]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/dev/bxe/bxe.h
MFC r296071
[FreeBSD/stable/8.git] / sys / dev / bxe / bxe.h
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #ifndef __BXE_H__
28 #define __BXE_H__
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/sx.h>
39 #include <sys/module.h>
40 #include <sys/endian.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kobj.h>
44 #include <sys/bus.h>
45 #include <sys/rman.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/bitstring.h>
51 #include <sys/limits.h>
52 #include <sys/queue.h>
53 #include <sys/taskqueue.h>
54
55 #include <net/if.h>
56 #include <net/if_types.h>
57 #include <net/if_arp.h>
58 #include <net/ethernet.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_var.h>
62 #include <net/if_vlan_var.h>
63 #include <net/zlib.h>
64 #include <net/bpf.h>
65
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip6.h>
69 #include <netinet/tcp.h>
70 #include <netinet/udp.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74
75 #include <machine/atomic.h>
76 #include <machine/resource.h>
77 #include <machine/endian.h>
78 #include <machine/bus.h>
79 #include <machine/in_cksum.h>
80
81 #include "device_if.h"
82 #include "bus_if.h"
83 #include "pci_if.h"
84
85 #if _BYTE_ORDER == _LITTLE_ENDIAN
86 #ifndef LITTLE_ENDIAN
87 #define LITTLE_ENDIAN
88 #endif
89 #ifndef __LITTLE_ENDIAN
90 #define __LITTLE_ENDIAN
91 #endif
92 #undef BIG_ENDIAN
93 #undef __BIG_ENDIAN
94 #else /* _BIG_ENDIAN */
95 #ifndef BIG_ENDIAN
96 #define BIG_ENDIAN
97 #endif
98 #ifndef __BIG_ENDIAN
99 #define __BIG_ENDIAN
100 #endif
101 #undef LITTLE_ENDIAN
102 #undef __LITTLE_ENDIAN
103 #endif
104
105 #include "ecore_mfw_req.h"
106 #include "ecore_fw_defs.h"
107 #include "ecore_hsi.h"
108 #include "ecore_reg.h"
109 #include "bxe_dcb.h"
110 #include "bxe_stats.h"
111
112 #include "bxe_elink.h"
113
114 #define VF_MAC_CREDIT_CNT 0
115 #define VF_VLAN_CREDIT_CNT (0)
116
117 #if __FreeBSD_version < 800054
118 #if defined(__i386__) || defined(__amd64__)
119 #define mb()  __asm volatile("mfence;" : : : "memory")
120 #define wmb() __asm volatile("sfence;" : : : "memory")
121 #define rmb() __asm volatile("lfence;" : : : "memory")
122 static __inline void prefetch(void *x)
123 {
124     __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
125 }
126 #else
127 #define mb()
128 #define rmb()
129 #define wmb()
130 #define prefetch(x)
131 #endif
132 #endif
133
134 #if __FreeBSD_version >= 1000000
135 #define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
136 #define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
137 #define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
138 #define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
139 #define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
140 #define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
141 #define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
142 #define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
143 #endif
144
145 #ifndef ARRAY_SIZE
146 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
147 #endif
148 #ifndef ARRSIZE
149 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
150 #endif
151 #ifndef DIV_ROUND_UP
152 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
153 #endif
154 #ifndef roundup
155 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
156 #endif
157 #ifndef ilog2
158 static inline
159 int bxe_ilog2(int x)
160 {
161     int log = 0;
162     while (x >>= 1) log++;
163     return (log);
164 }
165 #define ilog2(x) bxe_ilog2(x)
166 #endif
167
168 #include "ecore_sp.h"
169
170 #define BRCM_VENDORID 0x14e4
171 #define PCI_ANY_ID    (uint16_t)(~0U)
172
173 struct bxe_device_type
174 {
175     uint16_t bxe_vid;
176     uint16_t bxe_did;
177     uint16_t bxe_svid;
178     uint16_t bxe_sdid;
179     char     *bxe_name;
180 };
181
182 #define BCM_PAGE_SHIFT       12
183 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
184 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
185 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
186
187 #if BCM_PAGE_SIZE != 4096
188 #error Page sizes other than 4KB are unsupported!
189 #endif
190
191 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
192 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
193 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
194 #else
195 #define U64_LO(addr) ((uint32_t)(addr))
196 #define U64_HI(addr) (0)
197 #endif
198 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
199
200 #define SET_FLAG(value, mask, flag)            \
201     do {                                       \
202         (value) &= ~(mask);                    \
203         (value) |= ((flag) << (mask##_SHIFT)); \
204     } while (0)
205
206 #define GET_FLAG(value, mask)              \
207     (((value) & (mask)) >> (mask##_SHIFT))
208
209 #define GET_FIELD(value, fname)                     \
210     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
211
212 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
213 #define BXE_TSO_MAX_SEGMENTS 32
214 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
215 #define BXE_TSO_MAX_SEG_SIZE 4096
216
217 /* dropless fc FW/HW related params */
218 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
219 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
220                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
221                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
222 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
223 #define FW_PREFETCH_CNT      16
224 #define DROPLESS_FC_HEADROOM 100
225
226 /******************/
227 /* RX SGE defines */
228 /******************/
229
230 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
231 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
232 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
233 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
234 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
235 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
236 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
237 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
238 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
239
240 #define RX_SGE_NEXT(x)                                              \
241     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
242      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
243
244 #define RX_SGE_MASK_ELEM_SZ    64
245 #define RX_SGE_MASK_ELEM_SHIFT 6
246 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
247
248 /*
249  * Creates a bitmask of all ones in less significant bits.
250  * idx - index of the most significant bit in the created mask.
251  */
252 #define RX_SGE_ONES_MASK(idx)                                      \
253     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
254 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
255
256 /* Number of uint64_t elements in SGE mask array. */
257 #define RX_SGE_MASK_LEN                                                \
258     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
259 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
260 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
261
262 /*
263  * dropless fc calculations for SGEs
264  * Number of required SGEs is the sum of two:
265  * 1. Number of possible opened aggregations (next packet for
266  *    these aggregations will probably consume SGE immidiatelly)
267  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
268  *    after placement on BD for new TPA aggregation)
269  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
270  */
271 #define NUM_SGE_REQ(sc)                                    \
272     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
273 #define NUM_SGE_PG_REQ(sc)                                                    \
274     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
275 #define SGE_TH_LO(sc)                                                  \
276     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
277 #define SGE_TH_HI(sc)                      \
278     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
279
280 #define PAGES_PER_SGE_SHIFT  0
281 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
282 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
283 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
284 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
285 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
286 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
287
288 /*****************/
289 /* TX BD defines */
290 /*****************/
291
292 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
293 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
294 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
295 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
296 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
297 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
298
299 #define TX_BD_NEXT(x)                                                 \
300     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
301      ((x) + 2) : ((x) + 1))
302 #define TX_BD(x)      ((x) & TX_BD_MAX)
303 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
304 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
305
306 /*
307  * Trigger pending transmits when the number of available BDs is greater
308  * than 1/8 of the total number of usable BDs.
