]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - cddl/contrib/opensolaris/lib/libzpool/common/taskq.c
MFC r209962, r211970-r211972, r212050, r212605, r212611
[FreeBSD/stable/8.git] / cddl / contrib / opensolaris / lib / libzpool / common / taskq.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 #include <sys/zfs_context.h>
27
28 int taskq_now;
29 taskq_t *system_taskq;
30
31 typedef struct task {
32         struct task     *task_next;
33         struct task     *task_prev;
34         task_func_t     *task_func;
35         void            *task_arg;
36 } task_t;
37
38 #define TASKQ_ACTIVE    0x00010000
39
40 struct taskq {
41         kmutex_t        tq_lock;
42         krwlock_t       tq_threadlock;
43         kcondvar_t      tq_dispatch_cv;
44         kcondvar_t      tq_wait_cv;
45         thread_t        *tq_threadlist;
46         int             tq_flags;
47         int             tq_active;
48         int             tq_nthreads;
49         int             tq_nalloc;
50         int             tq_minalloc;
51         int             tq_maxalloc;
52         task_t          *tq_freelist;
53         task_t          tq_task;
54 };
55
56 static task_t *
57 task_alloc(taskq_t *tq, int tqflags)
58 {
59         task_t *t;
60
61         if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
62                 tq->tq_freelist = t->task_next;
63         } else {
64                 mutex_exit(&tq->tq_lock);
65                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
66                         if (!(tqflags & KM_SLEEP)) {
67                                 mutex_enter(&tq->tq_lock);
68                                 return (NULL);
69                         }
70                         /*
71                          * We don't want to exceed tq_maxalloc, but we can't
72                          * wait for other tasks to complete (and thus free up
73                          * task structures) without risking deadlock with
74                          * the caller.  So, we just delay for one second
75                          * to throttle the allocation rate.
76                          */
77                         delay(hz);
78                 }
79                 t = kmem_alloc(sizeof (task_t), tqflags);
80                 mutex_enter(&tq->tq_lock);
81                 if (t != NULL)
82                         tq->tq_nalloc++;
83         }
84         return (t);
85 }
86
87 static void
88 task_free(taskq_t *tq, task_t *t)
89 {
90         if (tq->tq_nalloc <= tq->tq_minalloc) {
91                 t->task_next = tq->tq_freelist;
92                 tq->tq_freelist = t;
93         } else {
94                 tq->tq_nalloc--;
95                 mutex_exit(&tq->tq_lock);
96                 kmem_free(t, sizeof (task_t));
97                 mutex_enter(&tq->tq_lock);
98         }
99 }
100
101 taskqid_t
102 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
103 {
104         task_t *t;
105
106         if (taskq_now) {
107                 func(arg);
108                 return (1);
109         }
110
111         mutex_enter(&tq->tq_lock);
112         ASSERT(tq->tq_flags & TASKQ_ACTIVE);
113         if ((t = task_alloc(tq, tqflags)) == NULL) {
114                 mutex_exit(&tq->tq_lock);
115                 return (0);
116         }
117         t->task_next = &tq->tq_task;
118         t->task_prev = tq->tq_task.task_prev;
119         t->task_next->task_prev = t;
120         t->task_prev->task_next = t;
121         t->task_func = func;
122         t->task_arg = arg;
123         cv_signal(&tq->tq_dispatch_cv);
124         mutex_exit(&tq->tq_lock);
125         return (1);
126 }
127
128 void
129 taskq_wait(taskq_t *tq)
130 {
131         mutex_enter(&tq->tq_lock);
132         while (tq->tq_task.task_next != &tq->tq_task || tq->tq_active != 0)
133                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
134         mutex_exit(&tq->tq_lock);
135 }
136
137 static void *
138 taskq_thread(void *arg)
139 {
140         taskq_t *tq = arg;
141         task_t *t;
142
143         mutex_enter(&tq->tq_lock);
144         while (tq->tq_flags & TASKQ_ACTIVE) {
145                 if ((t = tq->tq_task.task_next) == &tq->tq_task) {
146                         if (--tq->tq_active == 0)
