]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/dev/re/if_re.c
MFC: r281337
[FreeBSD/stable/8.git] / sys / dev / re / if_re.c
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *      o Descriptor based DMA mechanism. Each descriptor represents
56  *        a single packet fragment. Data buffers may be aligned on
57  *        any byte boundary.
58  *
59  *      o 64-bit DMA
60  *
61  *      o TCP/IP checksum offload for both RX and TX
62  *
63  *      o High and normal priority transmit DMA rings
64  *
65  *      o VLAN tag insertion and extraction
66  *
67  *      o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *      o 1000Mbps mode
79  *
80  *      o Jumbo frames
81  *
82  *      o GMII and TBI ports/registers for interfacing with copper
83  *        or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *      o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128
129 #include <net/if.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/if_vlan_var.h>
136
137 #include <net/bpf.h>
138
139 #include <machine/bus.h>
140 #include <machine/resource.h>
141 #include <sys/bus.h>
142 #include <sys/rman.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149
150 #include <pci/if_rlreg.h>
151
152 MODULE_DEPEND(re, pci, 1, 1, 1);
153 MODULE_DEPEND(re, ether, 1, 1, 1);
154 MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156 /* "device miibus" required.  See GENERIC if you get errors here. */
157 #include "miibus_if.h"
158
159 /* Tunables. */
160 static int intr_filter = 0;
161 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162 static int msi_disable = 0;
163 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164 static int msix_disable = 0;
165 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166 static int prefer_iomap = 0;
167 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168
169 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170
171 /*
172  * Various supported device vendors/types and their names.
173  */
174 static const struct rl_type re_devs[] = {
175         { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176             "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177         { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178             "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179         { RT_VENDORID, RT_DEVICEID_8139, 0,
180             "RealTek 8139C+ 10/100BaseTX" },
181         { RT_VENDORID, RT_DEVICEID_8101E, 0,
182             "RealTek 810xE PCIe 10/100baseTX" },
183         { RT_VENDORID, RT_DEVICEID_8168, 0,
184             "RealTek 8168/8111 B/C/CP/D/DP/E/F PCIe Gigabit Ethernet" },
185         { RT_VENDORID, RT_DEVICEID_8169, 0,
186             "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187         { RT_VENDORID, RT_DEVICEID_8169SC, 0,
188             "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189         { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190             "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191         { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192             "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193         { USR_VENDORID, USR_DEVICEID_997902, 0,
194             "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195 };
196
197 static const struct rl_hwrev re_hwrevs[] = {
198         { RL_HWREV_8139, RL_8139, "", RL_MTU },
199         { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200         { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201         { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202         { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203         { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204         { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205         { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206         { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207         { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208         { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209         { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210         { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211         { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212         { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213         { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214         { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215         { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216         { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217         { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218         { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219         { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220         { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221         { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222         { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223         { RL_HWREV_8402, RL_8169, "8402", RL_MTU },
224         { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
225         { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
226         { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
227         { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
228         { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
229         { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
230         { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
231         { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
232         { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
233         { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
234         { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
235         { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
236         { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
237         { 0, 0, NULL, 0 }
238 };
239
240 static int re_probe             (device_t);
241 static int re_attach            (device_t);
242 static int re_detach            (device_t);
243
244 static int re_encap             (struct rl_softc *, struct mbuf **);
245
246 static void re_dma_map_addr     (void *, bus_dma_segment_t *, int, int);
247 static int re_allocmem          (device_t, struct rl_softc *);
248 static __inline void re_discard_rxbuf
249                                 (struct rl_softc *, int);
250 static int re_newbuf            (struct rl_softc *, int);
251 static int re_jumbo_newbuf      (struct rl_softc *, int);
252 static int re_rx_list_init      (struct rl_softc *);
253 static int re_jrx_list_init     (struct rl_softc *);
254 static int re_tx_list_init      (struct rl_softc *);
255 #ifdef RE_FIXUP_RX
256 static __inline void re_fixup_rx
257                                 (struct mbuf *);
258 #endif
259 static int re_rxeof             (struct rl_softc *, int *);
260 static void re_txeof            (struct rl_softc *);
261 #ifdef DEVICE_POLLING
262 static int re_poll              (struct ifnet *, enum poll_cmd, int);
263 static int re_poll_locked       (struct ifnet *, enum poll_cmd, int);
264 #endif
265 static int re_intr              (void *);
266 static void re_intr_msi         (void *);
267 static void re_tick             (void *);
268 static void re_int_task         (void *, int);
269 static void re_start            (struct ifnet *);
270 static void re_start_locked     (struct ifnet *);
271 static int re_ioctl             (struct ifnet *, u_long, caddr_t);
272 static void re_init             (void *);
273 static void re_init_locked      (struct rl_softc *);
274 static void re_stop             (struct rl_softc *);
275 static void re_watchdog         (struct rl_softc *);
276 static int re_suspend           (device_t);
277 static int re_resume            (device_t);
278 static int re_shutdown          (device_t);
279 static int re_ifmedia_upd       (struct ifnet *);
280 static void re_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
281
282 static void re_eeprom_putbyte   (struct rl_softc *, int);
283 static void re_eeprom_getword   (struct rl_softc *, int, u_int16_t *);
284 static void re_read_eeprom      (struct rl_softc *, caddr_t, int, int);
285 static int re_gmii_readreg      (device_t, int, int);
286 static int re_gmii_writereg     (device_t, int, int, int);
287
288 static int re_miibus_readreg    (device_t, int, int);
289 static int re_miibus_writereg   (device_t, int, int, int);
290 static void re_miibus_statchg   (device_t);
291
292 static void re_set_jumbo        (struct rl_softc *, int);
293 static void re_set_rxmode               (struct rl_softc *);
294 static void re_reset            (struct rl_softc *);
295 static void re_setwol           (struct rl_softc *);
296 static void re_clrwol           (struct rl_softc *);
297 static void re_set_linkspeed    (struct rl_softc *);
298
299 #ifdef RE_DIAG
300 static int re_diag              (struct rl_softc *);
301 #endif
302
303 static void re_add_sysctls      (struct rl_softc *);
304 static int re_sysctl_stats      (SYSCTL_HANDLER_ARGS);
305 static int sysctl_int_range     (SYSCTL_HANDLER_ARGS, int, int);
306 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
307
308 static device_method_t re_methods[] = {
309         /* Device interface */
310         DEVMETHOD(device_probe,         re_probe),
311         DEVMETHOD(device_attach,        re_attach),
312         DEVMETHOD(device_detach,        re_detach),
313         DEVMETHOD(device_suspend,       re_suspend),
314         DEVMETHOD(device_resume,        re_resume),
315         DEVMETHOD(device_shutdown,      re_shutdown),
316
317         /* MII interface */
318         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
319         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
320         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
321
322         DEVMETHOD_END
323 };
324
325 static driver_t re_driver = {
326         "re",
327         re_methods,
328         sizeof(struct rl_softc)
329 };
330
331 static devclass_t re_devclass;
332
333 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
334 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
335
336 #define EE_SET(x)                                       \
337         CSR_WRITE_1(sc, RL_EECMD,                       \
338                 CSR_READ_1(sc, RL_EECMD) | x)
339
340 #define EE_CLR(x)                                       \
341         CSR_WRITE_1(sc, RL_EECMD,                       \
342                 CSR_READ_1(sc, RL_EECMD) & ~x)
343
344 /*
345  * Send a read command and address to the EEPROM, check for ACK.
346  */
347 static void
348 re_eeprom_putbyte(struct rl_softc *sc, int addr)
349 {
350         int                     d, i;
351
352         d = addr | (RL_9346_READ << sc->rl_eewidth);
353
354         /*
355          * Feed in each bit and strobe the clock.
356          */
357
358         for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
359                 if (d & i) {
360                         EE_SET(RL_EE_DATAIN);
361                 } else {
362                         EE_CLR(RL_EE_DATAIN);
363                 }
364                 DELAY(100);
365                 EE_SET(RL_EE_CLK);
366                 DELAY(150);
367                 EE_CLR(RL_EE_CLK);
368                 DELAY(100);
369         }
370 }
371
372 /*
373  * Read a word of data stored in the EEPROM at address 'addr.'
374  */
375 static void
376 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
377 {
378         int                     i;
379         u_int16_t               word = 0;
380
381         /*
382          * Send address of word we want to read.
383          */
384         re_eeprom_putbyte(sc, addr);
385
386         /*
387          * Start reading bits from EEPROM.
388          */
389         for (i = 0x8000; i; i >>= 1) {
390                 EE_SET(RL_EE_CLK);
391                 DELAY(100);
392                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
393                         word |= i;
394                 EE_CLR(RL_EE_CLK);
395                 DELAY(100);
396         }
397
398         *dest = word;
399 }
400
401 /*
402  * Read a sequence of words from the EEPROM.
403  */
404 static void
405 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
406 {
407         int                     i;
408         u_int16_t               word = 0, *ptr;
409
410         CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
411
412         DELAY(100);
413
414         for (i = 0; i < cnt; i++) {
415                 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
416                 re_eeprom_getword(sc, off + i, &word);
417                 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
418                 ptr = (u_int16_t *)(dest + (i * 2));
419                 *ptr = word;
420         }
421
422         CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
423 }
424
425 static int
426 re_gmii_readreg(device_t dev, int phy, int reg)
427 {
428         struct rl_softc         *sc;
429         u_int32_t               rval;
430         int                     i;
431
432         sc = device_get_softc(dev);
433
434         /* Let the rgephy driver read the GMEDIASTAT register */
435
436         if (reg == RL_GMEDIASTAT) {
437                 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
438                 return (rval);
439         }
440
441         CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
442
443         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
444                 rval = CSR_READ_4(sc, RL_PHYAR);
445                 if (rval & RL_PHYAR_BUSY)
446                         break;
447                 DELAY(25);
448         }
449
450         if (i == RL_PHY_TIMEOUT) {
451                 device_printf(sc->rl_dev, "PHY read failed\n");
452                 return (0);
453         }
454
455         /*
456          * Controller requires a 20us delay to process next MDIO request.
457          */
458         DELAY(20);
459
460         return (rval & RL_PHYAR_PHYDATA);
461 }
462
463 static int
464 re_gmii_writereg(device_t dev, int phy, int reg, int data)
465 {
466         struct rl_softc         *sc;
467         u_int32_t               rval;
468         int                     i;
469
470         sc = device_get_softc(dev);
471
472         CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
473             (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
474
475         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
476                 rval = CSR_READ_4(sc, RL_PHYAR);
477                 if (!(rval & RL_PHYAR_BUSY))
478                         break;
479                 DELAY(25);
480         }
481
482         if (i == RL_PHY_TIMEOUT) {
483                 device_printf(sc->rl_dev, "PHY write failed\n");
484                 return (0);
485         }
486
487         /*
488          * Controller requires a 20us delay to process next MDIO request.
489          */
490         DELAY(20);
491
492         return (0);
493 }
494
495 static int
496 re_miibus_readreg(device_t dev, int phy, int reg)
497 {
498         struct rl_softc         *sc;
499         u_int16_t               rval = 0;
500         u_int16_t               re8139_reg = 0;
501
502         sc = device_get_softc(dev);
503
504         if (sc->rl_type == RL_8169) {
505                 rval = re_gmii_readreg(dev, phy, reg);
506                 return (rval);
507         }
508
509         switch (reg) {
510         case MII_BMCR:
511                 re8139_reg = RL_BMCR;
512                 break;
513         case MII_BMSR:
514                 re8139_reg = RL_BMSR;
515                 break;
516         case MII_ANAR:
517                 re8139_reg = RL_ANAR;
518                 break;
519         case MII_ANER:
520                 re8139_reg = RL_ANER;
521                 break;
522         case MII_ANLPAR:
523                 re8139_reg = RL_LPAR;
524                 break;
525         case MII_PHYIDR1:
526         case MII_PHYIDR2:
527                 return (0);
528         /*
529          * Allow the rlphy driver to read the media status
530          * register. If we have a link partner which does not
531          * support NWAY, this is the register which will tell
532          * us the results of parallel detection.
533          */
534         case RL_MEDIASTAT:
535                 rval = CSR_READ_1(sc, RL_MEDIASTAT);
536                 return (rval);
537         default:
538                 device_printf(sc->rl_dev, "bad phy register\n");
539                 return (0);
540         }
541         rval = CSR_READ_2(sc, re8139_reg);
542         if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
543                 /* 8139C+ has different bit layout. */
544                 rval &= ~(BMCR_LOOP | BMCR_ISO);
545         }
546         return (rval);
547 }
548
549 static int
550 re_miibus_writereg(device_t dev, int phy, int reg, int data)
551 {
552         struct rl_softc         *sc;
553         u_int16_t               re8139_reg = 0;
554         int                     rval = 0;
555
556         sc = device_get_softc(dev);
557
558         if (sc->rl_type == RL_8169) {
559                 rval = re_gmii_writereg(dev, phy, reg, data);
560                 return (rval);
561         }
562
563         switch (reg) {
564         case MII_BMCR:
565                 re8139_reg = RL_BMCR;
566                 if (sc->rl_type == RL_8139CPLUS) {
567                         /* 8139C+ has different bit layout. */
568                         data &= ~(BMCR_LOOP | BMCR_ISO);
569                 }
570                 break;
571         case MII_BMSR:
572                 re8139_reg = RL_BMSR;
573                 break;
574         case MII_ANAR:
575                 re8139_reg = RL_ANAR;
576                 break;
577         case MII_ANER:
578                 re8139_reg = RL_ANER;
579                 break;
580         case MII_ANLPAR:
581                 re8139_reg = RL_LPAR;
582                 break;
583         case MII_PHYIDR1:
584         case MII_PHYIDR2:
585                 return (0);
586                 break;
587         default:
588                 device_printf(sc->rl_dev, "bad phy register\n");
589                 return (0);
590         }
591         CSR_WRITE_2(sc, re8139_reg, data);
592         return (0);
593 }
594
595 static void
596 re_miibus_statchg(device_t dev)
597 {
598         struct rl_softc         *sc;
599         struct ifnet            *ifp;
600         struct mii_data         *mii;
601
602         sc = device_get_softc(dev);
603         mii = device_get_softc(sc->rl_miibus);
604         ifp = sc->rl_ifp;
605         if (mii == NULL || ifp == NULL ||
606             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
607                 return;
608
609         sc->rl_flags &= ~RL_FLAG_LINK;
610         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
611             (IFM_ACTIVE | IFM_AVALID)) {
612                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
613                 case IFM_10_T:
614                 case IFM_100_TX:
615                         sc->rl_flags |= RL_FLAG_LINK;
616                         break;
617                 case IFM_1000_T:
618                         if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
619                                 break;
620                         sc->rl_flags |= RL_FLAG_LINK;
621                         break;
622                 default:
623                         break;
624                 }
625         }
626         /*
627          * RealTek controllers does not provide any interface to
628          * Tx/Rx MACs for resolved speed, duplex and flow-control
629          * parameters.