309  */
310 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
311 #define BXE_TX_TIMEOUT 5
312
313 /*****************/
314 /* RX BD defines */
315 /*****************/
316
317 #define RX_BD_NUM_PAGES       8 /* power of 2 */
318 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
319 #define RX_BD_NEXT_PAGE_DESC_CNT 2
320 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
321 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
322 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
323 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
324 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
325
326 #define RX_BD_NEXT(x)                                               \
327     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
328      ((x) + 3) : ((x) + 1))
329 #define RX_BD(x)      ((x) & RX_BD_MAX)
330 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
331 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
332
333 /*
334  * dropless fc calculations for BDs
335  * Number of BDs should be as number of buffers in BRB:
336  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
337  * "next" elements on each page
338  */
339 #define NUM_BD_REQ(sc) \
340     BRB_SIZE(sc)
341 #define NUM_BD_PG_REQ(sc)                                                  \
342     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
343 #define BD_TH_LO(sc)                                \
344     (NUM_BD_REQ(sc) +                               \
345      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
346      FW_DROP_LEVEL(sc))
347 #define BD_TH_HI(sc)                      \
348     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
349 #define MIN_RX_AVAIL(sc)                           \
350     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
351 #define MIN_RX_SIZE_TPA_HW(sc)                         \
352     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
353                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
354 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
355 #define MIN_RX_SIZE_TPA(sc)                         \
356     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
357 #define MIN_RX_SIZE_NONTPA(sc)                     \
358     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
359
360 /***************/
361 /* RCQ defines */
362 /***************/
363
364 /*
365  * As long as CQE is X times bigger than BD entry we have to allocate X times
366  * more pages for CQ ring in order to keep it balanced with BD ring
367  */
368 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
369                              sizeof(struct eth_rx_bd))
370 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
371 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
372 #define RCQ_NEXT_PAGE_DESC_CNT 1
373 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
374 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
375 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
376 #define RCQ_MAX             (RCQ_TOTAL - 1)
377
378 #define RCQ_NEXT(x)                                               \
379     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
380      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
381 #define RCQ(x)      ((x) & RCQ_MAX)
382 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
383 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
384
385 /*
386  * dropless fc calculations for RCQs
387  * Number of RCQs should be as number of buffers in BRB:
388  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
389  * "next" elements on each page
390  */
391 #define NUM_RCQ_REQ(sc) \
392     BRB_SIZE(sc)
393 #define NUM_RCQ_PG_REQ(sc)                                              \
394     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
395 #define RCQ_TH_LO(sc)                              \
396     (NUM_RCQ_REQ(sc) +                             \
397      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
398      FW_DROP_LEVEL(sc))
399 #define RCQ_TH_HI(sc)                      \
400     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
401
402 /* This is needed for determening of last_max */
403 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
404
405 #define __SGE_MASK_SET_BIT(el, bit)               \
406     do {                                          \
407         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
408     } while (0)
409
410 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
411     do {                                             \
412         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
413     } while (0)
414
415 #define SGE_MASK_SET_BIT(fp, idx)                                       \
416     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
417                        ((idx) & RX_SGE_MASK_ELEM_MASK))
418
419 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
420     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
421                          ((idx) & RX_SGE_MASK_ELEM_MASK))
422
423 /* Load / Unload modes */
424 #define LOAD_NORMAL       0
425 #define LOAD_OPEN         1
426 #define LOAD_DIAG         2
427 #define LOAD_LOOPBACK_EXT 3
428 #define UNLOAD_NORMAL     0
429 #define UNLOAD_CLOSE      1
430 #define UNLOAD_RECOVERY   2
431
432 /* Some constants... */
433 //#define MAX_PATH_NUM       2
434 //#define E2_MAX_NUM_OF_VFS  64
435 //#define E1H_FUNC_MAX       8
436 //#define E2_FUNC_MAX        4   /* per path */
437 #define MAX_VNIC_NUM       4
438 #define MAX_FUNC_NUM       8   /* common to all chips */
439 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
440 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
441 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
442
443 #define ILT_NUM_PAGE_ENTRIES 3072
444 /*
445  * 57710/11 we use whole table since we have 8 functions.
446  * 57712 we have only 4 functions, but use same size per func, so only half
447  * of the table is used.
448  */
449 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
450 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
451 /*
452  * the phys address is shifted right 12 bits and has an added
453  * 1=valid bit added to the 53rd bit
454  * then since this is a wide register(TM)
455  * we split it into two 32 bit writes
456  */
457 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
458 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
459
460 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
461 #define ETH_HLEN                  14
462 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
463 #define ETH_MIN_PACKET_SIZE       60
464 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
465 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
466 /* TCP with Timestamp Option (32) + IPv6 (40) */
467 #define ETH_MAX_TPA_HEADER_SIZE   72
468
469 /* max supported alignment is 256 (8 shift) */
470 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
471 #define BXE_RX_ALIGN_SHIFT 8
472 /* FW uses 2 cache lines alignment for start packet and size  */
473 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
474 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
475
476 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
477
478 struct bxe_bar {
479     struct resource    *resource;
480     int                rid;
481     bus_space_tag_t    tag;
482     bus_space_handle_t handle;
483     vm_offset_t        kva;
484 };
485
486 struct bxe_intr {
487     struct resource *resource;
488     int             rid;
489     void            *tag;
490 };
491
492 /* Used to manage DMA allocations. */
493 struct bxe_dma {
494     struct bxe_softc  *sc;
495     bus_addr_t        paddr;
496     void              *vaddr;
497     bus_dma_tag_t     tag;
498     bus_dmamap_t      map;
499     bus_dma_segment_t seg;
500     bus_size_t        size;
501     int               nseg;
502     char              msg[32];
503 };
504
505 /* attn group wiring */
506 #define MAX_DYNAMIC_ATTN_GRPS 8
507
508 struct attn_route {
509     uint32_t sig[5];
510 };
511
512 struct iro {
513     uint32_t base;
514     uint16_t m1;
515     uint16_t m2;
516     uint16_t m3;
517     uint16_t size;
518 };
519
520 union bxe_host_hc_status_block {
521     /* pointer to fp status block e2 */
522     struct host_hc_status_block_e2  *e2_sb;
523     /* pointer to fp status block e1x */
524     struct host_hc_status_block_e1x *e1x_sb;
525 };
526
527 union bxe_db_prod {
528     struct doorbell_set_prod data;
529     uint32_t                 raw;
530 };
531
532 struct bxe_sw_tx_bd {
533     struct mbuf  *m;
534     bus_dmamap_t m_map;
535     uint16_t     first_bd;
536     uint8_t      flags;
537 /* set on the first BD descriptor when there is a split BD */
538 #define BXE_TSO_SPLIT_BD (1 << 0)
539 };
540
541 struct bxe_sw_rx_bd {
542     struct mbuf  *m;
543     bus_dmamap_t m_map;
544 };
545
546 struct bxe_sw_tpa_info {
547     struct bxe_sw_rx_bd bd;
548     bus_dma_segment_t   seg;
549     uint8_t             state;
550 #define BXE_TPA_STATE_START 1
551 #define BXE_TPA_STATE_STOP  2
552     uint8_t             placement_offset;
553     uint16_t            parsing_flags;
554     uint16_t            vlan_tag;
555     uint16_t            len_on_bd;
556 };
557
558 /*
559  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
560  * instances of the fastpath structure when using multiple queues.
561  */
562 struct bxe_fastpath {
563     /* pointer back to parent structure */
564     struct bxe_softc *sc;
565
566     struct mtx tx_mtx;
567     char       tx_mtx_name[32];
568     struct mtx rx_mtx;
569     char       rx_mtx_name[32];
570
571 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
572 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
573 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
574 #define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
575
576 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
577 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
578 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
579
580     /* status block */
581     struct bxe_dma                 sb_dma;
582     union bxe_host_hc_status_block status_block;
583
584     /* transmit chain (tx bds) */
585     struct bxe_dma        tx_dma;
586     union eth_tx_bd_types *tx_chain;
587
588     /* receive chain (rx bds) */
589     struct bxe_dma   rx_dma;
590     struct eth_rx_bd *rx_chain;
591
592     /* receive completion queue chain (rcq bds) */
593     struct bxe_dma   rcq_dma;
594     union eth_rx_cqe *rcq_chain;
595
596     /* receive scatter/gather entry chain (for TPA) */
597     struct bxe_dma    rx_sge_dma;
598     struct eth_rx_sge *rx_sge_chain;
599
600     /* tx mbufs */
601     bus_dma_tag_t       tx_mbuf_tag;
602     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
603
604     /* rx mbufs */
605     bus_dma_tag_t       rx_mbuf_tag;
606     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
607     bus_dmamap_t        rx_mbuf_spare_map;
608
609     /* rx sge mbufs */
610     bus_dma_tag_t       rx_sge_mbuf_tag;
611     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
612     bus_dmamap_t        rx_sge_mbuf_spare_map;
613
614     /* rx tpa mbufs (use the larger size for TPA queue length) */
615     int                    tpa_enable; /* disabled per fastpath upon error */
616     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
617     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
618     uint64_t               rx_tpa_queue_used;
619
620     uint16_t *sb_index_values;
621     uint16_t *sb_running_index;
622     uint32_t ustorm_rx_prods_offset;
623
624     uint8_t igu_sb_id; /* status block number in HW */
625     uint8_t fw_sb_id;  /* status block number in FW */
626
627     uint32_t rx_buf_size;
628     int mbuf_alloc_size;
629
630     int state;
631 #define BXE_FP_STATE_CLOSED  0x01
632 #define BXE_FP_STATE_IRQ     0x02
633 #define BXE_FP_STATE_OPENING 0x04
634 #define BXE_FP_STATE_OPEN    0x08
635 #define BXE_FP_STATE_HALTING 0x10
636 #define BXE_FP_STATE_HALTED  0x20
637
638     /* reference back to this fastpath queue number */
639     uint8_t index; /* this is also the 'cid' */
640 #define FP_IDX(fp) (fp->index)
641
642     /* interrupt taskqueue (fast) */
643     struct task      tq_task;
644     struct taskqueue *tq;
645     char             tq_name[32];
646
647     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
648     uint8_t cl_id;
649 #define FP_CL_ID(fp) (fp->cl_id)
