_len = data->alloc_len;
784                         bzero(buf, sizeof(*buf));
785                         data->buf = data_ptr;
786                         data->alloc_len = alloc_len;
787                 }
788                 break;
789         case CAMDD_BUF_INDIRECT:
790                 buf = STAILQ_FIRST(&dev->free_indirect_queue);
791                 if (buf != NULL) {
792                         STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
793
794                         bzero(buf, sizeof(*buf));
795                 }
796                 break;
797         default:
798                 warnx("Unknown buffer type %d requested", buf_type);
799                 break;
800         }
801
802
803         if (buf == NULL)
804                 return (camdd_alloc_buf(dev, buf_type));
805         else {
806                 STAILQ_INIT(&buf->src_list);
807                 buf->dev = dev;
808                 buf->buf_type = buf_type;
809
810                 return (buf);
811         }
812 }
813
814 int
815 camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
816                     uint32_t *num_sectors_used, int *double_buf_needed)
817 {
818         struct camdd_buf *tmp_buf;
819         struct camdd_buf_data *data;
820         uint8_t *extra_buf = NULL;
821         size_t extra_buf_len = 0;
822         int i, retval = 0;
823
824         data = &buf->buf_type_spec.data;
825
826         data->sg_count = buf->src_count;
827         /*
828          * Compose a scatter/gather list from all of the buffers in the list.
829          * If the length of the buffer isn't a multiple of the sector size,
830          * we'll have to add an extra buffer.  This should only happen
831          * at the end of a transfer.
832          */
833         if ((data->fill_len % sector_size) != 0) {
834                 extra_buf_len = sector_size - (data->fill_len % sector_size);
835                 extra_buf = calloc(extra_buf_len, 1);
836                 if (extra_buf == NULL) {
837                         warn("%s: unable to allocate %zu bytes for extra "
838                             "buffer space", __func__, extra_buf_len);
839                         retval = 1;
840                         goto bailout;
841                 }
842                 data->extra_buf = 1;
843                 data->sg_count++;
844         }
845         if (iovec == 0) {
846                 data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
847                 if (data->segs == NULL) {
848                         warn("%s: unable to allocate %zu bytes for S/G list",
849                             __func__, sizeof(bus_dma_segment_t) *
850                             data->sg_count);
851                         retval = 1;
852                         goto bailout;
853                 }
854
855         } else {
856                 data->iovec = calloc(data->sg_count, sizeof(struct iovec));
857                 if (data->iovec == NULL) {
858                         warn("%s: unable to allocate %zu bytes for S/G list",
859                             __func__, sizeof(struct iovec) * data->sg_count);
860                         retval = 1;
861                         goto bailout;
862                 }
863         }
864
865         for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
866              i < buf->src_count && tmp_buf != NULL; i++,
867              tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
868
869                 if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
870                         struct camdd_buf_data *tmp_data;
871
872                         tmp_data = &tmp_buf->buf_type_spec.data;
873                         if (iovec == 0) {
874                                 data->segs[i].ds_addr =
875                                     (bus_addr_t) tmp_data->buf;
876                                 data->segs[i].ds_len = tmp_data->fill_len -
877                                     tmp_data->resid;
878                         } else {
879                                 data->iovec[i].iov_base = tmp_data->buf;
880                                 data->iovec[i].iov_len = tmp_data->fill_len -
881                                     tmp_data->resid;
882                         }
883                         if (((tmp_data->fill_len - tmp_data->resid) %
884                              sector_size) != 0)
885                                 *double_buf_needed = 1;
886                 } else {
887                         struct camdd_buf_indirect *tmp_ind;
888
889                         tmp_ind = &tmp_buf->buf_type_spec.indirect;
890                         if (iovec == 0) {
891                                 data->segs[i].ds_addr =
892                                     (bus_addr_t)tmp_ind->start_ptr;
893                                 data->segs[i].ds_len = tmp_ind->len;
894                         } else {
895                                 data->iovec[i].iov_base = tmp_ind->start_ptr;
896                                 data->iovec[i].iov_len = tmp_ind->len;
897                         }
898                         if ((tmp_ind->len % sector_size) != 0)
899                                 *double_buf_needed = 1;
900                 }
901         }
902
903         if (extra_buf != NULL) {
904                 if (iovec == 0) {
905                         data->segs[i].ds_addr = (bus_addr_t)extra_buf;
906                         data->segs[i].ds_len = extra_buf_len;
907                 } else {
908                         data->iovec[i].iov_base = extra_buf;
909                         data->iovec[i].iov_len = extra_buf_len;
910                 }
911                 i++;
912         }
913         if ((tmp_buf != NULL) || (i != data->sg_count)) {
914                 warnx("buffer source count does not match "
915                       "number of buffers in list!");
916                 retval = 1;
917                 goto bailout;
918         }
919
920 bailout:
921         if (retval == 0) {
922                 *num_sectors_used = (data->fill_len + extra_buf_len) /
923                     sector_size;
924         }
925         return (retval);
926 }
927
928 uint32_t
929 camdd_buf_get_len(struct camdd_buf *buf)
930 {
931         uint32_t len = 0;
932
933         if (buf->buf_type != CAMDD_BUF_DATA) {
934                 struct camdd_buf_indirect *indirect;
935
936                 indirect = &buf->buf_type_spec.indirect;
937                 len = indirect->len;
938         } else {
939                 struct camdd_buf_data *data;
940
941                 data = &buf->buf_type_spec.data;
942                 len = data->fill_len;
943         }
944
945         return (len);
946 }
947
948 void
949 camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
950 {
951         struct camdd_buf_data *data;
952
953         assert(buf->buf_type == CAMDD_BUF_DATA);
954
955         data = &buf->buf_type_spec.data;
956
957         STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
958         buf->src_count++;
959
960         data->fill_len += camdd_buf_get_len(child_buf);
961 }
962
963 typedef enum {
964         CAMDD_TS_MAX_BLK,
965         CAMDD_TS_MIN_BLK,
966         CAMDD_TS_BLK_GRAN,
967         CAMDD_TS_EFF_IOSIZE
968 } camdd_status_item_index;
969
970 static struct camdd_status_items {
971         const char *name;
972         struct mt_status_entry *entry;
973 } req_status_items[] = {
974         { "max_blk", NULL },
975         { "min_blk", NULL },
976         { "blk_gran", NULL },
977         { "max_effective_iosize", NULL }
978 };
979
980 int
981 camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
982                  uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
983 {
984         struct mt_status_data status_data;
985         char *xml_str = NULL;
986         unsigned int i;
987         int retval = 0;
988         
989         retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
990         if (retval != 0)
991                 err(1, "Couldn't get XML string from %s", filename);
992
993         retval = mt_get_status(xml_str, &status_data);
994         if (retval != XML_STATUS_OK) {
995                 warn("couldn't get status for %s", filename);
996                 retval = 1;
997                 goto bailout;
998         } else
999                 retval = 0;
1000
1001         if (status_data.error != 0) {
1002                 warnx("%s", status_data.error_str);
1003                 retval = 1;
1004                 goto bailout;
1005         }
1006
1007         for (i = 0; i < sizeof(req_status_items) /
1008              sizeof(req_status_items[0]); i++) {
1009                 char *name;
1010
1011                 name = __DECONST(char *, req_status_items[i].name);
1012                 req_status_items[i].entry = mt_status_entry_find(&status_data,
1013                     name);
1014                 if (req_status_items[i].entry == NULL) {
1015                         errx(1, "Cannot find status entry %s",
1016                             req_status_items[i].name);
1017                 }
1018         }
1019
1020         *max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1021         *max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1022         *min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1023         *blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1024 bailout:
1025
1026         free(xml_str);
1027         mt_status_free(&status_data);
1028
1029         return (retval);
1030 }
1031
1032 struct camdd_dev *
1033 camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1034     int timeout)
1035 {
1036         struct camdd_dev *dev = NULL;
1037         struct camdd_dev_file *file_dev;
1038         uint64_t blocksize = io_opts->blocksize;
1039
1040         dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1041         if (dev == NULL)
1042                 goto bailout;
1043
1044         file_dev = &dev->dev_spec.file;
1045         file_dev->fd = fd;
1046         strlcpy(file_dev->filename, io_opts->dev_name,
1047             sizeof(file_dev->filename));
1048         strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1049         if (blocksize == 0)
1050                 dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1051         else
1052                 dev->blocksize = blocksize;
1053
1054         if ((io_opts->queue_depth != 0)
1055          && (io_opts->queue_depth != 1)) {
1056                 warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1057                     "command supported", (uintmax_t)io_opts->queue_depth,
1058                     io_opts->dev_name);
1059         }
1060         dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1061         dev->run = camdd_file_run;
1062         dev->fetch = NULL;
1063
1064         /*
1065          * We can effectively access files on byte boundaries.  We'll reset
1066          * this for devices like disks that can be accessed on sector
1067          * boundaries.
1068          */
1069         dev->sector_size = 1;
1070
1071         if ((fd != STDIN_FILENO)
1072          && (fd != STDOUT_FILENO)) {
1073                 int retval;
1074
1075                 retval = fstat(fd, &file_dev->sb);
1076                 if (retval != 0) {
1077                         warn("Cannot stat %s", dev->device_name);
1078                         goto bailout_error;
1079                 }
1080                 if (S_ISREG(file_dev->sb.st_mode)) {
1081                         file_dev->file_type = CAMDD_FILE_REG;
1082                 } else if (S_ISCHR(file_dev->sb.st_mode)) {
1083                         int type;
1084
1085                         if (ioctl(fd, FIODTYPE, &type) == -1)
1086                                 err(1, "FIODTYPE ioctl failed on %s",
1087                                     dev->device_name);
1088                         else {
1089                                 if (type & D_TAPE)
1090                                         file_dev->file_type = CAMDD_FILE_TAPE;
1091                                 else if (type & D_DISK)
1092                                         file_dev->file_type = CAMDD_FILE_DISK;
1093                                 else if (type & D_MEM)
1094                                         file_dev->file_type = CAMDD_FILE_MEM;
1095                                 else if (type & D_TTY)
1096                                         file_dev->file_type = CAMDD_FILE_TTY;
1097                         }
1098                 } else if (S_ISDIR(file_dev->sb.st_mode)) {
1099                         errx(1, "cannot operate on directory %s",
1100                             dev->device_name);
1101                 } else if (S_ISFIFO(file_dev->sb.st_mode)) {
1102                         file_dev->file_type = CAMDD_FILE_PIPE;
1103                 } else
1104                         errx(1, "Cannot determine file type for %s",
1105                             dev->device_name);
1106
1107                 switch (file_dev->file_type) {
1108                 case CAMDD_FILE_REG:
1109                         if (file_dev->sb.st_size != 0)
1110                                 dev->max_sector = file_dev->sb.st_size - 1;
1111                         else
1112                                 dev->max_sector = 0;
1113                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1114                         break;
1115                 case CAMDD_FILE_TAPE: {
1116                         uint64_t max_iosize, max_blk, min_blk, blk_gran;
1117                         /*
1118                          * Check block limits and maximum effective iosize.
