]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Merge ZFS feature flags support and related bugfixes:
[FreeBSD/stable/8.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 SYSCTL_DECL(_vfs_zfs);
47 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
48
49 /*
50  * Virtual device management.
51  */
52
53 static vdev_ops_t *vdev_ops_table[] = {
54         &vdev_root_ops,
55         &vdev_raidz_ops,
56         &vdev_mirror_ops,
57         &vdev_replacing_ops,
58         &vdev_spare_ops,
59 #ifdef _KERNEL
60         &vdev_geom_ops,
61 #else
62         &vdev_disk_ops,
63 #endif
64         &vdev_file_ops,
65         &vdev_missing_ops,
66         &vdev_hole_ops,
67         NULL
68 };
69
70
71 /*
72  * Given a vdev type, return the appropriate ops vector.
73  */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77         vdev_ops_t *ops, **opspp;
78
79         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80                 if (strcmp(ops->vdev_op_type, type) == 0)
81                         break;
82
83         return (ops);
84 }
85
86 /*
87  * Default asize function: return the MAX of psize with the asize of
88  * all children.  This is what's used by anything other than RAID-Z.
89  */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94         uint64_t csize;
95
96         for (int c = 0; c < vd->vdev_children; c++) {
97                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
98                 asize = MAX(asize, csize);
99         }
100
101         return (asize);
102 }
103
104 /*
105  * Get the minimum allocatable size. We define the allocatable size as
106  * the vdev's asize rounded to the nearest metaslab. This allows us to
107  * replace or attach devices which don't have the same physical size but
108  * can still satisfy the same number of allocations.
109  */
110 uint64_t
111 vdev_get_min_asize(vdev_t *vd)
112 {
113         vdev_t *pvd = vd->vdev_parent;
114
115         /*
116          * If our parent is NULL (inactive spare or cache) or is the root,
117          * just return our own asize.
118          */
119         if (pvd == NULL)
120                 return (vd->vdev_asize);
121
122         /*
123          * The top-level vdev just returns the allocatable size rounded
124          * to the nearest metaslab.
125          */
126         if (vd == vd->vdev_top)
127                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
128
129         /*
130          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
131          * so each child must provide at least 1/Nth of its asize.
132          */
133         if (pvd->vdev_ops == &vdev_raidz_ops)
134                 return (pvd->vdev_min_asize / pvd->vdev_children);
135
136         return (pvd->vdev_min_asize);
137 }
138
139 void
140 vdev_set_min_asize(vdev_t *vd)
141 {
142         vd->vdev_min_asize = vdev_get_min_asize(vd);
143
144         for (int c = 0; c < vd->vdev_children; c++)
145                 vdev_set_min_asize(vd->vdev_child[c]);
146 }
147
148 vdev_t *
149 vdev_lookup_top(spa_t *spa, uint64_t vdev)
150 {
151         vdev_t *rvd = spa->spa_root_vdev;
152
153         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
154
155         if (vdev < rvd->vdev_children) {
156                 ASSERT(rvd->vdev_child[vdev] != NULL);
157                 return (rvd->vdev_child[vdev]);
158         }
159
160         return (NULL);
161 }
162
163 vdev_t *
164 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
165 {
166         vdev_t *mvd;
167
168         if (vd->vdev_guid == guid)
169                 return (vd);
170
171         for (int c = 0; c < vd->vdev_children; c++)
172                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
173                     NULL)
174                         return (mvd);
175
176         return (NULL);
177 }
178
179 void
180 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
181 {
182         size_t oldsize, newsize;
183         uint64_t id = cvd->vdev_id;
184         vdev_t **newchild;
185
186         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
187         ASSERT(cvd->vdev_parent == NULL);
188
189         cvd->vdev_parent = pvd;
190
191         if (pvd == NULL)
192                 return;
193
194         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
195
196         oldsize = pvd->vdev_children * sizeof (vdev_t *);
197         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
198         newsize = pvd->vdev_children * sizeof (vdev_t *);
199
200         newchild = kmem_zalloc(newsize, KM_SLEEP);
201         if (pvd->vdev_child != NULL) {
202                 bcopy(pvd->vdev_child, newchild, oldsize);
203                 kmem_free(pvd->vdev_child, oldsize);
204         }
205
206         pvd->vdev_child = newchild;
207         pvd->vdev_child[id] = cvd;
208
209         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
210         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
211
212         /*
213          * Walk up all ancestors to update guid sum.
214          */
215         for (; pvd != NULL; pvd = pvd->vdev_parent)
216                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
217 }
218
219 void
220 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
221 {
222         int c;
223         uint_t id = cvd->vdev_id;
224
225         ASSERT(cvd->vdev_parent == pvd);
226
227         if (pvd == NULL)
228                 return;
229
230         ASSERT(id < pvd->vdev_children);
231         ASSERT(pvd->vdev_child[id] == cvd);
232
233         pvd->vdev_child[id] = NULL;
234         cvd->vdev_parent = NULL;
235
236         for (c = 0; c < pvd->vdev_children; c++)
237                 if (pvd->vdev_child[c])
238                         break;
239
240         if (c == pvd->vdev_children) {
241                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
242                 pvd->vdev_child = NULL;
243                 pvd->vdev_children = 0;
244         }
245
246         /*
247          * Walk up all ancestors to update guid sum.
248          */
249         for (; pvd != NULL; pvd = pvd->vdev_parent)
250                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
251 }
252
253 /*
254  * Remove any holes in the child array.
255  */
256 void
257 vdev_compact_children(vdev_t *pvd)
258 {
259         vdev_t **newchild, *cvd;
260         int oldc = pvd->vdev_children;
261         int newc;
262
263         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
264
265         for (int c = newc = 0; c < oldc; c++)
266                 if (pvd->vdev_child[c])
267                         newc++;
268
269         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
270
271         for (int c = newc = 0; c < oldc; c++) {
272                 if ((cvd = pvd->vdev_child[c]) != NULL) {
273                         newchild[newc] = cvd;
274                         cvd->vdev_id = newc++;
275                 }
276         }
277
278         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
279         pvd->vdev_child = newchild;
280         pvd->vdev_children = newc;
281 }
282
283 /*
284  * Allocate and minimally initialize a vdev_t.
285  */
286 vdev_t *
287 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
288 {
289         vdev_t *vd;
290
291         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
292
293         if (spa->spa_root_vdev == NULL) {
294                 ASSERT(ops == &vdev_root_ops);
295                 spa->spa_root_vdev = vd;
296                 spa->spa_load_guid = spa_generate_guid(NULL);
297         }
298
299         if (guid == 0 && ops != &vdev_hole_ops) {
300                 if (spa->spa_root_vdev == vd) {
301                         /*
302                          * The root vdev's guid will also be the pool guid,
303                          * which must be unique among all pools.
304                          */
305                         guid = spa_generate_guid(NULL);
306                 } else {
307                         /*
308                          * Any other vdev's guid must be unique within the pool.
309                          */
310                         guid = spa_generate_guid(spa);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321         vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
325         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
326         for (int t = 0; t < DTL_TYPES; t++) {
327                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
328                     &vd->vdev_dtl_lock);
329         }
330         txg_list_create(&vd->vdev_ms_list,
331             offsetof(struct metaslab, ms_txg_node));
332         txg_list_create(&vd->vdev_dtl_list,
333             offsetof(struct vdev, vdev_dtl_node));
334         vd->vdev_stat.vs_timestamp = gethrtime();
335         vdev_queue_init(vd);
336         vdev_cache_init(vd);
337
338         return (vd);
339 }
340
341 /*
342  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
343  * creating a new vdev or loading an existing one - the behavior is slightly
344  * different for each case.
345  */
346 int
347 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
348     int alloctype)
349 {
350         vdev_ops_t *ops;
351         char *type;
352         uint64_t guid = 0, islog, nparity;
353         vdev_t *vd;
354
355         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
356
357         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
358                 return (EINVAL);
359
360         if ((ops = vdev_getops(type)) == NULL)
361                 return (EINVAL);
362
363         /*
364          * If this is a load, get the vdev guid from the nvlist.
365          * Otherwise, vdev_alloc_common() will generate one for us.
366          */
367         if (alloctype == VDEV_ALLOC_LOAD) {
368                 uint64_t label_id;
369
370                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
371                     label_id != id)
372                         return (EINVAL);
373
374                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375                         return (EINVAL);
376         } else if (alloctype == VDEV_ALLOC_SPARE) {
377                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378                         return (EINVAL);
379         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
383                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384                         return (EINVAL);
385         }
386
387         /*
388          * The first allocated vdev must be of type 'root'.
389          */
390         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
391                 return (EINVAL);
392
393         /*
394          * Determine whether we're a log vdev.
395          */
396         islog = 0;
397         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
398         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
399                 return (ENOTSUP);
400
401         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
402                 return (ENOTSUP);
403
404         /*
405          * Set the nparity property for RAID-Z vdevs.
406          */
407         nparity = -1ULL;
408         if (ops == &vdev_raidz_ops) {
409                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
410                     &nparity) == 0) {
411                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
412                                 return (EINVAL);
413                         /*
414                          * Previous versions could only support 1 or 2 parity
415                          * device.
416                          */
417                         if (nparity > 1 &&
418                             spa_version(spa) < SPA_VERSION_RAIDZ2)
419                                 return (ENOTSUP);
420                         if (nparity > 2 &&
421                             spa_version(spa) < SPA_VERSION_RAIDZ3)
422                                 return (ENOTSUP);
423                 } else {
424                         /*
425                          * We require the parity to be specified for SPAs that
426                          * support multiple parity levels.
427                          */
428                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
429                                 return (EINVAL);
430                         /*
431                          * Otherwise, we default to 1 parity device for RAID-Z.
432                          */
433                         nparity = 1;
434                 }
435         } else {
436                 nparity = 0;
437         }
438         ASSERT(nparity != -1ULL);
439
440         vd = vdev_alloc_common(spa, id, guid, ops);
441
442         vd->vdev_islog = islog;
443         vd->vdev_nparity = nparity;
444
445         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
446                 vd->vdev_path = spa_strdup(vd->vdev_path);
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
448                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
450             &vd->vdev_physpath) == 0)
451                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
452         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
453                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
454
455         /*
456          * Set the whole_disk property.  If it's not specified, leave the value
457          * as -1.
458          */
459         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
460             &vd->vdev_wholedisk) != 0)
461                 vd->vdev_wholedisk = -1ULL;
462
463         /*
464          * Look for the 'not present' flag.  This will only be set if the device
465          * was not present at the time of import.
466          */
467         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
468             &vd->vdev_not_present);
469
470         /*
471          * Get the alignment requirement.
472          */
473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
474
475         /*
476          * Retrieve the vdev creation time.
477          */
478         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
479             &vd->vdev_crtxg);
480
481         /*
482          * If we're a top-level vdev, try to load the allocation parameters.
483          */
484         if (parent && !parent->vdev_parent &&
485             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
486                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487                     &vd->vdev_ms_array);
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489                     &vd->vdev_ms_shift);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491                     &vd->vdev_asize);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
493                     &vd->vdev_removing);
494         }
495
496         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
497                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
498                     alloctype == VDEV_ALLOC_ADD ||
499                     alloctype == VDEV_ALLOC_SPLIT ||
500                     alloctype == VDEV_ALLOC_ROOTPOOL);
501                 vd->vdev_mg = metaslab_group_create(islog ?
502                     spa_log_class(spa) : spa_normal_class(spa), vd);
503         }
504
505         /*
506          * If we're a leaf vdev, try to load the DTL object and other state.