650     uint8_t cl_qzone_id;
651
652     uint16_t fp_hc_idx;
653
654     /* driver copy of the receive buffer descriptor prod/cons indices */
655     uint16_t rx_bd_prod;
656     uint16_t rx_bd_cons;
657
658     /* driver copy of the receive completion queue prod/cons indices */
659     uint16_t rx_cq_prod;
660     uint16_t rx_cq_cons;
661
662     union bxe_db_prod tx_db;
663
664     /* Transmit packet producer index (used in eth_tx_bd). */
665     uint16_t tx_pkt_prod;
666     uint16_t tx_pkt_cons;
667
668     /* Transmit buffer descriptor producer index. */
669     uint16_t tx_bd_prod;
670     uint16_t tx_bd_cons;
671
672     uint64_t sge_mask[RX_SGE_MASK_LEN];
673     uint16_t rx_sge_prod;
674
675     struct tstorm_per_queue_stats old_tclient;
676     struct ustorm_per_queue_stats old_uclient;
677     struct xstorm_per_queue_stats old_xclient;
678     struct bxe_eth_q_stats        eth_q_stats;
679     struct bxe_eth_q_stats_old    eth_q_stats_old;
680
681     /* Pointer to the receive consumer in the status block */
682     uint16_t *rx_cq_cons_sb;
683
684     /* Pointer to the transmit consumer in the status block */
685     uint16_t *tx_cons_sb;
686
687     /* transmit timeout until chip reset */
688     int watchdog_timer;
689
690     /* Free/used buffer descriptor counters. */
691     //uint16_t used_tx_bd;
692
693     /* Last maximal completed SGE */
694     uint16_t last_max_sge;
695
696     //uint16_t rx_sge_free_idx;
697
698     //uint8_t segs;
699
700 #if __FreeBSD_version >= 800000
701 #define BXE_BR_SIZE 4096
702     struct buf_ring *tx_br;
703 #endif
704 }; /* struct bxe_fastpath */
705
706 /* sriov XXX */
707 #define BXE_MAX_NUM_OF_VFS 64
708 #define BXE_VF_CID_WND     0
709 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
710 #define BXE_CLIENTS_PER_VF 1
711 #define BXE_FIRST_VF_CID   256
712 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
713 #define BXE_VF_ID_INVALID  0xFF
714 #define IS_SRIOV(sc) 0
715
716 #define GET_NUM_VFS_PER_PATH(sc) 0
717 #define GET_NUM_VFS_PER_PF(sc)   0
718
719 /* maximum number of fast-path interrupt contexts */
720 #define FP_SB_MAX_E1x 16
721 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
722
723 union cdu_context {
724     struct eth_context eth;
725     char pad[1024];
726 };
727
728 /* CDU host DB constants */
729 #define CDU_ILT_PAGE_SZ_HW 2
730 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
731 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
732
733 #define CNIC_ISCSI_CID_MAX 256
734 #define CNIC_FCOE_CID_MAX  2048
735 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
736 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
737
738 #define QM_ILT_PAGE_SZ_HW  0
739 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
740 #define QM_CID_ROUND       1024
741
742 /* TM (timers) host DB constants */
743 #define TM_ILT_PAGE_SZ_HW  0
744 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
745 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
746 #define TM_CONN_NUM        1024
747 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
748 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
749
750 /* SRC (Searcher) host DB constants */
751 #define SRC_ILT_PAGE_SZ_HW 0
752 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
753 #define SRC_HASH_BITS      10
754 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
755 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
756 #define SRC_T2_SZ          SRC_ILT_SZ
757 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
758
759 struct hw_context {
760     struct bxe_dma    vcxt_dma;
761     union cdu_context *vcxt;
762     //bus_addr_t        cxt_mapping;
763     size_t            size;
764 };
765
766 #define SM_RX_ID 0
767 #define SM_TX_ID 1
768
769 /* defines for multiple tx priority indices */
770 #define FIRST_TX_ONLY_COS_INDEX 1
771 #define FIRST_TX_COS_INDEX      0
772
773 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
774
775 #define HC_INDEX_ETH_RX_CQ_CONS       1
776 #define HC_INDEX_OOO_TX_CQ_CONS       4
777 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
778 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
779 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
780 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
781
782 /* congestion management fairness mode */
783 #define CMNG_FNS_NONE   0
784 #define CMNG_FNS_MINMAX 1
785
786 /* CMNG constants, as derived from system spec calculations */
787 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
788 #define DEF_MIN_RATE 100
789 /* resolution of the rate shaping timer - 400 usec */
790 #define RS_PERIODIC_TIMEOUT_USEC 400
791 /* number of bytes in single QM arbitration cycle -
792  * coefficient for calculating the fairness timer */
793 #define QM_ARB_BYTES 160000
794 /* resolution of Min algorithm 1:100 */
795 #define MIN_RES 100
796 /* how many bytes above threshold for the minimal credit of Min algorithm*/
797 #define MIN_ABOVE_THRESH 32768
798 /* fairness algorithm integration time coefficient -
799  * for calculating the actual Tfair */
800 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
801 /* memory of fairness algorithm - 2 cycles */
802 #define FAIR_MEM 2
803
804 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
805 #define HC_SEG_ACCESS_ATTN  4
806 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
807
808 /*
809  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
810  * control by the number of fast-path status blocks supported by the
811  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
812  * status block represents an independent interrupts context that can
813  * serve a regular L2 networking queue. However special L2 queues such
814  * as the FCoE queue do not require a FP-SB and other components like
815  * the CNIC may consume FP-SB reducing the number of possible L2 queues
816  *
817  * If the maximum number of FP-SB available is X then:
818  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
819  *    regular L2 queues is Y=X-1
820  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
821  * c. If the FCoE L2 queue is supported the actual number of L2 queues
822  *    is Y+1
823  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
824  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
825  *    FP interrupt context for the CNIC).
826  * e. The number of HW context (CID count) is always X or X+1 if FCoE
827  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
828  *
829  * So this is quite simple for now as no ULPs are supported yet. :-)
830  */
831 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
832 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
833 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
834 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
835
836 #define FOR_EACH_QUEUE(sc, var)                          \
837     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
838
839 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
840     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
841
842 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
843     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
844
845 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
846     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
847
848 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
849     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
850
851 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
852     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
853          (var) < BXE_NUM_QUEUES(sc);     \
854          (var)++)
855
856 enum {
857     OOO_IDX_OFFSET,
858     FCOE_IDX_OFFSET,
859     FWD_IDX_OFFSET,
860 };
861
862 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
863 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
864 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
865 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
866 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
867 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
868
869 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
870 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
871 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
872 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
873 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
874
875 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
876 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
877 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
878 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
879 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
880 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
881
882 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
883 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
884 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
885 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
886 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
887 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
888 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
889
890 enum {
891     BXE_PORT_QUERY_IDX,
892     BXE_PF_QUERY_IDX,
893     BXE_FCOE_QUERY_IDX,
894     BXE_FIRST_QUEUE_QUERY_IDX,
895 };
896
897 struct bxe_fw_stats_req {
898     struct stats_query_header hdr;
899     struct stats_query_entry  query[FP_SB_MAX_E1x +
900                                     BXE_FIRST_QUEUE_QUERY_IDX];
901 };
902
903 struct bxe_fw_stats_data {
904     struct stats_counter          storm_counters;
905     struct per_port_stats         port;
906     struct per_pf_stats           pf;
907     //struct fcoe_statistics_params fcoe;
908     struct per_queue_stats        queue_stats[1];
909 };
910
911 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
912 #define BXE_IGU_STAS_MSG_VF_CNT 64
913 #define BXE_IGU_STAS_MSG_PF_CNT 4
914
915 #define MAX_DMAE_C 8
916
917 /*
918  * For the main interface up/down code paths, a not-so-fine-grained CORE
919  * mutex lock is used. Inside this code are various calls to kernel routines
920  * that can cause a sleep to occur. Namely memory allocations and taskqueue
921  * handling. If using an MTX lock we are *not* allowed to sleep but we can
922  * with an SX lock. This define forces the CORE lock to use and SX lock.
923  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
924  * path can cause problems since it's called by a non-sleepable thread. To
925  * alleviate a potential sleep, any IOCTL processing that results in the
926  * chip/interface being started/stopped/reinitialized, the actual work is
927  * offloaded to a taskqueue.
928  */
929 #define BXE_CORE_LOCK_SX
930
931 /*
932  * This is the slowpath data structure. It is mapped into non-paged memory
933  * so that the hardware can access it's contents directly and must be page
934  * aligned.
935  */
936 struct bxe_slowpath {
937
938     /* used by the DMAE command executer */
939     struct dmae_cmd dmae[MAX_DMAE_C];
940
941     /* statistics completion */
942     uint32_t stats_comp;
943
944     /* firmware defined statistics blocks */
945     union mac_stats        mac_stats;
946     struct nig_stats       nig_stats;
947     struct host_port_stats port_stats;
948     struct host_func_stats func_stats;
949     //struct host_func_stats func_stats_base;
950
951     /* DMAE completion value and data source/sink */
952     uint32_t wb_comp;
953     uint32_t wb_data[4];
954
955     union {
956         struct mac_configuration_cmd          e1x;
957         struct eth_classify_rules_ramrod_data e2;
958     } mac_rdata;
959
960     union {
961         struct tstorm_eth_mac_filter_config e1x;
962         struct eth_filter_rules_ramrod_data e2;
963     } rx_mode_rdata;
964
965     struct eth_rss_update_ramrod_data rss_rdata;
966
967     union {
968         struct mac_configuration_cmd           e1;
969         struct eth_multicast_rules_ramrod_data e2;
970     } mcast_rdata;
971
972     union {
973         struct function_start_data        func_start;
974         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
975     } func_rdata;
976
977     /* Queue State related ramrods */
978     union {
979         struct client_init_ramrod_data   init_data;
980         struct client_update_ramrod_data update_data;
981     } q_rdata;
982
983     /*
984      * AFEX ramrod can not be a part of func_rdata union because these
985      * events might arrive in parallel to other events from func_rdata.