1119                          * Make sure the blocksize is within the block
1120                          * limits (and a multiple of the minimum blocksize)
1121                          * and that the blocksize is <= maximum effective
1122                          * iosize.
1123                          */
1124                         retval = camdd_probe_tape(fd, dev->device_name,
1125                             &max_iosize, &max_blk, &min_blk, &blk_gran);
1126                         if (retval != 0)
1127                                 errx(1, "Unable to probe tape %s",
1128                                     dev->device_name);
1129
1130                         /*
1131                          * The blocksize needs to be <= the maximum
1132                          * effective I/O size of the tape device.  Note
1133                          * that this also takes into account the maximum
1134                          * blocksize reported by READ BLOCK LIMITS.
1135                          */
1136                         if (dev->blocksize > max_iosize) {
1137                                 warnx("Blocksize %u too big for %s, limiting "
1138                                     "to %ju", dev->blocksize, dev->device_name,
1139                                     max_iosize);
1140                                 dev->blocksize = max_iosize;
1141                         }
1142
1143                         /*
1144                          * The blocksize needs to be at least min_blk;
1145                          */
1146                         if (dev->blocksize < min_blk) {
1147                                 warnx("Blocksize %u too small for %s, "
1148                                     "increasing to %ju", dev->blocksize,
1149                                     dev->device_name, min_blk);
1150                                 dev->blocksize = min_blk;
1151                         }
1152
1153                         /*
1154                          * And the blocksize needs to be a multiple of
1155                          * the block granularity.
1156                          */
1157                         if ((blk_gran != 0)
1158                          && (dev->blocksize % (1 << blk_gran))) {
1159                                 warnx("Blocksize %u for %s not a multiple of "
1160                                     "%d, adjusting to %d", dev->blocksize,
1161                                     dev->device_name, (1 << blk_gran),
1162                                     dev->blocksize & ~((1 << blk_gran) - 1));
1163                                 dev->blocksize &= ~((1 << blk_gran) - 1);
1164                         }
1165
1166                         if (dev->blocksize == 0) {
1167                                 errx(1, "Unable to derive valid blocksize for "
1168                                     "%s", dev->device_name);
1169                         }
1170
1171                         /*
1172                          * For tape drives, set the sector size to the
1173                          * blocksize so that we make sure not to write
1174                          * less than the blocksize out to the drive.
1175                          */
1176                         dev->sector_size = dev->blocksize;
1177                         break;
1178                 }
1179                 case CAMDD_FILE_DISK: {
1180                         off_t media_size;
1181                         unsigned int sector_size;
1182
1183                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1184
1185                         if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1186                                 err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1187                                     dev->device_name);
1188                         }
1189
1190                         if (sector_size == 0) {
1191                                 errx(1, "DIOCGSECTORSIZE ioctl returned "
1192                                     "invalid sector size %u for %s",
1193                                     sector_size, dev->device_name);
1194                         }
1195
1196                         if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1197                                 err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1198                                     dev->device_name);
1199                         }
1200
1201                         if (media_size == 0) {
1202                                 errx(1, "DIOCGMEDIASIZE ioctl returned "
1203                                     "invalid media size %ju for %s",
1204                                     (uintmax_t)media_size, dev->device_name);
1205                         }
1206
1207                         if (dev->blocksize % sector_size) {
1208                                 errx(1, "%s blocksize %u not a multiple of "
1209                                     "sector size %u", dev->device_name,
1210                                     dev->blocksize, sector_size);
1211                         }
1212
1213                         dev->sector_size = sector_size;
1214                         dev->max_sector = (media_size / sector_size) - 1;
1215                         break;
1216                 }
1217                 case CAMDD_FILE_MEM:
1218                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1219                         break;
1220                 default:
1221                         break;
1222                 }
1223         }
1224
1225         if ((io_opts->offset != 0)
1226          && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1227                 warnx("Offset %ju specified for %s, but we cannot seek on %s",
1228                     io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1229                 goto bailout_error;
1230         }
1231 #if 0
1232         else if ((io_opts->offset != 0)
1233                 && ((io_opts->offset % dev->sector_size) != 0)) {
1234                 warnx("Offset %ju for %s is not a multiple of the "
1235                       "sector size %u", io_opts->offset, 
1236                       io_opts->dev_name, dev->sector_size);
1237                 goto bailout_error;
1238         } else {
1239                 dev->start_offset_bytes = io_opts->offset;
1240         }
1241 #endif
1242
1243 bailout:
1244         return (dev);
1245
1246 bailout_error:
1247         camdd_free_dev(dev);
1248         return (NULL);
1249 }
1250
1251 /*
1252  * Need to implement this.  Do a basic probe:
1253  * - Check the inquiry data, make sure we're talking to a device that we
1254  *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1255  * - Send a test unit ready, make sure the device is available.
1256  * - Get the capacity and block size.
1257  */
1258 struct camdd_dev *
1259 camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1260                  camdd_argmask arglist, int probe_retry_count,
1261                  int probe_timeout, int io_retry_count, int io_timeout)
1262 {
1263         union ccb *ccb;
1264         uint64_t maxsector;
1265         uint32_t cpi_maxio, max_iosize, pass_numblocks;
1266         uint32_t block_len;
1267         struct scsi_read_capacity_data rcap;
1268         struct scsi_read_capacity_data_long rcaplong;
1269         struct camdd_dev *dev;
1270         struct camdd_dev_pass *pass_dev;
1271         struct kevent ke;
1272         int scsi_dev_type;
1273
1274         dev = NULL;
1275
1276         scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1277         maxsector = 0;
1278         block_len = 0;
1279
1280         /*
1281          * For devices that support READ CAPACITY, we'll attempt to get the
1282          * capacity.  Otherwise, we really don't support tape or other
1283          * devices via SCSI passthrough, so just return an error in that case.
1284          */
1285         switch (scsi_dev_type) {
1286         case T_DIRECT:
1287         case T_WORM:
1288         case T_CDROM:
1289         case T_OPTICAL:
1290         case T_RBC:
1291                 break;
1292         default:
1293                 errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1294                 break; /*NOTREACHED*/
1295         }
1296
1297         ccb = cam_getccb(cam_dev);
1298
1299         if (ccb == NULL) {
1300                 warnx("%s: error allocating ccb", __func__);
1301                 goto bailout;
1302         }
1303
1304         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
1305
1306         scsi_read_capacity(&ccb->csio,
1307                            /*retries*/ probe_retry_count,
1308                            /*cbfcnp*/ NULL,
1309                            /*tag_action*/ MSG_SIMPLE_Q_TAG,
1310                            &rcap,
1311                            SSD_FULL_SIZE,
1312                            /*timeout*/ probe_timeout ? probe_timeout : 5000);
1313
1314         /* Disable freezing the device queue */
1315         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1316
1317         if (arglist & CAMDD_ARG_ERR_RECOVER)
1318                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1319
1320         if (cam_send_ccb(cam_dev, ccb) < 0) {
1321                 warn("error sending READ CAPACITY command");
1322
1323                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1324                                 CAM_EPF_ALL, stderr);
1325
1326                 goto bailout;
1327         }
1328
1329         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1330                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1331                 goto bailout;
1332         }
1333
1334         maxsector = scsi_4btoul(rcap.addr);
1335         block_len = scsi_4btoul(rcap.length);
1336
1337         /*
1338          * A last block of 2^32-1 means that the true capacity is over 2TB,
1339          * and we need to issue the long READ CAPACITY to get the real
1340          * capacity.  Otherwise, we're all set.
1341          */
1342         if (maxsector != 0xffffffff)
1343                 goto rcap_done;
1344
1345         scsi_read_capacity_16(&ccb->csio,
1346                               /*retries*/ probe_retry_count,
1347                               /*cbfcnp*/ NULL,
1348                               /*tag_action*/ MSG_SIMPLE_Q_TAG,
1349                               /*lba*/ 0,
1350                               /*reladdr*/ 0,
1351                               /*pmi*/ 0,
1352                               (uint8_t *)&rcaplong,
1353                               sizeof(rcaplong),
1354                               /*sense_len*/ SSD_FULL_SIZE,
1355                               /*timeout*/ probe_timeout ? probe_timeout : 5000);
1356
1357         /* Disable freezing the device queue */
1358         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1359
1360         if (arglist & CAMDD_ARG_ERR_RECOVER)
1361                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1362
1363         if (cam_send_ccb(cam_dev, ccb) < 0) {
1364                 warn("error sending READ CAPACITY (16) command");
1365                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1366                                 CAM_EPF_ALL, stderr);
1367                 goto bailout;
1368         }
1369
1370         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1371                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1372                 goto bailout;
1373         }
1374
1375         maxsector = scsi_8btou64(rcaplong.addr);
1376         block_len = scsi_4btoul(rcaplong.length);
1377
1378 rcap_done:
1379         if (block_len == 0) {
1380                 warnx("Sector size for %s%u is 0, cannot continue",
1381                     cam_dev->device_name, cam_dev->dev_unit_num);
1382                 goto bailout_error;
1383         }
1384
1385         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
1386
1387         ccb->ccb_h.func_code = XPT_PATH_INQ;
1388         ccb->ccb_h.flags = CAM_DIR_NONE;
1389         ccb->ccb_h.retry_count = 1;
1390         
1391         if (cam_send_ccb(cam_dev, ccb) < 0) {
1392                 warn("error sending XPT_PATH_INQ CCB");
1393
1394                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1395                                 CAM_EPF_ALL, stderr);
1396                 goto bailout;
1397         }
1398
1399         EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1400
1401         dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1402                               io_timeout);
1403         if (dev == NULL)
1404                 goto bailout;
1405
1406         pass_dev = &dev->dev_spec.pass;
1407         pass_dev->scsi_dev_type = scsi_dev_type;
1408         pass_dev->dev = cam_dev;
1409         pass_dev->max_sector = maxsector;
1410         pass_dev->block_len = block_len;
1411         pass_dev->cpi_maxio = ccb->cpi.maxio;
1412         snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1413                  pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1414         dev->sector_size = block_len;
1415         dev->max_sector = maxsector;
1416         
1417
1418         /*
1419          * Determine the optimal blocksize to use for this device.
1420          */
1421
1422         /*
1423          * If the controller has not specified a maximum I/O size,
1424          * just go with 128K as a somewhat conservative value.
