]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r209962, r211970-r211972, r212050, r212605, r212611
[FreeBSD/stable/8.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42
43 SYSCTL_DECL(_vfs_zfs);
44 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
45
46 /*
47  * Virtual device management.
48  */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51         &vdev_root_ops,
52         &vdev_raidz_ops,
53         &vdev_mirror_ops,
54         &vdev_replacing_ops,
55         &vdev_spare_ops,
56 #ifdef _KERNEL
57         &vdev_geom_ops,
58 #else
59         &vdev_disk_ops,
60 #endif
61         &vdev_file_ops,
62         &vdev_missing_ops,
63         NULL
64 };
65
66 /* maximum scrub/resilver I/O queue per leaf vdev */
67 int zfs_scrub_limit = 10;
68
69 TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
70 SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
71     "Maximum scrub/resilver I/O queue");
72
73 /*
74  * Given a vdev type, return the appropriate ops vector.
75  */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79         vdev_ops_t *ops, **opspp;
80
81         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82                 if (strcmp(ops->vdev_op_type, type) == 0)
83                         break;
84
85         return (ops);
86 }
87
88 /*
89  * Default asize function: return the MAX of psize with the asize of
90  * all children.  This is what's used by anything other than RAID-Z.
91  */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96         uint64_t csize;
97         uint64_t c;
98
99         for (c = 0; c < vd->vdev_children; c++) {
100                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101                 asize = MAX(asize, csize);
102         }
103
104         return (asize);
105 }
106
107 /*
108  * Get the replaceable or attachable device size.
109  * If the parent is a mirror or raidz, the replaceable size is the minimum
110  * psize of all its children. For the rest, just return our own psize.
111  *
112  * e.g.
113  *                      psize   rsize
114  * root                 -       -
115  *      mirror/raidz    -       -
116  *          disk1       20g     20g
117  *          disk2       40g     20g
118  *      disk3           80g     80g
119  */
120 uint64_t
121 vdev_get_rsize(vdev_t *vd)
122 {
123         vdev_t *pvd, *cvd;
124         uint64_t c, rsize;
125
126         pvd = vd->vdev_parent;
127
128         /*
129          * If our parent is NULL or the root, just return our own psize.
130          */
131         if (pvd == NULL || pvd->vdev_parent == NULL)
132                 return (vd->vdev_psize);
133
134         rsize = 0;
135
136         for (c = 0; c < pvd->vdev_children; c++) {
137                 cvd = pvd->vdev_child[c];
138                 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
139         }
140
141         return (rsize);
142 }
143
144 vdev_t *
145 vdev_lookup_top(spa_t *spa, uint64_t vdev)
146 {
147         vdev_t *rvd = spa->spa_root_vdev;
148
149         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150
151         if (vdev < rvd->vdev_children) {
152                 ASSERT(rvd->vdev_child[vdev] != NULL);
153                 return (rvd->vdev_child[vdev]);
154         }
155
156         return (NULL);
157 }
158
159 vdev_t *
160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161 {
162         int c;
163         vdev_t *mvd;
164
165         if (vd->vdev_guid == guid)
166                 return (vd);
167
168         for (c = 0; c < vd->vdev_children; c++)
169                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
170                     NULL)
171                         return (mvd);
172
173         return (NULL);
174 }
175
176 void
177 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
178 {
179         size_t oldsize, newsize;
180         uint64_t id = cvd->vdev_id;
181         vdev_t **newchild;
182
183         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
184         ASSERT(cvd->vdev_parent == NULL);
185
186         cvd->vdev_parent = pvd;
187
188         if (pvd == NULL)
189                 return;
190
191         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
192
193         oldsize = pvd->vdev_children * sizeof (vdev_t *);
194         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
195         newsize = pvd->vdev_children * sizeof (vdev_t *);
196
197         newchild = kmem_zalloc(newsize, KM_SLEEP);
198         if (pvd->vdev_child != NULL) {
199                 bcopy(pvd->vdev_child, newchild, oldsize);
200                 kmem_free(pvd->vdev_child, oldsize);
201         }
202
203         pvd->vdev_child = newchild;
204         pvd->vdev_child[id] = cvd;
205
206         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
207         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
208
209         /*
210          * Walk up all ancestors to update guid sum.
211          */
212         for (; pvd != NULL; pvd = pvd->vdev_parent)
213                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
214
215         if (cvd->vdev_ops->vdev_op_leaf)
216                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
217 }
218
219 void
220 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
221 {
222         int c;
223         uint_t id = cvd->vdev_id;
224
225         ASSERT(cvd->vdev_parent == pvd);
226
227         if (pvd == NULL)
228                 return;
229
230         ASSERT(id < pvd->vdev_children);
231         ASSERT(pvd->vdev_child[id] == cvd);
232
233         pvd->vdev_child[id] = NULL;
234         cvd->vdev_parent = NULL;
235
236         for (c = 0; c < pvd->vdev_children; c++)
237                 if (pvd->vdev_child[c])
238                         break;
239
240         if (c == pvd->vdev_children) {
241                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
242                 pvd->vdev_child = NULL;
243                 pvd->vdev_children = 0;
244         }
245
246         /*
247          * Walk up all ancestors to update guid sum.
248          */
249         for (; pvd != NULL; pvd = pvd->vdev_parent)
250                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
251
252         if (cvd->vdev_ops->vdev_op_leaf)
253                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
254 }
255
256 /*
257  * Remove any holes in the child array.
258  */
259 void
260 vdev_compact_children(vdev_t *pvd)
261 {
262         vdev_t **newchild, *cvd;
263         int oldc = pvd->vdev_children;
264         int newc, c;
265
266         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
267
268         for (c = newc = 0; c < oldc; c++)
269                 if (pvd->vdev_child[c])
270                         newc++;
271
272         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
273
274         for (c = newc = 0; c < oldc; c++) {
275                 if ((cvd = pvd->vdev_child[c]) != NULL) {
276                         newchild[newc] = cvd;
277                         cvd->vdev_id = newc++;
278                 }
279         }
280
281         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
282         pvd->vdev_child = newchild;
283         pvd->vdev_children = newc;
284 }
285
286 /*
287  * Allocate and minimally initialize a vdev_t.
288  */
289 static vdev_t *
290 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
291 {
292         vdev_t *vd;
293
294         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
295
296         if (spa->spa_root_vdev == NULL) {
297                 ASSERT(ops == &vdev_root_ops);
298                 spa->spa_root_vdev = vd;
299         }
300
301         if (guid == 0) {
302                 if (spa->spa_root_vdev == vd) {
303                         /*
304                          * The root vdev's guid will also be the pool guid,
305                          * which must be unique among all pools.
306                          */
307                         while (guid == 0 || spa_guid_exists(guid, 0))
308                                 guid = spa_get_random(-1ULL);
309                 } else {
310                         /*
311                          * Any other vdev's guid must be unique within the pool.
312                          */
313                         while (guid == 0 ||
314                             spa_guid_exists(spa_guid(spa), guid))
315                                 guid = spa_get_random(-1ULL);
316                 }
317                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
318         }
319
320         vd->vdev_spa = spa;
321         vd->vdev_id = id;
322         vd->vdev_guid = guid;
323         vd->vdev_guid_sum = guid;
324         vd->vdev_ops = ops;
325         vd->vdev_state = VDEV_STATE_CLOSED;
326
327         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
328         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
329         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
330         for (int t = 0; t < DTL_TYPES; t++) {
331                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
332                     &vd->vdev_dtl_lock);
333         }
334         txg_list_create(&vd->vdev_ms_list,
335             offsetof(struct metaslab, ms_txg_node));
336         txg_list_create(&vd->vdev_dtl_list,
337             offsetof(struct vdev, vdev_dtl_node));
338         vd->vdev_stat.vs_timestamp = gethrtime();
339         vdev_queue_init(vd);
340         vdev_cache_init(vd);
341
342         return (vd);
343 }
344
345 /*
346  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
347  * creating a new vdev or loading an existing one - the behavior is slightly
348  * different for each case.
349  */
350 int
351 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
352     int alloctype)
353 {
354         vdev_ops_t *ops;
355         char *type;
356         uint64_t guid = 0, islog, nparity;
357         vdev_t *vd;
358
359         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
360
361         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
362                 return (EINVAL);
363
364         if ((ops = vdev_getops(type)) == NULL)
365                 return (EINVAL);
366
367         /*
368          * If this is a load, get the vdev guid from the nvlist.
369          * Otherwise, vdev_alloc_common() will generate one for us.
370          */
371         if (alloctype == VDEV_ALLOC_LOAD) {
372                 uint64_t label_id;
373
374                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
375                     label_id != id)
376                         return (EINVAL);
377
378                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379                         return (EINVAL);
380         } else if (alloctype == VDEV_ALLOC_SPARE) {
381                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382                         return (EINVAL);
383         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
384                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385                         return (EINVAL);
386         }
387
388         /*
389          * The first allocated vdev must be of type 'root'.
390          */
391         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
392                 return (EINVAL);
393
394         /*
395          * Determine whether we're a log vdev.
396          */
397         islog = 0;
398         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
399         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
400                 return (ENOTSUP);
401
402         /*
403          * Set the nparity property for RAID-Z vdevs.
404          */
405         nparity = -1ULL;
406         if (ops == &vdev_raidz_ops) {
407                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
408                     &nparity) == 0) {
409                         /*
410                          * Currently, we can only support 2 parity devices.
411                          */
412                         if (nparity == 0 || nparity > 2)
413                                 return (EINVAL);
414                         /*
415                          * Older versions can only support 1 parity device.
416                          */
417                         if (nparity == 2 &&
418                             spa_version(spa) < SPA_VERSION_RAID6)
419                                 return (ENOTSUP);
420                 } else {
421                         /*
422                          * We require the parity to be specified for SPAs that
423                          * support multiple parity levels.