986      * If they were defined in the same union the data can get corrupted.
987      */
988     struct afex_vif_list_ramrod_data func_afex_rdata;
989
990     union drv_info_to_mcp drv_info_to_mcp;
991 }; /* struct bxe_slowpath */
992
993 /*
994  * Port specifc data structure.
995  */
996 struct bxe_port {
997     /*
998      * Port Management Function (for 57711E only).
999      * When this field is set the driver instance is
1000      * responsible for managing port specifc
1001      * configurations such as handling link attentions.
1002      */
1003     uint32_t pmf;
1004
1005     /* Ethernet maximum transmission unit. */
1006     uint16_t ether_mtu;
1007
1008     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1009
1010     uint32_t ext_phy_config;
1011
1012     /* Port feature config.*/
1013     uint32_t config;
1014
1015     /* Defines the features supported by the PHY. */
1016     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1017
1018     /* Defines the features advertised by the PHY. */
1019     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1020 #define ADVERTISED_10baseT_Half    (1 << 1)
1021 #define ADVERTISED_10baseT_Full    (1 << 2)
1022 #define ADVERTISED_100baseT_Half   (1 << 3)
1023 #define ADVERTISED_100baseT_Full   (1 << 4)
1024 #define ADVERTISED_1000baseT_Half  (1 << 5)
1025 #define ADVERTISED_1000baseT_Full  (1 << 6)
1026 #define ADVERTISED_TP              (1 << 7)
1027 #define ADVERTISED_FIBRE           (1 << 8)
1028 #define ADVERTISED_Autoneg         (1 << 9)
1029 #define ADVERTISED_Asym_Pause      (1 << 10)
1030 #define ADVERTISED_Pause           (1 << 11)
1031 #define ADVERTISED_2500baseX_Full  (1 << 15)
1032 #define ADVERTISED_10000baseT_Full (1 << 16)
1033
1034     uint32_t    phy_addr;
1035
1036     /* Used to synchronize phy accesses. */
1037     struct mtx  phy_mtx;
1038     char        phy_mtx_name[32];
1039
1040 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1041 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1042 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1043
1044     /*
1045      * MCP scratchpad address for port specific statistics.
1046      * The device is responsible for writing statistcss
1047      * back to the MCP for use with management firmware such
1048      * as UMP/NC-SI.
1049      */
1050     uint32_t port_stx;
1051
1052     struct nig_stats old_nig_stats;
1053 }; /* struct bxe_port */
1054
1055 struct bxe_mf_info {
1056     uint32_t mf_config[E1HVN_MAX];
1057
1058     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1059     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1060     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1061
1062 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1063 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1064 #define VNICS_PER_PATH(sc)                                  \
1065     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1066      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1067
1068     uint8_t min_bw[MAX_VNIC_NUM];
1069     uint8_t max_bw[MAX_VNIC_NUM];
1070
1071     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1072 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1073 #define INVALID_VIF_ID 0xFFFF
1074 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1075 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1076
1077     uint16_t default_vlan;
1078 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1079
1080     uint8_t niv_allowed_priorities;
1081 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1082
1083     uint8_t niv_default_cos;
1084 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1085
1086     uint8_t niv_mba_enabled;
1087
1088     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1089 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1090     int                        afex_def_vlan_tag;
1091     uint32_t                   pending_max;
1092
1093     uint16_t flags;
1094 #define MF_INFO_VALID_MAC       0x0001
1095
1096     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1097 #define IS_MF(sc)                        \
1098     (IS_MULTI_VNIC(sc) &&                \
1099      ((sc)->devinfo.mf_info.mf_mode != 0))
1100 #define IS_MF_SD(sc)                                     \
1101     (IS_MULTI_VNIC(sc) &&                                \
1102      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1103 #define IS_MF_SI(sc)                                     \
1104     (IS_MULTI_VNIC(sc) &&                                \
1105      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1106 #define IS_MF_AFEX(sc)                              \
1107     (IS_MULTI_VNIC(sc) &&                           \
1108      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1109 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1110 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1111 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1112
1113     uint32_t mf_protos_supported;
1114     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1115     #define MF_PROTO_SUPPORT_ISCSI    0x2
1116     #define MF_PROTO_SUPPORT_FCOE     0x4
1117 }; /* struct bxe_mf_info */
1118
1119 /* Device information data structure. */
1120 struct bxe_devinfo {
1121     /* PCIe info */
1122     uint16_t vendor_id;
1123     uint16_t device_id;
1124     uint16_t subvendor_id;
1125     uint16_t subdevice_id;
1126
1127     /*
1128      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1129      *   C = Chip Number   (bits 16-31)
1130      *   R = Chip Revision (bits 12-15)
1131      *   M = Chip Metal    (bits 4-11)
1132      *   B = Chip Bond ID  (bits 0-3)
1133      */
1134     uint32_t chip_id;
1135 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1136 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1137 /* device ids */
1138 #define CHIP_NUM_57710        0x164e
1139 #define CHIP_NUM_57711        0x164f
1140 #define CHIP_NUM_57711E       0x1650
1141 #define CHIP_NUM_57712        0x1662
1142 #define CHIP_NUM_57712_MF     0x1663
1143 #define CHIP_NUM_57712_VF     0x166f
1144 #define CHIP_NUM_57800        0x168a
1145 #define CHIP_NUM_57800_MF     0x16a5
1146 #define CHIP_NUM_57800_VF     0x16a9
1147 #define CHIP_NUM_57810        0x168e
1148 #define CHIP_NUM_57810_MF     0x16ae
1149 #define CHIP_NUM_57810_VF     0x16af
1150 #define CHIP_NUM_57811        0x163d
1151 #define CHIP_NUM_57811_MF     0x163e
1152 #define CHIP_NUM_57811_VF     0x163f
1153 #define CHIP_NUM_57840_OBS    0x168d
1154 #define CHIP_NUM_57840_OBS_MF 0x16ab
1155 #define CHIP_NUM_57840_4_10   0x16a1
1156 #define CHIP_NUM_57840_2_20   0x16a2
1157 #define CHIP_NUM_57840_MF     0x16a4
1158 #define CHIP_NUM_57840_VF     0x16ad
1159
1160 #define CHIP_REV_SHIFT      12
1161 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1162 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1163
1164 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1165 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1166 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1167
1168 #define CHIP_REV_IS_SLOW(sc)    \
1169     (CHIP_REV(sc) > 0x00005000)
1170 #define CHIP_REV_IS_FPGA(sc)                              \
1171     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1172 #define CHIP_REV_IS_EMUL(sc)                               \
1173     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1174 #define CHIP_REV_IS_ASIC(sc) \
1175     (!CHIP_REV_IS_SLOW(sc))
1176
1177 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1178 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1179
1180 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1181 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1182 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1183 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1184 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1185                              (CHIP_IS_57711E(sc)))
1186 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1187                              CHIP_IS_E1H((sc)))
1188
1189 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1190 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1191 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1192 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1193                               CHIP_IS_57712_MF(sc))
1194
1195 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1196 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1197 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1198 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1199 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1200 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1201 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1202 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1203 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1204 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1205                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1206                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1207 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1208                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1209 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1210
1211 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1212                              CHIP_IS_57800_MF(sc) || \
1213                              CHIP_IS_57800_VF(sc) || \
1214                              CHIP_IS_57810(sc)    || \
1215                              CHIP_IS_57810_MF(sc) || \
1216                              CHIP_IS_57810_VF(sc) || \
1217                              CHIP_IS_57811(sc)    || \
1218                              CHIP_IS_57811_MF(sc) || \
1219                              CHIP_IS_57811_VF(sc) || \
1220                              CHIP_IS_57840(sc)    || \
1221                              CHIP_IS_57840_MF(sc) || \
1222                              CHIP_IS_57840_VF(sc))
1223 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1224                              (CHIP_REV(sc) == CHIP_REV_Ax))
1225 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1226                              (CHIP_REV(sc) == CHIP_REV_Bx))
1227
1228 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1229 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1230                              CHIP_IS_E3(sc))
1231
1232 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1233                              CHIP_IS_57712_MF(sc) || \
1234                              CHIP_IS_E3(sc))
1235
1236 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1237                              CHIP_IS_57800_VF(sc) || \
1238                              CHIP_IS_57810_VF(sc) || \
1239                              CHIP_IS_57840_VF(sc))
1240 #define IS_PF(sc)           (!IS_VF(sc))
1241
1242 /*
1243  * This define is used in two main places:
1244  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1245  * to nic-only mode or to offload mode. Offload mode is configured if either
1246  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1247  * already registered for this port (which means that the user wants storage
1248  * services).