1425          */
1426         if (pass_dev->cpi_maxio == 0)
1427                 cpi_maxio = 131072;
1428         else
1429                 cpi_maxio = pass_dev->cpi_maxio;
1430
1431         /*
1432          * If the controller has a large maximum I/O size, limit it
1433          * to something smaller so that the kernel doesn't have trouble
1434          * allocating buffers to copy data in and out for us.
1435          * XXX KDM this is until we have unmapped I/O support in the kernel.
1436          */
1437         max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1438
1439         /*
1440          * If we weren't able to get a block size for some reason,
1441          * default to 512 bytes.
1442          */
1443         block_len = pass_dev->block_len;
1444         if (block_len == 0)
1445                 block_len = 512;
1446
1447         /*
1448          * Figure out how many blocksize chunks will fit in the
1449          * maximum I/O size.
1450          */
1451         pass_numblocks = max_iosize / block_len;
1452
1453         /*
1454          * And finally, multiple the number of blocks by the LBA
1455          * length to get our maximum block size;
1456          */
1457         dev->blocksize = pass_numblocks * block_len;
1458
1459         if (io_opts->blocksize != 0) {
1460                 if ((io_opts->blocksize % dev->sector_size) != 0) {
1461                         warnx("Blocksize %ju for %s is not a multiple of "
1462                               "sector size %u", (uintmax_t)io_opts->blocksize, 
1463                               dev->device_name, dev->sector_size);
1464                         goto bailout_error;
1465                 }
1466                 dev->blocksize = io_opts->blocksize;
1467         }
1468         dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1469         if (io_opts->queue_depth != 0)
1470                 dev->target_queue_depth = io_opts->queue_depth;
1471
1472         if (io_opts->offset != 0) {
1473                 if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1474                         warnx("Offset %ju is past the end of device %s",
1475                             io_opts->offset, dev->device_name);
1476                         goto bailout_error;
1477                 }
1478 #if 0
1479                 else if ((io_opts->offset % dev->sector_size) != 0) {
1480                         warnx("Offset %ju for %s is not a multiple of the "
1481                               "sector size %u", io_opts->offset, 
1482                               dev->device_name, dev->sector_size);
1483                         goto bailout_error;
1484                 }
1485                 dev->start_offset_bytes = io_opts->offset;
1486 #endif
1487         }
1488
1489         dev->min_cmd_size = io_opts->min_cmd_size;
1490
1491         dev->run = camdd_pass_run;
1492         dev->fetch = camdd_pass_fetch;
1493
1494 bailout:
1495         cam_freeccb(ccb);
1496
1497         return (dev);
1498
1499 bailout_error:
1500         cam_freeccb(ccb);
1501
1502         camdd_free_dev(dev);
1503
1504         return (NULL);
1505 }
1506
1507 void *
1508 camdd_worker(void *arg)
1509 {
1510         struct camdd_dev *dev = arg;
1511         struct camdd_buf *buf;
1512         struct timespec ts, *kq_ts;
1513
1514         ts.tv_sec = 0;
1515         ts.tv_nsec = 0;
1516
1517         pthread_mutex_lock(&dev->mutex);
1518
1519         dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1520
1521         for (;;) {
1522                 struct kevent ke;
1523                 int retval = 0;
1524
1525                 /*
1526                  * XXX KDM check the reorder queue depth?
1527                  */
1528                 if (dev->write_dev == 0) {
1529                         uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1530                         uint32_t target_depth = dev->target_queue_depth;
1531                         uint32_t peer_target_depth =
1532                             dev->peer_dev->target_queue_depth;
1533                         uint32_t peer_blocksize = dev->peer_dev->blocksize;
1534
1535                         camdd_get_depth(dev, &our_depth, &peer_depth,
1536                                         &our_bytes, &peer_bytes);
1537
1538 #if 0
1539                         while (((our_depth < target_depth)
1540                              && (peer_depth < peer_target_depth))
1541                             || ((peer_bytes + our_bytes) <
1542                                  (peer_blocksize * 2))) {
1543 #endif
1544                         while (((our_depth + peer_depth) <
1545                                 (target_depth + peer_target_depth))
1546                             || ((peer_bytes + our_bytes) <
1547                                 (peer_blocksize * 3))) {
1548
1549                                 retval = camdd_queue(dev, NULL);
1550                                 if (retval == 1)
1551                                         break;
1552                                 else if (retval != 0) {
1553                                         error_exit = 1;
1554                                         goto bailout;
1555                                 }
1556
1557                                 camdd_get_depth(dev, &our_depth, &peer_depth,
1558                                                 &our_bytes, &peer_bytes);
1559                         }
1560                 }
1561                 /*
1562                  * See if we have any I/O that is ready to execute.
1563                  */
1564                 buf = STAILQ_FIRST(&dev->run_queue);
1565                 if (buf != NULL) {
1566                         while (dev->target_queue_depth > dev->cur_active_io) {
1567                                 retval = dev->run(dev);
1568                                 if (retval == -1) {
1569                                         dev->flags |= CAMDD_DEV_FLAG_EOF;
1570                                         error_exit = 1;
1571                                         break;
1572                                 } else if (retval != 0) {
1573                                         break;
1574                                 }
1575                         }
1576                 }
1577
1578                 /*
1579                  * We've reached EOF, or our partner has reached EOF.
1580                  */
1581                 if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1582                  || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1583                         if (dev->write_dev != 0) {
1584                                 if ((STAILQ_EMPTY(&dev->work_queue))
1585                                  && (dev->num_run_queue == 0)
1586                                  && (dev->cur_active_io == 0)) {
1587                                         goto bailout;
1588                                 }
1589                         } else {
1590                                 /*
1591                                  * If we're the reader, and the writer
1592                                  * got EOF, he is already done.  If we got
1593                                  * the EOF, then we need to wait until
1594                                  * everything is flushed out for the writer.
1595                                  */
1596                                 if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1597                                         goto bailout;
1598                                 } else if ((dev->num_peer_work_queue == 0)
1599                                         && (dev->num_peer_done_queue == 0)
1600                                         && (dev->cur_active_io == 0)
1601                                         && (dev->num_run_queue == 0)) {
1602                                         goto bailout;
1603                                 }
1604                         }
1605                         /*
1606                          * XXX KDM need to do something about the pending
1607                          * queue and cleanup resources.
1608                          */
1609                 } 
1610
1611                 if ((dev->write_dev == 0)
1612                  && (dev->cur_active_io == 0)
1613                  && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1614                         kq_ts = &ts;
1615                 else
1616                         kq_ts = NULL;
1617
1618                 /*
1619                  * Run kevent to see if there are events to process.
1620                  */
1621                 pthread_mutex_unlock(&dev->mutex);
1622                 retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1623                 pthread_mutex_lock(&dev->mutex);
1624                 if (retval == -1) {
1625                         warn("%s: error returned from kevent",__func__);
1626                         goto bailout;
1627                 } else if (retval != 0) {
1628                         switch (ke.filter) {
1629                         case EVFILT_READ:
1630                                 if (dev->fetch != NULL) {
1631                                         retval = dev->fetch(dev);
1632                                         if (retval == -1) {
1633                                                 error_exit = 1;
1634                                                 goto bailout;
1635                                         }
1636                                 }
1637                                 break;
1638                         case EVFILT_SIGNAL:
1639                                 /*
1640                                  * We register for this so we don't get
1641                                  * an error as a result of a SIGINFO or a
1642                                  * SIGINT.  It will actually get handled
1643                                  * by the signal handler.  If we get a
1644                                  * SIGINT, bail out without printing an
1645                                  * error message.  Any other signals 
1646                                  * will result in the error message above.
1647                                  */
1648                                 if (ke.ident == SIGINT)
1649                                         goto bailout;
1650                                 break;
1651                         case EVFILT_USER:
1652                                 retval = 0;
1653                                 /*
1654                                  * Check to see if the other thread has
1655                                  * queued any I/O for us to do.  (In this
1656                                  * case we're the writer.)
1657                                  */
1658                                 for (buf = STAILQ_FIRST(&dev->work_queue);
1659                                      buf != NULL;
1660                                      buf = STAILQ_FIRST(&dev->work_queue)) {
1661                                         STAILQ_REMOVE_HEAD(&dev->work_queue,
1662                                                            work_links);
1663                                         retval = camdd_queue(dev, buf);
1664                                         /*
1665                                          * We keep going unless we get an
1666                                          * actual error.  If we get EOF, we
1667                                          * still want to remove the buffers
1668                                          * from the queue and send the back
1669                                          * to the reader thread.
1670                                          */
1671                                         if (retval == -1) {
1672                                                 error_exit = 1;
1673                                                 goto bailout;
1674                                         } else
1675                                                 retval = 0;
1676                                 }
1677
1678                                 /*
1679                                  * Next check to see if the other thread has
1680                                  * queued any completed buffers back to us.
1681                                  * (In this case we're the reader.)
1682                                  */
1683                                 for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1684                                      buf != NULL;
1685                                      buf = STAILQ_FIRST(&dev->peer_done_queue)){
1686                                         STAILQ_REMOVE_HEAD(
1687                                             &dev->peer_done_queue, work_links);
1688                                         dev->num_peer_done_queue--;
1689                                         camdd_peer_done(buf);
1690                                 }
1691                                 break;
1692                         default:
1693                                 warnx("%s: unknown kevent filter %d",
1694                                       __func__, ke.filter);
1695                                 break;
1696                         }
1697                 }
1698         }
1699
1700 bailout:
1701
1702         dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1703
1704         /* XXX KDM cleanup resources here? */
1705
1706         pthread_mutex_unlock(&dev->mutex);
1707
1708         need_exit = 1;
1709         sem_post(&camdd_sem);
1710
1711         return (NULL);
1712 }
1713
1714 /*
1715  * Simplistic translation of CCB status to our local status.
1716  */
1717 camdd_buf_status
1718 camdd_ccb_status(union ccb *ccb)
1719 {
1720         camdd_buf_status status = CAMDD_STATUS_NONE;
1721         cam_status ccb_status;
1722
1723         ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1724
1725         switch (ccb_status) {
1726         case CAM_REQ_CMP: {
1727                 if (ccb->csio.resid == 0) {
1728                         status = CAMDD_STATUS_OK;
1729                 } else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1730                         status = CAMDD_STATUS_SHORT_IO;
1731                 } else {
1732                         status = CAMDD_STATUS_EOF;
1733                 }
1734                 break;
1735         }
1736         case CAM_SCSI_STATUS_ERROR: {
1737                 switch (ccb->csio.scsi_status) {
1738                 case SCSI_STATUS_OK:
1739                 case SCSI_STATUS_COND_MET:
1740                 case SCSI_STATUS_INTERMED:
1741                 case SCSI_STATUS_INTERMED_COND_MET:
1742                         status = CAMDD_STATUS_OK;
1743                         break;
1744                 case SCSI_STATUS_CMD_TERMINATED:
1745                 case SCSI_STATUS_CHECK_COND:
1746                 case SCSI_STATUS_QUEUE_FULL:
1747                 case SCSI_STATUS_BUSY:
1748                 case SCSI_STATUS_RESERV_CONFLICT:
1749                 default:
1750                         status = CAMDD_STATUS_ERROR;
1751                         break;
1752                 }
1753                 break;
1754         }
1755         default:
1756                 status = CAMDD_STATUS_ERROR;
1757                 break;
1758         }
1759
1760         return (status);
1761 }
1762
1763 /*
1764  * Queue a buffer to our peer's work thread for writing.