630          */
631 }
632
633 /*
634  * Set the RX configuration and 64-bit multicast hash filter.
635  */
636 static void
637 re_set_rxmode(struct rl_softc *sc)
638 {
639         struct ifnet            *ifp;
640         struct ifmultiaddr      *ifma;
641         uint32_t                hashes[2] = { 0, 0 };
642         uint32_t                h, rxfilt;
643
644         RL_LOCK_ASSERT(sc);
645
646         ifp = sc->rl_ifp;
647
648         rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
649
650         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
651                 if (ifp->if_flags & IFF_PROMISC)
652                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
653                 /*
654                  * Unlike other hardwares, we have to explicitly set
655                  * RL_RXCFG_RX_MULTI to receive multicast frames in
656                  * promiscuous mode.
657                  */
658                 rxfilt |= RL_RXCFG_RX_MULTI;
659                 hashes[0] = hashes[1] = 0xffffffff;
660                 goto done;
661         }
662
663         if_maddr_rlock(ifp);
664         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
665                 if (ifma->ifma_addr->sa_family != AF_LINK)
666                         continue;
667                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
668                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
669                 if (h < 32)
670                         hashes[0] |= (1 << h);
671                 else
672                         hashes[1] |= (1 << (h - 32));
673         }
674         if_maddr_runlock(ifp);
675
676         if (hashes[0] != 0 || hashes[1] != 0) {
677                 /*
678                  * For some unfathomable reason, RealTek decided to
679                  * reverse the order of the multicast hash registers
680                  * in the PCI Express parts.  This means we have to
681                  * write the hash pattern in reverse order for those
682                  * devices.
683                  */
684                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
685                         h = bswap32(hashes[0]);
686                         hashes[0] = bswap32(hashes[1]);
687                         hashes[1] = h;
688                 }
689                 rxfilt |= RL_RXCFG_RX_MULTI;
690         }
691
692 done:
693         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
694         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
695         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
696 }
697
698 static void
699 re_reset(struct rl_softc *sc)
700 {
701         int                     i;
702
703         RL_LOCK_ASSERT(sc);
704
705         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
706
707         for (i = 0; i < RL_TIMEOUT; i++) {
708                 DELAY(10);
709                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
710                         break;
711         }
712         if (i == RL_TIMEOUT)
713                 device_printf(sc->rl_dev, "reset never completed!\n");
714
715         if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
716                 CSR_WRITE_1(sc, 0x82, 1);
717         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
718                 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
719 }
720
721 #ifdef RE_DIAG
722
723 /*
724  * The following routine is designed to test for a defect on some
725  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
726  * lines connected to the bus, however for a 32-bit only card, they
727  * should be pulled high. The result of this defect is that the
728  * NIC will not work right if you plug it into a 64-bit slot: DMA
729  * operations will be done with 64-bit transfers, which will fail
730  * because the 64-bit data lines aren't connected.
731  *
732  * There's no way to work around this (short of talking a soldering
733  * iron to the board), however we can detect it. The method we use
734  * here is to put the NIC into digital loopback mode, set the receiver
735  * to promiscuous mode, and then try to send a frame. We then compare
736  * the frame data we sent to what was received. If the data matches,
737  * then the NIC is working correctly, otherwise we know the user has
738  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
739  * slot. In the latter case, there's no way the NIC can work correctly,
740  * so we print out a message on the console and abort the device attach.
741  */
742
743 static int
744 re_diag(struct rl_softc *sc)
745 {
746         struct ifnet            *ifp = sc->rl_ifp;
747         struct mbuf             *m0;
748         struct ether_header     *eh;
749         struct rl_desc          *cur_rx;
750         u_int16_t               status;
751         u_int32_t               rxstat;
752         int                     total_len, i, error = 0, phyaddr;
753         u_int8_t                dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
754         u_int8_t                src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
755
756         /* Allocate a single mbuf */
757         MGETHDR(m0, M_DONTWAIT, MT_DATA);
758         if (m0 == NULL)
759                 return (ENOBUFS);
760
761         RL_LOCK(sc);
762
763         /*
764          * Initialize the NIC in test mode. This sets the chip up
765          * so that it can send and receive frames, but performs the
766          * following special functions:
767          * - Puts receiver in promiscuous mode
768          * - Enables digital loopback mode
769          * - Leaves interrupts turned off
770          */
771
772         ifp->if_flags |= IFF_PROMISC;
773         sc->rl_testmode = 1;
774         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
775         re_init_locked(sc);
776         sc->rl_flags |= RL_FLAG_LINK;
777         if (sc->rl_type == RL_8169)
778                 phyaddr = 1;
779         else
780                 phyaddr = 0;
781
782         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
783         for (i = 0; i < RL_TIMEOUT; i++) {
784                 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
785                 if (!(status & BMCR_RESET))
786                         break;
787         }
788
789         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
790         CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
791
792         DELAY(100000);
793
794         /* Put some data in the mbuf */
795
796         eh = mtod(m0, struct ether_header *);
797         bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
798         bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
799         eh->ether_type = htons(ETHERTYPE_IP);
800         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
801
802         /*
803          * Queue the packet, start transmission.
804          * Note: IF_HANDOFF() ultimately calls re_start() for us.
805          */
806
807         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
808         RL_UNLOCK(sc);
809         /* XXX: re_diag must not be called when in ALTQ mode */
810         IF_HANDOFF(&ifp->if_snd, m0, ifp);
811         RL_LOCK(sc);
812         m0 = NULL;
813
814         /* Wait for it to propagate through the chip */
815
816         DELAY(100000);
817         for (i = 0; i < RL_TIMEOUT; i++) {
818                 status = CSR_READ_2(sc, RL_ISR);
819                 CSR_WRITE_2(sc, RL_ISR, status);
820                 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
821                     (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
822                         break;
823                 DELAY(10);
824         }
825
826         if (i == RL_TIMEOUT) {
827                 device_printf(sc->rl_dev,
828                     "diagnostic failed, failed to receive packet in"
829                     " loopback mode\n");
830                 error = EIO;
831                 goto done;
832         }
833
834         /*
835          * The packet should have been dumped into the first
836          * entry in the RX DMA ring. Grab it from there.
837          */
838
839         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
840             sc->rl_ldata.rl_rx_list_map,
841             BUS_DMASYNC_POSTREAD);
842         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
843             sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
844             BUS_DMASYNC_POSTREAD);
845         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
846             sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
847
848         m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
849         sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
850         eh = mtod(m0, struct ether_header *);
851
852         cur_rx = &sc->rl_ldata.rl_rx_list[0];
853         total_len = RL_RXBYTES(cur_rx);
854         rxstat = le32toh(cur_rx->rl_cmdstat);
855
856         if (total_len != ETHER_MIN_LEN) {
857                 device_printf(sc->rl_dev,
858                     "diagnostic failed, received short packet\n");
859                 error = EIO;
860                 goto done;
861         }
862
863         /* Test that the received packet data matches what we sent. */
864
865         if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
866             bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
867             ntohs(eh->ether_type) != ETHERTYPE_IP) {
868                 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
869                 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
870                     dst, ":", src, ":", ETHERTYPE_IP);
871                 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
872                     eh->ether_dhost, ":", eh->ether_shost, ":",
873                     ntohs(eh->ether_type));
874                 device_printf(sc->rl_dev, "You may have a defective 32-bit "
875                     "NIC plugged into a 64-bit PCI slot.\n");
876                 device_printf(sc->rl_dev, "Please re-install the NIC in a "
877                     "32-bit slot for proper operation.\n");
878                 device_printf(sc->rl_dev, "Read the re(4) man page for more "
879                     "details.\n");
880                 error = EIO;
881         }
882
883 done:
884         /* Turn interface off, release resources */
885
886         sc->rl_testmode = 0;
887         sc->rl_flags &= ~RL_FLAG_LINK;
888         ifp->if_flags &= ~IFF_PROMISC;
889         re_stop(sc);
890         if (m0 != NULL)
891                 m_freem(m0);
892
893         RL_UNLOCK(sc);
894
895         return (error);
896 }
897
898 #endif
899
900 /*
901  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
902  * IDs against our list and return a device name if we find a match.
903  */
904 static int
905 re_probe(device_t dev)
906 {
907         const struct rl_type    *t;
908         uint16_t                devid, vendor;
909         uint16_t                revid, sdevid;
910         int                     i;
911
912         vendor = pci_get_vendor(dev);
913         devid = pci_get_device(dev);
914         revid = pci_get_revid(dev);
915         sdevid = pci_get_subdevice(dev);
916
917         if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
918                 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
919                         /*
920                          * Only attach to rev. 3 of the Linksys EG1032 adapter.
921                          * Rev. 2 is supported by sk(4).
922                          */
923                         return (ENXIO);
924                 }
925         }
926
927         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
928                 if (revid != 0x20) {
929                         /* 8139, let rl(4) take care of this device. */
930                         return (ENXIO);
931                 }
932         }
933
934         t = re_devs;
935         for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
936                 if (vendor == t->rl_vid && devid == t->rl_did) {
937                         device_set_desc(dev, t->rl_name);
938                         return (BUS_PROBE_DEFAULT);
939                 }
940         }
941
942         return (ENXIO);
943 }
944
945 /*
946  * Map a single buffer address.
947  */
948
949 static void
950 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
951 {
952         bus_addr_t              *addr;
953
954         if (error)
955                 return;
956
957         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
958         addr = arg;
959         *addr = segs->ds_addr;
960 }
961
962 static int
963 re_allocmem(device_t dev, struct rl_softc *sc)
964 {
965         bus_addr_t              lowaddr;
966         bus_size_t              rx_list_size, tx_list_size;
967         int                     error;
968         int                     i;
969
970         rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
971         tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
972
973         /*
974          * Allocate the parent bus DMA tag appropriate for PCI.
975          * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
976          * register should be set. However some RealTek chips are known
977          * to be buggy on DAC handling, therefore disable DAC by limiting
978          * DMA address space to 32bit. PCIe variants of RealTek chips
979          * may not have the limitation.
980          */
981         lowaddr = BUS_SPACE_MAXADDR;
982         if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
983                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
984         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
985             lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
986             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
987             NULL, NULL, &sc->rl_parent_tag);
988         if (error) {
989                 device_printf(dev, "could not allocate parent DMA tag\n");
990                 return (error);
991         }
992
993         /*
994          * Allocate map for TX mbufs.
995          */
996         error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
997             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
998             NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
999             NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1000         if (error) {
1001                 device_printf(dev, "could not allocate TX DMA tag\n");
1002                 return (error);
1003         }
1004
1005         /*
1006          * Allocate map for RX mbufs.
1007          */
1008
1009         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1010                 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1011                     0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1012                     MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1013                     &sc->rl_ldata.rl_jrx_mtag);
1014                 if (error) {
1015                         device_printf(dev,
1016                             "could not allocate jumbo RX DMA tag\n");
1017                         return (error);
1018                 }
1019         }
1020         error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1021             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1022             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1023         if (error) {
1024                 device_printf(dev, "could not allocate RX DMA tag\n");
1025                 return (error);
1026         }
1027
1028         /*
1029          * Allocate map for TX descriptor list.
1030          */
1031         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1032             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1033             NULL, tx_list_size, 1, tx_list_size, 0,
1034             NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1035         if (error) {
1036                 device_printf(dev, "could not allocate TX DMA ring tag\n");
1037                 return (error);
1038         }
1039
1040         /* Allocate DMA'able memory for the TX ring */
1041
1042         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1043             (void **)&sc->rl_ldata.rl_tx_list,
1044             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1045             &sc->rl_ldata.rl_tx_list_map);
1046         if (error) {
1047                 device_printf(dev, "could not allocate TX DMA ring\n");
1048                 return (error);
1049         }
1050
1051         /* Load the map for the TX ring. */
1052
1053         sc->rl_ldata.rl_tx_list_addr = 0;
1054         error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1055              sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1056              tx_list_size, re_dma_map_addr,
1057              &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1058         if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1059                 device_printf(dev, "could not load TX DMA ring\n");
1060                 return (ENOMEM);
1061         }
1062
1063         /* Create DMA maps for TX buffers */
1064
1065         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1066                 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1067                     &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1068                 if (error) {
1069                         device_printf(dev, "could not create DMA map for TX\n");
1070                         return (error);
1071                 }
1072         }
1073
1074         /*
1075          * Allocate map for RX descriptor list.
1076          */
1077         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1078             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1079             NULL, rx_list_size, 1, rx_list_size, 0,
1080             NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1081         if (error) {
1082                 device_printf(dev, "could not create RX DMA ring tag\n");
1083                 return (error);
1084         }
1085
1086         /* Allocate DMA'able memory for the RX ring */
1087
1088         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1089             (void **)&sc->rl_ldata.rl_rx_list,
1090             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1091             &sc->rl_ldata.rl_rx_list_map);
1092         if (error) {
1093                 device_printf(dev, "could not allocate RX DMA ring\n");
1094                 return (error);
1095         }
1096
1097         /* Load the map for the RX ring. */
1098
1099         sc->rl_ldata.rl_rx_list_addr = 0;
1100         error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1101              sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1102              rx_list_size, re_dma_map_addr,
1103              &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1104         if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1105                 device_printf(dev, "could not load RX DMA ring\n");
1106                 return (ENOMEM);
1107         }
1108
1109         /* Create DMA maps for RX buffers */
1110
1111         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1112                 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1113                     &sc->rl_ldata.rl_jrx_sparemap);
1114                 if (error) {
1115                         device_printf(dev,
1116                             "could not create spare DMA map for jumbo RX\n");
1117                         return (error);
1118                 }
1119                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1120                         error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1121                             &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1122                         if (error) {
1123                                 device_printf(dev,
1124                                     "could not create DMA map for jumbo RX\n");
1125                                 return (error);
1126                         }
1127                 }
1128         }
1129         error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1130             &sc->rl_ldata.rl_rx_sparemap);
1131         if (error) {
1132                 device_printf(dev, "could not create spare DMA map for RX\n");
1133                 return (error);
1134         }
1135         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1136                 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1137                     &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1138                 if (error) {
1139                         device_printf(dev, "could not create DMA map for RX\n");
1140                         return (error);
1141                 }
1142         }
1143
1144         /* Create DMA map for statistics. */
1145         error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1146             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1147             sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1148             &sc->rl_ldata.rl_stag);
1149         if (error) {
1150                 device_printf(dev, "could not create statistics DMA tag\n");
1151                 return (error);
1152         }
1153         /* Allocate DMA'able memory for statistics. */
1154         error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1155             (void **)&sc->rl_ldata.rl_stats,
1156             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1157             &sc->rl_ldata.rl_smap);
1158         if (error) {
1159                 device_printf(dev,
1160                     "could not allocate statistics DMA memory\n");
1161                 return (error);
1162         }
1163         /* Load the map for statistics. */
1164         sc->rl_ldata.rl_stats_addr = 0;
1165         error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1166             sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1167              &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1168         if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1169                 device_printf(dev, "could not load statistics DMA memory\n");
1170                 return (ENOMEM);
1171         }
1172
1173         return (0);
1174 }
1175
1176 /*
1177  * Attach the interface. Allocate softc structures, do ifmedia
1178  * setup and ethernet/BPF attach.