507          */
508         if (vd->vdev_ops->vdev_op_leaf &&
509             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
510             alloctype == VDEV_ALLOC_ROOTPOOL)) {
511                 if (alloctype == VDEV_ALLOC_LOAD) {
512                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
513                             &vd->vdev_dtl_smo.smo_object);
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
515                             &vd->vdev_unspare);
516                 }
517
518                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
519                         uint64_t spare = 0;
520
521                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
522                             &spare) == 0 && spare)
523                                 spa_spare_add(vd);
524                 }
525
526                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
527                     &vd->vdev_offline);
528
529                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
530                     &vd->vdev_resilvering);
531
532                 /*
533                  * When importing a pool, we want to ignore the persistent fault
534                  * state, as the diagnosis made on another system may not be
535                  * valid in the current context.  Local vdevs will
536                  * remain in the faulted state.
537                  */
538                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
539                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
540                             &vd->vdev_faulted);
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
542                             &vd->vdev_degraded);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
544                             &vd->vdev_removed);
545
546                         if (vd->vdev_faulted || vd->vdev_degraded) {
547                                 char *aux;
548
549                                 vd->vdev_label_aux =
550                                     VDEV_AUX_ERR_EXCEEDED;
551                                 if (nvlist_lookup_string(nv,
552                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
553                                     strcmp(aux, "external") == 0)
554                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555                         }
556                 }
557         }
558
559         /*
560          * Add ourselves to the parent's list of children.
561          */
562         vdev_add_child(parent, vd);
563
564         *vdp = vd;
565
566         return (0);
567 }
568
569 void
570 vdev_free(vdev_t *vd)
571 {
572         spa_t *spa = vd->vdev_spa;
573
574         /*
575          * vdev_free() implies closing the vdev first.  This is simpler than
576          * trying to ensure complicated semantics for all callers.
577          */
578         vdev_close(vd);
579
580         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
581         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
582
583         /*
584          * Free all children.
585          */
586         for (int c = 0; c < vd->vdev_children; c++)
587                 vdev_free(vd->vdev_child[c]);
588
589         ASSERT(vd->vdev_child == NULL);
590         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
591
592         /*
593          * Discard allocation state.
594          */
595         if (vd->vdev_mg != NULL) {
596                 vdev_metaslab_fini(vd);
597                 metaslab_group_destroy(vd->vdev_mg);
598         }
599
600         ASSERT0(vd->vdev_stat.vs_space);
601         ASSERT0(vd->vdev_stat.vs_dspace);
602         ASSERT0(vd->vdev_stat.vs_alloc);
603
604         /*
605          * Remove this vdev from its parent's child list.
606          */
607         vdev_remove_child(vd->vdev_parent, vd);
608
609         ASSERT(vd->vdev_parent == NULL);
610
611         /*
612          * Clean up vdev structure.
613          */
614         vdev_queue_fini(vd);
615         vdev_cache_fini(vd);
616
617         if (vd->vdev_path)
618                 spa_strfree(vd->vdev_path);
619         if (vd->vdev_devid)
620                 spa_strfree(vd->vdev_devid);
621         if (vd->vdev_physpath)
622                 spa_strfree(vd->vdev_physpath);
623         if (vd->vdev_fru)
624                 spa_strfree(vd->vdev_fru);
625
626         if (vd->vdev_isspare)
627                 spa_spare_remove(vd);
628         if (vd->vdev_isl2cache)
629                 spa_l2cache_remove(vd);
630
631         txg_list_destroy(&vd->vdev_ms_list);
632         txg_list_destroy(&vd->vdev_dtl_list);
633
634         mutex_enter(&vd->vdev_dtl_lock);
635         for (int t = 0; t < DTL_TYPES; t++) {
636                 space_map_unload(&vd->vdev_dtl[t]);
637                 space_map_destroy(&vd->vdev_dtl[t]);
638         }
639         mutex_exit(&vd->vdev_dtl_lock);
640
641         mutex_destroy(&vd->vdev_dtl_lock);
642         mutex_destroy(&vd->vdev_stat_lock);
643         mutex_destroy(&vd->vdev_probe_lock);
644
645         if (vd == spa->spa_root_vdev)
646                 spa->spa_root_vdev = NULL;
647
648         kmem_free(vd, sizeof (vdev_t));
649 }
650
651 /*
652  * Transfer top-level vdev state from svd to tvd.
653  */
654 static void
655 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
656 {
657         spa_t *spa = svd->vdev_spa;
658         metaslab_t *msp;
659         vdev_t *vd;
660         int t;
661
662         ASSERT(tvd == tvd->vdev_top);
663
664         tvd->vdev_ms_array = svd->vdev_ms_array;
665         tvd->vdev_ms_shift = svd->vdev_ms_shift;
666         tvd->vdev_ms_count = svd->vdev_ms_count;
667
668         svd->vdev_ms_array = 0;
669         svd->vdev_ms_shift = 0;
670         svd->vdev_ms_count = 0;
671
672         if (tvd->vdev_mg)
673                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
674         tvd->vdev_mg = svd->vdev_mg;
675         tvd->vdev_ms = svd->vdev_ms;
676
677         svd->vdev_mg = NULL;
678         svd->vdev_ms = NULL;
679
680         if (tvd->vdev_mg != NULL)
681                 tvd->vdev_mg->mg_vd = tvd;
682
683         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
684         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
685         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
686
687         svd->vdev_stat.vs_alloc = 0;
688         svd->vdev_stat.vs_space = 0;
689         svd->vdev_stat.vs_dspace = 0;
690
691         for (t = 0; t < TXG_SIZE; t++) {
692                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
693                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
694                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
695                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
696                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
697                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
698         }
699
700         if (list_link_active(&svd->vdev_config_dirty_node)) {
701                 vdev_config_clean(svd);
702                 vdev_config_dirty(tvd);
703         }
704
705         if (list_link_active(&svd->vdev_state_dirty_node)) {
706                 vdev_state_clean(svd);
707                 vdev_state_dirty(tvd);
708         }
709
710         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
711         svd->vdev_deflate_ratio = 0;
712
713         tvd->vdev_islog = svd->vdev_islog;
714         svd->vdev_islog = 0;
715 }
716
717 static void
718 vdev_top_update(vdev_t *tvd, vdev_t *vd)
719 {
720         if (vd == NULL)
721                 return;
722
723         vd->vdev_top = tvd;
724
725         for (int c = 0; c < vd->vdev_children; c++)
726                 vdev_top_update(tvd, vd->vdev_child[c]);
727 }
728
729 /*
730  * Add a mirror/replacing vdev above an existing vdev.
731  */
732 vdev_t *
733 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
734 {
735         spa_t *spa = cvd->vdev_spa;
736         vdev_t *pvd = cvd->vdev_parent;
737         vdev_t *mvd;
738
739         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
740
741         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
742
743         mvd->vdev_asize = cvd->vdev_asize;
744         mvd->vdev_min_asize = cvd->vdev_min_asize;
745         mvd->vdev_max_asize = cvd->vdev_max_asize;
746         mvd->vdev_ashift = cvd->vdev_ashift;
747         mvd->vdev_state = cvd->vdev_state;
748         mvd->vdev_crtxg = cvd->vdev_crtxg;
749
750         vdev_remove_child(pvd, cvd);
751         vdev_add_child(pvd, mvd);
752         cvd->vdev_id = mvd->vdev_children;
753         vdev_add_child(mvd, cvd);
754         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755
756         if (mvd == mvd->vdev_top)
757                 vdev_top_transfer(cvd, mvd);
758
759         return (mvd);
760 }
761
762 /*
763  * Remove a 1-way mirror/replacing vdev from the tree.
764  */
765 void
766 vdev_remove_parent(vdev_t *cvd)
767 {
768         vdev_t *mvd = cvd->vdev_parent;
769         vdev_t *pvd = mvd->vdev_parent;
770
771         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
772
773         ASSERT(mvd->vdev_children == 1);
774         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
775             mvd->vdev_ops == &vdev_replacing_ops ||
776             mvd->vdev_ops == &vdev_spare_ops);
777         cvd->vdev_ashift = mvd->vdev_ashift;
778
779         vdev_remove_child(mvd, cvd);
780         vdev_remove_child(pvd, mvd);
781
782         /*
783          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
784          * Otherwise, we could have detached an offline device, and when we
785          * go to import the pool we'll think we have two top-level vdevs,
786          * instead of a different version of the same top-level vdev.
787          */
788         if (mvd->vdev_top == mvd) {
789                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
790                 cvd->vdev_orig_guid = cvd->vdev_guid;
791                 cvd->vdev_guid += guid_delta;
792                 cvd->vdev_guid_sum += guid_delta;
793         }
794         cvd->vdev_id = mvd->vdev_id;
795         vdev_add_child(pvd, cvd);
796         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
797
798         if (cvd == cvd->vdev_top)
799                 vdev_top_transfer(mvd, cvd);
800
801         ASSERT(mvd->vdev_children == 0);
802         vdev_free(mvd);
803 }
804
805 int
806 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
807 {
808         spa_t *spa = vd->vdev_spa;
809         objset_t *mos = spa->spa_meta_objset;
810         uint64_t m;
811         uint64_t oldc = vd->vdev_ms_count;
812         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
813         metaslab_t **mspp;
814         int error;
815
816         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
817
818         /*
819          * This vdev is not being allocated from yet or is a hole.
820          */
821         if (vd->vdev_ms_shift == 0)
822                 return (0);
823
824         ASSERT(!vd->vdev_ishole);
825
826         /*
827          * Compute the raidz-deflation ratio.  Note, we hard-code
828          * in 128k (1 << 17) because it is the current "typical" blocksize.
829          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
830          * or we will inconsistently account for existing bp's.
831          */
832         vd->vdev_deflate_ratio = (1 << 17) /
833             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
834
835         ASSERT(oldc <= newc);
836
837         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
838
839         if (oldc != 0) {
840                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
841                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
842         }
843
844         vd->vdev_ms = mspp;
845         vd->vdev_ms_count = newc;
846
847         for (m = oldc; m < newc; m++) {
848                 space_map_obj_t smo = { 0, 0, 0 };
849                 if (txg == 0) {
850                         uint64_t object = 0;
851                         error = dmu_read(mos, vd->vdev_ms_array,
852                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
853                             DMU_READ_PREFETCH);
854                         if (error)
855                                 return (error);
856                         if (object != 0) {
857                                 dmu_buf_t *db;
858                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
859                                 if (error)
860                                         return (error);
861                                 ASSERT3U(db->db_size, >=, sizeof (smo));
862                                 bcopy(db->db_data, &smo, sizeof (smo));
863                                 ASSERT3U(smo.smo_object, ==, object);
864                                 dmu_buf_rele(db, FTAG);
865                         }
866                 }
867                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
868                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
869         }
870
871         if (txg == 0)
872                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
873
874         /*
875          * If the vdev is being removed we don't activate
876          * the metaslabs since we want to ensure that no new
877          * allocations are performed on this device.