424                          */
425                         if (spa_version(spa) >= SPA_VERSION_RAID6)
426                                 return (EINVAL);
427                         /*
428                          * Otherwise, we default to 1 parity device for RAID-Z.
429                          */
430                         nparity = 1;
431                 }
432         } else {
433                 nparity = 0;
434         }
435         ASSERT(nparity != -1ULL);
436
437         vd = vdev_alloc_common(spa, id, guid, ops);
438
439         vd->vdev_islog = islog;
440         vd->vdev_nparity = nparity;
441
442         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
443                 vd->vdev_path = spa_strdup(vd->vdev_path);
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
445                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
446         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
447             &vd->vdev_physpath) == 0)
448                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
450                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
451
452         /*
453          * Set the whole_disk property.  If it's not specified, leave the value
454          * as -1.
455          */
456         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
457             &vd->vdev_wholedisk) != 0)
458                 vd->vdev_wholedisk = -1ULL;
459
460         /*
461          * Look for the 'not present' flag.  This will only be set if the device
462          * was not present at the time of import.
463          */
464         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
465             &vd->vdev_not_present);
466
467         /*
468          * Get the alignment requirement.
469          */
470         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471
472         /*
473          * If we're a top-level vdev, try to load the allocation parameters.
474          */
475         if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
476                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
477                     &vd->vdev_ms_array);
478                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
479                     &vd->vdev_ms_shift);
480                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
481                     &vd->vdev_asize);
482         }
483
484         /*
485          * If we're a leaf vdev, try to load the DTL object and other state.
486          */
487         if (vd->vdev_ops->vdev_op_leaf &&
488             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
489                 if (alloctype == VDEV_ALLOC_LOAD) {
490                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
491                             &vd->vdev_dtl_smo.smo_object);
492                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
493                             &vd->vdev_unspare);
494                 }
495                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
496                     &vd->vdev_offline);
497
498                 /*
499                  * When importing a pool, we want to ignore the persistent fault
500                  * state, as the diagnosis made on another system may not be
501                  * valid in the current context.
502                  */
503                 if (spa->spa_load_state == SPA_LOAD_OPEN) {
504                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
505                             &vd->vdev_faulted);
506                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
507                             &vd->vdev_degraded);
508                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
509                             &vd->vdev_removed);
510                 }
511         }
512
513         /*
514          * Add ourselves to the parent's list of children.
515          */
516         vdev_add_child(parent, vd);
517
518         *vdp = vd;
519
520         return (0);
521 }
522
523 void
524 vdev_free(vdev_t *vd)
525 {
526         int c;
527         spa_t *spa = vd->vdev_spa;
528
529         /*
530          * vdev_free() implies closing the vdev first.  This is simpler than
531          * trying to ensure complicated semantics for all callers.
532          */
533         vdev_close(vd);
534
535         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
536
537         /*
538          * Free all children.
539          */
540         for (c = 0; c < vd->vdev_children; c++)
541                 vdev_free(vd->vdev_child[c]);
542
543         ASSERT(vd->vdev_child == NULL);
544         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
545
546         /*
547          * Discard allocation state.
548          */
549         if (vd == vd->vdev_top)
550                 vdev_metaslab_fini(vd);
551
552         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
553         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
554         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
555
556         /*
557          * Remove this vdev from its parent's child list.
558          */
559         vdev_remove_child(vd->vdev_parent, vd);
560
561         ASSERT(vd->vdev_parent == NULL);
562
563         /*
564          * Clean up vdev structure.
565          */
566         vdev_queue_fini(vd);
567         vdev_cache_fini(vd);
568
569         if (vd->vdev_path)
570                 spa_strfree(vd->vdev_path);
571         if (vd->vdev_devid)
572                 spa_strfree(vd->vdev_devid);
573         if (vd->vdev_physpath)
574                 spa_strfree(vd->vdev_physpath);
575         if (vd->vdev_fru)
576                 spa_strfree(vd->vdev_fru);
577
578         if (vd->vdev_isspare)
579                 spa_spare_remove(vd);
580         if (vd->vdev_isl2cache)
581                 spa_l2cache_remove(vd);
582
583         txg_list_destroy(&vd->vdev_ms_list);
584         txg_list_destroy(&vd->vdev_dtl_list);
585
586         mutex_enter(&vd->vdev_dtl_lock);
587         for (int t = 0; t < DTL_TYPES; t++) {
588                 space_map_unload(&vd->vdev_dtl[t]);
589                 space_map_destroy(&vd->vdev_dtl[t]);
590         }
591         mutex_exit(&vd->vdev_dtl_lock);
592
593         mutex_destroy(&vd->vdev_dtl_lock);
594         mutex_destroy(&vd->vdev_stat_lock);
595         mutex_destroy(&vd->vdev_probe_lock);
596
597         if (vd == spa->spa_root_vdev)
598                 spa->spa_root_vdev = NULL;
599
600         kmem_free(vd, sizeof (vdev_t));
601 }
602
603 /*
604  * Transfer top-level vdev state from svd to tvd.
605  */
606 static void
607 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
608 {
609         spa_t *spa = svd->vdev_spa;
610         metaslab_t *msp;
611         vdev_t *vd;
612         int t;
613
614         ASSERT(tvd == tvd->vdev_top);
615
616         tvd->vdev_ms_array = svd->vdev_ms_array;
617         tvd->vdev_ms_shift = svd->vdev_ms_shift;
618         tvd->vdev_ms_count = svd->vdev_ms_count;
619
620         svd->vdev_ms_array = 0;
621         svd->vdev_ms_shift = 0;
622         svd->vdev_ms_count = 0;
623
624         tvd->vdev_mg = svd->vdev_mg;
625         tvd->vdev_ms = svd->vdev_ms;
626
627         svd->vdev_mg = NULL;
628         svd->vdev_ms = NULL;
629
630         if (tvd->vdev_mg != NULL)
631                 tvd->vdev_mg->mg_vd = tvd;
632
633         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
634         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
635         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
636
637         svd->vdev_stat.vs_alloc = 0;
638         svd->vdev_stat.vs_space = 0;
639         svd->vdev_stat.vs_dspace = 0;
640
641         for (t = 0; t < TXG_SIZE; t++) {
642                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
643                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
644                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
645                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
646                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
647                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
648         }
649
650         if (list_link_active(&svd->vdev_config_dirty_node)) {
651                 vdev_config_clean(svd);
652                 vdev_config_dirty(tvd);
653         }
654
655         if (list_link_active(&svd->vdev_state_dirty_node)) {
656                 vdev_state_clean(svd);
657                 vdev_state_dirty(tvd);
658         }
659
660         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
661         svd->vdev_deflate_ratio = 0;
662
663         tvd->vdev_islog = svd->vdev_islog;
664         svd->vdev_islog = 0;
665 }
666
667 static void
668 vdev_top_update(vdev_t *tvd, vdev_t *vd)
669 {
670         int c;
671
672         if (vd == NULL)
673                 return;
674
675         vd->vdev_top = tvd;
676
677         for (c = 0; c < vd->vdev_children; c++)
678                 vdev_top_update(tvd, vd->vdev_child[c]);
679 }
680
681 /*
682  * Add a mirror/replacing vdev above an existing vdev.
683  */
684 vdev_t *
685 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
686 {
687         spa_t *spa = cvd->vdev_spa;
688         vdev_t *pvd = cvd->vdev_parent;
689         vdev_t *mvd;
690
691         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
692
693         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
694
695         mvd->vdev_asize = cvd->vdev_asize;
696         mvd->vdev_ashift = cvd->vdev_ashift;
697         mvd->vdev_state = cvd->vdev_state;
698
699         vdev_remove_child(pvd, cvd);
700         vdev_add_child(pvd, mvd);
701         cvd->vdev_id = mvd->vdev_children;
702         vdev_add_child(mvd, cvd);
703         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
704
705         if (mvd == mvd->vdev_top)
706                 vdev_top_transfer(cvd, mvd);
707
708         return (mvd);
709 }
710
711 /*
712  * Remove a 1-way mirror/replacing vdev from the tree.
713  */
714 void
715 vdev_remove_parent(vdev_t *cvd)
716 {
717         vdev_t *mvd = cvd->vdev_parent;
718         vdev_t *pvd = mvd->vdev_parent;
719
720         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
721
722         ASSERT(mvd->vdev_children == 1);
723         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
724             mvd->vdev_ops == &vdev_replacing_ops ||
725             mvd->vdev_ops == &vdev_spare_ops);
726         cvd->vdev_ashift = mvd->vdev_ashift;
727
728         vdev_remove_child(mvd, cvd);
729         vdev_remove_child(pvd, mvd);
730
731         /*
732          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
733          * Otherwise, we could have detached an offline device, and when we
734          * go to import the pool we'll think we have two top-level vdevs,
735          * instead of a different version of the same top-level vdev.