1179  */
1180 static int
1181 re_attach(device_t dev)
1182 {
1183         u_char                  eaddr[ETHER_ADDR_LEN];
1184         u_int16_t               as[ETHER_ADDR_LEN / 2];
1185         struct rl_softc         *sc;
1186         struct ifnet            *ifp;
1187         const struct rl_hwrev   *hw_rev;
1188         u_int32_t               cap, ctl;
1189         int                     hwrev;
1190         u_int16_t               devid, re_did = 0;
1191         int                     error = 0, i, phy, rid;
1192         int                     msic, msixc, reg;
1193         uint8_t                 cfg;
1194
1195         sc = device_get_softc(dev);
1196         sc->rl_dev = dev;
1197
1198         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1199             MTX_DEF);
1200         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1201
1202         /*
1203          * Map control/status registers.
1204          */
1205         pci_enable_busmaster(dev);
1206
1207         devid = pci_get_device(dev);
1208         /*
1209          * Prefer memory space register mapping over IO space.
1210          * Because RTL8169SC does not seem to work when memory mapping
1211          * is used always activate io mapping.
1212          */
1213         if (devid == RT_DEVICEID_8169SC)
1214                 prefer_iomap = 1;
1215         if (prefer_iomap == 0) {
1216                 sc->rl_res_id = PCIR_BAR(1);
1217                 sc->rl_res_type = SYS_RES_MEMORY;
1218                 /* RTL8168/8101E seems to use different BARs. */
1219                 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1220                         sc->rl_res_id = PCIR_BAR(2);
1221         } else {
1222                 sc->rl_res_id = PCIR_BAR(0);
1223                 sc->rl_res_type = SYS_RES_IOPORT;
1224         }
1225         sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1226             &sc->rl_res_id, RF_ACTIVE);
1227         if (sc->rl_res == NULL && prefer_iomap == 0) {
1228                 sc->rl_res_id = PCIR_BAR(0);
1229                 sc->rl_res_type = SYS_RES_IOPORT;
1230                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1231                     &sc->rl_res_id, RF_ACTIVE);
1232         }
1233         if (sc->rl_res == NULL) {
1234                 device_printf(dev, "couldn't map ports/memory\n");
1235                 error = ENXIO;
1236                 goto fail;
1237         }
1238
1239         sc->rl_btag = rman_get_bustag(sc->rl_res);
1240         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1241
1242         msic = pci_msi_count(dev);
1243         msixc = pci_msix_count(dev);
1244         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1245                 sc->rl_flags |= RL_FLAG_PCIE;
1246                 sc->rl_expcap = reg;
1247         }
1248         if (bootverbose) {
1249                 device_printf(dev, "MSI count : %d\n", msic);
1250                 device_printf(dev, "MSI-X count : %d\n", msixc);
1251         }
1252         if (msix_disable > 0)
1253                 msixc = 0;
1254         if (msi_disable > 0)
1255                 msic = 0;
1256         /* Prefer MSI-X to MSI. */
1257         if (msixc > 0) {
1258                 msixc = 1;
1259                 rid = PCIR_BAR(4);
1260                 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1261                     &rid, RF_ACTIVE);
1262                 if (sc->rl_res_pba == NULL) {
1263                         device_printf(sc->rl_dev,
1264                             "could not allocate MSI-X PBA resource\n");
1265                 }
1266                 if (sc->rl_res_pba != NULL &&
1267                     pci_alloc_msix(dev, &msixc) == 0) {
1268                         if (msixc == 1) {
1269                                 device_printf(dev, "Using %d MSI-X message\n",
1270                                     msixc);
1271                                 sc->rl_flags |= RL_FLAG_MSIX;
1272                         } else
1273                                 pci_release_msi(dev);
1274                 }
1275                 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1276                         if (sc->rl_res_pba != NULL)
1277                                 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1278                                     sc->rl_res_pba);
1279                         sc->rl_res_pba = NULL;
1280                         msixc = 0;
1281                 }
1282         }
1283         /* Prefer MSI to INTx. */
1284         if (msixc == 0 && msic > 0) {
1285                 msic = 1;
1286                 if (pci_alloc_msi(dev, &msic) == 0) {
1287                         if (msic == RL_MSI_MESSAGES) {
1288                                 device_printf(dev, "Using %d MSI message\n",
1289                                     msic);
1290                                 sc->rl_flags |= RL_FLAG_MSI;
1291                                 /* Explicitly set MSI enable bit. */
1292                                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1293                                 cfg = CSR_READ_1(sc, RL_CFG2);
1294                                 cfg |= RL_CFG2_MSI;
1295                                 CSR_WRITE_1(sc, RL_CFG2, cfg);
1296                                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1297                         } else
1298                                 pci_release_msi(dev);
1299                 }
1300                 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1301                         msic = 0;
1302         }
1303
1304         /* Allocate interrupt */
1305         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1306                 rid = 0;
1307                 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1308                     RF_SHAREABLE | RF_ACTIVE);
1309                 if (sc->rl_irq[0] == NULL) {
1310                         device_printf(dev, "couldn't allocate IRQ resources\n");
1311                         error = ENXIO;
1312                         goto fail;
1313                 }
1314         } else {
1315                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1316                         sc->rl_irq[i] = bus_alloc_resource_any(dev,
1317                             SYS_RES_IRQ, &rid, RF_ACTIVE);
1318                         if (sc->rl_irq[i] == NULL) {
1319                                 device_printf(dev,
1320                                     "couldn't llocate IRQ resources for "
1321                                     "message %d\n", rid);
1322                                 error = ENXIO;
1323                                 goto fail;
1324                         }
1325                 }
1326         }
1327
1328         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1329                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1330                 cfg = CSR_READ_1(sc, RL_CFG2);
1331                 if ((cfg & RL_CFG2_MSI) != 0) {
1332                         device_printf(dev, "turning off MSI enable bit.\n");
1333                         cfg &= ~RL_CFG2_MSI;
1334                         CSR_WRITE_1(sc, RL_CFG2, cfg);
1335                 }
1336                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1337         }
1338
1339         /* Disable ASPM L0S/L1. */
1340         if (sc->rl_expcap != 0) {
1341                 cap = pci_read_config(dev, sc->rl_expcap +
1342                     PCIER_LINK_CAP, 2);
1343                 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
1344                         ctl = pci_read_config(dev, sc->rl_expcap +
1345                             PCIER_LINK_CTL, 2);
1346                         if ((ctl & 0x0003) != 0) {
1347                                 ctl &= ~0x0003;
1348                                 pci_write_config(dev, sc->rl_expcap +
1349                                     PCIER_LINK_CTL, ctl, 2);
1350                                 device_printf(dev, "ASPM disabled\n");
1351                         }
1352                 } else
1353                         device_printf(dev, "no ASPM capability\n");
1354         }
1355
1356         hw_rev = re_hwrevs;
1357         hwrev = CSR_READ_4(sc, RL_TXCFG);
1358         switch (hwrev & 0x70000000) {
1359         case 0x00000000:
1360         case 0x10000000:
1361                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1362                 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1363                 break;
1364         default:
1365                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1366                 hwrev &= RL_TXCFG_HWREV;
1367                 break;
1368         }
1369         device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1370         while (hw_rev->rl_desc != NULL) {
1371                 if (hw_rev->rl_rev == hwrev) {
1372                         sc->rl_type = hw_rev->rl_type;
1373                         sc->rl_hwrev = hw_rev;
1374                         break;
1375                 }
1376                 hw_rev++;
1377         }
1378         if (hw_rev->rl_desc == NULL) {
1379                 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1380                 error = ENXIO;
1381                 goto fail;
1382         }
1383
1384         switch (hw_rev->rl_rev) {
1385         case RL_HWREV_8139CPLUS:
1386                 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1387                 break;
1388         case RL_HWREV_8100E:
1389         case RL_HWREV_8101E:
1390                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1391                 break;
1392         case RL_HWREV_8102E:
1393         case RL_HWREV_8102EL:
1394         case RL_HWREV_8102EL_SPIN1:
1395                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1396                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1397                     RL_FLAG_AUTOPAD;
1398                 break;
1399         case RL_HWREV_8103E:
1400                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1401                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1402                     RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1403                 break;
1404         case RL_HWREV_8401E:
1405         case RL_HWREV_8105E:
1406         case RL_HWREV_8105E_SPIN1:
1407                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1408                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1409                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1410                 break;
1411         case RL_HWREV_8402:
1412                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1413                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1414                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1415                     RL_FLAG_CMDSTOP_WAIT_TXQ;
1416                 break;
1417         case RL_HWREV_8168B_SPIN1:
1418         case RL_HWREV_8168B_SPIN2:
1419                 sc->rl_flags |= RL_FLAG_WOLRXENB;
1420                 /* FALLTHROUGH */
1421         case RL_HWREV_8168B_SPIN3:
1422                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1423                 break;
1424         case RL_HWREV_8168C_SPIN2:
1425                 sc->rl_flags |= RL_FLAG_MACSLEEP;
1426                 /* FALLTHROUGH */
1427         case RL_HWREV_8168C:
1428                 if ((hwrev & 0x00700000) == 0x00200000)
1429                         sc->rl_flags |= RL_FLAG_MACSLEEP;
1430                 /* FALLTHROUGH */
1431         case RL_HWREV_8168CP:
1432                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1433                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1434                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1435                 break;
1436         case RL_HWREV_8168D:
1437                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1438                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1439                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1440                     RL_FLAG_WOL_MANLINK;
1441                 break;
1442         case RL_HWREV_8168DP:
1443                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1444                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1445                     RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1446                 break;
1447         case RL_HWREV_8168E:
1448                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1449                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1450                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1451                     RL_FLAG_WOL_MANLINK;
1452                 break;
1453         case RL_HWREV_8168E_VL:
1454         case RL_HWREV_8168F:
1455         case RL_HWREV_8411:
1456                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1457                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1458                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1459                     RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1460                 break;
1461         case RL_HWREV_8169_8110SB:
1462         case RL_HWREV_8169_8110SBL:
1463         case RL_HWREV_8169_8110SC:
1464         case RL_HWREV_8169_8110SCE:
1465                 sc->rl_flags |= RL_FLAG_PHYWAKE;
1466                 /* FALLTHROUGH */
1467         case RL_HWREV_8169:
1468         case RL_HWREV_8169S:
1469         case RL_HWREV_8110S:
1470                 sc->rl_flags |= RL_FLAG_MACRESET;
1471                 break;
1472         default:
1473                 break;
1474         }
1475
1476         if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
1477                 sc->rl_cfg0 = RL_8139_CFG0;
1478                 sc->rl_cfg1 = RL_8139_CFG1;
1479                 sc->rl_cfg2 = 0;
1480                 sc->rl_cfg3 = RL_8139_CFG3;
1481                 sc->rl_cfg4 = RL_8139_CFG4;
1482                 sc->rl_cfg5 = RL_8139_CFG5;
1483         } else {
1484                 sc->rl_cfg0 = RL_CFG0;
1485                 sc->rl_cfg1 = RL_CFG1;
1486                 sc->rl_cfg2 = RL_CFG2;
1487                 sc->rl_cfg3 = RL_CFG3;
1488                 sc->rl_cfg4 = RL_CFG4;
1489                 sc->rl_cfg5 = RL_CFG5;
1490         }
1491
1492         /* Reset the adapter. */
1493         RL_LOCK(sc);
1494         re_reset(sc);
1495         RL_UNLOCK(sc);
1496
1497         /* Enable PME. */
1498         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1499         cfg = CSR_READ_1(sc, sc->rl_cfg1);
1500         cfg |= RL_CFG1_PME;
1501         CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
1502         cfg = CSR_READ_1(sc, sc->rl_cfg5);
1503         cfg &= RL_CFG5_PME_STS;
1504         CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
1505         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1506
1507         if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1508                 /*
1509                  * XXX Should have a better way to extract station
1510                  * address from EEPROM.
1511                  */
1512                 for (i = 0; i < ETHER_ADDR_LEN; i++)
1513                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1514         } else {
1515                 sc->rl_eewidth = RL_9356_ADDR_LEN;
1516                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1517                 if (re_did != 0x8129)
1518                         sc->rl_eewidth = RL_9346_ADDR_LEN;
1519
1520                 /*
1521                  * Get station address from the EEPROM.
1522                  */
1523                 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1524                 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1525                         as[i] = le16toh(as[i]);
1526                 bcopy(as, eaddr, ETHER_ADDR_LEN);
1527         }
1528
1529         if (sc->rl_type == RL_8169) {
1530                 /* Set RX length mask and number of descriptors. */
1531                 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1532                 sc->rl_txstart = RL_GTXSTART;
1533                 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1534                 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1535         } else {
1536                 /* Set RX length mask and number of descriptors. */
1537                 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1538                 sc->rl_txstart = RL_TXSTART;
1539                 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1540                 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1541         }
1542
1543         error = re_allocmem(dev, sc);
1544         if (error)
1545                 goto fail;
1546         re_add_sysctls(sc);
1547
1548         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1549         if (ifp == NULL) {
1550                 device_printf(dev, "can not if_alloc()\n");
1551                 error = ENOSPC;
1552                 goto fail;
1553         }
1554
1555         /* Take controller out of deep sleep mode. */
1556         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1557                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1558                         CSR_WRITE_1(sc, RL_GPIO,
1559                             CSR_READ_1(sc, RL_GPIO) | 0x01);
1560                 else
1561                         CSR_WRITE_1(sc, RL_GPIO,
1562                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
1563         }
1564
1565         /* Take PHY out of power down mode. */
1566         if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1567                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1568                 if (hw_rev->rl_rev == RL_HWREV_8401E)
1569                         CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1570         }
1571         if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1572                 re_gmii_writereg(dev, 1, 0x1f, 0);
1573                 re_gmii_writereg(dev, 1, 0x0e, 0);
1574         }
1575
1576         ifp->if_softc = sc;
1577         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1578         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1579         ifp->if_ioctl = re_ioctl;
1580         ifp->if_start = re_start;
1581         /*
1582          * RTL8168/8111C generates wrong IP checksummed frame if the
1583          * packet has IP options so disable TX IP checksum offloading.