1249  * 2. During cnic-related load, to know if offload mode is already configured
1250  * in the HW or needs to be configrued. Since the transition from nic-mode to
1251  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1252  * in ports on which storage services where never requested.
1253  */
1254 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1255
1256     uint8_t  chip_port_mode;
1257 #define CHIP_4_PORT_MODE        0x0
1258 #define CHIP_2_PORT_MODE        0x1
1259 #define CHIP_PORT_MODE_NONE     0x2
1260 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1261 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1262
1263     uint8_t int_block;
1264 #define INT_BLOCK_HC            0
1265 #define INT_BLOCK_IGU           1
1266 #define INT_BLOCK_MODE_NORMAL   0
1267 #define INT_BLOCK_MODE_BW_COMP  2
1268 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1269     (!CHIP_IS_E1x(sc) &&                                  \
1270      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1271 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1272
1273     uint32_t shmem_base;
1274     uint32_t shmem2_base;
1275     uint32_t bc_ver;
1276     char bc_ver_str[32];
1277     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1278     struct bxe_mf_info mf_info;
1279
1280     int flash_size;
1281 #define NVRAM_1MB_SIZE      0x20000
1282 #define NVRAM_TIMEOUT_COUNT 30000
1283 #define NVRAM_PAGE_SIZE     256
1284
1285     /* PCIe capability information */
1286     uint32_t pcie_cap_flags;
1287 #define BXE_PM_CAPABLE_FLAG     0x00000001
1288 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1289 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1290 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1291     uint16_t pcie_pm_cap_reg;
1292     uint16_t pcie_pcie_cap_reg;
1293     //uint16_t pcie_devctl;
1294     uint16_t pcie_link_width;
1295     uint16_t pcie_link_speed;
1296     uint16_t pcie_msi_cap_reg;
1297     uint16_t pcie_msix_cap_reg;
1298
1299     /* device configuration read from bootcode shared memory */
1300     uint32_t hw_config;
1301     uint32_t hw_config2;
1302 }; /* struct bxe_devinfo */
1303
1304 struct bxe_sp_objs {
1305     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1306     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1307 }; /* struct bxe_sp_objs */
1308
1309 /*
1310  * Data that will be used to create a link report message. We will keep the
1311  * data used for the last link report in order to prevent reporting the same
1312  * link parameters twice.
1313  */
1314 struct bxe_link_report_data {
1315     uint16_t      line_speed;        /* Effective line speed */
1316     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1317 };
1318 enum {
1319     BXE_LINK_REPORT_FULL_DUPLEX,
1320     BXE_LINK_REPORT_LINK_DOWN,
1321     BXE_LINK_REPORT_RX_FC_ON,
1322     BXE_LINK_REPORT_TX_FC_ON
1323 };
1324
1325 /* Top level device private data structure. */
1326 struct bxe_softc {
1327     /*
1328      * First entry must be a pointer to the BSD ifnet struct which
1329      * has a first element of 'void *if_softc' (which is us).
1330      */
1331     struct ifnet   *ifnet;
1332     struct ifmedia  ifmedia; /* network interface media structure */
1333     int             media;
1334
1335     int             state; /* device state */
1336 #define BXE_STATE_CLOSED                 0x0000
1337 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1338 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1339 #define BXE_STATE_OPEN                   0x3000
1340 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1341 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1342 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1343 #define BXE_STATE_DISABLED               0xD000
1344 #define BXE_STATE_DIAG                   0xE000
1345 #define BXE_STATE_ERROR                  0xF000
1346
1347     int flags;
1348 #define BXE_ONE_PORT_FLAG    0x00000001
1349 #define BXE_NO_ISCSI         0x00000002
1350 #define BXE_NO_FCOE          0x00000004
1351 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1352 //#define BXE_NO_WOL_FLAG      0x00000008
1353 //#define BXE_USING_DAC_FLAG   0x00000010
1354 //#define BXE_USING_MSIX_FLAG  0x00000020
1355 //#define BXE_USING_MSI_FLAG   0x00000040
1356 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1357 #define BXE_NO_MCP_FLAG      0x00000200
1358 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1359 //#define BXE_SAFC_TX_FLAG     0x00000400
1360 #define BXE_MF_FUNC_DIS      0x00000800
1361 #define BXE_TX_SWITCHING     0x00001000
1362 #define BXE_NO_PULSE         0x00002000
1363
1364     unsigned long debug; /* per-instance debug logging config */
1365
1366 #define MAX_BARS 5
1367     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1368
1369     uint16_t doorbell_size;
1370
1371     /* periodic timer callout */
1372 #define PERIODIC_STOP 0
1373 #define PERIODIC_GO   1
1374     volatile unsigned long periodic_flags;
1375     struct callout         periodic_callout;
1376
1377     /* chip start/stop/reset taskqueue */
1378 #define CHIP_TQ_NONE   0
1379 #define CHIP_TQ_START  1
1380 #define CHIP_TQ_STOP   2
1381 #define CHIP_TQ_REINIT 3
1382     volatile unsigned long chip_tq_flags;
1383     struct task            chip_tq_task;
1384     struct taskqueue       *chip_tq;
1385     char                   chip_tq_name[32];
1386
1387     /* slowpath interrupt taskqueue */
1388     struct task      sp_tq_task;
1389     struct taskqueue *sp_tq;
1390     char             sp_tq_name[32];
1391
1392     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1393     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1394
1395     device_t dev;  /* parent device handle */
1396     uint8_t  unit; /* driver instance number */
1397
1398     int pcie_bus;    /* PCIe bus number */
1399     int pcie_device; /* PCIe device/slot number */
1400     int pcie_func;   /* PCIe function number */
1401
1402     uint8_t pfunc_rel; /* function relative */
1403     uint8_t pfunc_abs; /* function absolute */
1404     uint8_t path_id;   /* function absolute */
1405 #define SC_PATH(sc)     (sc->path_id)
1406 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1407 #define SC_FUNC(sc)     (sc->pfunc_rel)
1408 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1409 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1410 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1411 #define PORT_ID(sc)     SC_PORT(sc)
1412 #define PATH_ID(sc)     SC_PATH(sc)
1413 #define VNIC_ID(sc)     SC_VN(sc)
1414 #define FUNC_ID(sc)     SC_FUNC(sc)
1415 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1416 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1417     (SC_PORT(sc) + (vn) *                                      \
1418      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1419 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1420
1421     int if_capen; /* enabled interface capabilities */
1422
1423     struct bxe_devinfo devinfo;
1424     char fw_ver_str[32];
1425     char mf_mode_str[32];
1426     char pci_link_str[32];
1427
1428     const struct iro *iro_array;
1429
1430 #ifdef BXE_CORE_LOCK_SX
1431     struct sx      core_sx;
1432     char           core_sx_name[32];
1433 #else
1434     struct mtx     core_mtx;
1435     char           core_mtx_name[32];
1436 #endif
1437     struct mtx     sp_mtx;
1438     char           sp_mtx_name[32];
1439     struct mtx     dmae_mtx;
1440     char           dmae_mtx_name[32];
1441     struct mtx     fwmb_mtx;
1442     char           fwmb_mtx_name[32];
1443     struct mtx     print_mtx;
1444     char           print_mtx_name[32];
1445     struct mtx     stats_mtx;
1446     char           stats_mtx_name[32];
1447     struct mtx     mcast_mtx;
1448     char           mcast_mtx_name[32];
1449
1450 #ifdef BXE_CORE_LOCK_SX
1451 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1452 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1453 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1454 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1455 #else
1456 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1457 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1458 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1459 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1460 #endif
1461
1462 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1463 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1464 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1465
1466 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1467 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1468 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1469
1470 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1471 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1472 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1473
1474 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1475 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1476 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1477
1478 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1479 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1480 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1481
1482 #if __FreeBSD_version < 800000
1483 #define BXE_MCAST_LOCK(sc)        \
1484     do {                          \