736          */
737         if (mvd->vdev_top == mvd) {
738                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
739                 cvd->vdev_guid += guid_delta;
740                 cvd->vdev_guid_sum += guid_delta;
741         }
742         cvd->vdev_id = mvd->vdev_id;
743         vdev_add_child(pvd, cvd);
744         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
745
746         if (cvd == cvd->vdev_top)
747                 vdev_top_transfer(mvd, cvd);
748
749         ASSERT(mvd->vdev_children == 0);
750         vdev_free(mvd);
751 }
752
753 int
754 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
755 {
756         spa_t *spa = vd->vdev_spa;
757         objset_t *mos = spa->spa_meta_objset;
758         metaslab_class_t *mc;
759         uint64_t m;
760         uint64_t oldc = vd->vdev_ms_count;
761         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
762         metaslab_t **mspp;
763         int error;
764
765         if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
766                 return (0);
767
768         ASSERT(oldc <= newc);
769
770         if (vd->vdev_islog)
771                 mc = spa->spa_log_class;
772         else
773                 mc = spa->spa_normal_class;
774
775         if (vd->vdev_mg == NULL)
776                 vd->vdev_mg = metaslab_group_create(mc, vd);
777
778         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
779
780         if (oldc != 0) {
781                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
782                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
783         }
784
785         vd->vdev_ms = mspp;
786         vd->vdev_ms_count = newc;
787
788         for (m = oldc; m < newc; m++) {
789                 space_map_obj_t smo = { 0, 0, 0 };
790                 if (txg == 0) {
791                         uint64_t object = 0;
792                         error = dmu_read(mos, vd->vdev_ms_array,
793                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
794                             DMU_READ_PREFETCH);
795                         if (error)
796                                 return (error);
797                         if (object != 0) {
798                                 dmu_buf_t *db;
799                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
800                                 if (error)
801                                         return (error);
802                                 ASSERT3U(db->db_size, >=, sizeof (smo));
803                                 bcopy(db->db_data, &smo, sizeof (smo));
804                                 ASSERT3U(smo.smo_object, ==, object);
805                                 dmu_buf_rele(db, FTAG);
806                         }
807                 }
808                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
809                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
810         }
811
812         return (0);
813 }
814
815 void
816 vdev_metaslab_fini(vdev_t *vd)
817 {
818         uint64_t m;
819         uint64_t count = vd->vdev_ms_count;
820
821         if (vd->vdev_ms != NULL) {
822                 for (m = 0; m < count; m++)
823                         if (vd->vdev_ms[m] != NULL)
824                                 metaslab_fini(vd->vdev_ms[m]);
825                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
826                 vd->vdev_ms = NULL;
827         }
828 }
829
830 typedef struct vdev_probe_stats {
831         boolean_t       vps_readable;
832         boolean_t       vps_writeable;
833         int             vps_flags;
834 } vdev_probe_stats_t;
835
836 static void
837 vdev_probe_done(zio_t *zio)
838 {
839         spa_t *spa = zio->io_spa;
840         vdev_t *vd = zio->io_vd;
841         vdev_probe_stats_t *vps = zio->io_private;
842
843         ASSERT(vd->vdev_probe_zio != NULL);
844
845         if (zio->io_type == ZIO_TYPE_READ) {
846                 if (zio->io_error == 0)
847                         vps->vps_readable = 1;
848                 if (zio->io_error == 0 && spa_writeable(spa)) {
849                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
850                             zio->io_offset, zio->io_size, zio->io_data,
851                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
852                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
853                 } else {
854                         zio_buf_free(zio->io_data, zio->io_size);
855                 }
856         } else if (zio->io_type == ZIO_TYPE_WRITE) {
857                 if (zio->io_error == 0)
858                         vps->vps_writeable = 1;
859                 zio_buf_free(zio->io_data, zio->io_size);
860         } else if (zio->io_type == ZIO_TYPE_NULL) {
861                 zio_t *pio;
862
863                 vd->vdev_cant_read |= !vps->vps_readable;
864                 vd->vdev_cant_write |= !vps->vps_writeable;
865
866                 if (vdev_readable(vd) &&
867                     (vdev_writeable(vd) || !spa_writeable(spa))) {
868                         zio->io_error = 0;
869                 } else {
870                         ASSERT(zio->io_error != 0);
871                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
872                             spa, vd, NULL, 0, 0);
873                         zio->io_error = ENXIO;
874                 }
875
876                 mutex_enter(&vd->vdev_probe_lock);
877                 ASSERT(vd->vdev_probe_zio == zio);
878                 vd->vdev_probe_zio = NULL;
879                 mutex_exit(&vd->vdev_probe_lock);
880
881                 while ((pio = zio_walk_parents(zio)) != NULL)
882                         if (!vdev_accessible(vd, pio))
883                                 pio->io_error = ENXIO;
884
885                 kmem_free(vps, sizeof (*vps));
886         }
887 }
888
889 /*
890  * Determine whether this device is accessible by reading and writing
891  * to several known locations: the pad regions of each vdev label
892  * but the first (which we leave alone in case it contains a VTOC).
893  */
894 zio_t *
895 vdev_probe(vdev_t *vd, zio_t *zio)
896 {
897         spa_t *spa = vd->vdev_spa;
898         vdev_probe_stats_t *vps = NULL;
899         zio_t *pio;
900
901         ASSERT(vd->vdev_ops->vdev_op_leaf);
902
903         /*
904          * Don't probe the probe.
905          */
906         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
907                 return (NULL);
908
909         /*
910          * To prevent 'probe storms' when a device fails, we create
911          * just one probe i/o at a time.  All zios that want to probe
912          * this vdev will become parents of the probe io.
913          */
914         mutex_enter(&vd->vdev_probe_lock);
915
916         if ((pio = vd->vdev_probe_zio) == NULL) {
917                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
918
919                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
920                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
921                     ZIO_FLAG_DONT_RETRY;
922
923                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
924                         /*
925                          * vdev_cant_read and vdev_cant_write can only
926                          * transition from TRUE to FALSE when we have the
927                          * SCL_ZIO lock as writer; otherwise they can only
928                          * transition from FALSE to TRUE.  This ensures that
929                          * any zio looking at these values can assume that
930                          * failures persist for the life of the I/O.  That's
931                          * important because when a device has intermittent
932                          * connectivity problems, we want to ensure that
933                          * they're ascribed to the device (ENXIO) and not
934                          * the zio (EIO).
935                          *
936                          * Since we hold SCL_ZIO as writer here, clear both
937                          * values so the probe can reevaluate from first
938                          * principles.
939                          */
940                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
941                         vd->vdev_cant_read = B_FALSE;
942                         vd->vdev_cant_write = B_FALSE;
943                 }
944
945                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
946                     vdev_probe_done, vps,
947                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
948
949                 if (zio != NULL) {
950                         vd->vdev_probe_wanted = B_TRUE;
951                         spa_async_request(spa, SPA_ASYNC_PROBE);
952                 }
953         }
954
955         if (zio != NULL)
956                 zio_add_child(zio, pio);
957
958         mutex_exit(&vd->vdev_probe_lock);
959
960         if (vps == NULL) {
961                 ASSERT(zio != NULL);
962                 return (NULL);
963         }
964
965         for (int l = 1; l < VDEV_LABELS; l++) {
966                 zio_nowait(zio_read_phys(pio, vd,
967                     vdev_label_offset(vd->vdev_psize, l,
968                     offsetof(vdev_label_t, vl_pad2)),
969                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
970                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
971                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
972         }
973
974         if (zio == NULL)
975                 return (pio);
976
977         zio_nowait(pio);
978         return (NULL);
979 }
980
981 /*
982  * Prepare a virtual device for access.
983  */
984 int
985 vdev_open(vdev_t *vd)
986 {
987         spa_t *spa = vd->vdev_spa;
988         int error;
989         int c;
990         uint64_t osize = 0;
991         uint64_t asize, psize;
992         uint64_t ashift = 0;
993
994         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
995
996         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
997             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
998             vd->vdev_state == VDEV_STATE_OFFLINE);
999
1000         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1001
1002         if (!vd->vdev_removed && vd->vdev_faulted) {
1003                 ASSERT(vd->vdev_children == 0);
1004                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1005                     VDEV_AUX_ERR_EXCEEDED);
1006                 return (ENXIO);
1007         } else if (vd->vdev_offline) {
1008                 ASSERT(vd->vdev_children == 0);
1009                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1010                 return (ENXIO);
1011         }
1012
1013         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1014
1015         if (zio_injection_enabled && error == 0)
1016                 error = zio_handle_device_injection(vd, ENXIO);
1017
1018         if (error) {
1019                 if (vd->vdev_removed &&
1020                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1021                         vd->vdev_removed = B_FALSE;
1022
1023                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1024                     vd->vdev_stat.vs_aux);
1025                 return (error);
1026         }
1027
1028         vd->vdev_removed = B_FALSE;
1029
1030         if (vd->vdev_degraded) {
1031                 ASSERT(vd->vdev_children == 0);
1032                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1033                     VDEV_AUX_ERR_EXCEEDED);
1034         } else {
1035                 vd->vdev_state = VDEV_STATE_HEALTHY;
1036         }
1037
1038         for (c = 0; c < vd->vdev_children; c++)
1039                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1040                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1041                             VDEV_AUX_NONE);
1042                         break;
1043                 }
1044
1045         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1046
1047         if (vd->vdev_children == 0) {
1048                 if (osize < SPA_MINDEVSIZE) {
1049                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1050                             VDEV_AUX_TOO_SMALL);
1051                         return (EOVERFLOW);
1052                 }
1053                 psize = osize;
1054                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1055         } else {
1056                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1057                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1058                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1059                             VDEV_AUX_TOO_SMALL);
1060                         return (EOVERFLOW);
1061                 }
1062                 psize = 0;
1063                 asize = osize;
1064         }
1065
1066         vd->vdev_psize = psize;
1067
1068         if (vd->vdev_asize == 0) {
1069                 /*
1070                  * This is the first-ever open, so use the computed values.
1071                  * For testing purposes, a higher ashift can be requested.
1072                  */
1073                 vd->vdev_asize = asize;
1074                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1075         } else {
1076                 /*
1077                  * Make sure the alignment requirement hasn't increased.
1078                  */
1079                 if (ashift > vd->vdev_top->vdev_ashift) {
1080                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1081                             VDEV_AUX_BAD_LABEL);
1082                         return (EINVAL);
1083                 }
1084
1085                 /*
1086                  * Make sure the device hasn't shrunk.