1584          */
1585         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1586             sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
1587             sc->rl_hwrev->rl_rev == RL_HWREV_8168CP)
1588                 ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
1589         else
1590                 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1591         ifp->if_hwassist |= CSUM_TSO;
1592         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1593         ifp->if_capenable = ifp->if_capabilities;
1594         ifp->if_init = re_init;
1595         IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1596         ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1597         IFQ_SET_READY(&ifp->if_snd);
1598
1599         TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1600
1601 #define RE_PHYAD_INTERNAL        0
1602
1603         /* Do MII setup. */
1604         phy = RE_PHYAD_INTERNAL;
1605         if (sc->rl_type == RL_8169)
1606                 phy = 1;
1607         error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1608             re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1609         if (error != 0) {
1610                 device_printf(dev, "attaching PHYs failed\n");
1611                 goto fail;
1612         }
1613
1614         /*
1615          * Call MI attach routine.
1616          */
1617         ether_ifattach(ifp, eaddr);
1618
1619         /* VLAN capability setup */
1620         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1621         if (ifp->if_capabilities & IFCAP_HWCSUM)
1622                 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1623         /* Enable WOL if PM is supported. */
1624         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1625                 ifp->if_capabilities |= IFCAP_WOL;
1626         ifp->if_capenable = ifp->if_capabilities;
1627         ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
1628         /*
1629          * Don't enable TSO by default.  It is known to generate
1630          * corrupted TCP segments(bad TCP options) under certain
1631          * circumtances.
1632          */
1633         ifp->if_hwassist &= ~CSUM_TSO;
1634         ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1635 #ifdef DEVICE_POLLING
1636         ifp->if_capabilities |= IFCAP_POLLING;
1637 #endif
1638         /*
1639          * Tell the upper layer(s) we support long frames.
1640          * Must appear after the call to ether_ifattach() because
1641          * ether_ifattach() sets ifi_hdrlen to the default value.
1642          */
1643         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1644
1645 #ifdef RE_DIAG
1646         /*
1647          * Perform hardware diagnostic on the original RTL8169.
1648          * Some 32-bit cards were incorrectly wired and would
1649          * malfunction if plugged into a 64-bit slot.
1650          */
1651
1652         if (hwrev == RL_HWREV_8169) {
1653                 error = re_diag(sc);
1654                 if (error) {
1655                         device_printf(dev,
1656                         "attach aborted due to hardware diag failure\n");
1657                         ether_ifdetach(ifp);
1658                         goto fail;
1659                 }
1660         }
1661 #endif
1662
1663 #ifdef RE_TX_MODERATION
1664         intr_filter = 1;
1665 #endif
1666         /* Hook interrupt last to avoid having to lock softc */
1667         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1668             intr_filter == 0) {
1669                 error = bus_setup_intr(dev, sc->rl_irq[0],
1670                     INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1671                     &sc->rl_intrhand[0]);
1672         } else {
1673                 error = bus_setup_intr(dev, sc->rl_irq[0],
1674                     INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1675                     &sc->rl_intrhand[0]);
1676         }
1677         if (error) {
1678                 device_printf(dev, "couldn't set up irq\n");
1679                 ether_ifdetach(ifp);
1680         }
1681
1682 fail:
1683
1684         if (error)
1685                 re_detach(dev);
1686
1687         return (error);
1688 }
1689
1690 /*
1691  * Shutdown hardware and free up resources. This can be called any
1692  * time after the mutex has been initialized. It is called in both
1693  * the error case in attach and the normal detach case so it needs
1694  * to be careful about only freeing resources that have actually been
1695  * allocated.
1696  */
1697 static int
1698 re_detach(device_t dev)
1699 {
1700         struct rl_softc         *sc;
1701         struct ifnet            *ifp;
1702         int                     i, rid;
1703
1704         sc = device_get_softc(dev);
1705         ifp = sc->rl_ifp;
1706         KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1707
1708         /* These should only be active if attach succeeded */
1709         if (device_is_attached(dev)) {
1710 #ifdef DEVICE_POLLING
1711                 if (ifp->if_capenable & IFCAP_POLLING)
1712                         ether_poll_deregister(ifp);
1713 #endif
1714                 RL_LOCK(sc);
1715 #if 0
1716                 sc->suspended = 1;
1717 #endif
1718                 re_stop(sc);
1719                 RL_UNLOCK(sc);
1720                 callout_drain(&sc->rl_stat_callout);
1721                 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1722                 /*
1723                  * Force off the IFF_UP flag here, in case someone
1724                  * still had a BPF descriptor attached to this
1725                  * interface. If they do, ether_ifdetach() will cause
1726                  * the BPF code to try and clear the promisc mode
1727                  * flag, which will bubble down to re_ioctl(),
1728                  * which will try to call re_init() again. This will
1729                  * turn the NIC back on and restart the MII ticker,
1730                  * which will panic the system when the kernel tries
1731                  * to invoke the re_tick() function that isn't there
1732                  * anymore.
1733                  */
1734                 ifp->if_flags &= ~IFF_UP;
1735                 ether_ifdetach(ifp);
1736         }
1737         if (sc->rl_miibus)
1738                 device_delete_child(dev, sc->rl_miibus);
1739         bus_generic_detach(dev);
1740
1741         /*
1742          * The rest is resource deallocation, so we should already be
1743          * stopped here.
1744          */
1745
1746         if (sc->rl_intrhand[0] != NULL) {
1747                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1748                 sc->rl_intrhand[0] = NULL;
1749         }
1750         if (ifp != NULL)
1751                 if_free(ifp);
1752         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1753                 rid = 0;
1754         else
1755                 rid = 1;
1756         if (sc->rl_irq[0] != NULL) {
1757                 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1758                 sc->rl_irq[0] = NULL;
1759         }
1760         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1761                 pci_release_msi(dev);
1762         if (sc->rl_res_pba) {
1763                 rid = PCIR_BAR(4);
1764                 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1765         }
1766         if (sc->rl_res)
1767                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1768                     sc->rl_res);
1769
1770         /* Unload and free the RX DMA ring memory and map */
1771
1772         if (sc->rl_ldata.rl_rx_list_tag) {
1773                 if (sc->rl_ldata.rl_rx_list_map)
1774                         bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1775                             sc->rl_ldata.rl_rx_list_map);
1776                 if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1777                         bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1778                             sc->rl_ldata.rl_rx_list,
1779                             sc->rl_ldata.rl_rx_list_map);
1780                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1781         }
1782
1783         /* Unload and free the TX DMA ring memory and map */
1784
1785         if (sc->rl_ldata.rl_tx_list_tag) {
1786                 if (sc->rl_ldata.rl_tx_list_map)
1787                         bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1788                             sc->rl_ldata.rl_tx_list_map);
1789                 if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1790                         bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1791                             sc->rl_ldata.rl_tx_list,
1792                             sc->rl_ldata.rl_tx_list_map);
1793                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1794         }
1795
1796         /* Destroy all the RX and TX buffer maps */
1797
1798         if (sc->rl_ldata.rl_tx_mtag) {
1799                 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1800                         if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1801                                 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1802                                     sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1803                 }
1804                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1805         }
1806         if (sc->rl_ldata.rl_rx_mtag) {
1807                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1808                         if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1809                                 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1810                                     sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1811                 }
1812                 if (sc->rl_ldata.rl_rx_sparemap)
1813                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1814                             sc->rl_ldata.rl_rx_sparemap);
1815                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1816         }
1817         if (sc->rl_ldata.rl_jrx_mtag) {
1818                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1819                         if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1820                                 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1821                                     sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1822                 }
1823                 if (sc->rl_ldata.rl_jrx_sparemap)
1824                         bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1825                             sc->rl_ldata.rl_jrx_sparemap);
1826                 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1827         }
1828         /* Unload and free the stats buffer and map */
1829
1830         if (sc->rl_ldata.rl_stag) {
1831                 if (sc->rl_ldata.rl_smap)
1832                         bus_dmamap_unload(sc->rl_ldata.rl_stag,
1833                             sc->rl_ldata.rl_smap);
1834                 if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1835                         bus_dmamem_free(sc->rl_ldata.rl_stag,
1836                             sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1837                 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1838         }
1839
1840         if (sc->rl_parent_tag)
1841                 bus_dma_tag_destroy(sc->rl_parent_tag);
1842
1843         mtx_destroy(&sc->rl_mtx);
1844
1845         return (0);
1846 }
1847
1848 static __inline void
1849 re_discard_rxbuf(struct rl_softc *sc, int idx)
1850 {
1851         struct rl_desc          *desc;
1852         struct rl_rxdesc        *rxd;
1853         uint32_t                cmdstat;
1854
1855         if (sc->rl_ifp->if_mtu > RL_MTU &&
1856             (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1857                 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1858         else
1859                 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1860         desc = &sc->rl_ldata.rl_rx_list[idx];
1861         desc->rl_vlanctl = 0;
1862         cmdstat = rxd->rx_size;
1863         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1864                 cmdstat |= RL_RDESC_CMD_EOR;
1865         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1866 }
1867
1868 static int
1869 re_newbuf(struct rl_softc *sc, int idx)
1870 {
1871         struct mbuf             *m;
1872         struct rl_rxdesc        *rxd;
1873         bus_dma_segment_t       segs[1];
1874         bus_dmamap_t            map;
1875         struct rl_desc          *desc;
1876         uint32_t                cmdstat;
1877         int                     error, nsegs;
1878
1879         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1880         if (m == NULL)
1881                 return (ENOBUFS);
1882
1883         m->m_len = m->m_pkthdr.len = MCLBYTES;
1884 #ifdef RE_FIXUP_RX
1885         /*
1886          * This is part of an evil trick to deal with non-x86 platforms.
1887          * The RealTek chip requires RX buffers to be aligned on 64-bit
1888          * boundaries, but that will hose non-x86 machines. To get around
1889          * this, we leave some empty space at the start of each buffer
1890          * and for non-x86 hosts, we copy the buffer back six bytes
1891          * to achieve word alignment. This is slightly more efficient
1892          * than allocating a new buffer, copying the contents, and
1893          * discarding the old buffer.
1894          */
1895         m_adj(m, RE_ETHER_ALIGN);
1896 #endif
1897         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1898             sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1899         if (error != 0) {
1900                 m_freem(m);
1901                 return (ENOBUFS);
1902         }
1903         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1904
1905         rxd = &sc->rl_ldata.rl_rx_desc[idx];
1906         if (rxd->rx_m != NULL) {
1907                 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1908                     BUS_DMASYNC_POSTREAD);
1909                 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1910         }
1911
1912         rxd->rx_m = m;
1913         map = rxd->rx_dmamap;
1914         rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1915         rxd->rx_size = segs[0].ds_len;
1916         sc->rl_ldata.rl_rx_sparemap = map;
1917         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1918             BUS_DMASYNC_PREREAD);
1919
1920         desc = &sc->rl_ldata.rl_rx_list[idx];
1921         desc->rl_vlanctl = 0;
1922         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1923         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1924         cmdstat = segs[0].ds_len;
1925         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1926                 cmdstat |= RL_RDESC_CMD_EOR;
1927         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1928
1929         return (0);
1930 }
1931
1932 static int
1933 re_jumbo_newbuf(struct rl_softc *sc, int idx)
1934 {
1935         struct mbuf             *m;
1936         struct rl_rxdesc        *rxd;
1937         bus_dma_segment_t       segs[1];
1938         bus_dmamap_t            map;
1939         struct rl_desc          *desc;
1940         uint32_t                cmdstat;
1941         int                     error, nsegs;
1942
1943         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1944         if (m == NULL)
1945                 return (ENOBUFS);
1946         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1947 #ifdef RE_FIXUP_RX
1948         m_adj(m, RE_ETHER_ALIGN);
1949 #endif
1950         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1951             sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1952         if (error != 0) {
1953                 m_freem(m);
1954                 return (ENOBUFS);
1955         }
1956         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1957
1958         rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1959         if (rxd->rx_m != NULL) {
1960                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1961                     BUS_DMASYNC_POSTREAD);
1962                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
1963         }
1964
1965         rxd->rx_m = m;
1966         map = rxd->rx_dmamap;
1967         rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
1968         rxd->rx_size = segs[0].ds_len;
1969         sc->rl_ldata.rl_jrx_sparemap = map;
1970         bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1971             BUS_DMASYNC_PREREAD);
1972
1973         desc = &sc->rl_ldata.rl_rx_list[idx];
1974         desc->rl_vlanctl = 0;
1975         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1976         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1977         cmdstat = segs[0].ds_len;
1978         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1979                 cmdstat |= RL_RDESC_CMD_EOR;
1980         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1981
1982         return (0);
1983 }
1984
1985 #ifdef RE_FIXUP_RX
1986 static __inline void
1987 re_fixup_rx(struct mbuf *m)
1988 {
1989         int                     i;
1990         uint16_t                *src, *dst;
1991
1992         src = mtod(m, uint16_t *);
1993         dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1994
1995         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1996                 *dst++ = *src++;
1997
1998         m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1999 }
2000 #endif
2001
2002 static int
2003 re_tx_list_init(struct rl_softc *sc)
2004 {
2005         struct rl_desc          *desc;
2006         int                     i;
2007
2008         RL_LOCK_ASSERT(sc);
2009
2010         bzero(sc->rl_ldata.rl_tx_list,
2011             sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2012         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2013                 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2014         /* Set EOR. */
2015         desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2016         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2017
2018         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2019             sc->rl_ldata.rl_tx_list_map,
2020             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2021
2022         sc->rl_ldata.rl_tx_prodidx = 0;
2023         sc->rl_ldata.rl_tx_considx = 0;
2024         sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2025
2026         return (0);
2027 }
2028
2029 static int
2030 re_rx_list_init(struct rl_softc *sc)
2031 {
2032         int                     error, i;
2033
2034         bzero(sc->rl_ldata.rl_rx_list,
2035             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2036         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2037                 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2038                 if ((error = re_newbuf(sc, i)) != 0)
2039                         return (error);
2040         }
2041
2042         /* Flush the RX descriptors */
2043
2044         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2045             sc->rl_ldata.rl_rx_list_map,
2046             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2047
2048         sc->rl_ldata.rl_rx_prodidx = 0;
2049         sc->rl_head = sc->rl_tail = NULL;
2050         sc->rl_int_rx_act = 0;
2051
2052         return (0);
2053 }
2054
2055 static int
2056 re_jrx_list_init(struct rl_softc *sc)
2057 {
2058         int                     error, i;
2059
2060         bzero(sc->rl_ldata.rl_rx_list,
2061             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2062         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2063                 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2064                 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2065                         return (error);
2066         }
2067
2068         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2069             sc->rl_ldata.rl_rx_list_map,
2070             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2071
2072         sc->rl_ldata.rl_rx_prodidx = 0;
2073         sc->rl_head = sc->rl_tail = NULL;
2074         sc->rl_int_rx_act = 0;
2075
2076         return (0);
2077 }
2078
2079 /*
2080  * RX handler for C+ and 8169. For the gigE chips, we support
2081  * the reception of jumbo frames that have been fragmented
2082  * across multiple 2K mbuf cluster buffers.