878          */
879         if (oldc == 0 && !vd->vdev_removing)
880                 metaslab_group_activate(vd->vdev_mg);
881
882         if (txg == 0)
883                 spa_config_exit(spa, SCL_ALLOC, FTAG);
884
885         return (0);
886 }
887
888 void
889 vdev_metaslab_fini(vdev_t *vd)
890 {
891         uint64_t m;
892         uint64_t count = vd->vdev_ms_count;
893
894         if (vd->vdev_ms != NULL) {
895                 metaslab_group_passivate(vd->vdev_mg);
896                 for (m = 0; m < count; m++)
897                         if (vd->vdev_ms[m] != NULL)
898                                 metaslab_fini(vd->vdev_ms[m]);
899                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
900                 vd->vdev_ms = NULL;
901         }
902 }
903
904 typedef struct vdev_probe_stats {
905         boolean_t       vps_readable;
906         boolean_t       vps_writeable;
907         int             vps_flags;
908 } vdev_probe_stats_t;
909
910 static void
911 vdev_probe_done(zio_t *zio)
912 {
913         spa_t *spa = zio->io_spa;
914         vdev_t *vd = zio->io_vd;
915         vdev_probe_stats_t *vps = zio->io_private;
916
917         ASSERT(vd->vdev_probe_zio != NULL);
918
919         if (zio->io_type == ZIO_TYPE_READ) {
920                 if (zio->io_error == 0)
921                         vps->vps_readable = 1;
922                 if (zio->io_error == 0 && spa_writeable(spa)) {
923                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
924                             zio->io_offset, zio->io_size, zio->io_data,
925                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
926                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
927                 } else {
928                         zio_buf_free(zio->io_data, zio->io_size);
929                 }
930         } else if (zio->io_type == ZIO_TYPE_WRITE) {
931                 if (zio->io_error == 0)
932                         vps->vps_writeable = 1;
933                 zio_buf_free(zio->io_data, zio->io_size);
934         } else if (zio->io_type == ZIO_TYPE_NULL) {
935                 zio_t *pio;
936
937                 vd->vdev_cant_read |= !vps->vps_readable;
938                 vd->vdev_cant_write |= !vps->vps_writeable;
939
940                 if (vdev_readable(vd) &&
941                     (vdev_writeable(vd) || !spa_writeable(spa))) {
942                         zio->io_error = 0;
943                 } else {
944                         ASSERT(zio->io_error != 0);
945                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
946                             spa, vd, NULL, 0, 0);
947                         zio->io_error = ENXIO;
948                 }
949
950                 mutex_enter(&vd->vdev_probe_lock);
951                 ASSERT(vd->vdev_probe_zio == zio);
952                 vd->vdev_probe_zio = NULL;
953                 mutex_exit(&vd->vdev_probe_lock);
954
955                 while ((pio = zio_walk_parents(zio)) != NULL)
956                         if (!vdev_accessible(vd, pio))
957                                 pio->io_error = ENXIO;
958
959                 kmem_free(vps, sizeof (*vps));
960         }
961 }
962
963 /*
964  * Determine whether this device is accessible by reading and writing
965  * to several known locations: the pad regions of each vdev label
966  * but the first (which we leave alone in case it contains a VTOC).
967  */
968 zio_t *
969 vdev_probe(vdev_t *vd, zio_t *zio)
970 {
971         spa_t *spa = vd->vdev_spa;
972         vdev_probe_stats_t *vps = NULL;
973         zio_t *pio;
974
975         ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977         /*
978          * Don't probe the probe.
979          */
980         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981                 return (NULL);
982
983         /*
984          * To prevent 'probe storms' when a device fails, we create
985          * just one probe i/o at a time.  All zios that want to probe
986          * this vdev will become parents of the probe io.
987          */
988         mutex_enter(&vd->vdev_probe_lock);
989
990         if ((pio = vd->vdev_probe_zio) == NULL) {
991                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995                     ZIO_FLAG_TRYHARD;
996
997                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998                         /*
999                          * vdev_cant_read and vdev_cant_write can only
1000                          * transition from TRUE to FALSE when we have the
1001                          * SCL_ZIO lock as writer; otherwise they can only
1002                          * transition from FALSE to TRUE.  This ensures that
1003                          * any zio looking at these values can assume that
1004                          * failures persist for the life of the I/O.  That's
1005                          * important because when a device has intermittent
1006                          * connectivity problems, we want to ensure that
1007                          * they're ascribed to the device (ENXIO) and not
1008                          * the zio (EIO).
1009                          *
1010                          * Since we hold SCL_ZIO as writer here, clear both
1011                          * values so the probe can reevaluate from first
1012                          * principles.
1013                          */
1014                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015                         vd->vdev_cant_read = B_FALSE;
1016                         vd->vdev_cant_write = B_FALSE;
1017                 }
1018
1019                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020                     vdev_probe_done, vps,
1021                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023                 /*
1024                  * We can't change the vdev state in this context, so we
1025                  * kick off an async task to do it on our behalf.
1026                  */
1027                 if (zio != NULL) {
1028                         vd->vdev_probe_wanted = B_TRUE;
1029                         spa_async_request(spa, SPA_ASYNC_PROBE);
1030                 }
1031         }
1032
1033         if (zio != NULL)
1034                 zio_add_child(zio, pio);
1035
1036         mutex_exit(&vd->vdev_probe_lock);
1037
1038         if (vps == NULL) {
1039                 ASSERT(zio != NULL);
1040                 return (NULL);
1041         }
1042
1043         for (int l = 1; l < VDEV_LABELS; l++) {
1044                 zio_nowait(zio_read_phys(pio, vd,
1045                     vdev_label_offset(vd->vdev_psize, l,
1046                     offsetof(vdev_label_t, vl_pad2)),
1047                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050         }
1051
1052         if (zio == NULL)
1053                 return (pio);
1054
1055         zio_nowait(pio);
1056         return (NULL);
1057 }
1058
1059 static void
1060 vdev_open_child(void *arg)
1061 {
1062         vdev_t *vd = arg;
1063
1064         vd->vdev_open_thread = curthread;
1065         vd->vdev_open_error = vdev_open(vd);
1066         vd->vdev_open_thread = NULL;
1067 }
1068
1069 boolean_t
1070 vdev_uses_zvols(vdev_t *vd)
1071 {
1072         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1073             strlen(ZVOL_DIR)) == 0)
1074                 return (B_TRUE);
1075         for (int c = 0; c < vd->vdev_children; c++)
1076                 if (vdev_uses_zvols(vd->vdev_child[c]))
1077                         return (B_TRUE);
1078         return (B_FALSE);
1079 }
1080
1081 void
1082 vdev_open_children(vdev_t *vd)
1083 {
1084         taskq_t *tq;
1085         int children = vd->vdev_children;
1086
1087         /*
1088          * in order to handle pools on top of zvols, do the opens
1089          * in a single thread so that the same thread holds the
1090          * spa_namespace_lock
1091          */
1092         if (B_TRUE || vdev_uses_zvols(vd)) {
1093                 for (int c = 0; c < children; c++)
1094                         vd->vdev_child[c]->vdev_open_error =
1095                             vdev_open(vd->vdev_child[c]);
1096                 return;
1097         }
1098         tq = taskq_create("vdev_open", children, minclsyspri,
1099             children, children, TASKQ_PREPOPULATE);
1100
1101         for (int c = 0; c < children; c++)
1102                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1103                     TQ_SLEEP) != 0);
1104
1105         taskq_destroy(tq);
1106 }
1107
1108 /*
1109  * Prepare a virtual device for access.
1110  */
1111 int
1112 vdev_open(vdev_t *vd)
1113 {
1114         spa_t *spa = vd->vdev_spa;
1115         int error;
1116         uint64_t osize = 0;
1117         uint64_t max_osize = 0;
1118         uint64_t asize, max_asize, psize;
1119         uint64_t ashift = 0;
1120
1121         ASSERT(vd->vdev_open_thread == curthread ||
1122             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1123         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1124             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1125             vd->vdev_state == VDEV_STATE_OFFLINE);
1126
1127         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1128         vd->vdev_cant_read = B_FALSE;
1129         vd->vdev_cant_write = B_FALSE;
1130         vd->vdev_min_asize = vdev_get_min_asize(vd);
1131
1132         /*
1133          * If this vdev is not removed, check its fault status.  If it's
1134          * faulted, bail out of the open.
1135          */
1136         if (!vd->vdev_removed && vd->vdev_faulted) {
1137                 ASSERT(vd->vdev_children == 0);
1138                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1139                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1140                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1141                     vd->vdev_label_aux);
1142                 return (ENXIO);
1143         } else if (vd->vdev_offline) {
1144                 ASSERT(vd->vdev_children == 0);
1145                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1146                 return (ENXIO);
1147         }
1148
1149         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1150
1151         /*
1152          * Reset the vdev_reopening flag so that we actually close
1153          * the vdev on error.
1154          */
1155         vd->vdev_reopening = B_FALSE;
1156         if (zio_injection_enabled && error == 0)
1157                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1158
1159         if (error) {
1160                 if (vd->vdev_removed &&
1161                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1162                         vd->vdev_removed = B_FALSE;
1163
1164                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1165                     vd->vdev_stat.vs_aux);
1166                 return (error);
1167         }
1168
1169         vd->vdev_removed = B_FALSE;
1170
1171         /*
1172          * Recheck the faulted flag now that we have confirmed that
1173          * the vdev is accessible.  If we're faulted, bail.
1174          */
1175         if (vd->vdev_faulted) {
1176                 ASSERT(vd->vdev_children == 0);
1177                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1178                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1179                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1180                     vd->vdev_label_aux);
1181                 return (ENXIO);
1182         }
1183
1184         if (vd->vdev_degraded) {
1185                 ASSERT(vd->vdev_children == 0);
1186                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1187                     VDEV_AUX_ERR_EXCEEDED);
1188         } else {
1189                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1190         }
1191
1192         /*
1193          * For hole or missing vdevs we just return success.
1194          */
1195         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1196                 return (0);
1197
1198         for (int c = 0; c < vd->vdev_children; c++) {
1199                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1200                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1201                             VDEV_AUX_NONE);
1202                         break;
1203                 }
1204         }
1205
1206         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1207         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1208
1209         if (vd->vdev_children == 0) {
1210                 if (osize < SPA_MINDEVSIZE) {
1211                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1212                             VDEV_AUX_TOO_SMALL);
1213                         return (EOVERFLOW);
1214                 }
1215                 psize = osize;
1216                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1217                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1218                     VDEV_LABEL_END_SIZE);
1219         } else {
1220                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1221                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1222                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1223                             VDEV_AUX_TOO_SMALL);
1224                         return (EOVERFLOW);
1225                 }
1226                 psize = 0;
1227                 asize = osize;
1228                 max_asize = max_osize;
1229         }
1230
1231         vd->vdev_psize = psize;
1232
1233         /*
1234          * Make sure the allocatable size hasn't shrunk.
1235          */
1236         if (asize < vd->vdev_min_asize) {
1237                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238                     VDEV_AUX_BAD_LABEL);
1239                 return (EINVAL);
1240         }
1241
1242         if (vd->vdev_asize == 0) {
1243                 /*
1244                  * This is the first-ever open, so use the computed values.
1245                  * For testing purposes, a higher ashift can be requested.
1246                  */
1247                 vd->vdev_asize = asize;
1248                 vd->vdev_max_asize = max_asize;
1249                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1250         } else {
1251                 /*
1252                  * Make sure the alignment requirement hasn't increased.
1253                  */
1254                 if (ashift > vd->vdev_top->vdev_ashift) {
1255                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1256                             VDEV_AUX_BAD_LABEL);
1257                         return (EINVAL);
1258                 }
1259                 vd->vdev_max_asize = max_asize;
1260         }
1261
1262         /*
1263          * If all children are healthy and the asize has increased,
1264          * then we've experienced dynamic LUN growth.  If automatic
1265          * expansion is enabled then use the additional space.
1266          */
1267         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1268             (vd->vdev_expanding || spa->spa_autoexpand))
1269                 vd->vdev_asize = asize;
1270
1271         vdev_set_min_asize(vd);
1272
1273         /*
1274          * Ensure we can issue some IO before declaring the
1275          * vdev open for business.