1765  *
1766  * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1767  */
1768 int
1769 camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1770 {
1771         struct kevent ke;
1772         STAILQ_HEAD(, camdd_buf) local_queue;
1773         struct camdd_buf *buf1, *buf2;
1774         struct camdd_buf_data *data = NULL;
1775         uint64_t peer_bytes_queued = 0;
1776         int active = 1;
1777         int retval = 0;
1778
1779         STAILQ_INIT(&local_queue);
1780
1781         /*
1782          * Since we're the reader, we need to queue our I/O to the writer
1783          * in sequential order in order to make sure it gets written out
1784          * in sequential order.
1785          *
1786          * Check the next expected I/O starting offset.  If this doesn't
1787          * match, put it on the reorder queue.
1788          */
1789         if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1790
1791                 /*
1792                  * If there is nothing on the queue, there is no sorting
1793                  * needed.
1794                  */
1795                 if (STAILQ_EMPTY(&dev->reorder_queue)) {
1796                         STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1797                         dev->num_reorder_queue++;
1798                         goto bailout;
1799                 }
1800
1801                 /*
1802                  * Sort in ascending order by starting LBA.  There should
1803                  * be no identical LBAs.
1804                  */
1805                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1806                      buf1 = buf2) {
1807                         buf2 = STAILQ_NEXT(buf1, links);
1808                         if (buf->lba < buf1->lba) {
1809                                 /*
1810                                  * If we're less than the first one, then
1811                                  * we insert at the head of the list
1812                                  * because this has to be the first element
1813                                  * on the list.
1814                                  */
1815                                 STAILQ_INSERT_HEAD(&dev->reorder_queue,
1816                                                    buf, links);
1817                                 dev->num_reorder_queue++;
1818                                 break;
1819                         } else if (buf->lba > buf1->lba) {
1820                                 if (buf2 == NULL) {
1821                                         STAILQ_INSERT_TAIL(&dev->reorder_queue, 
1822                                             buf, links);
1823                                         dev->num_reorder_queue++;
1824                                         break;
1825                                 } else if (buf->lba < buf2->lba) {
1826                                         STAILQ_INSERT_AFTER(&dev->reorder_queue,
1827                                             buf1, buf, links);
1828                                         dev->num_reorder_queue++;
1829                                         break;
1830                                 }
1831                         } else {
1832                                 errx(1, "Found buffers with duplicate LBA %ju!",
1833                                      buf->lba);
1834                         }
1835                 }
1836                 goto bailout;
1837         } else {
1838
1839                 /*
1840                  * We're the next expected I/O completion, so put ourselves
1841                  * on the local queue to be sent to the writer.  We use
1842                  * work_links here so that we can queue this to the 
1843                  * peer_work_queue before taking the buffer off of the
1844                  * local_queue.
1845                  */
1846                 dev->next_completion_pos_bytes += buf->len;
1847                 STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1848
1849                 /*
1850                  * Go through the reorder queue looking for more sequential
1851                  * I/O and add it to the local queue.
1852                  */
1853                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1854                      buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1855                         /*
1856                          * As soon as we see an I/O that is out of sequence,
1857                          * we're done.
1858                          */
1859                         if ((buf1->lba * dev->sector_size) !=
1860                              dev->next_completion_pos_bytes)
1861                                 break;
1862
1863                         STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1864                         dev->num_reorder_queue--;
1865                         STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1866                         dev->next_completion_pos_bytes += buf1->len;
1867                 }
1868         }
1869
1870         /*
1871          * Setup the event to let the other thread know that it has work
1872          * pending.
1873          */
1874         EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1875                NOTE_TRIGGER, 0, NULL);
1876
1877         /*
1878          * Put this on our shadow queue so that we know what we've queued
1879          * to the other thread.
1880          */
1881         STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1882                 if (buf1->buf_type != CAMDD_BUF_DATA) {
1883                         errx(1, "%s: should have a data buffer, not an "
1884                             "indirect buffer", __func__);
1885                 }
1886                 data = &buf1->buf_type_spec.data;
1887
1888                 /*
1889                  * We only need to send one EOF to the writer, and don't
1890                  * need to continue sending EOFs after that.
1891                  */
1892                 if (buf1->status == CAMDD_STATUS_EOF) {
1893                         if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1894                                 STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1895                                     work_links);
1896                                 camdd_release_buf(buf1);
1897                                 retval = 1;
1898                                 continue;
1899                         }
1900                         dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1901                 }
1902
1903
1904                 STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1905                 peer_bytes_queued += (data->fill_len - data->resid);
1906                 dev->peer_bytes_queued += (data->fill_len - data->resid);
1907                 dev->num_peer_work_queue++;
1908         }
1909
1910         if (STAILQ_FIRST(&local_queue) == NULL)
1911                 goto bailout;
1912
1913         /*
1914          * Drop our mutex and pick up the other thread's mutex.  We need to
1915          * do this to avoid deadlocks.
1916          */
1917         pthread_mutex_unlock(&dev->mutex);
1918         pthread_mutex_lock(&dev->peer_dev->mutex);
1919
1920         if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
1921                 /*
1922                  * Put the buffers on the other thread's incoming work queue.
1923                  */
1924                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1925                      buf1 = STAILQ_FIRST(&local_queue)) {
1926                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
1927                         STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
1928                                            work_links);
1929                 }
1930                 /*
1931                  * Send an event to the other thread's kqueue to let it know
1932                  * that there is something on the work queue.
1933                  */
1934                 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1935                 if (retval == -1)
1936                         warn("%s: unable to add peer work_queue kevent",
1937                              __func__);
1938                 else
1939                         retval = 0;
1940         } else
1941                 active = 0;
1942
1943         pthread_mutex_unlock(&dev->peer_dev->mutex);
1944         pthread_mutex_lock(&dev->mutex);
1945
1946         /*
1947          * If the other side isn't active, run through the queue and
1948          * release all of the buffers.
1949          */
1950         if (active == 0) {
1951                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1952                      buf1 = STAILQ_FIRST(&local_queue)) {
1953                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
1954                         STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
1955                                       links);
1956                         dev->num_peer_work_queue--;
1957                         camdd_release_buf(buf1);
1958                 }
1959                 dev->peer_bytes_queued -= peer_bytes_queued;
1960                 retval = 1;
1961         }
1962
1963 bailout:
1964         return (retval);
1965 }
1966
1967 /*
1968  * Return a buffer to the reader thread when we have completed writing it.
1969  */
1970 int
1971 camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
1972 {
1973         struct kevent ke;
1974         int retval = 0;
1975
1976         /*
1977          * Setup the event to let the other thread know that we have
1978          * completed a buffer.
1979          */
1980         EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
1981                NOTE_TRIGGER, 0, NULL);
1982
1983         /*
1984          * Drop our lock and acquire the other thread's lock before
1985          * manipulating 
1986          */
1987         pthread_mutex_unlock(&dev->mutex);
1988         pthread_mutex_lock(&dev->peer_dev->mutex);
1989
1990         /*
1991          * Put the buffer on the reader thread's peer done queue now that
1992          * we have completed it.
1993          */
1994         STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
1995                            work_links);
1996         dev->peer_dev->num_peer_done_queue++;
1997
1998         /*
1999          * Send an event to the peer thread to let it know that we've added
2000          * something to its peer done queue.
2001          */
2002         retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2003         if (retval == -1)
2004                 warn("%s: unable to add peer_done_queue kevent", __func__);
2005         else
2006                 retval = 0;
2007
2008         /*
2009          * Drop the other thread's lock and reacquire ours.
2010          */
2011         pthread_mutex_unlock(&dev->peer_dev->mutex);
2012         pthread_mutex_lock(&dev->mutex);
2013
2014         return (retval);
2015 }
2016
2017 /*
2018  * Free a buffer that was written out by the writer thread and returned to
2019  * the reader thread.
2020  */
2021 void
2022 camdd_peer_done(struct camdd_buf *buf)
2023 {
2024         struct camdd_dev *dev;
2025         struct camdd_buf_data *data;
2026
2027         dev = buf->dev;
2028         if (buf->buf_type != CAMDD_BUF_DATA) {
2029                 errx(1, "%s: should have a data buffer, not an "
2030                     "indirect buffer", __func__);
2031         }
2032
2033         data = &buf->buf_type_spec.data;
2034
2035         STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2036         dev->num_peer_work_queue--;
2037         dev->peer_bytes_queued -= (data->fill_len - data->resid);
2038
2039         if (buf->status == CAMDD_STATUS_EOF)
2040                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2041
2042         STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2043 }
2044
2045 /*
2046  * Assumes caller holds the lock for this device.
2047  */
2048 void
2049 camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2050                    int *error_count)
2051 {
2052         int retval = 0;
2053
2054         /*
2055          * If we're the reader, we need to send the completed I/O
2056          * to the writer.  If we're the writer, we need to just
2057          * free up resources, or let the reader know if we've
2058          * encountered an error.
2059          */
2060         if (dev->write_dev == 0) {
2061                 retval = camdd_queue_peer_buf(dev, buf);
2062                 if (retval != 0)
2063                         (*error_count)++;
2064         } else {
2065                 struct camdd_buf *tmp_buf, *next_buf;
2066
2067                 STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2068                                     next_buf) {
2069                         struct camdd_buf *src_buf;
2070                         struct camdd_buf_indirect *indirect;
2071
2072                         STAILQ_REMOVE(&buf->src_list, tmp_buf,
2073                                       camdd_buf, src_links);
2074
2075                         tmp_buf->status = buf->status;
2076
2077                         if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2078                                 camdd_complete_peer_buf(dev, tmp_buf);
2079                                 continue;
2080                         }
2081
2082                         indirect = &tmp_buf->buf_type_spec.indirect;
2083                         src_buf = indirect->src_buf;
2084                         src_buf->refcount--;
2085                         /*
2086                          * XXX KDM we probably need to account for
2087                          * exactly how many bytes we were able to
2088                          * write.  Allocate the residual to the
2089                          * first N buffers?  Or just track the
2090                          * number of bytes written?  Right now the reader
2091                          * doesn't do anything with a residual.