1087                  */
1088                 if (asize < vd->vdev_asize) {
1089                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1090                             VDEV_AUX_BAD_LABEL);
1091                         return (EINVAL);
1092                 }
1093
1094                 /*
1095                  * If all children are healthy and the asize has increased,
1096                  * then we've experienced dynamic LUN growth.
1097                  */
1098                 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1099                     asize > vd->vdev_asize) {
1100                         vd->vdev_asize = asize;
1101                 }
1102         }
1103
1104         /*
1105          * Ensure we can issue some IO before declaring the
1106          * vdev open for business.
1107          */
1108         if (vd->vdev_ops->vdev_op_leaf &&
1109             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1110                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1111                     VDEV_AUX_IO_FAILURE);
1112                 return (error);
1113         }
1114
1115         /*
1116          * If this is a top-level vdev, compute the raidz-deflation
1117          * ratio.  Note, we hard-code in 128k (1<<17) because it is the
1118          * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
1119          * changes, this algorithm must never change, or we will
1120          * inconsistently account for existing bp's.
1121          */
1122         if (vd->vdev_top == vd) {
1123                 vd->vdev_deflate_ratio = (1<<17) /
1124                     (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1125         }
1126
1127         /*
1128          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1129          * resilver.  But don't do this if we are doing a reopen for a scrub,
1130          * since this would just restart the scrub we are already doing.
1131          */
1132         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1133             vdev_resilver_needed(vd, NULL, NULL))
1134                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1135
1136         return (0);
1137 }
1138
1139 /*
1140  * Called once the vdevs are all opened, this routine validates the label
1141  * contents.  This needs to be done before vdev_load() so that we don't
1142  * inadvertently do repair I/Os to the wrong device.
1143  *
1144  * This function will only return failure if one of the vdevs indicates that it
1145  * has since been destroyed or exported.  This is only possible if
1146  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1147  * will be updated but the function will return 0.
1148  */
1149 int
1150 vdev_validate(vdev_t *vd)
1151 {
1152         spa_t *spa = vd->vdev_spa;
1153         int c;
1154         nvlist_t *label;
1155         uint64_t guid, top_guid;
1156         uint64_t state;
1157
1158         for (c = 0; c < vd->vdev_children; c++)
1159                 if (vdev_validate(vd->vdev_child[c]) != 0)
1160                         return (EBADF);
1161
1162         /*
1163          * If the device has already failed, or was marked offline, don't do
1164          * any further validation.  Otherwise, label I/O will fail and we will
1165          * overwrite the previous state.
1166          */
1167         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1168
1169                 if ((label = vdev_label_read_config(vd)) == NULL) {
1170                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1171                             VDEV_AUX_BAD_LABEL);
1172                         return (0);
1173                 }
1174
1175                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1176                     &guid) != 0 || guid != spa_guid(spa)) {
1177                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1178                             VDEV_AUX_CORRUPT_DATA);
1179                         nvlist_free(label);
1180                         return (0);
1181                 }
1182
1183                 /*
1184                  * If this vdev just became a top-level vdev because its
1185                  * sibling was detached, it will have adopted the parent's
1186                  * vdev guid -- but the label may or may not be on disk yet.
1187                  * Fortunately, either version of the label will have the
1188                  * same top guid, so if we're a top-level vdev, we can
1189                  * safely compare to that instead.
1190                  */
1191                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1192                     &guid) != 0 ||
1193                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1194                     &top_guid) != 0 ||
1195                     (vd->vdev_guid != guid &&
1196                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1197                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1198                             VDEV_AUX_CORRUPT_DATA);
1199                         nvlist_free(label);
1200                         return (0);
1201                 }
1202
1203                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1204                     &state) != 0) {
1205                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1206                             VDEV_AUX_CORRUPT_DATA);
1207                         nvlist_free(label);
1208                         return (0);
1209                 }
1210
1211                 nvlist_free(label);
1212
1213                 /*
1214                  * If spa->spa_load_verbatim is true, no need to check the
1215                  * state of the pool.
1216                  */
1217                 if (!spa->spa_load_verbatim &&
1218                     spa->spa_load_state == SPA_LOAD_OPEN &&
1219                     state != POOL_STATE_ACTIVE)
1220                         return (EBADF);
1221
1222                 /*
1223                  * If we were able to open and validate a vdev that was
1224                  * previously marked permanently unavailable, clear that state
1225                  * now.
1226                  */
1227                 if (vd->vdev_not_present)
1228                         vd->vdev_not_present = 0;
1229         }
1230
1231         return (0);
1232 }
1233
1234 /*
1235  * Close a virtual device.
1236  */
1237 void
1238 vdev_close(vdev_t *vd)
1239 {
1240         spa_t *spa = vd->vdev_spa;
1241
1242         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1243
1244         vd->vdev_ops->vdev_op_close(vd);
1245
1246         vdev_cache_purge(vd);
1247
1248         /*
1249          * We record the previous state before we close it, so  that if we are
1250          * doing a reopen(), we don't generate FMA ereports if we notice that
1251          * it's still faulted.
1252          */
1253         vd->vdev_prevstate = vd->vdev_state;
1254
1255         if (vd->vdev_offline)
1256                 vd->vdev_state = VDEV_STATE_OFFLINE;
1257         else
1258                 vd->vdev_state = VDEV_STATE_CLOSED;
1259         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1260 }
1261
1262 void
1263 vdev_reopen(vdev_t *vd)
1264 {
1265         spa_t *spa = vd->vdev_spa;
1266
1267         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1268
1269         vdev_close(vd);
1270         (void) vdev_open(vd);
1271
1272         /*
1273          * Call vdev_validate() here to make sure we have the same device.
1274          * Otherwise, a device with an invalid label could be successfully
1275          * opened in response to vdev_reopen().
1276          */
1277         if (vd->vdev_aux) {
1278                 (void) vdev_validate_aux(vd);
1279                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1280                     vd->vdev_aux == &spa->spa_l2cache &&
1281                     !l2arc_vdev_present(vd)) {
1282                         uint64_t size = vdev_get_rsize(vd);
1283                         l2arc_add_vdev(spa, vd,
1284                             VDEV_LABEL_START_SIZE,
1285                             size - VDEV_LABEL_START_SIZE);
1286                 }
1287         } else {
1288                 (void) vdev_validate(vd);
1289         }
1290
1291         /*
1292          * Reassess parent vdev's health.
1293          */
1294         vdev_propagate_state(vd);
1295 }
1296
1297 int
1298 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1299 {
1300         int error;
1301
1302         /*
1303          * Normally, partial opens (e.g. of a mirror) are allowed.
1304          * For a create, however, we want to fail the request if
1305          * there are any components we can't open.
1306          */
1307         error = vdev_open(vd);
1308
1309         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1310                 vdev_close(vd);
1311                 return (error ? error : ENXIO);
1312         }
1313
1314         /*
1315          * Recursively initialize all labels.
1316          */
1317         if ((error = vdev_label_init(vd, txg, isreplacing ?
1318             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1319                 vdev_close(vd);
1320                 return (error);
1321         }
1322
1323         return (0);
1324 }
1325
1326 /*
1327  * The is the latter half of vdev_create().  It is distinct because it
1328  * involves initiating transactions in order to do metaslab creation.
1329  * For creation, we want to try to create all vdevs at once and then undo it
1330  * if anything fails; this is much harder if we have pending transactions.
1331  */
1332 void
1333 vdev_init(vdev_t *vd, uint64_t txg)
1334 {
1335         /*
1336          * Aim for roughly 200 metaslabs per vdev.
1337          */
1338         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1339         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1340
1341         /*
1342          * Initialize the vdev's metaslabs.  This can't fail because
1343          * there's nothing to read when creating all new metaslabs.
1344          */
1345         VERIFY(vdev_metaslab_init(vd, txg) == 0);
1346 }
1347
1348 void
1349 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1350 {
1351         ASSERT(vd == vd->vdev_top);
1352         ASSERT(ISP2(flags));
1353
1354         if (flags & VDD_METASLAB)
1355                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1356
1357         if (flags & VDD_DTL)
1358                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1359
1360         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1361 }
1362
1363 /*
1364  * DTLs.
1365  *
1366  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1367  * the vdev has less than perfect replication.  There are three kinds of DTL:
1368  *
1369  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1370  *
1371  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1372  *
1373  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1374  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1375  *      txgs that was scrubbed.
1376  *
1377  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1378  *      persistent errors or just some device being offline.
1379  *      Unlike the other three, the DTL_OUTAGE map is not generally
1380  *      maintained; it's only computed when needed, typically to
1381  *      determine whether a device can be detached.
1382  *
1383  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1384  * either has the data or it doesn't.
1385  *
1386  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1387  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1388  * if any child is less than fully replicated, then so is its parent.
1389  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1390  * comprising only those txgs which appear in 'maxfaults' or more children;
1391  * those are the txgs we don't have enough replication to read.  For example,
1392  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1393  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1394  * two child DTL_MISSING maps.
1395  *
1396  * It should be clear from the above that to compute the DTLs and outage maps
1397  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1398  * Therefore, that is all we keep on disk.  When loading the pool, or after
1399  * a configuration change, we generate all other DTLs from first principles.
1400  */
1401 void
1402 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1403 {
1404         space_map_t *sm = &vd->vdev_dtl[t];
1405
1406         ASSERT(t < DTL_TYPES);
1407         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1408
1409         mutex_enter(sm->sm_lock);
1410         if (!space_map_contains(sm, txg, size))
1411                 space_map_add(sm, txg, size);
1412         mutex_exit(sm->sm_lock);
1413 }
1414
1415 boolean_t
1416 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1417 {
1418         space_map_t *sm = &vd->vdev_dtl[t];
1419         boolean_t dirty = B_FALSE;
1420
1421         ASSERT(t < DTL_TYPES);
1422         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1423
1424         mutex_enter(sm->sm_lock);
1425         if (sm->sm_space != 0)
1426                 dirty = space_map_contains(sm, txg, size);
1427         mutex_exit(sm->sm_lock);
1428
1429         return (dirty);
1430 }
1431
1432 boolean_t
1433 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1434 {
1435         space_map_t *sm = &vd->vdev_dtl[t];
1436         boolean_t empty;
1437
1438         mutex_enter(sm->sm_lock);
1439         empty = (sm->sm_space == 0);
1440         mutex_exit(sm->sm_lock);
1441
1442         return (empty);
1443 }
1444
1445 /*
1446  * Reassess DTLs after a config change or scrub completion.