1276          */
1277         if (vd->vdev_ops->vdev_op_leaf &&
1278             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1279                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1280                     VDEV_AUX_ERR_EXCEEDED);
1281                 return (error);
1282         }
1283
1284         /*
1285          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1286          * resilver.  But don't do this if we are doing a reopen for a scrub,
1287          * since this would just restart the scrub we are already doing.
1288          */
1289         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1290             vdev_resilver_needed(vd, NULL, NULL))
1291                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1292
1293         return (0);
1294 }
1295
1296 /*
1297  * Called once the vdevs are all opened, this routine validates the label
1298  * contents.  This needs to be done before vdev_load() so that we don't
1299  * inadvertently do repair I/Os to the wrong device.
1300  *
1301  * If 'strict' is false ignore the spa guid check. This is necessary because
1302  * if the machine crashed during a re-guid the new guid might have been written
1303  * to all of the vdev labels, but not the cached config. The strict check
1304  * will be performed when the pool is opened again using the mos config.
1305  *
1306  * This function will only return failure if one of the vdevs indicates that it
1307  * has since been destroyed or exported.  This is only possible if
1308  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1309  * will be updated but the function will return 0.
1310  */
1311 int
1312 vdev_validate(vdev_t *vd, boolean_t strict)
1313 {
1314         spa_t *spa = vd->vdev_spa;
1315         nvlist_t *label;
1316         uint64_t guid = 0, top_guid;
1317         uint64_t state;
1318
1319         for (int c = 0; c < vd->vdev_children; c++)
1320                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1321                         return (EBADF);
1322
1323         /*
1324          * If the device has already failed, or was marked offline, don't do
1325          * any further validation.  Otherwise, label I/O will fail and we will
1326          * overwrite the previous state.
1327          */
1328         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1329                 uint64_t aux_guid = 0;
1330                 nvlist_t *nvl;
1331                 uint64_t txg = strict ? spa->spa_config_txg : -1ULL;
1332
1333                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1334                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1335                             VDEV_AUX_BAD_LABEL);
1336                         return (0);
1337                 }
1338
1339                 /*
1340                  * Determine if this vdev has been split off into another
1341                  * pool.  If so, then refuse to open it.
1342                  */
1343                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1344                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1345                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1346                             VDEV_AUX_SPLIT_POOL);
1347                         nvlist_free(label);
1348                         return (0);
1349                 }
1350
1351                 if (strict && (nvlist_lookup_uint64(label,
1352                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1353                     guid != spa_guid(spa))) {
1354                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1355                             VDEV_AUX_CORRUPT_DATA);
1356                         nvlist_free(label);
1357                         return (0);
1358                 }
1359
1360                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1361                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1362                     &aux_guid) != 0)
1363                         aux_guid = 0;
1364
1365                 /*
1366                  * If this vdev just became a top-level vdev because its
1367                  * sibling was detached, it will have adopted the parent's
1368                  * vdev guid -- but the label may or may not be on disk yet.
1369                  * Fortunately, either version of the label will have the
1370                  * same top guid, so if we're a top-level vdev, we can
1371                  * safely compare to that instead.
1372                  *
1373                  * If we split this vdev off instead, then we also check the
1374                  * original pool's guid.  We don't want to consider the vdev
1375                  * corrupt if it is partway through a split operation.
1376                  */
1377                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1378                     &guid) != 0 ||
1379                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1380                     &top_guid) != 0 ||
1381                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1382                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1383                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1384                             VDEV_AUX_CORRUPT_DATA);
1385                         nvlist_free(label);
1386                         return (0);
1387                 }
1388
1389                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1390                     &state) != 0) {
1391                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1392                             VDEV_AUX_CORRUPT_DATA);
1393                         nvlist_free(label);
1394                         return (0);
1395                 }
1396
1397                 nvlist_free(label);
1398
1399                 /*
1400                  * If this is a verbatim import, no need to check the
1401                  * state of the pool.
1402                  */
1403                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1404                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1405                     state != POOL_STATE_ACTIVE)
1406                         return (EBADF);
1407
1408                 /*
1409                  * If we were able to open and validate a vdev that was
1410                  * previously marked permanently unavailable, clear that state
1411                  * now.
1412                  */
1413                 if (vd->vdev_not_present)
1414                         vd->vdev_not_present = 0;
1415         }
1416
1417         return (0);
1418 }
1419
1420 /*
1421  * Close a virtual device.
1422  */
1423 void
1424 vdev_close(vdev_t *vd)
1425 {
1426         spa_t *spa = vd->vdev_spa;
1427         vdev_t *pvd = vd->vdev_parent;
1428
1429         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1430
1431         /*
1432          * If our parent is reopening, then we are as well, unless we are
1433          * going offline.
1434          */
1435         if (pvd != NULL && pvd->vdev_reopening)
1436                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1437
1438         vd->vdev_ops->vdev_op_close(vd);
1439
1440         vdev_cache_purge(vd);
1441
1442         /*
1443          * We record the previous state before we close it, so that if we are
1444          * doing a reopen(), we don't generate FMA ereports if we notice that
1445          * it's still faulted.
1446          */
1447         vd->vdev_prevstate = vd->vdev_state;
1448
1449         if (vd->vdev_offline)
1450                 vd->vdev_state = VDEV_STATE_OFFLINE;
1451         else
1452                 vd->vdev_state = VDEV_STATE_CLOSED;
1453         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1454 }
1455
1456 void
1457 vdev_hold(vdev_t *vd)
1458 {
1459         spa_t *spa = vd->vdev_spa;
1460
1461         ASSERT(spa_is_root(spa));
1462         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1463                 return;
1464
1465         for (int c = 0; c < vd->vdev_children; c++)
1466                 vdev_hold(vd->vdev_child[c]);
1467
1468         if (vd->vdev_ops->vdev_op_leaf)
1469                 vd->vdev_ops->vdev_op_hold(vd);
1470 }
1471
1472 void
1473 vdev_rele(vdev_t *vd)
1474 {
1475         spa_t *spa = vd->vdev_spa;
1476
1477         ASSERT(spa_is_root(spa));
1478         for (int c = 0; c < vd->vdev_children; c++)
1479                 vdev_rele(vd->vdev_child[c]);
1480
1481         if (vd->vdev_ops->vdev_op_leaf)
1482                 vd->vdev_ops->vdev_op_rele(vd);
1483 }
1484
1485 /*
1486  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1487  * reopen leaf vdevs which had previously been opened as they might deadlock
1488  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1489  * If the leaf has never been opened then open it, as usual.
1490  */
1491 void
1492 vdev_reopen(vdev_t *vd)
1493 {
1494         spa_t *spa = vd->vdev_spa;
1495
1496         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1497
1498         /* set the reopening flag unless we're taking the vdev offline */
1499         vd->vdev_reopening = !vd->vdev_offline;
1500         vdev_close(vd);
1501         (void) vdev_open(vd);
1502
1503         /*
1504          * Call vdev_validate() here to make sure we have the same device.
1505          * Otherwise, a device with an invalid label could be successfully
1506          * opened in response to vdev_reopen().
1507          */
1508         if (vd->vdev_aux) {
1509                 (void) vdev_validate_aux(vd);
1510                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1511                     vd->vdev_aux == &spa->spa_l2cache &&
1512                     !l2arc_vdev_present(vd))
1513                         l2arc_add_vdev(spa, vd);
1514         } else {
1515                 (void) vdev_validate(vd, spa_last_synced_txg(spa));
1516         }
1517
1518         /*
1519          * Reassess parent vdev's health.
1520          */
1521         vdev_propagate_state(vd);
1522 }
1523
1524 int
1525 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1526 {
1527         int error;
1528
1529         /*
1530          * Normally, partial opens (e.g. of a mirror) are allowed.
1531          * For a create, however, we want to fail the request if
1532          * there are any components we can't open.
1533          */
1534         error = vdev_open(vd);
1535
1536         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1537                 vdev_close(vd);
1538                 return (error ? error : ENXIO);
1539         }
1540
1541         /*
1542          * Recursively initialize all labels.
1543          */
1544         if ((error = vdev_label_init(vd, txg, isreplacing ?
1545             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1546                 vdev_close(vd);
1547                 return (error);
1548         }
1549
1550         return (0);
1551 }
1552
1553 void
1554 vdev_metaslab_set_size(vdev_t *vd)
1555 {
1556         /*
1557          * Aim for roughly 200 metaslabs per vdev.
1558          */
1559         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1560         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1561 }
1562
1563 void
1564 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1565 {
1566         ASSERT(vd == vd->vdev_top);
1567         ASSERT(!vd->vdev_ishole);
1568         ASSERT(ISP2(flags));
1569         ASSERT(spa_writeable(vd->vdev_spa));
1570
1571         if (flags & VDD_METASLAB)
1572                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1573
1574         if (flags & VDD_DTL)
1575                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1576
1577         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1578 }
1579
1580 /*
1581  * DTLs.
1582  *
1583  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1584  * the vdev has less than perfect replication.  There are four kinds of DTL:
1585  *
1586  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1587  *
1588  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1589  *
1590  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1591  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1592  *      txgs that was scrubbed.
1593  *
1594  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1595  *      persistent errors or just some device being offline.
1596  *      Unlike the other three, the DTL_OUTAGE map is not generally
1597  *      maintained; it's only computed when needed, typically to
1598  *      determine whether a device can be detached.
1599  *
1600  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1601  * either has the data or it doesn't.
1602  *
1603  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1604  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1605  * if any child is less than fully replicated, then so is its parent.
1606  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1607  * comprising only those txgs which appear in 'maxfaults' or more children;
1608  * those are the txgs we don't have enough replication to read.  For example,
1609  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1610  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1611  * two child DTL_MISSING maps.
1612  *
1613  * It should be clear from the above that to compute the DTLs and outage maps
1614  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1615  * Therefore, that is all we keep on disk.  When loading the pool, or after
1616  * a configuration change, we generate all other DTLs from first principles.
1617  */
1618 void
1619 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1620 {
1621         space_map_t *sm = &vd->vdev_dtl[t];
1622
1623         ASSERT(t < DTL_TYPES);
1624         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1625         ASSERT(spa_writeable(vd->vdev_spa));
1626
1627         mutex_enter(sm->sm_lock);
1628         if (!space_map_contains(sm, txg, size))
1629                 space_map_add(sm, txg, size);
1630         mutex_exit(sm->sm_lock);
1631 }
1632
1633 boolean_t
1634 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1635 {
1636         space_map_t *sm = &vd->vdev_dtl[t];
1637         boolean_t dirty = B_FALSE;
1638
1639         ASSERT(t < DTL_TYPES);
1640         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1641
1642         mutex_enter(sm->sm_lock);
1643         if (sm->sm_space != 0)
1644                 dirty = space_map_contains(sm, txg, size);
1645         mutex_exit(sm->sm_lock);
1646
1647         return (dirty);
1648 }
1649
1650 boolean_t
1651 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1652 {
1653         space_map_t *sm = &vd->vdev_dtl[t];
1654         boolean_t empty;
1655
1656         mutex_enter(sm->sm_lock);
1657         empty = (sm->sm_space == 0);
1658         mutex_exit(sm->sm_lock);
1659
1660         return (empty);
1661 }
1662
1663 /*
1664  * Reassess DTLs after a config change or scrub completion.