2083  */
2084 static int
2085 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2086 {
2087         struct mbuf             *m;
2088         struct ifnet            *ifp;
2089         int                     i, rxerr, total_len;
2090         struct rl_desc          *cur_rx;
2091         u_int32_t               rxstat, rxvlan;
2092         int                     jumbo, maxpkt = 16, rx_npkts = 0;
2093
2094         RL_LOCK_ASSERT(sc);
2095
2096         ifp = sc->rl_ifp;
2097         if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2098                 jumbo = 1;
2099         else
2100                 jumbo = 0;
2101
2102         /* Invalidate the descriptor memory */
2103
2104         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2105             sc->rl_ldata.rl_rx_list_map,
2106             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2107
2108         for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2109             i = RL_RX_DESC_NXT(sc, i)) {
2110                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2111                         break;
2112                 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2113                 rxstat = le32toh(cur_rx->rl_cmdstat);
2114                 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2115                         break;
2116                 total_len = rxstat & sc->rl_rxlenmask;
2117                 rxvlan = le32toh(cur_rx->rl_vlanctl);
2118                 if (jumbo != 0)
2119                         m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2120                 else
2121                         m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2122
2123                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2124                     (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2125                     (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2126                         /*
2127                          * RTL8168C or later controllers do not
2128                          * support multi-fragment packet.
2129                          */
2130                         re_discard_rxbuf(sc, i);
2131                         continue;
2132                 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2133                         if (re_newbuf(sc, i) != 0) {
2134                                 /*
2135                                  * If this is part of a multi-fragment packet,
2136                                  * discard all the pieces.
2137                                  */
2138                                 if (sc->rl_head != NULL) {
2139                                         m_freem(sc->rl_head);
2140                                         sc->rl_head = sc->rl_tail = NULL;
2141                                 }
2142                                 re_discard_rxbuf(sc, i);
2143                                 continue;
2144                         }
2145                         m->m_len = RE_RX_DESC_BUFLEN;
2146                         if (sc->rl_head == NULL)
2147                                 sc->rl_head = sc->rl_tail = m;
2148                         else {
2149                                 m->m_flags &= ~M_PKTHDR;
2150                                 sc->rl_tail->m_next = m;
2151                                 sc->rl_tail = m;
2152                         }
2153                         continue;
2154                 }
2155
2156                 /*
2157                  * NOTE: for the 8139C+, the frame length field
2158                  * is always 12 bits in size, but for the gigE chips,
2159                  * it is 13 bits (since the max RX frame length is 16K).
2160                  * Unfortunately, all 32 bits in the status word
2161                  * were already used, so to make room for the extra
2162                  * length bit, RealTek took out the 'frame alignment
2163                  * error' bit and shifted the other status bits
2164                  * over one slot. The OWN, EOR, FS and LS bits are
2165                  * still in the same places. We have already extracted
2166                  * the frame length and checked the OWN bit, so rather
2167                  * than using an alternate bit mapping, we shift the
2168                  * status bits one space to the right so we can evaluate
2169                  * them using the 8169 status as though it was in the
2170                  * same format as that of the 8139C+.
2171                  */
2172                 if (sc->rl_type == RL_8169)
2173                         rxstat >>= 1;
2174
2175                 /*
2176                  * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2177                  * set, but if CRC is clear, it will still be a valid frame.
2178                  */
2179                 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2180                         rxerr = 1;
2181                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2182                             total_len > 8191 &&
2183                             (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2184                                 rxerr = 0;
2185                         if (rxerr != 0) {
2186                                 ifp->if_ierrors++;
2187                                 /*
2188                                  * If this is part of a multi-fragment packet,
2189                                  * discard all the pieces.
2190                                  */
2191                                 if (sc->rl_head != NULL) {
2192                                         m_freem(sc->rl_head);
2193                                         sc->rl_head = sc->rl_tail = NULL;
2194                                 }
2195                                 re_discard_rxbuf(sc, i);
2196                                 continue;
2197                         }
2198                 }
2199
2200                 /*
2201                  * If allocating a replacement mbuf fails,
2202                  * reload the current one.
2203                  */
2204                 if (jumbo != 0)
2205                         rxerr = re_jumbo_newbuf(sc, i);
2206                 else
2207                         rxerr = re_newbuf(sc, i);
2208                 if (rxerr != 0) {
2209                         ifp->if_iqdrops++;
2210                         if (sc->rl_head != NULL) {
2211                                 m_freem(sc->rl_head);
2212                                 sc->rl_head = sc->rl_tail = NULL;
2213                         }
2214                         re_discard_rxbuf(sc, i);
2215                         continue;
2216                 }
2217
2218                 if (sc->rl_head != NULL) {
2219                         if (jumbo != 0)
2220                                 m->m_len = total_len;
2221                         else {
2222                                 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2223                                 if (m->m_len == 0)
2224                                         m->m_len = RE_RX_DESC_BUFLEN;
2225                         }
2226                         /*
2227                          * Special case: if there's 4 bytes or less
2228                          * in this buffer, the mbuf can be discarded:
2229                          * the last 4 bytes is the CRC, which we don't
2230                          * care about anyway.
2231                          */
2232                         if (m->m_len <= ETHER_CRC_LEN) {
2233                                 sc->rl_tail->m_len -=
2234                                     (ETHER_CRC_LEN - m->m_len);
2235                                 m_freem(m);
2236                         } else {
2237                                 m->m_len -= ETHER_CRC_LEN;
2238                                 m->m_flags &= ~M_PKTHDR;
2239                                 sc->rl_tail->m_next = m;
2240                         }
2241                         m = sc->rl_head;
2242                         sc->rl_head = sc->rl_tail = NULL;
2243                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2244                 } else
2245                         m->m_pkthdr.len = m->m_len =
2246                             (total_len - ETHER_CRC_LEN);
2247
2248 #ifdef RE_FIXUP_RX
2249                 re_fixup_rx(m);
2250 #endif
2251                 ifp->if_ipackets++;
2252                 m->m_pkthdr.rcvif = ifp;
2253
2254                 /* Do RX checksumming if enabled */
2255
2256                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2257                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2258                                 /* Check IP header checksum */
2259                                 if (rxstat & RL_RDESC_STAT_PROTOID)
2260                                         m->m_pkthdr.csum_flags |=
2261                                             CSUM_IP_CHECKED;
2262                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2263                                         m->m_pkthdr.csum_flags |=
2264                                             CSUM_IP_VALID;
2265
2266                                 /* Check TCP/UDP checksum */
2267                                 if ((RL_TCPPKT(rxstat) &&
2268                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2269                                     (RL_UDPPKT(rxstat) &&
2270                                      !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2271                                         m->m_pkthdr.csum_flags |=
2272                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2273                                         m->m_pkthdr.csum_data = 0xffff;
2274                                 }
2275                         } else {
2276                                 /*
2277                                  * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2278                                  */
2279                                 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2280                                     (rxvlan & RL_RDESC_IPV4))
2281                                         m->m_pkthdr.csum_flags |=
2282                                             CSUM_IP_CHECKED;
2283                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2284                                     (rxvlan & RL_RDESC_IPV4))
2285                                         m->m_pkthdr.csum_flags |=
2286                                             CSUM_IP_VALID;
2287                                 if (((rxstat & RL_RDESC_STAT_TCP) &&
2288                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2289                                     ((rxstat & RL_RDESC_STAT_UDP) &&
2290                                     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2291                                         m->m_pkthdr.csum_flags |=
2292                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2293                                         m->m_pkthdr.csum_data = 0xffff;
2294                                 }
2295                         }
2296                 }
2297                 maxpkt--;
2298                 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2299                         m->m_pkthdr.ether_vtag =
2300                             bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2301                         m->m_flags |= M_VLANTAG;
2302                 }
2303                 RL_UNLOCK(sc);
2304                 (*ifp->if_input)(ifp, m);
2305                 RL_LOCK(sc);
2306                 rx_npkts++;
2307         }
2308
2309         /* Flush the RX DMA ring */
2310
2311         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2312             sc->rl_ldata.rl_rx_list_map,
2313             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2314
2315         sc->rl_ldata.rl_rx_prodidx = i;
2316
2317         if (rx_npktsp != NULL)
2318                 *rx_npktsp = rx_npkts;
2319         if (maxpkt)
2320                 return (EAGAIN);
2321
2322         return (0);
2323 }
2324
2325 static void
2326 re_txeof(struct rl_softc *sc)
2327 {
2328         struct ifnet            *ifp;
2329         struct rl_txdesc        *txd;
2330         u_int32_t               txstat;
2331         int                     cons;
2332
2333         cons = sc->rl_ldata.rl_tx_considx;
2334         if (cons == sc->rl_ldata.rl_tx_prodidx)
2335                 return;
2336
2337         ifp = sc->rl_ifp;
2338         /* Invalidate the TX descriptor list */
2339         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2340             sc->rl_ldata.rl_tx_list_map,
2341             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2342
2343         for (; cons != sc->rl_ldata.rl_tx_prodidx;
2344             cons = RL_TX_DESC_NXT(sc, cons)) {
2345                 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2346                 if (txstat & RL_TDESC_STAT_OWN)
2347                         break;
2348                 /*
2349                  * We only stash mbufs in the last descriptor
2350                  * in a fragment chain, which also happens to
2351                  * be the only place where the TX status bits
2352                  * are valid.
2353                  */
2354                 if (txstat & RL_TDESC_CMD_EOF) {
2355                         txd = &sc->rl_ldata.rl_tx_desc[cons];
2356                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2357                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2358                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2359                             txd->tx_dmamap);
2360                         KASSERT(txd->tx_m != NULL,
2361                             ("%s: freeing NULL mbufs!", __func__));
2362                         m_freem(txd->tx_m);
2363                         txd->tx_m = NULL;
2364                         if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2365                             RL_TDESC_STAT_COLCNT))
2366                                 ifp->if_collisions++;
2367                         if (txstat & RL_TDESC_STAT_TXERRSUM)
2368                                 ifp->if_oerrors++;
2369                         else
2370                                 ifp->if_opackets++;
2371                 }
2372                 sc->rl_ldata.rl_tx_free++;
2373                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2374         }
2375         sc->rl_ldata.rl_tx_considx = cons;
2376
2377         /* No changes made to the TX ring, so no flush needed */
2378
2379         if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2380 #ifdef RE_TX_MODERATION
2381                 /*
2382                  * If not all descriptors have been reaped yet, reload
2383                  * the timer so that we will eventually get another
2384                  * interrupt that will cause us to re-enter this routine.
2385                  * This is done in case the transmitter has gone idle.
2386                  */
2387                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2388 #endif
2389         } else
2390                 sc->rl_watchdog_timer = 0;
2391 }
2392
2393 static void
2394 re_tick(void *xsc)
2395 {
2396         struct rl_softc         *sc;
2397         struct mii_data         *mii;
2398
2399         sc = xsc;
2400
2401         RL_LOCK_ASSERT(sc);
2402
2403         mii = device_get_softc(sc->rl_miibus);
2404         mii_tick(mii);
2405         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2406                 re_miibus_statchg(sc->rl_dev);
2407         /*
2408          * Reclaim transmitted frames here. Technically it is not
2409          * necessary to do here but it ensures periodic reclamation
2410          * regardless of Tx completion interrupt which seems to be
2411          * lost on PCIe based controllers under certain situations.
2412          */
2413         re_txeof(sc);
2414         re_watchdog(sc);
2415         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2416 }
2417
2418 #ifdef DEVICE_POLLING
2419 static int
2420 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2421 {
2422         struct rl_softc *sc = ifp->if_softc;
2423         int rx_npkts = 0;
2424
2425         RL_LOCK(sc);
2426         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2427                 rx_npkts = re_poll_locked(ifp, cmd, count);
2428         RL_UNLOCK(sc);
2429         return (rx_npkts);
2430 }
2431
2432 static int
2433 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2434 {
2435         struct rl_softc *sc = ifp->if_softc;
2436         int rx_npkts;
2437
2438         RL_LOCK_ASSERT(sc);
2439
2440         sc->rxcycles = count;
2441         re_rxeof(sc, &rx_npkts);
2442         re_txeof(sc);
2443
2444         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2445                 re_start_locked(ifp);
2446
2447         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2448                 u_int16_t       status;
2449
2450                 status = CSR_READ_2(sc, RL_ISR);
2451                 if (status == 0xffff)
2452                         return (rx_npkts);
2453                 if (status)
2454                         CSR_WRITE_2(sc, RL_ISR, status);
2455                 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2456                     (sc->rl_flags & RL_FLAG_PCIE))
2457                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2458
2459                 /*
2460                  * XXX check behaviour on receiver stalls.
2461                  */
2462
2463                 if (status & RL_ISR_SYSTEM_ERR) {
2464                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2465                         re_init_locked(sc);
2466                 }
2467         }
2468         return (rx_npkts);
2469 }
2470 #endif /* DEVICE_POLLING */
2471
2472 static int
2473 re_intr(void *arg)
2474 {
2475         struct rl_softc         *sc;
2476         uint16_t                status;
2477
2478         sc = arg;
2479
2480         status = CSR_READ_2(sc, RL_ISR);
2481         if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2482                 return (FILTER_STRAY);
2483         CSR_WRITE_2(sc, RL_IMR, 0);
2484
2485         taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2486
2487         return (FILTER_HANDLED);
2488 }
2489
2490 static void
2491 re_int_task(void *arg, int npending)
2492 {
2493         struct rl_softc         *sc;
2494         struct ifnet            *ifp;
2495         u_int16_t               status;
2496         int                     rval = 0;
2497
2498         sc = arg;
2499         ifp = sc->rl_ifp;
2500
2501         RL_LOCK(sc);
2502
2503         status = CSR_READ_2(sc, RL_ISR);
2504         CSR_WRITE_2(sc, RL_ISR, status);
2505
2506         if (sc->suspended ||
2507             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2508                 RL_UNLOCK(sc);
2509                 return;
2510         }
2511
2512 #ifdef DEVICE_POLLING
2513         if  (ifp->if_capenable & IFCAP_POLLING) {
2514                 RL_UNLOCK(sc);
2515                 return;
2516         }
2517 #endif
2518
2519         if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2520                 rval = re_rxeof(sc, NULL);
2521
2522         /*
2523          * Some chips will ignore a second TX request issued
2524          * while an existing transmission is in progress. If
2525          * the transmitter goes idle but there are still
2526          * packets waiting to be sent, we need to restart the
2527          * channel here to flush them out. This only seems to
2528          * be required with the PCIe devices.