147                                 cv_broadcast(&tq->tq_wait_cv);
148                         cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
149                         tq->tq_active++;
150                         continue;
151                 }
152                 t->task_prev->task_next = t->task_next;
153                 t->task_next->task_prev = t->task_prev;
154                 mutex_exit(&tq->tq_lock);
155
156                 rw_enter(&tq->tq_threadlock, RW_READER);
157                 t->task_func(t->task_arg);
158                 rw_exit(&tq->tq_threadlock);
159
160                 mutex_enter(&tq->tq_lock);
161                 task_free(tq, t);
162         }
163         tq->tq_nthreads--;
164         cv_broadcast(&tq->tq_wait_cv);
165         mutex_exit(&tq->tq_lock);
166         return (NULL);
167 }
168
169 /*ARGSUSED*/
170 taskq_t *
171 taskq_create(const char *name, int nthreads, pri_t pri,
172         int minalloc, int maxalloc, uint_t flags)
173 {
174         taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
175         int t;
176
177         if (flags & TASKQ_THREADS_CPU_PCT) {
178                 int pct;
179                 ASSERT3S(nthreads, >=, 0);
180                 ASSERT3S(nthreads, <=, 100);
181                 pct = MIN(nthreads, 100);
182                 pct = MAX(pct, 0);
183
184                 nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
185                 nthreads = MAX(nthreads, 1);    /* need at least 1 thread */
186         } else {
187                 ASSERT3S(nthreads, >=, 1);
188         }
189
190         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
191         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
192         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
193         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
194         tq->tq_flags = flags | TASKQ_ACTIVE;
195         tq->tq_active = nthreads;
196         tq->tq_nthreads = nthreads;
197         tq->tq_minalloc = minalloc;
198         tq->tq_maxalloc = maxalloc;
199         tq->tq_task.task_next = &tq->tq_task;
200         tq->tq_task.task_prev = &tq->tq_task;
201         tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
202
203         if (flags & TASKQ_PREPOPULATE) {
204                 mutex_enter(&tq->tq_lock);
205                 while (minalloc-- > 0)
206                         task_free(tq, task_alloc(tq, KM_SLEEP));
207                 mutex_exit(&tq->tq_lock);
208         }
209
210         for (t = 0; t < nthreads; t++)
211                 (void) thr_create(0, 0, taskq_thread,
212                     tq, THR_BOUND, &tq->tq_threadlist[t]);
213
214         return (tq);
215 }
216
217 void
218 taskq_destroy(taskq_t *tq)
219 {
220         int t;
221         int nthreads = tq->tq_nthreads;
222
223         taskq_wait(tq);
224
225         mutex_enter(&tq->tq_lock);
226
227         tq->tq_flags &= ~TASKQ_ACTIVE;
228         cv_broadcast(&tq->tq_dispatch_cv);
229
230         while (tq->tq_nthreads != 0)
231                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
232
233         tq->tq_minalloc = 0;
234         while (tq->tq_nalloc != 0) {
235                 ASSERT(tq->tq_freelist != NULL);
236                 task_free(tq, task_alloc(tq, KM_SLEEP));
237         }
238
239         mutex_exit(&tq->tq_lock);
240
241         for (t = 0; t < nthreads; t++)
242                 (void) thr_join(tq->tq_threadlist[t], NULL, NULL);
243
244         kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
245
246         rw_destroy(&tq->tq_threadlock);
247         mutex_destroy(&tq->tq_lock);
248         cv_destroy(&tq->tq_dispatch_cv);
249         cv_destroy(&tq->tq_wait_cv);
250
251         kmem_free(tq, sizeof (taskq_t));
252 }
253
254 int
255 taskq_member(taskq_t *tq, void *t)
256 {
257         int i;
258
259         if (taskq_now)
260                 return (1);
261
262         for (i = 0; i < tq->tq_nthreads; i++)
263                 if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
264                         return (1);
265
266         return (0);
267 }
268
269 void
270 system_taskq_init(void)
271 {
272         system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
273             TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
274 }