1665  */
1666 void
1667 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1668 {
1669         spa_t *spa = vd->vdev_spa;
1670         avl_tree_t reftree;
1671         int minref;
1672
1673         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1674
1675         for (int c = 0; c < vd->vdev_children; c++)
1676                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1677                     scrub_txg, scrub_done);
1678
1679         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1680                 return;
1681
1682         if (vd->vdev_ops->vdev_op_leaf) {
1683                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1684
1685                 mutex_enter(&vd->vdev_dtl_lock);
1686                 if (scrub_txg != 0 &&
1687                     (spa->spa_scrub_started ||
1688                     (scn && scn->scn_phys.scn_errors == 0))) {
1689                         /*
1690                          * We completed a scrub up to scrub_txg.  If we
1691                          * did it without rebooting, then the scrub dtl
1692                          * will be valid, so excise the old region and
1693                          * fold in the scrub dtl.  Otherwise, leave the
1694                          * dtl as-is if there was an error.
1695                          *
1696                          * There's little trick here: to excise the beginning
1697                          * of the DTL_MISSING map, we put it into a reference
1698                          * tree and then add a segment with refcnt -1 that
1699                          * covers the range [0, scrub_txg).  This means
1700                          * that each txg in that range has refcnt -1 or 0.
1701                          * We then add DTL_SCRUB with a refcnt of 2, so that
1702                          * entries in the range [0, scrub_txg) will have a
1703                          * positive refcnt -- either 1 or 2.  We then convert
1704                          * the reference tree into the new DTL_MISSING map.
1705                          */
1706                         space_map_ref_create(&reftree);
1707                         space_map_ref_add_map(&reftree,
1708                             &vd->vdev_dtl[DTL_MISSING], 1);
1709                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1710                         space_map_ref_add_map(&reftree,
1711                             &vd->vdev_dtl[DTL_SCRUB], 2);
1712                         space_map_ref_generate_map(&reftree,
1713                             &vd->vdev_dtl[DTL_MISSING], 1);
1714                         space_map_ref_destroy(&reftree);
1715                 }
1716                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1717                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1718                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1719                 if (scrub_done)
1720                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1721                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1722                 if (!vdev_readable(vd))
1723                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1724                 else
1725                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1726                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1727                 mutex_exit(&vd->vdev_dtl_lock);
1728
1729                 if (txg != 0)
1730                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1731                 return;
1732         }
1733
1734         mutex_enter(&vd->vdev_dtl_lock);
1735         for (int t = 0; t < DTL_TYPES; t++) {
1736                 /* account for child's outage in parent's missing map */
1737                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1738                 if (t == DTL_SCRUB)
1739                         continue;                       /* leaf vdevs only */
1740                 if (t == DTL_PARTIAL)
1741                         minref = 1;                     /* i.e. non-zero */
1742                 else if (vd->vdev_nparity != 0)
1743                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1744                 else
1745                         minref = vd->vdev_children;     /* any kind of mirror */
1746                 space_map_ref_create(&reftree);
1747                 for (int c = 0; c < vd->vdev_children; c++) {
1748                         vdev_t *cvd = vd->vdev_child[c];
1749                         mutex_enter(&cvd->vdev_dtl_lock);
1750                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1751                         mutex_exit(&cvd->vdev_dtl_lock);
1752                 }
1753                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1754                 space_map_ref_destroy(&reftree);
1755         }
1756         mutex_exit(&vd->vdev_dtl_lock);
1757 }
1758
1759 static int
1760 vdev_dtl_load(vdev_t *vd)
1761 {
1762         spa_t *spa = vd->vdev_spa;
1763         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1764         objset_t *mos = spa->spa_meta_objset;
1765         dmu_buf_t *db;
1766         int error;
1767
1768         ASSERT(vd->vdev_children == 0);
1769
1770         if (smo->smo_object == 0)
1771                 return (0);
1772
1773         ASSERT(!vd->vdev_ishole);
1774
1775         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1776                 return (error);
1777
1778         ASSERT3U(db->db_size, >=, sizeof (*smo));
1779         bcopy(db->db_data, smo, sizeof (*smo));
1780         dmu_buf_rele(db, FTAG);
1781
1782         mutex_enter(&vd->vdev_dtl_lock);
1783         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1784             NULL, SM_ALLOC, smo, mos);
1785         mutex_exit(&vd->vdev_dtl_lock);
1786
1787         return (error);
1788 }
1789
1790 void
1791 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1792 {
1793         spa_t *spa = vd->vdev_spa;
1794         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1795         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1796         objset_t *mos = spa->spa_meta_objset;
1797         space_map_t smsync;
1798         kmutex_t smlock;
1799         dmu_buf_t *db;
1800         dmu_tx_t *tx;
1801
1802         ASSERT(!vd->vdev_ishole);
1803
1804         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1805
1806         if (vd->vdev_detached) {
1807                 if (smo->smo_object != 0) {
1808                         int err = dmu_object_free(mos, smo->smo_object, tx);
1809                         ASSERT0(err);
1810                         smo->smo_object = 0;
1811                 }
1812                 dmu_tx_commit(tx);
1813                 return;
1814         }
1815
1816         if (smo->smo_object == 0) {
1817                 ASSERT(smo->smo_objsize == 0);
1818                 ASSERT(smo->smo_alloc == 0);
1819                 smo->smo_object = dmu_object_alloc(mos,
1820                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1821                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1822                 ASSERT(smo->smo_object != 0);
1823                 vdev_config_dirty(vd->vdev_top);
1824         }
1825
1826         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1827
1828         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1829             &smlock);
1830
1831         mutex_enter(&smlock);
1832
1833         mutex_enter(&vd->vdev_dtl_lock);
1834         space_map_walk(sm, space_map_add, &smsync);
1835         mutex_exit(&vd->vdev_dtl_lock);
1836
1837         space_map_truncate(smo, mos, tx);
1838         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1839
1840         space_map_destroy(&smsync);
1841
1842         mutex_exit(&smlock);
1843         mutex_destroy(&smlock);
1844
1845         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1846         dmu_buf_will_dirty(db, tx);
1847         ASSERT3U(db->db_size, >=, sizeof (*smo));
1848         bcopy(smo, db->db_data, sizeof (*smo));
1849         dmu_buf_rele(db, FTAG);
1850
1851         dmu_tx_commit(tx);
1852 }
1853
1854 /*
1855  * Determine whether the specified vdev can be offlined/detached/removed
1856  * without losing data.
1857  */
1858 boolean_t
1859 vdev_dtl_required(vdev_t *vd)
1860 {
1861         spa_t *spa = vd->vdev_spa;
1862         vdev_t *tvd = vd->vdev_top;
1863         uint8_t cant_read = vd->vdev_cant_read;
1864         boolean_t required;
1865
1866         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1867
1868         if (vd == spa->spa_root_vdev || vd == tvd)
1869                 return (B_TRUE);
1870
1871         /*
1872          * Temporarily mark the device as unreadable, and then determine
1873          * whether this results in any DTL outages in the top-level vdev.
1874          * If not, we can safely offline/detach/remove the device.
1875          */
1876         vd->vdev_cant_read = B_TRUE;
1877         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1878         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1879         vd->vdev_cant_read = cant_read;
1880         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1881
1882         if (!required && zio_injection_enabled)
1883                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1884
1885         return (required);
1886 }
1887
1888 /*
1889  * Determine if resilver is needed, and if so the txg range.
1890  */
1891 boolean_t
1892 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1893 {
1894         boolean_t needed = B_FALSE;
1895         uint64_t thismin = UINT64_MAX;
1896         uint64_t thismax = 0;
1897
1898         if (vd->vdev_children == 0) {
1899                 mutex_enter(&vd->vdev_dtl_lock);
1900                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1901                     vdev_writeable(vd)) {
1902                         space_seg_t *ss;
1903
1904                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1905                         thismin = ss->ss_start - 1;
1906                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1907                         thismax = ss->ss_end;
1908                         needed = B_TRUE;
1909                 }
1910                 mutex_exit(&vd->vdev_dtl_lock);
1911         } else {
1912                 for (int c = 0; c < vd->vdev_children; c++) {
1913                         vdev_t *cvd = vd->vdev_child[c];
1914                         uint64_t cmin, cmax;
1915
1916                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1917                                 thismin = MIN(thismin, cmin);
1918                                 thismax = MAX(thismax, cmax);
1919                                 needed = B_TRUE;
1920                         }
1921                 }
1922         }
1923
1924         if (needed && minp) {
1925                 *minp = thismin;
1926                 *maxp = thismax;
1927         }
1928         return (needed);
1929 }
1930
1931 void
1932 vdev_load(vdev_t *vd)
1933 {
1934         /*
1935          * Recursively load all children.
1936          */
1937         for (int c = 0; c < vd->vdev_children; c++)
1938                 vdev_load(vd->vdev_child[c]);
1939
1940         /*
1941          * If this is a top-level vdev, initialize its metaslabs.
1942          */
1943         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1944             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1945             vdev_metaslab_init(vd, 0) != 0))
1946                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1947                     VDEV_AUX_CORRUPT_DATA);
1948
1949         /*
1950          * If this is a leaf vdev, load its DTL.
1951          */
1952         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1953                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1954                     VDEV_AUX_CORRUPT_DATA);
1955 }
1956
1957 /*
1958  * The special vdev case is used for hot spares and l2cache devices.  Its
1959  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1960  * we make sure that we can open the underlying device, then try to read the
1961  * label, and make sure that the label is sane and that it hasn't been
1962  * repurposed to another pool.
1963  */
1964 int
1965 vdev_validate_aux(vdev_t *vd)
1966 {
1967         nvlist_t *label;
1968         uint64_t guid, version;
1969         uint64_t state;
1970
1971         if (!vdev_readable(vd))
1972                 return (0);
1973
1974         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1975                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1976                     VDEV_AUX_CORRUPT_DATA);
1977                 return (-1);
1978         }
1979
1980         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1981             !SPA_VERSION_IS_SUPPORTED(version) ||
1982             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1983             guid != vd->vdev_guid ||
1984             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1985                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1986                     VDEV_AUX_CORRUPT_DATA);
1987                 nvlist_free(label);
1988                 return (-1);
1989         }
1990
1991         /*
1992          * We don't actually check the pool state here.  If it's in fact in
1993          * use by another pool, we update this fact on the fly when requested.
1994          */
1995         nvlist_free(label);
1996         return (0);
1997 }
1998
1999 void
2000 vdev_remove(vdev_t *vd, uint64_t txg)
2001 {
2002         spa_t *spa = vd->vdev_spa;
2003         objset_t *mos = spa->spa_meta_objset;
2004         dmu_tx_t *tx;
2005
2006         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2007
2008         if (vd->vdev_dtl_smo.smo_object) {
2009                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2010                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2011                 vd->vdev_dtl_smo.smo_object = 0;
2012         }
2013
2014         if (vd->vdev_ms != NULL) {
2015                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2016                         metaslab_t *msp = vd->vdev_ms[m];
2017
2018                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2019                                 continue;
2020
2021                         ASSERT0(msp->ms_smo.smo_alloc);
2022                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2023                         msp->ms_smo.smo_object = 0;
2024                 }
2025         }
2026
2027         if (vd->vdev_ms_array) {
2028                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2029                 vd->vdev_ms_array = 0;
2030                 vd->vdev_ms_shift = 0;
2031         }
2032         dmu_tx_commit(tx);
2033 }
2034
2035 void
2036 vdev_sync_done(vdev_t *vd, uint64_t txg)
2037 {
2038         metaslab_t *msp;
2039         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2040
2041         ASSERT(!vd->vdev_ishole);
2042
2043         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2044                 metaslab_sync_done(msp, txg);
2045
2046         if (reassess)
2047                 metaslab_sync_reassess(vd->vdev_mg);
2048 }
2049
2050 void
2051 vdev_sync(vdev_t *vd, uint64_t txg)
2052 {
2053         spa_t *spa = vd->vdev_spa;
2054         vdev_t *lvd;
2055         metaslab_t *msp;
2056         dmu_tx_t *tx;
2057
2058         ASSERT(!vd->vdev_ishole);
2059
2060         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2061                 ASSERT(vd == vd->vdev_top);
2062                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2063                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2064                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2065                 ASSERT(vd->vdev_ms_array != 0);
2066                 vdev_config_dirty(vd);
2067                 dmu_tx_commit(tx);
2068         }
2069
2070         /*
2071          * Remove the metadata associated with this vdev once it's empty.