2529          */
2530         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2531             (sc->rl_flags & RL_FLAG_PCIE))
2532                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2533         if (status & (
2534 #ifdef RE_TX_MODERATION
2535             RL_ISR_TIMEOUT_EXPIRED|
2536 #else
2537             RL_ISR_TX_OK|
2538 #endif
2539             RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2540                 re_txeof(sc);
2541
2542         if (status & RL_ISR_SYSTEM_ERR) {
2543                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2544                 re_init_locked(sc);
2545         }
2546
2547         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2548                 re_start_locked(ifp);
2549
2550         RL_UNLOCK(sc);
2551
2552         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2553                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2554                 return;
2555         }
2556
2557         CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2558 }
2559
2560 static void
2561 re_intr_msi(void *xsc)
2562 {
2563         struct rl_softc         *sc;
2564         struct ifnet            *ifp;
2565         uint16_t                intrs, status;
2566
2567         sc = xsc;
2568         RL_LOCK(sc);
2569
2570         ifp = sc->rl_ifp;
2571 #ifdef DEVICE_POLLING
2572         if (ifp->if_capenable & IFCAP_POLLING) {
2573                 RL_UNLOCK(sc);
2574                 return;
2575         }
2576 #endif
2577         /* Disable interrupts. */
2578         CSR_WRITE_2(sc, RL_IMR, 0);
2579         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2580                 RL_UNLOCK(sc);
2581                 return;
2582         }
2583
2584         intrs = RL_INTRS_CPLUS;
2585         status = CSR_READ_2(sc, RL_ISR);
2586         CSR_WRITE_2(sc, RL_ISR, status);
2587         if (sc->rl_int_rx_act > 0) {
2588                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2589                     RL_ISR_RX_OVERRUN);
2590                 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2591                     RL_ISR_RX_OVERRUN);
2592         }
2593
2594         if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2595             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2596                 re_rxeof(sc, NULL);
2597                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2598                         if (sc->rl_int_rx_mod != 0 &&
2599                             (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2600                             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2601                                 /* Rearm one-shot timer. */
2602                                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2603                                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2604                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2605                                 sc->rl_int_rx_act = 1;
2606                         } else {
2607                                 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2608                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2609                                 sc->rl_int_rx_act = 0;
2610                         }
2611                 }
2612         }
2613
2614         /*
2615          * Some chips will ignore a second TX request issued
2616          * while an existing transmission is in progress. If
2617          * the transmitter goes idle but there are still
2618          * packets waiting to be sent, we need to restart the
2619          * channel here to flush them out. This only seems to
2620          * be required with the PCIe devices.
2621          */
2622         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2623             (sc->rl_flags & RL_FLAG_PCIE))
2624                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2625         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2626                 re_txeof(sc);
2627
2628         if (status & RL_ISR_SYSTEM_ERR) {
2629                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2630                 re_init_locked(sc);
2631         }
2632
2633         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2634                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2635                         re_start_locked(ifp);
2636                 CSR_WRITE_2(sc, RL_IMR, intrs);
2637         }
2638         RL_UNLOCK(sc);
2639 }
2640
2641 static int
2642 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2643 {
2644         struct rl_txdesc        *txd, *txd_last;
2645         bus_dma_segment_t       segs[RL_NTXSEGS];
2646         bus_dmamap_t            map;
2647         struct mbuf             *m_new;
2648         struct rl_desc          *desc;
2649         int                     nsegs, prod;
2650         int                     i, error, ei, si;
2651         int                     padlen;
2652         uint32_t                cmdstat, csum_flags, vlanctl;
2653
2654         RL_LOCK_ASSERT(sc);
2655         M_ASSERTPKTHDR((*m_head));
2656
2657         /*
2658          * With some of the RealTek chips, using the checksum offload
2659          * support in conjunction with the autopadding feature results
2660          * in the transmission of corrupt frames. For example, if we
2661          * need to send a really small IP fragment that's less than 60
2662          * bytes in size, and IP header checksumming is enabled, the
2663          * resulting ethernet frame that appears on the wire will
2664          * have garbled payload. To work around this, if TX IP checksum
2665          * offload is enabled, we always manually pad short frames out
2666          * to the minimum ethernet frame size.
2667          */
2668         if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2669             (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2670             ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2671                 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2672                 if (M_WRITABLE(*m_head) == 0) {
2673                         /* Get a writable copy. */
2674                         m_new = m_dup(*m_head, M_DONTWAIT);
2675                         m_freem(*m_head);
2676                         if (m_new == NULL) {
2677                                 *m_head = NULL;
2678                                 return (ENOBUFS);
2679                         }
2680                         *m_head = m_new;
2681                 }
2682                 if ((*m_head)->m_next != NULL ||
2683                     M_TRAILINGSPACE(*m_head) < padlen) {
2684                         m_new = m_defrag(*m_head, M_DONTWAIT);
2685                         if (m_new == NULL) {
2686                                 m_freem(*m_head);
2687                                 *m_head = NULL;
2688                                 return (ENOBUFS);
2689                         }
2690                 } else
2691                         m_new = *m_head;
2692
2693                 /*
2694                  * Manually pad short frames, and zero the pad space
2695                  * to avoid leaking data.
2696                  */
2697                 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2698                 m_new->m_pkthdr.len += padlen;
2699                 m_new->m_len = m_new->m_pkthdr.len;
2700                 *m_head = m_new;
2701         }
2702
2703         prod = sc->rl_ldata.rl_tx_prodidx;
2704         txd = &sc->rl_ldata.rl_tx_desc[prod];
2705         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2706             *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2707         if (error == EFBIG) {
2708                 m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2709                 if (m_new == NULL) {
2710                         m_freem(*m_head);
2711                         *m_head = NULL;
2712                         return (ENOBUFS);
2713                 }
2714                 *m_head = m_new;
2715                 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2716                     txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2717                 if (error != 0) {
2718                         m_freem(*m_head);
2719                         *m_head = NULL;
2720                         return (error);
2721                 }
2722         } else if (error != 0)
2723                 return (error);
2724         if (nsegs == 0) {
2725                 m_freem(*m_head);
2726                 *m_head = NULL;
2727                 return (EIO);
2728         }
2729
2730         /* Check for number of available descriptors. */
2731         if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2732                 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2733                 return (ENOBUFS);
2734         }
2735
2736         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2737             BUS_DMASYNC_PREWRITE);
2738
2739         /*
2740          * Set up checksum offload. Note: checksum offload bits must
2741          * appear in all descriptors of a multi-descriptor transmit
2742          * attempt. This is according to testing done with an 8169
2743          * chip. This is a requirement.
2744          */
2745         vlanctl = 0;
2746         csum_flags = 0;
2747         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2748                 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2749                         csum_flags |= RL_TDESC_CMD_LGSEND;
2750                         vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2751                             RL_TDESC_CMD_MSSVALV2_SHIFT);
2752                 } else {
2753                         csum_flags |= RL_TDESC_CMD_LGSEND |
2754                             ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2755                             RL_TDESC_CMD_MSSVAL_SHIFT);
2756                 }
2757         } else {
2758                 /*
2759                  * Unconditionally enable IP checksum if TCP or UDP
2760                  * checksum is required. Otherwise, TCP/UDP checksum
2761                  * does't make effects.
2762                  */
2763                 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2764                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2765                                 csum_flags |= RL_TDESC_CMD_IPCSUM;
2766                                 if (((*m_head)->m_pkthdr.csum_flags &
2767                                     CSUM_TCP) != 0)
2768                                         csum_flags |= RL_TDESC_CMD_TCPCSUM;
2769                                 if (((*m_head)->m_pkthdr.csum_flags &
2770                                     CSUM_UDP) != 0)
2771                                         csum_flags |= RL_TDESC_CMD_UDPCSUM;
2772                         } else {
2773                                 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2774                                 if (((*m_head)->m_pkthdr.csum_flags &
2775                                     CSUM_TCP) != 0)
2776                                         vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2777                                 if (((*m_head)->m_pkthdr.csum_flags &
2778                                     CSUM_UDP) != 0)
2779                                         vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2780                         }
2781                 }
2782         }
2783
2784         /*
2785          * Set up hardware VLAN tagging. Note: vlan tag info must
2786          * appear in all descriptors of a multi-descriptor
2787          * transmission attempt.
2788          */
2789         if ((*m_head)->m_flags & M_VLANTAG)
2790                 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2791                     RL_TDESC_VLANCTL_TAG;
2792
2793         si = prod;
2794         for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2795                 desc = &sc->rl_ldata.rl_tx_list[prod];
2796                 desc->rl_vlanctl = htole32(vlanctl);
2797                 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2798                 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2799                 cmdstat = segs[i].ds_len;
2800                 if (i != 0)
2801                         cmdstat |= RL_TDESC_CMD_OWN;
2802                 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2803                         cmdstat |= RL_TDESC_CMD_EOR;
2804                 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2805                 sc->rl_ldata.rl_tx_free--;
2806         }
2807         /* Update producer index. */
2808         sc->rl_ldata.rl_tx_prodidx = prod;
2809
2810         /* Set EOF on the last descriptor. */
2811         ei = RL_TX_DESC_PRV(sc, prod);
2812         desc = &sc->rl_ldata.rl_tx_list[ei];
2813         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2814
2815         desc = &sc->rl_ldata.rl_tx_list[si];
2816         /* Set SOF and transfer ownership of packet to the chip. */
2817         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2818
2819         /*
2820          * Insure that the map for this transmission
2821          * is placed at the array index of the last descriptor
2822          * in this chain.  (Swap last and first dmamaps.)
2823          */
2824         txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2825         map = txd->tx_dmamap;
2826         txd->tx_dmamap = txd_last->tx_dmamap;
2827         txd_last->tx_dmamap = map;
2828         txd_last->tx_m = *m_head;
2829
2830         return (0);
2831 }
2832
2833 static void
2834 re_start(struct ifnet *ifp)
2835 {
2836         struct rl_softc         *sc;
2837
2838         sc = ifp->if_softc;
2839         RL_LOCK(sc);
2840         re_start_locked(ifp);
2841         RL_UNLOCK(sc);
2842 }
2843
2844 /*
2845  * Main transmit routine for C+ and gigE NICs.
2846  */
2847 static void
2848 re_start_locked(struct ifnet *ifp)
2849 {
2850         struct rl_softc         *sc;
2851         struct mbuf             *m_head;
2852         int                     queued;
2853
2854         sc = ifp->if_softc;
2855
2856         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2857             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2858                 return;
2859
2860         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2861             sc->rl_ldata.rl_tx_free > 1;) {
2862                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2863                 if (m_head == NULL)
2864                         break;
2865
2866                 if (re_encap(sc, &m_head) != 0) {
2867                         if (m_head == NULL)
2868                                 break;
2869                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2870                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2871                         break;
2872                 }
2873
2874                 /*
2875                  * If there's a BPF listener, bounce a copy of this frame
2876                  * to him.
2877                  */
2878                 ETHER_BPF_MTAP(ifp, m_head);
2879
2880                 queued++;
2881         }
2882
2883         if (queued == 0) {
2884 #ifdef RE_TX_MODERATION
2885                 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2886                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2887 #endif
2888                 return;
2889         }
2890
2891         /* Flush the TX descriptors */
2892
2893         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2894             sc->rl_ldata.rl_tx_list_map,
2895             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2896
2897         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2898
2899 #ifdef RE_TX_MODERATION
2900         /*
2901          * Use the countdown timer for interrupt moderation.
2902          * 'TX done' interrupts are disabled. Instead, we reset the
2903          * countdown timer, which will begin counting until it hits
2904          * the value in the TIMERINT register, and then trigger an
2905          * interrupt. Each time we write to the TIMERCNT register,
2906          * the timer count is reset to 0.
2907          */
2908         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2909 #endif
2910
2911         /*
2912          * Set a timeout in case the chip goes out to lunch.
2913          */
2914         sc->rl_watchdog_timer = 5;
2915 }
2916
2917 static void
2918 re_set_jumbo(struct rl_softc *sc, int jumbo)
2919 {
2920
2921         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2922                 pci_set_max_read_req(sc->rl_dev, 4096);
2923                 return;
2924         }
2925
2926         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2927         if (jumbo != 0) {
2928                 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
2929                     RL_CFG3_JUMBO_EN0);
2930                 switch (sc->rl_hwrev->rl_rev) {
2931                 case RL_HWREV_8168DP:
2932                         break;
2933                 case RL_HWREV_8168E:
2934                         CSR_WRITE_1(sc, sc->rl_cfg4,
2935                             CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
2936                         break;
2937                 default:
2938                         CSR_WRITE_1(sc, sc->rl_cfg4,
2939                             CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
2940                 }
2941         } else {
2942                 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
2943                     ~RL_CFG3_JUMBO_EN0);
2944                 switch (sc->rl_hwrev->rl_rev) {
2945                 case RL_HWREV_8168DP:
2946                         break;
2947                 case RL_HWREV_8168E:
2948                         CSR_WRITE_1(sc, sc->rl_cfg4,
2949                             CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
2950                         break;
2951                 default:
2952                         CSR_WRITE_1(sc, sc->rl_cfg4,
2953                             CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
2954                 }
2955         }
2956         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2957
2958         switch (sc->rl_hwrev->rl_rev) {
2959         case RL_HWREV_8168DP:
2960                 pci_set_max_read_req(sc->rl_dev, 4096);
2961                 break;
2962         default:
2963                 if (jumbo != 0)
2964                         pci_set_max_read_req(sc->rl_dev, 512);
2965                 else
2966                         pci_set_max_read_req(sc->rl_dev, 4096);
2967         }
2968 }
2969
2970 static void
2971 re_init(void *xsc)
2972 {
2973         struct rl_softc         *sc = xsc;
2974
2975         RL_LOCK(sc);
2976         re_init_locked(sc);
2977         RL_UNLOCK(sc);
2978 }
2979
2980 static void
2981 re_init_locked(struct rl_softc *sc)
2982 {
2983         struct ifnet            *ifp = sc->rl_ifp;
2984         struct mii_data         *mii;
2985         uint32_t                reg;
2986         uint16_t                cfg;
2987         union {
2988                 uint32_t align_dummy;
2989                 u_char eaddr[ETHER_ADDR_LEN];
2990         } eaddr;
2991
2992         RL_LOCK_ASSERT(sc);
2993
2994         mii = device_get_softc(sc->rl_miibus);
2995
2996         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2997                 return;
2998
2999         /*
3000          * Cancel pending I/O and free all RX/TX buffers.