1447  */
1448 void
1449 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1450 {
1451         spa_t *spa = vd->vdev_spa;
1452         avl_tree_t reftree;
1453         int minref;
1454
1455         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1456
1457         for (int c = 0; c < vd->vdev_children; c++)
1458                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1459                     scrub_txg, scrub_done);
1460
1461         if (vd == spa->spa_root_vdev)
1462                 return;
1463
1464         if (vd->vdev_ops->vdev_op_leaf) {
1465                 mutex_enter(&vd->vdev_dtl_lock);
1466                 if (scrub_txg != 0 &&
1467                     (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1468                         /* XXX should check scrub_done? */
1469                         /*
1470                          * We completed a scrub up to scrub_txg.  If we
1471                          * did it without rebooting, then the scrub dtl
1472                          * will be valid, so excise the old region and
1473                          * fold in the scrub dtl.  Otherwise, leave the
1474                          * dtl as-is if there was an error.
1475                          *
1476                          * There's little trick here: to excise the beginning
1477                          * of the DTL_MISSING map, we put it into a reference
1478                          * tree and then add a segment with refcnt -1 that
1479                          * covers the range [0, scrub_txg).  This means
1480                          * that each txg in that range has refcnt -1 or 0.
1481                          * We then add DTL_SCRUB with a refcnt of 2, so that
1482                          * entries in the range [0, scrub_txg) will have a
1483                          * positive refcnt -- either 1 or 2.  We then convert
1484                          * the reference tree into the new DTL_MISSING map.
1485                          */
1486                         space_map_ref_create(&reftree);
1487                         space_map_ref_add_map(&reftree,
1488                             &vd->vdev_dtl[DTL_MISSING], 1);
1489                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1490                         space_map_ref_add_map(&reftree,
1491                             &vd->vdev_dtl[DTL_SCRUB], 2);
1492                         space_map_ref_generate_map(&reftree,
1493                             &vd->vdev_dtl[DTL_MISSING], 1);
1494                         space_map_ref_destroy(&reftree);
1495                 }
1496                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1497                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1498                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1499                 if (scrub_done)
1500                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1501                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1502                 if (!vdev_readable(vd))
1503                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1504                 else
1505                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1506                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1507                 mutex_exit(&vd->vdev_dtl_lock);
1508
1509                 if (txg != 0)
1510                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1511                 return;
1512         }
1513
1514         mutex_enter(&vd->vdev_dtl_lock);
1515         for (int t = 0; t < DTL_TYPES; t++) {
1516                 /* account for child's outage in parent's missing map */
1517                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1518                 if (t == DTL_SCRUB)
1519                         continue;                       /* leaf vdevs only */
1520                 if (t == DTL_PARTIAL)
1521                         minref = 1;                     /* i.e. non-zero */
1522                 else if (vd->vdev_nparity != 0)
1523                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1524                 else
1525                         minref = vd->vdev_children;     /* any kind of mirror */
1526                 space_map_ref_create(&reftree);
1527                 for (int c = 0; c < vd->vdev_children; c++) {
1528                         vdev_t *cvd = vd->vdev_child[c];
1529                         mutex_enter(&cvd->vdev_dtl_lock);
1530                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1531                         mutex_exit(&cvd->vdev_dtl_lock);
1532                 }
1533                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1534                 space_map_ref_destroy(&reftree);
1535         }
1536         mutex_exit(&vd->vdev_dtl_lock);
1537 }
1538
1539 static int
1540 vdev_dtl_load(vdev_t *vd)
1541 {
1542         spa_t *spa = vd->vdev_spa;
1543         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1544         objset_t *mos = spa->spa_meta_objset;
1545         dmu_buf_t *db;
1546         int error;
1547
1548         ASSERT(vd->vdev_children == 0);
1549
1550         if (smo->smo_object == 0)
1551                 return (0);
1552
1553         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1554                 return (error);
1555
1556         ASSERT3U(db->db_size, >=, sizeof (*smo));
1557         bcopy(db->db_data, smo, sizeof (*smo));
1558         dmu_buf_rele(db, FTAG);
1559
1560         mutex_enter(&vd->vdev_dtl_lock);
1561         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1562             NULL, SM_ALLOC, smo, mos);
1563         mutex_exit(&vd->vdev_dtl_lock);
1564
1565         return (error);
1566 }
1567
1568 void
1569 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1570 {
1571         spa_t *spa = vd->vdev_spa;
1572         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1573         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1574         objset_t *mos = spa->spa_meta_objset;
1575         space_map_t smsync;
1576         kmutex_t smlock;
1577         dmu_buf_t *db;
1578         dmu_tx_t *tx;
1579
1580         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1581
1582         if (vd->vdev_detached) {
1583                 if (smo->smo_object != 0) {
1584                         int err = dmu_object_free(mos, smo->smo_object, tx);
1585                         ASSERT3U(err, ==, 0);
1586                         smo->smo_object = 0;
1587                 }
1588                 dmu_tx_commit(tx);
1589                 return;
1590         }
1591
1592         if (smo->smo_object == 0) {
1593                 ASSERT(smo->smo_objsize == 0);
1594                 ASSERT(smo->smo_alloc == 0);
1595                 smo->smo_object = dmu_object_alloc(mos,
1596                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1597                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1598                 ASSERT(smo->smo_object != 0);
1599                 vdev_config_dirty(vd->vdev_top);
1600         }
1601
1602         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1603
1604         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1605             &smlock);
1606
1607         mutex_enter(&smlock);
1608
1609         mutex_enter(&vd->vdev_dtl_lock);
1610         space_map_walk(sm, space_map_add, &smsync);
1611         mutex_exit(&vd->vdev_dtl_lock);
1612
1613         space_map_truncate(smo, mos, tx);
1614         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1615
1616         space_map_destroy(&smsync);
1617
1618         mutex_exit(&smlock);
1619         mutex_destroy(&smlock);
1620
1621         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1622         dmu_buf_will_dirty(db, tx);
1623         ASSERT3U(db->db_size, >=, sizeof (*smo));
1624         bcopy(smo, db->db_data, sizeof (*smo));
1625         dmu_buf_rele(db, FTAG);
1626
1627         dmu_tx_commit(tx);
1628 }
1629
1630 /*
1631  * Determine whether the specified vdev can be offlined/detached/removed
1632  * without losing data.
1633  */
1634 boolean_t
1635 vdev_dtl_required(vdev_t *vd)
1636 {
1637         spa_t *spa = vd->vdev_spa;
1638         vdev_t *tvd = vd->vdev_top;
1639         uint8_t cant_read = vd->vdev_cant_read;
1640         boolean_t required;
1641
1642         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1643
1644         if (vd == spa->spa_root_vdev || vd == tvd)
1645                 return (B_TRUE);
1646
1647         /*
1648          * Temporarily mark the device as unreadable, and then determine
1649          * whether this results in any DTL outages in the top-level vdev.
1650          * If not, we can safely offline/detach/remove the device.
1651          */
1652         vd->vdev_cant_read = B_TRUE;
1653         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1654         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1655         vd->vdev_cant_read = cant_read;
1656         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1657
1658         return (required);
1659 }
1660
1661 /*
1662  * Determine if resilver is needed, and if so the txg range.
1663  */
1664 boolean_t
1665 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1666 {
1667         boolean_t needed = B_FALSE;
1668         uint64_t thismin = UINT64_MAX;
1669         uint64_t thismax = 0;
1670
1671         if (vd->vdev_children == 0) {
1672                 mutex_enter(&vd->vdev_dtl_lock);
1673                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1674                     vdev_writeable(vd)) {
1675                         space_seg_t *ss;
1676
1677                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1678                         thismin = ss->ss_start - 1;
1679                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1680                         thismax = ss->ss_end;
1681                         needed = B_TRUE;
1682                 }
1683                 mutex_exit(&vd->vdev_dtl_lock);
1684         } else {
1685                 for (int c = 0; c < vd->vdev_children; c++) {
1686                         vdev_t *cvd = vd->vdev_child[c];
1687                         uint64_t cmin, cmax;
1688
1689                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1690                                 thismin = MIN(thismin, cmin);
1691                                 thismax = MAX(thismax, cmax);
1692                                 needed = B_TRUE;
1693                         }
1694                 }
1695         }
1696
1697         if (needed && minp) {
1698                 *minp = thismin;
1699                 *maxp = thismax;
1700         }
1701         return (needed);
1702 }
1703
1704 void
1705 vdev_load(vdev_t *vd)
1706 {
1707         /*
1708          * Recursively load all children.
1709          */
1710         for (int c = 0; c < vd->vdev_children; c++)
1711                 vdev_load(vd->vdev_child[c]);
1712
1713         /*
1714          * If this is a top-level vdev, initialize its metaslabs.
1715          */
1716         if (vd == vd->vdev_top &&
1717             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1718             vdev_metaslab_init(vd, 0) != 0))
1719                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1720                     VDEV_AUX_CORRUPT_DATA);
1721
1722         /*
1723          * If this is a leaf vdev, load its DTL.