2072          */
2073         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2074                 vdev_remove(vd, txg);
2075
2076         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2077                 metaslab_sync(msp, txg);
2078                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2079         }
2080
2081         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2082                 vdev_dtl_sync(lvd, txg);
2083
2084         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2085 }
2086
2087 uint64_t
2088 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2089 {
2090         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2091 }
2092
2093 /*
2094  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2095  * not be opened, and no I/O is attempted.
2096  */
2097 int
2098 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2099 {
2100         vdev_t *vd, *tvd;
2101
2102         spa_vdev_state_enter(spa, SCL_NONE);
2103
2104         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2105                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2106
2107         if (!vd->vdev_ops->vdev_op_leaf)
2108                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2109
2110         tvd = vd->vdev_top;
2111
2112         /*
2113          * We don't directly use the aux state here, but if we do a
2114          * vdev_reopen(), we need this value to be present to remember why we
2115          * were faulted.
2116          */
2117         vd->vdev_label_aux = aux;
2118
2119         /*
2120          * Faulted state takes precedence over degraded.
2121          */
2122         vd->vdev_delayed_close = B_FALSE;
2123         vd->vdev_faulted = 1ULL;
2124         vd->vdev_degraded = 0ULL;
2125         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2126
2127         /*
2128          * If this device has the only valid copy of the data, then
2129          * back off and simply mark the vdev as degraded instead.
2130          */
2131         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2132                 vd->vdev_degraded = 1ULL;
2133                 vd->vdev_faulted = 0ULL;
2134
2135                 /*
2136                  * If we reopen the device and it's not dead, only then do we
2137                  * mark it degraded.
2138                  */
2139                 vdev_reopen(tvd);
2140
2141                 if (vdev_readable(vd))
2142                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2143         }
2144
2145         return (spa_vdev_state_exit(spa, vd, 0));
2146 }
2147
2148 /*
2149  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2150  * user that something is wrong.  The vdev continues to operate as normal as far
2151  * as I/O is concerned.
2152  */
2153 int
2154 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2155 {
2156         vdev_t *vd;
2157
2158         spa_vdev_state_enter(spa, SCL_NONE);
2159
2160         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2161                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2162
2163         if (!vd->vdev_ops->vdev_op_leaf)
2164                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2165
2166         /*
2167          * If the vdev is already faulted, then don't do anything.
2168          */
2169         if (vd->vdev_faulted || vd->vdev_degraded)
2170                 return (spa_vdev_state_exit(spa, NULL, 0));
2171
2172         vd->vdev_degraded = 1ULL;
2173         if (!vdev_is_dead(vd))
2174                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2175                     aux);
2176
2177         return (spa_vdev_state_exit(spa, vd, 0));
2178 }
2179
2180 /*
2181  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2182  * any attached spare device should be detached when the device finishes
2183  * resilvering.  Second, the online should be treated like a 'test' online case,
2184  * so no FMA events are generated if the device fails to open.
2185  */
2186 int
2187 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2188 {
2189         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2190
2191         spa_vdev_state_enter(spa, SCL_NONE);
2192
2193         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2194                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2195
2196         if (!vd->vdev_ops->vdev_op_leaf)
2197                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2198
2199         tvd = vd->vdev_top;
2200         vd->vdev_offline = B_FALSE;
2201         vd->vdev_tmpoffline = B_FALSE;
2202         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2203         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2204
2205         /* XXX - L2ARC 1.0 does not support expansion */
2206         if (!vd->vdev_aux) {
2207                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2208                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2209         }
2210
2211         vdev_reopen(tvd);
2212         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2213
2214         if (!vd->vdev_aux) {
2215                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2216                         pvd->vdev_expanding = B_FALSE;
2217         }
2218
2219         if (newstate)
2220                 *newstate = vd->vdev_state;
2221         if ((flags & ZFS_ONLINE_UNSPARE) &&
2222             !vdev_is_dead(vd) && vd->vdev_parent &&
2223             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2224             vd->vdev_parent->vdev_child[0] == vd)
2225                 vd->vdev_unspare = B_TRUE;
2226
2227         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2228
2229                 /* XXX - L2ARC 1.0 does not support expansion */
2230                 if (vd->vdev_aux)
2231                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2232                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2233         }
2234         return (spa_vdev_state_exit(spa, vd, 0));
2235 }
2236
2237 static int
2238 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2239 {
2240         vdev_t *vd, *tvd;
2241         int error = 0;
2242         uint64_t generation;
2243         metaslab_group_t *mg;
2244
2245 top:
2246         spa_vdev_state_enter(spa, SCL_ALLOC);
2247
2248         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2249                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2250
2251         if (!vd->vdev_ops->vdev_op_leaf)
2252                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2253
2254         tvd = vd->vdev_top;
2255         mg = tvd->vdev_mg;
2256         generation = spa->spa_config_generation + 1;
2257
2258         /*
2259          * If the device isn't already offline, try to offline it.
2260          */
2261         if (!vd->vdev_offline) {
2262                 /*
2263                  * If this device has the only valid copy of some data,
2264                  * don't allow it to be offlined. Log devices are always
2265                  * expendable.
2266                  */
2267                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2268                     vdev_dtl_required(vd))
2269                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2270
2271                 /*
2272                  * If the top-level is a slog and it has had allocations
2273                  * then proceed.  We check that the vdev's metaslab group
2274                  * is not NULL since it's possible that we may have just
2275                  * added this vdev but not yet initialized its metaslabs.
2276                  */
2277                 if (tvd->vdev_islog && mg != NULL) {
2278                         /*
2279                          * Prevent any future allocations.
2280                          */
2281                         metaslab_group_passivate(mg);
2282                         (void) spa_vdev_state_exit(spa, vd, 0);
2283
2284                         error = spa_offline_log(spa);
2285
2286                         spa_vdev_state_enter(spa, SCL_ALLOC);
2287
2288                         /*
2289                          * Check to see if the config has changed.
2290                          */
2291                         if (error || generation != spa->spa_config_generation) {
2292                                 metaslab_group_activate(mg);
2293                                 if (error)
2294                                         return (spa_vdev_state_exit(spa,
2295                                             vd, error));
2296                                 (void) spa_vdev_state_exit(spa, vd, 0);
2297                                 goto top;
2298                         }
2299                         ASSERT0(tvd->vdev_stat.vs_alloc);
2300                 }
2301
2302                 /*
2303                  * Offline this device and reopen its top-level vdev.
2304                  * If the top-level vdev is a log device then just offline
2305                  * it. Otherwise, if this action results in the top-level
2306                  * vdev becoming unusable, undo it and fail the request.
2307                  */
2308                 vd->vdev_offline = B_TRUE;
2309                 vdev_reopen(tvd);
2310
2311                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2312                     vdev_is_dead(tvd)) {
2313                         vd->vdev_offline = B_FALSE;
2314                         vdev_reopen(tvd);
2315                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2316                 }
2317
2318                 /*
2319                  * Add the device back into the metaslab rotor so that
2320                  * once we online the device it's open for business.
2321                  */
2322                 if (tvd->vdev_islog && mg != NULL)
2323                         metaslab_group_activate(mg);
2324         }
2325
2326         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2327
2328         return (spa_vdev_state_exit(spa, vd, 0));
2329 }
2330
2331 int
2332 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2333 {
2334         int error;
2335
2336         mutex_enter(&spa->spa_vdev_top_lock);
2337         error = vdev_offline_locked(spa, guid, flags);
2338         mutex_exit(&spa->spa_vdev_top_lock);
2339
2340         return (error);
2341 }
2342
2343 /*
2344  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2345  * vdev_offline(), we assume the spa config is locked.  We also clear all
2346  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2347  */
2348 void
2349 vdev_clear(spa_t *spa, vdev_t *vd)
2350 {
2351         vdev_t *rvd = spa->spa_root_vdev;
2352
2353         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2354
2355         if (vd == NULL)
2356                 vd = rvd;
2357
2358         vd->vdev_stat.vs_read_errors = 0;
2359         vd->vdev_stat.vs_write_errors = 0;
2360         vd->vdev_stat.vs_checksum_errors = 0;
2361
2362         for (int c = 0; c < vd->vdev_children; c++)
2363                 vdev_clear(spa, vd->vdev_child[c]);
2364
2365         /*
2366          * If we're in the FAULTED state or have experienced failed I/O, then
2367          * clear the persistent state and attempt to reopen the device.  We
2368          * also mark the vdev config dirty, so that the new faulted state is
2369          * written out to disk.
2370          */
2371         if (vd->vdev_faulted || vd->vdev_degraded ||
2372             !vdev_readable(vd) || !vdev_writeable(vd)) {
2373
2374                 /*
2375                  * When reopening in reponse to a clear event, it may be due to
2376                  * a fmadm repair request.  In this case, if the device is
2377                  * still broken, we want to still post the ereport again.
2378                  */
2379                 vd->vdev_forcefault = B_TRUE;
2380
2381                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2382                 vd->vdev_cant_read = B_FALSE;
2383                 vd->vdev_cant_write = B_FALSE;
2384
2385                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2386
2387                 vd->vdev_forcefault = B_FALSE;
2388
2389                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2390                         vdev_state_dirty(vd->vdev_top);
2391
2392                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2393                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2394
2395                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2396         }
2397
2398         /*
2399          * When clearing a FMA-diagnosed fault, we always want to
2400          * unspare the device, as we assume that the original spare was
2401          * done in response to the FMA fault.
2402          */
2403         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2404             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2405             vd->vdev_parent->vdev_child[0] == vd)
2406                 vd->vdev_unspare = B_TRUE;
2407 }
2408
2409 boolean_t
2410 vdev_is_dead(vdev_t *vd)
2411 {
2412         /*
2413          * Holes and missing devices are always considered "dead".
2414          * This simplifies the code since we don't have to check for
2415          * these types of devices in the various code paths.
2416          * Instead we rely on the fact that we skip over dead devices
2417          * before issuing I/O to them.
2418          */
2419         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2420             vd->vdev_ops == &vdev_missing_ops);
2421 }
2422
2423 boolean_t
2424 vdev_readable(vdev_t *vd)
2425 {
2426         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2427 }
2428
2429 boolean_t
2430 vdev_writeable(vdev_t *vd)
2431 {
2432         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2433 }
2434
2435 boolean_t
2436 vdev_allocatable(vdev_t *vd)
2437 {
2438         uint64_t state = vd->vdev_state;
2439
2440         /*
2441          * We currently allow allocations from vdevs which may be in the
2442          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2443          * fails to reopen then we'll catch it later when we're holding
2444          * the proper locks.  Note that we have to get the vdev state
2445          * in a local variable because although it changes atomically,
2446          * we're asking two separate questions about it.
2447          */
2448         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2449             !vd->vdev_cant_write && !vd->vdev_ishole);
2450 }
2451
2452 boolean_t
2453 vdev_accessible(vdev_t *vd, zio_t *zio)
2454 {
2455         ASSERT(zio->io_vd == vd);
2456
2457         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2458                 return (B_FALSE);
2459
2460         if (zio->io_type == ZIO_TYPE_READ)
2461                 return (!vd->vdev_cant_read);
2462
2463         if (zio->io_type == ZIO_TYPE_WRITE)
2464                 return (!vd->vdev_cant_write);
2465
2466         return (B_TRUE);
2467 }
2468
2469 /*
2470  * Get statistics for the given vdev.