3001          */
3002         re_stop(sc);
3003
3004         /* Put controller into known state. */
3005         re_reset(sc);
3006
3007         /*
3008          * For C+ mode, initialize the RX descriptors and mbufs.
3009          */
3010         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3011                 if (ifp->if_mtu > RL_MTU) {
3012                         if (re_jrx_list_init(sc) != 0) {
3013                                 device_printf(sc->rl_dev,
3014                                     "no memory for jumbo RX buffers\n");
3015                                 re_stop(sc);
3016                                 return;
3017                         }
3018                         /* Disable checksum offloading for jumbo frames. */
3019                         ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
3020                         ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
3021                 } else {
3022                         if (re_rx_list_init(sc) != 0) {
3023                                 device_printf(sc->rl_dev,
3024                                     "no memory for RX buffers\n");
3025                                 re_stop(sc);
3026                                 return;
3027                         }
3028                 }
3029                 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
3030         } else {
3031                 if (re_rx_list_init(sc) != 0) {
3032                         device_printf(sc->rl_dev, "no memory for RX buffers\n");
3033                         re_stop(sc);
3034                         return;
3035                 }
3036                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3037                     pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3038                         if (ifp->if_mtu > RL_MTU)
3039                                 pci_set_max_read_req(sc->rl_dev, 512);
3040                         else
3041                                 pci_set_max_read_req(sc->rl_dev, 4096);
3042                 }
3043         }
3044         re_tx_list_init(sc);
3045
3046         /*
3047          * Enable C+ RX and TX mode, as well as VLAN stripping and
3048          * RX checksum offload. We must configure the C+ register
3049          * before all others.
3050          */
3051         cfg = RL_CPLUSCMD_PCI_MRW;
3052         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3053                 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3054         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3055                 cfg |= RL_CPLUSCMD_VLANSTRIP;
3056         if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3057                 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3058                 /* XXX magic. */
3059                 cfg |= 0x0001;
3060         } else
3061                 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3062         CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3063         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3064             sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3065                 reg = 0x000fff00;
3066                 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
3067                         reg |= 0x000000ff;
3068                 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3069                         reg |= 0x00f00000;
3070                 CSR_WRITE_4(sc, 0x7c, reg);
3071                 /* Disable interrupt mitigation. */
3072                 CSR_WRITE_2(sc, 0xe2, 0);
3073         }
3074         /*
3075          * Disable TSO if interface MTU size is greater than MSS
3076          * allowed in controller.
3077          */
3078         if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3079                 ifp->if_capenable &= ~IFCAP_TSO4;
3080                 ifp->if_hwassist &= ~CSUM_TSO;
3081         }
3082
3083         /*
3084          * Init our MAC address.  Even though the chipset
3085          * documentation doesn't mention it, we need to enter "Config
3086          * register write enable" mode to modify the ID registers.
3087          */
3088         /* Copy MAC address on stack to align. */
3089         bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3090         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3091         CSR_WRITE_4(sc, RL_IDR0,
3092             htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3093         CSR_WRITE_4(sc, RL_IDR4,
3094             htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3095         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3096
3097         /*
3098          * Load the addresses of the RX and TX lists into the chip.
3099          */
3100
3101         CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3102             RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3103         CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3104             RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3105
3106         CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3107             RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3108         CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3109             RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3110
3111         /*
3112          * Set the initial TX configuration.
3113          */
3114         if (sc->rl_testmode) {
3115                 if (sc->rl_type == RL_8169)
3116                         CSR_WRITE_4(sc, RL_TXCFG,
3117                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3118                 else
3119                         CSR_WRITE_4(sc, RL_TXCFG,
3120                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3121         } else
3122                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3123
3124         CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3125
3126         /*
3127          * Set the initial RX configuration.
3128          */
3129         re_set_rxmode(sc);
3130
3131         /* Configure interrupt moderation. */
3132         if (sc->rl_type == RL_8169) {
3133                 /* Magic from vendor. */
3134                 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3135         }
3136
3137         /*
3138          * Enable transmit and receive.
3139          */
3140         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
3141
3142 #ifdef DEVICE_POLLING
3143         /*
3144          * Disable interrupts if we are polling.
3145          */
3146         if (ifp->if_capenable & IFCAP_POLLING)
3147                 CSR_WRITE_2(sc, RL_IMR, 0);
3148         else    /* otherwise ... */
3149 #endif
3150
3151         /*
3152          * Enable interrupts.
3153          */
3154         if (sc->rl_testmode)
3155                 CSR_WRITE_2(sc, RL_IMR, 0);
3156         else
3157                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3158         CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3159
3160         /* Set initial TX threshold */
3161         sc->rl_txthresh = RL_TX_THRESH_INIT;
3162
3163         /* Start RX/TX process. */
3164         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3165
3166         /*
3167          * Initialize the timer interrupt register so that
3168          * a timer interrupt will be generated once the timer
3169          * reaches a certain number of ticks. The timer is
3170          * reloaded on each transmit.
3171          */
3172 #ifdef RE_TX_MODERATION
3173         /*
3174          * Use timer interrupt register to moderate TX interrupt
3175          * moderation, which dramatically improves TX frame rate.
3176          */
3177         if (sc->rl_type == RL_8169)
3178                 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3179         else
3180                 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3181 #else
3182         /*
3183          * Use timer interrupt register to moderate RX interrupt
3184          * moderation.
3185          */
3186         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3187             intr_filter == 0) {
3188                 if (sc->rl_type == RL_8169)
3189                         CSR_WRITE_4(sc, RL_TIMERINT_8169,
3190                             RL_USECS(sc->rl_int_rx_mod));
3191         } else {
3192                 if (sc->rl_type == RL_8169)
3193                         CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3194         }
3195 #endif
3196
3197         /*
3198          * For 8169 gigE NICs, set the max allowed RX packet
3199          * size so we can receive jumbo frames.
3200          */
3201         if (sc->rl_type == RL_8169) {
3202                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3203                         /*
3204                          * For controllers that use new jumbo frame scheme,
3205                          * set maximum size of jumbo frame depedning on
3206                          * controller revisions.
3207                          */
3208                         if (ifp->if_mtu > RL_MTU)
3209                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3210                                     sc->rl_hwrev->rl_max_mtu +
3211                                     ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3212                                     ETHER_CRC_LEN);
3213                         else
3214                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3215                                     RE_RX_DESC_BUFLEN);
3216                 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3217                     sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3218                         /* RTL810x has no jumbo frame support. */
3219                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3220                 } else
3221                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3222         }
3223
3224         if (sc->rl_testmode)
3225                 return;
3226
3227         CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
3228             RL_CFG1_DRVLOAD);
3229
3230         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3231         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3232
3233         sc->rl_flags &= ~RL_FLAG_LINK;
3234         mii_mediachg(mii);
3235
3236         sc->rl_watchdog_timer = 0;
3237         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3238 }
3239
3240 /*
3241  * Set media options.
3242  */
3243 static int
3244 re_ifmedia_upd(struct ifnet *ifp)
3245 {
3246         struct rl_softc         *sc;
3247         struct mii_data         *mii;
3248         int                     error;
3249
3250         sc = ifp->if_softc;
3251         mii = device_get_softc(sc->rl_miibus);
3252         RL_LOCK(sc);
3253         error = mii_mediachg(mii);
3254         RL_UNLOCK(sc);
3255
3256         return (error);
3257 }
3258
3259 /*
3260  * Report current media status.
3261  */
3262 static void
3263 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3264 {
3265         struct rl_softc         *sc;
3266         struct mii_data         *mii;
3267
3268         sc = ifp->if_softc;
3269         mii = device_get_softc(sc->rl_miibus);
3270
3271         RL_LOCK(sc);
3272         mii_pollstat(mii);
3273         ifmr->ifm_active = mii->mii_media_active;
3274         ifmr->ifm_status = mii->mii_media_status;
3275         RL_UNLOCK(sc);
3276 }
3277
3278 static int
3279 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3280 {
3281         struct rl_softc         *sc = ifp->if_softc;
3282         struct ifreq            *ifr = (struct ifreq *) data;
3283         struct mii_data         *mii;
3284         uint32_t                rev;
3285         int                     error = 0;
3286
3287         switch (command) {
3288         case SIOCSIFMTU:
3289                 if (ifr->ifr_mtu < ETHERMIN ||
3290                     ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
3291                         error = EINVAL;
3292                         break;
3293                 }
3294                 RL_LOCK(sc);
3295                 if (ifp->if_mtu != ifr->ifr_mtu) {
3296                         ifp->if_mtu = ifr->ifr_mtu;
3297                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3298                             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3299                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3300                                 re_init_locked(sc);
3301                         }
3302                         if (ifp->if_mtu > RL_TSO_MTU &&
3303                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3304                                 ifp->if_capenable &= ~(IFCAP_TSO4 |
3305                                     IFCAP_VLAN_HWTSO);
3306                                 ifp->if_hwassist &= ~CSUM_TSO;
3307                         }
3308                         VLAN_CAPABILITIES(ifp);
3309                 }
3310                 RL_UNLOCK(sc);
3311                 break;
3312         case SIOCSIFFLAGS:
3313                 RL_LOCK(sc);
3314                 if ((ifp->if_flags & IFF_UP) != 0) {
3315                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3316                                 if (((ifp->if_flags ^ sc->rl_if_flags)
3317                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3318                                         re_set_rxmode(sc);
3319                         } else
3320                                 re_init_locked(sc);
3321                 } else {
3322                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3323                                 re_stop(sc);
3324                 }
3325                 sc->rl_if_flags = ifp->if_flags;
3326                 RL_UNLOCK(sc);
3327                 break;
3328         case SIOCADDMULTI:
3329         case SIOCDELMULTI:
3330                 RL_LOCK(sc);
3331                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3332                         re_set_rxmode(sc);
3333                 RL_UNLOCK(sc);
3334                 break;
3335         case SIOCGIFMEDIA:
3336         case SIOCSIFMEDIA:
3337                 mii = device_get_softc(sc->rl_miibus);
3338                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3339                 break;
3340         case SIOCSIFCAP:
3341             {
3342                 int mask, reinit;
3343
3344                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3345                 reinit = 0;
3346 #ifdef DEVICE_POLLING
3347                 if (mask & IFCAP_POLLING) {
3348                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
3349                                 error = ether_poll_register(re_poll, ifp);
3350                                 if (error)
3351                                         return (error);
3352                                 RL_LOCK(sc);
3353                                 /* Disable interrupts */
3354                                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3355                                 ifp->if_capenable |= IFCAP_POLLING;
3356                                 RL_UNLOCK(sc);
3357                         } else {
3358                                 error = ether_poll_deregister(ifp);
3359                                 /* Enable interrupts. */
3360                                 RL_LOCK(sc);
3361                                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3362                                 ifp->if_capenable &= ~IFCAP_POLLING;
3363                                 RL_UNLOCK(sc);
3364                         }
3365                 }
3366 #endif /* DEVICE_POLLING */
3367                 RL_LOCK(sc);
3368                 if ((mask & IFCAP_TXCSUM) != 0 &&
3369                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3370                         ifp->if_capenable ^= IFCAP_TXCSUM;
3371                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
3372                                 rev = sc->rl_hwrev->rl_rev;
3373                                 if (rev == RL_HWREV_8168C ||
3374                                     rev == RL_HWREV_8168C_SPIN2 ||
3375                                     rev == RL_HWREV_8168CP)
3376                                         ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
3377                                 else
3378                                         ifp->if_hwassist |= RE_CSUM_FEATURES;
3379                         } else
3380                                 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3381                         reinit = 1;
3382                 }
3383                 if ((mask & IFCAP_RXCSUM) != 0 &&
3384                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3385                         ifp->if_capenable ^= IFCAP_RXCSUM;
3386                         reinit = 1;
3387                 }
3388                 if ((mask & IFCAP_TSO4) != 0 &&
3389                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
3390                         ifp->if_capenable ^= IFCAP_TSO4;
3391                         if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3392                                 ifp->if_hwassist |= CSUM_TSO;
3393                         else
3394                                 ifp->if_hwassist &= ~CSUM_TSO;
3395                         if (ifp->if_mtu > RL_TSO_MTU &&
3396                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3397                                 ifp->if_capenable &= ~IFCAP_TSO4;
3398                                 ifp->if_hwassist &= ~CSUM_TSO;
3399                         }
3400                 }
3401                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3402                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3403                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3404                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3405                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3406                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3407                         /* TSO over VLAN requires VLAN hardware tagging. */
3408                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3409                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3410                         reinit = 1;
3411                 }
3412                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3413                     (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3414                     IFCAP_VLAN_HWTSO)) != 0)
3415                                 reinit = 1;
3416                 if ((mask & IFCAP_WOL) != 0 &&
3417                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
3418                         if ((mask & IFCAP_WOL_UCAST) != 0)
3419                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
3420                         if ((mask & IFCAP_WOL_MCAST) != 0)
3421                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
3422                         if ((mask & IFCAP_WOL_MAGIC) != 0)
3423                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3424                 }
3425                 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3426                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3427                         re_init_locked(sc);
3428                 }
3429                 RL_UNLOCK(sc);
3430                 VLAN_CAPABILITIES(ifp);
3431             }
3432                 break;
3433         default:
3434                 error = ether_ioctl(ifp, command, data);
3435                 break;
3436         }
3437
3438         return (error);
3439 }
3440
3441 static void
3442 re_watchdog(struct rl_softc *sc)
3443 {
3444         struct ifnet            *ifp;
3445
3446         RL_LOCK_ASSERT(sc);
3447
3448         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3449                 return;
3450
3451         ifp = sc->rl_ifp;
3452         re_txeof(sc);
3453         if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3454                 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3455                     "-- recovering\n");
3456                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3457                         re_start_locked(ifp);
3458                 return;
3459         }
3460
3461         if_printf(ifp, "watchdog timeout\n");
3462         ifp->if_oerrors++;
3463
3464         re_rxeof(sc, NULL);
3465         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3466         re_init_locked(sc);
3467         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3468                 re_start_locked(ifp);
3469 }
3470
3471 /*
3472  * Stop the adapter and free any mbufs allocated to the
3473  * RX and TX lists.