1724          */
1725         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1726                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1727                     VDEV_AUX_CORRUPT_DATA);
1728 }
1729
1730 /*
1731  * The special vdev case is used for hot spares and l2cache devices.  Its
1732  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1733  * we make sure that we can open the underlying device, then try to read the
1734  * label, and make sure that the label is sane and that it hasn't been
1735  * repurposed to another pool.
1736  */
1737 int
1738 vdev_validate_aux(vdev_t *vd)
1739 {
1740         nvlist_t *label;
1741         uint64_t guid, version;
1742         uint64_t state;
1743
1744         if (!vdev_readable(vd))
1745                 return (0);
1746
1747         if ((label = vdev_label_read_config(vd)) == NULL) {
1748                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1749                     VDEV_AUX_CORRUPT_DATA);
1750                 return (-1);
1751         }
1752
1753         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1754             version > SPA_VERSION ||
1755             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1756             guid != vd->vdev_guid ||
1757             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1758                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1759                     VDEV_AUX_CORRUPT_DATA);
1760                 nvlist_free(label);
1761                 return (-1);
1762         }
1763
1764         /*
1765          * We don't actually check the pool state here.  If it's in fact in
1766          * use by another pool, we update this fact on the fly when requested.
1767          */
1768         nvlist_free(label);
1769         return (0);
1770 }
1771
1772 void
1773 vdev_sync_done(vdev_t *vd, uint64_t txg)
1774 {
1775         metaslab_t *msp;
1776
1777         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1778                 metaslab_sync_done(msp, txg);
1779 }
1780
1781 void
1782 vdev_sync(vdev_t *vd, uint64_t txg)
1783 {
1784         spa_t *spa = vd->vdev_spa;
1785         vdev_t *lvd;
1786         metaslab_t *msp;
1787         dmu_tx_t *tx;
1788
1789         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1790                 ASSERT(vd == vd->vdev_top);
1791                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1792                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1793                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1794                 ASSERT(vd->vdev_ms_array != 0);
1795                 vdev_config_dirty(vd);
1796                 dmu_tx_commit(tx);
1797         }
1798
1799         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1800                 metaslab_sync(msp, txg);
1801                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1802         }
1803
1804         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1805                 vdev_dtl_sync(lvd, txg);
1806
1807         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1808 }
1809
1810 uint64_t
1811 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1812 {
1813         return (vd->vdev_ops->vdev_op_asize(vd, psize));
1814 }
1815
1816 /*
1817  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1818  * not be opened, and no I/O is attempted.
1819  */
1820 int
1821 vdev_fault(spa_t *spa, uint64_t guid)
1822 {
1823         vdev_t *vd;
1824
1825         spa_vdev_state_enter(spa);
1826
1827         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1828                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1829
1830         if (!vd->vdev_ops->vdev_op_leaf)
1831                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1832
1833         /*
1834          * Faulted state takes precedence over degraded.
1835          */
1836         vd->vdev_faulted = 1ULL;
1837         vd->vdev_degraded = 0ULL;
1838         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1839
1840         /*
1841          * If marking the vdev as faulted cause the top-level vdev to become
1842          * unavailable, then back off and simply mark the vdev as degraded
1843          * instead.
1844          */
1845         if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1846                 vd->vdev_degraded = 1ULL;
1847                 vd->vdev_faulted = 0ULL;
1848
1849                 /*
1850                  * If we reopen the device and it's not dead, only then do we
1851                  * mark it degraded.
1852                  */
1853                 vdev_reopen(vd);
1854
1855                 if (vdev_readable(vd)) {
1856                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1857                             VDEV_AUX_ERR_EXCEEDED);
1858                 }
1859         }
1860
1861         return (spa_vdev_state_exit(spa, vd, 0));
1862 }
1863
1864 /*
1865  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1866  * user that something is wrong.  The vdev continues to operate as normal as far
1867  * as I/O is concerned.
1868  */
1869 int
1870 vdev_degrade(spa_t *spa, uint64_t guid)
1871 {
1872         vdev_t *vd;
1873
1874         spa_vdev_state_enter(spa);
1875
1876         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1877                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1878
1879         if (!vd->vdev_ops->vdev_op_leaf)
1880                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1881
1882         /*
1883          * If the vdev is already faulted, then don't do anything.
1884          */
1885         if (vd->vdev_faulted || vd->vdev_degraded)
1886                 return (spa_vdev_state_exit(spa, NULL, 0));
1887
1888         vd->vdev_degraded = 1ULL;
1889         if (!vdev_is_dead(vd))
1890                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1891                     VDEV_AUX_ERR_EXCEEDED);
1892
1893         return (spa_vdev_state_exit(spa, vd, 0));
1894 }
1895
1896 /*
1897  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1898  * any attached spare device should be detached when the device finishes
1899  * resilvering.  Second, the online should be treated like a 'test' online case,
1900  * so no FMA events are generated if the device fails to open.
1901  */
1902 int
1903 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1904 {
1905         vdev_t *vd;
1906
1907         spa_vdev_state_enter(spa);
1908
1909         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1910                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1911
1912         if (!vd->vdev_ops->vdev_op_leaf)
1913                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1914
1915         vd->vdev_offline = B_FALSE;
1916         vd->vdev_tmpoffline = B_FALSE;
1917         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1918         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1919         vdev_reopen(vd->vdev_top);
1920         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1921
1922         if (newstate)
1923                 *newstate = vd->vdev_state;
1924         if ((flags & ZFS_ONLINE_UNSPARE) &&
1925             !vdev_is_dead(vd) && vd->vdev_parent &&
1926             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1927             vd->vdev_parent->vdev_child[0] == vd)
1928                 vd->vdev_unspare = B_TRUE;
1929
1930         return (spa_vdev_state_exit(spa, vd, 0));
1931 }
1932
1933 int
1934 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1935 {
1936         vdev_t *vd;
1937
1938         spa_vdev_state_enter(spa);
1939
1940         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1941                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1942
1943         if (!vd->vdev_ops->vdev_op_leaf)
1944                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1945
1946         /*
1947          * If the device isn't already offline, try to offline it.
1948          */
1949         if (!vd->vdev_offline) {
1950                 /*
1951                  * If this device has the only valid copy of some data,
1952                  * don't allow it to be offlined.
1953                  */
1954                 if (vd->vdev_aux == NULL && vdev_dtl_required(vd))
1955                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1956
1957                 /*
1958                  * Offline this device and reopen its top-level vdev.
1959                  * If this action results in the top-level vdev becoming
1960                  * unusable, undo it and fail the request.
1961                  */
1962                 vd->vdev_offline = B_TRUE;
1963                 vdev_reopen(vd->vdev_top);
1964                 if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) {
1965                         vd->vdev_offline = B_FALSE;
1966                         vdev_reopen(vd->vdev_top);
1967                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1968                 }
1969         }
1970
1971         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1972
1973         return (spa_vdev_state_exit(spa, vd, 0));
1974 }
1975
1976 /*
1977  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1978  * vdev_offline(), we assume the spa config is locked.  We also clear all
1979  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1980  */
1981 void
1982 vdev_clear(spa_t *spa, vdev_t *vd)
1983 {
1984         vdev_t *rvd = spa->spa_root_vdev;
1985
1986         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1987
1988         if (vd == NULL)
1989                 vd = rvd;
1990
1991         vd->vdev_stat.vs_read_errors = 0;
1992         vd->vdev_stat.vs_write_errors = 0;
1993         vd->vdev_stat.vs_checksum_errors = 0;
1994
1995         for (int c = 0; c < vd->vdev_children; c++)
1996                 vdev_clear(spa, vd->vdev_child[c]);
1997
1998         /*
1999          * If we're in the FAULTED state or have experienced failed I/O, then
2000          * clear the persistent state and attempt to reopen the device.  We
2001          * also mark the vdev config dirty, so that the new faulted state is
2002          * written out to disk.
2003          */
2004         if (vd->vdev_faulted || vd->vdev_degraded ||
2005             !vdev_readable(vd) || !vdev_writeable(vd)) {
2006
2007                 vd->vdev_faulted = vd->vdev_degraded = 0;
2008                 vd->vdev_cant_read = B_FALSE;
2009                 vd->vdev_cant_write = B_FALSE;
2010
2011                 vdev_reopen(vd);
2012
2013                 if (vd != rvd)
2014                         vdev_state_dirty(vd->vdev_top);
2015
2016                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2017                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2018
2019                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2020         }
2021 }
2022
2023 boolean_t
2024 vdev_is_dead(vdev_t *vd)
2025 {
2026         return (vd->vdev_state < VDEV_STATE_DEGRADED);
2027 }
2028
2029 boolean_t
2030 vdev_readable(vdev_t *vd)
2031 {
2032         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2033 }
2034
2035 boolean_t
2036 vdev_writeable(vdev_t *vd)
2037 {
2038         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2039 }
2040
2041 boolean_t
2042 vdev_allocatable(vdev_t *vd)
2043 {
2044         uint64_t state = vd->vdev_state;
2045
2046         /*
2047          * We currently allow allocations from vdevs which may be in the
2048          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2049          * fails to reopen then we'll catch it later when we're holding
2050          * the proper locks.  Note that we have to get the vdev state
2051          * in a local variable because although it changes atomically,
2052          * we're asking two separate questions about it.
2053          */
2054         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2055             !vd->vdev_cant_write);
2056 }
2057
2058 boolean_t
2059 vdev_accessible(vdev_t *vd, zio_t *zio)
2060 {
2061         ASSERT(zio->io_vd == vd);
2062
2063         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2064                 return (B_FALSE);
2065
2066         if (zio->io_type == ZIO_TYPE_READ)
2067                 return (!vd->vdev_cant_read);
2068
2069         if (zio->io_type == ZIO_TYPE_WRITE)
2070                 return (!vd->vdev_cant_write);
2071
2072         return (B_TRUE);
2073 }
2074
2075 /*
2076  * Get statistics for the given vdev.