2471  */
2472 void
2473 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2474 {
2475         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2476
2477         mutex_enter(&vd->vdev_stat_lock);
2478         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2479         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2480         vs->vs_state = vd->vdev_state;
2481         vs->vs_rsize = vdev_get_min_asize(vd);
2482         if (vd->vdev_ops->vdev_op_leaf)
2483                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2484         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2485         mutex_exit(&vd->vdev_stat_lock);
2486
2487         /*
2488          * If we're getting stats on the root vdev, aggregate the I/O counts
2489          * over all top-level vdevs (i.e. the direct children of the root).
2490          */
2491         if (vd == rvd) {
2492                 for (int c = 0; c < rvd->vdev_children; c++) {
2493                         vdev_t *cvd = rvd->vdev_child[c];
2494                         vdev_stat_t *cvs = &cvd->vdev_stat;
2495
2496                         mutex_enter(&vd->vdev_stat_lock);
2497                         for (int t = 0; t < ZIO_TYPES; t++) {
2498                                 vs->vs_ops[t] += cvs->vs_ops[t];
2499                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2500                         }
2501                         cvs->vs_scan_removing = cvd->vdev_removing;
2502                         mutex_exit(&vd->vdev_stat_lock);
2503                 }
2504         }
2505 }
2506
2507 void
2508 vdev_clear_stats(vdev_t *vd)
2509 {
2510         mutex_enter(&vd->vdev_stat_lock);
2511         vd->vdev_stat.vs_space = 0;
2512         vd->vdev_stat.vs_dspace = 0;
2513         vd->vdev_stat.vs_alloc = 0;
2514         mutex_exit(&vd->vdev_stat_lock);
2515 }
2516
2517 void
2518 vdev_scan_stat_init(vdev_t *vd)
2519 {
2520         vdev_stat_t *vs = &vd->vdev_stat;
2521
2522         for (int c = 0; c < vd->vdev_children; c++)
2523                 vdev_scan_stat_init(vd->vdev_child[c]);
2524
2525         mutex_enter(&vd->vdev_stat_lock);
2526         vs->vs_scan_processed = 0;
2527         mutex_exit(&vd->vdev_stat_lock);
2528 }
2529
2530 void
2531 vdev_stat_update(zio_t *zio, uint64_t psize)
2532 {
2533         spa_t *spa = zio->io_spa;
2534         vdev_t *rvd = spa->spa_root_vdev;
2535         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2536         vdev_t *pvd;
2537         uint64_t txg = zio->io_txg;
2538         vdev_stat_t *vs = &vd->vdev_stat;
2539         zio_type_t type = zio->io_type;
2540         int flags = zio->io_flags;
2541
2542         /*
2543          * If this i/o is a gang leader, it didn't do any actual work.
2544          */
2545         if (zio->io_gang_tree)
2546                 return;
2547
2548         if (zio->io_error == 0) {
2549                 /*
2550                  * If this is a root i/o, don't count it -- we've already
2551                  * counted the top-level vdevs, and vdev_get_stats() will
2552                  * aggregate them when asked.  This reduces contention on
2553                  * the root vdev_stat_lock and implicitly handles blocks
2554                  * that compress away to holes, for which there is no i/o.
2555                  * (Holes never create vdev children, so all the counters
2556                  * remain zero, which is what we want.)
2557                  *
2558                  * Note: this only applies to successful i/o (io_error == 0)
2559                  * because unlike i/o counts, errors are not additive.
2560                  * When reading a ditto block, for example, failure of
2561                  * one top-level vdev does not imply a root-level error.
2562                  */
2563                 if (vd == rvd)
2564                         return;
2565
2566                 ASSERT(vd == zio->io_vd);
2567
2568                 if (flags & ZIO_FLAG_IO_BYPASS)
2569                         return;
2570
2571                 mutex_enter(&vd->vdev_stat_lock);
2572
2573                 if (flags & ZIO_FLAG_IO_REPAIR) {
2574                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2575                                 dsl_scan_phys_t *scn_phys =
2576                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2577                                 uint64_t *processed = &scn_phys->scn_processed;
2578
2579                                 /* XXX cleanup? */
2580                                 if (vd->vdev_ops->vdev_op_leaf)
2581                                         atomic_add_64(processed, psize);
2582                                 vs->vs_scan_processed += psize;
2583                         }
2584
2585                         if (flags & ZIO_FLAG_SELF_HEAL)
2586                                 vs->vs_self_healed += psize;
2587                 }
2588
2589                 vs->vs_ops[type]++;
2590                 vs->vs_bytes[type] += psize;
2591
2592                 mutex_exit(&vd->vdev_stat_lock);
2593                 return;
2594         }
2595
2596         if (flags & ZIO_FLAG_SPECULATIVE)
2597                 return;
2598
2599         /*
2600          * If this is an I/O error that is going to be retried, then ignore the
2601          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2602          * hard errors, when in reality they can happen for any number of
2603          * innocuous reasons (bus resets, MPxIO link failure, etc).
2604          */
2605         if (zio->io_error == EIO &&
2606             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2607                 return;
2608
2609         /*
2610          * Intent logs writes won't propagate their error to the root
2611          * I/O so don't mark these types of failures as pool-level
2612          * errors.
2613          */
2614         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2615                 return;
2616
2617         mutex_enter(&vd->vdev_stat_lock);
2618         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2619                 if (zio->io_error == ECKSUM)
2620                         vs->vs_checksum_errors++;
2621                 else
2622                         vs->vs_read_errors++;
2623         }
2624         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2625                 vs->vs_write_errors++;
2626         mutex_exit(&vd->vdev_stat_lock);
2627
2628         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2629             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2630             (flags & ZIO_FLAG_SCAN_THREAD) ||
2631             spa->spa_claiming)) {
2632                 /*
2633                  * This is either a normal write (not a repair), or it's
2634                  * a repair induced by the scrub thread, or it's a repair
2635                  * made by zil_claim() during spa_load() in the first txg.
2636                  * In the normal case, we commit the DTL change in the same
2637                  * txg as the block was born.  In the scrub-induced repair
2638                  * case, we know that scrubs run in first-pass syncing context,
2639                  * so we commit the DTL change in spa_syncing_txg(spa).
2640                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2641                  *
2642                  * We currently do not make DTL entries for failed spontaneous
2643                  * self-healing writes triggered by normal (non-scrubbing)
2644                  * reads, because we have no transactional context in which to
2645                  * do so -- and it's not clear that it'd be desirable anyway.
2646                  */
2647                 if (vd->vdev_ops->vdev_op_leaf) {
2648                         uint64_t commit_txg = txg;
2649                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2650                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2651                                 ASSERT(spa_sync_pass(spa) == 1);
2652                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2653                                 commit_txg = spa_syncing_txg(spa);
2654                         } else if (spa->spa_claiming) {
2655                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2656                                 commit_txg = spa_first_txg(spa);
2657                         }
2658                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2659                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2660                                 return;
2661                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2662                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2663                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2664                 }
2665                 if (vd != rvd)
2666                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2667         }
2668 }
2669
2670 /*
2671  * Update the in-core space usage stats for this vdev, its metaslab class,
2672  * and the root vdev.
2673  */
2674 void
2675 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2676     int64_t space_delta)
2677 {
2678         int64_t dspace_delta = space_delta;
2679         spa_t *spa = vd->vdev_spa;
2680         vdev_t *rvd = spa->spa_root_vdev;
2681         metaslab_group_t *mg = vd->vdev_mg;
2682         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2683
2684         ASSERT(vd == vd->vdev_top);
2685
2686         /*
2687          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2688          * factor.  We must calculate this here and not at the root vdev
2689          * because the root vdev's psize-to-asize is simply the max of its
2690          * childrens', thus not accurate enough for us.
2691          */
2692         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2693         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2694         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2695             vd->vdev_deflate_ratio;
2696
2697         mutex_enter(&vd->vdev_stat_lock);
2698         vd->vdev_stat.vs_alloc += alloc_delta;
2699         vd->vdev_stat.vs_space += space_delta;
2700         vd->vdev_stat.vs_dspace += dspace_delta;
2701         mutex_exit(&vd->vdev_stat_lock);
2702
2703         if (mc == spa_normal_class(spa)) {
2704                 mutex_enter(&rvd->vdev_stat_lock);
2705                 rvd->vdev_stat.vs_alloc += alloc_delta;
2706                 rvd->vdev_stat.vs_space += space_delta;
2707                 rvd->vdev_stat.vs_dspace += dspace_delta;
2708                 mutex_exit(&rvd->vdev_stat_lock);
2709         }
2710
2711         if (mc != NULL) {
2712                 ASSERT(rvd == vd->vdev_parent);
2713                 ASSERT(vd->vdev_ms_count != 0);
2714
2715                 metaslab_class_space_update(mc,
2716                     alloc_delta, defer_delta, space_delta, dspace_delta);
2717         }
2718 }
2719
2720 /*
2721  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2722  * so that it will be written out next time the vdev configuration is synced.
2723  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2724  */
2725 void
2726 vdev_config_dirty(vdev_t *vd)
2727 {
2728         spa_t *spa = vd->vdev_spa;
2729         vdev_t *rvd = spa->spa_root_vdev;
2730         int c;
2731
2732         ASSERT(spa_writeable(spa));
2733
2734         /*
2735          * If this is an aux vdev (as with l2cache and spare devices), then we
2736          * update the vdev config manually and set the sync flag.
2737          */
2738         if (vd->vdev_aux != NULL) {
2739                 spa_aux_vdev_t *sav = vd->vdev_aux;
2740                 nvlist_t **aux;
2741                 uint_t naux;
2742
2743                 for (c = 0; c < sav->sav_count; c++) {
2744                         if (sav->sav_vdevs[c] == vd)
2745                                 break;
2746                 }
2747
2748                 if (c == sav->sav_count) {
2749                         /*
2750                          * We're being removed.  There's nothing more to do.
2751                          */
2752                         ASSERT(sav->sav_sync == B_TRUE);
2753                         return;
2754                 }
2755
2756                 sav->sav_sync = B_TRUE;
2757
2758                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2759                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2760                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2761                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2762                 }
2763
2764                 ASSERT(c < naux);
2765
2766                 /*
2767                  * Setting the nvlist in the middle if the array is a little
2768                  * sketchy, but it will work.
2769                  */
2770                 nvlist_free(aux[c]);
2771                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2772
2773                 return;
2774         }
2775
2776         /*
2777          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2778          * must either hold SCL_CONFIG as writer, or must be the sync thread
2779          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2780          * so this is sufficient to ensure mutual exclusion.
2781          */
2782         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2783             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2784             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2785
2786         if (vd == rvd) {
2787                 for (c = 0; c < rvd->vdev_children; c++)
2788                         vdev_config_dirty(rvd->vdev_child[c]);
2789         } else {
2790                 ASSERT(vd == vd->vdev_top);
2791
2792                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2793                     !vd->vdev_ishole)
2794                         list_insert_head(&spa->spa_config_dirty_list, vd);
2795         }
2796 }
2797
2798 void
2799 vdev_config_clean(vdev_t *vd)
2800 {
2801         spa_t *spa = vd->vdev_spa;
2802
2803         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2804             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2805             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2806
2807         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2808         list_remove(&spa->spa_config_dirty_list, vd);
2809 }
2810
2811 /*
2812  * Mark a top-level vdev's state as dirty, so that the next pass of
2813  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2814  * the state changes from larger config changes because they require
2815  * much less locking, and are often needed for administrative actions.