1485         mtx_lock(&sc->mcast_mtx); \
1486         IF_ADDR_LOCK(sc->ifnet);  \
1487     } while (0)
1488 #define BXE_MCAST_UNLOCK(sc)        \
1489     do {                            \
1490         IF_ADDR_UNLOCK(sc->ifnet);  \
1491         mtx_unlock(&sc->mcast_mtx); \
1492     } while (0)
1493 #else
1494 #define BXE_MCAST_LOCK(sc)         \
1495     do {                           \
1496         mtx_lock(&sc->mcast_mtx);  \
1497         if_maddr_rlock(sc->ifnet); \
1498     } while (0)
1499 #define BXE_MCAST_UNLOCK(sc)         \
1500     do {                             \
1501         if_maddr_runlock(sc->ifnet); \
1502         mtx_unlock(&sc->mcast_mtx);  \
1503     } while (0)
1504 #endif
1505 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1506
1507     int dmae_ready;
1508 #define DMAE_READY(sc) (sc->dmae_ready)
1509
1510     struct ecore_credit_pool_obj vlans_pool;
1511     struct ecore_credit_pool_obj macs_pool;
1512     struct ecore_rx_mode_obj     rx_mode_obj;
1513     struct ecore_mcast_obj       mcast_obj;
1514     struct ecore_rss_config_obj  rss_conf_obj;
1515     struct ecore_func_sp_obj     func_obj;
1516
1517     uint16_t fw_seq;
1518     uint16_t fw_drv_pulse_wr_seq;
1519     uint32_t func_stx;
1520
1521     struct elink_params         link_params;
1522     struct elink_vars           link_vars;
1523     uint32_t                    link_cnt;
1524     struct bxe_link_report_data last_reported_link;
1525     char mac_addr_str[32];
1526
1527     int last_reported_link_state;
1528
1529     int tx_ring_size;
1530     int rx_ring_size;
1531     int wol;
1532
1533     int is_leader;
1534     int recovery_state;
1535 #define BXE_RECOVERY_DONE        1
1536 #define BXE_RECOVERY_INIT        2
1537 #define BXE_RECOVERY_WAIT        3
1538 #define BXE_RECOVERY_FAILED      4
1539 #define BXE_RECOVERY_NIC_LOADING 5
1540
1541     uint32_t rx_mode;
1542 #define BXE_RX_MODE_NONE     0
1543 #define BXE_RX_MODE_NORMAL   1
1544 #define BXE_RX_MODE_ALLMULTI 2
1545 #define BXE_RX_MODE_PROMISC  3
1546 #define BXE_MAX_MULTICAST    64
1547
1548     struct bxe_port port;
1549
1550     struct cmng_init cmng;
1551
1552     /* user configs */
1553     int      num_queues;
1554     int      max_rx_bufs;
1555     int      hc_rx_ticks;
1556     int      hc_tx_ticks;
1557     int      rx_budget;
1558     int      max_aggregation_size;
1559     int      mrrs;
1560     int      autogreeen;
1561 #define AUTO_GREEN_HW_DEFAULT 0
1562 #define AUTO_GREEN_FORCE_ON   1
1563 #define AUTO_GREEN_FORCE_OFF  2
1564     int      interrupt_mode;
1565 #define INTR_MODE_INTX 0
1566 #define INTR_MODE_MSI  1
1567 #define INTR_MODE_MSIX 2
1568     int      udp_rss;
1569
1570     /* interrupt allocations */
1571     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1572     int             intr_count;
1573     uint8_t         igu_dsb_id;
1574     uint8_t         igu_base_sb;
1575     uint8_t         igu_sb_cnt;
1576     //uint8_t         min_msix_vec_cnt;
1577     uint32_t        igu_base_addr;
1578     //bus_addr_t      def_status_blk_mapping;
1579     uint8_t         base_fw_ndsb;
1580 #define DEF_SB_IGU_ID 16
1581 #define DEF_SB_ID     HC_SP_SB_ID
1582
1583     /* parent bus DMA tag  */
1584     bus_dma_tag_t parent_dma_tag;
1585
1586     /* default status block */
1587     struct bxe_dma              def_sb_dma;
1588     struct host_sp_status_block *def_sb;
1589     uint16_t                    def_idx;
1590     uint16_t                    def_att_idx;
1591     uint32_t                    attn_state;
1592     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1593
1594 /* general SP events - stats query, cfc delete, etc */
1595 #define HC_SP_INDEX_ETH_DEF_CONS         3
1596 /* EQ completions */
1597 #define HC_SP_INDEX_EQ_CONS              7
1598 /* FCoE L2 connection completions */
1599 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1600 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1601 /* iSCSI L2 */
1602 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1603 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1604
1605     /* event queue */
1606     struct bxe_dma        eq_dma;
1607     union event_ring_elem *eq;
1608     uint16_t              eq_prod;
1609     uint16_t              eq_cons;
1610     uint16_t              *eq_cons_sb;
1611 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1612 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1613 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1614 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1615 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1616 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1617 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1618 #define NEXT_EQ_IDX(x)                                      \
1619     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1620          ((x) + 2) : ((x) + 1))
1621 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1622 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1623
1624     /* slow path */
1625     struct bxe_dma      sp_dma;
1626     struct bxe_slowpath *sp;
1627     unsigned long       sp_state;
1628
1629     /* slow path queue */
1630     struct bxe_dma spq_dma;
1631     struct eth_spe *spq;
1632 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1633 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1634 #define MAX_SPQ_PENDING 8
1635
1636     uint16_t       spq_prod_idx;
1637     struct eth_spe *spq_prod_bd;
1638     struct eth_spe *spq_last_bd;
1639     uint16_t       *dsb_sp_prod;
1640     //uint16_t       *spq_hw_con;
1641     //uint16_t       spq_left;
1642
1643     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1644     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1645
1646     /* fw decompression buffer */
1647     struct bxe_dma gz_buf_dma;
1648     void           *gz_buf;
1649     z_streamp      gz_strm;
1650     uint32_t       gz_outlen;
1651 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1652 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1653 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1654 #define FW_BUF_SIZE       0x40000
1655
1656     const struct raw_op *init_ops;
1657     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1658     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1659     uint32_t       init_mode_flags;
1660 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1661     /* PRAM blobs - raw data */
1662     const uint8_t *tsem_int_table_data;
1663     const uint8_t *tsem_pram_data;
1664     const uint8_t *usem_int_table_data;
1665     const uint8_t *usem_pram_data;
1666     const uint8_t *xsem_int_table_data;
1667     const uint8_t *xsem_pram_data;
1668     const uint8_t *csem_int_table_data;
1669     const uint8_t *csem_pram_data;
1670 #define INIT_OPS(sc)                 (sc->init_ops)
1671 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1672 #define INIT_DATA(sc)                (sc->init_data)
1673 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1674 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1675 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1676 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1677 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1678 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1679 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1680 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1681
1682     /* ILT
1683      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1684      * context size we need 8 ILT entries.
1685      */
1686 #define ILT_MAX_L2_LINES 8
1687     struct hw_context context[ILT_MAX_L2_LINES];
1688     struct ecore_ilt *ilt;
1689 #define ILT_MAX_LINES 256
1690
1691 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1692 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1693 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1694 #if 1
1695 #define BXE_L2_MAX_CID(sc)                                              \
1696     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1697 #else
1698 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1699     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1700 #endif
1701 #if 1
1702 #define BXE_L2_CID_COUNT(sc)                                             \
1703     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1704 #else
1705 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1706     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1707 #endif
1708 #define L2_ILT_LINES(sc)                                \
1709     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1710
1711     int qm_cid_count;
1712
1713     uint8_t dropless_fc;
1714
1715     /* total number of FW statistics requests */
1716     uint8_t fw_stats_num;
1717     /*
1718      * This is a memory buffer that will contain both statistics ramrod
1719      * request and data.
1720      */
1721     struct bxe_dma fw_stats_dma;
1722     /*
1723      * FW statistics request shortcut (points at the beginning of fw_stats
1724      * buffer).
1725      */
1726     int                     fw_stats_req_size;
1727     struct bxe_fw_stats_req *fw_stats_req;
1728     bus_addr_t              fw_stats_req_mapping;
1729     /*
1730      * FW statistics data shortcut (points at the beginning of fw_stats
1731      * buffer + fw_stats_req_size).