2077  */
2078 void
2079 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2080 {
2081         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2082
2083         mutex_enter(&vd->vdev_stat_lock);
2084         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2085         vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2086         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2087         vs->vs_state = vd->vdev_state;
2088         vs->vs_rsize = vdev_get_rsize(vd);
2089         mutex_exit(&vd->vdev_stat_lock);
2090
2091         /*
2092          * If we're getting stats on the root vdev, aggregate the I/O counts
2093          * over all top-level vdevs (i.e. the direct children of the root).
2094          */
2095         if (vd == rvd) {
2096                 for (int c = 0; c < rvd->vdev_children; c++) {
2097                         vdev_t *cvd = rvd->vdev_child[c];
2098                         vdev_stat_t *cvs = &cvd->vdev_stat;
2099
2100                         mutex_enter(&vd->vdev_stat_lock);
2101                         for (int t = 0; t < ZIO_TYPES; t++) {
2102                                 vs->vs_ops[t] += cvs->vs_ops[t];
2103                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2104                         }
2105                         vs->vs_scrub_examined += cvs->vs_scrub_examined;
2106                         mutex_exit(&vd->vdev_stat_lock);
2107                 }
2108         }
2109 }
2110
2111 void
2112 vdev_clear_stats(vdev_t *vd)
2113 {
2114         mutex_enter(&vd->vdev_stat_lock);
2115         vd->vdev_stat.vs_space = 0;
2116         vd->vdev_stat.vs_dspace = 0;
2117         vd->vdev_stat.vs_alloc = 0;
2118         mutex_exit(&vd->vdev_stat_lock);
2119 }
2120
2121 void
2122 vdev_stat_update(zio_t *zio, uint64_t psize)
2123 {
2124         spa_t *spa = zio->io_spa;
2125         vdev_t *rvd = spa->spa_root_vdev;
2126         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2127         vdev_t *pvd;
2128         uint64_t txg = zio->io_txg;
2129         vdev_stat_t *vs = &vd->vdev_stat;
2130         zio_type_t type = zio->io_type;
2131         int flags = zio->io_flags;
2132
2133         /*
2134          * If this i/o is a gang leader, it didn't do any actual work.
2135          */
2136         if (zio->io_gang_tree)
2137                 return;
2138
2139         if (zio->io_error == 0) {
2140                 /*
2141                  * If this is a root i/o, don't count it -- we've already
2142                  * counted the top-level vdevs, and vdev_get_stats() will
2143                  * aggregate them when asked.  This reduces contention on
2144                  * the root vdev_stat_lock and implicitly handles blocks
2145                  * that compress away to holes, for which there is no i/o.
2146                  * (Holes never create vdev children, so all the counters
2147                  * remain zero, which is what we want.)
2148                  *
2149                  * Note: this only applies to successful i/o (io_error == 0)
2150                  * because unlike i/o counts, errors are not additive.
2151                  * When reading a ditto block, for example, failure of
2152                  * one top-level vdev does not imply a root-level error.
2153                  */
2154                 if (vd == rvd)
2155                         return;
2156
2157                 ASSERT(vd == zio->io_vd);
2158
2159                 if (flags & ZIO_FLAG_IO_BYPASS)
2160                         return;
2161
2162                 mutex_enter(&vd->vdev_stat_lock);
2163
2164                 if (flags & ZIO_FLAG_IO_REPAIR) {
2165                         if (flags & ZIO_FLAG_SCRUB_THREAD)
2166                                 vs->vs_scrub_repaired += psize;
2167                         if (flags & ZIO_FLAG_SELF_HEAL)
2168                                 vs->vs_self_healed += psize;
2169                 }
2170
2171                 vs->vs_ops[type]++;
2172                 vs->vs_bytes[type] += psize;
2173
2174                 mutex_exit(&vd->vdev_stat_lock);
2175                 return;
2176         }
2177
2178         if (flags & ZIO_FLAG_SPECULATIVE)
2179                 return;
2180
2181         mutex_enter(&vd->vdev_stat_lock);
2182         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2183                 if (zio->io_error == ECKSUM)
2184                         vs->vs_checksum_errors++;
2185                 else
2186                         vs->vs_read_errors++;
2187         }
2188         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2189                 vs->vs_write_errors++;
2190         mutex_exit(&vd->vdev_stat_lock);
2191
2192         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2193             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2194             (flags & ZIO_FLAG_SCRUB_THREAD))) {
2195                 /*
2196                  * This is either a normal write (not a repair), or it's a
2197                  * repair induced by the scrub thread.  In the normal case,
2198                  * we commit the DTL change in the same txg as the block
2199                  * was born.  In the scrub-induced repair case, we know that
2200                  * scrubs run in first-pass syncing context, so we commit
2201                  * the DTL change in spa->spa_syncing_txg.
2202                  *
2203                  * We currently do not make DTL entries for failed spontaneous
2204                  * self-healing writes triggered by normal (non-scrubbing)
2205                  * reads, because we have no transactional context in which to
2206                  * do so -- and it's not clear that it'd be desirable anyway.
2207                  */
2208                 if (vd->vdev_ops->vdev_op_leaf) {
2209                         uint64_t commit_txg = txg;
2210                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2211                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2212                                 ASSERT(spa_sync_pass(spa) == 1);
2213                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2214                                 commit_txg = spa->spa_syncing_txg;
2215                         }
2216                         ASSERT(commit_txg >= spa->spa_syncing_txg);
2217                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2218                                 return;
2219                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2220                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2221                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2222                 }
2223                 if (vd != rvd)
2224                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2225         }
2226 }
2227
2228 void
2229 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2230 {
2231         int c;
2232         vdev_stat_t *vs = &vd->vdev_stat;
2233
2234         for (c = 0; c < vd->vdev_children; c++)
2235                 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2236
2237         mutex_enter(&vd->vdev_stat_lock);
2238
2239         if (type == POOL_SCRUB_NONE) {
2240                 /*
2241                  * Update completion and end time.  Leave everything else alone
2242                  * so we can report what happened during the previous scrub.
2243                  */
2244                 vs->vs_scrub_complete = complete;
2245                 vs->vs_scrub_end = gethrestime_sec();
2246         } else {
2247                 vs->vs_scrub_type = type;
2248                 vs->vs_scrub_complete = 0;
2249                 vs->vs_scrub_examined = 0;
2250                 vs->vs_scrub_repaired = 0;
2251                 vs->vs_scrub_start = gethrestime_sec();
2252                 vs->vs_scrub_end = 0;
2253         }
2254
2255         mutex_exit(&vd->vdev_stat_lock);
2256 }
2257
2258 /*
2259  * Update the in-core space usage stats for this vdev and the root vdev.
2260  */
2261 void
2262 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2263     boolean_t update_root)
2264 {
2265         int64_t dspace_delta = space_delta;
2266         spa_t *spa = vd->vdev_spa;
2267         vdev_t *rvd = spa->spa_root_vdev;
2268
2269         ASSERT(vd == vd->vdev_top);
2270
2271         /*
2272          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2273          * factor.  We must calculate this here and not at the root vdev
2274          * because the root vdev's psize-to-asize is simply the max of its
2275          * childrens', thus not accurate enough for us.
2276          */
2277         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2278         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2279             vd->vdev_deflate_ratio;
2280
2281         mutex_enter(&vd->vdev_stat_lock);
2282         vd->vdev_stat.vs_space += space_delta;
2283         vd->vdev_stat.vs_alloc += alloc_delta;
2284         vd->vdev_stat.vs_dspace += dspace_delta;
2285         mutex_exit(&vd->vdev_stat_lock);
2286
2287         if (update_root) {
2288                 ASSERT(rvd == vd->vdev_parent);
2289                 ASSERT(vd->vdev_ms_count != 0);
2290
2291                 /*
2292                  * Don't count non-normal (e.g. intent log) space as part of
2293                  * the pool's capacity.
2294                  */
2295                 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2296                         return;
2297
2298                 mutex_enter(&rvd->vdev_stat_lock);
2299                 rvd->vdev_stat.vs_space += space_delta;
2300                 rvd->vdev_stat.vs_alloc += alloc_delta;
2301                 rvd->vdev_stat.vs_dspace += dspace_delta;
2302                 mutex_exit(&rvd->vdev_stat_lock);
2303         }
2304 }
2305
2306 /*
2307  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2308  * so that it will be written out next time the vdev configuration is synced.
2309  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2310  */
2311 void
2312 vdev_config_dirty(vdev_t *vd)
2313 {
2314         spa_t *spa = vd->vdev_spa;
2315         vdev_t *rvd = spa->spa_root_vdev;
2316         int c;
2317
2318         /*
2319          * If this is an aux vdev (as with l2cache and spare devices), then we
2320          * update the vdev config manually and set the sync flag.
2321          */
2322         if (vd->vdev_aux != NULL) {
2323                 spa_aux_vdev_t *sav = vd->vdev_aux;
2324                 nvlist_t **aux;
2325                 uint_t naux;
2326
2327                 for (c = 0; c < sav->sav_count; c++) {
2328                         if (sav->sav_vdevs[c] == vd)
2329                                 break;
2330                 }
2331
2332                 if (c == sav->sav_count) {
2333                         /*
2334                          * We're being removed.  There's nothing more to do.
2335                          */
2336                         ASSERT(sav->sav_sync == B_TRUE);
2337                         return;
2338                 }
2339
2340                 sav->sav_sync = B_TRUE;
2341
2342                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2343                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2344                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2345                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2346                 }
2347
2348                 ASSERT(c < naux);
2349
2350                 /*
2351                  * Setting the nvlist in the middle if the array is a little
2352                  * sketchy, but it will work.