3474  */
3475 static void
3476 re_stop(struct rl_softc *sc)
3477 {
3478         int                     i;
3479         struct ifnet            *ifp;
3480         struct rl_txdesc        *txd;
3481         struct rl_rxdesc        *rxd;
3482
3483         RL_LOCK_ASSERT(sc);
3484
3485         ifp = sc->rl_ifp;
3486
3487         sc->rl_watchdog_timer = 0;
3488         callout_stop(&sc->rl_stat_callout);
3489         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3490
3491         /*
3492          * Disable accepting frames to put RX MAC into idle state.
3493          * Otherwise it's possible to get frames while stop command
3494          * execution is in progress and controller can DMA the frame
3495          * to already freed RX buffer during that period.
3496          */
3497         CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3498             ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3499             RL_RXCFG_RX_BROAD));
3500
3501         if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3502                 for (i = RL_TIMEOUT; i > 0; i--) {
3503                         if ((CSR_READ_1(sc, sc->rl_txstart) &
3504                             RL_TXSTART_START) == 0)
3505                                 break;
3506                         DELAY(20);
3507                 }
3508                 if (i == 0)
3509                         device_printf(sc->rl_dev,
3510                             "stopping TX poll timed out!\n");
3511                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3512         } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3513                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3514                     RL_CMD_RX_ENB);
3515                 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3516                         for (i = RL_TIMEOUT; i > 0; i--) {
3517                                 if ((CSR_READ_4(sc, RL_TXCFG) &
3518                                     RL_TXCFG_QUEUE_EMPTY) != 0)
3519                                         break;
3520                                 DELAY(100);
3521                         }
3522                         if (i == 0)
3523                                 device_printf(sc->rl_dev,
3524                                    "stopping TXQ timed out!\n");
3525                 }
3526         } else
3527                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3528         DELAY(1000);
3529         CSR_WRITE_2(sc, RL_IMR, 0x0000);
3530         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3531
3532         if (sc->rl_head != NULL) {
3533                 m_freem(sc->rl_head);
3534                 sc->rl_head = sc->rl_tail = NULL;
3535         }
3536
3537         /* Free the TX list buffers. */
3538         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3539                 txd = &sc->rl_ldata.rl_tx_desc[i];
3540                 if (txd->tx_m != NULL) {
3541                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3542                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3543                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3544                             txd->tx_dmamap);
3545                         m_freem(txd->tx_m);
3546                         txd->tx_m = NULL;
3547                 }
3548         }
3549
3550         /* Free the RX list buffers. */
3551         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3552                 rxd = &sc->rl_ldata.rl_rx_desc[i];
3553                 if (rxd->rx_m != NULL) {
3554                         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
3555                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3556                         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3557                             rxd->rx_dmamap);
3558                         m_freem(rxd->rx_m);
3559                         rxd->rx_m = NULL;
3560                 }
3561         }
3562
3563         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3564                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3565                         rxd = &sc->rl_ldata.rl_jrx_desc[i];
3566                         if (rxd->rx_m != NULL) {
3567                                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
3568                                     rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3569                                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
3570                                     rxd->rx_dmamap);
3571                                 m_freem(rxd->rx_m);
3572                                 rxd->rx_m = NULL;
3573                         }
3574                 }
3575         }
3576 }
3577
3578 /*
3579  * Device suspend routine.  Stop the interface and save some PCI
3580  * settings in case the BIOS doesn't restore them properly on
3581  * resume.
3582  */
3583 static int
3584 re_suspend(device_t dev)
3585 {
3586         struct rl_softc         *sc;
3587
3588         sc = device_get_softc(dev);
3589
3590         RL_LOCK(sc);
3591         re_stop(sc);
3592         re_setwol(sc);
3593         sc->suspended = 1;
3594         RL_UNLOCK(sc);
3595
3596         return (0);
3597 }
3598
3599 /*
3600  * Device resume routine.  Restore some PCI settings in case the BIOS
3601  * doesn't, re-enable busmastering, and restart the interface if
3602  * appropriate.
3603  */
3604 static int
3605 re_resume(device_t dev)
3606 {
3607         struct rl_softc         *sc;
3608         struct ifnet            *ifp;
3609
3610         sc = device_get_softc(dev);
3611
3612         RL_LOCK(sc);
3613
3614         ifp = sc->rl_ifp;
3615         /* Take controller out of sleep mode. */
3616         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3617                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3618                         CSR_WRITE_1(sc, RL_GPIO,
3619                             CSR_READ_1(sc, RL_GPIO) | 0x01);
3620         }
3621
3622         /*
3623          * Clear WOL matching such that normal Rx filtering
3624          * wouldn't interfere with WOL patterns.
3625          */
3626         re_clrwol(sc);
3627
3628         /* reinitialize interface if necessary */
3629         if (ifp->if_flags & IFF_UP)
3630                 re_init_locked(sc);
3631
3632         sc->suspended = 0;
3633         RL_UNLOCK(sc);
3634
3635         return (0);
3636 }
3637
3638 /*
3639  * Stop all chip I/O so that the kernel's probe routines don't
3640  * get confused by errant DMAs when rebooting.
3641  */
3642 static int
3643 re_shutdown(device_t dev)
3644 {
3645         struct rl_softc         *sc;
3646
3647         sc = device_get_softc(dev);
3648
3649         RL_LOCK(sc);
3650         re_stop(sc);
3651         /*
3652          * Mark interface as down since otherwise we will panic if
3653          * interrupt comes in later on, which can happen in some
3654          * cases.
3655          */
3656         sc->rl_ifp->if_flags &= ~IFF_UP;
3657         re_setwol(sc);
3658         RL_UNLOCK(sc);
3659
3660         return (0);
3661 }
3662
3663 static void
3664 re_set_linkspeed(struct rl_softc *sc)
3665 {
3666         struct mii_softc *miisc;
3667         struct mii_data *mii;
3668         int aneg, i, phyno;
3669
3670         RL_LOCK_ASSERT(sc);
3671
3672         mii = device_get_softc(sc->rl_miibus);
3673         mii_pollstat(mii);
3674         aneg = 0;
3675         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3676             (IFM_ACTIVE | IFM_AVALID)) {
3677                 switch IFM_SUBTYPE(mii->mii_media_active) {
3678                 case IFM_10_T:
3679                 case IFM_100_TX:
3680                         return;
3681                 case IFM_1000_T:
3682                         aneg++;
3683                         break;
3684                 default:
3685                         break;
3686                 }
3687         }
3688         miisc = LIST_FIRST(&mii->mii_phys);
3689         phyno = miisc->mii_phy;
3690         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3691                 mii_phy_reset(miisc);
3692         re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3693         re_miibus_writereg(sc->rl_dev, phyno,
3694             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3695         re_miibus_writereg(sc->rl_dev, phyno,
3696             MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3697         DELAY(1000);
3698         if (aneg != 0) {
3699                 /*
3700                  * Poll link state until re(4) get a 10/100Mbps link.
3701                  */
3702                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3703                         mii_pollstat(mii);
3704                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3705                             == (IFM_ACTIVE | IFM_AVALID)) {
3706                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
3707                                 case IFM_10_T:
3708                                 case IFM_100_TX:
3709                                         return;
3710                                 default:
3711                                         break;
3712                                 }
3713                         }
3714                         RL_UNLOCK(sc);
3715                         pause("relnk", hz);
3716                         RL_LOCK(sc);
3717                 }
3718                 if (i == MII_ANEGTICKS_GIGE)
3719                         device_printf(sc->rl_dev,
3720                             "establishing a link failed, WOL may not work!");
3721         }
3722         /*
3723          * No link, force MAC to have 100Mbps, full-duplex link.
3724          * MAC does not require reprogramming on resolved speed/duplex,
3725          * so this is just for completeness.
3726          */
3727         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3728         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3729 }
3730
3731 static void
3732 re_setwol(struct rl_softc *sc)
3733 {
3734         struct ifnet            *ifp;
3735         int                     pmc;
3736         uint16_t                pmstat;
3737         uint8_t                 v;
3738
3739         RL_LOCK_ASSERT(sc);
3740
3741         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3742                 return;
3743
3744         ifp = sc->rl_ifp;
3745         /* Put controller into sleep mode. */
3746         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3747                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3748                         CSR_WRITE_1(sc, RL_GPIO,
3749                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
3750         }
3751         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
3752                 re_set_rxmode(sc);
3753                 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3754                         re_set_linkspeed(sc);
3755                 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3756                         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3757         }
3758         /* Enable config register write. */
3759         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3760
3761         /* Enable PME. */
3762         v = CSR_READ_1(sc, sc->rl_cfg1);
3763         v &= ~RL_CFG1_PME;
3764         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3765                 v |= RL_CFG1_PME;
3766         CSR_WRITE_1(sc, sc->rl_cfg1, v);
3767
3768         v = CSR_READ_1(sc, sc->rl_cfg3);
3769         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3770         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3771                 v |= RL_CFG3_WOL_MAGIC;
3772         CSR_WRITE_1(sc, sc->rl_cfg3, v);
3773
3774         v = CSR_READ_1(sc, sc->rl_cfg5);
3775         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3776             RL_CFG5_WOL_LANWAKE);
3777         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3778                 v |= RL_CFG5_WOL_UCAST;
3779         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3780                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3781         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3782                 v |= RL_CFG5_WOL_LANWAKE;
3783         CSR_WRITE_1(sc, sc->rl_cfg5, v);
3784
3785         /* Config register write done. */
3786         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3787
3788         if ((ifp->if_capenable & IFCAP_WOL) == 0 &&
3789             (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3790                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3791         /*
3792          * It seems that hardware resets its link speed to 100Mbps in
3793          * power down mode so switching to 100Mbps in driver is not
3794          * needed.
3795          */
3796
3797         /* Request PME if WOL is requested. */
3798         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3799         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3800         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3801                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3802         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3803 }
3804
3805 static void
3806 re_clrwol(struct rl_softc *sc)
3807 {
3808         int                     pmc;
3809         uint8_t                 v;
3810
3811         RL_LOCK_ASSERT(sc);
3812
3813         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3814                 return;
3815
3816         /* Enable config register write. */
3817         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3818
3819         v = CSR_READ_1(sc, sc->rl_cfg3);
3820         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3821         CSR_WRITE_1(sc, sc->rl_cfg3, v);
3822
3823         /* Config register write done. */
3824         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3825
3826         v = CSR_READ_1(sc, sc->rl_cfg5);
3827         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3828         v &= ~RL_CFG5_WOL_LANWAKE;
3829         CSR_WRITE_1(sc, sc->rl_cfg5, v);
3830 }
3831
3832 static void
3833 re_add_sysctls(struct rl_softc *sc)
3834 {
3835         struct sysctl_ctx_list  *ctx;
3836         struct sysctl_oid_list  *children;
3837         int                     error;
3838
3839         ctx = device_get_sysctl_ctx(sc->rl_dev);
3840         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3841
3842         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3843             CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3844             "Statistics Information");
3845         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3846                 return;
3847
3848         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3849             CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3850             sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3851         /* Pull in device tunables. */
3852         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3853         error = resource_int_value(device_get_name(sc->rl_dev),
3854             device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3855         if (error == 0) {
3856                 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3857                     sc->rl_int_rx_mod > RL_TIMER_MAX) {
3858                         device_printf(sc->rl_dev, "int_rx_mod value out of "
3859                             "range; using default: %d\n",
3860                             RL_TIMER_DEFAULT);
3861                         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3862                 }
3863         }
3864
3865 }
3866
3867 static int
3868 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3869 {
3870         struct rl_softc         *sc;
3871         struct rl_stats         *stats;
3872         int                     error, i, result;
3873
3874         result = -1;
3875         error = sysctl_handle_int(oidp, &result, 0, req);
3876         if (error || req->newptr == NULL)
3877                 return (error);
3878
3879         if (result == 1) {
3880                 sc = (struct rl_softc *)arg1;
3881                 RL_LOCK(sc);
3882                 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3883                         RL_UNLOCK(sc);
3884                         goto done;
3885                 }
3886                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3887                     sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3888                 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3889                     RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3890                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3891                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3892                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3893                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3894                     RL_DUMPSTATS_START));
3895                 for (i = RL_TIMEOUT; i > 0; i--) {
3896                         if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3897                             RL_DUMPSTATS_START) == 0)
3898                                 break;
3899                         DELAY(1000);
3900                 }
3901                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3902                     sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3903                 RL_UNLOCK(sc);
3904                 if (i == 0) {
3905                         device_printf(sc->rl_dev,
3906                             "DUMP statistics request timedout\n");
3907                         return (ETIMEDOUT);
3908                 }
3909 done:
3910                 stats = sc->rl_ldata.rl_stats;
3911                 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3912                 printf("Tx frames : %ju\n",
3913                     (uintmax_t)le64toh(stats->rl_tx_pkts));
3914                 printf("Rx frames : %ju\n",
3915                     (uintmax_t)le64toh(stats->rl_rx_pkts));
3916                 printf("Tx errors : %ju\n",
3917                     (uintmax_t)le64toh(stats->rl_tx_errs));
3918                 printf("Rx errors : %u\n",
3919                     le32toh(stats->rl_rx_errs));
3920                 printf("Rx missed frames : %u\n",
3921                     (uint32_t)le16toh(stats->rl_missed_pkts));
3922                 printf("Rx frame alignment errs : %u\n",
3923                     (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3924                 printf("Tx single collisions : %u\n",
3925                     le32toh(stats->rl_tx_onecoll));
3926                 printf("Tx multiple collisions : %u\n",
3927                     le32toh(stats->rl_tx_multicolls));
3928                 printf("Rx unicast frames : %ju\n",
3929                     (uintmax_t)le64toh(stats->rl_rx_ucasts));
3930                 printf("Rx broadcast frames : %ju\n",
3931                     (uintmax_t)le64toh(stats->rl_rx_bcasts));
3932                 printf("Rx multicast frames : %u\n",
3933                     le32toh(stats->rl_rx_mcasts));
3934                 printf("Tx aborts : %u\n",
3935                     (uint32_t)le16toh(stats->rl_tx_aborts));
3936                 printf("Tx underruns : %u\n",
3937                     (uint32_t)le16toh(stats->rl_rx_underruns));
3938         }
3939
3940         return (error);
3941 }
3942
3943 static int
3944 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3945 {
3946         int error, value;
3947
3948         if (arg1 == NULL)
3949                 return (EINVAL);
3950         value = *(int *)arg1;
3951         error = sysctl_handle_int(oidp, &value, 0, req);
3952         if (error || req->newptr == NULL)
3953                 return (error);
3954         if (value < low || value > high)
3955                 return (EINVAL);
3956         *(int *)arg1 = value;
3957
3958         return (0);
3959 }
3960
3961 static int
3962 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
3963 {
3964
3965         return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
3966             RL_TIMER_MAX));
3967 }