2092                          */
2093                         src_buf->status = buf->status;
2094                         if (src_buf->refcount <= 0)
2095                                 camdd_complete_peer_buf(dev, src_buf);
2096                         STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2097                                            tmp_buf, links);
2098                 }
2099
2100                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2101         }
2102 }
2103
2104 /*
2105  * Fetch all completed commands from the pass(4) device.
2106  *
2107  * Returns the number of commands received, or -1 if any of the commands
2108  * completed with an error.  Returns 0 if no commands are available.
2109  */
2110 int
2111 camdd_pass_fetch(struct camdd_dev *dev)
2112 {
2113         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2114         union ccb ccb;
2115         int retval = 0, num_fetched = 0, error_count = 0;
2116
2117         pthread_mutex_unlock(&dev->mutex);
2118         /*
2119          * XXX KDM we don't distinguish between EFAULT and ENOENT.
2120          */
2121         while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2122                 struct camdd_buf *buf;
2123                 struct camdd_buf_data *data;
2124                 cam_status ccb_status;
2125                 union ccb *buf_ccb;
2126
2127                 buf = ccb.ccb_h.ccb_buf;
2128                 data = &buf->buf_type_spec.data;
2129                 buf_ccb = &data->ccb;
2130
2131                 num_fetched++;
2132
2133                 /*
2134                  * Copy the CCB back out so we get status, sense data, etc.
2135                  */
2136                 bcopy(&ccb, buf_ccb, sizeof(ccb));
2137
2138                 pthread_mutex_lock(&dev->mutex);
2139
2140                 /*
2141                  * We're now done, so take this off the active queue.
2142                  */
2143                 STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2144                 dev->cur_active_io--;
2145
2146                 ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2147                 if (ccb_status != CAM_REQ_CMP) {
2148                         cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2149                                         CAM_EPF_ALL, stderr);
2150                 }
2151
2152                 data->resid = ccb.csio.resid;
2153                 dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2154
2155                 if (buf->status == CAMDD_STATUS_NONE)
2156                         buf->status = camdd_ccb_status(&ccb);
2157                 if (buf->status == CAMDD_STATUS_ERROR)
2158                         error_count++;
2159                 else if (buf->status == CAMDD_STATUS_EOF) {
2160                         /*
2161                          * Once we queue this buffer to our partner thread,
2162                          * he will know that we've hit EOF.
2163                          */
2164                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2165                 }
2166
2167                 camdd_complete_buf(dev, buf, &error_count);
2168
2169                 /*
2170                  * Unlock in preparation for the ioctl call.
2171                  */
2172                 pthread_mutex_unlock(&dev->mutex);
2173         }
2174
2175         pthread_mutex_lock(&dev->mutex);
2176
2177         if (error_count > 0)
2178                 return (-1);
2179         else
2180                 return (num_fetched);
2181 }
2182
2183 /*
2184  * Returns -1 for error, 0 for success/continue, and 1 for resource
2185  * shortage/stop processing.
2186  */
2187 int
2188 camdd_file_run(struct camdd_dev *dev)
2189 {
2190         struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2191         struct camdd_buf_data *data;
2192         struct camdd_buf *buf;
2193         off_t io_offset;
2194         int retval = 0, write_dev = dev->write_dev;
2195         int error_count = 0, no_resources = 0, double_buf_needed = 0;
2196         uint32_t num_sectors = 0, db_len = 0;
2197
2198         buf = STAILQ_FIRST(&dev->run_queue);
2199         if (buf == NULL) {
2200                 no_resources = 1;
2201                 goto bailout;
2202         } else if ((dev->write_dev == 0)
2203                 && (dev->flags & (CAMDD_DEV_FLAG_EOF |
2204                                   CAMDD_DEV_FLAG_EOF_SENT))) {
2205                 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2206                 dev->num_run_queue--;
2207                 buf->status = CAMDD_STATUS_EOF;
2208                 error_count++;
2209                 goto bailout;
2210         }
2211
2212         /*
2213          * If we're writing, we need to go through the source buffer list
2214          * and create an S/G list.
2215          */
2216         if (write_dev != 0) {
2217                 retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2218                     dev->sector_size, &num_sectors, &double_buf_needed);
2219                 if (retval != 0) {
2220                         no_resources = 1;
2221                         goto bailout;
2222                 }
2223         }
2224
2225         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2226         dev->num_run_queue--;
2227
2228         data = &buf->buf_type_spec.data;
2229
2230         /*
2231          * pread(2) and pwrite(2) offsets are byte offsets.
2232          */
2233         io_offset = buf->lba * dev->sector_size;
2234
2235         /*
2236          * Unlock the mutex while we read or write.
2237          */
2238         pthread_mutex_unlock(&dev->mutex);
2239
2240         /*
2241          * Note that we don't need to double buffer if we're the reader
2242          * because in that case, we have allocated a single buffer of
2243          * sufficient size to do the read.  This copy is necessary on
2244          * writes because if one of the components of the S/G list is not
2245          * a sector size multiple, the kernel will reject the write.  This
2246          * is unfortunate but not surprising.  So this will make sure that
2247          * we're using a single buffer that is a multiple of the sector size.
2248          */
2249         if ((double_buf_needed != 0)
2250          && (data->sg_count > 1)
2251          && (write_dev != 0)) {
2252                 uint32_t cur_offset;
2253                 int i;
2254
2255                 if (file_dev->tmp_buf == NULL)
2256                         file_dev->tmp_buf = calloc(dev->blocksize, 1);
2257                 if (file_dev->tmp_buf == NULL) {
2258                         buf->status = CAMDD_STATUS_ERROR;
2259                         error_count++;
2260                         pthread_mutex_lock(&dev->mutex);
2261                         goto bailout;
2262                 }
2263                 for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2264                         bcopy(data->iovec[i].iov_base,
2265                             &file_dev->tmp_buf[cur_offset],
2266                             data->iovec[i].iov_len);
2267                         cur_offset += data->iovec[i].iov_len;
2268                 }
2269                 db_len = cur_offset;
2270         }
2271
2272         if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2273                 if (write_dev == 0) {
2274                         /*
2275                          * XXX KDM is there any way we would need a S/G
2276                          * list here?
2277                          */
2278                         retval = pread(file_dev->fd, data->buf,
2279                             buf->len, io_offset);
2280                 } else {
2281                         if (double_buf_needed != 0) {
2282                                 retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2283                                     db_len, io_offset);
2284                         } else if (data->sg_count == 0) {
2285                                 retval = pwrite(file_dev->fd, data->buf,
2286                                     data->fill_len, io_offset);
2287                         } else {
2288                                 retval = pwritev(file_dev->fd, data->iovec,
2289                                     data->sg_count, io_offset);
2290                         }
2291                 }
2292         } else {
2293                 if (write_dev == 0) {
2294                         /*
2295                          * XXX KDM is there any way we would need a S/G
2296                          * list here?
2297                          */
2298                         retval = read(file_dev->fd, data->buf, buf->len);
2299                 } else {
2300                         if (double_buf_needed != 0) {
2301                                 retval = write(file_dev->fd, file_dev->tmp_buf,
2302                                     db_len);
2303                         } else if (data->sg_count == 0) {
2304                                 retval = write(file_dev->fd, data->buf,
2305                                     data->fill_len);
2306                         } else {
2307                                 retval = writev(file_dev->fd, data->iovec,
2308                                     data->sg_count);
2309                         }
2310                 }
2311         }
2312
2313         /* We're done, re-acquire the lock */
2314         pthread_mutex_lock(&dev->mutex);
2315
2316         if (retval >= (ssize_t)data->fill_len) {
2317                 /*
2318                  * If the bytes transferred is more than the request size,
2319                  * that indicates an overrun, which should only happen at
2320                  * the end of a transfer if we have to round up to a sector
2321                  * boundary.
2322                  */
2323                 if (buf->status == CAMDD_STATUS_NONE)
2324                         buf->status = CAMDD_STATUS_OK;
2325                 data->resid = 0;
2326                 dev->bytes_transferred += retval;
2327         } else if (retval == -1) {
2328                 warn("Error %s %s", (write_dev) ? "writing to" :
2329                     "reading from", file_dev->filename);
2330
2331                 buf->status = CAMDD_STATUS_ERROR;
2332                 data->resid = data->fill_len;
2333                 error_count++;
2334
2335                 if (dev->debug == 0)
2336                         goto bailout;
2337
2338                 if ((double_buf_needed != 0)
2339                  && (write_dev != 0)) {
2340                         fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2341                             "offset %ju\n", __func__, file_dev->fd,
2342                             file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2343                             (uintmax_t)io_offset);
2344                 } else if (data->sg_count == 0) {
2345                         fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2346                             "offset %ju\n", __func__, file_dev->fd, data->buf,
2347                             data->fill_len, (uintmax_t)buf->lba,
2348                             (uintmax_t)io_offset);
2349                 } else {
2350                         int i;
2351
2352                         fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2353                             "offset %ju\n", __func__, file_dev->fd, 
2354                             data->fill_len, (uintmax_t)buf->lba,
2355                             (uintmax_t)io_offset);
2356
2357                         for (i = 0; i < data->sg_count; i++) {
2358                                 fprintf(stderr, "index %d ptr %p len %zu\n",
2359                                     i, data->iovec[i].iov_base,
2360                                     data->iovec[i].iov_len);
2361                         }
2362                 }
2363         } else if (retval == 0) {
2364                 buf->status = CAMDD_STATUS_EOF;
2365                 if (dev->debug != 0)
2366                         printf("%s: got EOF from %s!\n", __func__,
2367                             file_dev->filename);
2368                 data->resid = data->fill_len;
2369                 error_count++;
2370         } else if (retval < (ssize_t)data->fill_len) {
2371                 if (buf->status == CAMDD_STATUS_NONE)
2372                         buf->status = CAMDD_STATUS_SHORT_IO;
2373                 data->resid = data->fill_len - retval;
2374                 dev->bytes_transferred += retval;
2375         }
2376
2377 bailout:
2378         if (buf != NULL) {
2379                 if (buf->status == CAMDD_STATUS_EOF) {
2380                         struct camdd_buf *buf2;
2381                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2382                         STAILQ_FOREACH(buf2, &dev->run_queue, links)
2383                                 buf2->status = CAMDD_STATUS_EOF;
2384                 }
2385
2386                 camdd_complete_buf(dev, buf, &error_count);
2387         }
2388
2389         if (error_count != 0)
2390                 return (-1);
2391         else if (no_resources != 0)
2392                 return (1);
2393         else
2394                 return (0);
2395 }
2396
2397 /*
2398  * Execute one command from the run queue.  Returns 0 for success, 1 for
2399  * stop processing, and -1 for error.