2816  */
2817 void
2818 vdev_state_dirty(vdev_t *vd)
2819 {
2820         spa_t *spa = vd->vdev_spa;
2821
2822         ASSERT(spa_writeable(spa));
2823         ASSERT(vd == vd->vdev_top);
2824
2825         /*
2826          * The state list is protected by the SCL_STATE lock.  The caller
2827          * must either hold SCL_STATE as writer, or must be the sync thread
2828          * (which holds SCL_STATE as reader).  There's only one sync thread,
2829          * so this is sufficient to ensure mutual exclusion.
2830          */
2831         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2832             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2833             spa_config_held(spa, SCL_STATE, RW_READER)));
2834
2835         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2836                 list_insert_head(&spa->spa_state_dirty_list, vd);
2837 }
2838
2839 void
2840 vdev_state_clean(vdev_t *vd)
2841 {
2842         spa_t *spa = vd->vdev_spa;
2843
2844         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2845             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2846             spa_config_held(spa, SCL_STATE, RW_READER)));
2847
2848         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2849         list_remove(&spa->spa_state_dirty_list, vd);
2850 }
2851
2852 /*
2853  * Propagate vdev state up from children to parent.
2854  */
2855 void
2856 vdev_propagate_state(vdev_t *vd)
2857 {
2858         spa_t *spa = vd->vdev_spa;
2859         vdev_t *rvd = spa->spa_root_vdev;
2860         int degraded = 0, faulted = 0;
2861         int corrupted = 0;
2862         vdev_t *child;
2863
2864         if (vd->vdev_children > 0) {
2865                 for (int c = 0; c < vd->vdev_children; c++) {
2866                         child = vd->vdev_child[c];
2867
2868                         /*
2869                          * Don't factor holes into the decision.
2870                          */
2871                         if (child->vdev_ishole)
2872                                 continue;
2873
2874                         if (!vdev_readable(child) ||
2875                             (!vdev_writeable(child) && spa_writeable(spa))) {
2876                                 /*
2877                                  * Root special: if there is a top-level log
2878                                  * device, treat the root vdev as if it were
2879                                  * degraded.
2880                                  */
2881                                 if (child->vdev_islog && vd == rvd)
2882                                         degraded++;
2883                                 else
2884                                         faulted++;
2885                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2886                                 degraded++;
2887                         }
2888
2889                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2890                                 corrupted++;
2891                 }
2892
2893                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2894
2895                 /*
2896                  * Root special: if there is a top-level vdev that cannot be
2897                  * opened due to corrupted metadata, then propagate the root
2898                  * vdev's aux state as 'corrupt' rather than 'insufficient
2899                  * replicas'.
2900                  */
2901                 if (corrupted && vd == rvd &&
2902                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2903                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2904                             VDEV_AUX_CORRUPT_DATA);
2905         }
2906
2907         if (vd->vdev_parent)
2908                 vdev_propagate_state(vd->vdev_parent);
2909 }
2910
2911 /*
2912  * Set a vdev's state.  If this is during an open, we don't update the parent
2913  * state, because we're in the process of opening children depth-first.
2914  * Otherwise, we propagate the change to the parent.
2915  *
2916  * If this routine places a device in a faulted state, an appropriate ereport is
2917  * generated.
2918  */
2919 void
2920 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2921 {
2922         uint64_t save_state;
2923         spa_t *spa = vd->vdev_spa;
2924
2925         if (state == vd->vdev_state) {
2926                 vd->vdev_stat.vs_aux = aux;
2927                 return;
2928         }
2929
2930         save_state = vd->vdev_state;
2931
2932         vd->vdev_state = state;
2933         vd->vdev_stat.vs_aux = aux;
2934
2935         /*
2936          * If we are setting the vdev state to anything but an open state, then
2937          * always close the underlying device unless the device has requested
2938          * a delayed close (i.e. we're about to remove or fault the device).
2939          * Otherwise, we keep accessible but invalid devices open forever.
2940          * We don't call vdev_close() itself, because that implies some extra
2941          * checks (offline, etc) that we don't want here.  This is limited to
2942          * leaf devices, because otherwise closing the device will affect other
2943          * children.
2944          */
2945         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2946             vd->vdev_ops->vdev_op_leaf)
2947                 vd->vdev_ops->vdev_op_close(vd);
2948
2949         /*
2950          * If we have brought this vdev back into service, we need
2951          * to notify fmd so that it can gracefully repair any outstanding
2952          * cases due to a missing device.  We do this in all cases, even those
2953          * that probably don't correlate to a repaired fault.  This is sure to
2954          * catch all cases, and we let the zfs-retire agent sort it out.  If
2955          * this is a transient state it's OK, as the retire agent will
2956          * double-check the state of the vdev before repairing it.
2957          */
2958         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2959             vd->vdev_prevstate != state)
2960                 zfs_post_state_change(spa, vd);
2961
2962         if (vd->vdev_removed &&
2963             state == VDEV_STATE_CANT_OPEN &&
2964             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2965                 /*
2966                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2967                  * device was previously marked removed and someone attempted to
2968                  * reopen it.  If this failed due to a nonexistent device, then
2969                  * keep the device in the REMOVED state.  We also let this be if
2970                  * it is one of our special test online cases, which is only
2971                  * attempting to online the device and shouldn't generate an FMA
2972                  * fault.
2973                  */
2974                 vd->vdev_state = VDEV_STATE_REMOVED;
2975                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2976         } else if (state == VDEV_STATE_REMOVED) {
2977                 vd->vdev_removed = B_TRUE;
2978         } else if (state == VDEV_STATE_CANT_OPEN) {
2979                 /*
2980                  * If we fail to open a vdev during an import or recovery, we
2981                  * mark it as "not available", which signifies that it was
2982                  * never there to begin with.  Failure to open such a device
2983                  * is not considered an error.
2984                  */
2985                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2986                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2987                     vd->vdev_ops->vdev_op_leaf)
2988                         vd->vdev_not_present = 1;
2989
2990                 /*
2991                  * Post the appropriate ereport.  If the 'prevstate' field is
2992                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2993                  * that this is part of a vdev_reopen().  In this case, we don't
2994                  * want to post the ereport if the device was already in the
2995                  * CANT_OPEN state beforehand.
2996                  *
2997                  * If the 'checkremove' flag is set, then this is an attempt to
2998                  * online the device in response to an insertion event.  If we
2999                  * hit this case, then we have detected an insertion event for a
3000                  * faulted or offline device that wasn't in the removed state.
3001                  * In this scenario, we don't post an ereport because we are
3002                  * about to replace the device, or attempt an online with
3003                  * vdev_forcefault, which will generate the fault for us.
3004                  */
3005                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3006                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3007                     vd != spa->spa_root_vdev) {
3008                         const char *class;
3009
3010                         switch (aux) {
3011                         case VDEV_AUX_OPEN_FAILED:
3012                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3013                                 break;
3014                         case VDEV_AUX_CORRUPT_DATA:
3015                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3016                                 break;
3017                         case VDEV_AUX_NO_REPLICAS:
3018                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3019                                 break;
3020                         case VDEV_AUX_BAD_GUID_SUM:
3021                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3022                                 break;
3023                         case VDEV_AUX_TOO_SMALL:
3024                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3025                                 break;
3026                         case VDEV_AUX_BAD_LABEL:
3027                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3028                                 break;
3029                         default:
3030                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3031                         }
3032
3033                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3034                 }
3035
3036                 /* Erase any notion of persistent removed state */
3037                 vd->vdev_removed = B_FALSE;
3038         } else {
3039                 vd->vdev_removed = B_FALSE;
3040         }
3041
3042         if (!isopen && vd->vdev_parent)
3043                 vdev_propagate_state(vd->vdev_parent);
3044 }
3045
3046 /*
3047  * Check the vdev configuration to ensure that it's capable of supporting
3048  * a root pool.
3049  *
3050  * On Solaris, we do not support RAID-Z or partial configuration.  In
3051  * addition, only a single top-level vdev is allowed and none of the
3052  * leaves can be wholedisks.
3053  *
3054  * For FreeBSD, we can boot from any configuration. There is a
3055  * limitation that the boot filesystem must be either uncompressed or
3056  * compresses with lzjb compression but I'm not sure how to enforce
3057  * that here.
3058  */
3059 boolean_t
3060 vdev_is_bootable(vdev_t *vd)
3061 {
3062 #ifdef sun
3063         if (!vd->vdev_ops->vdev_op_leaf) {
3064                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3065
3066                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3067                     vd->vdev_children > 1) {
3068                         return (B_FALSE);
3069                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3070                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3071                         return (B_FALSE);
3072                 }
3073         } else if (vd->vdev_wholedisk == 1) {
3074                 return (B_FALSE);
3075         }
3076
3077         for (int c = 0; c < vd->vdev_children; c++) {
3078                 if (!vdev_is_bootable(vd->vdev_child[c]))
3079                         return (B_FALSE);
3080         }
3081 #endif  /* sun */
3082         return (B_TRUE);
3083 }
3084
3085 /*
3086  * Load the state from the original vdev tree (ovd) which
3087  * we've retrieved from the MOS config object. If the original
3088  * vdev was offline or faulted then we transfer that state to the
3089  * device in the current vdev tree (nvd).
3090  */
3091 void
3092 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3093 {
3094         spa_t *spa = nvd->vdev_spa;
3095
3096         ASSERT(nvd->vdev_top->vdev_islog);
3097         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3098         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3099
3100         for (int c = 0; c < nvd->vdev_children; c++)
3101                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3102
3103         if (nvd->vdev_ops->vdev_op_leaf) {
3104                 /*
3105                  * Restore the persistent vdev state
3106                  */
3107                 nvd->vdev_offline = ovd->vdev_offline;
3108                 nvd->vdev_faulted = ovd->vdev_faulted;
3109                 nvd->vdev_degraded = ovd->vdev_degraded;
3110                 nvd->vdev_removed = ovd->vdev_removed;
3111         }
3112 }
3113
3114 /*
3115  * Determine if a log device has valid content.  If the vdev was
3116  * removed or faulted in the MOS config then we know that
3117  * the content on the log device has already been written to the pool.
3118  */
3119 boolean_t
3120 vdev_log_state_valid(vdev_t *vd)
3121 {
3122         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3123             !vd->vdev_removed)
3124                 return (B_TRUE);
3125
3126         for (int c = 0; c < vd->vdev_children; c++)
3127                 if (vdev_log_state_valid(vd->vdev_child[c]))
3128                         return (B_TRUE);
3129
3130         return (B_FALSE);
3131 }
3132
3133 /*
3134  * Expand a vdev if possible.
3135  */
3136 void
3137 vdev_expand(vdev_t *vd, uint64_t txg)
3138 {
3139         ASSERT(vd->vdev_top == vd);
3140         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3141
3142         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3143                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3144                 vdev_config_dirty(vd);
3145         }
3146 }
3147
3148 /*
3149  * Split a vdev.
3150  */
3151 void
3152 vdev_split(vdev_t *vd)
3153 {
3154         vdev_t *cvd, *pvd = vd->vdev_parent;
3155
3156         vdev_remove_child(pvd, vd);
3157         vdev_compact_children(pvd);
3158
3159         cvd = pvd->vdev_child[0];
3160         if (pvd->vdev_children == 1) {
3161                 vdev_remove_parent(cvd);
3162                 cvd->vdev_splitting = B_TRUE;
3163         }
3164         vdev_propagate_state(cvd);
3165 }