1732      */
1733     int                      fw_stats_data_size;
1734     struct bxe_fw_stats_data *fw_stats_data;
1735     bus_addr_t               fw_stats_data_mapping;
1736
1737     /* tracking a pending STAT_QUERY ramrod */
1738     uint16_t stats_pending;
1739     /* number of completed statistics ramrods */
1740     uint16_t stats_comp;
1741     uint16_t stats_counter;
1742     uint8_t  stats_init;
1743     int      stats_state;
1744
1745     struct bxe_eth_stats         eth_stats;
1746     struct host_func_stats       func_stats;
1747     struct bxe_eth_stats_old     eth_stats_old;
1748     struct bxe_net_stats_old     net_stats_old;
1749     struct bxe_fw_port_stats_old fw_stats_old;
1750
1751     struct dmae_cmd stats_dmae; /* used by dmae command loader */
1752     int                 executer_idx;
1753
1754     int mtu;
1755
1756     /* LLDP params */
1757     struct bxe_config_lldp_params lldp_config_params;
1758     /* DCB support on/off */
1759     int dcb_state;
1760 #define BXE_DCB_STATE_OFF 0
1761 #define BXE_DCB_STATE_ON  1
1762     /* DCBX engine mode */
1763     int dcbx_enabled;
1764 #define BXE_DCBX_ENABLED_OFF        0
1765 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1766 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1767 #define BXE_DCBX_ENABLED_INVALID    -1
1768     uint8_t dcbx_mode_uset;
1769     struct bxe_config_dcbx_params dcbx_config_params;
1770     struct bxe_dcbx_port_params   dcbx_port_params;
1771     int dcb_version;
1772
1773     uint8_t cnic_support;
1774     uint8_t cnic_enabled;
1775     uint8_t cnic_loaded;
1776 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1777 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1778 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1779
1780     /* multiple tx classes of service */
1781     uint8_t max_cos;
1782 #define BXE_MAX_PRIORITY 8
1783     /* priority to cos mapping */
1784     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1785
1786     int panic;
1787
1788     struct cdev *ioctl_dev;
1789     void *grc_dump;
1790     int grcdump_done;
1791 }; /* struct bxe_softc */
1792
1793 /* IOCTL sub-commands for edebug and firmware upgrade */
1794 #define BXE_IOC_RD_NVRAM        1
1795 #define BXE_IOC_WR_NVRAM        2
1796 #define BXE_IOC_STATS_SHOW_NUM  3
1797 #define BXE_IOC_STATS_SHOW_STR  4
1798 #define BXE_IOC_STATS_SHOW_CNT  5
1799
1800 struct bxe_nvram_data {
1801     uint32_t op; /* ioctl sub-command */
1802     uint32_t offset;
1803     uint32_t len;
1804     uint32_t value[1]; /* variable */
1805 };
1806
1807 union bxe_stats_show_data {
1808     uint32_t op; /* ioctl sub-command */
1809
1810     struct {
1811         uint32_t num; /* return number of stats */
1812         uint32_t len; /* length of each string item */
1813     } desc;
1814
1815     /* variable length... */
1816     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1817
1818     /* variable length... */
1819     uint64_t stats[1]; /* holds all stats */
1820 };
1821
1822 /* function init flags */
1823 #define FUNC_FLG_RSS     0x0001
1824 #define FUNC_FLG_STATS   0x0002
1825 /* FUNC_FLG_UNMATCHED       0x0004 */
1826 #define FUNC_FLG_TPA     0x0008
1827 #define FUNC_FLG_SPQ     0x0010
1828 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1829
1830 struct bxe_func_init_params {
1831     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1832     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1833     uint16_t   func_flgs;
1834     uint16_t   func_id;     /* abs function id */
1835     uint16_t   pf_id;
1836     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1837 };
1838
1839 /* memory resources reside at BARs 0, 2, 4 */
1840 /* Run `pciconf -lb` to see mappings */
1841 #define BAR0 0
1842 #define BAR1 2
1843 #define BAR2 4
1844
1845 #ifdef BXE_REG_NO_INLINE
1846
1847 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1848 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1849 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1850
1851 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1852 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1853 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1854
1855 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1856 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1857 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1858
1859 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1860 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1861 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1862
1863 #else /* not BXE_REG_NO_INLINE */
1864
1865 #define REG_WR8(sc, offset, val)            \
1866     bus_space_write_1(sc->bar[BAR0].tag,    \
1867                       sc->bar[BAR0].handle, \
1868                       offset, val)
1869
1870 #define REG_WR16(sc, offset, val)           \
1871     bus_space_write_2(sc->bar[BAR0].tag,    \
1872                       sc->bar[BAR0].handle, \
1873                       offset, val)
1874
1875 #define REG_WR32(sc, offset, val)           \
1876     bus_space_write_4(sc->bar[BAR0].tag,    \
1877                       sc->bar[BAR0].handle, \
1878                       offset, val)
1879
1880 #define REG_RD8(sc, offset)                \
1881     bus_space_read_1(sc->bar[BAR0].tag,    \
1882                      sc->bar[BAR0].handle, \
1883                      offset)
1884
1885 #define REG_RD16(sc, offset)               \
1886     bus_space_read_2(sc->bar[BAR0].tag,    \
1887                      sc->bar[BAR0].handle, \
1888                      offset)
1889
1890 #define REG_RD32(sc, offset)               \
1891     bus_space_read_4(sc->bar[BAR0].tag,    \
1892                      sc->bar[BAR0].handle, \
1893                      offset)
1894
1895 #endif /* BXE_REG_NO_INLINE */
1896
1897 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1898 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1899
1900 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1901 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1902
1903 #define BXE_SP(sc, var) (&(sc)->sp->var)
1904 #define BXE_SP_MAPPING(sc, var) \
1905     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1906
1907 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1908 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1909
1910 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1911     do {                                                   \
1912         bxe_read_dmae(sc, offset, len32);                  \
1913         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1914     } while (0)
1915
1916 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1917     do {                                                                \
1918         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1919         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1920     } while (0)
1921
1922 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1923     REG_WR_DMAE(sc, offset, valp, len32)
1924
1925 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1926     REG_RD_DMAE(sc, offset, valp, len32)
1927
1928 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1929     do {                                                           \
1930         /* if (le32_swap) {                                     */ \
1931         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1932         /* }                                                    */ \
1933         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1934         ecore_write_big_buf_wb(sc, addr, len32);                   \
1935     } while (0)
1936
1937 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1938 #define BXE_DB_SHIFT     7   /* 128 bytes */
1939 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1940 #error "Minimum DB doorbell stride is 8"
1941 #endif
1942 #define DPM_TRIGGER_TYPE 0x40
1943 #define DOORBELL(sc, cid, val)                                              \
1944     do {                                                                    \
1945         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1946                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1947                           (uint32_t)val);                                   \
1948     } while(0)
1949
1950 #define SHMEM_ADDR(sc, field)                                       \
1951     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1952 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1953 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1954 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1955
1956 #define SHMEM2_ADDR(sc, field)                                        \
1957     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1958 #define SHMEM2_HAS(sc, field)                                            \
1959     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1960                                  offsetof(struct shmem2_region, field)))
1961 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1962 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1963
1964 #define MFCFG_ADDR(sc, field)                                  \
1965     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1966 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1967 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1968 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1969
1970 /* DMAE command defines */
1971
1972 #define DMAE_TIMEOUT      -1
1973 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
1974 #define DMAE_NOT_RDY      -3
1975 #define DMAE_PCI_ERR_FLAG 0x80000000
1976
1977 #define DMAE_SRC_PCI      0
1978 #define DMAE_SRC_GRC      1
1979
1980 #define DMAE_DST_NONE     0
1981 #define DMAE_DST_PCI      1
1982 #define DMAE_DST_GRC      2
1983
1984 #define DMAE_COMP_PCI     0
1985 #define DMAE_COMP_GRC     1
1986
1987 #define DMAE_COMP_REGULAR 0
1988 #define DMAE_COM_SET_ERR  1
1989
1990 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
1991 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
1992 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
1993 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
1994
1995 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
1996 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
1997
1998 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
1999 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
2000 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
2001 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
2002
2003 #define DMAE_CMD_PORT_0 0
2004 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT
2005
2006 #define DMAE_SRC_PF 0
2007 #define DMAE_SRC_VF 1
2008
2009 #define DMAE_DST_PF 0
2010 #define DMAE_DST_VF 1
2011
2012 #define DMAE_C_SRC 0
2013 #define DMAE_C_DST 1
2014
2015 #define DMAE_LEN32_RD_MAX     0x80
2016 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2017
2018 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2019
2020 #define MAX_DMAE_C_PER_PORT 8
2021 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2022 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2023
2024 static const uint32_t dmae_reg_go_c[] = {
2025     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2026     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2027     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2028     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2029 };
2030
2031 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2032 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2033 #define GPIO_2_FUNC           (1L << 10)
2034 #define GPIO_3_FUNC           (1L << 11)
2035 #define GPIO_4_FUNC           (1L << 12)
2036 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2037 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2038 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2039 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2040 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2041 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2042 #define ATTN_HARD_WIRED_MASK  0xff00
2043 #define ATTENTION_ID          4
2044
2045 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2046     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2047
2048 #define MAX_IGU_ATTN_ACK_TO 100
2049
2050 #define STORM_ASSERT_ARRAY_SIZE 50
2051
2052 #define BXE_PMF_LINK_ASSERT(sc) \
2053     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2054
2055 #define BXE_MC_ASSERT_BITS \
2056     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2057      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2058      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2059      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2060
2061 #define BXE_MCP_ASSERT \
2062     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2063
2064 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2065 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2066                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2067                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2068                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2069                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2070                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2071
2072 #define MULTI_MASK 0x7f
2073
2074 #define PFS_PER_PORT(sc)                               \
2075     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2076 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2077
2078 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2079     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2080      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2081
2082 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2083     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2084          (i) < MAX_FUNC_NUM;                       \