2400  */
2401 int
2402 camdd_pass_run(struct camdd_dev *dev)
2403 {
2404         struct camdd_buf *buf = NULL;
2405         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2406         struct camdd_buf_data *data;
2407         uint32_t num_blocks, sectors_used = 0;
2408         union ccb *ccb;
2409         int retval = 0, is_write = dev->write_dev;
2410         int double_buf_needed = 0;
2411
2412         buf = STAILQ_FIRST(&dev->run_queue);
2413         if (buf == NULL) {
2414                 retval = 1;
2415                 goto bailout;
2416         }
2417
2418         /*
2419          * If we're writing, we need to go through the source buffer list
2420          * and create an S/G list.
2421          */
2422         if (is_write != 0) {
2423                 retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2424                     &sectors_used, &double_buf_needed);
2425                 if (retval != 0) {
2426                         retval = -1;
2427                         goto bailout;
2428                 }
2429         }
2430
2431         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2432         dev->num_run_queue--;
2433
2434         data = &buf->buf_type_spec.data;
2435
2436         ccb = &data->ccb;
2437         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
2438
2439         /*
2440          * In almost every case the number of blocks should be the device
2441          * block size.  The exception may be at the end of an I/O stream
2442          * for a partial block or at the end of a device.
2443          */
2444         if (is_write != 0)
2445                 num_blocks = sectors_used;
2446         else
2447                 num_blocks = data->fill_len / pass_dev->block_len;
2448
2449         scsi_read_write(&ccb->csio,
2450                         /*retries*/ dev->retry_count,
2451                         /*cbfcnp*/ NULL,
2452                         /*tag_action*/ MSG_SIMPLE_Q_TAG,
2453                         /*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2454                                    SCSI_RW_WRITE,
2455                         /*byte2*/ 0,
2456                         /*minimum_cmd_size*/ dev->min_cmd_size,
2457                         /*lba*/ buf->lba,
2458                         /*block_count*/ num_blocks,
2459                         /*data_ptr*/ (data->sg_count != 0) ?
2460                                      (uint8_t *)data->segs : data->buf,
2461                         /*dxfer_len*/ (num_blocks * pass_dev->block_len),
2462                         /*sense_len*/ SSD_FULL_SIZE,
2463                         /*timeout*/ dev->io_timeout);
2464
2465         /* Disable freezing the device queue */
2466         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2467
2468         if (dev->retry_count != 0)
2469                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2470
2471         if (data->sg_count != 0) {
2472                 ccb->csio.sglist_cnt = data->sg_count;
2473                 ccb->ccb_h.flags |= CAM_DATA_SG;
2474         }
2475
2476         /*
2477          * Store a pointer to the buffer in the CCB.  The kernel will
2478          * restore this when we get it back, and we'll use it to identify
2479          * the buffer this CCB came from.
2480          */
2481         ccb->ccb_h.ccb_buf = buf;
2482
2483         /*
2484          * Unlock our mutex in preparation for issuing the ioctl.
2485          */
2486         pthread_mutex_unlock(&dev->mutex);
2487         /*
2488          * Queue the CCB to the pass(4) driver.
2489          */
2490         if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2491                 pthread_mutex_lock(&dev->mutex);
2492
2493                 warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2494                      pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2495                 warn("%s: CCB address is %p", __func__, ccb);
2496                 retval = -1;
2497
2498                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2499         } else {
2500                 pthread_mutex_lock(&dev->mutex);
2501
2502                 dev->cur_active_io++;
2503                 STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2504         }
2505
2506 bailout:
2507         return (retval);
2508 }
2509
2510 int
2511 camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2512 {
2513         struct camdd_dev_pass *pass_dev;
2514         uint32_t num_blocks;
2515         int retval = 0;
2516
2517         pass_dev = &dev->dev_spec.pass;
2518
2519         *lba = dev->next_io_pos_bytes / dev->sector_size;
2520         *len = dev->blocksize;
2521         num_blocks = *len / dev->sector_size;
2522
2523         /*
2524          * If max_sector is 0, then we have no set limit.  This can happen
2525          * if we're writing to a file in a filesystem, or reading from
2526          * something like /dev/zero.
2527          */
2528         if ((dev->max_sector != 0)
2529          || (dev->sector_io_limit != 0)) {
2530                 uint64_t max_sector;
2531
2532                 if ((dev->max_sector != 0)
2533                  && (dev->sector_io_limit != 0)) 
2534                         max_sector = min(dev->sector_io_limit, dev->max_sector);
2535                 else if (dev->max_sector != 0)
2536                         max_sector = dev->max_sector;
2537                 else
2538                         max_sector = dev->sector_io_limit;
2539
2540
2541                 /*
2542                  * Check to see whether we're starting off past the end of
2543                  * the device.  If so, we need to just send an EOF      
2544                  * notification to the writer.
2545                  */
2546                 if (*lba > max_sector) {
2547                         *len = 0;
2548                         retval = 1;
2549                 } else if (((*lba + num_blocks) > max_sector + 1)
2550                         || ((*lba + num_blocks) < *lba)) {
2551                         /*
2552                          * If we get here (but pass the first check), we
2553                          * can trim the request length down to go to the
2554                          * end of the device.
2555                          */
2556                         num_blocks = (max_sector + 1) - *lba;
2557                         *len = num_blocks * dev->sector_size;
2558                         retval = 1;
2559                 }
2560         }
2561
2562         dev->next_io_pos_bytes += *len;
2563
2564         return (retval);
2565 }
2566
2567 /*
2568  * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2569  */
2570 int
2571 camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2572 {
2573         struct camdd_buf *buf = NULL;
2574         struct camdd_buf_data *data;
2575         struct camdd_dev_pass *pass_dev;
2576         size_t new_len;
2577         struct camdd_buf_data *rb_data;
2578         int is_write = dev->write_dev;
2579         int eof_flush_needed = 0;
2580         int retval = 0;
2581         int error;
2582
2583         pass_dev = &dev->dev_spec.pass;
2584
2585         /*
2586          * If we've gotten EOF or our partner has, we should not continue
2587          * queueing I/O.  If we're a writer, though, we should continue
2588          * to write any buffers that don't have EOF status.
2589          */
2590         if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2591          || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2592           && (is_write == 0))) {
2593                 /*
2594                  * Tell the worker thread that we have seen EOF.
2595                  */
2596                 retval = 1;
2597
2598                 /*
2599                  * If we're the writer, send the buffer back with EOF status.
2600                  */
2601                 if (is_write) {
2602                         read_buf->status = CAMDD_STATUS_EOF;
2603                         
2604                         error = camdd_complete_peer_buf(dev, read_buf);
2605                 }
2606                 goto bailout;
2607         }
2608
2609         if (is_write == 0) {
2610                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2611                 if (buf == NULL) {
2612                         retval = -1;
2613                         goto bailout;
2614                 }
2615                 data = &buf->buf_type_spec.data;
2616
2617                 retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2618                 if (retval != 0) {
2619                         buf->status = CAMDD_STATUS_EOF;
2620
2621                         if ((buf->len == 0)
2622                          && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2623                              CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2624                                 camdd_release_buf(buf);
2625                                 goto bailout;
2626                         }
2627                         dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2628                 }
2629
2630                 data->fill_len = buf->len;
2631                 data->src_start_offset = buf->lba * dev->sector_size;
2632
2633                 /*
2634                  * Put this on the run queue.
2635                  */
2636                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2637                 dev->num_run_queue++;
2638
2639                 /* We're done. */
2640                 goto bailout;
2641         }
2642
2643         /*
2644          * Check for new EOF status from the reader.
2645          */
2646         if ((read_buf->status == CAMDD_STATUS_EOF)
2647          || (read_buf->status == CAMDD_STATUS_ERROR)) {
2648                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2649                 if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2650                  && (read_buf->len == 0)) {
2651                         camdd_complete_peer_buf(dev, read_buf);
2652                         retval = 1;
2653                         goto bailout;
2654                 } else
2655                         eof_flush_needed = 1;
2656         }
2657
2658         /*
2659          * See if we have a buffer we're composing with pieces from our
2660          * partner thread.
2661          */
2662         buf = STAILQ_FIRST(&dev->pending_queue);
2663         if (buf == NULL) {
2664                 uint64_t lba;
2665                 ssize_t len;
2666
2667                 retval = camdd_get_next_lba_len(dev, &lba, &len);
2668                 if (retval != 0) {
2669                         read_buf->status = CAMDD_STATUS_EOF;
2670
2671                         if (len == 0) {
2672                                 dev->flags |= CAMDD_DEV_FLAG_EOF;
2673                                 error = camdd_complete_peer_buf(dev, read_buf);
2674                                 goto bailout;
2675                         }
2676                 }
2677
2678                 /*
2679                  * If we don't have a pending buffer, we need to grab a new
2680                  * one from the free list or allocate another one.
2681                  */
2682                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2683                 if (buf == NULL) {
2684                         retval = 1;
2685                         goto bailout;
2686                 }
2687
2688                 buf->lba = lba;
2689                 buf->len = len;
2690
2691                 STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2692                 dev->num_pending_queue++;
2693         }
2694
2695         data = &buf->buf_type_spec.data;
2696
2697         rb_data = &read_buf->buf_type_spec.data;
2698
2699         if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2700          && (dev->debug != 0)) {
2701                 printf("%s: WARNING: reader offset %#jx != expected offset "
2702                     "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2703                     (uintmax_t)dev->next_peer_pos_bytes);
2704         }
2705         dev->next_peer_pos_bytes = rb_data->src_start_offset +
2706             (rb_data->fill_len - rb_data->resid);
2707
2708         new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2709         if (new_len < buf->len) {
2710                 /*
2711                  * There are three cases here:
2712                  * 1. We need more data to fill up a block, so we put 
2713                  *    this I/O on the queue and wait for more I/O.
2714                  * 2. We have a pending buffer in the queue that is
2715                  *    smaller than our blocksize, but we got an EOF.  So we
2716                  *    need to go ahead and flush the write out.
2717                  * 3. We got an error.
2718                  */
2719
2720                 /*
2721                  * Increment our fill length.
2722                  */
2723                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2724
2725                 /*
2726                  * Add the new read buffer to the list for writing.
2727                  */
2728                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2729
2730                 /* Increment the count */
2731                 buf->src_count++;
2732
2733                 if (eof_flush_needed == 0) {
2734                         /*
2735                          * We need to exit, because we don't have enough
2736                          * data yet.
2737                          */
2738                         goto bailout;
2739                 } else {
2740                         /*
2741                          * Take the buffer off of the pending queue.
2742                          */
2743                         STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2744                                       links);
2745                         dev->num_pending_queue--;
2746
2747                         /*
2748                          * If we need an EOF flush, but there is no data
2749                          * to flush, go ahead and return this buffer.
2750                          */
2751                         if (data->fill_len == 0) {
2752                                 camdd_complete_buf(dev, buf, /*error_count*/0);
2753                                 retval = 1;
2754                                 goto bailout;
2755                         }
2756
2757                         /*
2758                          * Put this on the next queue for execution.