2353                  */
2354                 nvlist_free(aux[c]);
2355                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2356
2357                 return;
2358         }
2359
2360         /*
2361          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2362          * must either hold SCL_CONFIG as writer, or must be the sync thread
2363          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2364          * so this is sufficient to ensure mutual exclusion.
2365          */
2366         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2367             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2368             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2369
2370         if (vd == rvd) {
2371                 for (c = 0; c < rvd->vdev_children; c++)
2372                         vdev_config_dirty(rvd->vdev_child[c]);
2373         } else {
2374                 ASSERT(vd == vd->vdev_top);
2375
2376                 if (!list_link_active(&vd->vdev_config_dirty_node))
2377                         list_insert_head(&spa->spa_config_dirty_list, vd);
2378         }
2379 }
2380
2381 void
2382 vdev_config_clean(vdev_t *vd)
2383 {
2384         spa_t *spa = vd->vdev_spa;
2385
2386         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2387             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2388             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2389
2390         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2391         list_remove(&spa->spa_config_dirty_list, vd);
2392 }
2393
2394 /*
2395  * Mark a top-level vdev's state as dirty, so that the next pass of
2396  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2397  * the state changes from larger config changes because they require
2398  * much less locking, and are often needed for administrative actions.
2399  */
2400 void
2401 vdev_state_dirty(vdev_t *vd)
2402 {
2403         spa_t *spa = vd->vdev_spa;
2404
2405         ASSERT(vd == vd->vdev_top);
2406
2407         /*
2408          * The state list is protected by the SCL_STATE lock.  The caller
2409          * must either hold SCL_STATE as writer, or must be the sync thread
2410          * (which holds SCL_STATE as reader).  There's only one sync thread,
2411          * so this is sufficient to ensure mutual exclusion.
2412          */
2413         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2414             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2415             spa_config_held(spa, SCL_STATE, RW_READER)));
2416
2417         if (!list_link_active(&vd->vdev_state_dirty_node))
2418                 list_insert_head(&spa->spa_state_dirty_list, vd);
2419 }
2420
2421 void
2422 vdev_state_clean(vdev_t *vd)
2423 {
2424         spa_t *spa = vd->vdev_spa;
2425
2426         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2427             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2428             spa_config_held(spa, SCL_STATE, RW_READER)));
2429
2430         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2431         list_remove(&spa->spa_state_dirty_list, vd);
2432 }
2433
2434 /*
2435  * Propagate vdev state up from children to parent.
2436  */
2437 void
2438 vdev_propagate_state(vdev_t *vd)
2439 {
2440         spa_t *spa = vd->vdev_spa;
2441         vdev_t *rvd = spa->spa_root_vdev;
2442         int degraded = 0, faulted = 0;
2443         int corrupted = 0;
2444         int c;
2445         vdev_t *child;
2446
2447         if (vd->vdev_children > 0) {
2448                 for (c = 0; c < vd->vdev_children; c++) {
2449                         child = vd->vdev_child[c];
2450
2451                         if (!vdev_readable(child) ||
2452                             (!vdev_writeable(child) && spa_writeable(spa))) {
2453                                 /*
2454                                  * Root special: if there is a top-level log
2455                                  * device, treat the root vdev as if it were
2456                                  * degraded.
2457                                  */
2458                                 if (child->vdev_islog && vd == rvd)
2459                                         degraded++;
2460                                 else
2461                                         faulted++;
2462                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2463                                 degraded++;
2464                         }
2465
2466                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2467                                 corrupted++;
2468                 }
2469
2470                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2471
2472                 /*
2473                  * Root special: if there is a top-level vdev that cannot be
2474                  * opened due to corrupted metadata, then propagate the root
2475                  * vdev's aux state as 'corrupt' rather than 'insufficient
2476                  * replicas'.
2477                  */
2478                 if (corrupted && vd == rvd &&
2479                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2480                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2481                             VDEV_AUX_CORRUPT_DATA);
2482         }
2483
2484         if (vd->vdev_parent)
2485                 vdev_propagate_state(vd->vdev_parent);
2486 }
2487
2488 /*
2489  * Set a vdev's state.  If this is during an open, we don't update the parent
2490  * state, because we're in the process of opening children depth-first.
2491  * Otherwise, we propagate the change to the parent.
2492  *
2493  * If this routine places a device in a faulted state, an appropriate ereport is
2494  * generated.
2495  */
2496 void
2497 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2498 {
2499         uint64_t save_state;
2500         spa_t *spa = vd->vdev_spa;
2501
2502         if (state == vd->vdev_state) {
2503                 vd->vdev_stat.vs_aux = aux;
2504                 return;
2505         }
2506
2507         save_state = vd->vdev_state;
2508
2509         vd->vdev_state = state;
2510         vd->vdev_stat.vs_aux = aux;
2511
2512         /*
2513          * If we are setting the vdev state to anything but an open state, then
2514          * always close the underlying device.  Otherwise, we keep accessible
2515          * but invalid devices open forever.  We don't call vdev_close() itself,
2516          * because that implies some extra checks (offline, etc) that we don't
2517          * want here.  This is limited to leaf devices, because otherwise
2518          * closing the device will affect other children.
2519          */
2520         if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2521                 vd->vdev_ops->vdev_op_close(vd);
2522
2523         if (vd->vdev_removed &&
2524             state == VDEV_STATE_CANT_OPEN &&
2525             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2526                 /*
2527                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2528                  * device was previously marked removed and someone attempted to
2529                  * reopen it.  If this failed due to a nonexistent device, then
2530                  * keep the device in the REMOVED state.  We also let this be if
2531                  * it is one of our special test online cases, which is only
2532                  * attempting to online the device and shouldn't generate an FMA
2533                  * fault.
2534                  */
2535                 vd->vdev_state = VDEV_STATE_REMOVED;
2536                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2537         } else if (state == VDEV_STATE_REMOVED) {
2538                 /*
2539                  * Indicate to the ZFS DE that this device has been removed, and
2540                  * any recent errors should be ignored.
2541                  */
2542                 zfs_post_remove(spa, vd);
2543                 vd->vdev_removed = B_TRUE;
2544         } else if (state == VDEV_STATE_CANT_OPEN) {
2545                 /*
2546                  * If we fail to open a vdev during an import, we mark it as
2547                  * "not available", which signifies that it was never there to
2548                  * begin with.  Failure to open such a device is not considered
2549                  * an error.
2550                  */
2551                 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2552                     vd->vdev_ops->vdev_op_leaf)
2553                         vd->vdev_not_present = 1;
2554
2555                 /*
2556                  * Post the appropriate ereport.  If the 'prevstate' field is
2557                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2558                  * that this is part of a vdev_reopen().  In this case, we don't
2559                  * want to post the ereport if the device was already in the
2560                  * CANT_OPEN state beforehand.
2561                  *
2562                  * If the 'checkremove' flag is set, then this is an attempt to
2563                  * online the device in response to an insertion event.  If we
2564                  * hit this case, then we have detected an insertion event for a
2565                  * faulted or offline device that wasn't in the removed state.
2566                  * In this scenario, we don't post an ereport because we are
2567                  * about to replace the device, or attempt an online with
2568                  * vdev_forcefault, which will generate the fault for us.
2569                  */
2570                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2571                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2572                     vd != spa->spa_root_vdev) {
2573                         const char *class;
2574
2575                         switch (aux) {
2576                         case VDEV_AUX_OPEN_FAILED:
2577                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2578                                 break;
2579                         case VDEV_AUX_CORRUPT_DATA:
2580                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2581                                 break;
2582                         case VDEV_AUX_NO_REPLICAS:
2583                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2584                                 break;
2585                         case VDEV_AUX_BAD_GUID_SUM:
2586                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2587                                 break;
2588                         case VDEV_AUX_TOO_SMALL:
2589                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2590                                 break;
2591                         case VDEV_AUX_BAD_LABEL:
2592                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2593                                 break;
2594                         case VDEV_AUX_IO_FAILURE:
2595                                 class = FM_EREPORT_ZFS_IO_FAILURE;
2596                                 break;
2597                         default:
2598                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2599                         }
2600
2601                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2602                 }
2603
2604                 /* Erase any notion of persistent removed state */
2605                 vd->vdev_removed = B_FALSE;
2606         } else {
2607                 vd->vdev_removed = B_FALSE;
2608         }
2609
2610         if (!isopen && vd->vdev_parent)
2611                 vdev_propagate_state(vd->vdev_parent);
2612 }
2613
2614 /*
2615  * Check the vdev configuration to ensure that it's capable of supporting
2616  * a root pool.
2617  *
2618  * On Solaris, we do not support RAID-Z or partial configuration.  In
2619  * addition, only a single top-level vdev is allowed and none of the
2620  * leaves can be wholedisks.
2621  *
2622  * For FreeBSD, we can boot from any configuration. There is a
2623  * limitation that the boot filesystem must be either uncompressed or
2624  * compresses with lzjb compression but I'm not sure how to enforce
2625  * that here.
2626  */
2627 boolean_t
2628 vdev_is_bootable(vdev_t *vd)
2629 {
2630 #ifdef __FreeBSD_version
2631         return (B_TRUE);
2632 #else
2633         int c;
2634
2635         if (!vd->vdev_ops->vdev_op_leaf) {
2636                 char *vdev_type = vd->vdev_ops->vdev_op_type;
2637
2638                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2639                     vd->vdev_children > 1) {
2640                         return (B_FALSE);
2641                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2642                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2643                         return (B_FALSE);
2644                 }
2645         } else if (vd->vdev_wholedisk == 1) {
2646                 return (B_FALSE);
2647         }
2648
2649         for (c = 0; c < vd->vdev_children; c++) {
2650                 if (!vdev_is_bootable(vd->vdev_child[c]))
2651                         return (B_FALSE);
2652         }
2653         return (B_TRUE);
2654 #endif
2655 }