2085          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2086
2087 #define BXE_SWCID_SHIFT 17
2088 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2089
2090 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2091 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2092
2093 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2094 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2095 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2096 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2097 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2098
2099 /* must be used on a CID before placing it on a HW ring */
2100 #define HW_CID(sc, x) \
2101     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2102
2103 #define SPEED_10    10
2104 #define SPEED_100   100
2105 #define SPEED_1000  1000
2106 #define SPEED_2500  2500
2107 #define SPEED_10000 10000
2108
2109 #define PCI_PM_D0    1
2110 #define PCI_PM_D3hot 2
2111
2112 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2113 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2114 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2115 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2116 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2117 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2118
2119 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2120                     uint32_t val);
2121 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2122
2123
2124 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2125                   struct bxe_dma *dma, const char *msg);
2126 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2127
2128 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2129 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2130 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2131                          uint8_t dst_type, uint8_t with_comp,
2132                          uint8_t comp_type);
2133 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2134 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2135 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2136                     uint32_t dst_addr, uint32_t len32);
2137 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2138                              uint32_t addr, uint32_t len);
2139
2140 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2141                             uint32_t cid);
2142 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2143                                   uint8_t sb_index, uint8_t disable,
2144                                   uint16_t usec);
2145
2146 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2147                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2148
2149 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2150                     uint8_t segment, uint16_t index, uint8_t op,
2151                     uint8_t update);
2152
2153 void ecore_init_e1_firmware(struct bxe_softc *sc);
2154 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2155 void ecore_init_e2_firmware(struct bxe_softc *sc);
2156
2157 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2158                                size_t size, uint32_t *data);
2159
2160 /*********************/
2161 /* LOGGING AND DEBUG */
2162 /*********************/
2163
2164 /* debug logging codepaths */
2165 #define DBG_LOAD   0x00000001 /* load and unload    */
2166 #define DBG_INTR   0x00000002 /* interrupt handling */
2167 #define DBG_SP     0x00000004 /* slowpath handling  */
2168 #define DBG_STATS  0x00000008 /* stats updates      */
2169 #define DBG_TX     0x00000010 /* packet transmit    */
2170 #define DBG_RX     0x00000020 /* packet receive     */
2171 #define DBG_PHY    0x00000040 /* phy/link handling  */
2172 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2173 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2174 #define DBG_REGS   0x00000200 /* register access    */
2175 #define DBG_LRO    0x00000400 /* lro processing     */
2176 #define DBG_ASSERT 0x80000000 /* debug assert       */
2177 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2178
2179 #define DBASSERT(sc, exp, msg)                         \
2180     do {                                               \
2181         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2182             if (__predict_false(!(exp))) {             \
2183                 panic msg;                             \
2184             }                                          \
2185         }                                              \
2186     } while (0)
2187
2188 /* log a debug message */
2189 #define BLOGD(sc, codepath, format, args...)           \
2190     do {                                               \
2191         if (__predict_false(sc->debug & (codepath))) { \
2192             device_printf((sc)->dev,                   \
2193                           "%s(%s:%d) " format,         \
2194                           __FUNCTION__,                \
2195                           __FILE__,                    \
2196                           __LINE__,                    \
2197                           ## args);                    \
2198         }                                              \
2199     } while(0)
2200
2201 /* log a info message */
2202 #define BLOGI(sc, format, args...)             \
2203     do {                                       \
2204         if (__predict_false(sc->debug)) {      \
2205             device_printf((sc)->dev,           \
2206                           "%s(%s:%d) " format, \
2207                           __FUNCTION__,        \
2208                           __FILE__,            \
2209                           __LINE__,            \
2210                           ## args);            \
2211         } else {                               \
2212             device_printf((sc)->dev,           \
2213                           format,              \
2214                           ## args);            \
2215         }                                      \
2216     } while(0)
2217
2218 /* log a warning message */
2219 #define BLOGW(sc, format, args...)                      \
2220     do {                                                \
2221         if (__predict_false(sc->debug)) {               \
2222             device_printf((sc)->dev,                    \
2223                           "%s(%s:%d) WARNING: " format, \
2224                           __FUNCTION__,                 \
2225                           __FILE__,                     \
2226                           __LINE__,                     \
2227                           ## args);                     \
2228         } else {                                        \
2229             device_printf((sc)->dev,                    \
2230                           "WARNING: " format,           \
2231                           ## args);                     \
2232         }                                               \
2233     } while(0)
2234
2235 /* log a error message */
2236 #define BLOGE(sc, format, args...)                    \
2237     do {                                              \
2238         if (__predict_false(sc->debug)) {             \
2239             device_printf((sc)->dev,                  \
2240                           "%s(%s:%d) ERROR: " format, \
2241                           __FUNCTION__,               \
2242                           __FILE__,                   \
2243                           __LINE__,                   \
2244                           ## args);                   \
2245         } else {                                      \
2246             device_printf((sc)->dev,                  \
2247                           "ERROR: " format,           \
2248                           ## args);                   \
2249         }                                             \
2250     } while(0)
2251
2252 #ifdef ECORE_STOP_ON_ERROR
2253
2254 #define bxe_panic(sc, msg) \
2255     do {                   \
2256         panic msg;         \
2257     } while (0)
2258
2259 #else
2260
2261 #define bxe_panic(sc, msg) \
2262     device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2263
2264 #endif
2265
2266 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2267 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2268
2269 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2270                   uint8_t *mem, uint32_t len);
2271 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2272                         struct mbuf *m, uint8_t contents);
2273
2274 /***********/
2275 /* INLINES */
2276 /***********/
2277
2278 static inline uint32_t
2279 reg_poll(struct bxe_softc *sc,
2280          uint32_t         reg,
2281          uint32_t         expected,
2282          int              ms,
2283          int              wait)
2284 {
2285     uint32_t val;
2286
2287     do {
2288         val = REG_RD(sc, reg);
2289         if (val == expected) {
2290             break;
2291         }
2292         ms -= wait;
2293         DELAY(wait * 1000);
2294     } while (ms > 0);
2295
2296     return (val);
2297 }
2298
2299 static inline void
2300 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2301 {
2302     mb(); /* status block is written to by the chip */
2303     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2304 }
2305
2306 static inline void
2307 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2308                    uint8_t          igu_sb_id,
2309                    uint8_t          segment,
2310                    uint16_t         index,
2311                    uint8_t          op,
2312                    uint8_t          update,
2313                    uint32_t         igu_addr)
2314 {
2315     struct igu_regular cmd_data = {0};
2316
2317     cmd_data.sb_id_and_flags =
2318         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2319          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2320          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2321          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2322
2323     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2324             cmd_data.sb_id_and_flags, igu_addr);
2325     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2326
2327     /* Make sure that ACK is written */
2328     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2329                       BUS_SPACE_BARRIER_WRITE);
2330     mb();
2331 }
2332
2333 static inline void
2334 bxe_hc_ack_sb(struct bxe_softc *sc,
2335               uint8_t          sb_id,
2336               uint8_t          storm,
2337               uint16_t         index,
2338               uint8_t          op,
2339               uint8_t          update)
2340 {
2341     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2342                         COMMAND_REG_INT_ACK);
2343     struct igu_ack_register igu_ack;
2344
2345     igu_ack.status_block_index = index;
2346     igu_ack.sb_id_and_flags =
2347         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2348          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2349          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2350          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2351
2352     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2353
2354     /* Make sure that ACK is written */
2355     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2356                       BUS_SPACE_BARRIER_WRITE);
2357     mb();
2358 }
2359
2360 static inline void
2361 bxe_ack_sb(struct bxe_softc *sc,
2362            uint8_t          igu_sb_id,
2363            uint8_t          storm,
2364            uint16_t         index,
2365            uint8_t          op,
2366            uint8_t          update)
2367 {
2368     if (sc->devinfo.int_block == INT_BLOCK_HC)
2369         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2370     else {
2371         uint8_t segment;
2372         if (CHIP_INT_MODE_IS_BC(sc)) {
2373             segment = storm;
2374         } else if (igu_sb_id != sc->igu_dsb_id) {
2375             segment = IGU_SEG_ACCESS_DEF;
2376         } else if (storm == ATTENTION_ID) {
2377             segment = IGU_SEG_ACCESS_ATTN;
2378         } else {
2379             segment = IGU_SEG_ACCESS_DEF;
2380         }
2381         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2382     }
2383 }
2384
2385 static inline uint16_t
2386 bxe_hc_ack_int(struct bxe_softc *sc)
2387 {
2388     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2389                         COMMAND_REG_SIMD_MASK);
2390     uint32_t result = REG_RD(sc, hc_addr);
2391
2392     mb();
2393     return (result);
2394 }
2395
2396 static inline uint16_t
2397 bxe_igu_ack_int(struct bxe_softc *sc)
2398 {
2399     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2400     uint32_t result = REG_RD(sc, igu_addr);
2401
2402     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2403           result, igu_addr);
2404
2405     mb();
2406     return (result);
2407 }
2408
2409 static inline uint16_t
2410 bxe_ack_int(struct bxe_softc *sc)
2411 {
2412     mb();
2413     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2414         return (bxe_hc_ack_int(sc));
2415     } else {
2416         return (bxe_igu_ack_int(sc));
2417     }
2418 }
2419
2420 static inline int
2421 func_by_vn(struct bxe_softc *sc,
2422            int              vn)
2423 {
2424     return (2 * vn + SC_PORT(sc));
2425 }
2426
2427 /*
2428  * Statistics ID are global per chip/path, while Client IDs for E1x
2429  * are per port.
2430  */
2431 static inline uint8_t
2432 bxe_stats_id(struct bxe_fastpath *fp)
2433 {
2434     struct bxe_softc *sc = fp->sc;
2435
2436     if (!CHIP_IS_E1x(sc)) {
2437         return (fp->cl_id);
2438     }
2439
2440     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2441 }
2442
2443 #endif /* __BXE_H__ */
2444