2759                          */
2760                         STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2761                         dev->num_run_queue++;
2762                 }
2763         } else if (new_len == buf->len) {
2764                 /*
2765                  * We have enough data to completey fill one block,
2766                  * so we're ready to issue the I/O.
2767                  */
2768
2769                 /*
2770                  * Take the buffer off of the pending queue.
2771                  */
2772                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2773                 dev->num_pending_queue--;
2774
2775                 /*
2776                  * Add the new read buffer to the list for writing.
2777                  */
2778                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2779
2780                 /* Increment the count */
2781                 buf->src_count++;
2782
2783                 /*
2784                  * Increment our fill length.
2785                  */
2786                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2787
2788                 /*
2789                  * Put this on the next queue for execution.
2790                  */
2791                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2792                 dev->num_run_queue++;
2793         } else {
2794                 struct camdd_buf *idb;
2795                 struct camdd_buf_indirect *indirect;
2796                 uint32_t len_to_go, cur_offset;
2797
2798                 
2799                 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2800                 if (idb == NULL) {
2801                         retval = 1;
2802                         goto bailout;
2803                 }
2804                 indirect = &idb->buf_type_spec.indirect;
2805                 indirect->src_buf = read_buf;
2806                 read_buf->refcount++;
2807                 indirect->offset = 0;
2808                 indirect->start_ptr = rb_data->buf;
2809                 /*
2810                  * We've already established that there is more
2811                  * data in read_buf than we have room for in our
2812                  * current write request.  So this particular chunk
2813                  * of the request should just be the remainder
2814                  * needed to fill up a block.
2815                  */
2816                 indirect->len = buf->len - (data->fill_len - data->resid);
2817
2818                 camdd_buf_add_child(buf, idb);
2819
2820                 /*
2821                  * This buffer is ready to execute, so we can take
2822                  * it off the pending queue and put it on the run
2823                  * queue.
2824                  */
2825                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2826                               links);
2827                 dev->num_pending_queue--;
2828                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2829                 dev->num_run_queue++;
2830
2831                 cur_offset = indirect->offset + indirect->len;
2832
2833                 /*
2834                  * The resulting I/O would be too large to fit in
2835                  * one block.  We need to split this I/O into
2836                  * multiple pieces.  Allocate as many buffers as needed.
2837                  */
2838                 for (len_to_go = rb_data->fill_len - rb_data->resid -
2839                      indirect->len; len_to_go > 0;) {
2840                         struct camdd_buf *new_buf;
2841                         struct camdd_buf_data *new_data;
2842                         uint64_t lba;
2843                         ssize_t len;
2844
2845                         retval = camdd_get_next_lba_len(dev, &lba, &len);
2846                         if ((retval != 0)
2847                          && (len == 0)) {
2848                                 /*
2849                                  * The device has already been marked
2850                                  * as EOF, and there is no space left.
2851                                  */
2852                                 goto bailout;
2853                         }
2854
2855                         new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2856                         if (new_buf == NULL) {
2857                                 retval = 1;
2858                                 goto bailout;
2859                         }
2860
2861                         new_buf->lba = lba;
2862                         new_buf->len = len;
2863
2864                         idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2865                         if (idb == NULL) {
2866                                 retval = 1;
2867                                 goto bailout;
2868                         }
2869
2870                         indirect = &idb->buf_type_spec.indirect;
2871
2872                         indirect->src_buf = read_buf;
2873                         read_buf->refcount++;
2874                         indirect->offset = cur_offset;
2875                         indirect->start_ptr = rb_data->buf + cur_offset;
2876                         indirect->len = min(len_to_go, new_buf->len);
2877 #if 0
2878                         if (((indirect->len % dev->sector_size) != 0)
2879                          || ((indirect->offset % dev->sector_size) != 0)) {
2880                                 warnx("offset %ju len %ju not aligned with "
2881                                     "sector size %u", indirect->offset,
2882                                     (uintmax_t)indirect->len, dev->sector_size);
2883                         }
2884 #endif
2885                         cur_offset += indirect->len;
2886                         len_to_go -= indirect->len;
2887
2888                         camdd_buf_add_child(new_buf, idb);
2889
2890                         new_data = &new_buf->buf_type_spec.data;
2891
2892                         if ((new_data->fill_len == new_buf->len)
2893                          || (eof_flush_needed != 0)) {
2894                                 STAILQ_INSERT_TAIL(&dev->run_queue,
2895                                                    new_buf, links);
2896                                 dev->num_run_queue++;
2897                         } else if (new_data->fill_len < buf->len) {
2898                                 STAILQ_INSERT_TAIL(&dev->pending_queue,
2899                                                 new_buf, links);
2900                                 dev->num_pending_queue++;
2901                         } else {
2902                                 warnx("%s: too much data in new "
2903                                       "buffer!", __func__);
2904                                 retval = 1;
2905                                 goto bailout;
2906                         }
2907                 }
2908         }
2909
2910 bailout:
2911         return (retval);
2912 }
2913
2914 void
2915 camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
2916                 uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
2917 {
2918         *our_depth = dev->cur_active_io + dev->num_run_queue;
2919         if (dev->num_peer_work_queue >
2920             dev->num_peer_done_queue)
2921                 *peer_depth = dev->num_peer_work_queue -
2922                               dev->num_peer_done_queue;
2923         else
2924                 *peer_depth = 0;
2925         *our_bytes = *our_depth * dev->blocksize;
2926         *peer_bytes = dev->peer_bytes_queued;
2927 }
2928
2929 void
2930 camdd_sig_handler(int sig)
2931 {
2932         if (sig == SIGINFO)
2933                 need_status = 1;
2934         else {
2935                 need_exit = 1;
2936                 error_exit = 1;
2937         }
2938
2939         sem_post(&camdd_sem);
2940 }
2941
2942 void
2943 camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev, 
2944                    struct timespec *start_time)
2945 {
2946         struct timespec done_time;
2947         uint64_t total_ns;
2948         long double mb_sec, total_sec;
2949         int error = 0;
2950
2951         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
2952         if (error != 0) {
2953                 warn("Unable to get done time");
2954                 return;
2955         }
2956
2957         timespecsub(&done_time, start_time);
2958         
2959         total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
2960         total_sec = total_ns;
2961         total_sec /= 1000000000;
2962
2963         fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
2964                 "%.4Lf seconds elapsed\n",
2965                 (uintmax_t)camdd_dev->bytes_transferred,
2966                 (camdd_dev->write_dev == 0) ?  "read from" : "written to",
2967                 camdd_dev->device_name,
2968                 (uintmax_t)other_dev->bytes_transferred,
2969                 (other_dev->write_dev == 0) ? "read from" : "written to",
2970                 other_dev->device_name, total_sec);
2971
2972         mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
2973         mb_sec /= 1024 * 1024;
2974         mb_sec *= 1000000000;
2975         mb_sec /= total_ns;
2976         fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
2977 }
2978
2979 int
2980 camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
2981          int retry_count, int timeout)
2982 {
2983         struct cam_device *new_cam_dev = NULL;
2984         struct camdd_dev *devs[2];
2985         struct timespec start_time;
2986         pthread_t threads[2];
2987         int unit = 0;
2988         int error = 0;
2989         int i;
2990
2991         if (num_io_opts != 2) {
2992                 warnx("Must have one input and one output path");
2993                 error = 1;
2994                 goto bailout;
2995         }
2996
2997         bzero(devs, sizeof(devs));
2998
2999         for (i = 0; i < num_io_opts; i++) {
3000                 switch (io_opts[i].dev_type) {
3001                 case CAMDD_DEV_PASS: {
3002                         if (isdigit(io_opts[i].dev_name[0])) {
3003                                 camdd_argmask new_arglist = CAMDD_ARG_NONE;
3004                                 int bus = 0, target = 0, lun = 0;
3005                                 int rv;
3006
3007                                 /* device specified as bus:target[:lun] */
3008                                 rv = parse_btl(io_opts[i].dev_name, &bus,
3009                                     &target, &lun, &new_arglist);
3010                                 if (rv < 2) {
3011                                         warnx("numeric device specification "
3012                                              "must be either bus:target, or "
3013                                              "bus:target:lun");
3014                                         error = 1;
3015                                         goto bailout;
3016                                 }
3017                                 /* default to 0 if lun was not specified */
3018                                 if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3019                                         lun = 0;
3020                                         new_arglist |= CAMDD_ARG_LUN;
3021                                 }
3022                                 new_cam_dev = cam_open_btl(bus, target, lun,
3023                                     O_RDWR, NULL);
3024                         } else {
3025                                 char name[30];
3026
3027                                 if (cam_get_device(io_opts[i].dev_name, name,
3028                                                    sizeof name, &unit) == -1) {
3029                                         warnx("%s", cam_errbuf);
3030                                         error = 1;
3031                                         goto bailout;
3032                                 }
3033                                 new_cam_dev = cam_open_spec_device(name, unit,
3034                                     O_RDWR, NULL);
3035                         }
3036
3037                         if (new_cam_dev == NULL) {
3038                                 warnx("%s", cam_errbuf);
3039                                 error = 1;
3040                                 goto bailout;
3041                         }
3042
3043                         devs[i] = camdd_probe_pass(new_cam_dev,
3044                             /*io_opts*/ &io_opts[i],
3045                             CAMDD_ARG_ERR_RECOVER, 
3046                             /*probe_retry_count*/ 3,
3047                             /*probe_timeout*/ 5000,
3048                             /*io_retry_count*/ retry_count,
3049                             /*io_timeout*/ timeout);
3050                         if (devs[i] == NULL) {
3051                                 warn("Unable to probe device %s%u",
3052                                      new_cam_dev->device_name,
3053                                      new_cam_dev->dev_unit_num);
3054                                 error = 1;
3055                                 goto bailout;
3056                         }
3057                         break;
3058                 }
3059                 case CAMDD_DEV_FILE: {
3060                         int fd = -1;
3061
3062                         if (io_opts[i].dev_name[0] == '-') {
3063                                 if (io_opts[i].write_dev != 0)
3064                                         fd = STDOUT_FILENO;
3065                                 else
3066                                         fd = STDIN_FILENO;
3067                         } else {
3068                                 if (io_opts[i].write_dev != 0) {
3069                                         fd = open(io_opts[i].dev_name,
3070                                             O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3071                                 } else {
3072                                         fd = open(io_opts[i].dev_name,
3073                                             O_RDONLY);
3074                                 }
3075                         }
3076                         if (fd == -1) {
3077                                 warn("error opening file %s",
3078                                     io_opts[i].dev_name);
3079                                 error = 1;
3080                                 goto bailout;
3081                         }
3082
3083                         devs[i] = camdd_probe_file(fd, &io_opts[i],
3084                             retry_count, timeout);
3085                         if (devs[i] == NULL) {
3086                                 error = 1;
3087                                 goto bailout;
3088                         }
3089
3090                         break;
3091                 }
3092                 default:
3093                         warnx("Unknown device type %d (%s)",
3094                             io_opts[i].dev_type, io_opts[i].dev_name);
3095                         error = 1;
3096                         goto bailout;
3097                         break; /*NOTREACHED */
3098                 }
3099
3100                 devs[i]->write_dev = io_opts[i].write_dev;
3101
3102                 devs[i]->start_offset_bytes = io_opts[i].offset;
3103
3104                 if (max_io != 0) {
3105                         devs[i]->sector_io_limit =
3106                             (devs[i]->start_offset_bytes /
3107                             devs[i]->sector_size) +
3108                             (max_io / devs[i]->sector_size) - 1;
3109                         devs[i]->sector_io_limit =
3110                             (devs[i]->start_offset_bytes /
3111                             devs[i]->sector_size) +
3112                             (max_io / devs[i]->sector_size) - 1;
3113                 }
3114
3115                 devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3116                 devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3117         }
3118
3119         devs[0]->peer_dev = devs[1];
3120         devs[1]->peer_dev = devs[0];
3121         devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3122         devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3123
3124         sem_init(&camdd_sem, /*pshared*/ 0, 0);
3125
3126         signal(SIGINFO, camdd_sig_handler);
3127         signal(SIGINT, camdd_sig_handler);
3128
3129         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3130         if (error != 0) {
3131                 warn("Unable to get start time");
3132                 goto bailout;
3133         }
3134
3135         for (i = 0; i < num_io_opts; i++) {
3136                 error = pthread_create(&threads[i], NULL, camdd_worker,
3137                                        (void *)devs[i]);
3138                 if (error != 0) {
3139                         warnc(error, "pthread_create() failed");
3140                         goto bailout;
3141                 }
3142         }
3143
3144         for (;;) {
3145                 if ((sem_wait(&camdd_sem) == -1)
3146                  || (need_exit != 0)) {
3147                         struct kevent ke;
3148
3149                         for (i = 0; i < num_io_opts; i++) {
3150                                 EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3151                                     EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3152
3153                                 devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3154
3155                                 error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3156                                                 NULL);
3157                                 if (error == -1)
3158                                         warn("%s: unable to wake up thread",
3159                                             __func__);
3160                                 error = 0;
3161                         }
3162                         break;
3163                 } else if (need_status != 0) {
3164                         camdd_print_status(devs[0], devs[1], &start_time);
3165                         need_status = 0;
3166                 }
3167         } 
3168         for (i = 0; i < num_io_opts; i++) {
3169                 pthread_join(threads[i], NULL);
3170         }
3171
3172         camdd_print_status(devs[0], devs[1], &start_time);
3173
3174 bailout:
3175
3176         for (i = 0; i < num_io_opts; i++)
3177                 camdd_free_dev(devs[i]);
3178
3179         return (error + error_exit);
3180 }
3181
3182 void
3183 usage(void)
3184 {
3185         fprintf(stderr,
3186 "usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3187 "              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3188 "              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3189 "              <-i|-o file=/dev/nsa0,bs=512K>\n"
3190 "              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3191 "Option description\n"
3192 "-i <arg=val>  Specify input device/file and parameters\n"
3193 "-o <arg=val>  Specify output device/file and parameters\n"
3194 "Input and Output parameters\n"
3195 "pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3196 "file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3197 "              or - for stdin/stdout\n"
3198 "bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3199 "offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3200 "              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3201 "depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3202 "mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3203 "Optional arguments\n"
3204 "-C retry_cnt  Specify a retry count for pass(4) devices\n"
3205 "-E            Enable CAM error recovery for pass(4) devices\n"
3206 "-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3207 "              using K, G, M, etc. suffixes\n"
3208 "-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3209 "-v            Enable verbose error recovery\n"
3210 "-h            Print this message\n");
3211 }
3212
3213
3214 int
3215 camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3216 {
3217         char *tmpstr, *tmpstr2;
3218         char *orig_tmpstr = NULL;
3219         int retval = 0;
3220
3221         io_opts->write_dev = is_write;
3222
3223         tmpstr = strdup(args);
3224         if (tmpstr == NULL) {
3225                 warn("strdup failed");
3226                 retval = 1;
3227                 goto bailout;
3228         }
3229         orig_tmpstr = tmpstr;
3230         while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3231                 char *name, *value;
3232
3233                 /*
3234                  * If the user creates an empty parameter by putting in two
3235                  * commas, skip over it and look for the next field.
3236                  */
3237                 if (*tmpstr2 == '\0')
3238                         continue;
3239
3240                 name = strsep(&tmpstr2, "=");
3241                 if (*name == '\0') {
3242                         warnx("Got empty I/O parameter name");
3243                         retval = 1;
3244                         goto bailout;
3245                 }
3246                 value = strsep(&tmpstr2, "=");
3247                 if ((value == NULL)
3248                  || (*value == '\0')) {
3249                         warnx("Empty I/O parameter value for %s", name);
3250                         retval = 1;
3251                         goto bailout;
3252                 }
3253                 if (strncasecmp(name, "file", 4) == 0) {
3254                         io_opts->dev_type = CAMDD_DEV_FILE;
3255                         io_opts->dev_name = strdup(value);
3256                         if (io_opts->dev_name == NULL) {
3257                                 warn("Error allocating memory");
3258                                 retval = 1;
3259                                 goto bailout;
3260                         }
3261                 } else if (strncasecmp(name, "pass", 4) == 0) {
3262                         io_opts->dev_type = CAMDD_DEV_PASS;
3263                         io_opts->dev_name = strdup(value);
3264                         if (io_opts->dev_name == NULL) {
3265                                 warn("Error allocating memory");
3266                                 retval = 1;
3267                                 goto bailout;
3268                         }
3269                 } else if ((strncasecmp(name, "bs", 2) == 0)
3270                         || (strncasecmp(name, "blocksize", 9) == 0)) {
3271                         retval = expand_number(value, &io_opts->blocksize);
3272                         if (retval == -1) {
3273                                 warn("expand_number(3) failed on %s=%s", name,
3274                                     value);
3275                                 retval = 1;
3276                                 goto bailout;
3277                         }
3278                 } else if (strncasecmp(name, "depth", 5) == 0) {
3279                         char *endptr;
3280
3281                         io_opts->queue_depth = strtoull(value, &endptr, 0);
3282                         if (*endptr != '\0') {
3283                                 warnx("invalid queue depth %s", value);
3284                                 retval = 1;
3285                                 goto bailout;
3286                         }
3287                 } else if (strncasecmp(name, "mcs", 3) == 0) {
3288                         char *endptr;
3289
3290                         io_opts->min_cmd_size = strtol(value, &endptr, 0);
3291                         if ((*endptr != '\0')
3292                          || ((io_opts->min_cmd_size > 16)
3293                           || (io_opts->min_cmd_size < 0))) {
3294                                 warnx("invalid minimum cmd size %s", value);
3295                                 retval = 1;
3296                                 goto bailout;
3297                         }
3298                 } else if (strncasecmp(name, "offset", 6) == 0) {
3299                         retval = expand_number(value, &io_opts->offset);
3300                         if (retval == -1) {
3301                                 warn("expand_number(3) failed on %s=%s", name,
3302                                     value);
3303                                 retval = 1;
3304                                 goto bailout;
3305                         }
3306                 } else if (strncasecmp(name, "debug", 5) == 0) {
3307                         char *endptr;
3308
3309                         io_opts->debug = strtoull(value, &endptr, 0);
3310                         if (*endptr != '\0') {
3311                                 warnx("invalid debug level %s", value);
3312                                 retval = 1;
3313                                 goto bailout;
3314                         }
3315                 } else {
3316                         warnx("Unrecognized parameter %s=%s", name, value);
3317                 }
3318         }
3319 bailout:
3320         free(orig_tmpstr);
3321
3322         return (retval);
3323 }
3324
3325 int
3326 main(int argc, char **argv)
3327 {
3328         int c;
3329         camdd_argmask arglist = CAMDD_ARG_NONE;
3330         int timeout = 0, retry_count = 1;
3331         int error = 0;
3332         uint64_t max_io = 0;
3333         struct camdd_io_opts *opt_list = NULL;
3334
3335         if (argc == 1) {
3336                 usage();
3337                 exit(1);
3338         }
3339
3340         opt_list = calloc(2, sizeof(struct camdd_io_opts));
3341         if (opt_list == NULL) {
3342                 warn("Unable to allocate option list");
3343                 error = 1;
3344                 goto bailout;
3345         }
3346
3347         while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3348                 switch (c) {
3349                 case 'C':
3350                         retry_count = strtol(optarg, NULL, 0);
3351                         if (retry_count < 0)
3352                                 errx(1, "retry count %d is < 0",
3353                                      retry_count);
3354                         arglist |= CAMDD_ARG_RETRIES;
3355                         break;
3356                 case 'E':
3357                         arglist |= CAMDD_ARG_ERR_RECOVER;
3358                         break;
3359                 case 'i':
3360                 case 'o':
3361                         if (((c == 'i')
3362                           && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3363                          || ((c == 'o')
3364                           && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3365                                 errx(1, "Only one input and output path "
3366                                     "allowed");
3367                         }
3368                         error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3369                             (c == 'o') ? &opt_list[1] : &opt_list[0]);
3370                         if (error != 0)
3371                                 goto bailout;
3372                         break;
3373                 case 'm':
3374                         error = expand_number(optarg, &max_io);
3375                         if (error == -1) {
3376                                 warn("invalid maximum I/O amount %s", optarg);
3377                                 error = 1;
3378                                 goto bailout;
3379                         }
3380                         break;
3381                 case 't':
3382                         timeout = strtol(optarg, NULL, 0);
3383                         if (timeout < 0)
3384                                 errx(1, "invalid timeout %d", timeout);
3385                         /* Convert the timeout from seconds to ms */
3386                         timeout *= 1000;
3387                         arglist |= CAMDD_ARG_TIMEOUT;
3388                         break;
3389                 case 'v':
3390                         arglist |= CAMDD_ARG_VERBOSE;
3391                         break;
3392                 case 'h':
3393                 default:
3394                         usage();
3395                         exit(1);
3396                         break; /*NOTREACHED*/
3397                 }
3398         }
3399
3400         if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3401          || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3402                 errx(1, "Must specify both -i and -o");
3403
3404         /*
3405          * Set the timeout if the user hasn't specified one.
3406          */
3407         if (timeout == 0)
3408                 timeout = CAMDD_PASS_RW_TIMEOUT;
3409
3410         error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3411
3412 bailout:
3413         free(opt_list);
3414
3415         exit(error);
3416 }